1 /*
2
3 he.c
4
5 ForeRunnerHE ATM Adapter driver for ATM on Linux
6 Copyright (C) 1999-2001 Naval Research Laboratory
7
8 This library is free software; you can redistribute it and/or
9 modify it under the terms of the GNU Lesser General Public
10 License as published by the Free Software Foundation; either
11 version 2.1 of the License, or (at your option) any later version.
12
13 This library is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 Lesser General Public License for more details.
17
18 You should have received a copy of the GNU Lesser General Public
19 License along with this library; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21
22 */
23
24 /*
25
26 he.c
27
28 ForeRunnerHE ATM Adapter driver for ATM on Linux
29 Copyright (C) 1999-2001 Naval Research Laboratory
30
31 Permission to use, copy, modify and distribute this software and its
32 documentation is hereby granted, provided that both the copyright
33 notice and this permission notice appear in all copies of the software,
34 derivative works or modified versions, and any portions thereof, and
35 that both notices appear in supporting documentation.
36
37 NRL ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION AND
38 DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER
39 RESULTING FROM THE USE OF THIS SOFTWARE.
40
41 This driver was written using the "Programmer's Reference Manual for
42 ForeRunnerHE(tm)", MANU0361-01 - Rev. A, 08/21/98.
43
44 AUTHORS:
45 chas williams <chas@cmf.nrl.navy.mil>
46 eric kinzie <ekinzie@cmf.nrl.navy.mil>
47
48 NOTES:
49 4096 supported 'connections'
50 group 0 is used for all traffic
51 interrupt queue 0 is used for all interrupts
52 aal0 support (based on work from ulrich.u.muller@nokia.com)
53
54 */
55
56 #include <linux/module.h>
57 #include <linux/kernel.h>
58 #include <linux/skbuff.h>
59 #include <linux/pci.h>
60 #include <linux/errno.h>
61 #include <linux/types.h>
62 #include <linux/string.h>
63 #include <linux/delay.h>
64 #include <linux/init.h>
65 #include <linux/mm.h>
66 #include <linux/sched.h>
67 #include <linux/timer.h>
68 #include <linux/interrupt.h>
69 #include <linux/dma-mapping.h>
70 #include <linux/bitmap.h>
71 #include <linux/slab.h>
72 #include <asm/io.h>
73 #include <asm/byteorder.h>
74 #include <linux/uaccess.h>
75
76 #include <linux/atmdev.h>
77 #include <linux/atm.h>
78 #include <linux/sonet.h>
79
80 #undef USE_SCATTERGATHER
81 #undef USE_CHECKSUM_HW /* still confused about this */
82 /* #undef HE_DEBUG */
83
84 #include "he.h"
85 #include "suni.h"
86 #include <linux/atm_he.h>
87
88 #define hprintk(fmt,args...) printk(KERN_ERR DEV_LABEL "%d: " fmt, he_dev->number , ##args)
89
90 #ifdef HE_DEBUG
91 #define HPRINTK(fmt,args...) printk(KERN_DEBUG DEV_LABEL "%d: " fmt, he_dev->number , ##args)
92 #else /* !HE_DEBUG */
93 #define HPRINTK(fmt,args...) do { } while (0)
94 #endif /* HE_DEBUG */
95
96 /* declarations */
97
98 static int he_open(struct atm_vcc *vcc);
99 static void he_close(struct atm_vcc *vcc);
100 static int he_send(struct atm_vcc *vcc, struct sk_buff *skb);
101 static int he_ioctl(struct atm_dev *dev, unsigned int cmd, void __user *arg);
102 static irqreturn_t he_irq_handler(int irq, void *dev_id);
103 static void he_tasklet(unsigned long data);
104 static int he_proc_read(struct atm_dev *dev,loff_t *pos,char *page);
105 static int he_start(struct atm_dev *dev);
106 static void he_stop(struct he_dev *dev);
107 static void he_phy_put(struct atm_dev *, unsigned char, unsigned long);
108 static unsigned char he_phy_get(struct atm_dev *, unsigned long);
109
110 static u8 read_prom_byte(struct he_dev *he_dev, int addr);
111
112 /* globals */
113
114 static struct he_dev *he_devs;
115 static bool disable64;
116 static short nvpibits = -1;
117 static short nvcibits = -1;
118 static short rx_skb_reserve = 16;
119 static bool irq_coalesce = true;
120 static bool sdh;
121
122 /* Read from EEPROM = 0000 0011b */
123 static unsigned int readtab[] = {
124 CS_HIGH | CLK_HIGH,
125 CS_LOW | CLK_LOW,
126 CLK_HIGH, /* 0 */
127 CLK_LOW,
128 CLK_HIGH, /* 0 */
129 CLK_LOW,
130 CLK_HIGH, /* 0 */
131 CLK_LOW,
132 CLK_HIGH, /* 0 */
133 CLK_LOW,
134 CLK_HIGH, /* 0 */
135 CLK_LOW,
136 CLK_HIGH, /* 0 */
137 CLK_LOW | SI_HIGH,
138 CLK_HIGH | SI_HIGH, /* 1 */
139 CLK_LOW | SI_HIGH,
140 CLK_HIGH | SI_HIGH /* 1 */
141 };
142
143 /* Clock to read from/write to the EEPROM */
144 static unsigned int clocktab[] = {
145 CLK_LOW,
146 CLK_HIGH,
147 CLK_LOW,
148 CLK_HIGH,
149 CLK_LOW,
150 CLK_HIGH,
151 CLK_LOW,
152 CLK_HIGH,
153 CLK_LOW,
154 CLK_HIGH,
155 CLK_LOW,
156 CLK_HIGH,
157 CLK_LOW,
158 CLK_HIGH,
159 CLK_LOW,
160 CLK_HIGH,
161 CLK_LOW
162 };
163
164 static const struct atmdev_ops he_ops =
165 {
166 .open = he_open,
167 .close = he_close,
168 .ioctl = he_ioctl,
169 .send = he_send,
170 .phy_put = he_phy_put,
171 .phy_get = he_phy_get,
172 .proc_read = he_proc_read,
173 .owner = THIS_MODULE
174 };
175
176 #define he_writel(dev, val, reg) do { writel(val, (dev)->membase + (reg)); wmb(); } while (0)
177 #define he_readl(dev, reg) readl((dev)->membase + (reg))
178
179 /* section 2.12 connection memory access */
180
181 static __inline__ void
he_writel_internal(struct he_dev * he_dev,unsigned val,unsigned addr,unsigned flags)182 he_writel_internal(struct he_dev *he_dev, unsigned val, unsigned addr,
183 unsigned flags)
184 {
185 he_writel(he_dev, val, CON_DAT);
186 (void) he_readl(he_dev, CON_DAT); /* flush posted writes */
187 he_writel(he_dev, flags | CON_CTL_WRITE | CON_CTL_ADDR(addr), CON_CTL);
188 while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY);
189 }
190
191 #define he_writel_rcm(dev, val, reg) \
192 he_writel_internal(dev, val, reg, CON_CTL_RCM)
193
194 #define he_writel_tcm(dev, val, reg) \
195 he_writel_internal(dev, val, reg, CON_CTL_TCM)
196
197 #define he_writel_mbox(dev, val, reg) \
198 he_writel_internal(dev, val, reg, CON_CTL_MBOX)
199
200 static unsigned
he_readl_internal(struct he_dev * he_dev,unsigned addr,unsigned flags)201 he_readl_internal(struct he_dev *he_dev, unsigned addr, unsigned flags)
202 {
203 he_writel(he_dev, flags | CON_CTL_READ | CON_CTL_ADDR(addr), CON_CTL);
204 while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY);
205 return he_readl(he_dev, CON_DAT);
206 }
207
208 #define he_readl_rcm(dev, reg) \
209 he_readl_internal(dev, reg, CON_CTL_RCM)
210
211 #define he_readl_tcm(dev, reg) \
212 he_readl_internal(dev, reg, CON_CTL_TCM)
213
214 #define he_readl_mbox(dev, reg) \
215 he_readl_internal(dev, reg, CON_CTL_MBOX)
216
217
218 /* figure 2.2 connection id */
219
220 #define he_mkcid(dev, vpi, vci) (((vpi << (dev)->vcibits) | vci) & 0x1fff)
221
222 /* 2.5.1 per connection transmit state registers */
223
224 #define he_writel_tsr0(dev, val, cid) \
225 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 0)
226 #define he_readl_tsr0(dev, cid) \
227 he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 0)
228
229 #define he_writel_tsr1(dev, val, cid) \
230 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 1)
231
232 #define he_writel_tsr2(dev, val, cid) \
233 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 2)
234
235 #define he_writel_tsr3(dev, val, cid) \
236 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 3)
237
238 #define he_writel_tsr4(dev, val, cid) \
239 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 4)
240
241 /* from page 2-20
242 *
243 * NOTE While the transmit connection is active, bits 23 through 0
244 * of this register must not be written by the host. Byte
245 * enables should be used during normal operation when writing
246 * the most significant byte.
247 */
248
249 #define he_writel_tsr4_upper(dev, val, cid) \
250 he_writel_internal(dev, val, CONFIG_TSRA | (cid << 3) | 4, \
251 CON_CTL_TCM \
252 | CON_BYTE_DISABLE_2 \
253 | CON_BYTE_DISABLE_1 \
254 | CON_BYTE_DISABLE_0)
255
256 #define he_readl_tsr4(dev, cid) \
257 he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 4)
258
259 #define he_writel_tsr5(dev, val, cid) \
260 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 5)
261
262 #define he_writel_tsr6(dev, val, cid) \
263 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 6)
264
265 #define he_writel_tsr7(dev, val, cid) \
266 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 7)
267
268
269 #define he_writel_tsr8(dev, val, cid) \
270 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 0)
271
272 #define he_writel_tsr9(dev, val, cid) \
273 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 1)
274
275 #define he_writel_tsr10(dev, val, cid) \
276 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 2)
277
278 #define he_writel_tsr11(dev, val, cid) \
279 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 3)
280
281
282 #define he_writel_tsr12(dev, val, cid) \
283 he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 0)
284
285 #define he_writel_tsr13(dev, val, cid) \
286 he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 1)
287
288
289 #define he_writel_tsr14(dev, val, cid) \
290 he_writel_tcm(dev, val, CONFIG_TSRD | cid)
291
292 #define he_writel_tsr14_upper(dev, val, cid) \
293 he_writel_internal(dev, val, CONFIG_TSRD | cid, \
294 CON_CTL_TCM \
295 | CON_BYTE_DISABLE_2 \
296 | CON_BYTE_DISABLE_1 \
297 | CON_BYTE_DISABLE_0)
298
299 /* 2.7.1 per connection receive state registers */
300
301 #define he_writel_rsr0(dev, val, cid) \
302 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 0)
303 #define he_readl_rsr0(dev, cid) \
304 he_readl_rcm(dev, 0x00000 | (cid << 3) | 0)
305
306 #define he_writel_rsr1(dev, val, cid) \
307 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 1)
308
309 #define he_writel_rsr2(dev, val, cid) \
310 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 2)
311
312 #define he_writel_rsr3(dev, val, cid) \
313 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 3)
314
315 #define he_writel_rsr4(dev, val, cid) \
316 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 4)
317
318 #define he_writel_rsr5(dev, val, cid) \
319 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 5)
320
321 #define he_writel_rsr6(dev, val, cid) \
322 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 6)
323
324 #define he_writel_rsr7(dev, val, cid) \
325 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 7)
326
327 static __inline__ struct atm_vcc*
__find_vcc(struct he_dev * he_dev,unsigned cid)328 __find_vcc(struct he_dev *he_dev, unsigned cid)
329 {
330 struct hlist_head *head;
331 struct atm_vcc *vcc;
332 struct sock *s;
333 short vpi;
334 int vci;
335
336 vpi = cid >> he_dev->vcibits;
337 vci = cid & ((1 << he_dev->vcibits) - 1);
338 head = &vcc_hash[vci & (VCC_HTABLE_SIZE -1)];
339
340 sk_for_each(s, head) {
341 vcc = atm_sk(s);
342 if (vcc->dev == he_dev->atm_dev &&
343 vcc->vci == vci && vcc->vpi == vpi &&
344 vcc->qos.rxtp.traffic_class != ATM_NONE) {
345 return vcc;
346 }
347 }
348 return NULL;
349 }
350
he_init_one(struct pci_dev * pci_dev,const struct pci_device_id * pci_ent)351 static int he_init_one(struct pci_dev *pci_dev,
352 const struct pci_device_id *pci_ent)
353 {
354 struct atm_dev *atm_dev = NULL;
355 struct he_dev *he_dev = NULL;
356 int err = 0;
357
358 printk(KERN_INFO "ATM he driver\n");
359
360 if (pci_enable_device(pci_dev))
361 return -EIO;
362 if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32)) != 0) {
363 printk(KERN_WARNING "he: no suitable dma available\n");
364 err = -EIO;
365 goto init_one_failure;
366 }
367
368 atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &he_ops, -1, NULL);
369 if (!atm_dev) {
370 err = -ENODEV;
371 goto init_one_failure;
372 }
373 pci_set_drvdata(pci_dev, atm_dev);
374
375 he_dev = kzalloc(sizeof(struct he_dev),
376 GFP_KERNEL);
377 if (!he_dev) {
378 err = -ENOMEM;
379 goto init_one_failure;
380 }
381 he_dev->pci_dev = pci_dev;
382 he_dev->atm_dev = atm_dev;
383 he_dev->atm_dev->dev_data = he_dev;
384 atm_dev->dev_data = he_dev;
385 he_dev->number = atm_dev->number;
386 tasklet_init(&he_dev->tasklet, he_tasklet, (unsigned long) he_dev);
387 spin_lock_init(&he_dev->global_lock);
388
389 if (he_start(atm_dev)) {
390 he_stop(he_dev);
391 err = -ENODEV;
392 goto init_one_failure;
393 }
394 he_dev->next = NULL;
395 if (he_devs)
396 he_dev->next = he_devs;
397 he_devs = he_dev;
398 return 0;
399
400 init_one_failure:
401 if (atm_dev)
402 atm_dev_deregister(atm_dev);
403 kfree(he_dev);
404 pci_disable_device(pci_dev);
405 return err;
406 }
407
he_remove_one(struct pci_dev * pci_dev)408 static void he_remove_one(struct pci_dev *pci_dev)
409 {
410 struct atm_dev *atm_dev;
411 struct he_dev *he_dev;
412
413 atm_dev = pci_get_drvdata(pci_dev);
414 he_dev = HE_DEV(atm_dev);
415
416 /* need to remove from he_devs */
417
418 he_stop(he_dev);
419 atm_dev_deregister(atm_dev);
420 kfree(he_dev);
421
422 pci_disable_device(pci_dev);
423 }
424
425
426 static unsigned
rate_to_atmf(unsigned rate)427 rate_to_atmf(unsigned rate) /* cps to atm forum format */
428 {
429 #define NONZERO (1 << 14)
430
431 unsigned exp = 0;
432
433 if (rate == 0)
434 return 0;
435
436 rate <<= 9;
437 while (rate > 0x3ff) {
438 ++exp;
439 rate >>= 1;
440 }
441
442 return (NONZERO | (exp << 9) | (rate & 0x1ff));
443 }
444
he_init_rx_lbfp0(struct he_dev * he_dev)445 static void he_init_rx_lbfp0(struct he_dev *he_dev)
446 {
447 unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
448 unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
449 unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
450 unsigned row_offset = he_dev->r0_startrow * he_dev->bytes_per_row;
451
452 lbufd_index = 0;
453 lbm_offset = he_readl(he_dev, RCMLBM_BA);
454
455 he_writel(he_dev, lbufd_index, RLBF0_H);
456
457 for (i = 0, lbuf_count = 0; i < he_dev->r0_numbuffs; ++i) {
458 lbufd_index += 2;
459 lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
460
461 he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
462 he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
463
464 if (++lbuf_count == lbufs_per_row) {
465 lbuf_count = 0;
466 row_offset += he_dev->bytes_per_row;
467 }
468 lbm_offset += 4;
469 }
470
471 he_writel(he_dev, lbufd_index - 2, RLBF0_T);
472 he_writel(he_dev, he_dev->r0_numbuffs, RLBF0_C);
473 }
474
he_init_rx_lbfp1(struct he_dev * he_dev)475 static void he_init_rx_lbfp1(struct he_dev *he_dev)
476 {
477 unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
478 unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
479 unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
480 unsigned row_offset = he_dev->r1_startrow * he_dev->bytes_per_row;
481
482 lbufd_index = 1;
483 lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index);
484
485 he_writel(he_dev, lbufd_index, RLBF1_H);
486
487 for (i = 0, lbuf_count = 0; i < he_dev->r1_numbuffs; ++i) {
488 lbufd_index += 2;
489 lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
490
491 he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
492 he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
493
494 if (++lbuf_count == lbufs_per_row) {
495 lbuf_count = 0;
496 row_offset += he_dev->bytes_per_row;
497 }
498 lbm_offset += 4;
499 }
500
501 he_writel(he_dev, lbufd_index - 2, RLBF1_T);
502 he_writel(he_dev, he_dev->r1_numbuffs, RLBF1_C);
503 }
504
he_init_tx_lbfp(struct he_dev * he_dev)505 static void he_init_tx_lbfp(struct he_dev *he_dev)
506 {
507 unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
508 unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
509 unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
510 unsigned row_offset = he_dev->tx_startrow * he_dev->bytes_per_row;
511
512 lbufd_index = he_dev->r0_numbuffs + he_dev->r1_numbuffs;
513 lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index);
514
515 he_writel(he_dev, lbufd_index, TLBF_H);
516
517 for (i = 0, lbuf_count = 0; i < he_dev->tx_numbuffs; ++i) {
518 lbufd_index += 1;
519 lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
520
521 he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
522 he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
523
524 if (++lbuf_count == lbufs_per_row) {
525 lbuf_count = 0;
526 row_offset += he_dev->bytes_per_row;
527 }
528 lbm_offset += 2;
529 }
530
531 he_writel(he_dev, lbufd_index - 1, TLBF_T);
532 }
533
he_init_tpdrq(struct he_dev * he_dev)534 static int he_init_tpdrq(struct he_dev *he_dev)
535 {
536 he_dev->tpdrq_base = dma_alloc_coherent(&he_dev->pci_dev->dev,
537 CONFIG_TPDRQ_SIZE * sizeof(struct he_tpdrq),
538 &he_dev->tpdrq_phys,
539 GFP_KERNEL);
540 if (he_dev->tpdrq_base == NULL) {
541 hprintk("failed to alloc tpdrq\n");
542 return -ENOMEM;
543 }
544
545 he_dev->tpdrq_tail = he_dev->tpdrq_base;
546 he_dev->tpdrq_head = he_dev->tpdrq_base;
547
548 he_writel(he_dev, he_dev->tpdrq_phys, TPDRQ_B_H);
549 he_writel(he_dev, 0, TPDRQ_T);
550 he_writel(he_dev, CONFIG_TPDRQ_SIZE - 1, TPDRQ_S);
551
552 return 0;
553 }
554
he_init_cs_block(struct he_dev * he_dev)555 static void he_init_cs_block(struct he_dev *he_dev)
556 {
557 unsigned clock, rate, delta;
558 int reg;
559
560 /* 5.1.7 cs block initialization */
561
562 for (reg = 0; reg < 0x20; ++reg)
563 he_writel_mbox(he_dev, 0x0, CS_STTIM0 + reg);
564
565 /* rate grid timer reload values */
566
567 clock = he_is622(he_dev) ? 66667000 : 50000000;
568 rate = he_dev->atm_dev->link_rate;
569 delta = rate / 16 / 2;
570
571 for (reg = 0; reg < 0x10; ++reg) {
572 /* 2.4 internal transmit function
573 *
574 * we initialize the first row in the rate grid.
575 * values are period (in clock cycles) of timer
576 */
577 unsigned period = clock / rate;
578
579 he_writel_mbox(he_dev, period, CS_TGRLD0 + reg);
580 rate -= delta;
581 }
582
583 if (he_is622(he_dev)) {
584 /* table 5.2 (4 cells per lbuf) */
585 he_writel_mbox(he_dev, 0x000800fa, CS_ERTHR0);
586 he_writel_mbox(he_dev, 0x000c33cb, CS_ERTHR1);
587 he_writel_mbox(he_dev, 0x0010101b, CS_ERTHR2);
588 he_writel_mbox(he_dev, 0x00181dac, CS_ERTHR3);
589 he_writel_mbox(he_dev, 0x00280600, CS_ERTHR4);
590
591 /* table 5.3, 5.4, 5.5, 5.6, 5.7 */
592 he_writel_mbox(he_dev, 0x023de8b3, CS_ERCTL0);
593 he_writel_mbox(he_dev, 0x1801, CS_ERCTL1);
594 he_writel_mbox(he_dev, 0x68b3, CS_ERCTL2);
595 he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0);
596 he_writel_mbox(he_dev, 0x68b3, CS_ERSTAT1);
597 he_writel_mbox(he_dev, 0x14585, CS_RTFWR);
598
599 he_writel_mbox(he_dev, 0x4680, CS_RTATR);
600
601 /* table 5.8 */
602 he_writel_mbox(he_dev, 0x00159ece, CS_TFBSET);
603 he_writel_mbox(he_dev, 0x68b3, CS_WCRMAX);
604 he_writel_mbox(he_dev, 0x5eb3, CS_WCRMIN);
605 he_writel_mbox(he_dev, 0xe8b3, CS_WCRINC);
606 he_writel_mbox(he_dev, 0xdeb3, CS_WCRDEC);
607 he_writel_mbox(he_dev, 0x68b3, CS_WCRCEIL);
608
609 /* table 5.9 */
610 he_writel_mbox(he_dev, 0x5, CS_OTPPER);
611 he_writel_mbox(he_dev, 0x14, CS_OTWPER);
612 } else {
613 /* table 5.1 (4 cells per lbuf) */
614 he_writel_mbox(he_dev, 0x000400ea, CS_ERTHR0);
615 he_writel_mbox(he_dev, 0x00063388, CS_ERTHR1);
616 he_writel_mbox(he_dev, 0x00081018, CS_ERTHR2);
617 he_writel_mbox(he_dev, 0x000c1dac, CS_ERTHR3);
618 he_writel_mbox(he_dev, 0x0014051a, CS_ERTHR4);
619
620 /* table 5.3, 5.4, 5.5, 5.6, 5.7 */
621 he_writel_mbox(he_dev, 0x0235e4b1, CS_ERCTL0);
622 he_writel_mbox(he_dev, 0x4701, CS_ERCTL1);
623 he_writel_mbox(he_dev, 0x64b1, CS_ERCTL2);
624 he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0);
625 he_writel_mbox(he_dev, 0x64b1, CS_ERSTAT1);
626 he_writel_mbox(he_dev, 0xf424, CS_RTFWR);
627
628 he_writel_mbox(he_dev, 0x4680, CS_RTATR);
629
630 /* table 5.8 */
631 he_writel_mbox(he_dev, 0x000563b7, CS_TFBSET);
632 he_writel_mbox(he_dev, 0x64b1, CS_WCRMAX);
633 he_writel_mbox(he_dev, 0x5ab1, CS_WCRMIN);
634 he_writel_mbox(he_dev, 0xe4b1, CS_WCRINC);
635 he_writel_mbox(he_dev, 0xdab1, CS_WCRDEC);
636 he_writel_mbox(he_dev, 0x64b1, CS_WCRCEIL);
637
638 /* table 5.9 */
639 he_writel_mbox(he_dev, 0x6, CS_OTPPER);
640 he_writel_mbox(he_dev, 0x1e, CS_OTWPER);
641 }
642
643 he_writel_mbox(he_dev, 0x8, CS_OTTLIM);
644
645 for (reg = 0; reg < 0x8; ++reg)
646 he_writel_mbox(he_dev, 0x0, CS_HGRRT0 + reg);
647
648 }
649
he_init_cs_block_rcm(struct he_dev * he_dev)650 static int he_init_cs_block_rcm(struct he_dev *he_dev)
651 {
652 unsigned (*rategrid)[16][16];
653 unsigned rate, delta;
654 int i, j, reg;
655
656 unsigned rate_atmf, exp, man;
657 unsigned long long rate_cps;
658 int mult, buf, buf_limit = 4;
659
660 rategrid = kmalloc( sizeof(unsigned) * 16 * 16, GFP_KERNEL);
661 if (!rategrid)
662 return -ENOMEM;
663
664 /* initialize rate grid group table */
665
666 for (reg = 0x0; reg < 0xff; ++reg)
667 he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg);
668
669 /* initialize rate controller groups */
670
671 for (reg = 0x100; reg < 0x1ff; ++reg)
672 he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg);
673
674 /* initialize tNrm lookup table */
675
676 /* the manual makes reference to a routine in a sample driver
677 for proper configuration; fortunately, we only need this
678 in order to support abr connection */
679
680 /* initialize rate to group table */
681
682 rate = he_dev->atm_dev->link_rate;
683 delta = rate / 32;
684
685 /*
686 * 2.4 transmit internal functions
687 *
688 * we construct a copy of the rate grid used by the scheduler
689 * in order to construct the rate to group table below
690 */
691
692 for (j = 0; j < 16; j++) {
693 (*rategrid)[0][j] = rate;
694 rate -= delta;
695 }
696
697 for (i = 1; i < 16; i++)
698 for (j = 0; j < 16; j++)
699 if (i > 14)
700 (*rategrid)[i][j] = (*rategrid)[i - 1][j] / 4;
701 else
702 (*rategrid)[i][j] = (*rategrid)[i - 1][j] / 2;
703
704 /*
705 * 2.4 transmit internal function
706 *
707 * this table maps the upper 5 bits of exponent and mantissa
708 * of the atm forum representation of the rate into an index
709 * on rate grid
710 */
711
712 rate_atmf = 0;
713 while (rate_atmf < 0x400) {
714 man = (rate_atmf & 0x1f) << 4;
715 exp = rate_atmf >> 5;
716
717 /*
718 instead of '/ 512', use '>> 9' to prevent a call
719 to divdu3 on x86 platforms
720 */
721 rate_cps = (unsigned long long) (1UL << exp) * (man + 512) >> 9;
722
723 if (rate_cps < 10)
724 rate_cps = 10; /* 2.2.1 minimum payload rate is 10 cps */
725
726 for (i = 255; i > 0; i--)
727 if ((*rategrid)[i/16][i%16] >= rate_cps)
728 break; /* pick nearest rate instead? */
729
730 /*
731 * each table entry is 16 bits: (rate grid index (8 bits)
732 * and a buffer limit (8 bits)
733 * there are two table entries in each 32-bit register
734 */
735
736 #ifdef notdef
737 buf = rate_cps * he_dev->tx_numbuffs /
738 (he_dev->atm_dev->link_rate * 2);
739 #else
740 /* this is pretty, but avoids _divdu3 and is mostly correct */
741 mult = he_dev->atm_dev->link_rate / ATM_OC3_PCR;
742 if (rate_cps > (272ULL * mult))
743 buf = 4;
744 else if (rate_cps > (204ULL * mult))
745 buf = 3;
746 else if (rate_cps > (136ULL * mult))
747 buf = 2;
748 else if (rate_cps > (68ULL * mult))
749 buf = 1;
750 else
751 buf = 0;
752 #endif
753 if (buf > buf_limit)
754 buf = buf_limit;
755 reg = (reg << 16) | ((i << 8) | buf);
756
757 #define RTGTBL_OFFSET 0x400
758
759 if (rate_atmf & 0x1)
760 he_writel_rcm(he_dev, reg,
761 CONFIG_RCMABR + RTGTBL_OFFSET + (rate_atmf >> 1));
762
763 ++rate_atmf;
764 }
765
766 kfree(rategrid);
767 return 0;
768 }
769
he_init_group(struct he_dev * he_dev,int group)770 static int he_init_group(struct he_dev *he_dev, int group)
771 {
772 struct he_buff *heb, *next;
773 dma_addr_t mapping;
774 int i;
775
776 he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32));
777 he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32));
778 he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32));
779 he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
780 G0_RBPS_BS + (group * 32));
781
782 /* bitmap table */
783 he_dev->rbpl_table = bitmap_zalloc(RBPL_TABLE_SIZE, GFP_KERNEL);
784 if (!he_dev->rbpl_table) {
785 hprintk("unable to allocate rbpl bitmap table\n");
786 return -ENOMEM;
787 }
788
789 /* rbpl_virt 64-bit pointers */
790 he_dev->rbpl_virt = kmalloc_array(RBPL_TABLE_SIZE,
791 sizeof(*he_dev->rbpl_virt),
792 GFP_KERNEL);
793 if (!he_dev->rbpl_virt) {
794 hprintk("unable to allocate rbpl virt table\n");
795 goto out_free_rbpl_table;
796 }
797
798 /* large buffer pool */
799 he_dev->rbpl_pool = dma_pool_create("rbpl", &he_dev->pci_dev->dev,
800 CONFIG_RBPL_BUFSIZE, 64, 0);
801 if (he_dev->rbpl_pool == NULL) {
802 hprintk("unable to create rbpl pool\n");
803 goto out_free_rbpl_virt;
804 }
805
806 he_dev->rbpl_base = dma_alloc_coherent(&he_dev->pci_dev->dev,
807 CONFIG_RBPL_SIZE * sizeof(struct he_rbp),
808 &he_dev->rbpl_phys, GFP_KERNEL);
809 if (he_dev->rbpl_base == NULL) {
810 hprintk("failed to alloc rbpl_base\n");
811 goto out_destroy_rbpl_pool;
812 }
813
814 INIT_LIST_HEAD(&he_dev->rbpl_outstanding);
815
816 for (i = 0; i < CONFIG_RBPL_SIZE; ++i) {
817
818 heb = dma_pool_alloc(he_dev->rbpl_pool, GFP_KERNEL, &mapping);
819 if (!heb)
820 goto out_free_rbpl;
821 heb->mapping = mapping;
822 list_add(&heb->entry, &he_dev->rbpl_outstanding);
823
824 set_bit(i, he_dev->rbpl_table);
825 he_dev->rbpl_virt[i] = heb;
826 he_dev->rbpl_hint = i + 1;
827 he_dev->rbpl_base[i].idx = i << RBP_IDX_OFFSET;
828 he_dev->rbpl_base[i].phys = mapping + offsetof(struct he_buff, data);
829 }
830 he_dev->rbpl_tail = &he_dev->rbpl_base[CONFIG_RBPL_SIZE - 1];
831
832 he_writel(he_dev, he_dev->rbpl_phys, G0_RBPL_S + (group * 32));
833 he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail),
834 G0_RBPL_T + (group * 32));
835 he_writel(he_dev, (CONFIG_RBPL_BUFSIZE - sizeof(struct he_buff))/4,
836 G0_RBPL_BS + (group * 32));
837 he_writel(he_dev,
838 RBP_THRESH(CONFIG_RBPL_THRESH) |
839 RBP_QSIZE(CONFIG_RBPL_SIZE - 1) |
840 RBP_INT_ENB,
841 G0_RBPL_QI + (group * 32));
842
843 /* rx buffer ready queue */
844
845 he_dev->rbrq_base = dma_alloc_coherent(&he_dev->pci_dev->dev,
846 CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq),
847 &he_dev->rbrq_phys, GFP_KERNEL);
848 if (he_dev->rbrq_base == NULL) {
849 hprintk("failed to allocate rbrq\n");
850 goto out_free_rbpl;
851 }
852
853 he_dev->rbrq_head = he_dev->rbrq_base;
854 he_writel(he_dev, he_dev->rbrq_phys, G0_RBRQ_ST + (group * 16));
855 he_writel(he_dev, 0, G0_RBRQ_H + (group * 16));
856 he_writel(he_dev,
857 RBRQ_THRESH(CONFIG_RBRQ_THRESH) | RBRQ_SIZE(CONFIG_RBRQ_SIZE - 1),
858 G0_RBRQ_Q + (group * 16));
859 if (irq_coalesce) {
860 hprintk("coalescing interrupts\n");
861 he_writel(he_dev, RBRQ_TIME(768) | RBRQ_COUNT(7),
862 G0_RBRQ_I + (group * 16));
863 } else
864 he_writel(he_dev, RBRQ_TIME(0) | RBRQ_COUNT(1),
865 G0_RBRQ_I + (group * 16));
866
867 /* tx buffer ready queue */
868
869 he_dev->tbrq_base = dma_alloc_coherent(&he_dev->pci_dev->dev,
870 CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
871 &he_dev->tbrq_phys, GFP_KERNEL);
872 if (he_dev->tbrq_base == NULL) {
873 hprintk("failed to allocate tbrq\n");
874 goto out_free_rbpq_base;
875 }
876
877 he_dev->tbrq_head = he_dev->tbrq_base;
878
879 he_writel(he_dev, he_dev->tbrq_phys, G0_TBRQ_B_T + (group * 16));
880 he_writel(he_dev, 0, G0_TBRQ_H + (group * 16));
881 he_writel(he_dev, CONFIG_TBRQ_SIZE - 1, G0_TBRQ_S + (group * 16));
882 he_writel(he_dev, CONFIG_TBRQ_THRESH, G0_TBRQ_THRESH + (group * 16));
883
884 return 0;
885
886 out_free_rbpq_base:
887 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBRQ_SIZE *
888 sizeof(struct he_rbrq), he_dev->rbrq_base,
889 he_dev->rbrq_phys);
890 out_free_rbpl:
891 list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry)
892 dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
893
894 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBPL_SIZE *
895 sizeof(struct he_rbp), he_dev->rbpl_base,
896 he_dev->rbpl_phys);
897 out_destroy_rbpl_pool:
898 dma_pool_destroy(he_dev->rbpl_pool);
899 out_free_rbpl_virt:
900 kfree(he_dev->rbpl_virt);
901 out_free_rbpl_table:
902 bitmap_free(he_dev->rbpl_table);
903
904 return -ENOMEM;
905 }
906
he_init_irq(struct he_dev * he_dev)907 static int he_init_irq(struct he_dev *he_dev)
908 {
909 int i;
910
911 /* 2.9.3.5 tail offset for each interrupt queue is located after the
912 end of the interrupt queue */
913
914 he_dev->irq_base = dma_alloc_coherent(&he_dev->pci_dev->dev,
915 (CONFIG_IRQ_SIZE + 1) * sizeof(struct he_irq),
916 &he_dev->irq_phys, GFP_KERNEL);
917 if (he_dev->irq_base == NULL) {
918 hprintk("failed to allocate irq\n");
919 return -ENOMEM;
920 }
921 he_dev->irq_tailoffset = (unsigned *)
922 &he_dev->irq_base[CONFIG_IRQ_SIZE];
923 *he_dev->irq_tailoffset = 0;
924 he_dev->irq_head = he_dev->irq_base;
925 he_dev->irq_tail = he_dev->irq_base;
926
927 for (i = 0; i < CONFIG_IRQ_SIZE; ++i)
928 he_dev->irq_base[i].isw = ITYPE_INVALID;
929
930 he_writel(he_dev, he_dev->irq_phys, IRQ0_BASE);
931 he_writel(he_dev,
932 IRQ_SIZE(CONFIG_IRQ_SIZE) | IRQ_THRESH(CONFIG_IRQ_THRESH),
933 IRQ0_HEAD);
934 he_writel(he_dev, IRQ_INT_A | IRQ_TYPE_LINE, IRQ0_CNTL);
935 he_writel(he_dev, 0x0, IRQ0_DATA);
936
937 he_writel(he_dev, 0x0, IRQ1_BASE);
938 he_writel(he_dev, 0x0, IRQ1_HEAD);
939 he_writel(he_dev, 0x0, IRQ1_CNTL);
940 he_writel(he_dev, 0x0, IRQ1_DATA);
941
942 he_writel(he_dev, 0x0, IRQ2_BASE);
943 he_writel(he_dev, 0x0, IRQ2_HEAD);
944 he_writel(he_dev, 0x0, IRQ2_CNTL);
945 he_writel(he_dev, 0x0, IRQ2_DATA);
946
947 he_writel(he_dev, 0x0, IRQ3_BASE);
948 he_writel(he_dev, 0x0, IRQ3_HEAD);
949 he_writel(he_dev, 0x0, IRQ3_CNTL);
950 he_writel(he_dev, 0x0, IRQ3_DATA);
951
952 /* 2.9.3.2 interrupt queue mapping registers */
953
954 he_writel(he_dev, 0x0, GRP_10_MAP);
955 he_writel(he_dev, 0x0, GRP_32_MAP);
956 he_writel(he_dev, 0x0, GRP_54_MAP);
957 he_writel(he_dev, 0x0, GRP_76_MAP);
958
959 if (request_irq(he_dev->pci_dev->irq,
960 he_irq_handler, IRQF_SHARED, DEV_LABEL, he_dev)) {
961 hprintk("irq %d already in use\n", he_dev->pci_dev->irq);
962 return -EINVAL;
963 }
964
965 he_dev->irq = he_dev->pci_dev->irq;
966
967 return 0;
968 }
969
he_start(struct atm_dev * dev)970 static int he_start(struct atm_dev *dev)
971 {
972 struct he_dev *he_dev;
973 struct pci_dev *pci_dev;
974 unsigned long membase;
975
976 u16 command;
977 u32 gen_cntl_0, host_cntl, lb_swap;
978 u8 cache_size, timer;
979
980 unsigned err;
981 unsigned int status, reg;
982 int i, group;
983
984 he_dev = HE_DEV(dev);
985 pci_dev = he_dev->pci_dev;
986
987 membase = pci_resource_start(pci_dev, 0);
988 HPRINTK("membase = 0x%lx irq = %d.\n", membase, pci_dev->irq);
989
990 /*
991 * pci bus controller initialization
992 */
993
994 /* 4.3 pci bus controller-specific initialization */
995 if (pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0) != 0) {
996 hprintk("can't read GEN_CNTL_0\n");
997 return -EINVAL;
998 }
999 gen_cntl_0 |= (MRL_ENB | MRM_ENB | IGNORE_TIMEOUT);
1000 if (pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0) != 0) {
1001 hprintk("can't write GEN_CNTL_0.\n");
1002 return -EINVAL;
1003 }
1004
1005 if (pci_read_config_word(pci_dev, PCI_COMMAND, &command) != 0) {
1006 hprintk("can't read PCI_COMMAND.\n");
1007 return -EINVAL;
1008 }
1009
1010 command |= (PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_INVALIDATE);
1011 if (pci_write_config_word(pci_dev, PCI_COMMAND, command) != 0) {
1012 hprintk("can't enable memory.\n");
1013 return -EINVAL;
1014 }
1015
1016 if (pci_read_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, &cache_size)) {
1017 hprintk("can't read cache line size?\n");
1018 return -EINVAL;
1019 }
1020
1021 if (cache_size < 16) {
1022 cache_size = 16;
1023 if (pci_write_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, cache_size))
1024 hprintk("can't set cache line size to %d\n", cache_size);
1025 }
1026
1027 if (pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &timer)) {
1028 hprintk("can't read latency timer?\n");
1029 return -EINVAL;
1030 }
1031
1032 /* from table 3.9
1033 *
1034 * LAT_TIMER = 1 + AVG_LAT + BURST_SIZE/BUS_SIZE
1035 *
1036 * AVG_LAT: The average first data read/write latency [maximum 16 clock cycles]
1037 * BURST_SIZE: 1536 bytes (read) for 622, 768 bytes (read) for 155 [192 clock cycles]
1038 *
1039 */
1040 #define LAT_TIMER 209
1041 if (timer < LAT_TIMER) {
1042 HPRINTK("latency timer was %d, setting to %d\n", timer, LAT_TIMER);
1043 timer = LAT_TIMER;
1044 if (pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, timer))
1045 hprintk("can't set latency timer to %d\n", timer);
1046 }
1047
1048 if (!(he_dev->membase = ioremap(membase, HE_REGMAP_SIZE))) {
1049 hprintk("can't set up page mapping\n");
1050 return -EINVAL;
1051 }
1052
1053 /* 4.4 card reset */
1054 he_writel(he_dev, 0x0, RESET_CNTL);
1055 he_writel(he_dev, 0xff, RESET_CNTL);
1056
1057 msleep(16); /* 16 ms */
1058 status = he_readl(he_dev, RESET_CNTL);
1059 if ((status & BOARD_RST_STATUS) == 0) {
1060 hprintk("reset failed\n");
1061 return -EINVAL;
1062 }
1063
1064 /* 4.5 set bus width */
1065 host_cntl = he_readl(he_dev, HOST_CNTL);
1066 if (host_cntl & PCI_BUS_SIZE64)
1067 gen_cntl_0 |= ENBL_64;
1068 else
1069 gen_cntl_0 &= ~ENBL_64;
1070
1071 if (disable64 == 1) {
1072 hprintk("disabling 64-bit pci bus transfers\n");
1073 gen_cntl_0 &= ~ENBL_64;
1074 }
1075
1076 if (gen_cntl_0 & ENBL_64)
1077 hprintk("64-bit transfers enabled\n");
1078
1079 pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1080
1081 /* 4.7 read prom contents */
1082 for (i = 0; i < PROD_ID_LEN; ++i)
1083 he_dev->prod_id[i] = read_prom_byte(he_dev, PROD_ID + i);
1084
1085 he_dev->media = read_prom_byte(he_dev, MEDIA);
1086
1087 for (i = 0; i < 6; ++i)
1088 dev->esi[i] = read_prom_byte(he_dev, MAC_ADDR + i);
1089
1090 hprintk("%s%s, %pM\n", he_dev->prod_id,
1091 he_dev->media & 0x40 ? "SM" : "MM", dev->esi);
1092 he_dev->atm_dev->link_rate = he_is622(he_dev) ?
1093 ATM_OC12_PCR : ATM_OC3_PCR;
1094
1095 /* 4.6 set host endianess */
1096 lb_swap = he_readl(he_dev, LB_SWAP);
1097 if (he_is622(he_dev))
1098 lb_swap &= ~XFER_SIZE; /* 4 cells */
1099 else
1100 lb_swap |= XFER_SIZE; /* 8 cells */
1101 #ifdef __BIG_ENDIAN
1102 lb_swap |= DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST;
1103 #else
1104 lb_swap &= ~(DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST |
1105 DATA_WR_SWAP | DATA_RD_SWAP | DESC_RD_SWAP);
1106 #endif /* __BIG_ENDIAN */
1107 he_writel(he_dev, lb_swap, LB_SWAP);
1108
1109 /* 4.8 sdram controller initialization */
1110 he_writel(he_dev, he_is622(he_dev) ? LB_64_ENB : 0x0, SDRAM_CTL);
1111
1112 /* 4.9 initialize rnum value */
1113 lb_swap |= SWAP_RNUM_MAX(0xf);
1114 he_writel(he_dev, lb_swap, LB_SWAP);
1115
1116 /* 4.10 initialize the interrupt queues */
1117 if ((err = he_init_irq(he_dev)) != 0)
1118 return err;
1119
1120 /* 4.11 enable pci bus controller state machines */
1121 host_cntl |= (OUTFF_ENB | CMDFF_ENB |
1122 QUICK_RD_RETRY | QUICK_WR_RETRY | PERR_INT_ENB);
1123 he_writel(he_dev, host_cntl, HOST_CNTL);
1124
1125 gen_cntl_0 |= INT_PROC_ENBL|INIT_ENB;
1126 pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1127
1128 /*
1129 * atm network controller initialization
1130 */
1131
1132 /* 5.1.1 generic configuration state */
1133
1134 /*
1135 * local (cell) buffer memory map
1136 *
1137 * HE155 HE622
1138 *
1139 * 0 ____________1023 bytes 0 _______________________2047 bytes
1140 * | | | | |
1141 * | utility | | rx0 | |
1142 * 5|____________| 255|___________________| u |
1143 * 6| | 256| | t |
1144 * | | | | i |
1145 * | rx0 | row | tx | l |
1146 * | | | | i |
1147 * | | 767|___________________| t |
1148 * 517|____________| 768| | y |
1149 * row 518| | | rx1 | |
1150 * | | 1023|___________________|___|
1151 * | |
1152 * | tx |
1153 * | |
1154 * | |
1155 * 1535|____________|
1156 * 1536| |
1157 * | rx1 |
1158 * 2047|____________|
1159 *
1160 */
1161
1162 /* total 4096 connections */
1163 he_dev->vcibits = CONFIG_DEFAULT_VCIBITS;
1164 he_dev->vpibits = CONFIG_DEFAULT_VPIBITS;
1165
1166 if (nvpibits != -1 && nvcibits != -1 && nvpibits+nvcibits != HE_MAXCIDBITS) {
1167 hprintk("nvpibits + nvcibits != %d\n", HE_MAXCIDBITS);
1168 return -ENODEV;
1169 }
1170
1171 if (nvpibits != -1) {
1172 he_dev->vpibits = nvpibits;
1173 he_dev->vcibits = HE_MAXCIDBITS - nvpibits;
1174 }
1175
1176 if (nvcibits != -1) {
1177 he_dev->vcibits = nvcibits;
1178 he_dev->vpibits = HE_MAXCIDBITS - nvcibits;
1179 }
1180
1181
1182 if (he_is622(he_dev)) {
1183 he_dev->cells_per_row = 40;
1184 he_dev->bytes_per_row = 2048;
1185 he_dev->r0_numrows = 256;
1186 he_dev->tx_numrows = 512;
1187 he_dev->r1_numrows = 256;
1188 he_dev->r0_startrow = 0;
1189 he_dev->tx_startrow = 256;
1190 he_dev->r1_startrow = 768;
1191 } else {
1192 he_dev->cells_per_row = 20;
1193 he_dev->bytes_per_row = 1024;
1194 he_dev->r0_numrows = 512;
1195 he_dev->tx_numrows = 1018;
1196 he_dev->r1_numrows = 512;
1197 he_dev->r0_startrow = 6;
1198 he_dev->tx_startrow = 518;
1199 he_dev->r1_startrow = 1536;
1200 }
1201
1202 he_dev->cells_per_lbuf = 4;
1203 he_dev->buffer_limit = 4;
1204 he_dev->r0_numbuffs = he_dev->r0_numrows *
1205 he_dev->cells_per_row / he_dev->cells_per_lbuf;
1206 if (he_dev->r0_numbuffs > 2560)
1207 he_dev->r0_numbuffs = 2560;
1208
1209 he_dev->r1_numbuffs = he_dev->r1_numrows *
1210 he_dev->cells_per_row / he_dev->cells_per_lbuf;
1211 if (he_dev->r1_numbuffs > 2560)
1212 he_dev->r1_numbuffs = 2560;
1213
1214 he_dev->tx_numbuffs = he_dev->tx_numrows *
1215 he_dev->cells_per_row / he_dev->cells_per_lbuf;
1216 if (he_dev->tx_numbuffs > 5120)
1217 he_dev->tx_numbuffs = 5120;
1218
1219 /* 5.1.2 configure hardware dependent registers */
1220
1221 he_writel(he_dev,
1222 SLICE_X(0x2) | ARB_RNUM_MAX(0xf) | TH_PRTY(0x3) |
1223 RH_PRTY(0x3) | TL_PRTY(0x2) | RL_PRTY(0x1) |
1224 (he_is622(he_dev) ? BUS_MULTI(0x28) : BUS_MULTI(0x46)) |
1225 (he_is622(he_dev) ? NET_PREF(0x50) : NET_PREF(0x8c)),
1226 LBARB);
1227
1228 he_writel(he_dev, BANK_ON |
1229 (he_is622(he_dev) ? (REF_RATE(0x384) | WIDE_DATA) : REF_RATE(0x150)),
1230 SDRAMCON);
1231
1232 he_writel(he_dev,
1233 (he_is622(he_dev) ? RM_BANK_WAIT(1) : RM_BANK_WAIT(0)) |
1234 RM_RW_WAIT(1), RCMCONFIG);
1235 he_writel(he_dev,
1236 (he_is622(he_dev) ? TM_BANK_WAIT(2) : TM_BANK_WAIT(1)) |
1237 TM_RW_WAIT(1), TCMCONFIG);
1238
1239 he_writel(he_dev, he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD, LB_CONFIG);
1240
1241 he_writel(he_dev,
1242 (he_is622(he_dev) ? UT_RD_DELAY(8) : UT_RD_DELAY(0)) |
1243 (he_is622(he_dev) ? RC_UT_MODE(0) : RC_UT_MODE(1)) |
1244 RX_VALVP(he_dev->vpibits) |
1245 RX_VALVC(he_dev->vcibits), RC_CONFIG);
1246
1247 he_writel(he_dev, DRF_THRESH(0x20) |
1248 (he_is622(he_dev) ? TX_UT_MODE(0) : TX_UT_MODE(1)) |
1249 TX_VCI_MASK(he_dev->vcibits) |
1250 LBFREE_CNT(he_dev->tx_numbuffs), TX_CONFIG);
1251
1252 he_writel(he_dev, 0x0, TXAAL5_PROTO);
1253
1254 he_writel(he_dev, PHY_INT_ENB |
1255 (he_is622(he_dev) ? PTMR_PRE(67 - 1) : PTMR_PRE(50 - 1)),
1256 RH_CONFIG);
1257
1258 /* 5.1.3 initialize connection memory */
1259
1260 for (i = 0; i < TCM_MEM_SIZE; ++i)
1261 he_writel_tcm(he_dev, 0, i);
1262
1263 for (i = 0; i < RCM_MEM_SIZE; ++i)
1264 he_writel_rcm(he_dev, 0, i);
1265
1266 /*
1267 * transmit connection memory map
1268 *
1269 * tx memory
1270 * 0x0 ___________________
1271 * | |
1272 * | |
1273 * | TSRa |
1274 * | |
1275 * | |
1276 * 0x8000|___________________|
1277 * | |
1278 * | TSRb |
1279 * 0xc000|___________________|
1280 * | |
1281 * | TSRc |
1282 * 0xe000|___________________|
1283 * | TSRd |
1284 * 0xf000|___________________|
1285 * | tmABR |
1286 * 0x10000|___________________|
1287 * | |
1288 * | tmTPD |
1289 * |___________________|
1290 * | |
1291 * ....
1292 * 0x1ffff|___________________|
1293 *
1294 *
1295 */
1296
1297 he_writel(he_dev, CONFIG_TSRB, TSRB_BA);
1298 he_writel(he_dev, CONFIG_TSRC, TSRC_BA);
1299 he_writel(he_dev, CONFIG_TSRD, TSRD_BA);
1300 he_writel(he_dev, CONFIG_TMABR, TMABR_BA);
1301 he_writel(he_dev, CONFIG_TPDBA, TPD_BA);
1302
1303
1304 /*
1305 * receive connection memory map
1306 *
1307 * 0x0 ___________________
1308 * | |
1309 * | |
1310 * | RSRa |
1311 * | |
1312 * | |
1313 * 0x8000|___________________|
1314 * | |
1315 * | rx0/1 |
1316 * | LBM | link lists of local
1317 * | tx | buffer memory
1318 * | |
1319 * 0xd000|___________________|
1320 * | |
1321 * | rmABR |
1322 * 0xe000|___________________|
1323 * | |
1324 * | RSRb |
1325 * |___________________|
1326 * | |
1327 * ....
1328 * 0xffff|___________________|
1329 */
1330
1331 he_writel(he_dev, 0x08000, RCMLBM_BA);
1332 he_writel(he_dev, 0x0e000, RCMRSRB_BA);
1333 he_writel(he_dev, 0x0d800, RCMABR_BA);
1334
1335 /* 5.1.4 initialize local buffer free pools linked lists */
1336
1337 he_init_rx_lbfp0(he_dev);
1338 he_init_rx_lbfp1(he_dev);
1339
1340 he_writel(he_dev, 0x0, RLBC_H);
1341 he_writel(he_dev, 0x0, RLBC_T);
1342 he_writel(he_dev, 0x0, RLBC_H2);
1343
1344 he_writel(he_dev, 512, RXTHRSH); /* 10% of r0+r1 buffers */
1345 he_writel(he_dev, 256, LITHRSH); /* 5% of r0+r1 buffers */
1346
1347 he_init_tx_lbfp(he_dev);
1348
1349 he_writel(he_dev, he_is622(he_dev) ? 0x104780 : 0x800, UBUFF_BA);
1350
1351 /* 5.1.5 initialize intermediate receive queues */
1352
1353 if (he_is622(he_dev)) {
1354 he_writel(he_dev, 0x000f, G0_INMQ_S);
1355 he_writel(he_dev, 0x200f, G0_INMQ_L);
1356
1357 he_writel(he_dev, 0x001f, G1_INMQ_S);
1358 he_writel(he_dev, 0x201f, G1_INMQ_L);
1359
1360 he_writel(he_dev, 0x002f, G2_INMQ_S);
1361 he_writel(he_dev, 0x202f, G2_INMQ_L);
1362
1363 he_writel(he_dev, 0x003f, G3_INMQ_S);
1364 he_writel(he_dev, 0x203f, G3_INMQ_L);
1365
1366 he_writel(he_dev, 0x004f, G4_INMQ_S);
1367 he_writel(he_dev, 0x204f, G4_INMQ_L);
1368
1369 he_writel(he_dev, 0x005f, G5_INMQ_S);
1370 he_writel(he_dev, 0x205f, G5_INMQ_L);
1371
1372 he_writel(he_dev, 0x006f, G6_INMQ_S);
1373 he_writel(he_dev, 0x206f, G6_INMQ_L);
1374
1375 he_writel(he_dev, 0x007f, G7_INMQ_S);
1376 he_writel(he_dev, 0x207f, G7_INMQ_L);
1377 } else {
1378 he_writel(he_dev, 0x0000, G0_INMQ_S);
1379 he_writel(he_dev, 0x0008, G0_INMQ_L);
1380
1381 he_writel(he_dev, 0x0001, G1_INMQ_S);
1382 he_writel(he_dev, 0x0009, G1_INMQ_L);
1383
1384 he_writel(he_dev, 0x0002, G2_INMQ_S);
1385 he_writel(he_dev, 0x000a, G2_INMQ_L);
1386
1387 he_writel(he_dev, 0x0003, G3_INMQ_S);
1388 he_writel(he_dev, 0x000b, G3_INMQ_L);
1389
1390 he_writel(he_dev, 0x0004, G4_INMQ_S);
1391 he_writel(he_dev, 0x000c, G4_INMQ_L);
1392
1393 he_writel(he_dev, 0x0005, G5_INMQ_S);
1394 he_writel(he_dev, 0x000d, G5_INMQ_L);
1395
1396 he_writel(he_dev, 0x0006, G6_INMQ_S);
1397 he_writel(he_dev, 0x000e, G6_INMQ_L);
1398
1399 he_writel(he_dev, 0x0007, G7_INMQ_S);
1400 he_writel(he_dev, 0x000f, G7_INMQ_L);
1401 }
1402
1403 /* 5.1.6 application tunable parameters */
1404
1405 he_writel(he_dev, 0x0, MCC);
1406 he_writel(he_dev, 0x0, OEC);
1407 he_writel(he_dev, 0x0, DCC);
1408 he_writel(he_dev, 0x0, CEC);
1409
1410 /* 5.1.7 cs block initialization */
1411
1412 he_init_cs_block(he_dev);
1413
1414 /* 5.1.8 cs block connection memory initialization */
1415
1416 if (he_init_cs_block_rcm(he_dev) < 0)
1417 return -ENOMEM;
1418
1419 /* 5.1.10 initialize host structures */
1420
1421 he_init_tpdrq(he_dev);
1422
1423 he_dev->tpd_pool = dma_pool_create("tpd", &he_dev->pci_dev->dev,
1424 sizeof(struct he_tpd), TPD_ALIGNMENT, 0);
1425 if (he_dev->tpd_pool == NULL) {
1426 hprintk("unable to create tpd dma_pool\n");
1427 return -ENOMEM;
1428 }
1429
1430 INIT_LIST_HEAD(&he_dev->outstanding_tpds);
1431
1432 if (he_init_group(he_dev, 0) != 0)
1433 return -ENOMEM;
1434
1435 for (group = 1; group < HE_NUM_GROUPS; ++group) {
1436 he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32));
1437 he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32));
1438 he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32));
1439 he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
1440 G0_RBPS_BS + (group * 32));
1441
1442 he_writel(he_dev, 0x0, G0_RBPL_S + (group * 32));
1443 he_writel(he_dev, 0x0, G0_RBPL_T + (group * 32));
1444 he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
1445 G0_RBPL_QI + (group * 32));
1446 he_writel(he_dev, 0x0, G0_RBPL_BS + (group * 32));
1447
1448 he_writel(he_dev, 0x0, G0_RBRQ_ST + (group * 16));
1449 he_writel(he_dev, 0x0, G0_RBRQ_H + (group * 16));
1450 he_writel(he_dev, RBRQ_THRESH(0x1) | RBRQ_SIZE(0x0),
1451 G0_RBRQ_Q + (group * 16));
1452 he_writel(he_dev, 0x0, G0_RBRQ_I + (group * 16));
1453
1454 he_writel(he_dev, 0x0, G0_TBRQ_B_T + (group * 16));
1455 he_writel(he_dev, 0x0, G0_TBRQ_H + (group * 16));
1456 he_writel(he_dev, TBRQ_THRESH(0x1),
1457 G0_TBRQ_THRESH + (group * 16));
1458 he_writel(he_dev, 0x0, G0_TBRQ_S + (group * 16));
1459 }
1460
1461 /* host status page */
1462
1463 he_dev->hsp = dma_alloc_coherent(&he_dev->pci_dev->dev,
1464 sizeof(struct he_hsp),
1465 &he_dev->hsp_phys, GFP_KERNEL);
1466 if (he_dev->hsp == NULL) {
1467 hprintk("failed to allocate host status page\n");
1468 return -ENOMEM;
1469 }
1470 he_writel(he_dev, he_dev->hsp_phys, HSP_BA);
1471
1472 /* initialize framer */
1473
1474 #ifdef CONFIG_ATM_HE_USE_SUNI
1475 if (he_isMM(he_dev))
1476 suni_init(he_dev->atm_dev);
1477 if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->start)
1478 he_dev->atm_dev->phy->start(he_dev->atm_dev);
1479 #endif /* CONFIG_ATM_HE_USE_SUNI */
1480
1481 if (sdh) {
1482 /* this really should be in suni.c but for now... */
1483 int val;
1484
1485 val = he_phy_get(he_dev->atm_dev, SUNI_TPOP_APM);
1486 val = (val & ~SUNI_TPOP_APM_S) | (SUNI_TPOP_S_SDH << SUNI_TPOP_APM_S_SHIFT);
1487 he_phy_put(he_dev->atm_dev, val, SUNI_TPOP_APM);
1488 he_phy_put(he_dev->atm_dev, SUNI_TACP_IUCHP_CLP, SUNI_TACP_IUCHP);
1489 }
1490
1491 /* 5.1.12 enable transmit and receive */
1492
1493 reg = he_readl_mbox(he_dev, CS_ERCTL0);
1494 reg |= TX_ENABLE|ER_ENABLE;
1495 he_writel_mbox(he_dev, reg, CS_ERCTL0);
1496
1497 reg = he_readl(he_dev, RC_CONFIG);
1498 reg |= RX_ENABLE;
1499 he_writel(he_dev, reg, RC_CONFIG);
1500
1501 for (i = 0; i < HE_NUM_CS_STPER; ++i) {
1502 he_dev->cs_stper[i].inuse = 0;
1503 he_dev->cs_stper[i].pcr = -1;
1504 }
1505 he_dev->total_bw = 0;
1506
1507
1508 /* atm linux initialization */
1509
1510 he_dev->atm_dev->ci_range.vpi_bits = he_dev->vpibits;
1511 he_dev->atm_dev->ci_range.vci_bits = he_dev->vcibits;
1512
1513 he_dev->irq_peak = 0;
1514 he_dev->rbrq_peak = 0;
1515 he_dev->rbpl_peak = 0;
1516 he_dev->tbrq_peak = 0;
1517
1518 HPRINTK("hell bent for leather!\n");
1519
1520 return 0;
1521 }
1522
1523 static void
he_stop(struct he_dev * he_dev)1524 he_stop(struct he_dev *he_dev)
1525 {
1526 struct he_buff *heb, *next;
1527 struct pci_dev *pci_dev;
1528 u32 gen_cntl_0, reg;
1529 u16 command;
1530
1531 pci_dev = he_dev->pci_dev;
1532
1533 /* disable interrupts */
1534
1535 if (he_dev->membase) {
1536 pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0);
1537 gen_cntl_0 &= ~(INT_PROC_ENBL | INIT_ENB);
1538 pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1539
1540 tasklet_disable(&he_dev->tasklet);
1541
1542 /* disable recv and transmit */
1543
1544 reg = he_readl_mbox(he_dev, CS_ERCTL0);
1545 reg &= ~(TX_ENABLE|ER_ENABLE);
1546 he_writel_mbox(he_dev, reg, CS_ERCTL0);
1547
1548 reg = he_readl(he_dev, RC_CONFIG);
1549 reg &= ~(RX_ENABLE);
1550 he_writel(he_dev, reg, RC_CONFIG);
1551 }
1552
1553 #ifdef CONFIG_ATM_HE_USE_SUNI
1554 if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->stop)
1555 he_dev->atm_dev->phy->stop(he_dev->atm_dev);
1556 #endif /* CONFIG_ATM_HE_USE_SUNI */
1557
1558 if (he_dev->irq)
1559 free_irq(he_dev->irq, he_dev);
1560
1561 if (he_dev->irq_base)
1562 dma_free_coherent(&he_dev->pci_dev->dev, (CONFIG_IRQ_SIZE + 1)
1563 * sizeof(struct he_irq), he_dev->irq_base, he_dev->irq_phys);
1564
1565 if (he_dev->hsp)
1566 dma_free_coherent(&he_dev->pci_dev->dev, sizeof(struct he_hsp),
1567 he_dev->hsp, he_dev->hsp_phys);
1568
1569 if (he_dev->rbpl_base) {
1570 list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry)
1571 dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1572
1573 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBPL_SIZE
1574 * sizeof(struct he_rbp), he_dev->rbpl_base, he_dev->rbpl_phys);
1575 }
1576
1577 kfree(he_dev->rbpl_virt);
1578 bitmap_free(he_dev->rbpl_table);
1579 dma_pool_destroy(he_dev->rbpl_pool);
1580
1581 if (he_dev->rbrq_base)
1582 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq),
1583 he_dev->rbrq_base, he_dev->rbrq_phys);
1584
1585 if (he_dev->tbrq_base)
1586 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
1587 he_dev->tbrq_base, he_dev->tbrq_phys);
1588
1589 if (he_dev->tpdrq_base)
1590 dma_free_coherent(&he_dev->pci_dev->dev,
1591 CONFIG_TPDRQ_SIZE * sizeof(struct he_tpdrq),
1592 he_dev->tpdrq_base, he_dev->tpdrq_phys);
1593
1594 dma_pool_destroy(he_dev->tpd_pool);
1595
1596 if (he_dev->pci_dev) {
1597 pci_read_config_word(he_dev->pci_dev, PCI_COMMAND, &command);
1598 command &= ~(PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
1599 pci_write_config_word(he_dev->pci_dev, PCI_COMMAND, command);
1600 }
1601
1602 if (he_dev->membase)
1603 iounmap(he_dev->membase);
1604 }
1605
1606 static struct he_tpd *
__alloc_tpd(struct he_dev * he_dev)1607 __alloc_tpd(struct he_dev *he_dev)
1608 {
1609 struct he_tpd *tpd;
1610 dma_addr_t mapping;
1611
1612 tpd = dma_pool_alloc(he_dev->tpd_pool, GFP_ATOMIC, &mapping);
1613 if (tpd == NULL)
1614 return NULL;
1615
1616 tpd->status = TPD_ADDR(mapping);
1617 tpd->reserved = 0;
1618 tpd->iovec[0].addr = 0; tpd->iovec[0].len = 0;
1619 tpd->iovec[1].addr = 0; tpd->iovec[1].len = 0;
1620 tpd->iovec[2].addr = 0; tpd->iovec[2].len = 0;
1621
1622 return tpd;
1623 }
1624
1625 #define AAL5_LEN(buf,len) \
1626 ((((unsigned char *)(buf))[(len)-6] << 8) | \
1627 (((unsigned char *)(buf))[(len)-5]))
1628
1629 /* 2.10.1.2 receive
1630 *
1631 * aal5 packets can optionally return the tcp checksum in the lower
1632 * 16 bits of the crc (RSR0_TCP_CKSUM)
1633 */
1634
1635 #define TCP_CKSUM(buf,len) \
1636 ((((unsigned char *)(buf))[(len)-2] << 8) | \
1637 (((unsigned char *)(buf))[(len-1)]))
1638
1639 static int
he_service_rbrq(struct he_dev * he_dev,int group)1640 he_service_rbrq(struct he_dev *he_dev, int group)
1641 {
1642 struct he_rbrq *rbrq_tail = (struct he_rbrq *)
1643 ((unsigned long)he_dev->rbrq_base |
1644 he_dev->hsp->group[group].rbrq_tail);
1645 unsigned cid, lastcid = -1;
1646 struct sk_buff *skb;
1647 struct atm_vcc *vcc = NULL;
1648 struct he_vcc *he_vcc;
1649 struct he_buff *heb, *next;
1650 int i;
1651 int pdus_assembled = 0;
1652 int updated = 0;
1653
1654 read_lock(&vcc_sklist_lock);
1655 while (he_dev->rbrq_head != rbrq_tail) {
1656 ++updated;
1657
1658 HPRINTK("%p rbrq%d 0x%x len=%d cid=0x%x %s%s%s%s%s%s\n",
1659 he_dev->rbrq_head, group,
1660 RBRQ_ADDR(he_dev->rbrq_head),
1661 RBRQ_BUFLEN(he_dev->rbrq_head),
1662 RBRQ_CID(he_dev->rbrq_head),
1663 RBRQ_CRC_ERR(he_dev->rbrq_head) ? " CRC_ERR" : "",
1664 RBRQ_LEN_ERR(he_dev->rbrq_head) ? " LEN_ERR" : "",
1665 RBRQ_END_PDU(he_dev->rbrq_head) ? " END_PDU" : "",
1666 RBRQ_AAL5_PROT(he_dev->rbrq_head) ? " AAL5_PROT" : "",
1667 RBRQ_CON_CLOSED(he_dev->rbrq_head) ? " CON_CLOSED" : "",
1668 RBRQ_HBUF_ERR(he_dev->rbrq_head) ? " HBUF_ERR" : "");
1669
1670 i = RBRQ_ADDR(he_dev->rbrq_head) >> RBP_IDX_OFFSET;
1671 heb = he_dev->rbpl_virt[i];
1672
1673 cid = RBRQ_CID(he_dev->rbrq_head);
1674 if (cid != lastcid)
1675 vcc = __find_vcc(he_dev, cid);
1676 lastcid = cid;
1677
1678 if (vcc == NULL || (he_vcc = HE_VCC(vcc)) == NULL) {
1679 hprintk("vcc/he_vcc == NULL (cid 0x%x)\n", cid);
1680 if (!RBRQ_HBUF_ERR(he_dev->rbrq_head)) {
1681 clear_bit(i, he_dev->rbpl_table);
1682 list_del(&heb->entry);
1683 dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1684 }
1685
1686 goto next_rbrq_entry;
1687 }
1688
1689 if (RBRQ_HBUF_ERR(he_dev->rbrq_head)) {
1690 hprintk("HBUF_ERR! (cid 0x%x)\n", cid);
1691 atomic_inc(&vcc->stats->rx_drop);
1692 goto return_host_buffers;
1693 }
1694
1695 heb->len = RBRQ_BUFLEN(he_dev->rbrq_head) * 4;
1696 clear_bit(i, he_dev->rbpl_table);
1697 list_move_tail(&heb->entry, &he_vcc->buffers);
1698 he_vcc->pdu_len += heb->len;
1699
1700 if (RBRQ_CON_CLOSED(he_dev->rbrq_head)) {
1701 lastcid = -1;
1702 HPRINTK("wake_up rx_waitq (cid 0x%x)\n", cid);
1703 wake_up(&he_vcc->rx_waitq);
1704 goto return_host_buffers;
1705 }
1706
1707 if (!RBRQ_END_PDU(he_dev->rbrq_head))
1708 goto next_rbrq_entry;
1709
1710 if (RBRQ_LEN_ERR(he_dev->rbrq_head)
1711 || RBRQ_CRC_ERR(he_dev->rbrq_head)) {
1712 HPRINTK("%s%s (%d.%d)\n",
1713 RBRQ_CRC_ERR(he_dev->rbrq_head)
1714 ? "CRC_ERR " : "",
1715 RBRQ_LEN_ERR(he_dev->rbrq_head)
1716 ? "LEN_ERR" : "",
1717 vcc->vpi, vcc->vci);
1718 atomic_inc(&vcc->stats->rx_err);
1719 goto return_host_buffers;
1720 }
1721
1722 skb = atm_alloc_charge(vcc, he_vcc->pdu_len + rx_skb_reserve,
1723 GFP_ATOMIC);
1724 if (!skb) {
1725 HPRINTK("charge failed (%d.%d)\n", vcc->vpi, vcc->vci);
1726 goto return_host_buffers;
1727 }
1728
1729 if (rx_skb_reserve > 0)
1730 skb_reserve(skb, rx_skb_reserve);
1731
1732 __net_timestamp(skb);
1733
1734 list_for_each_entry(heb, &he_vcc->buffers, entry)
1735 skb_put_data(skb, &heb->data, heb->len);
1736
1737 switch (vcc->qos.aal) {
1738 case ATM_AAL0:
1739 /* 2.10.1.5 raw cell receive */
1740 skb->len = ATM_AAL0_SDU;
1741 skb_set_tail_pointer(skb, skb->len);
1742 break;
1743 case ATM_AAL5:
1744 /* 2.10.1.2 aal5 receive */
1745
1746 skb->len = AAL5_LEN(skb->data, he_vcc->pdu_len);
1747 skb_set_tail_pointer(skb, skb->len);
1748 #ifdef USE_CHECKSUM_HW
1749 if (vcc->vpi == 0 && vcc->vci >= ATM_NOT_RSV_VCI) {
1750 skb->ip_summed = CHECKSUM_COMPLETE;
1751 skb->csum = TCP_CKSUM(skb->data,
1752 he_vcc->pdu_len);
1753 }
1754 #endif
1755 break;
1756 }
1757
1758 #ifdef should_never_happen
1759 if (skb->len > vcc->qos.rxtp.max_sdu)
1760 hprintk("pdu_len (%d) > vcc->qos.rxtp.max_sdu (%d)! cid 0x%x\n", skb->len, vcc->qos.rxtp.max_sdu, cid);
1761 #endif
1762
1763 #ifdef notdef
1764 ATM_SKB(skb)->vcc = vcc;
1765 #endif
1766 spin_unlock(&he_dev->global_lock);
1767 vcc->push(vcc, skb);
1768 spin_lock(&he_dev->global_lock);
1769
1770 atomic_inc(&vcc->stats->rx);
1771
1772 return_host_buffers:
1773 ++pdus_assembled;
1774
1775 list_for_each_entry_safe(heb, next, &he_vcc->buffers, entry)
1776 dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1777 INIT_LIST_HEAD(&he_vcc->buffers);
1778 he_vcc->pdu_len = 0;
1779
1780 next_rbrq_entry:
1781 he_dev->rbrq_head = (struct he_rbrq *)
1782 ((unsigned long) he_dev->rbrq_base |
1783 RBRQ_MASK(he_dev->rbrq_head + 1));
1784
1785 }
1786 read_unlock(&vcc_sklist_lock);
1787
1788 if (updated) {
1789 if (updated > he_dev->rbrq_peak)
1790 he_dev->rbrq_peak = updated;
1791
1792 he_writel(he_dev, RBRQ_MASK(he_dev->rbrq_head),
1793 G0_RBRQ_H + (group * 16));
1794 }
1795
1796 return pdus_assembled;
1797 }
1798
1799 static void
he_service_tbrq(struct he_dev * he_dev,int group)1800 he_service_tbrq(struct he_dev *he_dev, int group)
1801 {
1802 struct he_tbrq *tbrq_tail = (struct he_tbrq *)
1803 ((unsigned long)he_dev->tbrq_base |
1804 he_dev->hsp->group[group].tbrq_tail);
1805 struct he_tpd *tpd;
1806 int slot, updated = 0;
1807 struct he_tpd *__tpd;
1808
1809 /* 2.1.6 transmit buffer return queue */
1810
1811 while (he_dev->tbrq_head != tbrq_tail) {
1812 ++updated;
1813
1814 HPRINTK("tbrq%d 0x%x%s%s\n",
1815 group,
1816 TBRQ_TPD(he_dev->tbrq_head),
1817 TBRQ_EOS(he_dev->tbrq_head) ? " EOS" : "",
1818 TBRQ_MULTIPLE(he_dev->tbrq_head) ? " MULTIPLE" : "");
1819 tpd = NULL;
1820 list_for_each_entry(__tpd, &he_dev->outstanding_tpds, entry) {
1821 if (TPD_ADDR(__tpd->status) == TBRQ_TPD(he_dev->tbrq_head)) {
1822 tpd = __tpd;
1823 list_del(&__tpd->entry);
1824 break;
1825 }
1826 }
1827
1828 if (tpd == NULL) {
1829 hprintk("unable to locate tpd for dma buffer %x\n",
1830 TBRQ_TPD(he_dev->tbrq_head));
1831 goto next_tbrq_entry;
1832 }
1833
1834 if (TBRQ_EOS(he_dev->tbrq_head)) {
1835 HPRINTK("wake_up(tx_waitq) cid 0x%x\n",
1836 he_mkcid(he_dev, tpd->vcc->vpi, tpd->vcc->vci));
1837 if (tpd->vcc)
1838 wake_up(&HE_VCC(tpd->vcc)->tx_waitq);
1839
1840 goto next_tbrq_entry;
1841 }
1842
1843 for (slot = 0; slot < TPD_MAXIOV; ++slot) {
1844 if (tpd->iovec[slot].addr)
1845 dma_unmap_single(&he_dev->pci_dev->dev,
1846 tpd->iovec[slot].addr,
1847 tpd->iovec[slot].len & TPD_LEN_MASK,
1848 DMA_TO_DEVICE);
1849 if (tpd->iovec[slot].len & TPD_LST)
1850 break;
1851
1852 }
1853
1854 if (tpd->skb) { /* && !TBRQ_MULTIPLE(he_dev->tbrq_head) */
1855 if (tpd->vcc && tpd->vcc->pop)
1856 tpd->vcc->pop(tpd->vcc, tpd->skb);
1857 else
1858 dev_kfree_skb_any(tpd->skb);
1859 }
1860
1861 next_tbrq_entry:
1862 if (tpd)
1863 dma_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status));
1864 he_dev->tbrq_head = (struct he_tbrq *)
1865 ((unsigned long) he_dev->tbrq_base |
1866 TBRQ_MASK(he_dev->tbrq_head + 1));
1867 }
1868
1869 if (updated) {
1870 if (updated > he_dev->tbrq_peak)
1871 he_dev->tbrq_peak = updated;
1872
1873 he_writel(he_dev, TBRQ_MASK(he_dev->tbrq_head),
1874 G0_TBRQ_H + (group * 16));
1875 }
1876 }
1877
1878 static void
he_service_rbpl(struct he_dev * he_dev,int group)1879 he_service_rbpl(struct he_dev *he_dev, int group)
1880 {
1881 struct he_rbp *new_tail;
1882 struct he_rbp *rbpl_head;
1883 struct he_buff *heb;
1884 dma_addr_t mapping;
1885 int i;
1886 int moved = 0;
1887
1888 rbpl_head = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base |
1889 RBPL_MASK(he_readl(he_dev, G0_RBPL_S)));
1890
1891 for (;;) {
1892 new_tail = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base |
1893 RBPL_MASK(he_dev->rbpl_tail+1));
1894
1895 /* table 3.42 -- rbpl_tail should never be set to rbpl_head */
1896 if (new_tail == rbpl_head)
1897 break;
1898
1899 i = find_next_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE, he_dev->rbpl_hint);
1900 if (i > (RBPL_TABLE_SIZE - 1)) {
1901 i = find_first_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE);
1902 if (i > (RBPL_TABLE_SIZE - 1))
1903 break;
1904 }
1905 he_dev->rbpl_hint = i + 1;
1906
1907 heb = dma_pool_alloc(he_dev->rbpl_pool, GFP_ATOMIC, &mapping);
1908 if (!heb)
1909 break;
1910 heb->mapping = mapping;
1911 list_add(&heb->entry, &he_dev->rbpl_outstanding);
1912 he_dev->rbpl_virt[i] = heb;
1913 set_bit(i, he_dev->rbpl_table);
1914 new_tail->idx = i << RBP_IDX_OFFSET;
1915 new_tail->phys = mapping + offsetof(struct he_buff, data);
1916
1917 he_dev->rbpl_tail = new_tail;
1918 ++moved;
1919 }
1920
1921 if (moved)
1922 he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail), G0_RBPL_T);
1923 }
1924
1925 static void
he_tasklet(unsigned long data)1926 he_tasklet(unsigned long data)
1927 {
1928 unsigned long flags;
1929 struct he_dev *he_dev = (struct he_dev *) data;
1930 int group, type;
1931 int updated = 0;
1932
1933 HPRINTK("tasklet (0x%lx)\n", data);
1934 spin_lock_irqsave(&he_dev->global_lock, flags);
1935
1936 while (he_dev->irq_head != he_dev->irq_tail) {
1937 ++updated;
1938
1939 type = ITYPE_TYPE(he_dev->irq_head->isw);
1940 group = ITYPE_GROUP(he_dev->irq_head->isw);
1941
1942 switch (type) {
1943 case ITYPE_RBRQ_THRESH:
1944 HPRINTK("rbrq%d threshold\n", group);
1945 fallthrough;
1946 case ITYPE_RBRQ_TIMER:
1947 if (he_service_rbrq(he_dev, group))
1948 he_service_rbpl(he_dev, group);
1949 break;
1950 case ITYPE_TBRQ_THRESH:
1951 HPRINTK("tbrq%d threshold\n", group);
1952 fallthrough;
1953 case ITYPE_TPD_COMPLETE:
1954 he_service_tbrq(he_dev, group);
1955 break;
1956 case ITYPE_RBPL_THRESH:
1957 he_service_rbpl(he_dev, group);
1958 break;
1959 case ITYPE_RBPS_THRESH:
1960 /* shouldn't happen unless small buffers enabled */
1961 break;
1962 case ITYPE_PHY:
1963 HPRINTK("phy interrupt\n");
1964 #ifdef CONFIG_ATM_HE_USE_SUNI
1965 spin_unlock_irqrestore(&he_dev->global_lock, flags);
1966 if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->interrupt)
1967 he_dev->atm_dev->phy->interrupt(he_dev->atm_dev);
1968 spin_lock_irqsave(&he_dev->global_lock, flags);
1969 #endif
1970 break;
1971 case ITYPE_OTHER:
1972 switch (type|group) {
1973 case ITYPE_PARITY:
1974 hprintk("parity error\n");
1975 break;
1976 case ITYPE_ABORT:
1977 hprintk("abort 0x%x\n", he_readl(he_dev, ABORT_ADDR));
1978 break;
1979 }
1980 break;
1981 case ITYPE_TYPE(ITYPE_INVALID):
1982 /* see 8.1.1 -- check all queues */
1983
1984 HPRINTK("isw not updated 0x%x\n", he_dev->irq_head->isw);
1985
1986 he_service_rbrq(he_dev, 0);
1987 he_service_rbpl(he_dev, 0);
1988 he_service_tbrq(he_dev, 0);
1989 break;
1990 default:
1991 hprintk("bad isw 0x%x?\n", he_dev->irq_head->isw);
1992 }
1993
1994 he_dev->irq_head->isw = ITYPE_INVALID;
1995
1996 he_dev->irq_head = (struct he_irq *) NEXT_ENTRY(he_dev->irq_base, he_dev->irq_head, IRQ_MASK);
1997 }
1998
1999 if (updated) {
2000 if (updated > he_dev->irq_peak)
2001 he_dev->irq_peak = updated;
2002
2003 he_writel(he_dev,
2004 IRQ_SIZE(CONFIG_IRQ_SIZE) |
2005 IRQ_THRESH(CONFIG_IRQ_THRESH) |
2006 IRQ_TAIL(he_dev->irq_tail), IRQ0_HEAD);
2007 (void) he_readl(he_dev, INT_FIFO); /* 8.1.2 controller errata; flush posted writes */
2008 }
2009 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2010 }
2011
2012 static irqreturn_t
he_irq_handler(int irq,void * dev_id)2013 he_irq_handler(int irq, void *dev_id)
2014 {
2015 unsigned long flags;
2016 struct he_dev *he_dev = (struct he_dev * )dev_id;
2017 int handled = 0;
2018
2019 if (he_dev == NULL)
2020 return IRQ_NONE;
2021
2022 spin_lock_irqsave(&he_dev->global_lock, flags);
2023
2024 he_dev->irq_tail = (struct he_irq *) (((unsigned long)he_dev->irq_base) |
2025 (*he_dev->irq_tailoffset << 2));
2026
2027 if (he_dev->irq_tail == he_dev->irq_head) {
2028 HPRINTK("tailoffset not updated?\n");
2029 he_dev->irq_tail = (struct he_irq *) ((unsigned long)he_dev->irq_base |
2030 ((he_readl(he_dev, IRQ0_BASE) & IRQ_MASK) << 2));
2031 (void) he_readl(he_dev, INT_FIFO); /* 8.1.2 controller errata */
2032 }
2033
2034 #ifdef DEBUG
2035 if (he_dev->irq_head == he_dev->irq_tail /* && !IRQ_PENDING */)
2036 hprintk("spurious (or shared) interrupt?\n");
2037 #endif
2038
2039 if (he_dev->irq_head != he_dev->irq_tail) {
2040 handled = 1;
2041 tasklet_schedule(&he_dev->tasklet);
2042 he_writel(he_dev, INT_CLEAR_A, INT_FIFO); /* clear interrupt */
2043 (void) he_readl(he_dev, INT_FIFO); /* flush posted writes */
2044 }
2045 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2046 return IRQ_RETVAL(handled);
2047
2048 }
2049
2050 static __inline__ void
__enqueue_tpd(struct he_dev * he_dev,struct he_tpd * tpd,unsigned cid)2051 __enqueue_tpd(struct he_dev *he_dev, struct he_tpd *tpd, unsigned cid)
2052 {
2053 struct he_tpdrq *new_tail;
2054
2055 HPRINTK("tpdrq %p cid 0x%x -> tpdrq_tail %p\n",
2056 tpd, cid, he_dev->tpdrq_tail);
2057
2058 /* new_tail = he_dev->tpdrq_tail; */
2059 new_tail = (struct he_tpdrq *) ((unsigned long) he_dev->tpdrq_base |
2060 TPDRQ_MASK(he_dev->tpdrq_tail+1));
2061
2062 /*
2063 * check to see if we are about to set the tail == head
2064 * if true, update the head pointer from the adapter
2065 * to see if this is really the case (reading the queue
2066 * head for every enqueue would be unnecessarily slow)
2067 */
2068
2069 if (new_tail == he_dev->tpdrq_head) {
2070 he_dev->tpdrq_head = (struct he_tpdrq *)
2071 (((unsigned long)he_dev->tpdrq_base) |
2072 TPDRQ_MASK(he_readl(he_dev, TPDRQ_B_H)));
2073
2074 if (new_tail == he_dev->tpdrq_head) {
2075 int slot;
2076
2077 hprintk("tpdrq full (cid 0x%x)\n", cid);
2078 /*
2079 * FIXME
2080 * push tpd onto a transmit backlog queue
2081 * after service_tbrq, service the backlog
2082 * for now, we just drop the pdu
2083 */
2084 for (slot = 0; slot < TPD_MAXIOV; ++slot) {
2085 if (tpd->iovec[slot].addr)
2086 dma_unmap_single(&he_dev->pci_dev->dev,
2087 tpd->iovec[slot].addr,
2088 tpd->iovec[slot].len & TPD_LEN_MASK,
2089 DMA_TO_DEVICE);
2090 }
2091 if (tpd->skb) {
2092 if (tpd->vcc->pop)
2093 tpd->vcc->pop(tpd->vcc, tpd->skb);
2094 else
2095 dev_kfree_skb_any(tpd->skb);
2096 atomic_inc(&tpd->vcc->stats->tx_err);
2097 }
2098 dma_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status));
2099 return;
2100 }
2101 }
2102
2103 /* 2.1.5 transmit packet descriptor ready queue */
2104 list_add_tail(&tpd->entry, &he_dev->outstanding_tpds);
2105 he_dev->tpdrq_tail->tpd = TPD_ADDR(tpd->status);
2106 he_dev->tpdrq_tail->cid = cid;
2107 wmb();
2108
2109 he_dev->tpdrq_tail = new_tail;
2110
2111 he_writel(he_dev, TPDRQ_MASK(he_dev->tpdrq_tail), TPDRQ_T);
2112 (void) he_readl(he_dev, TPDRQ_T); /* flush posted writes */
2113 }
2114
2115 static int
he_open(struct atm_vcc * vcc)2116 he_open(struct atm_vcc *vcc)
2117 {
2118 unsigned long flags;
2119 struct he_dev *he_dev = HE_DEV(vcc->dev);
2120 struct he_vcc *he_vcc;
2121 int err = 0;
2122 unsigned cid, rsr0, rsr1, rsr4, tsr0, tsr0_aal, tsr4, period, reg, clock;
2123 short vpi = vcc->vpi;
2124 int vci = vcc->vci;
2125
2126 if (vci == ATM_VCI_UNSPEC || vpi == ATM_VPI_UNSPEC)
2127 return 0;
2128
2129 HPRINTK("open vcc %p %d.%d\n", vcc, vpi, vci);
2130
2131 set_bit(ATM_VF_ADDR, &vcc->flags);
2132
2133 cid = he_mkcid(he_dev, vpi, vci);
2134
2135 he_vcc = kmalloc(sizeof(struct he_vcc), GFP_ATOMIC);
2136 if (he_vcc == NULL) {
2137 hprintk("unable to allocate he_vcc during open\n");
2138 return -ENOMEM;
2139 }
2140
2141 INIT_LIST_HEAD(&he_vcc->buffers);
2142 he_vcc->pdu_len = 0;
2143 he_vcc->rc_index = -1;
2144
2145 init_waitqueue_head(&he_vcc->rx_waitq);
2146 init_waitqueue_head(&he_vcc->tx_waitq);
2147
2148 vcc->dev_data = he_vcc;
2149
2150 if (vcc->qos.txtp.traffic_class != ATM_NONE) {
2151 int pcr_goal;
2152
2153 pcr_goal = atm_pcr_goal(&vcc->qos.txtp);
2154 if (pcr_goal == 0)
2155 pcr_goal = he_dev->atm_dev->link_rate;
2156 if (pcr_goal < 0) /* means round down, technically */
2157 pcr_goal = -pcr_goal;
2158
2159 HPRINTK("open tx cid 0x%x pcr_goal %d\n", cid, pcr_goal);
2160
2161 switch (vcc->qos.aal) {
2162 case ATM_AAL5:
2163 tsr0_aal = TSR0_AAL5;
2164 tsr4 = TSR4_AAL5;
2165 break;
2166 case ATM_AAL0:
2167 tsr0_aal = TSR0_AAL0_SDU;
2168 tsr4 = TSR4_AAL0_SDU;
2169 break;
2170 default:
2171 err = -EINVAL;
2172 goto open_failed;
2173 }
2174
2175 spin_lock_irqsave(&he_dev->global_lock, flags);
2176 tsr0 = he_readl_tsr0(he_dev, cid);
2177 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2178
2179 if (TSR0_CONN_STATE(tsr0) != 0) {
2180 hprintk("cid 0x%x not idle (tsr0 = 0x%x)\n", cid, tsr0);
2181 err = -EBUSY;
2182 goto open_failed;
2183 }
2184
2185 switch (vcc->qos.txtp.traffic_class) {
2186 case ATM_UBR:
2187 /* 2.3.3.1 open connection ubr */
2188
2189 tsr0 = TSR0_UBR | TSR0_GROUP(0) | tsr0_aal |
2190 TSR0_USE_WMIN | TSR0_UPDATE_GER;
2191 break;
2192
2193 case ATM_CBR:
2194 /* 2.3.3.2 open connection cbr */
2195
2196 /* 8.2.3 cbr scheduler wrap problem -- limit to 90% total link rate */
2197 if ((he_dev->total_bw + pcr_goal)
2198 > (he_dev->atm_dev->link_rate * 9 / 10))
2199 {
2200 err = -EBUSY;
2201 goto open_failed;
2202 }
2203
2204 spin_lock_irqsave(&he_dev->global_lock, flags); /* also protects he_dev->cs_stper[] */
2205
2206 /* find an unused cs_stper register */
2207 for (reg = 0; reg < HE_NUM_CS_STPER; ++reg)
2208 if (he_dev->cs_stper[reg].inuse == 0 ||
2209 he_dev->cs_stper[reg].pcr == pcr_goal)
2210 break;
2211
2212 if (reg == HE_NUM_CS_STPER) {
2213 err = -EBUSY;
2214 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2215 goto open_failed;
2216 }
2217
2218 he_dev->total_bw += pcr_goal;
2219
2220 he_vcc->rc_index = reg;
2221 ++he_dev->cs_stper[reg].inuse;
2222 he_dev->cs_stper[reg].pcr = pcr_goal;
2223
2224 clock = he_is622(he_dev) ? 66667000 : 50000000;
2225 period = clock / pcr_goal;
2226
2227 HPRINTK("rc_index = %d period = %d\n",
2228 reg, period);
2229
2230 he_writel_mbox(he_dev, rate_to_atmf(period/2),
2231 CS_STPER0 + reg);
2232 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2233
2234 tsr0 = TSR0_CBR | TSR0_GROUP(0) | tsr0_aal |
2235 TSR0_RC_INDEX(reg);
2236
2237 break;
2238 default:
2239 err = -EINVAL;
2240 goto open_failed;
2241 }
2242
2243 spin_lock_irqsave(&he_dev->global_lock, flags);
2244
2245 he_writel_tsr0(he_dev, tsr0, cid);
2246 he_writel_tsr4(he_dev, tsr4 | 1, cid);
2247 he_writel_tsr1(he_dev, TSR1_MCR(rate_to_atmf(0)) |
2248 TSR1_PCR(rate_to_atmf(pcr_goal)), cid);
2249 he_writel_tsr2(he_dev, TSR2_ACR(rate_to_atmf(pcr_goal)), cid);
2250 he_writel_tsr9(he_dev, TSR9_OPEN_CONN, cid);
2251
2252 he_writel_tsr3(he_dev, 0x0, cid);
2253 he_writel_tsr5(he_dev, 0x0, cid);
2254 he_writel_tsr6(he_dev, 0x0, cid);
2255 he_writel_tsr7(he_dev, 0x0, cid);
2256 he_writel_tsr8(he_dev, 0x0, cid);
2257 he_writel_tsr10(he_dev, 0x0, cid);
2258 he_writel_tsr11(he_dev, 0x0, cid);
2259 he_writel_tsr12(he_dev, 0x0, cid);
2260 he_writel_tsr13(he_dev, 0x0, cid);
2261 he_writel_tsr14(he_dev, 0x0, cid);
2262 (void) he_readl_tsr0(he_dev, cid); /* flush posted writes */
2263 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2264 }
2265
2266 if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
2267 unsigned aal;
2268
2269 HPRINTK("open rx cid 0x%x (rx_waitq %p)\n", cid,
2270 &HE_VCC(vcc)->rx_waitq);
2271
2272 switch (vcc->qos.aal) {
2273 case ATM_AAL5:
2274 aal = RSR0_AAL5;
2275 break;
2276 case ATM_AAL0:
2277 aal = RSR0_RAWCELL;
2278 break;
2279 default:
2280 err = -EINVAL;
2281 goto open_failed;
2282 }
2283
2284 spin_lock_irqsave(&he_dev->global_lock, flags);
2285
2286 rsr0 = he_readl_rsr0(he_dev, cid);
2287 if (rsr0 & RSR0_OPEN_CONN) {
2288 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2289
2290 hprintk("cid 0x%x not idle (rsr0 = 0x%x)\n", cid, rsr0);
2291 err = -EBUSY;
2292 goto open_failed;
2293 }
2294
2295 rsr1 = RSR1_GROUP(0) | RSR1_RBPL_ONLY;
2296 rsr4 = RSR4_GROUP(0) | RSR4_RBPL_ONLY;
2297 rsr0 = vcc->qos.rxtp.traffic_class == ATM_UBR ?
2298 (RSR0_EPD_ENABLE|RSR0_PPD_ENABLE) : 0;
2299
2300 #ifdef USE_CHECKSUM_HW
2301 if (vpi == 0 && vci >= ATM_NOT_RSV_VCI)
2302 rsr0 |= RSR0_TCP_CKSUM;
2303 #endif
2304
2305 he_writel_rsr4(he_dev, rsr4, cid);
2306 he_writel_rsr1(he_dev, rsr1, cid);
2307 /* 5.1.11 last parameter initialized should be
2308 the open/closed indication in rsr0 */
2309 he_writel_rsr0(he_dev,
2310 rsr0 | RSR0_START_PDU | RSR0_OPEN_CONN | aal, cid);
2311 (void) he_readl_rsr0(he_dev, cid); /* flush posted writes */
2312
2313 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2314 }
2315
2316 open_failed:
2317
2318 if (err) {
2319 kfree(he_vcc);
2320 clear_bit(ATM_VF_ADDR, &vcc->flags);
2321 }
2322 else
2323 set_bit(ATM_VF_READY, &vcc->flags);
2324
2325 return err;
2326 }
2327
2328 static void
he_close(struct atm_vcc * vcc)2329 he_close(struct atm_vcc *vcc)
2330 {
2331 unsigned long flags;
2332 DECLARE_WAITQUEUE(wait, current);
2333 struct he_dev *he_dev = HE_DEV(vcc->dev);
2334 struct he_tpd *tpd;
2335 unsigned cid;
2336 struct he_vcc *he_vcc = HE_VCC(vcc);
2337 #define MAX_RETRY 30
2338 int retry = 0, sleep = 1, tx_inuse;
2339
2340 HPRINTK("close vcc %p %d.%d\n", vcc, vcc->vpi, vcc->vci);
2341
2342 clear_bit(ATM_VF_READY, &vcc->flags);
2343 cid = he_mkcid(he_dev, vcc->vpi, vcc->vci);
2344
2345 if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
2346 int timeout;
2347
2348 HPRINTK("close rx cid 0x%x\n", cid);
2349
2350 /* 2.7.2.2 close receive operation */
2351
2352 /* wait for previous close (if any) to finish */
2353
2354 spin_lock_irqsave(&he_dev->global_lock, flags);
2355 while (he_readl(he_dev, RCC_STAT) & RCC_BUSY) {
2356 HPRINTK("close cid 0x%x RCC_BUSY\n", cid);
2357 udelay(250);
2358 }
2359
2360 set_current_state(TASK_UNINTERRUPTIBLE);
2361 add_wait_queue(&he_vcc->rx_waitq, &wait);
2362
2363 he_writel_rsr0(he_dev, RSR0_CLOSE_CONN, cid);
2364 (void) he_readl_rsr0(he_dev, cid); /* flush posted writes */
2365 he_writel_mbox(he_dev, cid, RXCON_CLOSE);
2366 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2367
2368 timeout = schedule_timeout(30*HZ);
2369
2370 remove_wait_queue(&he_vcc->rx_waitq, &wait);
2371 set_current_state(TASK_RUNNING);
2372
2373 if (timeout == 0)
2374 hprintk("close rx timeout cid 0x%x\n", cid);
2375
2376 HPRINTK("close rx cid 0x%x complete\n", cid);
2377
2378 }
2379
2380 if (vcc->qos.txtp.traffic_class != ATM_NONE) {
2381 volatile unsigned tsr4, tsr0;
2382 int timeout;
2383
2384 HPRINTK("close tx cid 0x%x\n", cid);
2385
2386 /* 2.1.2
2387 *
2388 * ... the host must first stop queueing packets to the TPDRQ
2389 * on the connection to be closed, then wait for all outstanding
2390 * packets to be transmitted and their buffers returned to the
2391 * TBRQ. When the last packet on the connection arrives in the
2392 * TBRQ, the host issues the close command to the adapter.
2393 */
2394
2395 while (((tx_inuse = refcount_read(&sk_atm(vcc)->sk_wmem_alloc)) > 1) &&
2396 (retry < MAX_RETRY)) {
2397 msleep(sleep);
2398 if (sleep < 250)
2399 sleep = sleep * 2;
2400
2401 ++retry;
2402 }
2403
2404 if (tx_inuse > 1)
2405 hprintk("close tx cid 0x%x tx_inuse = %d\n", cid, tx_inuse);
2406
2407 /* 2.3.1.1 generic close operations with flush */
2408
2409 spin_lock_irqsave(&he_dev->global_lock, flags);
2410 he_writel_tsr4_upper(he_dev, TSR4_FLUSH_CONN, cid);
2411 /* also clears TSR4_SESSION_ENDED */
2412
2413 switch (vcc->qos.txtp.traffic_class) {
2414 case ATM_UBR:
2415 he_writel_tsr1(he_dev,
2416 TSR1_MCR(rate_to_atmf(200000))
2417 | TSR1_PCR(0), cid);
2418 break;
2419 case ATM_CBR:
2420 he_writel_tsr14_upper(he_dev, TSR14_DELETE, cid);
2421 break;
2422 }
2423 (void) he_readl_tsr4(he_dev, cid); /* flush posted writes */
2424
2425 tpd = __alloc_tpd(he_dev);
2426 if (tpd == NULL) {
2427 hprintk("close tx he_alloc_tpd failed cid 0x%x\n", cid);
2428 goto close_tx_incomplete;
2429 }
2430 tpd->status |= TPD_EOS | TPD_INT;
2431 tpd->skb = NULL;
2432 tpd->vcc = vcc;
2433 wmb();
2434
2435 set_current_state(TASK_UNINTERRUPTIBLE);
2436 add_wait_queue(&he_vcc->tx_waitq, &wait);
2437 __enqueue_tpd(he_dev, tpd, cid);
2438 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2439
2440 timeout = schedule_timeout(30*HZ);
2441
2442 remove_wait_queue(&he_vcc->tx_waitq, &wait);
2443 set_current_state(TASK_RUNNING);
2444
2445 spin_lock_irqsave(&he_dev->global_lock, flags);
2446
2447 if (timeout == 0) {
2448 hprintk("close tx timeout cid 0x%x\n", cid);
2449 goto close_tx_incomplete;
2450 }
2451
2452 while (!((tsr4 = he_readl_tsr4(he_dev, cid)) & TSR4_SESSION_ENDED)) {
2453 HPRINTK("close tx cid 0x%x !TSR4_SESSION_ENDED (tsr4 = 0x%x)\n", cid, tsr4);
2454 udelay(250);
2455 }
2456
2457 while (TSR0_CONN_STATE(tsr0 = he_readl_tsr0(he_dev, cid)) != 0) {
2458 HPRINTK("close tx cid 0x%x TSR0_CONN_STATE != 0 (tsr0 = 0x%x)\n", cid, tsr0);
2459 udelay(250);
2460 }
2461
2462 close_tx_incomplete:
2463
2464 if (vcc->qos.txtp.traffic_class == ATM_CBR) {
2465 int reg = he_vcc->rc_index;
2466
2467 HPRINTK("cs_stper reg = %d\n", reg);
2468
2469 if (he_dev->cs_stper[reg].inuse == 0)
2470 hprintk("cs_stper[%d].inuse = 0!\n", reg);
2471 else
2472 --he_dev->cs_stper[reg].inuse;
2473
2474 he_dev->total_bw -= he_dev->cs_stper[reg].pcr;
2475 }
2476 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2477
2478 HPRINTK("close tx cid 0x%x complete\n", cid);
2479 }
2480
2481 kfree(he_vcc);
2482
2483 clear_bit(ATM_VF_ADDR, &vcc->flags);
2484 }
2485
2486 static int
he_send(struct atm_vcc * vcc,struct sk_buff * skb)2487 he_send(struct atm_vcc *vcc, struct sk_buff *skb)
2488 {
2489 unsigned long flags;
2490 struct he_dev *he_dev = HE_DEV(vcc->dev);
2491 unsigned cid = he_mkcid(he_dev, vcc->vpi, vcc->vci);
2492 struct he_tpd *tpd;
2493 #ifdef USE_SCATTERGATHER
2494 int i, slot = 0;
2495 #endif
2496
2497 #define HE_TPD_BUFSIZE 0xffff
2498
2499 HPRINTK("send %d.%d\n", vcc->vpi, vcc->vci);
2500
2501 if ((skb->len > HE_TPD_BUFSIZE) ||
2502 ((vcc->qos.aal == ATM_AAL0) && (skb->len != ATM_AAL0_SDU))) {
2503 hprintk("buffer too large (or small) -- %d bytes\n", skb->len );
2504 if (vcc->pop)
2505 vcc->pop(vcc, skb);
2506 else
2507 dev_kfree_skb_any(skb);
2508 atomic_inc(&vcc->stats->tx_err);
2509 return -EINVAL;
2510 }
2511
2512 #ifndef USE_SCATTERGATHER
2513 if (skb_shinfo(skb)->nr_frags) {
2514 hprintk("no scatter/gather support\n");
2515 if (vcc->pop)
2516 vcc->pop(vcc, skb);
2517 else
2518 dev_kfree_skb_any(skb);
2519 atomic_inc(&vcc->stats->tx_err);
2520 return -EINVAL;
2521 }
2522 #endif
2523 spin_lock_irqsave(&he_dev->global_lock, flags);
2524
2525 tpd = __alloc_tpd(he_dev);
2526 if (tpd == NULL) {
2527 if (vcc->pop)
2528 vcc->pop(vcc, skb);
2529 else
2530 dev_kfree_skb_any(skb);
2531 atomic_inc(&vcc->stats->tx_err);
2532 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2533 return -ENOMEM;
2534 }
2535
2536 if (vcc->qos.aal == ATM_AAL5)
2537 tpd->status |= TPD_CELLTYPE(TPD_USERCELL);
2538 else {
2539 char *pti_clp = (void *) (skb->data + 3);
2540 int clp, pti;
2541
2542 pti = (*pti_clp & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
2543 clp = (*pti_clp & ATM_HDR_CLP);
2544 tpd->status |= TPD_CELLTYPE(pti);
2545 if (clp)
2546 tpd->status |= TPD_CLP;
2547
2548 skb_pull(skb, ATM_AAL0_SDU - ATM_CELL_PAYLOAD);
2549 }
2550
2551 #ifdef USE_SCATTERGATHER
2552 tpd->iovec[slot].addr = dma_map_single(&he_dev->pci_dev->dev, skb->data,
2553 skb_headlen(skb), DMA_TO_DEVICE);
2554 tpd->iovec[slot].len = skb_headlen(skb);
2555 ++slot;
2556
2557 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2558 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2559
2560 if (slot == TPD_MAXIOV) { /* queue tpd; start new tpd */
2561 tpd->vcc = vcc;
2562 tpd->skb = NULL; /* not the last fragment
2563 so dont ->push() yet */
2564 wmb();
2565
2566 __enqueue_tpd(he_dev, tpd, cid);
2567 tpd = __alloc_tpd(he_dev);
2568 if (tpd == NULL) {
2569 if (vcc->pop)
2570 vcc->pop(vcc, skb);
2571 else
2572 dev_kfree_skb_any(skb);
2573 atomic_inc(&vcc->stats->tx_err);
2574 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2575 return -ENOMEM;
2576 }
2577 tpd->status |= TPD_USERCELL;
2578 slot = 0;
2579 }
2580
2581 tpd->iovec[slot].addr = skb_frag_dma_map(&he_dev->pci_dev->dev,
2582 frag, 0, skb_frag_size(frag), DMA_TO_DEVICE);
2583 tpd->iovec[slot].len = skb_frag_size(frag);
2584 ++slot;
2585
2586 }
2587
2588 tpd->iovec[slot - 1].len |= TPD_LST;
2589 #else
2590 tpd->address0 = dma_map_single(&he_dev->pci_dev->dev, skb->data, skb->len, DMA_TO_DEVICE);
2591 tpd->length0 = skb->len | TPD_LST;
2592 #endif
2593 tpd->status |= TPD_INT;
2594
2595 tpd->vcc = vcc;
2596 tpd->skb = skb;
2597 wmb();
2598 ATM_SKB(skb)->vcc = vcc;
2599
2600 __enqueue_tpd(he_dev, tpd, cid);
2601 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2602
2603 atomic_inc(&vcc->stats->tx);
2604
2605 return 0;
2606 }
2607
2608 static int
he_ioctl(struct atm_dev * atm_dev,unsigned int cmd,void __user * arg)2609 he_ioctl(struct atm_dev *atm_dev, unsigned int cmd, void __user *arg)
2610 {
2611 unsigned long flags;
2612 struct he_dev *he_dev = HE_DEV(atm_dev);
2613 struct he_ioctl_reg reg;
2614 int err = 0;
2615
2616 switch (cmd) {
2617 case HE_GET_REG:
2618 if (!capable(CAP_NET_ADMIN))
2619 return -EPERM;
2620
2621 if (copy_from_user(®, arg,
2622 sizeof(struct he_ioctl_reg)))
2623 return -EFAULT;
2624
2625 spin_lock_irqsave(&he_dev->global_lock, flags);
2626 switch (reg.type) {
2627 case HE_REGTYPE_PCI:
2628 if (reg.addr >= HE_REGMAP_SIZE) {
2629 err = -EINVAL;
2630 break;
2631 }
2632
2633 reg.val = he_readl(he_dev, reg.addr);
2634 break;
2635 case HE_REGTYPE_RCM:
2636 reg.val =
2637 he_readl_rcm(he_dev, reg.addr);
2638 break;
2639 case HE_REGTYPE_TCM:
2640 reg.val =
2641 he_readl_tcm(he_dev, reg.addr);
2642 break;
2643 case HE_REGTYPE_MBOX:
2644 reg.val =
2645 he_readl_mbox(he_dev, reg.addr);
2646 break;
2647 default:
2648 err = -EINVAL;
2649 break;
2650 }
2651 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2652 if (err == 0)
2653 if (copy_to_user(arg, ®,
2654 sizeof(struct he_ioctl_reg)))
2655 return -EFAULT;
2656 break;
2657 default:
2658 #ifdef CONFIG_ATM_HE_USE_SUNI
2659 if (atm_dev->phy && atm_dev->phy->ioctl)
2660 err = atm_dev->phy->ioctl(atm_dev, cmd, arg);
2661 #else /* CONFIG_ATM_HE_USE_SUNI */
2662 err = -EINVAL;
2663 #endif /* CONFIG_ATM_HE_USE_SUNI */
2664 break;
2665 }
2666
2667 return err;
2668 }
2669
2670 static void
he_phy_put(struct atm_dev * atm_dev,unsigned char val,unsigned long addr)2671 he_phy_put(struct atm_dev *atm_dev, unsigned char val, unsigned long addr)
2672 {
2673 unsigned long flags;
2674 struct he_dev *he_dev = HE_DEV(atm_dev);
2675
2676 HPRINTK("phy_put(val 0x%x, addr 0x%lx)\n", val, addr);
2677
2678 spin_lock_irqsave(&he_dev->global_lock, flags);
2679 he_writel(he_dev, val, FRAMER + (addr*4));
2680 (void) he_readl(he_dev, FRAMER + (addr*4)); /* flush posted writes */
2681 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2682 }
2683
2684
2685 static unsigned char
he_phy_get(struct atm_dev * atm_dev,unsigned long addr)2686 he_phy_get(struct atm_dev *atm_dev, unsigned long addr)
2687 {
2688 unsigned long flags;
2689 struct he_dev *he_dev = HE_DEV(atm_dev);
2690 unsigned reg;
2691
2692 spin_lock_irqsave(&he_dev->global_lock, flags);
2693 reg = he_readl(he_dev, FRAMER + (addr*4));
2694 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2695
2696 HPRINTK("phy_get(addr 0x%lx) =0x%x\n", addr, reg);
2697 return reg;
2698 }
2699
2700 static int
he_proc_read(struct atm_dev * dev,loff_t * pos,char * page)2701 he_proc_read(struct atm_dev *dev, loff_t *pos, char *page)
2702 {
2703 unsigned long flags;
2704 struct he_dev *he_dev = HE_DEV(dev);
2705 int left, i;
2706 #ifdef notdef
2707 struct he_rbrq *rbrq_tail;
2708 struct he_tpdrq *tpdrq_head;
2709 int rbpl_head, rbpl_tail;
2710 #endif
2711 static long mcc = 0, oec = 0, dcc = 0, cec = 0;
2712
2713
2714 left = *pos;
2715 if (!left--)
2716 return sprintf(page, "ATM he driver\n");
2717
2718 if (!left--)
2719 return sprintf(page, "%s%s\n\n",
2720 he_dev->prod_id, he_dev->media & 0x40 ? "SM" : "MM");
2721
2722 if (!left--)
2723 return sprintf(page, "Mismatched Cells VPI/VCI Not Open Dropped Cells RCM Dropped Cells\n");
2724
2725 spin_lock_irqsave(&he_dev->global_lock, flags);
2726 mcc += he_readl(he_dev, MCC);
2727 oec += he_readl(he_dev, OEC);
2728 dcc += he_readl(he_dev, DCC);
2729 cec += he_readl(he_dev, CEC);
2730 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2731
2732 if (!left--)
2733 return sprintf(page, "%16ld %16ld %13ld %17ld\n\n",
2734 mcc, oec, dcc, cec);
2735
2736 if (!left--)
2737 return sprintf(page, "irq_size = %d inuse = ? peak = %d\n",
2738 CONFIG_IRQ_SIZE, he_dev->irq_peak);
2739
2740 if (!left--)
2741 return sprintf(page, "tpdrq_size = %d inuse = ?\n",
2742 CONFIG_TPDRQ_SIZE);
2743
2744 if (!left--)
2745 return sprintf(page, "rbrq_size = %d inuse = ? peak = %d\n",
2746 CONFIG_RBRQ_SIZE, he_dev->rbrq_peak);
2747
2748 if (!left--)
2749 return sprintf(page, "tbrq_size = %d peak = %d\n",
2750 CONFIG_TBRQ_SIZE, he_dev->tbrq_peak);
2751
2752
2753 #ifdef notdef
2754 rbpl_head = RBPL_MASK(he_readl(he_dev, G0_RBPL_S));
2755 rbpl_tail = RBPL_MASK(he_readl(he_dev, G0_RBPL_T));
2756
2757 inuse = rbpl_head - rbpl_tail;
2758 if (inuse < 0)
2759 inuse += CONFIG_RBPL_SIZE * sizeof(struct he_rbp);
2760 inuse /= sizeof(struct he_rbp);
2761
2762 if (!left--)
2763 return sprintf(page, "rbpl_size = %d inuse = %d\n\n",
2764 CONFIG_RBPL_SIZE, inuse);
2765 #endif
2766
2767 if (!left--)
2768 return sprintf(page, "rate controller periods (cbr)\n pcr #vc\n");
2769
2770 for (i = 0; i < HE_NUM_CS_STPER; ++i)
2771 if (!left--)
2772 return sprintf(page, "cs_stper%-2d %8ld %3d\n", i,
2773 he_dev->cs_stper[i].pcr,
2774 he_dev->cs_stper[i].inuse);
2775
2776 if (!left--)
2777 return sprintf(page, "total bw (cbr): %d (limit %d)\n",
2778 he_dev->total_bw, he_dev->atm_dev->link_rate * 10 / 9);
2779
2780 return 0;
2781 }
2782
2783 /* eeprom routines -- see 4.7 */
2784
read_prom_byte(struct he_dev * he_dev,int addr)2785 static u8 read_prom_byte(struct he_dev *he_dev, int addr)
2786 {
2787 u32 val = 0, tmp_read = 0;
2788 int i, j = 0;
2789 u8 byte_read = 0;
2790
2791 val = readl(he_dev->membase + HOST_CNTL);
2792 val &= 0xFFFFE0FF;
2793
2794 /* Turn on write enable */
2795 val |= 0x800;
2796 he_writel(he_dev, val, HOST_CNTL);
2797
2798 /* Send READ instruction */
2799 for (i = 0; i < ARRAY_SIZE(readtab); i++) {
2800 he_writel(he_dev, val | readtab[i], HOST_CNTL);
2801 udelay(EEPROM_DELAY);
2802 }
2803
2804 /* Next, we need to send the byte address to read from */
2805 for (i = 7; i >= 0; i--) {
2806 he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL);
2807 udelay(EEPROM_DELAY);
2808 he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL);
2809 udelay(EEPROM_DELAY);
2810 }
2811
2812 j = 0;
2813
2814 val &= 0xFFFFF7FF; /* Turn off write enable */
2815 he_writel(he_dev, val, HOST_CNTL);
2816
2817 /* Now, we can read data from the EEPROM by clocking it in */
2818 for (i = 7; i >= 0; i--) {
2819 he_writel(he_dev, val | clocktab[j++], HOST_CNTL);
2820 udelay(EEPROM_DELAY);
2821 tmp_read = he_readl(he_dev, HOST_CNTL);
2822 byte_read |= (unsigned char)
2823 ((tmp_read & ID_DOUT) >> ID_DOFFSET << i);
2824 he_writel(he_dev, val | clocktab[j++], HOST_CNTL);
2825 udelay(EEPROM_DELAY);
2826 }
2827
2828 he_writel(he_dev, val | ID_CS, HOST_CNTL);
2829 udelay(EEPROM_DELAY);
2830
2831 return byte_read;
2832 }
2833
2834 MODULE_LICENSE("GPL");
2835 MODULE_AUTHOR("chas williams <chas@cmf.nrl.navy.mil>");
2836 MODULE_DESCRIPTION("ForeRunnerHE ATM Adapter driver");
2837 module_param(disable64, bool, 0);
2838 MODULE_PARM_DESC(disable64, "disable 64-bit pci bus transfers");
2839 module_param(nvpibits, short, 0);
2840 MODULE_PARM_DESC(nvpibits, "numbers of bits for vpi (default 0)");
2841 module_param(nvcibits, short, 0);
2842 MODULE_PARM_DESC(nvcibits, "numbers of bits for vci (default 12)");
2843 module_param(rx_skb_reserve, short, 0);
2844 MODULE_PARM_DESC(rx_skb_reserve, "padding for receive skb (default 16)");
2845 module_param(irq_coalesce, bool, 0);
2846 MODULE_PARM_DESC(irq_coalesce, "use interrupt coalescing (default 1)");
2847 module_param(sdh, bool, 0);
2848 MODULE_PARM_DESC(sdh, "use SDH framing (default 0)");
2849
2850 static const struct pci_device_id he_pci_tbl[] = {
2851 { PCI_VDEVICE(FORE, PCI_DEVICE_ID_FORE_HE), 0 },
2852 { 0, }
2853 };
2854
2855 MODULE_DEVICE_TABLE(pci, he_pci_tbl);
2856
2857 static struct pci_driver he_driver = {
2858 .name = "he",
2859 .probe = he_init_one,
2860 .remove = he_remove_one,
2861 .id_table = he_pci_tbl,
2862 };
2863
2864 module_pci_driver(he_driver);
2865