1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31 /*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/skbuff_ref.h>
55 #include <linux/splice.h>
56 #include <linux/cache.h>
57 #include <linux/rtnetlink.h>
58 #include <linux/init.h>
59 #include <linux/scatterlist.h>
60 #include <linux/errqueue.h>
61 #include <linux/prefetch.h>
62 #include <linux/bitfield.h>
63 #include <linux/if_vlan.h>
64 #include <linux/mpls.h>
65 #include <linux/kcov.h>
66 #include <linux/iov_iter.h>
67
68 #include <net/protocol.h>
69 #include <net/dst.h>
70 #include <net/sock.h>
71 #include <net/checksum.h>
72 #include <net/gro.h>
73 #include <net/gso.h>
74 #include <net/hotdata.h>
75 #include <net/ip6_checksum.h>
76 #include <net/xfrm.h>
77 #include <net/mpls.h>
78 #include <net/mptcp.h>
79 #include <net/mctp.h>
80 #include <net/page_pool/helpers.h>
81 #include <net/dropreason.h>
82
83 #include <linux/uaccess.h>
84 #include <trace/events/skb.h>
85 #include <linux/highmem.h>
86 #include <linux/capability.h>
87 #include <linux/user_namespace.h>
88 #include <linux/indirect_call_wrapper.h>
89 #include <linux/textsearch.h>
90
91 #include "dev.h"
92 #include "netmem_priv.h"
93 #include "sock_destructor.h"
94
95 #ifdef CONFIG_SKB_EXTENSIONS
96 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
97 #endif
98
99 #define GRO_MAX_HEAD_PAD (GRO_MAX_HEAD + NET_SKB_PAD + NET_IP_ALIGN)
100 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(max(MAX_TCP_HEADER, \
101 GRO_MAX_HEAD_PAD))
102
103 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
104 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
105 * size, and we can differentiate heads from skb_small_head_cache
106 * vs system slabs by looking at their size (skb_end_offset()).
107 */
108 #define SKB_SMALL_HEAD_CACHE_SIZE \
109 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \
110 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \
111 SKB_SMALL_HEAD_SIZE)
112
113 #define SKB_SMALL_HEAD_HEADROOM \
114 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
115
116 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use
117 * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the
118 * netmem is a page.
119 */
120 static_assert(offsetof(struct bio_vec, bv_page) ==
121 offsetof(skb_frag_t, netmem));
122 static_assert(sizeof_field(struct bio_vec, bv_page) ==
123 sizeof_field(skb_frag_t, netmem));
124
125 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len));
126 static_assert(sizeof_field(struct bio_vec, bv_len) ==
127 sizeof_field(skb_frag_t, len));
128
129 static_assert(offsetof(struct bio_vec, bv_offset) ==
130 offsetof(skb_frag_t, offset));
131 static_assert(sizeof_field(struct bio_vec, bv_offset) ==
132 sizeof_field(skb_frag_t, offset));
133
134 #undef FN
135 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
136 static const char * const drop_reasons[] = {
137 [SKB_CONSUMED] = "CONSUMED",
138 DEFINE_DROP_REASON(FN, FN)
139 };
140
141 static const struct drop_reason_list drop_reasons_core = {
142 .reasons = drop_reasons,
143 .n_reasons = ARRAY_SIZE(drop_reasons),
144 };
145
146 const struct drop_reason_list __rcu *
147 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
148 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
149 };
150 EXPORT_SYMBOL(drop_reasons_by_subsys);
151
152 /**
153 * drop_reasons_register_subsys - register another drop reason subsystem
154 * @subsys: the subsystem to register, must not be the core
155 * @list: the list of drop reasons within the subsystem, must point to
156 * a statically initialized list
157 */
drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,const struct drop_reason_list * list)158 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
159 const struct drop_reason_list *list)
160 {
161 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
162 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
163 "invalid subsystem %d\n", subsys))
164 return;
165
166 /* must point to statically allocated memory, so INIT is OK */
167 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
168 }
169 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
170
171 /**
172 * drop_reasons_unregister_subsys - unregister a drop reason subsystem
173 * @subsys: the subsystem to remove, must not be the core
174 *
175 * Note: This will synchronize_rcu() to ensure no users when it returns.
176 */
drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)177 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
178 {
179 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
180 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
181 "invalid subsystem %d\n", subsys))
182 return;
183
184 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
185
186 synchronize_rcu();
187 }
188 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
189
190 /**
191 * skb_panic - private function for out-of-line support
192 * @skb: buffer
193 * @sz: size
194 * @addr: address
195 * @msg: skb_over_panic or skb_under_panic
196 *
197 * Out-of-line support for skb_put() and skb_push().
198 * Called via the wrapper skb_over_panic() or skb_under_panic().
199 * Keep out of line to prevent kernel bloat.
200 * __builtin_return_address is not used because it is not always reliable.
201 */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])202 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
203 const char msg[])
204 {
205 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
206 msg, addr, skb->len, sz, skb->head, skb->data,
207 (unsigned long)skb->tail, (unsigned long)skb->end,
208 skb->dev ? skb->dev->name : "<NULL>");
209 BUG();
210 }
211
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)212 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
213 {
214 skb_panic(skb, sz, addr, __func__);
215 }
216
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)217 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
218 {
219 skb_panic(skb, sz, addr, __func__);
220 }
221
222 #define NAPI_SKB_CACHE_SIZE 64
223 #define NAPI_SKB_CACHE_BULK 16
224 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2)
225
226 struct napi_alloc_cache {
227 local_lock_t bh_lock;
228 struct page_frag_cache page;
229 unsigned int skb_count;
230 void *skb_cache[NAPI_SKB_CACHE_SIZE];
231 };
232
233 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
234 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache) = {
235 .bh_lock = INIT_LOCAL_LOCK(bh_lock),
236 };
237
__napi_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)238 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
239 {
240 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
241 void *data;
242
243 fragsz = SKB_DATA_ALIGN(fragsz);
244
245 local_lock_nested_bh(&napi_alloc_cache.bh_lock);
246 data = __page_frag_alloc_align(&nc->page, fragsz,
247 GFP_ATOMIC | __GFP_NOWARN, align_mask);
248 local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
249 return data;
250
251 }
252 EXPORT_SYMBOL(__napi_alloc_frag_align);
253
__netdev_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)254 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
255 {
256 void *data;
257
258 if (in_hardirq() || irqs_disabled()) {
259 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
260
261 fragsz = SKB_DATA_ALIGN(fragsz);
262 data = __page_frag_alloc_align(nc, fragsz,
263 GFP_ATOMIC | __GFP_NOWARN,
264 align_mask);
265 } else {
266 local_bh_disable();
267 data = __napi_alloc_frag_align(fragsz, align_mask);
268 local_bh_enable();
269 }
270 return data;
271 }
272 EXPORT_SYMBOL(__netdev_alloc_frag_align);
273
napi_skb_cache_get(void)274 static struct sk_buff *napi_skb_cache_get(void)
275 {
276 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
277 struct sk_buff *skb;
278
279 local_lock_nested_bh(&napi_alloc_cache.bh_lock);
280 if (unlikely(!nc->skb_count)) {
281 nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
282 GFP_ATOMIC | __GFP_NOWARN,
283 NAPI_SKB_CACHE_BULK,
284 nc->skb_cache);
285 if (unlikely(!nc->skb_count)) {
286 local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
287 return NULL;
288 }
289 }
290
291 skb = nc->skb_cache[--nc->skb_count];
292 local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
293 kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache));
294
295 return skb;
296 }
297
298 /**
299 * napi_skb_cache_get_bulk - obtain a number of zeroed skb heads from the cache
300 * @skbs: pointer to an at least @n-sized array to fill with skb pointers
301 * @n: number of entries to provide
302 *
303 * Tries to obtain @n &sk_buff entries from the NAPI percpu cache and writes
304 * the pointers into the provided array @skbs. If there are less entries
305 * available, tries to replenish the cache and bulk-allocates the diff from
306 * the MM layer if needed.
307 * The heads are being zeroed with either memset() or %__GFP_ZERO, so they are
308 * ready for {,__}build_skb_around() and don't have any data buffers attached.
309 * Must be called *only* from the BH context.
310 *
311 * Return: number of successfully allocated skbs (@n if no actual allocation
312 * needed or kmem_cache_alloc_bulk() didn't fail).
313 */
napi_skb_cache_get_bulk(void ** skbs,u32 n)314 u32 napi_skb_cache_get_bulk(void **skbs, u32 n)
315 {
316 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
317 u32 bulk, total = n;
318
319 local_lock_nested_bh(&napi_alloc_cache.bh_lock);
320
321 if (nc->skb_count >= n)
322 goto get;
323
324 /* No enough cached skbs. Try refilling the cache first */
325 bulk = min(NAPI_SKB_CACHE_SIZE - nc->skb_count, NAPI_SKB_CACHE_BULK);
326 nc->skb_count += kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
327 GFP_ATOMIC | __GFP_NOWARN, bulk,
328 &nc->skb_cache[nc->skb_count]);
329 if (likely(nc->skb_count >= n))
330 goto get;
331
332 /* Still not enough. Bulk-allocate the missing part directly, zeroed */
333 n -= kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
334 GFP_ATOMIC | __GFP_ZERO | __GFP_NOWARN,
335 n - nc->skb_count, &skbs[nc->skb_count]);
336 if (likely(nc->skb_count >= n))
337 goto get;
338
339 /* kmem_cache didn't allocate the number we need, limit the output */
340 total -= n - nc->skb_count;
341 n = nc->skb_count;
342
343 get:
344 for (u32 base = nc->skb_count - n, i = 0; i < n; i++) {
345 u32 cache_size = kmem_cache_size(net_hotdata.skbuff_cache);
346
347 skbs[i] = nc->skb_cache[base + i];
348
349 kasan_mempool_unpoison_object(skbs[i], cache_size);
350 memset(skbs[i], 0, offsetof(struct sk_buff, tail));
351 }
352
353 nc->skb_count -= n;
354 local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
355
356 return total;
357 }
358 EXPORT_SYMBOL_GPL(napi_skb_cache_get_bulk);
359
__finalize_skb_around(struct sk_buff * skb,void * data,unsigned int size)360 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
361 unsigned int size)
362 {
363 struct skb_shared_info *shinfo;
364
365 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
366
367 /* Assumes caller memset cleared SKB */
368 skb->truesize = SKB_TRUESIZE(size);
369 refcount_set(&skb->users, 1);
370 skb->head = data;
371 skb->data = data;
372 skb_reset_tail_pointer(skb);
373 skb_set_end_offset(skb, size);
374 skb->mac_header = (typeof(skb->mac_header))~0U;
375 skb->transport_header = (typeof(skb->transport_header))~0U;
376 skb->alloc_cpu = raw_smp_processor_id();
377 /* make sure we initialize shinfo sequentially */
378 shinfo = skb_shinfo(skb);
379 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
380 atomic_set(&shinfo->dataref, 1);
381
382 skb_set_kcov_handle(skb, kcov_common_handle());
383 }
384
__slab_build_skb(struct sk_buff * skb,void * data,unsigned int * size)385 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
386 unsigned int *size)
387 {
388 void *resized;
389
390 /* Must find the allocation size (and grow it to match). */
391 *size = ksize(data);
392 /* krealloc() will immediately return "data" when
393 * "ksize(data)" is requested: it is the existing upper
394 * bounds. As a result, GFP_ATOMIC will be ignored. Note
395 * that this "new" pointer needs to be passed back to the
396 * caller for use so the __alloc_size hinting will be
397 * tracked correctly.
398 */
399 resized = krealloc(data, *size, GFP_ATOMIC);
400 WARN_ON_ONCE(resized != data);
401 return resized;
402 }
403
404 /* build_skb() variant which can operate on slab buffers.
405 * Note that this should be used sparingly as slab buffers
406 * cannot be combined efficiently by GRO!
407 */
slab_build_skb(void * data)408 struct sk_buff *slab_build_skb(void *data)
409 {
410 struct sk_buff *skb;
411 unsigned int size;
412
413 skb = kmem_cache_alloc(net_hotdata.skbuff_cache,
414 GFP_ATOMIC | __GFP_NOWARN);
415 if (unlikely(!skb))
416 return NULL;
417
418 memset(skb, 0, offsetof(struct sk_buff, tail));
419 data = __slab_build_skb(skb, data, &size);
420 __finalize_skb_around(skb, data, size);
421
422 return skb;
423 }
424 EXPORT_SYMBOL(slab_build_skb);
425
426 /* Caller must provide SKB that is memset cleared */
__build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)427 static void __build_skb_around(struct sk_buff *skb, void *data,
428 unsigned int frag_size)
429 {
430 unsigned int size = frag_size;
431
432 /* frag_size == 0 is considered deprecated now. Callers
433 * using slab buffer should use slab_build_skb() instead.
434 */
435 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
436 data = __slab_build_skb(skb, data, &size);
437
438 __finalize_skb_around(skb, data, size);
439 }
440
441 /**
442 * __build_skb - build a network buffer
443 * @data: data buffer provided by caller
444 * @frag_size: size of data (must not be 0)
445 *
446 * Allocate a new &sk_buff. Caller provides space holding head and
447 * skb_shared_info. @data must have been allocated from the page
448 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
449 * allocation is deprecated, and callers should use slab_build_skb()
450 * instead.)
451 * The return is the new skb buffer.
452 * On a failure the return is %NULL, and @data is not freed.
453 * Notes :
454 * Before IO, driver allocates only data buffer where NIC put incoming frame
455 * Driver should add room at head (NET_SKB_PAD) and
456 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
457 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
458 * before giving packet to stack.
459 * RX rings only contains data buffers, not full skbs.
460 */
__build_skb(void * data,unsigned int frag_size)461 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
462 {
463 struct sk_buff *skb;
464
465 skb = kmem_cache_alloc(net_hotdata.skbuff_cache,
466 GFP_ATOMIC | __GFP_NOWARN);
467 if (unlikely(!skb))
468 return NULL;
469
470 memset(skb, 0, offsetof(struct sk_buff, tail));
471 __build_skb_around(skb, data, frag_size);
472
473 return skb;
474 }
475
476 /* build_skb() is wrapper over __build_skb(), that specifically
477 * takes care of skb->head and skb->pfmemalloc
478 */
build_skb(void * data,unsigned int frag_size)479 struct sk_buff *build_skb(void *data, unsigned int frag_size)
480 {
481 struct sk_buff *skb = __build_skb(data, frag_size);
482
483 if (likely(skb && frag_size)) {
484 skb->head_frag = 1;
485 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
486 }
487 return skb;
488 }
489 EXPORT_SYMBOL(build_skb);
490
491 /**
492 * build_skb_around - build a network buffer around provided skb
493 * @skb: sk_buff provide by caller, must be memset cleared
494 * @data: data buffer provided by caller
495 * @frag_size: size of data
496 */
build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)497 struct sk_buff *build_skb_around(struct sk_buff *skb,
498 void *data, unsigned int frag_size)
499 {
500 if (unlikely(!skb))
501 return NULL;
502
503 __build_skb_around(skb, data, frag_size);
504
505 if (frag_size) {
506 skb->head_frag = 1;
507 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
508 }
509 return skb;
510 }
511 EXPORT_SYMBOL(build_skb_around);
512
513 /**
514 * __napi_build_skb - build a network buffer
515 * @data: data buffer provided by caller
516 * @frag_size: size of data
517 *
518 * Version of __build_skb() that uses NAPI percpu caches to obtain
519 * skbuff_head instead of inplace allocation.
520 *
521 * Returns a new &sk_buff on success, %NULL on allocation failure.
522 */
__napi_build_skb(void * data,unsigned int frag_size)523 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
524 {
525 struct sk_buff *skb;
526
527 skb = napi_skb_cache_get();
528 if (unlikely(!skb))
529 return NULL;
530
531 memset(skb, 0, offsetof(struct sk_buff, tail));
532 __build_skb_around(skb, data, frag_size);
533
534 return skb;
535 }
536
537 /**
538 * napi_build_skb - build a network buffer
539 * @data: data buffer provided by caller
540 * @frag_size: size of data
541 *
542 * Version of __napi_build_skb() that takes care of skb->head_frag
543 * and skb->pfmemalloc when the data is a page or page fragment.
544 *
545 * Returns a new &sk_buff on success, %NULL on allocation failure.
546 */
napi_build_skb(void * data,unsigned int frag_size)547 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
548 {
549 struct sk_buff *skb = __napi_build_skb(data, frag_size);
550
551 if (likely(skb) && frag_size) {
552 skb->head_frag = 1;
553 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
554 }
555
556 return skb;
557 }
558 EXPORT_SYMBOL(napi_build_skb);
559
560 /*
561 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
562 * the caller if emergency pfmemalloc reserves are being used. If it is and
563 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
564 * may be used. Otherwise, the packet data may be discarded until enough
565 * memory is free
566 */
kmalloc_reserve(unsigned int * size,gfp_t flags,int node,bool * pfmemalloc)567 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
568 bool *pfmemalloc)
569 {
570 bool ret_pfmemalloc = false;
571 size_t obj_size;
572 void *obj;
573
574 obj_size = SKB_HEAD_ALIGN(*size);
575 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
576 !(flags & KMALLOC_NOT_NORMAL_BITS)) {
577 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache,
578 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
579 node);
580 *size = SKB_SMALL_HEAD_CACHE_SIZE;
581 if (obj || !(gfp_pfmemalloc_allowed(flags)))
582 goto out;
583 /* Try again but now we are using pfmemalloc reserves */
584 ret_pfmemalloc = true;
585 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node);
586 goto out;
587 }
588
589 obj_size = kmalloc_size_roundup(obj_size);
590 /* The following cast might truncate high-order bits of obj_size, this
591 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
592 */
593 *size = (unsigned int)obj_size;
594
595 /*
596 * Try a regular allocation, when that fails and we're not entitled
597 * to the reserves, fail.
598 */
599 obj = kmalloc_node_track_caller(obj_size,
600 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
601 node);
602 if (obj || !(gfp_pfmemalloc_allowed(flags)))
603 goto out;
604
605 /* Try again but now we are using pfmemalloc reserves */
606 ret_pfmemalloc = true;
607 obj = kmalloc_node_track_caller(obj_size, flags, node);
608
609 out:
610 if (pfmemalloc)
611 *pfmemalloc = ret_pfmemalloc;
612
613 return obj;
614 }
615
616 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
617 * 'private' fields and also do memory statistics to find all the
618 * [BEEP] leaks.
619 *
620 */
621
622 /**
623 * __alloc_skb - allocate a network buffer
624 * @size: size to allocate
625 * @gfp_mask: allocation mask
626 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
627 * instead of head cache and allocate a cloned (child) skb.
628 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
629 * allocations in case the data is required for writeback
630 * @node: numa node to allocate memory on
631 *
632 * Allocate a new &sk_buff. The returned buffer has no headroom and a
633 * tail room of at least size bytes. The object has a reference count
634 * of one. The return is the buffer. On a failure the return is %NULL.
635 *
636 * Buffers may only be allocated from interrupts using a @gfp_mask of
637 * %GFP_ATOMIC.
638 */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)639 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
640 int flags, int node)
641 {
642 struct kmem_cache *cache;
643 struct sk_buff *skb;
644 bool pfmemalloc;
645 u8 *data;
646
647 cache = (flags & SKB_ALLOC_FCLONE)
648 ? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache;
649
650 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
651 gfp_mask |= __GFP_MEMALLOC;
652
653 /* Get the HEAD */
654 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
655 likely(node == NUMA_NO_NODE || node == numa_mem_id()))
656 skb = napi_skb_cache_get();
657 else
658 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
659 if (unlikely(!skb))
660 return NULL;
661 prefetchw(skb);
662
663 /* We do our best to align skb_shared_info on a separate cache
664 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
665 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
666 * Both skb->head and skb_shared_info are cache line aligned.
667 */
668 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
669 if (unlikely(!data))
670 goto nodata;
671 /* kmalloc_size_roundup() might give us more room than requested.
672 * Put skb_shared_info exactly at the end of allocated zone,
673 * to allow max possible filling before reallocation.
674 */
675 prefetchw(data + SKB_WITH_OVERHEAD(size));
676
677 /*
678 * Only clear those fields we need to clear, not those that we will
679 * actually initialise below. Hence, don't put any more fields after
680 * the tail pointer in struct sk_buff!
681 */
682 memset(skb, 0, offsetof(struct sk_buff, tail));
683 __build_skb_around(skb, data, size);
684 skb->pfmemalloc = pfmemalloc;
685
686 if (flags & SKB_ALLOC_FCLONE) {
687 struct sk_buff_fclones *fclones;
688
689 fclones = container_of(skb, struct sk_buff_fclones, skb1);
690
691 skb->fclone = SKB_FCLONE_ORIG;
692 refcount_set(&fclones->fclone_ref, 1);
693 }
694
695 return skb;
696
697 nodata:
698 kmem_cache_free(cache, skb);
699 return NULL;
700 }
701 EXPORT_SYMBOL(__alloc_skb);
702
703 /**
704 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
705 * @dev: network device to receive on
706 * @len: length to allocate
707 * @gfp_mask: get_free_pages mask, passed to alloc_skb
708 *
709 * Allocate a new &sk_buff and assign it a usage count of one. The
710 * buffer has NET_SKB_PAD headroom built in. Users should allocate
711 * the headroom they think they need without accounting for the
712 * built in space. The built in space is used for optimisations.
713 *
714 * %NULL is returned if there is no free memory.
715 */
__netdev_alloc_skb(struct net_device * dev,unsigned int len,gfp_t gfp_mask)716 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
717 gfp_t gfp_mask)
718 {
719 struct page_frag_cache *nc;
720 struct sk_buff *skb;
721 bool pfmemalloc;
722 void *data;
723
724 len += NET_SKB_PAD;
725
726 /* If requested length is either too small or too big,
727 * we use kmalloc() for skb->head allocation.
728 */
729 if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) ||
730 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
731 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
732 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
733 if (!skb)
734 goto skb_fail;
735 goto skb_success;
736 }
737
738 len = SKB_HEAD_ALIGN(len);
739
740 if (sk_memalloc_socks())
741 gfp_mask |= __GFP_MEMALLOC;
742
743 if (in_hardirq() || irqs_disabled()) {
744 nc = this_cpu_ptr(&netdev_alloc_cache);
745 data = page_frag_alloc(nc, len, gfp_mask);
746 pfmemalloc = page_frag_cache_is_pfmemalloc(nc);
747 } else {
748 local_bh_disable();
749 local_lock_nested_bh(&napi_alloc_cache.bh_lock);
750
751 nc = this_cpu_ptr(&napi_alloc_cache.page);
752 data = page_frag_alloc(nc, len, gfp_mask);
753 pfmemalloc = page_frag_cache_is_pfmemalloc(nc);
754
755 local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
756 local_bh_enable();
757 }
758
759 if (unlikely(!data))
760 return NULL;
761
762 skb = __build_skb(data, len);
763 if (unlikely(!skb)) {
764 skb_free_frag(data);
765 return NULL;
766 }
767
768 if (pfmemalloc)
769 skb->pfmemalloc = 1;
770 skb->head_frag = 1;
771
772 skb_success:
773 skb_reserve(skb, NET_SKB_PAD);
774 skb->dev = dev;
775
776 skb_fail:
777 return skb;
778 }
779 EXPORT_SYMBOL(__netdev_alloc_skb);
780
781 /**
782 * napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
783 * @napi: napi instance this buffer was allocated for
784 * @len: length to allocate
785 *
786 * Allocate a new sk_buff for use in NAPI receive. This buffer will
787 * attempt to allocate the head from a special reserved region used
788 * only for NAPI Rx allocation. By doing this we can save several
789 * CPU cycles by avoiding having to disable and re-enable IRQs.
790 *
791 * %NULL is returned if there is no free memory.
792 */
napi_alloc_skb(struct napi_struct * napi,unsigned int len)793 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len)
794 {
795 gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN;
796 struct napi_alloc_cache *nc;
797 struct sk_buff *skb;
798 bool pfmemalloc;
799 void *data;
800
801 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
802 len += NET_SKB_PAD + NET_IP_ALIGN;
803
804 /* If requested length is either too small or too big,
805 * we use kmalloc() for skb->head allocation.
806 */
807 if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) ||
808 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
809 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
810 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
811 NUMA_NO_NODE);
812 if (!skb)
813 goto skb_fail;
814 goto skb_success;
815 }
816
817 len = SKB_HEAD_ALIGN(len);
818
819 if (sk_memalloc_socks())
820 gfp_mask |= __GFP_MEMALLOC;
821
822 local_lock_nested_bh(&napi_alloc_cache.bh_lock);
823 nc = this_cpu_ptr(&napi_alloc_cache);
824
825 data = page_frag_alloc(&nc->page, len, gfp_mask);
826 pfmemalloc = page_frag_cache_is_pfmemalloc(&nc->page);
827 local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
828
829 if (unlikely(!data))
830 return NULL;
831
832 skb = __napi_build_skb(data, len);
833 if (unlikely(!skb)) {
834 skb_free_frag(data);
835 return NULL;
836 }
837
838 if (pfmemalloc)
839 skb->pfmemalloc = 1;
840 skb->head_frag = 1;
841
842 skb_success:
843 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
844 skb->dev = napi->dev;
845
846 skb_fail:
847 return skb;
848 }
849 EXPORT_SYMBOL(napi_alloc_skb);
850
skb_add_rx_frag_netmem(struct sk_buff * skb,int i,netmem_ref netmem,int off,int size,unsigned int truesize)851 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
852 int off, int size, unsigned int truesize)
853 {
854 DEBUG_NET_WARN_ON_ONCE(size > truesize);
855
856 skb_fill_netmem_desc(skb, i, netmem, off, size);
857 skb->len += size;
858 skb->data_len += size;
859 skb->truesize += truesize;
860 }
861 EXPORT_SYMBOL(skb_add_rx_frag_netmem);
862
skb_coalesce_rx_frag(struct sk_buff * skb,int i,int size,unsigned int truesize)863 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
864 unsigned int truesize)
865 {
866 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
867
868 DEBUG_NET_WARN_ON_ONCE(size > truesize);
869
870 skb_frag_size_add(frag, size);
871 skb->len += size;
872 skb->data_len += size;
873 skb->truesize += truesize;
874 }
875 EXPORT_SYMBOL(skb_coalesce_rx_frag);
876
skb_drop_list(struct sk_buff ** listp)877 static void skb_drop_list(struct sk_buff **listp)
878 {
879 kfree_skb_list(*listp);
880 *listp = NULL;
881 }
882
skb_drop_fraglist(struct sk_buff * skb)883 static inline void skb_drop_fraglist(struct sk_buff *skb)
884 {
885 skb_drop_list(&skb_shinfo(skb)->frag_list);
886 }
887
skb_clone_fraglist(struct sk_buff * skb)888 static void skb_clone_fraglist(struct sk_buff *skb)
889 {
890 struct sk_buff *list;
891
892 skb_walk_frags(skb, list)
893 skb_get(list);
894 }
895
is_pp_netmem(netmem_ref netmem)896 static bool is_pp_netmem(netmem_ref netmem)
897 {
898 return (netmem_get_pp_magic(netmem) & ~0x3UL) == PP_SIGNATURE;
899 }
900
skb_pp_cow_data(struct page_pool * pool,struct sk_buff ** pskb,unsigned int headroom)901 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
902 unsigned int headroom)
903 {
904 #if IS_ENABLED(CONFIG_PAGE_POOL)
905 u32 size, truesize, len, max_head_size, off;
906 struct sk_buff *skb = *pskb, *nskb;
907 int err, i, head_off;
908 void *data;
909
910 /* XDP does not support fraglist so we need to linearize
911 * the skb.
912 */
913 if (skb_has_frag_list(skb))
914 return -EOPNOTSUPP;
915
916 max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom);
917 if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE)
918 return -ENOMEM;
919
920 size = min_t(u32, skb->len, max_head_size);
921 truesize = SKB_HEAD_ALIGN(size) + headroom;
922 data = page_pool_dev_alloc_va(pool, &truesize);
923 if (!data)
924 return -ENOMEM;
925
926 nskb = napi_build_skb(data, truesize);
927 if (!nskb) {
928 page_pool_free_va(pool, data, true);
929 return -ENOMEM;
930 }
931
932 skb_reserve(nskb, headroom);
933 skb_copy_header(nskb, skb);
934 skb_mark_for_recycle(nskb);
935
936 err = skb_copy_bits(skb, 0, nskb->data, size);
937 if (err) {
938 consume_skb(nskb);
939 return err;
940 }
941 skb_put(nskb, size);
942
943 head_off = skb_headroom(nskb) - skb_headroom(skb);
944 skb_headers_offset_update(nskb, head_off);
945
946 off = size;
947 len = skb->len - off;
948 for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
949 struct page *page;
950 u32 page_off;
951
952 size = min_t(u32, len, PAGE_SIZE);
953 truesize = size;
954
955 page = page_pool_dev_alloc(pool, &page_off, &truesize);
956 if (!page) {
957 consume_skb(nskb);
958 return -ENOMEM;
959 }
960
961 skb_add_rx_frag(nskb, i, page, page_off, size, truesize);
962 err = skb_copy_bits(skb, off, page_address(page) + page_off,
963 size);
964 if (err) {
965 consume_skb(nskb);
966 return err;
967 }
968
969 len -= size;
970 off += size;
971 }
972
973 consume_skb(skb);
974 *pskb = nskb;
975
976 return 0;
977 #else
978 return -EOPNOTSUPP;
979 #endif
980 }
981 EXPORT_SYMBOL(skb_pp_cow_data);
982
skb_cow_data_for_xdp(struct page_pool * pool,struct sk_buff ** pskb,const struct bpf_prog * prog)983 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
984 const struct bpf_prog *prog)
985 {
986 if (!prog->aux->xdp_has_frags)
987 return -EINVAL;
988
989 return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM);
990 }
991 EXPORT_SYMBOL(skb_cow_data_for_xdp);
992
993 #if IS_ENABLED(CONFIG_PAGE_POOL)
napi_pp_put_page(netmem_ref netmem)994 bool napi_pp_put_page(netmem_ref netmem)
995 {
996 netmem = netmem_compound_head(netmem);
997
998 /* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
999 * in order to preserve any existing bits, such as bit 0 for the
1000 * head page of compound page and bit 1 for pfmemalloc page, so
1001 * mask those bits for freeing side when doing below checking,
1002 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
1003 * to avoid recycling the pfmemalloc page.
1004 */
1005 if (unlikely(!is_pp_netmem(netmem)))
1006 return false;
1007
1008 page_pool_put_full_netmem(netmem_get_pp(netmem), netmem, false);
1009
1010 return true;
1011 }
1012 EXPORT_SYMBOL(napi_pp_put_page);
1013 #endif
1014
skb_pp_recycle(struct sk_buff * skb,void * data)1015 static bool skb_pp_recycle(struct sk_buff *skb, void *data)
1016 {
1017 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
1018 return false;
1019 return napi_pp_put_page(page_to_netmem(virt_to_page(data)));
1020 }
1021
1022 /**
1023 * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb
1024 * @skb: page pool aware skb
1025 *
1026 * Increase the fragment reference count (pp_ref_count) of a skb. This is
1027 * intended to gain fragment references only for page pool aware skbs,
1028 * i.e. when skb->pp_recycle is true, and not for fragments in a
1029 * non-pp-recycling skb. It has a fallback to increase references on normal
1030 * pages, as page pool aware skbs may also have normal page fragments.
1031 */
skb_pp_frag_ref(struct sk_buff * skb)1032 static int skb_pp_frag_ref(struct sk_buff *skb)
1033 {
1034 struct skb_shared_info *shinfo;
1035 netmem_ref head_netmem;
1036 int i;
1037
1038 if (!skb->pp_recycle)
1039 return -EINVAL;
1040
1041 shinfo = skb_shinfo(skb);
1042
1043 for (i = 0; i < shinfo->nr_frags; i++) {
1044 head_netmem = netmem_compound_head(shinfo->frags[i].netmem);
1045 if (likely(is_pp_netmem(head_netmem)))
1046 page_pool_ref_netmem(head_netmem);
1047 else
1048 page_ref_inc(netmem_to_page(head_netmem));
1049 }
1050 return 0;
1051 }
1052
skb_kfree_head(void * head,unsigned int end_offset)1053 static void skb_kfree_head(void *head, unsigned int end_offset)
1054 {
1055 if (end_offset == SKB_SMALL_HEAD_HEADROOM)
1056 kmem_cache_free(net_hotdata.skb_small_head_cache, head);
1057 else
1058 kfree(head);
1059 }
1060
skb_free_head(struct sk_buff * skb)1061 static void skb_free_head(struct sk_buff *skb)
1062 {
1063 unsigned char *head = skb->head;
1064
1065 if (skb->head_frag) {
1066 if (skb_pp_recycle(skb, head))
1067 return;
1068 skb_free_frag(head);
1069 } else {
1070 skb_kfree_head(head, skb_end_offset(skb));
1071 }
1072 }
1073
skb_release_data(struct sk_buff * skb,enum skb_drop_reason reason)1074 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
1075 {
1076 struct skb_shared_info *shinfo = skb_shinfo(skb);
1077 int i;
1078
1079 if (!skb_data_unref(skb, shinfo))
1080 goto exit;
1081
1082 if (skb_zcopy(skb)) {
1083 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1084
1085 skb_zcopy_clear(skb, true);
1086 if (skip_unref)
1087 goto free_head;
1088 }
1089
1090 for (i = 0; i < shinfo->nr_frags; i++)
1091 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
1092
1093 free_head:
1094 if (shinfo->frag_list)
1095 kfree_skb_list_reason(shinfo->frag_list, reason);
1096
1097 skb_free_head(skb);
1098 exit:
1099 /* When we clone an SKB we copy the reycling bit. The pp_recycle
1100 * bit is only set on the head though, so in order to avoid races
1101 * while trying to recycle fragments on __skb_frag_unref() we need
1102 * to make one SKB responsible for triggering the recycle path.
1103 * So disable the recycling bit if an SKB is cloned and we have
1104 * additional references to the fragmented part of the SKB.
1105 * Eventually the last SKB will have the recycling bit set and it's
1106 * dataref set to 0, which will trigger the recycling
1107 */
1108 skb->pp_recycle = 0;
1109 }
1110
1111 /*
1112 * Free an skbuff by memory without cleaning the state.
1113 */
kfree_skbmem(struct sk_buff * skb)1114 static void kfree_skbmem(struct sk_buff *skb)
1115 {
1116 struct sk_buff_fclones *fclones;
1117
1118 switch (skb->fclone) {
1119 case SKB_FCLONE_UNAVAILABLE:
1120 kmem_cache_free(net_hotdata.skbuff_cache, skb);
1121 return;
1122
1123 case SKB_FCLONE_ORIG:
1124 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1125
1126 /* We usually free the clone (TX completion) before original skb
1127 * This test would have no chance to be true for the clone,
1128 * while here, branch prediction will be good.
1129 */
1130 if (refcount_read(&fclones->fclone_ref) == 1)
1131 goto fastpath;
1132 break;
1133
1134 default: /* SKB_FCLONE_CLONE */
1135 fclones = container_of(skb, struct sk_buff_fclones, skb2);
1136 break;
1137 }
1138 if (!refcount_dec_and_test(&fclones->fclone_ref))
1139 return;
1140 fastpath:
1141 kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones);
1142 }
1143
skb_release_head_state(struct sk_buff * skb)1144 void skb_release_head_state(struct sk_buff *skb)
1145 {
1146 skb_dst_drop(skb);
1147 if (skb->destructor) {
1148 DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1149 skb->destructor(skb);
1150 }
1151 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1152 nf_conntrack_put(skb_nfct(skb));
1153 #endif
1154 skb_ext_put(skb);
1155 }
1156
1157 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb,enum skb_drop_reason reason)1158 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
1159 {
1160 skb_release_head_state(skb);
1161 if (likely(skb->head))
1162 skb_release_data(skb, reason);
1163 }
1164
1165 /**
1166 * __kfree_skb - private function
1167 * @skb: buffer
1168 *
1169 * Free an sk_buff. Release anything attached to the buffer.
1170 * Clean the state. This is an internal helper function. Users should
1171 * always call kfree_skb
1172 */
1173
__kfree_skb(struct sk_buff * skb)1174 void __kfree_skb(struct sk_buff *skb)
1175 {
1176 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1177 kfree_skbmem(skb);
1178 }
1179 EXPORT_SYMBOL(__kfree_skb);
1180
1181 static __always_inline
__sk_skb_reason_drop(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)1182 bool __sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb,
1183 enum skb_drop_reason reason)
1184 {
1185 if (unlikely(!skb_unref(skb)))
1186 return false;
1187
1188 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1189 u32_get_bits(reason,
1190 SKB_DROP_REASON_SUBSYS_MASK) >=
1191 SKB_DROP_REASON_SUBSYS_NUM);
1192
1193 if (reason == SKB_CONSUMED)
1194 trace_consume_skb(skb, __builtin_return_address(0));
1195 else
1196 trace_kfree_skb(skb, __builtin_return_address(0), reason, sk);
1197 return true;
1198 }
1199
1200 /**
1201 * sk_skb_reason_drop - free an sk_buff with special reason
1202 * @sk: the socket to receive @skb, or NULL if not applicable
1203 * @skb: buffer to free
1204 * @reason: reason why this skb is dropped
1205 *
1206 * Drop a reference to the buffer and free it if the usage count has hit
1207 * zero. Meanwhile, pass the receiving socket and drop reason to
1208 * 'kfree_skb' tracepoint.
1209 */
1210 void __fix_address
sk_skb_reason_drop(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)1211 sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason)
1212 {
1213 if (__sk_skb_reason_drop(sk, skb, reason))
1214 __kfree_skb(skb);
1215 }
1216 EXPORT_SYMBOL(sk_skb_reason_drop);
1217
1218 #define KFREE_SKB_BULK_SIZE 16
1219
1220 struct skb_free_array {
1221 unsigned int skb_count;
1222 void *skb_array[KFREE_SKB_BULK_SIZE];
1223 };
1224
kfree_skb_add_bulk(struct sk_buff * skb,struct skb_free_array * sa,enum skb_drop_reason reason)1225 static void kfree_skb_add_bulk(struct sk_buff *skb,
1226 struct skb_free_array *sa,
1227 enum skb_drop_reason reason)
1228 {
1229 /* if SKB is a clone, don't handle this case */
1230 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1231 __kfree_skb(skb);
1232 return;
1233 }
1234
1235 skb_release_all(skb, reason);
1236 sa->skb_array[sa->skb_count++] = skb;
1237
1238 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1239 kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE,
1240 sa->skb_array);
1241 sa->skb_count = 0;
1242 }
1243 }
1244
1245 void __fix_address
kfree_skb_list_reason(struct sk_buff * segs,enum skb_drop_reason reason)1246 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1247 {
1248 struct skb_free_array sa;
1249
1250 sa.skb_count = 0;
1251
1252 while (segs) {
1253 struct sk_buff *next = segs->next;
1254
1255 if (__sk_skb_reason_drop(NULL, segs, reason)) {
1256 skb_poison_list(segs);
1257 kfree_skb_add_bulk(segs, &sa, reason);
1258 }
1259
1260 segs = next;
1261 }
1262
1263 if (sa.skb_count)
1264 kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array);
1265 }
1266 EXPORT_SYMBOL(kfree_skb_list_reason);
1267
1268 /* Dump skb information and contents.
1269 *
1270 * Must only be called from net_ratelimit()-ed paths.
1271 *
1272 * Dumps whole packets if full_pkt, only headers otherwise.
1273 */
skb_dump(const char * level,const struct sk_buff * skb,bool full_pkt)1274 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1275 {
1276 struct skb_shared_info *sh = skb_shinfo(skb);
1277 struct net_device *dev = skb->dev;
1278 struct sock *sk = skb->sk;
1279 struct sk_buff *list_skb;
1280 bool has_mac, has_trans;
1281 int headroom, tailroom;
1282 int i, len, seg_len;
1283
1284 if (full_pkt)
1285 len = skb->len;
1286 else
1287 len = min_t(int, skb->len, MAX_HEADER + 128);
1288
1289 headroom = skb_headroom(skb);
1290 tailroom = skb_tailroom(skb);
1291
1292 has_mac = skb_mac_header_was_set(skb);
1293 has_trans = skb_transport_header_was_set(skb);
1294
1295 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1296 "mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n"
1297 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1298 "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1299 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n"
1300 "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n"
1301 "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n",
1302 level, skb->len, headroom, skb_headlen(skb), tailroom,
1303 has_mac ? skb->mac_header : -1,
1304 has_mac ? skb_mac_header_len(skb) : -1,
1305 skb->mac_len,
1306 skb->network_header,
1307 has_trans ? skb_network_header_len(skb) : -1,
1308 has_trans ? skb->transport_header : -1,
1309 sh->tx_flags, sh->nr_frags,
1310 sh->gso_size, sh->gso_type, sh->gso_segs,
1311 skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed,
1312 skb->csum_complete_sw, skb->csum_valid, skb->csum_level,
1313 skb->hash, skb->sw_hash, skb->l4_hash,
1314 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif,
1315 skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all,
1316 skb->encapsulation, skb->inner_protocol, skb->inner_mac_header,
1317 skb->inner_network_header, skb->inner_transport_header);
1318
1319 if (dev)
1320 printk("%sdev name=%s feat=%pNF\n",
1321 level, dev->name, &dev->features);
1322 if (sk)
1323 printk("%ssk family=%hu type=%u proto=%u\n",
1324 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1325
1326 if (full_pkt && headroom)
1327 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1328 16, 1, skb->head, headroom, false);
1329
1330 seg_len = min_t(int, skb_headlen(skb), len);
1331 if (seg_len)
1332 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
1333 16, 1, skb->data, seg_len, false);
1334 len -= seg_len;
1335
1336 if (full_pkt && tailroom)
1337 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1338 16, 1, skb_tail_pointer(skb), tailroom, false);
1339
1340 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1341 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1342 u32 p_off, p_len, copied;
1343 struct page *p;
1344 u8 *vaddr;
1345
1346 if (skb_frag_is_net_iov(frag)) {
1347 printk("%sskb frag %d: not readable\n", level, i);
1348 len -= skb_frag_size(frag);
1349 if (!len)
1350 break;
1351 continue;
1352 }
1353
1354 skb_frag_foreach_page(frag, skb_frag_off(frag),
1355 skb_frag_size(frag), p, p_off, p_len,
1356 copied) {
1357 seg_len = min_t(int, p_len, len);
1358 vaddr = kmap_atomic(p);
1359 print_hex_dump(level, "skb frag: ",
1360 DUMP_PREFIX_OFFSET,
1361 16, 1, vaddr + p_off, seg_len, false);
1362 kunmap_atomic(vaddr);
1363 len -= seg_len;
1364 if (!len)
1365 break;
1366 }
1367 }
1368
1369 if (full_pkt && skb_has_frag_list(skb)) {
1370 printk("skb fraglist:\n");
1371 skb_walk_frags(skb, list_skb)
1372 skb_dump(level, list_skb, true);
1373 }
1374 }
1375 EXPORT_SYMBOL(skb_dump);
1376
1377 /**
1378 * skb_tx_error - report an sk_buff xmit error
1379 * @skb: buffer that triggered an error
1380 *
1381 * Report xmit error if a device callback is tracking this skb.
1382 * skb must be freed afterwards.
1383 */
skb_tx_error(struct sk_buff * skb)1384 void skb_tx_error(struct sk_buff *skb)
1385 {
1386 if (skb) {
1387 skb_zcopy_downgrade_managed(skb);
1388 skb_zcopy_clear(skb, true);
1389 }
1390 }
1391 EXPORT_SYMBOL(skb_tx_error);
1392
1393 #ifdef CONFIG_TRACEPOINTS
1394 /**
1395 * consume_skb - free an skbuff
1396 * @skb: buffer to free
1397 *
1398 * Drop a ref to the buffer and free it if the usage count has hit zero
1399 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
1400 * is being dropped after a failure and notes that
1401 */
consume_skb(struct sk_buff * skb)1402 void consume_skb(struct sk_buff *skb)
1403 {
1404 if (!skb_unref(skb))
1405 return;
1406
1407 trace_consume_skb(skb, __builtin_return_address(0));
1408 __kfree_skb(skb);
1409 }
1410 EXPORT_SYMBOL(consume_skb);
1411 #endif
1412
1413 /**
1414 * __consume_stateless_skb - free an skbuff, assuming it is stateless
1415 * @skb: buffer to free
1416 *
1417 * Alike consume_skb(), but this variant assumes that this is the last
1418 * skb reference and all the head states have been already dropped
1419 */
__consume_stateless_skb(struct sk_buff * skb)1420 void __consume_stateless_skb(struct sk_buff *skb)
1421 {
1422 trace_consume_skb(skb, __builtin_return_address(0));
1423 skb_release_data(skb, SKB_CONSUMED);
1424 kfree_skbmem(skb);
1425 }
1426
napi_skb_cache_put(struct sk_buff * skb)1427 static void napi_skb_cache_put(struct sk_buff *skb)
1428 {
1429 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1430 u32 i;
1431
1432 if (!kasan_mempool_poison_object(skb))
1433 return;
1434
1435 local_lock_nested_bh(&napi_alloc_cache.bh_lock);
1436 nc->skb_cache[nc->skb_count++] = skb;
1437
1438 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1439 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1440 kasan_mempool_unpoison_object(nc->skb_cache[i],
1441 kmem_cache_size(net_hotdata.skbuff_cache));
1442
1443 kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF,
1444 nc->skb_cache + NAPI_SKB_CACHE_HALF);
1445 nc->skb_count = NAPI_SKB_CACHE_HALF;
1446 }
1447 local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
1448 }
1449
__napi_kfree_skb(struct sk_buff * skb,enum skb_drop_reason reason)1450 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1451 {
1452 skb_release_all(skb, reason);
1453 napi_skb_cache_put(skb);
1454 }
1455
napi_skb_free_stolen_head(struct sk_buff * skb)1456 void napi_skb_free_stolen_head(struct sk_buff *skb)
1457 {
1458 if (unlikely(skb->slow_gro)) {
1459 nf_reset_ct(skb);
1460 skb_dst_drop(skb);
1461 skb_ext_put(skb);
1462 skb_orphan(skb);
1463 skb->slow_gro = 0;
1464 }
1465 napi_skb_cache_put(skb);
1466 }
1467
napi_consume_skb(struct sk_buff * skb,int budget)1468 void napi_consume_skb(struct sk_buff *skb, int budget)
1469 {
1470 /* Zero budget indicate non-NAPI context called us, like netpoll */
1471 if (unlikely(!budget)) {
1472 dev_consume_skb_any(skb);
1473 return;
1474 }
1475
1476 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1477
1478 if (!skb_unref(skb))
1479 return;
1480
1481 /* if reaching here SKB is ready to free */
1482 trace_consume_skb(skb, __builtin_return_address(0));
1483
1484 /* if SKB is a clone, don't handle this case */
1485 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1486 __kfree_skb(skb);
1487 return;
1488 }
1489
1490 skb_release_all(skb, SKB_CONSUMED);
1491 napi_skb_cache_put(skb);
1492 }
1493 EXPORT_SYMBOL(napi_consume_skb);
1494
1495 /* Make sure a field is contained by headers group */
1496 #define CHECK_SKB_FIELD(field) \
1497 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \
1498 offsetof(struct sk_buff, headers.field)); \
1499
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)1500 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1501 {
1502 new->tstamp = old->tstamp;
1503 /* We do not copy old->sk */
1504 new->dev = old->dev;
1505 memcpy(new->cb, old->cb, sizeof(old->cb));
1506 skb_dst_copy(new, old);
1507 __skb_ext_copy(new, old);
1508 __nf_copy(new, old, false);
1509
1510 /* Note : this field could be in the headers group.
1511 * It is not yet because we do not want to have a 16 bit hole
1512 */
1513 new->queue_mapping = old->queue_mapping;
1514
1515 memcpy(&new->headers, &old->headers, sizeof(new->headers));
1516 CHECK_SKB_FIELD(protocol);
1517 CHECK_SKB_FIELD(csum);
1518 CHECK_SKB_FIELD(hash);
1519 CHECK_SKB_FIELD(priority);
1520 CHECK_SKB_FIELD(skb_iif);
1521 CHECK_SKB_FIELD(vlan_proto);
1522 CHECK_SKB_FIELD(vlan_tci);
1523 CHECK_SKB_FIELD(transport_header);
1524 CHECK_SKB_FIELD(network_header);
1525 CHECK_SKB_FIELD(mac_header);
1526 CHECK_SKB_FIELD(inner_protocol);
1527 CHECK_SKB_FIELD(inner_transport_header);
1528 CHECK_SKB_FIELD(inner_network_header);
1529 CHECK_SKB_FIELD(inner_mac_header);
1530 CHECK_SKB_FIELD(mark);
1531 #ifdef CONFIG_NETWORK_SECMARK
1532 CHECK_SKB_FIELD(secmark);
1533 #endif
1534 #ifdef CONFIG_NET_RX_BUSY_POLL
1535 CHECK_SKB_FIELD(napi_id);
1536 #endif
1537 CHECK_SKB_FIELD(alloc_cpu);
1538 #ifdef CONFIG_XPS
1539 CHECK_SKB_FIELD(sender_cpu);
1540 #endif
1541 #ifdef CONFIG_NET_SCHED
1542 CHECK_SKB_FIELD(tc_index);
1543 #endif
1544
1545 }
1546
1547 /*
1548 * You should not add any new code to this function. Add it to
1549 * __copy_skb_header above instead.
1550 */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)1551 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1552 {
1553 #define C(x) n->x = skb->x
1554
1555 n->next = n->prev = NULL;
1556 n->sk = NULL;
1557 __copy_skb_header(n, skb);
1558
1559 C(len);
1560 C(data_len);
1561 C(mac_len);
1562 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1563 n->cloned = 1;
1564 n->nohdr = 0;
1565 n->peeked = 0;
1566 C(pfmemalloc);
1567 C(pp_recycle);
1568 n->destructor = NULL;
1569 C(tail);
1570 C(end);
1571 C(head);
1572 C(head_frag);
1573 C(data);
1574 C(truesize);
1575 refcount_set(&n->users, 1);
1576
1577 atomic_inc(&(skb_shinfo(skb)->dataref));
1578 skb->cloned = 1;
1579
1580 return n;
1581 #undef C
1582 }
1583
1584 /**
1585 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1586 * @first: first sk_buff of the msg
1587 */
alloc_skb_for_msg(struct sk_buff * first)1588 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1589 {
1590 struct sk_buff *n;
1591
1592 n = alloc_skb(0, GFP_ATOMIC);
1593 if (!n)
1594 return NULL;
1595
1596 n->len = first->len;
1597 n->data_len = first->len;
1598 n->truesize = first->truesize;
1599
1600 skb_shinfo(n)->frag_list = first;
1601
1602 __copy_skb_header(n, first);
1603 n->destructor = NULL;
1604
1605 return n;
1606 }
1607 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1608
1609 /**
1610 * skb_morph - morph one skb into another
1611 * @dst: the skb to receive the contents
1612 * @src: the skb to supply the contents
1613 *
1614 * This is identical to skb_clone except that the target skb is
1615 * supplied by the user.
1616 *
1617 * The target skb is returned upon exit.
1618 */
skb_morph(struct sk_buff * dst,struct sk_buff * src)1619 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1620 {
1621 skb_release_all(dst, SKB_CONSUMED);
1622 return __skb_clone(dst, src);
1623 }
1624 EXPORT_SYMBOL_GPL(skb_morph);
1625
mm_account_pinned_pages(struct mmpin * mmp,size_t size)1626 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1627 {
1628 unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1629 struct user_struct *user;
1630
1631 if (capable(CAP_IPC_LOCK) || !size)
1632 return 0;
1633
1634 rlim = rlimit(RLIMIT_MEMLOCK);
1635 if (rlim == RLIM_INFINITY)
1636 return 0;
1637
1638 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1639 max_pg = rlim >> PAGE_SHIFT;
1640 user = mmp->user ? : current_user();
1641
1642 old_pg = atomic_long_read(&user->locked_vm);
1643 do {
1644 new_pg = old_pg + num_pg;
1645 if (new_pg > max_pg)
1646 return -ENOBUFS;
1647 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1648
1649 if (!mmp->user) {
1650 mmp->user = get_uid(user);
1651 mmp->num_pg = num_pg;
1652 } else {
1653 mmp->num_pg += num_pg;
1654 }
1655
1656 return 0;
1657 }
1658 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1659
mm_unaccount_pinned_pages(struct mmpin * mmp)1660 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1661 {
1662 if (mmp->user) {
1663 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1664 free_uid(mmp->user);
1665 }
1666 }
1667 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1668
msg_zerocopy_alloc(struct sock * sk,size_t size)1669 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1670 {
1671 struct ubuf_info_msgzc *uarg;
1672 struct sk_buff *skb;
1673
1674 WARN_ON_ONCE(!in_task());
1675
1676 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1677 if (!skb)
1678 return NULL;
1679
1680 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1681 uarg = (void *)skb->cb;
1682 uarg->mmp.user = NULL;
1683
1684 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1685 kfree_skb(skb);
1686 return NULL;
1687 }
1688
1689 uarg->ubuf.ops = &msg_zerocopy_ubuf_ops;
1690 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1691 uarg->len = 1;
1692 uarg->bytelen = size;
1693 uarg->zerocopy = 1;
1694 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1695 refcount_set(&uarg->ubuf.refcnt, 1);
1696 sock_hold(sk);
1697
1698 return &uarg->ubuf;
1699 }
1700
skb_from_uarg(struct ubuf_info_msgzc * uarg)1701 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1702 {
1703 return container_of((void *)uarg, struct sk_buff, cb);
1704 }
1705
msg_zerocopy_realloc(struct sock * sk,size_t size,struct ubuf_info * uarg)1706 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1707 struct ubuf_info *uarg)
1708 {
1709 if (uarg) {
1710 struct ubuf_info_msgzc *uarg_zc;
1711 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1712 u32 bytelen, next;
1713
1714 /* there might be non MSG_ZEROCOPY users */
1715 if (uarg->ops != &msg_zerocopy_ubuf_ops)
1716 return NULL;
1717
1718 /* realloc only when socket is locked (TCP, UDP cork),
1719 * so uarg->len and sk_zckey access is serialized
1720 */
1721 if (!sock_owned_by_user(sk)) {
1722 WARN_ON_ONCE(1);
1723 return NULL;
1724 }
1725
1726 uarg_zc = uarg_to_msgzc(uarg);
1727 bytelen = uarg_zc->bytelen + size;
1728 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1729 /* TCP can create new skb to attach new uarg */
1730 if (sk->sk_type == SOCK_STREAM)
1731 goto new_alloc;
1732 return NULL;
1733 }
1734
1735 next = (u32)atomic_read(&sk->sk_zckey);
1736 if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1737 if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1738 return NULL;
1739 uarg_zc->len++;
1740 uarg_zc->bytelen = bytelen;
1741 atomic_set(&sk->sk_zckey, ++next);
1742
1743 /* no extra ref when appending to datagram (MSG_MORE) */
1744 if (sk->sk_type == SOCK_STREAM)
1745 net_zcopy_get(uarg);
1746
1747 return uarg;
1748 }
1749 }
1750
1751 new_alloc:
1752 return msg_zerocopy_alloc(sk, size);
1753 }
1754 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1755
skb_zerocopy_notify_extend(struct sk_buff * skb,u32 lo,u16 len)1756 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1757 {
1758 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1759 u32 old_lo, old_hi;
1760 u64 sum_len;
1761
1762 old_lo = serr->ee.ee_info;
1763 old_hi = serr->ee.ee_data;
1764 sum_len = old_hi - old_lo + 1ULL + len;
1765
1766 if (sum_len >= (1ULL << 32))
1767 return false;
1768
1769 if (lo != old_hi + 1)
1770 return false;
1771
1772 serr->ee.ee_data += len;
1773 return true;
1774 }
1775
__msg_zerocopy_callback(struct ubuf_info_msgzc * uarg)1776 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1777 {
1778 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1779 struct sock_exterr_skb *serr;
1780 struct sock *sk = skb->sk;
1781 struct sk_buff_head *q;
1782 unsigned long flags;
1783 bool is_zerocopy;
1784 u32 lo, hi;
1785 u16 len;
1786
1787 mm_unaccount_pinned_pages(&uarg->mmp);
1788
1789 /* if !len, there was only 1 call, and it was aborted
1790 * so do not queue a completion notification
1791 */
1792 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1793 goto release;
1794
1795 len = uarg->len;
1796 lo = uarg->id;
1797 hi = uarg->id + len - 1;
1798 is_zerocopy = uarg->zerocopy;
1799
1800 serr = SKB_EXT_ERR(skb);
1801 memset(serr, 0, sizeof(*serr));
1802 serr->ee.ee_errno = 0;
1803 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1804 serr->ee.ee_data = hi;
1805 serr->ee.ee_info = lo;
1806 if (!is_zerocopy)
1807 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1808
1809 q = &sk->sk_error_queue;
1810 spin_lock_irqsave(&q->lock, flags);
1811 tail = skb_peek_tail(q);
1812 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1813 !skb_zerocopy_notify_extend(tail, lo, len)) {
1814 __skb_queue_tail(q, skb);
1815 skb = NULL;
1816 }
1817 spin_unlock_irqrestore(&q->lock, flags);
1818
1819 sk_error_report(sk);
1820
1821 release:
1822 consume_skb(skb);
1823 sock_put(sk);
1824 }
1825
msg_zerocopy_complete(struct sk_buff * skb,struct ubuf_info * uarg,bool success)1826 static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg,
1827 bool success)
1828 {
1829 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1830
1831 uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1832
1833 if (refcount_dec_and_test(&uarg->refcnt))
1834 __msg_zerocopy_callback(uarg_zc);
1835 }
1836
msg_zerocopy_put_abort(struct ubuf_info * uarg,bool have_uref)1837 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1838 {
1839 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1840
1841 atomic_dec(&sk->sk_zckey);
1842 uarg_to_msgzc(uarg)->len--;
1843
1844 if (have_uref)
1845 msg_zerocopy_complete(NULL, uarg, true);
1846 }
1847 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1848
1849 const struct ubuf_info_ops msg_zerocopy_ubuf_ops = {
1850 .complete = msg_zerocopy_complete,
1851 };
1852 EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops);
1853
skb_zerocopy_iter_stream(struct sock * sk,struct sk_buff * skb,struct msghdr * msg,int len,struct ubuf_info * uarg)1854 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1855 struct msghdr *msg, int len,
1856 struct ubuf_info *uarg)
1857 {
1858 int err, orig_len = skb->len;
1859
1860 if (uarg->ops->link_skb) {
1861 err = uarg->ops->link_skb(skb, uarg);
1862 if (err)
1863 return err;
1864 } else {
1865 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1866
1867 /* An skb can only point to one uarg. This edge case happens
1868 * when TCP appends to an skb, but zerocopy_realloc triggered
1869 * a new alloc.
1870 */
1871 if (orig_uarg && uarg != orig_uarg)
1872 return -EEXIST;
1873 }
1874
1875 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1876 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1877 struct sock *save_sk = skb->sk;
1878
1879 /* Streams do not free skb on error. Reset to prev state. */
1880 iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1881 skb->sk = sk;
1882 ___pskb_trim(skb, orig_len);
1883 skb->sk = save_sk;
1884 return err;
1885 }
1886
1887 skb_zcopy_set(skb, uarg, NULL);
1888 return skb->len - orig_len;
1889 }
1890 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1891
__skb_zcopy_downgrade_managed(struct sk_buff * skb)1892 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1893 {
1894 int i;
1895
1896 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1897 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1898 skb_frag_ref(skb, i);
1899 }
1900 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1901
skb_zerocopy_clone(struct sk_buff * nskb,struct sk_buff * orig,gfp_t gfp_mask)1902 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1903 gfp_t gfp_mask)
1904 {
1905 if (skb_zcopy(orig)) {
1906 if (skb_zcopy(nskb)) {
1907 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1908 if (!gfp_mask) {
1909 WARN_ON_ONCE(1);
1910 return -ENOMEM;
1911 }
1912 if (skb_uarg(nskb) == skb_uarg(orig))
1913 return 0;
1914 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1915 return -EIO;
1916 }
1917 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1918 }
1919 return 0;
1920 }
1921
1922 /**
1923 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1924 * @skb: the skb to modify
1925 * @gfp_mask: allocation priority
1926 *
1927 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1928 * It will copy all frags into kernel and drop the reference
1929 * to userspace pages.
1930 *
1931 * If this function is called from an interrupt gfp_mask() must be
1932 * %GFP_ATOMIC.
1933 *
1934 * Returns 0 on success or a negative error code on failure
1935 * to allocate kernel memory to copy to.
1936 */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)1937 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1938 {
1939 int num_frags = skb_shinfo(skb)->nr_frags;
1940 struct page *page, *head = NULL;
1941 int i, order, psize, new_frags;
1942 u32 d_off;
1943
1944 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1945 return -EINVAL;
1946
1947 if (!skb_frags_readable(skb))
1948 return -EFAULT;
1949
1950 if (!num_frags)
1951 goto release;
1952
1953 /* We might have to allocate high order pages, so compute what minimum
1954 * page order is needed.
1955 */
1956 order = 0;
1957 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1958 order++;
1959 psize = (PAGE_SIZE << order);
1960
1961 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1962 for (i = 0; i < new_frags; i++) {
1963 page = alloc_pages(gfp_mask | __GFP_COMP, order);
1964 if (!page) {
1965 while (head) {
1966 struct page *next = (struct page *)page_private(head);
1967 put_page(head);
1968 head = next;
1969 }
1970 return -ENOMEM;
1971 }
1972 set_page_private(page, (unsigned long)head);
1973 head = page;
1974 }
1975
1976 page = head;
1977 d_off = 0;
1978 for (i = 0; i < num_frags; i++) {
1979 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1980 u32 p_off, p_len, copied;
1981 struct page *p;
1982 u8 *vaddr;
1983
1984 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1985 p, p_off, p_len, copied) {
1986 u32 copy, done = 0;
1987 vaddr = kmap_atomic(p);
1988
1989 while (done < p_len) {
1990 if (d_off == psize) {
1991 d_off = 0;
1992 page = (struct page *)page_private(page);
1993 }
1994 copy = min_t(u32, psize - d_off, p_len - done);
1995 memcpy(page_address(page) + d_off,
1996 vaddr + p_off + done, copy);
1997 done += copy;
1998 d_off += copy;
1999 }
2000 kunmap_atomic(vaddr);
2001 }
2002 }
2003
2004 /* skb frags release userspace buffers */
2005 for (i = 0; i < num_frags; i++)
2006 skb_frag_unref(skb, i);
2007
2008 /* skb frags point to kernel buffers */
2009 for (i = 0; i < new_frags - 1; i++) {
2010 __skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize);
2011 head = (struct page *)page_private(head);
2012 }
2013 __skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0,
2014 d_off);
2015 skb_shinfo(skb)->nr_frags = new_frags;
2016
2017 release:
2018 skb_zcopy_clear(skb, false);
2019 return 0;
2020 }
2021 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
2022
2023 /**
2024 * skb_clone - duplicate an sk_buff
2025 * @skb: buffer to clone
2026 * @gfp_mask: allocation priority
2027 *
2028 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
2029 * copies share the same packet data but not structure. The new
2030 * buffer has a reference count of 1. If the allocation fails the
2031 * function returns %NULL otherwise the new buffer is returned.
2032 *
2033 * If this function is called from an interrupt gfp_mask() must be
2034 * %GFP_ATOMIC.
2035 */
2036
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)2037 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
2038 {
2039 struct sk_buff_fclones *fclones = container_of(skb,
2040 struct sk_buff_fclones,
2041 skb1);
2042 struct sk_buff *n;
2043
2044 if (skb_orphan_frags(skb, gfp_mask))
2045 return NULL;
2046
2047 if (skb->fclone == SKB_FCLONE_ORIG &&
2048 refcount_read(&fclones->fclone_ref) == 1) {
2049 n = &fclones->skb2;
2050 refcount_set(&fclones->fclone_ref, 2);
2051 n->fclone = SKB_FCLONE_CLONE;
2052 } else {
2053 if (skb_pfmemalloc(skb))
2054 gfp_mask |= __GFP_MEMALLOC;
2055
2056 n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask);
2057 if (!n)
2058 return NULL;
2059
2060 n->fclone = SKB_FCLONE_UNAVAILABLE;
2061 }
2062
2063 return __skb_clone(n, skb);
2064 }
2065 EXPORT_SYMBOL(skb_clone);
2066
skb_headers_offset_update(struct sk_buff * skb,int off)2067 void skb_headers_offset_update(struct sk_buff *skb, int off)
2068 {
2069 /* Only adjust this if it actually is csum_start rather than csum */
2070 if (skb->ip_summed == CHECKSUM_PARTIAL)
2071 skb->csum_start += off;
2072 /* {transport,network,mac}_header and tail are relative to skb->head */
2073 skb->transport_header += off;
2074 skb->network_header += off;
2075 if (skb_mac_header_was_set(skb))
2076 skb->mac_header += off;
2077 skb->inner_transport_header += off;
2078 skb->inner_network_header += off;
2079 skb->inner_mac_header += off;
2080 }
2081 EXPORT_SYMBOL(skb_headers_offset_update);
2082
skb_copy_header(struct sk_buff * new,const struct sk_buff * old)2083 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
2084 {
2085 __copy_skb_header(new, old);
2086
2087 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
2088 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
2089 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
2090 }
2091 EXPORT_SYMBOL(skb_copy_header);
2092
skb_alloc_rx_flag(const struct sk_buff * skb)2093 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
2094 {
2095 if (skb_pfmemalloc(skb))
2096 return SKB_ALLOC_RX;
2097 return 0;
2098 }
2099
2100 /**
2101 * skb_copy - create private copy of an sk_buff
2102 * @skb: buffer to copy
2103 * @gfp_mask: allocation priority
2104 *
2105 * Make a copy of both an &sk_buff and its data. This is used when the
2106 * caller wishes to modify the data and needs a private copy of the
2107 * data to alter. Returns %NULL on failure or the pointer to the buffer
2108 * on success. The returned buffer has a reference count of 1.
2109 *
2110 * As by-product this function converts non-linear &sk_buff to linear
2111 * one, so that &sk_buff becomes completely private and caller is allowed
2112 * to modify all the data of returned buffer. This means that this
2113 * function is not recommended for use in circumstances when only
2114 * header is going to be modified. Use pskb_copy() instead.
2115 */
2116
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)2117 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2118 {
2119 struct sk_buff *n;
2120 unsigned int size;
2121 int headerlen;
2122
2123 if (!skb_frags_readable(skb))
2124 return NULL;
2125
2126 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2127 return NULL;
2128
2129 headerlen = skb_headroom(skb);
2130 size = skb_end_offset(skb) + skb->data_len;
2131 n = __alloc_skb(size, gfp_mask,
2132 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2133 if (!n)
2134 return NULL;
2135
2136 /* Set the data pointer */
2137 skb_reserve(n, headerlen);
2138 /* Set the tail pointer and length */
2139 skb_put(n, skb->len);
2140
2141 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2142
2143 skb_copy_header(n, skb);
2144 return n;
2145 }
2146 EXPORT_SYMBOL(skb_copy);
2147
2148 /**
2149 * __pskb_copy_fclone - create copy of an sk_buff with private head.
2150 * @skb: buffer to copy
2151 * @headroom: headroom of new skb
2152 * @gfp_mask: allocation priority
2153 * @fclone: if true allocate the copy of the skb from the fclone
2154 * cache instead of the head cache; it is recommended to set this
2155 * to true for the cases where the copy will likely be cloned
2156 *
2157 * Make a copy of both an &sk_buff and part of its data, located
2158 * in header. Fragmented data remain shared. This is used when
2159 * the caller wishes to modify only header of &sk_buff and needs
2160 * private copy of the header to alter. Returns %NULL on failure
2161 * or the pointer to the buffer on success.
2162 * The returned buffer has a reference count of 1.
2163 */
2164
__pskb_copy_fclone(struct sk_buff * skb,int headroom,gfp_t gfp_mask,bool fclone)2165 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2166 gfp_t gfp_mask, bool fclone)
2167 {
2168 unsigned int size = skb_headlen(skb) + headroom;
2169 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2170 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2171
2172 if (!n)
2173 goto out;
2174
2175 /* Set the data pointer */
2176 skb_reserve(n, headroom);
2177 /* Set the tail pointer and length */
2178 skb_put(n, skb_headlen(skb));
2179 /* Copy the bytes */
2180 skb_copy_from_linear_data(skb, n->data, n->len);
2181
2182 n->truesize += skb->data_len;
2183 n->data_len = skb->data_len;
2184 n->len = skb->len;
2185
2186 if (skb_shinfo(skb)->nr_frags) {
2187 int i;
2188
2189 if (skb_orphan_frags(skb, gfp_mask) ||
2190 skb_zerocopy_clone(n, skb, gfp_mask)) {
2191 kfree_skb(n);
2192 n = NULL;
2193 goto out;
2194 }
2195 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2196 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2197 skb_frag_ref(skb, i);
2198 }
2199 skb_shinfo(n)->nr_frags = i;
2200 }
2201
2202 if (skb_has_frag_list(skb)) {
2203 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2204 skb_clone_fraglist(n);
2205 }
2206
2207 skb_copy_header(n, skb);
2208 out:
2209 return n;
2210 }
2211 EXPORT_SYMBOL(__pskb_copy_fclone);
2212
2213 /**
2214 * pskb_expand_head - reallocate header of &sk_buff
2215 * @skb: buffer to reallocate
2216 * @nhead: room to add at head
2217 * @ntail: room to add at tail
2218 * @gfp_mask: allocation priority
2219 *
2220 * Expands (or creates identical copy, if @nhead and @ntail are zero)
2221 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2222 * reference count of 1. Returns zero in the case of success or error,
2223 * if expansion failed. In the last case, &sk_buff is not changed.
2224 *
2225 * All the pointers pointing into skb header may change and must be
2226 * reloaded after call to this function.
2227 */
2228
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)2229 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2230 gfp_t gfp_mask)
2231 {
2232 unsigned int osize = skb_end_offset(skb);
2233 unsigned int size = osize + nhead + ntail;
2234 long off;
2235 u8 *data;
2236 int i;
2237
2238 BUG_ON(nhead < 0);
2239
2240 BUG_ON(skb_shared(skb));
2241
2242 skb_zcopy_downgrade_managed(skb);
2243
2244 if (skb_pfmemalloc(skb))
2245 gfp_mask |= __GFP_MEMALLOC;
2246
2247 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2248 if (!data)
2249 goto nodata;
2250 size = SKB_WITH_OVERHEAD(size);
2251
2252 /* Copy only real data... and, alas, header. This should be
2253 * optimized for the cases when header is void.
2254 */
2255 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2256
2257 memcpy((struct skb_shared_info *)(data + size),
2258 skb_shinfo(skb),
2259 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2260
2261 /*
2262 * if shinfo is shared we must drop the old head gracefully, but if it
2263 * is not we can just drop the old head and let the existing refcount
2264 * be since all we did is relocate the values
2265 */
2266 if (skb_cloned(skb)) {
2267 if (skb_orphan_frags(skb, gfp_mask))
2268 goto nofrags;
2269 if (skb_zcopy(skb))
2270 refcount_inc(&skb_uarg(skb)->refcnt);
2271 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2272 skb_frag_ref(skb, i);
2273
2274 if (skb_has_frag_list(skb))
2275 skb_clone_fraglist(skb);
2276
2277 skb_release_data(skb, SKB_CONSUMED);
2278 } else {
2279 skb_free_head(skb);
2280 }
2281 off = (data + nhead) - skb->head;
2282
2283 skb->head = data;
2284 skb->head_frag = 0;
2285 skb->data += off;
2286
2287 skb_set_end_offset(skb, size);
2288 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2289 off = nhead;
2290 #endif
2291 skb->tail += off;
2292 skb_headers_offset_update(skb, nhead);
2293 skb->cloned = 0;
2294 skb->hdr_len = 0;
2295 skb->nohdr = 0;
2296 atomic_set(&skb_shinfo(skb)->dataref, 1);
2297
2298 skb_metadata_clear(skb);
2299
2300 /* It is not generally safe to change skb->truesize.
2301 * For the moment, we really care of rx path, or
2302 * when skb is orphaned (not attached to a socket).
2303 */
2304 if (!skb->sk || skb->destructor == sock_edemux)
2305 skb->truesize += size - osize;
2306
2307 return 0;
2308
2309 nofrags:
2310 skb_kfree_head(data, size);
2311 nodata:
2312 return -ENOMEM;
2313 }
2314 EXPORT_SYMBOL(pskb_expand_head);
2315
2316 /* Make private copy of skb with writable head and some headroom */
2317
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)2318 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2319 {
2320 struct sk_buff *skb2;
2321 int delta = headroom - skb_headroom(skb);
2322
2323 if (delta <= 0)
2324 skb2 = pskb_copy(skb, GFP_ATOMIC);
2325 else {
2326 skb2 = skb_clone(skb, GFP_ATOMIC);
2327 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2328 GFP_ATOMIC)) {
2329 kfree_skb(skb2);
2330 skb2 = NULL;
2331 }
2332 }
2333 return skb2;
2334 }
2335 EXPORT_SYMBOL(skb_realloc_headroom);
2336
2337 /* Note: We plan to rework this in linux-6.4 */
__skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)2338 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2339 {
2340 unsigned int saved_end_offset, saved_truesize;
2341 struct skb_shared_info *shinfo;
2342 int res;
2343
2344 saved_end_offset = skb_end_offset(skb);
2345 saved_truesize = skb->truesize;
2346
2347 res = pskb_expand_head(skb, 0, 0, pri);
2348 if (res)
2349 return res;
2350
2351 skb->truesize = saved_truesize;
2352
2353 if (likely(skb_end_offset(skb) == saved_end_offset))
2354 return 0;
2355
2356 /* We can not change skb->end if the original or new value
2357 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2358 */
2359 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2360 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2361 /* We think this path should not be taken.
2362 * Add a temporary trace to warn us just in case.
2363 */
2364 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2365 saved_end_offset, skb_end_offset(skb));
2366 WARN_ON_ONCE(1);
2367 return 0;
2368 }
2369
2370 shinfo = skb_shinfo(skb);
2371
2372 /* We are about to change back skb->end,
2373 * we need to move skb_shinfo() to its new location.
2374 */
2375 memmove(skb->head + saved_end_offset,
2376 shinfo,
2377 offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2378
2379 skb_set_end_offset(skb, saved_end_offset);
2380
2381 return 0;
2382 }
2383
2384 /**
2385 * skb_expand_head - reallocate header of &sk_buff
2386 * @skb: buffer to reallocate
2387 * @headroom: needed headroom
2388 *
2389 * Unlike skb_realloc_headroom, this one does not allocate a new skb
2390 * if possible; copies skb->sk to new skb as needed
2391 * and frees original skb in case of failures.
2392 *
2393 * It expect increased headroom and generates warning otherwise.
2394 */
2395
skb_expand_head(struct sk_buff * skb,unsigned int headroom)2396 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2397 {
2398 int delta = headroom - skb_headroom(skb);
2399 int osize = skb_end_offset(skb);
2400 struct sock *sk = skb->sk;
2401
2402 if (WARN_ONCE(delta <= 0,
2403 "%s is expecting an increase in the headroom", __func__))
2404 return skb;
2405
2406 delta = SKB_DATA_ALIGN(delta);
2407 /* pskb_expand_head() might crash, if skb is shared. */
2408 if (skb_shared(skb) || !is_skb_wmem(skb)) {
2409 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2410
2411 if (unlikely(!nskb))
2412 goto fail;
2413
2414 if (sk)
2415 skb_set_owner_w(nskb, sk);
2416 consume_skb(skb);
2417 skb = nskb;
2418 }
2419 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2420 goto fail;
2421
2422 if (sk && is_skb_wmem(skb)) {
2423 delta = skb_end_offset(skb) - osize;
2424 refcount_add(delta, &sk->sk_wmem_alloc);
2425 skb->truesize += delta;
2426 }
2427 return skb;
2428
2429 fail:
2430 kfree_skb(skb);
2431 return NULL;
2432 }
2433 EXPORT_SYMBOL(skb_expand_head);
2434
2435 /**
2436 * skb_copy_expand - copy and expand sk_buff
2437 * @skb: buffer to copy
2438 * @newheadroom: new free bytes at head
2439 * @newtailroom: new free bytes at tail
2440 * @gfp_mask: allocation priority
2441 *
2442 * Make a copy of both an &sk_buff and its data and while doing so
2443 * allocate additional space.
2444 *
2445 * This is used when the caller wishes to modify the data and needs a
2446 * private copy of the data to alter as well as more space for new fields.
2447 * Returns %NULL on failure or the pointer to the buffer
2448 * on success. The returned buffer has a reference count of 1.
2449 *
2450 * You must pass %GFP_ATOMIC as the allocation priority if this function
2451 * is called from an interrupt.
2452 */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)2453 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2454 int newheadroom, int newtailroom,
2455 gfp_t gfp_mask)
2456 {
2457 /*
2458 * Allocate the copy buffer
2459 */
2460 int head_copy_len, head_copy_off;
2461 struct sk_buff *n;
2462 int oldheadroom;
2463
2464 if (!skb_frags_readable(skb))
2465 return NULL;
2466
2467 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2468 return NULL;
2469
2470 oldheadroom = skb_headroom(skb);
2471 n = __alloc_skb(newheadroom + skb->len + newtailroom,
2472 gfp_mask, skb_alloc_rx_flag(skb),
2473 NUMA_NO_NODE);
2474 if (!n)
2475 return NULL;
2476
2477 skb_reserve(n, newheadroom);
2478
2479 /* Set the tail pointer and length */
2480 skb_put(n, skb->len);
2481
2482 head_copy_len = oldheadroom;
2483 head_copy_off = 0;
2484 if (newheadroom <= head_copy_len)
2485 head_copy_len = newheadroom;
2486 else
2487 head_copy_off = newheadroom - head_copy_len;
2488
2489 /* Copy the linear header and data. */
2490 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2491 skb->len + head_copy_len));
2492
2493 skb_copy_header(n, skb);
2494
2495 skb_headers_offset_update(n, newheadroom - oldheadroom);
2496
2497 return n;
2498 }
2499 EXPORT_SYMBOL(skb_copy_expand);
2500
2501 /**
2502 * __skb_pad - zero pad the tail of an skb
2503 * @skb: buffer to pad
2504 * @pad: space to pad
2505 * @free_on_error: free buffer on error
2506 *
2507 * Ensure that a buffer is followed by a padding area that is zero
2508 * filled. Used by network drivers which may DMA or transfer data
2509 * beyond the buffer end onto the wire.
2510 *
2511 * May return error in out of memory cases. The skb is freed on error
2512 * if @free_on_error is true.
2513 */
2514
__skb_pad(struct sk_buff * skb,int pad,bool free_on_error)2515 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2516 {
2517 int err;
2518 int ntail;
2519
2520 /* If the skbuff is non linear tailroom is always zero.. */
2521 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2522 memset(skb->data+skb->len, 0, pad);
2523 return 0;
2524 }
2525
2526 ntail = skb->data_len + pad - (skb->end - skb->tail);
2527 if (likely(skb_cloned(skb) || ntail > 0)) {
2528 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2529 if (unlikely(err))
2530 goto free_skb;
2531 }
2532
2533 /* FIXME: The use of this function with non-linear skb's really needs
2534 * to be audited.
2535 */
2536 err = skb_linearize(skb);
2537 if (unlikely(err))
2538 goto free_skb;
2539
2540 memset(skb->data + skb->len, 0, pad);
2541 return 0;
2542
2543 free_skb:
2544 if (free_on_error)
2545 kfree_skb(skb);
2546 return err;
2547 }
2548 EXPORT_SYMBOL(__skb_pad);
2549
2550 /**
2551 * pskb_put - add data to the tail of a potentially fragmented buffer
2552 * @skb: start of the buffer to use
2553 * @tail: tail fragment of the buffer to use
2554 * @len: amount of data to add
2555 *
2556 * This function extends the used data area of the potentially
2557 * fragmented buffer. @tail must be the last fragment of @skb -- or
2558 * @skb itself. If this would exceed the total buffer size the kernel
2559 * will panic. A pointer to the first byte of the extra data is
2560 * returned.
2561 */
2562
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)2563 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2564 {
2565 if (tail != skb) {
2566 skb->data_len += len;
2567 skb->len += len;
2568 }
2569 return skb_put(tail, len);
2570 }
2571 EXPORT_SYMBOL_GPL(pskb_put);
2572
2573 /**
2574 * skb_put - add data to a buffer
2575 * @skb: buffer to use
2576 * @len: amount of data to add
2577 *
2578 * This function extends the used data area of the buffer. If this would
2579 * exceed the total buffer size the kernel will panic. A pointer to the
2580 * first byte of the extra data is returned.
2581 */
skb_put(struct sk_buff * skb,unsigned int len)2582 void *skb_put(struct sk_buff *skb, unsigned int len)
2583 {
2584 void *tmp = skb_tail_pointer(skb);
2585 SKB_LINEAR_ASSERT(skb);
2586 skb->tail += len;
2587 skb->len += len;
2588 if (unlikely(skb->tail > skb->end))
2589 skb_over_panic(skb, len, __builtin_return_address(0));
2590 return tmp;
2591 }
2592 EXPORT_SYMBOL(skb_put);
2593
2594 /**
2595 * skb_push - add data to the start of a buffer
2596 * @skb: buffer to use
2597 * @len: amount of data to add
2598 *
2599 * This function extends the used data area of the buffer at the buffer
2600 * start. If this would exceed the total buffer headroom the kernel will
2601 * panic. A pointer to the first byte of the extra data is returned.
2602 */
skb_push(struct sk_buff * skb,unsigned int len)2603 void *skb_push(struct sk_buff *skb, unsigned int len)
2604 {
2605 skb->data -= len;
2606 skb->len += len;
2607 if (unlikely(skb->data < skb->head))
2608 skb_under_panic(skb, len, __builtin_return_address(0));
2609 return skb->data;
2610 }
2611 EXPORT_SYMBOL(skb_push);
2612
2613 /**
2614 * skb_pull - remove data from the start of a buffer
2615 * @skb: buffer to use
2616 * @len: amount of data to remove
2617 *
2618 * This function removes data from the start of a buffer, returning
2619 * the memory to the headroom. A pointer to the next data in the buffer
2620 * is returned. Once the data has been pulled future pushes will overwrite
2621 * the old data.
2622 */
skb_pull(struct sk_buff * skb,unsigned int len)2623 void *skb_pull(struct sk_buff *skb, unsigned int len)
2624 {
2625 return skb_pull_inline(skb, len);
2626 }
2627 EXPORT_SYMBOL(skb_pull);
2628
2629 /**
2630 * skb_pull_data - remove data from the start of a buffer returning its
2631 * original position.
2632 * @skb: buffer to use
2633 * @len: amount of data to remove
2634 *
2635 * This function removes data from the start of a buffer, returning
2636 * the memory to the headroom. A pointer to the original data in the buffer
2637 * is returned after checking if there is enough data to pull. Once the
2638 * data has been pulled future pushes will overwrite the old data.
2639 */
skb_pull_data(struct sk_buff * skb,size_t len)2640 void *skb_pull_data(struct sk_buff *skb, size_t len)
2641 {
2642 void *data = skb->data;
2643
2644 if (skb->len < len)
2645 return NULL;
2646
2647 skb_pull(skb, len);
2648
2649 return data;
2650 }
2651 EXPORT_SYMBOL(skb_pull_data);
2652
2653 /**
2654 * skb_trim - remove end from a buffer
2655 * @skb: buffer to alter
2656 * @len: new length
2657 *
2658 * Cut the length of a buffer down by removing data from the tail. If
2659 * the buffer is already under the length specified it is not modified.
2660 * The skb must be linear.
2661 */
skb_trim(struct sk_buff * skb,unsigned int len)2662 void skb_trim(struct sk_buff *skb, unsigned int len)
2663 {
2664 if (skb->len > len)
2665 __skb_trim(skb, len);
2666 }
2667 EXPORT_SYMBOL(skb_trim);
2668
2669 /* Trims skb to length len. It can change skb pointers.
2670 */
2671
___pskb_trim(struct sk_buff * skb,unsigned int len)2672 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2673 {
2674 struct sk_buff **fragp;
2675 struct sk_buff *frag;
2676 int offset = skb_headlen(skb);
2677 int nfrags = skb_shinfo(skb)->nr_frags;
2678 int i;
2679 int err;
2680
2681 if (skb_cloned(skb) &&
2682 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2683 return err;
2684
2685 i = 0;
2686 if (offset >= len)
2687 goto drop_pages;
2688
2689 for (; i < nfrags; i++) {
2690 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2691
2692 if (end < len) {
2693 offset = end;
2694 continue;
2695 }
2696
2697 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2698
2699 drop_pages:
2700 skb_shinfo(skb)->nr_frags = i;
2701
2702 for (; i < nfrags; i++)
2703 skb_frag_unref(skb, i);
2704
2705 if (skb_has_frag_list(skb))
2706 skb_drop_fraglist(skb);
2707 goto done;
2708 }
2709
2710 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2711 fragp = &frag->next) {
2712 int end = offset + frag->len;
2713
2714 if (skb_shared(frag)) {
2715 struct sk_buff *nfrag;
2716
2717 nfrag = skb_clone(frag, GFP_ATOMIC);
2718 if (unlikely(!nfrag))
2719 return -ENOMEM;
2720
2721 nfrag->next = frag->next;
2722 consume_skb(frag);
2723 frag = nfrag;
2724 *fragp = frag;
2725 }
2726
2727 if (end < len) {
2728 offset = end;
2729 continue;
2730 }
2731
2732 if (end > len &&
2733 unlikely((err = pskb_trim(frag, len - offset))))
2734 return err;
2735
2736 if (frag->next)
2737 skb_drop_list(&frag->next);
2738 break;
2739 }
2740
2741 done:
2742 if (len > skb_headlen(skb)) {
2743 skb->data_len -= skb->len - len;
2744 skb->len = len;
2745 } else {
2746 skb->len = len;
2747 skb->data_len = 0;
2748 skb_set_tail_pointer(skb, len);
2749 }
2750
2751 if (!skb->sk || skb->destructor == sock_edemux)
2752 skb_condense(skb);
2753 return 0;
2754 }
2755 EXPORT_SYMBOL(___pskb_trim);
2756
2757 /* Note : use pskb_trim_rcsum() instead of calling this directly
2758 */
pskb_trim_rcsum_slow(struct sk_buff * skb,unsigned int len)2759 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2760 {
2761 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2762 int delta = skb->len - len;
2763
2764 skb->csum = csum_block_sub(skb->csum,
2765 skb_checksum(skb, len, delta, 0),
2766 len);
2767 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2768 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2769 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2770
2771 if (offset + sizeof(__sum16) > hdlen)
2772 return -EINVAL;
2773 }
2774 return __pskb_trim(skb, len);
2775 }
2776 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2777
2778 /**
2779 * __pskb_pull_tail - advance tail of skb header
2780 * @skb: buffer to reallocate
2781 * @delta: number of bytes to advance tail
2782 *
2783 * The function makes a sense only on a fragmented &sk_buff,
2784 * it expands header moving its tail forward and copying necessary
2785 * data from fragmented part.
2786 *
2787 * &sk_buff MUST have reference count of 1.
2788 *
2789 * Returns %NULL (and &sk_buff does not change) if pull failed
2790 * or value of new tail of skb in the case of success.
2791 *
2792 * All the pointers pointing into skb header may change and must be
2793 * reloaded after call to this function.
2794 */
2795
2796 /* Moves tail of skb head forward, copying data from fragmented part,
2797 * when it is necessary.
2798 * 1. It may fail due to malloc failure.
2799 * 2. It may change skb pointers.
2800 *
2801 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2802 */
__pskb_pull_tail(struct sk_buff * skb,int delta)2803 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2804 {
2805 /* If skb has not enough free space at tail, get new one
2806 * plus 128 bytes for future expansions. If we have enough
2807 * room at tail, reallocate without expansion only if skb is cloned.
2808 */
2809 int i, k, eat = (skb->tail + delta) - skb->end;
2810
2811 if (!skb_frags_readable(skb))
2812 return NULL;
2813
2814 if (eat > 0 || skb_cloned(skb)) {
2815 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2816 GFP_ATOMIC))
2817 return NULL;
2818 }
2819
2820 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2821 skb_tail_pointer(skb), delta));
2822
2823 /* Optimization: no fragments, no reasons to preestimate
2824 * size of pulled pages. Superb.
2825 */
2826 if (!skb_has_frag_list(skb))
2827 goto pull_pages;
2828
2829 /* Estimate size of pulled pages. */
2830 eat = delta;
2831 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2832 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2833
2834 if (size >= eat)
2835 goto pull_pages;
2836 eat -= size;
2837 }
2838
2839 /* If we need update frag list, we are in troubles.
2840 * Certainly, it is possible to add an offset to skb data,
2841 * but taking into account that pulling is expected to
2842 * be very rare operation, it is worth to fight against
2843 * further bloating skb head and crucify ourselves here instead.
2844 * Pure masohism, indeed. 8)8)
2845 */
2846 if (eat) {
2847 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2848 struct sk_buff *clone = NULL;
2849 struct sk_buff *insp = NULL;
2850
2851 do {
2852 if (list->len <= eat) {
2853 /* Eaten as whole. */
2854 eat -= list->len;
2855 list = list->next;
2856 insp = list;
2857 } else {
2858 /* Eaten partially. */
2859 if (skb_is_gso(skb) && !list->head_frag &&
2860 skb_headlen(list))
2861 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2862
2863 if (skb_shared(list)) {
2864 /* Sucks! We need to fork list. :-( */
2865 clone = skb_clone(list, GFP_ATOMIC);
2866 if (!clone)
2867 return NULL;
2868 insp = list->next;
2869 list = clone;
2870 } else {
2871 /* This may be pulled without
2872 * problems. */
2873 insp = list;
2874 }
2875 if (!pskb_pull(list, eat)) {
2876 kfree_skb(clone);
2877 return NULL;
2878 }
2879 break;
2880 }
2881 } while (eat);
2882
2883 /* Free pulled out fragments. */
2884 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2885 skb_shinfo(skb)->frag_list = list->next;
2886 consume_skb(list);
2887 }
2888 /* And insert new clone at head. */
2889 if (clone) {
2890 clone->next = list;
2891 skb_shinfo(skb)->frag_list = clone;
2892 }
2893 }
2894 /* Success! Now we may commit changes to skb data. */
2895
2896 pull_pages:
2897 eat = delta;
2898 k = 0;
2899 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2900 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2901
2902 if (size <= eat) {
2903 skb_frag_unref(skb, i);
2904 eat -= size;
2905 } else {
2906 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2907
2908 *frag = skb_shinfo(skb)->frags[i];
2909 if (eat) {
2910 skb_frag_off_add(frag, eat);
2911 skb_frag_size_sub(frag, eat);
2912 if (!i)
2913 goto end;
2914 eat = 0;
2915 }
2916 k++;
2917 }
2918 }
2919 skb_shinfo(skb)->nr_frags = k;
2920
2921 end:
2922 skb->tail += delta;
2923 skb->data_len -= delta;
2924
2925 if (!skb->data_len)
2926 skb_zcopy_clear(skb, false);
2927
2928 return skb_tail_pointer(skb);
2929 }
2930 EXPORT_SYMBOL(__pskb_pull_tail);
2931
2932 /**
2933 * skb_copy_bits - copy bits from skb to kernel buffer
2934 * @skb: source skb
2935 * @offset: offset in source
2936 * @to: destination buffer
2937 * @len: number of bytes to copy
2938 *
2939 * Copy the specified number of bytes from the source skb to the
2940 * destination buffer.
2941 *
2942 * CAUTION ! :
2943 * If its prototype is ever changed,
2944 * check arch/{*}/net/{*}.S files,
2945 * since it is called from BPF assembly code.
2946 */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2947 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2948 {
2949 int start = skb_headlen(skb);
2950 struct sk_buff *frag_iter;
2951 int i, copy;
2952
2953 if (offset > (int)skb->len - len)
2954 goto fault;
2955
2956 /* Copy header. */
2957 if ((copy = start - offset) > 0) {
2958 if (copy > len)
2959 copy = len;
2960 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2961 if ((len -= copy) == 0)
2962 return 0;
2963 offset += copy;
2964 to += copy;
2965 }
2966
2967 if (!skb_frags_readable(skb))
2968 goto fault;
2969
2970 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2971 int end;
2972 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2973
2974 WARN_ON(start > offset + len);
2975
2976 end = start + skb_frag_size(f);
2977 if ((copy = end - offset) > 0) {
2978 u32 p_off, p_len, copied;
2979 struct page *p;
2980 u8 *vaddr;
2981
2982 if (copy > len)
2983 copy = len;
2984
2985 skb_frag_foreach_page(f,
2986 skb_frag_off(f) + offset - start,
2987 copy, p, p_off, p_len, copied) {
2988 vaddr = kmap_atomic(p);
2989 memcpy(to + copied, vaddr + p_off, p_len);
2990 kunmap_atomic(vaddr);
2991 }
2992
2993 if ((len -= copy) == 0)
2994 return 0;
2995 offset += copy;
2996 to += copy;
2997 }
2998 start = end;
2999 }
3000
3001 skb_walk_frags(skb, frag_iter) {
3002 int end;
3003
3004 WARN_ON(start > offset + len);
3005
3006 end = start + frag_iter->len;
3007 if ((copy = end - offset) > 0) {
3008 if (copy > len)
3009 copy = len;
3010 if (skb_copy_bits(frag_iter, offset - start, to, copy))
3011 goto fault;
3012 if ((len -= copy) == 0)
3013 return 0;
3014 offset += copy;
3015 to += copy;
3016 }
3017 start = end;
3018 }
3019
3020 if (!len)
3021 return 0;
3022
3023 fault:
3024 return -EFAULT;
3025 }
3026 EXPORT_SYMBOL(skb_copy_bits);
3027
3028 /*
3029 * Callback from splice_to_pipe(), if we need to release some pages
3030 * at the end of the spd in case we error'ed out in filling the pipe.
3031 */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)3032 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
3033 {
3034 put_page(spd->pages[i]);
3035 }
3036
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)3037 static struct page *linear_to_page(struct page *page, unsigned int *len,
3038 unsigned int *offset,
3039 struct sock *sk)
3040 {
3041 struct page_frag *pfrag = sk_page_frag(sk);
3042
3043 if (!sk_page_frag_refill(sk, pfrag))
3044 return NULL;
3045
3046 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
3047
3048 memcpy(page_address(pfrag->page) + pfrag->offset,
3049 page_address(page) + *offset, *len);
3050 *offset = pfrag->offset;
3051 pfrag->offset += *len;
3052
3053 return pfrag->page;
3054 }
3055
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)3056 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
3057 struct page *page,
3058 unsigned int offset)
3059 {
3060 return spd->nr_pages &&
3061 spd->pages[spd->nr_pages - 1] == page &&
3062 (spd->partial[spd->nr_pages - 1].offset +
3063 spd->partial[spd->nr_pages - 1].len == offset);
3064 }
3065
3066 /*
3067 * Fill page/offset/length into spd, if it can hold more pages.
3068 */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)3069 static bool spd_fill_page(struct splice_pipe_desc *spd,
3070 struct pipe_inode_info *pipe, struct page *page,
3071 unsigned int *len, unsigned int offset,
3072 bool linear,
3073 struct sock *sk)
3074 {
3075 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
3076 return true;
3077
3078 if (linear) {
3079 page = linear_to_page(page, len, &offset, sk);
3080 if (!page)
3081 return true;
3082 }
3083 if (spd_can_coalesce(spd, page, offset)) {
3084 spd->partial[spd->nr_pages - 1].len += *len;
3085 return false;
3086 }
3087 get_page(page);
3088 spd->pages[spd->nr_pages] = page;
3089 spd->partial[spd->nr_pages].len = *len;
3090 spd->partial[spd->nr_pages].offset = offset;
3091 spd->nr_pages++;
3092
3093 return false;
3094 }
3095
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk,struct pipe_inode_info * pipe)3096 static bool __splice_segment(struct page *page, unsigned int poff,
3097 unsigned int plen, unsigned int *off,
3098 unsigned int *len,
3099 struct splice_pipe_desc *spd, bool linear,
3100 struct sock *sk,
3101 struct pipe_inode_info *pipe)
3102 {
3103 if (!*len)
3104 return true;
3105
3106 /* skip this segment if already processed */
3107 if (*off >= plen) {
3108 *off -= plen;
3109 return false;
3110 }
3111
3112 /* ignore any bits we already processed */
3113 poff += *off;
3114 plen -= *off;
3115 *off = 0;
3116
3117 do {
3118 unsigned int flen = min(*len, plen);
3119
3120 if (spd_fill_page(spd, pipe, page, &flen, poff,
3121 linear, sk))
3122 return true;
3123 poff += flen;
3124 plen -= flen;
3125 *len -= flen;
3126 } while (*len && plen);
3127
3128 return false;
3129 }
3130
3131 /*
3132 * Map linear and fragment data from the skb to spd. It reports true if the
3133 * pipe is full or if we already spliced the requested length.
3134 */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)3135 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3136 unsigned int *offset, unsigned int *len,
3137 struct splice_pipe_desc *spd, struct sock *sk)
3138 {
3139 int seg;
3140 struct sk_buff *iter;
3141
3142 /* map the linear part :
3143 * If skb->head_frag is set, this 'linear' part is backed by a
3144 * fragment, and if the head is not shared with any clones then
3145 * we can avoid a copy since we own the head portion of this page.
3146 */
3147 if (__splice_segment(virt_to_page(skb->data),
3148 (unsigned long) skb->data & (PAGE_SIZE - 1),
3149 skb_headlen(skb),
3150 offset, len, spd,
3151 skb_head_is_locked(skb),
3152 sk, pipe))
3153 return true;
3154
3155 /*
3156 * then map the fragments
3157 */
3158 if (!skb_frags_readable(skb))
3159 return false;
3160
3161 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3162 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3163
3164 if (WARN_ON_ONCE(!skb_frag_page(f)))
3165 return false;
3166
3167 if (__splice_segment(skb_frag_page(f),
3168 skb_frag_off(f), skb_frag_size(f),
3169 offset, len, spd, false, sk, pipe))
3170 return true;
3171 }
3172
3173 skb_walk_frags(skb, iter) {
3174 if (*offset >= iter->len) {
3175 *offset -= iter->len;
3176 continue;
3177 }
3178 /* __skb_splice_bits() only fails if the output has no room
3179 * left, so no point in going over the frag_list for the error
3180 * case.
3181 */
3182 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3183 return true;
3184 }
3185
3186 return false;
3187 }
3188
3189 /*
3190 * Map data from the skb to a pipe. Should handle both the linear part,
3191 * the fragments, and the frag list.
3192 */
skb_splice_bits(struct sk_buff * skb,struct sock * sk,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)3193 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3194 struct pipe_inode_info *pipe, unsigned int tlen,
3195 unsigned int flags)
3196 {
3197 struct partial_page partial[MAX_SKB_FRAGS];
3198 struct page *pages[MAX_SKB_FRAGS];
3199 struct splice_pipe_desc spd = {
3200 .pages = pages,
3201 .partial = partial,
3202 .nr_pages_max = MAX_SKB_FRAGS,
3203 .ops = &nosteal_pipe_buf_ops,
3204 .spd_release = sock_spd_release,
3205 };
3206 int ret = 0;
3207
3208 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3209
3210 if (spd.nr_pages)
3211 ret = splice_to_pipe(pipe, &spd);
3212
3213 return ret;
3214 }
3215 EXPORT_SYMBOL_GPL(skb_splice_bits);
3216
sendmsg_locked(struct sock * sk,struct msghdr * msg)3217 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3218 {
3219 struct socket *sock = sk->sk_socket;
3220 size_t size = msg_data_left(msg);
3221
3222 if (!sock)
3223 return -EINVAL;
3224
3225 if (!sock->ops->sendmsg_locked)
3226 return sock_no_sendmsg_locked(sk, msg, size);
3227
3228 return sock->ops->sendmsg_locked(sk, msg, size);
3229 }
3230
sendmsg_unlocked(struct sock * sk,struct msghdr * msg)3231 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3232 {
3233 struct socket *sock = sk->sk_socket;
3234
3235 if (!sock)
3236 return -EINVAL;
3237 return sock_sendmsg(sock, msg);
3238 }
3239
3240 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
__skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len,sendmsg_func sendmsg)3241 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3242 int len, sendmsg_func sendmsg)
3243 {
3244 unsigned int orig_len = len;
3245 struct sk_buff *head = skb;
3246 unsigned short fragidx;
3247 int slen, ret;
3248
3249 do_frag_list:
3250
3251 /* Deal with head data */
3252 while (offset < skb_headlen(skb) && len) {
3253 struct kvec kv;
3254 struct msghdr msg;
3255
3256 slen = min_t(int, len, skb_headlen(skb) - offset);
3257 kv.iov_base = skb->data + offset;
3258 kv.iov_len = slen;
3259 memset(&msg, 0, sizeof(msg));
3260 msg.msg_flags = MSG_DONTWAIT;
3261
3262 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3263 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3264 sendmsg_unlocked, sk, &msg);
3265 if (ret <= 0)
3266 goto error;
3267
3268 offset += ret;
3269 len -= ret;
3270 }
3271
3272 /* All the data was skb head? */
3273 if (!len)
3274 goto out;
3275
3276 /* Make offset relative to start of frags */
3277 offset -= skb_headlen(skb);
3278
3279 /* Find where we are in frag list */
3280 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3281 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
3282
3283 if (offset < skb_frag_size(frag))
3284 break;
3285
3286 offset -= skb_frag_size(frag);
3287 }
3288
3289 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3290 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
3291
3292 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3293
3294 while (slen) {
3295 struct bio_vec bvec;
3296 struct msghdr msg = {
3297 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3298 };
3299
3300 bvec_set_page(&bvec, skb_frag_page(frag), slen,
3301 skb_frag_off(frag) + offset);
3302 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3303 slen);
3304
3305 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3306 sendmsg_unlocked, sk, &msg);
3307 if (ret <= 0)
3308 goto error;
3309
3310 len -= ret;
3311 offset += ret;
3312 slen -= ret;
3313 }
3314
3315 offset = 0;
3316 }
3317
3318 if (len) {
3319 /* Process any frag lists */
3320
3321 if (skb == head) {
3322 if (skb_has_frag_list(skb)) {
3323 skb = skb_shinfo(skb)->frag_list;
3324 goto do_frag_list;
3325 }
3326 } else if (skb->next) {
3327 skb = skb->next;
3328 goto do_frag_list;
3329 }
3330 }
3331
3332 out:
3333 return orig_len - len;
3334
3335 error:
3336 return orig_len == len ? ret : orig_len - len;
3337 }
3338
3339 /* Send skb data on a socket. Socket must be locked. */
skb_send_sock_locked(struct sock * sk,struct sk_buff * skb,int offset,int len)3340 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3341 int len)
3342 {
3343 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3344 }
3345 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3346
3347 /* Send skb data on a socket. Socket must be unlocked. */
skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len)3348 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3349 {
3350 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3351 }
3352
3353 /**
3354 * skb_store_bits - store bits from kernel buffer to skb
3355 * @skb: destination buffer
3356 * @offset: offset in destination
3357 * @from: source buffer
3358 * @len: number of bytes to copy
3359 *
3360 * Copy the specified number of bytes from the source buffer to the
3361 * destination skb. This function handles all the messy bits of
3362 * traversing fragment lists and such.
3363 */
3364
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)3365 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3366 {
3367 int start = skb_headlen(skb);
3368 struct sk_buff *frag_iter;
3369 int i, copy;
3370
3371 if (offset > (int)skb->len - len)
3372 goto fault;
3373
3374 if ((copy = start - offset) > 0) {
3375 if (copy > len)
3376 copy = len;
3377 skb_copy_to_linear_data_offset(skb, offset, from, copy);
3378 if ((len -= copy) == 0)
3379 return 0;
3380 offset += copy;
3381 from += copy;
3382 }
3383
3384 if (!skb_frags_readable(skb))
3385 goto fault;
3386
3387 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3388 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3389 int end;
3390
3391 WARN_ON(start > offset + len);
3392
3393 end = start + skb_frag_size(frag);
3394 if ((copy = end - offset) > 0) {
3395 u32 p_off, p_len, copied;
3396 struct page *p;
3397 u8 *vaddr;
3398
3399 if (copy > len)
3400 copy = len;
3401
3402 skb_frag_foreach_page(frag,
3403 skb_frag_off(frag) + offset - start,
3404 copy, p, p_off, p_len, copied) {
3405 vaddr = kmap_atomic(p);
3406 memcpy(vaddr + p_off, from + copied, p_len);
3407 kunmap_atomic(vaddr);
3408 }
3409
3410 if ((len -= copy) == 0)
3411 return 0;
3412 offset += copy;
3413 from += copy;
3414 }
3415 start = end;
3416 }
3417
3418 skb_walk_frags(skb, frag_iter) {
3419 int end;
3420
3421 WARN_ON(start > offset + len);
3422
3423 end = start + frag_iter->len;
3424 if ((copy = end - offset) > 0) {
3425 if (copy > len)
3426 copy = len;
3427 if (skb_store_bits(frag_iter, offset - start,
3428 from, copy))
3429 goto fault;
3430 if ((len -= copy) == 0)
3431 return 0;
3432 offset += copy;
3433 from += copy;
3434 }
3435 start = end;
3436 }
3437 if (!len)
3438 return 0;
3439
3440 fault:
3441 return -EFAULT;
3442 }
3443 EXPORT_SYMBOL(skb_store_bits);
3444
3445 /* Checksum skb data. */
__skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum,const struct skb_checksum_ops * ops)3446 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3447 __wsum csum, const struct skb_checksum_ops *ops)
3448 {
3449 int start = skb_headlen(skb);
3450 int i, copy = start - offset;
3451 struct sk_buff *frag_iter;
3452 int pos = 0;
3453
3454 /* Checksum header. */
3455 if (copy > 0) {
3456 if (copy > len)
3457 copy = len;
3458 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3459 skb->data + offset, copy, csum);
3460 if ((len -= copy) == 0)
3461 return csum;
3462 offset += copy;
3463 pos = copy;
3464 }
3465
3466 if (WARN_ON_ONCE(!skb_frags_readable(skb)))
3467 return 0;
3468
3469 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3470 int end;
3471 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3472
3473 WARN_ON(start > offset + len);
3474
3475 end = start + skb_frag_size(frag);
3476 if ((copy = end - offset) > 0) {
3477 u32 p_off, p_len, copied;
3478 struct page *p;
3479 __wsum csum2;
3480 u8 *vaddr;
3481
3482 if (copy > len)
3483 copy = len;
3484
3485 skb_frag_foreach_page(frag,
3486 skb_frag_off(frag) + offset - start,
3487 copy, p, p_off, p_len, copied) {
3488 vaddr = kmap_atomic(p);
3489 csum2 = INDIRECT_CALL_1(ops->update,
3490 csum_partial_ext,
3491 vaddr + p_off, p_len, 0);
3492 kunmap_atomic(vaddr);
3493 csum = INDIRECT_CALL_1(ops->combine,
3494 csum_block_add_ext, csum,
3495 csum2, pos, p_len);
3496 pos += p_len;
3497 }
3498
3499 if (!(len -= copy))
3500 return csum;
3501 offset += copy;
3502 }
3503 start = end;
3504 }
3505
3506 skb_walk_frags(skb, frag_iter) {
3507 int end;
3508
3509 WARN_ON(start > offset + len);
3510
3511 end = start + frag_iter->len;
3512 if ((copy = end - offset) > 0) {
3513 __wsum csum2;
3514 if (copy > len)
3515 copy = len;
3516 csum2 = __skb_checksum(frag_iter, offset - start,
3517 copy, 0, ops);
3518 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3519 csum, csum2, pos, copy);
3520 if ((len -= copy) == 0)
3521 return csum;
3522 offset += copy;
3523 pos += copy;
3524 }
3525 start = end;
3526 }
3527 BUG_ON(len);
3528
3529 return csum;
3530 }
3531 EXPORT_SYMBOL(__skb_checksum);
3532
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)3533 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3534 int len, __wsum csum)
3535 {
3536 const struct skb_checksum_ops ops = {
3537 .update = csum_partial_ext,
3538 .combine = csum_block_add_ext,
3539 };
3540
3541 return __skb_checksum(skb, offset, len, csum, &ops);
3542 }
3543 EXPORT_SYMBOL(skb_checksum);
3544
3545 /* Both of above in one bottle. */
3546
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len)3547 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3548 u8 *to, int len)
3549 {
3550 int start = skb_headlen(skb);
3551 int i, copy = start - offset;
3552 struct sk_buff *frag_iter;
3553 int pos = 0;
3554 __wsum csum = 0;
3555
3556 /* Copy header. */
3557 if (copy > 0) {
3558 if (copy > len)
3559 copy = len;
3560 csum = csum_partial_copy_nocheck(skb->data + offset, to,
3561 copy);
3562 if ((len -= copy) == 0)
3563 return csum;
3564 offset += copy;
3565 to += copy;
3566 pos = copy;
3567 }
3568
3569 if (!skb_frags_readable(skb))
3570 return 0;
3571
3572 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3573 int end;
3574
3575 WARN_ON(start > offset + len);
3576
3577 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3578 if ((copy = end - offset) > 0) {
3579 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3580 u32 p_off, p_len, copied;
3581 struct page *p;
3582 __wsum csum2;
3583 u8 *vaddr;
3584
3585 if (copy > len)
3586 copy = len;
3587
3588 skb_frag_foreach_page(frag,
3589 skb_frag_off(frag) + offset - start,
3590 copy, p, p_off, p_len, copied) {
3591 vaddr = kmap_atomic(p);
3592 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3593 to + copied,
3594 p_len);
3595 kunmap_atomic(vaddr);
3596 csum = csum_block_add(csum, csum2, pos);
3597 pos += p_len;
3598 }
3599
3600 if (!(len -= copy))
3601 return csum;
3602 offset += copy;
3603 to += copy;
3604 }
3605 start = end;
3606 }
3607
3608 skb_walk_frags(skb, frag_iter) {
3609 __wsum csum2;
3610 int end;
3611
3612 WARN_ON(start > offset + len);
3613
3614 end = start + frag_iter->len;
3615 if ((copy = end - offset) > 0) {
3616 if (copy > len)
3617 copy = len;
3618 csum2 = skb_copy_and_csum_bits(frag_iter,
3619 offset - start,
3620 to, copy);
3621 csum = csum_block_add(csum, csum2, pos);
3622 if ((len -= copy) == 0)
3623 return csum;
3624 offset += copy;
3625 to += copy;
3626 pos += copy;
3627 }
3628 start = end;
3629 }
3630 BUG_ON(len);
3631 return csum;
3632 }
3633 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3634
__skb_checksum_complete_head(struct sk_buff * skb,int len)3635 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3636 {
3637 __sum16 sum;
3638
3639 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3640 /* See comments in __skb_checksum_complete(). */
3641 if (likely(!sum)) {
3642 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3643 !skb->csum_complete_sw)
3644 netdev_rx_csum_fault(skb->dev, skb);
3645 }
3646 if (!skb_shared(skb))
3647 skb->csum_valid = !sum;
3648 return sum;
3649 }
3650 EXPORT_SYMBOL(__skb_checksum_complete_head);
3651
3652 /* This function assumes skb->csum already holds pseudo header's checksum,
3653 * which has been changed from the hardware checksum, for example, by
3654 * __skb_checksum_validate_complete(). And, the original skb->csum must
3655 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3656 *
3657 * It returns non-zero if the recomputed checksum is still invalid, otherwise
3658 * zero. The new checksum is stored back into skb->csum unless the skb is
3659 * shared.
3660 */
__skb_checksum_complete(struct sk_buff * skb)3661 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3662 {
3663 __wsum csum;
3664 __sum16 sum;
3665
3666 csum = skb_checksum(skb, 0, skb->len, 0);
3667
3668 sum = csum_fold(csum_add(skb->csum, csum));
3669 /* This check is inverted, because we already knew the hardware
3670 * checksum is invalid before calling this function. So, if the
3671 * re-computed checksum is valid instead, then we have a mismatch
3672 * between the original skb->csum and skb_checksum(). This means either
3673 * the original hardware checksum is incorrect or we screw up skb->csum
3674 * when moving skb->data around.
3675 */
3676 if (likely(!sum)) {
3677 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3678 !skb->csum_complete_sw)
3679 netdev_rx_csum_fault(skb->dev, skb);
3680 }
3681
3682 if (!skb_shared(skb)) {
3683 /* Save full packet checksum */
3684 skb->csum = csum;
3685 skb->ip_summed = CHECKSUM_COMPLETE;
3686 skb->csum_complete_sw = 1;
3687 skb->csum_valid = !sum;
3688 }
3689
3690 return sum;
3691 }
3692 EXPORT_SYMBOL(__skb_checksum_complete);
3693
warn_crc32c_csum_update(const void * buff,int len,__wsum sum)3694 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3695 {
3696 net_warn_ratelimited(
3697 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3698 __func__);
3699 return 0;
3700 }
3701
warn_crc32c_csum_combine(__wsum csum,__wsum csum2,int offset,int len)3702 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3703 int offset, int len)
3704 {
3705 net_warn_ratelimited(
3706 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3707 __func__);
3708 return 0;
3709 }
3710
3711 static const struct skb_checksum_ops default_crc32c_ops = {
3712 .update = warn_crc32c_csum_update,
3713 .combine = warn_crc32c_csum_combine,
3714 };
3715
3716 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3717 &default_crc32c_ops;
3718 EXPORT_SYMBOL(crc32c_csum_stub);
3719
3720 /**
3721 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3722 * @from: source buffer
3723 *
3724 * Calculates the amount of linear headroom needed in the 'to' skb passed
3725 * into skb_zerocopy().
3726 */
3727 unsigned int
skb_zerocopy_headlen(const struct sk_buff * from)3728 skb_zerocopy_headlen(const struct sk_buff *from)
3729 {
3730 unsigned int hlen = 0;
3731
3732 if (!from->head_frag ||
3733 skb_headlen(from) < L1_CACHE_BYTES ||
3734 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3735 hlen = skb_headlen(from);
3736 if (!hlen)
3737 hlen = from->len;
3738 }
3739
3740 if (skb_has_frag_list(from))
3741 hlen = from->len;
3742
3743 return hlen;
3744 }
3745 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3746
3747 /**
3748 * skb_zerocopy - Zero copy skb to skb
3749 * @to: destination buffer
3750 * @from: source buffer
3751 * @len: number of bytes to copy from source buffer
3752 * @hlen: size of linear headroom in destination buffer
3753 *
3754 * Copies up to `len` bytes from `from` to `to` by creating references
3755 * to the frags in the source buffer.
3756 *
3757 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3758 * headroom in the `to` buffer.
3759 *
3760 * Return value:
3761 * 0: everything is OK
3762 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
3763 * -EFAULT: skb_copy_bits() found some problem with skb geometry
3764 */
3765 int
skb_zerocopy(struct sk_buff * to,struct sk_buff * from,int len,int hlen)3766 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3767 {
3768 int i, j = 0;
3769 int plen = 0; /* length of skb->head fragment */
3770 int ret;
3771 struct page *page;
3772 unsigned int offset;
3773
3774 BUG_ON(!from->head_frag && !hlen);
3775
3776 /* dont bother with small payloads */
3777 if (len <= skb_tailroom(to))
3778 return skb_copy_bits(from, 0, skb_put(to, len), len);
3779
3780 if (hlen) {
3781 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3782 if (unlikely(ret))
3783 return ret;
3784 len -= hlen;
3785 } else {
3786 plen = min_t(int, skb_headlen(from), len);
3787 if (plen) {
3788 page = virt_to_head_page(from->head);
3789 offset = from->data - (unsigned char *)page_address(page);
3790 __skb_fill_netmem_desc(to, 0, page_to_netmem(page),
3791 offset, plen);
3792 get_page(page);
3793 j = 1;
3794 len -= plen;
3795 }
3796 }
3797
3798 skb_len_add(to, len + plen);
3799
3800 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3801 skb_tx_error(from);
3802 return -ENOMEM;
3803 }
3804 skb_zerocopy_clone(to, from, GFP_ATOMIC);
3805
3806 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3807 int size;
3808
3809 if (!len)
3810 break;
3811 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3812 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3813 len);
3814 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3815 len -= size;
3816 skb_frag_ref(to, j);
3817 j++;
3818 }
3819 skb_shinfo(to)->nr_frags = j;
3820
3821 return 0;
3822 }
3823 EXPORT_SYMBOL_GPL(skb_zerocopy);
3824
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)3825 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3826 {
3827 __wsum csum;
3828 long csstart;
3829
3830 if (skb->ip_summed == CHECKSUM_PARTIAL)
3831 csstart = skb_checksum_start_offset(skb);
3832 else
3833 csstart = skb_headlen(skb);
3834
3835 BUG_ON(csstart > skb_headlen(skb));
3836
3837 skb_copy_from_linear_data(skb, to, csstart);
3838
3839 csum = 0;
3840 if (csstart != skb->len)
3841 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3842 skb->len - csstart);
3843
3844 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3845 long csstuff = csstart + skb->csum_offset;
3846
3847 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3848 }
3849 }
3850 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3851
3852 /**
3853 * skb_dequeue - remove from the head of the queue
3854 * @list: list to dequeue from
3855 *
3856 * Remove the head of the list. The list lock is taken so the function
3857 * may be used safely with other locking list functions. The head item is
3858 * returned or %NULL if the list is empty.
3859 */
3860
skb_dequeue(struct sk_buff_head * list)3861 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3862 {
3863 unsigned long flags;
3864 struct sk_buff *result;
3865
3866 spin_lock_irqsave(&list->lock, flags);
3867 result = __skb_dequeue(list);
3868 spin_unlock_irqrestore(&list->lock, flags);
3869 return result;
3870 }
3871 EXPORT_SYMBOL(skb_dequeue);
3872
3873 /**
3874 * skb_dequeue_tail - remove from the tail of the queue
3875 * @list: list to dequeue from
3876 *
3877 * Remove the tail of the list. The list lock is taken so the function
3878 * may be used safely with other locking list functions. The tail item is
3879 * returned or %NULL if the list is empty.
3880 */
skb_dequeue_tail(struct sk_buff_head * list)3881 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3882 {
3883 unsigned long flags;
3884 struct sk_buff *result;
3885
3886 spin_lock_irqsave(&list->lock, flags);
3887 result = __skb_dequeue_tail(list);
3888 spin_unlock_irqrestore(&list->lock, flags);
3889 return result;
3890 }
3891 EXPORT_SYMBOL(skb_dequeue_tail);
3892
3893 /**
3894 * skb_queue_purge_reason - empty a list
3895 * @list: list to empty
3896 * @reason: drop reason
3897 *
3898 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3899 * the list and one reference dropped. This function takes the list
3900 * lock and is atomic with respect to other list locking functions.
3901 */
skb_queue_purge_reason(struct sk_buff_head * list,enum skb_drop_reason reason)3902 void skb_queue_purge_reason(struct sk_buff_head *list,
3903 enum skb_drop_reason reason)
3904 {
3905 struct sk_buff_head tmp;
3906 unsigned long flags;
3907
3908 if (skb_queue_empty_lockless(list))
3909 return;
3910
3911 __skb_queue_head_init(&tmp);
3912
3913 spin_lock_irqsave(&list->lock, flags);
3914 skb_queue_splice_init(list, &tmp);
3915 spin_unlock_irqrestore(&list->lock, flags);
3916
3917 __skb_queue_purge_reason(&tmp, reason);
3918 }
3919 EXPORT_SYMBOL(skb_queue_purge_reason);
3920
3921 /**
3922 * skb_rbtree_purge - empty a skb rbtree
3923 * @root: root of the rbtree to empty
3924 * Return value: the sum of truesizes of all purged skbs.
3925 *
3926 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3927 * the list and one reference dropped. This function does not take
3928 * any lock. Synchronization should be handled by the caller (e.g., TCP
3929 * out-of-order queue is protected by the socket lock).
3930 */
skb_rbtree_purge(struct rb_root * root)3931 unsigned int skb_rbtree_purge(struct rb_root *root)
3932 {
3933 struct rb_node *p = rb_first(root);
3934 unsigned int sum = 0;
3935
3936 while (p) {
3937 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3938
3939 p = rb_next(p);
3940 rb_erase(&skb->rbnode, root);
3941 sum += skb->truesize;
3942 kfree_skb(skb);
3943 }
3944 return sum;
3945 }
3946
skb_errqueue_purge(struct sk_buff_head * list)3947 void skb_errqueue_purge(struct sk_buff_head *list)
3948 {
3949 struct sk_buff *skb, *next;
3950 struct sk_buff_head kill;
3951 unsigned long flags;
3952
3953 __skb_queue_head_init(&kill);
3954
3955 spin_lock_irqsave(&list->lock, flags);
3956 skb_queue_walk_safe(list, skb, next) {
3957 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3958 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3959 continue;
3960 __skb_unlink(skb, list);
3961 __skb_queue_tail(&kill, skb);
3962 }
3963 spin_unlock_irqrestore(&list->lock, flags);
3964 __skb_queue_purge(&kill);
3965 }
3966 EXPORT_SYMBOL(skb_errqueue_purge);
3967
3968 /**
3969 * skb_queue_head - queue a buffer at the list head
3970 * @list: list to use
3971 * @newsk: buffer to queue
3972 *
3973 * Queue a buffer at the start of the list. This function takes the
3974 * list lock and can be used safely with other locking &sk_buff functions
3975 * safely.
3976 *
3977 * A buffer cannot be placed on two lists at the same time.
3978 */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)3979 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3980 {
3981 unsigned long flags;
3982
3983 spin_lock_irqsave(&list->lock, flags);
3984 __skb_queue_head(list, newsk);
3985 spin_unlock_irqrestore(&list->lock, flags);
3986 }
3987 EXPORT_SYMBOL(skb_queue_head);
3988
3989 /**
3990 * skb_queue_tail - queue a buffer at the list tail
3991 * @list: list to use
3992 * @newsk: buffer to queue
3993 *
3994 * Queue a buffer at the tail of the list. This function takes the
3995 * list lock and can be used safely with other locking &sk_buff functions
3996 * safely.
3997 *
3998 * A buffer cannot be placed on two lists at the same time.
3999 */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)4000 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
4001 {
4002 unsigned long flags;
4003
4004 spin_lock_irqsave(&list->lock, flags);
4005 __skb_queue_tail(list, newsk);
4006 spin_unlock_irqrestore(&list->lock, flags);
4007 }
4008 EXPORT_SYMBOL(skb_queue_tail);
4009
4010 /**
4011 * skb_unlink - remove a buffer from a list
4012 * @skb: buffer to remove
4013 * @list: list to use
4014 *
4015 * Remove a packet from a list. The list locks are taken and this
4016 * function is atomic with respect to other list locked calls
4017 *
4018 * You must know what list the SKB is on.
4019 */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)4020 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
4021 {
4022 unsigned long flags;
4023
4024 spin_lock_irqsave(&list->lock, flags);
4025 __skb_unlink(skb, list);
4026 spin_unlock_irqrestore(&list->lock, flags);
4027 }
4028 EXPORT_SYMBOL(skb_unlink);
4029
4030 /**
4031 * skb_append - append a buffer
4032 * @old: buffer to insert after
4033 * @newsk: buffer to insert
4034 * @list: list to use
4035 *
4036 * Place a packet after a given packet in a list. The list locks are taken
4037 * and this function is atomic with respect to other list locked calls.
4038 * A buffer cannot be placed on two lists at the same time.
4039 */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)4040 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
4041 {
4042 unsigned long flags;
4043
4044 spin_lock_irqsave(&list->lock, flags);
4045 __skb_queue_after(list, old, newsk);
4046 spin_unlock_irqrestore(&list->lock, flags);
4047 }
4048 EXPORT_SYMBOL(skb_append);
4049
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)4050 static inline void skb_split_inside_header(struct sk_buff *skb,
4051 struct sk_buff* skb1,
4052 const u32 len, const int pos)
4053 {
4054 int i;
4055
4056 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
4057 pos - len);
4058 /* And move data appendix as is. */
4059 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4060 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
4061
4062 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
4063 skb1->unreadable = skb->unreadable;
4064 skb_shinfo(skb)->nr_frags = 0;
4065 skb1->data_len = skb->data_len;
4066 skb1->len += skb1->data_len;
4067 skb->data_len = 0;
4068 skb->len = len;
4069 skb_set_tail_pointer(skb, len);
4070 }
4071
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)4072 static inline void skb_split_no_header(struct sk_buff *skb,
4073 struct sk_buff* skb1,
4074 const u32 len, int pos)
4075 {
4076 int i, k = 0;
4077 const int nfrags = skb_shinfo(skb)->nr_frags;
4078
4079 skb_shinfo(skb)->nr_frags = 0;
4080 skb1->len = skb1->data_len = skb->len - len;
4081 skb->len = len;
4082 skb->data_len = len - pos;
4083
4084 for (i = 0; i < nfrags; i++) {
4085 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4086
4087 if (pos + size > len) {
4088 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
4089
4090 if (pos < len) {
4091 /* Split frag.
4092 * We have two variants in this case:
4093 * 1. Move all the frag to the second
4094 * part, if it is possible. F.e.
4095 * this approach is mandatory for TUX,
4096 * where splitting is expensive.
4097 * 2. Split is accurately. We make this.
4098 */
4099 skb_frag_ref(skb, i);
4100 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
4101 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
4102 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
4103 skb_shinfo(skb)->nr_frags++;
4104 }
4105 k++;
4106 } else
4107 skb_shinfo(skb)->nr_frags++;
4108 pos += size;
4109 }
4110 skb_shinfo(skb1)->nr_frags = k;
4111
4112 skb1->unreadable = skb->unreadable;
4113 }
4114
4115 /**
4116 * skb_split - Split fragmented skb to two parts at length len.
4117 * @skb: the buffer to split
4118 * @skb1: the buffer to receive the second part
4119 * @len: new length for skb
4120 */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)4121 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
4122 {
4123 int pos = skb_headlen(skb);
4124 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
4125
4126 skb_zcopy_downgrade_managed(skb);
4127
4128 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
4129 skb_zerocopy_clone(skb1, skb, 0);
4130 if (len < pos) /* Split line is inside header. */
4131 skb_split_inside_header(skb, skb1, len, pos);
4132 else /* Second chunk has no header, nothing to copy. */
4133 skb_split_no_header(skb, skb1, len, pos);
4134 }
4135 EXPORT_SYMBOL(skb_split);
4136
4137 /* Shifting from/to a cloned skb is a no-go.
4138 *
4139 * Caller cannot keep skb_shinfo related pointers past calling here!
4140 */
skb_prepare_for_shift(struct sk_buff * skb)4141 static int skb_prepare_for_shift(struct sk_buff *skb)
4142 {
4143 return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4144 }
4145
4146 /**
4147 * skb_shift - Shifts paged data partially from skb to another
4148 * @tgt: buffer into which tail data gets added
4149 * @skb: buffer from which the paged data comes from
4150 * @shiftlen: shift up to this many bytes
4151 *
4152 * Attempts to shift up to shiftlen worth of bytes, which may be less than
4153 * the length of the skb, from skb to tgt. Returns number bytes shifted.
4154 * It's up to caller to free skb if everything was shifted.
4155 *
4156 * If @tgt runs out of frags, the whole operation is aborted.
4157 *
4158 * Skb cannot include anything else but paged data while tgt is allowed
4159 * to have non-paged data as well.
4160 *
4161 * TODO: full sized shift could be optimized but that would need
4162 * specialized skb free'er to handle frags without up-to-date nr_frags.
4163 */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)4164 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4165 {
4166 int from, to, merge, todo;
4167 skb_frag_t *fragfrom, *fragto;
4168
4169 BUG_ON(shiftlen > skb->len);
4170
4171 if (skb_headlen(skb))
4172 return 0;
4173 if (skb_zcopy(tgt) || skb_zcopy(skb))
4174 return 0;
4175
4176 DEBUG_NET_WARN_ON_ONCE(tgt->pp_recycle != skb->pp_recycle);
4177 DEBUG_NET_WARN_ON_ONCE(skb_cmp_decrypted(tgt, skb));
4178
4179 todo = shiftlen;
4180 from = 0;
4181 to = skb_shinfo(tgt)->nr_frags;
4182 fragfrom = &skb_shinfo(skb)->frags[from];
4183
4184 /* Actual merge is delayed until the point when we know we can
4185 * commit all, so that we don't have to undo partial changes
4186 */
4187 if (!skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4188 skb_frag_off(fragfrom))) {
4189 merge = -1;
4190 } else {
4191 merge = to - 1;
4192
4193 todo -= skb_frag_size(fragfrom);
4194 if (todo < 0) {
4195 if (skb_prepare_for_shift(skb) ||
4196 skb_prepare_for_shift(tgt))
4197 return 0;
4198
4199 /* All previous frag pointers might be stale! */
4200 fragfrom = &skb_shinfo(skb)->frags[from];
4201 fragto = &skb_shinfo(tgt)->frags[merge];
4202
4203 skb_frag_size_add(fragto, shiftlen);
4204 skb_frag_size_sub(fragfrom, shiftlen);
4205 skb_frag_off_add(fragfrom, shiftlen);
4206
4207 goto onlymerged;
4208 }
4209
4210 from++;
4211 }
4212
4213 /* Skip full, not-fitting skb to avoid expensive operations */
4214 if ((shiftlen == skb->len) &&
4215 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4216 return 0;
4217
4218 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4219 return 0;
4220
4221 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4222 if (to == MAX_SKB_FRAGS)
4223 return 0;
4224
4225 fragfrom = &skb_shinfo(skb)->frags[from];
4226 fragto = &skb_shinfo(tgt)->frags[to];
4227
4228 if (todo >= skb_frag_size(fragfrom)) {
4229 *fragto = *fragfrom;
4230 todo -= skb_frag_size(fragfrom);
4231 from++;
4232 to++;
4233
4234 } else {
4235 __skb_frag_ref(fragfrom);
4236 skb_frag_page_copy(fragto, fragfrom);
4237 skb_frag_off_copy(fragto, fragfrom);
4238 skb_frag_size_set(fragto, todo);
4239
4240 skb_frag_off_add(fragfrom, todo);
4241 skb_frag_size_sub(fragfrom, todo);
4242 todo = 0;
4243
4244 to++;
4245 break;
4246 }
4247 }
4248
4249 /* Ready to "commit" this state change to tgt */
4250 skb_shinfo(tgt)->nr_frags = to;
4251
4252 if (merge >= 0) {
4253 fragfrom = &skb_shinfo(skb)->frags[0];
4254 fragto = &skb_shinfo(tgt)->frags[merge];
4255
4256 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4257 __skb_frag_unref(fragfrom, skb->pp_recycle);
4258 }
4259
4260 /* Reposition in the original skb */
4261 to = 0;
4262 while (from < skb_shinfo(skb)->nr_frags)
4263 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4264 skb_shinfo(skb)->nr_frags = to;
4265
4266 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4267
4268 onlymerged:
4269 /* Most likely the tgt won't ever need its checksum anymore, skb on
4270 * the other hand might need it if it needs to be resent
4271 */
4272 tgt->ip_summed = CHECKSUM_PARTIAL;
4273 skb->ip_summed = CHECKSUM_PARTIAL;
4274
4275 skb_len_add(skb, -shiftlen);
4276 skb_len_add(tgt, shiftlen);
4277
4278 return shiftlen;
4279 }
4280
4281 /**
4282 * skb_prepare_seq_read - Prepare a sequential read of skb data
4283 * @skb: the buffer to read
4284 * @from: lower offset of data to be read
4285 * @to: upper offset of data to be read
4286 * @st: state variable
4287 *
4288 * Initializes the specified state variable. Must be called before
4289 * invoking skb_seq_read() for the first time.
4290 */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)4291 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4292 unsigned int to, struct skb_seq_state *st)
4293 {
4294 st->lower_offset = from;
4295 st->upper_offset = to;
4296 st->root_skb = st->cur_skb = skb;
4297 st->frag_idx = st->stepped_offset = 0;
4298 st->frag_data = NULL;
4299 st->frag_off = 0;
4300 }
4301 EXPORT_SYMBOL(skb_prepare_seq_read);
4302
4303 /**
4304 * skb_seq_read - Sequentially read skb data
4305 * @consumed: number of bytes consumed by the caller so far
4306 * @data: destination pointer for data to be returned
4307 * @st: state variable
4308 *
4309 * Reads a block of skb data at @consumed relative to the
4310 * lower offset specified to skb_prepare_seq_read(). Assigns
4311 * the head of the data block to @data and returns the length
4312 * of the block or 0 if the end of the skb data or the upper
4313 * offset has been reached.
4314 *
4315 * The caller is not required to consume all of the data
4316 * returned, i.e. @consumed is typically set to the number
4317 * of bytes already consumed and the next call to
4318 * skb_seq_read() will return the remaining part of the block.
4319 *
4320 * Note 1: The size of each block of data returned can be arbitrary,
4321 * this limitation is the cost for zerocopy sequential
4322 * reads of potentially non linear data.
4323 *
4324 * Note 2: Fragment lists within fragments are not implemented
4325 * at the moment, state->root_skb could be replaced with
4326 * a stack for this purpose.
4327 */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)4328 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4329 struct skb_seq_state *st)
4330 {
4331 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4332 skb_frag_t *frag;
4333
4334 if (unlikely(abs_offset >= st->upper_offset)) {
4335 if (st->frag_data) {
4336 kunmap_atomic(st->frag_data);
4337 st->frag_data = NULL;
4338 }
4339 return 0;
4340 }
4341
4342 next_skb:
4343 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4344
4345 if (abs_offset < block_limit && !st->frag_data) {
4346 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4347 return block_limit - abs_offset;
4348 }
4349
4350 if (!skb_frags_readable(st->cur_skb))
4351 return 0;
4352
4353 if (st->frag_idx == 0 && !st->frag_data)
4354 st->stepped_offset += skb_headlen(st->cur_skb);
4355
4356 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4357 unsigned int pg_idx, pg_off, pg_sz;
4358
4359 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4360
4361 pg_idx = 0;
4362 pg_off = skb_frag_off(frag);
4363 pg_sz = skb_frag_size(frag);
4364
4365 if (skb_frag_must_loop(skb_frag_page(frag))) {
4366 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4367 pg_off = offset_in_page(pg_off + st->frag_off);
4368 pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4369 PAGE_SIZE - pg_off);
4370 }
4371
4372 block_limit = pg_sz + st->stepped_offset;
4373 if (abs_offset < block_limit) {
4374 if (!st->frag_data)
4375 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4376
4377 *data = (u8 *)st->frag_data + pg_off +
4378 (abs_offset - st->stepped_offset);
4379
4380 return block_limit - abs_offset;
4381 }
4382
4383 if (st->frag_data) {
4384 kunmap_atomic(st->frag_data);
4385 st->frag_data = NULL;
4386 }
4387
4388 st->stepped_offset += pg_sz;
4389 st->frag_off += pg_sz;
4390 if (st->frag_off == skb_frag_size(frag)) {
4391 st->frag_off = 0;
4392 st->frag_idx++;
4393 }
4394 }
4395
4396 if (st->frag_data) {
4397 kunmap_atomic(st->frag_data);
4398 st->frag_data = NULL;
4399 }
4400
4401 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4402 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4403 st->frag_idx = 0;
4404 goto next_skb;
4405 } else if (st->cur_skb->next) {
4406 st->cur_skb = st->cur_skb->next;
4407 st->frag_idx = 0;
4408 goto next_skb;
4409 }
4410
4411 return 0;
4412 }
4413 EXPORT_SYMBOL(skb_seq_read);
4414
4415 /**
4416 * skb_abort_seq_read - Abort a sequential read of skb data
4417 * @st: state variable
4418 *
4419 * Must be called if skb_seq_read() was not called until it
4420 * returned 0.
4421 */
skb_abort_seq_read(struct skb_seq_state * st)4422 void skb_abort_seq_read(struct skb_seq_state *st)
4423 {
4424 if (st->frag_data)
4425 kunmap_atomic(st->frag_data);
4426 }
4427 EXPORT_SYMBOL(skb_abort_seq_read);
4428
4429 /**
4430 * skb_copy_seq_read() - copy from a skb_seq_state to a buffer
4431 * @st: source skb_seq_state
4432 * @offset: offset in source
4433 * @to: destination buffer
4434 * @len: number of bytes to copy
4435 *
4436 * Copy @len bytes from @offset bytes into the source @st to the destination
4437 * buffer @to. `offset` should increase (or be unchanged) with each subsequent
4438 * call to this function. If offset needs to decrease from the previous use `st`
4439 * should be reset first.
4440 *
4441 * Return: 0 on success or -EINVAL if the copy ended early
4442 */
skb_copy_seq_read(struct skb_seq_state * st,int offset,void * to,int len)4443 int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len)
4444 {
4445 const u8 *data;
4446 u32 sqlen;
4447
4448 for (;;) {
4449 sqlen = skb_seq_read(offset, &data, st);
4450 if (sqlen == 0)
4451 return -EINVAL;
4452 if (sqlen >= len) {
4453 memcpy(to, data, len);
4454 return 0;
4455 }
4456 memcpy(to, data, sqlen);
4457 to += sqlen;
4458 offset += sqlen;
4459 len -= sqlen;
4460 }
4461 }
4462 EXPORT_SYMBOL(skb_copy_seq_read);
4463
4464 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
4465
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)4466 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4467 struct ts_config *conf,
4468 struct ts_state *state)
4469 {
4470 return skb_seq_read(offset, text, TS_SKB_CB(state));
4471 }
4472
skb_ts_finish(struct ts_config * conf,struct ts_state * state)4473 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4474 {
4475 skb_abort_seq_read(TS_SKB_CB(state));
4476 }
4477
4478 /**
4479 * skb_find_text - Find a text pattern in skb data
4480 * @skb: the buffer to look in
4481 * @from: search offset
4482 * @to: search limit
4483 * @config: textsearch configuration
4484 *
4485 * Finds a pattern in the skb data according to the specified
4486 * textsearch configuration. Use textsearch_next() to retrieve
4487 * subsequent occurrences of the pattern. Returns the offset
4488 * to the first occurrence or UINT_MAX if no match was found.
4489 */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config)4490 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4491 unsigned int to, struct ts_config *config)
4492 {
4493 unsigned int patlen = config->ops->get_pattern_len(config);
4494 struct ts_state state;
4495 unsigned int ret;
4496
4497 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4498
4499 config->get_next_block = skb_ts_get_next_block;
4500 config->finish = skb_ts_finish;
4501
4502 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4503
4504 ret = textsearch_find(config, &state);
4505 return (ret + patlen <= to - from ? ret : UINT_MAX);
4506 }
4507 EXPORT_SYMBOL(skb_find_text);
4508
skb_append_pagefrags(struct sk_buff * skb,struct page * page,int offset,size_t size,size_t max_frags)4509 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4510 int offset, size_t size, size_t max_frags)
4511 {
4512 int i = skb_shinfo(skb)->nr_frags;
4513
4514 if (skb_can_coalesce(skb, i, page, offset)) {
4515 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4516 } else if (i < max_frags) {
4517 skb_zcopy_downgrade_managed(skb);
4518 get_page(page);
4519 skb_fill_page_desc_noacc(skb, i, page, offset, size);
4520 } else {
4521 return -EMSGSIZE;
4522 }
4523
4524 return 0;
4525 }
4526 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4527
4528 /**
4529 * skb_pull_rcsum - pull skb and update receive checksum
4530 * @skb: buffer to update
4531 * @len: length of data pulled
4532 *
4533 * This function performs an skb_pull on the packet and updates
4534 * the CHECKSUM_COMPLETE checksum. It should be used on
4535 * receive path processing instead of skb_pull unless you know
4536 * that the checksum difference is zero (e.g., a valid IP header)
4537 * or you are setting ip_summed to CHECKSUM_NONE.
4538 */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)4539 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4540 {
4541 unsigned char *data = skb->data;
4542
4543 BUG_ON(len > skb->len);
4544 __skb_pull(skb, len);
4545 skb_postpull_rcsum(skb, data, len);
4546 return skb->data;
4547 }
4548 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4549
skb_head_frag_to_page_desc(struct sk_buff * frag_skb)4550 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4551 {
4552 skb_frag_t head_frag;
4553 struct page *page;
4554
4555 page = virt_to_head_page(frag_skb->head);
4556 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4557 (unsigned char *)page_address(page),
4558 skb_headlen(frag_skb));
4559 return head_frag;
4560 }
4561
skb_segment_list(struct sk_buff * skb,netdev_features_t features,unsigned int offset)4562 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4563 netdev_features_t features,
4564 unsigned int offset)
4565 {
4566 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4567 unsigned int tnl_hlen = skb_tnl_header_len(skb);
4568 unsigned int delta_truesize = 0;
4569 unsigned int delta_len = 0;
4570 struct sk_buff *tail = NULL;
4571 struct sk_buff *nskb, *tmp;
4572 int len_diff, err;
4573
4574 skb_push(skb, -skb_network_offset(skb) + offset);
4575
4576 /* Ensure the head is writeable before touching the shared info */
4577 err = skb_unclone(skb, GFP_ATOMIC);
4578 if (err)
4579 goto err_linearize;
4580
4581 skb_shinfo(skb)->frag_list = NULL;
4582
4583 while (list_skb) {
4584 nskb = list_skb;
4585 list_skb = list_skb->next;
4586
4587 err = 0;
4588 delta_truesize += nskb->truesize;
4589 if (skb_shared(nskb)) {
4590 tmp = skb_clone(nskb, GFP_ATOMIC);
4591 if (tmp) {
4592 consume_skb(nskb);
4593 nskb = tmp;
4594 err = skb_unclone(nskb, GFP_ATOMIC);
4595 } else {
4596 err = -ENOMEM;
4597 }
4598 }
4599
4600 if (!tail)
4601 skb->next = nskb;
4602 else
4603 tail->next = nskb;
4604
4605 if (unlikely(err)) {
4606 nskb->next = list_skb;
4607 goto err_linearize;
4608 }
4609
4610 tail = nskb;
4611
4612 delta_len += nskb->len;
4613
4614 skb_push(nskb, -skb_network_offset(nskb) + offset);
4615
4616 skb_release_head_state(nskb);
4617 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4618 __copy_skb_header(nskb, skb);
4619
4620 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4621 nskb->transport_header += len_diff;
4622 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4623 nskb->data - tnl_hlen,
4624 offset + tnl_hlen);
4625
4626 if (skb_needs_linearize(nskb, features) &&
4627 __skb_linearize(nskb))
4628 goto err_linearize;
4629 }
4630
4631 skb->truesize = skb->truesize - delta_truesize;
4632 skb->data_len = skb->data_len - delta_len;
4633 skb->len = skb->len - delta_len;
4634
4635 skb_gso_reset(skb);
4636
4637 skb->prev = tail;
4638
4639 if (skb_needs_linearize(skb, features) &&
4640 __skb_linearize(skb))
4641 goto err_linearize;
4642
4643 skb_get(skb);
4644
4645 return skb;
4646
4647 err_linearize:
4648 kfree_skb_list(skb->next);
4649 skb->next = NULL;
4650 return ERR_PTR(-ENOMEM);
4651 }
4652 EXPORT_SYMBOL_GPL(skb_segment_list);
4653
4654 /**
4655 * skb_segment - Perform protocol segmentation on skb.
4656 * @head_skb: buffer to segment
4657 * @features: features for the output path (see dev->features)
4658 *
4659 * This function performs segmentation on the given skb. It returns
4660 * a pointer to the first in a list of new skbs for the segments.
4661 * In case of error it returns ERR_PTR(err).
4662 */
skb_segment(struct sk_buff * head_skb,netdev_features_t features)4663 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4664 netdev_features_t features)
4665 {
4666 struct sk_buff *segs = NULL;
4667 struct sk_buff *tail = NULL;
4668 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4669 unsigned int mss = skb_shinfo(head_skb)->gso_size;
4670 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4671 unsigned int offset = doffset;
4672 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4673 unsigned int partial_segs = 0;
4674 unsigned int headroom;
4675 unsigned int len = head_skb->len;
4676 struct sk_buff *frag_skb;
4677 skb_frag_t *frag;
4678 __be16 proto;
4679 bool csum, sg;
4680 int err = -ENOMEM;
4681 int i = 0;
4682 int nfrags, pos;
4683
4684 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4685 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4686 struct sk_buff *check_skb;
4687
4688 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4689 if (skb_headlen(check_skb) && !check_skb->head_frag) {
4690 /* gso_size is untrusted, and we have a frag_list with
4691 * a linear non head_frag item.
4692 *
4693 * If head_skb's headlen does not fit requested gso_size,
4694 * it means that the frag_list members do NOT terminate
4695 * on exact gso_size boundaries. Hence we cannot perform
4696 * skb_frag_t page sharing. Therefore we must fallback to
4697 * copying the frag_list skbs; we do so by disabling SG.
4698 */
4699 features &= ~NETIF_F_SG;
4700 break;
4701 }
4702 }
4703 }
4704
4705 __skb_push(head_skb, doffset);
4706 proto = skb_network_protocol(head_skb, NULL);
4707 if (unlikely(!proto))
4708 return ERR_PTR(-EINVAL);
4709
4710 sg = !!(features & NETIF_F_SG);
4711 csum = !!can_checksum_protocol(features, proto);
4712
4713 if (sg && csum && (mss != GSO_BY_FRAGS)) {
4714 if (!(features & NETIF_F_GSO_PARTIAL)) {
4715 struct sk_buff *iter;
4716 unsigned int frag_len;
4717
4718 if (!list_skb ||
4719 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4720 goto normal;
4721
4722 /* If we get here then all the required
4723 * GSO features except frag_list are supported.
4724 * Try to split the SKB to multiple GSO SKBs
4725 * with no frag_list.
4726 * Currently we can do that only when the buffers don't
4727 * have a linear part and all the buffers except
4728 * the last are of the same length.
4729 */
4730 frag_len = list_skb->len;
4731 skb_walk_frags(head_skb, iter) {
4732 if (frag_len != iter->len && iter->next)
4733 goto normal;
4734 if (skb_headlen(iter) && !iter->head_frag)
4735 goto normal;
4736
4737 len -= iter->len;
4738 }
4739
4740 if (len != frag_len)
4741 goto normal;
4742 }
4743
4744 /* GSO partial only requires that we trim off any excess that
4745 * doesn't fit into an MSS sized block, so take care of that
4746 * now.
4747 * Cap len to not accidentally hit GSO_BY_FRAGS.
4748 */
4749 partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4750 if (partial_segs > 1)
4751 mss *= partial_segs;
4752 else
4753 partial_segs = 0;
4754 }
4755
4756 normal:
4757 headroom = skb_headroom(head_skb);
4758 pos = skb_headlen(head_skb);
4759
4760 if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4761 return ERR_PTR(-ENOMEM);
4762
4763 nfrags = skb_shinfo(head_skb)->nr_frags;
4764 frag = skb_shinfo(head_skb)->frags;
4765 frag_skb = head_skb;
4766
4767 do {
4768 struct sk_buff *nskb;
4769 skb_frag_t *nskb_frag;
4770 int hsize;
4771 int size;
4772
4773 if (unlikely(mss == GSO_BY_FRAGS)) {
4774 len = list_skb->len;
4775 } else {
4776 len = head_skb->len - offset;
4777 if (len > mss)
4778 len = mss;
4779 }
4780
4781 hsize = skb_headlen(head_skb) - offset;
4782
4783 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4784 (skb_headlen(list_skb) == len || sg)) {
4785 BUG_ON(skb_headlen(list_skb) > len);
4786
4787 nskb = skb_clone(list_skb, GFP_ATOMIC);
4788 if (unlikely(!nskb))
4789 goto err;
4790
4791 i = 0;
4792 nfrags = skb_shinfo(list_skb)->nr_frags;
4793 frag = skb_shinfo(list_skb)->frags;
4794 frag_skb = list_skb;
4795 pos += skb_headlen(list_skb);
4796
4797 while (pos < offset + len) {
4798 BUG_ON(i >= nfrags);
4799
4800 size = skb_frag_size(frag);
4801 if (pos + size > offset + len)
4802 break;
4803
4804 i++;
4805 pos += size;
4806 frag++;
4807 }
4808
4809 list_skb = list_skb->next;
4810
4811 if (unlikely(pskb_trim(nskb, len))) {
4812 kfree_skb(nskb);
4813 goto err;
4814 }
4815
4816 hsize = skb_end_offset(nskb);
4817 if (skb_cow_head(nskb, doffset + headroom)) {
4818 kfree_skb(nskb);
4819 goto err;
4820 }
4821
4822 nskb->truesize += skb_end_offset(nskb) - hsize;
4823 skb_release_head_state(nskb);
4824 __skb_push(nskb, doffset);
4825 } else {
4826 if (hsize < 0)
4827 hsize = 0;
4828 if (hsize > len || !sg)
4829 hsize = len;
4830
4831 nskb = __alloc_skb(hsize + doffset + headroom,
4832 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4833 NUMA_NO_NODE);
4834
4835 if (unlikely(!nskb))
4836 goto err;
4837
4838 skb_reserve(nskb, headroom);
4839 __skb_put(nskb, doffset);
4840 }
4841
4842 if (segs)
4843 tail->next = nskb;
4844 else
4845 segs = nskb;
4846 tail = nskb;
4847
4848 __copy_skb_header(nskb, head_skb);
4849
4850 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4851 skb_reset_mac_len(nskb);
4852
4853 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4854 nskb->data - tnl_hlen,
4855 doffset + tnl_hlen);
4856
4857 if (nskb->len == len + doffset)
4858 goto perform_csum_check;
4859
4860 if (!sg) {
4861 if (!csum) {
4862 if (!nskb->remcsum_offload)
4863 nskb->ip_summed = CHECKSUM_NONE;
4864 SKB_GSO_CB(nskb)->csum =
4865 skb_copy_and_csum_bits(head_skb, offset,
4866 skb_put(nskb,
4867 len),
4868 len);
4869 SKB_GSO_CB(nskb)->csum_start =
4870 skb_headroom(nskb) + doffset;
4871 } else {
4872 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4873 goto err;
4874 }
4875 continue;
4876 }
4877
4878 nskb_frag = skb_shinfo(nskb)->frags;
4879
4880 skb_copy_from_linear_data_offset(head_skb, offset,
4881 skb_put(nskb, hsize), hsize);
4882
4883 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4884 SKBFL_SHARED_FRAG;
4885
4886 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4887 goto err;
4888
4889 while (pos < offset + len) {
4890 if (i >= nfrags) {
4891 if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4892 skb_zerocopy_clone(nskb, list_skb,
4893 GFP_ATOMIC))
4894 goto err;
4895
4896 i = 0;
4897 nfrags = skb_shinfo(list_skb)->nr_frags;
4898 frag = skb_shinfo(list_skb)->frags;
4899 frag_skb = list_skb;
4900 if (!skb_headlen(list_skb)) {
4901 BUG_ON(!nfrags);
4902 } else {
4903 BUG_ON(!list_skb->head_frag);
4904
4905 /* to make room for head_frag. */
4906 i--;
4907 frag--;
4908 }
4909
4910 list_skb = list_skb->next;
4911 }
4912
4913 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4914 MAX_SKB_FRAGS)) {
4915 net_warn_ratelimited(
4916 "skb_segment: too many frags: %u %u\n",
4917 pos, mss);
4918 err = -EINVAL;
4919 goto err;
4920 }
4921
4922 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4923 __skb_frag_ref(nskb_frag);
4924 size = skb_frag_size(nskb_frag);
4925
4926 if (pos < offset) {
4927 skb_frag_off_add(nskb_frag, offset - pos);
4928 skb_frag_size_sub(nskb_frag, offset - pos);
4929 }
4930
4931 skb_shinfo(nskb)->nr_frags++;
4932
4933 if (pos + size <= offset + len) {
4934 i++;
4935 frag++;
4936 pos += size;
4937 } else {
4938 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4939 goto skip_fraglist;
4940 }
4941
4942 nskb_frag++;
4943 }
4944
4945 skip_fraglist:
4946 nskb->data_len = len - hsize;
4947 nskb->len += nskb->data_len;
4948 nskb->truesize += nskb->data_len;
4949
4950 perform_csum_check:
4951 if (!csum) {
4952 if (skb_has_shared_frag(nskb) &&
4953 __skb_linearize(nskb))
4954 goto err;
4955
4956 if (!nskb->remcsum_offload)
4957 nskb->ip_summed = CHECKSUM_NONE;
4958 SKB_GSO_CB(nskb)->csum =
4959 skb_checksum(nskb, doffset,
4960 nskb->len - doffset, 0);
4961 SKB_GSO_CB(nskb)->csum_start =
4962 skb_headroom(nskb) + doffset;
4963 }
4964 } while ((offset += len) < head_skb->len);
4965
4966 /* Some callers want to get the end of the list.
4967 * Put it in segs->prev to avoid walking the list.
4968 * (see validate_xmit_skb_list() for example)
4969 */
4970 segs->prev = tail;
4971
4972 if (partial_segs) {
4973 struct sk_buff *iter;
4974 int type = skb_shinfo(head_skb)->gso_type;
4975 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4976
4977 /* Update type to add partial and then remove dodgy if set */
4978 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4979 type &= ~SKB_GSO_DODGY;
4980
4981 /* Update GSO info and prepare to start updating headers on
4982 * our way back down the stack of protocols.
4983 */
4984 for (iter = segs; iter; iter = iter->next) {
4985 skb_shinfo(iter)->gso_size = gso_size;
4986 skb_shinfo(iter)->gso_segs = partial_segs;
4987 skb_shinfo(iter)->gso_type = type;
4988 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4989 }
4990
4991 if (tail->len - doffset <= gso_size)
4992 skb_shinfo(tail)->gso_size = 0;
4993 else if (tail != segs)
4994 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4995 }
4996
4997 /* Following permits correct backpressure, for protocols
4998 * using skb_set_owner_w().
4999 * Idea is to tranfert ownership from head_skb to last segment.
5000 */
5001 if (head_skb->destructor == sock_wfree) {
5002 swap(tail->truesize, head_skb->truesize);
5003 swap(tail->destructor, head_skb->destructor);
5004 swap(tail->sk, head_skb->sk);
5005 }
5006 return segs;
5007
5008 err:
5009 kfree_skb_list(segs);
5010 return ERR_PTR(err);
5011 }
5012 EXPORT_SYMBOL_GPL(skb_segment);
5013
5014 #ifdef CONFIG_SKB_EXTENSIONS
5015 #define SKB_EXT_ALIGN_VALUE 8
5016 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
5017
5018 static const u8 skb_ext_type_len[] = {
5019 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
5020 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
5021 #endif
5022 #ifdef CONFIG_XFRM
5023 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
5024 #endif
5025 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5026 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
5027 #endif
5028 #if IS_ENABLED(CONFIG_MPTCP)
5029 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
5030 #endif
5031 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
5032 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
5033 #endif
5034 };
5035
skb_ext_total_length(void)5036 static __always_inline unsigned int skb_ext_total_length(void)
5037 {
5038 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
5039 int i;
5040
5041 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
5042 l += skb_ext_type_len[i];
5043
5044 return l;
5045 }
5046
skb_extensions_init(void)5047 static void skb_extensions_init(void)
5048 {
5049 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
5050 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
5051 BUILD_BUG_ON(skb_ext_total_length() > 255);
5052 #endif
5053
5054 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
5055 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
5056 0,
5057 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5058 NULL);
5059 }
5060 #else
skb_extensions_init(void)5061 static void skb_extensions_init(void) {}
5062 #endif
5063
5064 /* The SKB kmem_cache slab is critical for network performance. Never
5065 * merge/alias the slab with similar sized objects. This avoids fragmentation
5066 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
5067 */
5068 #ifndef CONFIG_SLUB_TINY
5069 #define FLAG_SKB_NO_MERGE SLAB_NO_MERGE
5070 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
5071 #define FLAG_SKB_NO_MERGE 0
5072 #endif
5073
skb_init(void)5074 void __init skb_init(void)
5075 {
5076 net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
5077 sizeof(struct sk_buff),
5078 0,
5079 SLAB_HWCACHE_ALIGN|SLAB_PANIC|
5080 FLAG_SKB_NO_MERGE,
5081 offsetof(struct sk_buff, cb),
5082 sizeof_field(struct sk_buff, cb),
5083 NULL);
5084 net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
5085 sizeof(struct sk_buff_fclones),
5086 0,
5087 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5088 NULL);
5089 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
5090 * struct skb_shared_info is located at the end of skb->head,
5091 * and should not be copied to/from user.
5092 */
5093 net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
5094 SKB_SMALL_HEAD_CACHE_SIZE,
5095 0,
5096 SLAB_HWCACHE_ALIGN | SLAB_PANIC,
5097 0,
5098 SKB_SMALL_HEAD_HEADROOM,
5099 NULL);
5100 skb_extensions_init();
5101 }
5102
5103 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len,unsigned int recursion_level)5104 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
5105 unsigned int recursion_level)
5106 {
5107 int start = skb_headlen(skb);
5108 int i, copy = start - offset;
5109 struct sk_buff *frag_iter;
5110 int elt = 0;
5111
5112 if (unlikely(recursion_level >= 24))
5113 return -EMSGSIZE;
5114
5115 if (copy > 0) {
5116 if (copy > len)
5117 copy = len;
5118 sg_set_buf(sg, skb->data + offset, copy);
5119 elt++;
5120 if ((len -= copy) == 0)
5121 return elt;
5122 offset += copy;
5123 }
5124
5125 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5126 int end;
5127
5128 WARN_ON(start > offset + len);
5129
5130 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
5131 if ((copy = end - offset) > 0) {
5132 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5133 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5134 return -EMSGSIZE;
5135
5136 if (copy > len)
5137 copy = len;
5138 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
5139 skb_frag_off(frag) + offset - start);
5140 elt++;
5141 if (!(len -= copy))
5142 return elt;
5143 offset += copy;
5144 }
5145 start = end;
5146 }
5147
5148 skb_walk_frags(skb, frag_iter) {
5149 int end, ret;
5150
5151 WARN_ON(start > offset + len);
5152
5153 end = start + frag_iter->len;
5154 if ((copy = end - offset) > 0) {
5155 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5156 return -EMSGSIZE;
5157
5158 if (copy > len)
5159 copy = len;
5160 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
5161 copy, recursion_level + 1);
5162 if (unlikely(ret < 0))
5163 return ret;
5164 elt += ret;
5165 if ((len -= copy) == 0)
5166 return elt;
5167 offset += copy;
5168 }
5169 start = end;
5170 }
5171 BUG_ON(len);
5172 return elt;
5173 }
5174
5175 /**
5176 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
5177 * @skb: Socket buffer containing the buffers to be mapped
5178 * @sg: The scatter-gather list to map into
5179 * @offset: The offset into the buffer's contents to start mapping
5180 * @len: Length of buffer space to be mapped
5181 *
5182 * Fill the specified scatter-gather list with mappings/pointers into a
5183 * region of the buffer space attached to a socket buffer. Returns either
5184 * the number of scatterlist items used, or -EMSGSIZE if the contents
5185 * could not fit.
5186 */
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)5187 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5188 {
5189 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5190
5191 if (nsg <= 0)
5192 return nsg;
5193
5194 sg_mark_end(&sg[nsg - 1]);
5195
5196 return nsg;
5197 }
5198 EXPORT_SYMBOL_GPL(skb_to_sgvec);
5199
5200 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5201 * sglist without mark the sg which contain last skb data as the end.
5202 * So the caller can mannipulate sg list as will when padding new data after
5203 * the first call without calling sg_unmark_end to expend sg list.
5204 *
5205 * Scenario to use skb_to_sgvec_nomark:
5206 * 1. sg_init_table
5207 * 2. skb_to_sgvec_nomark(payload1)
5208 * 3. skb_to_sgvec_nomark(payload2)
5209 *
5210 * This is equivalent to:
5211 * 1. sg_init_table
5212 * 2. skb_to_sgvec(payload1)
5213 * 3. sg_unmark_end
5214 * 4. skb_to_sgvec(payload2)
5215 *
5216 * When mapping multiple payload conditionally, skb_to_sgvec_nomark
5217 * is more preferable.
5218 */
skb_to_sgvec_nomark(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)5219 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5220 int offset, int len)
5221 {
5222 return __skb_to_sgvec(skb, sg, offset, len, 0);
5223 }
5224 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5225
5226
5227
5228 /**
5229 * skb_cow_data - Check that a socket buffer's data buffers are writable
5230 * @skb: The socket buffer to check.
5231 * @tailbits: Amount of trailing space to be added
5232 * @trailer: Returned pointer to the skb where the @tailbits space begins
5233 *
5234 * Make sure that the data buffers attached to a socket buffer are
5235 * writable. If they are not, private copies are made of the data buffers
5236 * and the socket buffer is set to use these instead.
5237 *
5238 * If @tailbits is given, make sure that there is space to write @tailbits
5239 * bytes of data beyond current end of socket buffer. @trailer will be
5240 * set to point to the skb in which this space begins.
5241 *
5242 * The number of scatterlist elements required to completely map the
5243 * COW'd and extended socket buffer will be returned.
5244 */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)5245 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5246 {
5247 int copyflag;
5248 int elt;
5249 struct sk_buff *skb1, **skb_p;
5250
5251 /* If skb is cloned or its head is paged, reallocate
5252 * head pulling out all the pages (pages are considered not writable
5253 * at the moment even if they are anonymous).
5254 */
5255 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5256 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5257 return -ENOMEM;
5258
5259 /* Easy case. Most of packets will go this way. */
5260 if (!skb_has_frag_list(skb)) {
5261 /* A little of trouble, not enough of space for trailer.
5262 * This should not happen, when stack is tuned to generate
5263 * good frames. OK, on miss we reallocate and reserve even more
5264 * space, 128 bytes is fair. */
5265
5266 if (skb_tailroom(skb) < tailbits &&
5267 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5268 return -ENOMEM;
5269
5270 /* Voila! */
5271 *trailer = skb;
5272 return 1;
5273 }
5274
5275 /* Misery. We are in troubles, going to mincer fragments... */
5276
5277 elt = 1;
5278 skb_p = &skb_shinfo(skb)->frag_list;
5279 copyflag = 0;
5280
5281 while ((skb1 = *skb_p) != NULL) {
5282 int ntail = 0;
5283
5284 /* The fragment is partially pulled by someone,
5285 * this can happen on input. Copy it and everything
5286 * after it. */
5287
5288 if (skb_shared(skb1))
5289 copyflag = 1;
5290
5291 /* If the skb is the last, worry about trailer. */
5292
5293 if (skb1->next == NULL && tailbits) {
5294 if (skb_shinfo(skb1)->nr_frags ||
5295 skb_has_frag_list(skb1) ||
5296 skb_tailroom(skb1) < tailbits)
5297 ntail = tailbits + 128;
5298 }
5299
5300 if (copyflag ||
5301 skb_cloned(skb1) ||
5302 ntail ||
5303 skb_shinfo(skb1)->nr_frags ||
5304 skb_has_frag_list(skb1)) {
5305 struct sk_buff *skb2;
5306
5307 /* Fuck, we are miserable poor guys... */
5308 if (ntail == 0)
5309 skb2 = skb_copy(skb1, GFP_ATOMIC);
5310 else
5311 skb2 = skb_copy_expand(skb1,
5312 skb_headroom(skb1),
5313 ntail,
5314 GFP_ATOMIC);
5315 if (unlikely(skb2 == NULL))
5316 return -ENOMEM;
5317
5318 if (skb1->sk)
5319 skb_set_owner_w(skb2, skb1->sk);
5320
5321 /* Looking around. Are we still alive?
5322 * OK, link new skb, drop old one */
5323
5324 skb2->next = skb1->next;
5325 *skb_p = skb2;
5326 kfree_skb(skb1);
5327 skb1 = skb2;
5328 }
5329 elt++;
5330 *trailer = skb1;
5331 skb_p = &skb1->next;
5332 }
5333
5334 return elt;
5335 }
5336 EXPORT_SYMBOL_GPL(skb_cow_data);
5337
sock_rmem_free(struct sk_buff * skb)5338 static void sock_rmem_free(struct sk_buff *skb)
5339 {
5340 struct sock *sk = skb->sk;
5341
5342 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5343 }
5344
skb_set_err_queue(struct sk_buff * skb)5345 static void skb_set_err_queue(struct sk_buff *skb)
5346 {
5347 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5348 * So, it is safe to (mis)use it to mark skbs on the error queue.
5349 */
5350 skb->pkt_type = PACKET_OUTGOING;
5351 BUILD_BUG_ON(PACKET_OUTGOING == 0);
5352 }
5353
5354 /*
5355 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5356 */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)5357 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5358 {
5359 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5360 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5361 return -ENOMEM;
5362
5363 skb_orphan(skb);
5364 skb->sk = sk;
5365 skb->destructor = sock_rmem_free;
5366 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5367 skb_set_err_queue(skb);
5368
5369 /* before exiting rcu section, make sure dst is refcounted */
5370 skb_dst_force(skb);
5371
5372 skb_queue_tail(&sk->sk_error_queue, skb);
5373 if (!sock_flag(sk, SOCK_DEAD))
5374 sk_error_report(sk);
5375 return 0;
5376 }
5377 EXPORT_SYMBOL(sock_queue_err_skb);
5378
is_icmp_err_skb(const struct sk_buff * skb)5379 static bool is_icmp_err_skb(const struct sk_buff *skb)
5380 {
5381 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5382 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5383 }
5384
sock_dequeue_err_skb(struct sock * sk)5385 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5386 {
5387 struct sk_buff_head *q = &sk->sk_error_queue;
5388 struct sk_buff *skb, *skb_next = NULL;
5389 bool icmp_next = false;
5390 unsigned long flags;
5391
5392 if (skb_queue_empty_lockless(q))
5393 return NULL;
5394
5395 spin_lock_irqsave(&q->lock, flags);
5396 skb = __skb_dequeue(q);
5397 if (skb && (skb_next = skb_peek(q))) {
5398 icmp_next = is_icmp_err_skb(skb_next);
5399 if (icmp_next)
5400 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5401 }
5402 spin_unlock_irqrestore(&q->lock, flags);
5403
5404 if (is_icmp_err_skb(skb) && !icmp_next)
5405 sk->sk_err = 0;
5406
5407 if (skb_next)
5408 sk_error_report(sk);
5409
5410 return skb;
5411 }
5412 EXPORT_SYMBOL(sock_dequeue_err_skb);
5413
5414 /**
5415 * skb_clone_sk - create clone of skb, and take reference to socket
5416 * @skb: the skb to clone
5417 *
5418 * This function creates a clone of a buffer that holds a reference on
5419 * sk_refcnt. Buffers created via this function are meant to be
5420 * returned using sock_queue_err_skb, or free via kfree_skb.
5421 *
5422 * When passing buffers allocated with this function to sock_queue_err_skb
5423 * it is necessary to wrap the call with sock_hold/sock_put in order to
5424 * prevent the socket from being released prior to being enqueued on
5425 * the sk_error_queue.
5426 */
skb_clone_sk(struct sk_buff * skb)5427 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5428 {
5429 struct sock *sk = skb->sk;
5430 struct sk_buff *clone;
5431
5432 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5433 return NULL;
5434
5435 clone = skb_clone(skb, GFP_ATOMIC);
5436 if (!clone) {
5437 sock_put(sk);
5438 return NULL;
5439 }
5440
5441 clone->sk = sk;
5442 clone->destructor = sock_efree;
5443
5444 return clone;
5445 }
5446 EXPORT_SYMBOL(skb_clone_sk);
5447
__skb_complete_tx_timestamp(struct sk_buff * skb,struct sock * sk,int tstype,bool opt_stats)5448 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5449 struct sock *sk,
5450 int tstype,
5451 bool opt_stats)
5452 {
5453 struct sock_exterr_skb *serr;
5454 int err;
5455
5456 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5457
5458 serr = SKB_EXT_ERR(skb);
5459 memset(serr, 0, sizeof(*serr));
5460 serr->ee.ee_errno = ENOMSG;
5461 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5462 serr->ee.ee_info = tstype;
5463 serr->opt_stats = opt_stats;
5464 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5465 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5466 serr->ee.ee_data = skb_shinfo(skb)->tskey;
5467 if (sk_is_tcp(sk))
5468 serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5469 }
5470
5471 err = sock_queue_err_skb(sk, skb);
5472
5473 if (err)
5474 kfree_skb(skb);
5475 }
5476
skb_may_tx_timestamp(struct sock * sk,bool tsonly)5477 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5478 {
5479 bool ret;
5480
5481 if (likely(tsonly || READ_ONCE(sock_net(sk)->core.sysctl_tstamp_allow_data)))
5482 return true;
5483
5484 read_lock_bh(&sk->sk_callback_lock);
5485 ret = sk->sk_socket && sk->sk_socket->file &&
5486 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5487 read_unlock_bh(&sk->sk_callback_lock);
5488 return ret;
5489 }
5490
skb_complete_tx_timestamp(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps)5491 void skb_complete_tx_timestamp(struct sk_buff *skb,
5492 struct skb_shared_hwtstamps *hwtstamps)
5493 {
5494 struct sock *sk = skb->sk;
5495
5496 if (!skb_may_tx_timestamp(sk, false))
5497 goto err;
5498
5499 /* Take a reference to prevent skb_orphan() from freeing the socket,
5500 * but only if the socket refcount is not zero.
5501 */
5502 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5503 *skb_hwtstamps(skb) = *hwtstamps;
5504 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5505 sock_put(sk);
5506 return;
5507 }
5508
5509 err:
5510 kfree_skb(skb);
5511 }
5512 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5513
skb_tstamp_tx_report_so_timestamping(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps,int tstype)5514 static bool skb_tstamp_tx_report_so_timestamping(struct sk_buff *skb,
5515 struct skb_shared_hwtstamps *hwtstamps,
5516 int tstype)
5517 {
5518 switch (tstype) {
5519 case SCM_TSTAMP_SCHED:
5520 return skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP;
5521 case SCM_TSTAMP_SND:
5522 return skb_shinfo(skb)->tx_flags & (hwtstamps ? SKBTX_HW_TSTAMP_NOBPF :
5523 SKBTX_SW_TSTAMP);
5524 case SCM_TSTAMP_ACK:
5525 return TCP_SKB_CB(skb)->txstamp_ack & TSTAMP_ACK_SK;
5526 case SCM_TSTAMP_COMPLETION:
5527 return skb_shinfo(skb)->tx_flags & SKBTX_COMPLETION_TSTAMP;
5528 }
5529
5530 return false;
5531 }
5532
skb_tstamp_tx_report_bpf_timestamping(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)5533 static void skb_tstamp_tx_report_bpf_timestamping(struct sk_buff *skb,
5534 struct skb_shared_hwtstamps *hwtstamps,
5535 struct sock *sk,
5536 int tstype)
5537 {
5538 int op;
5539
5540 switch (tstype) {
5541 case SCM_TSTAMP_SCHED:
5542 op = BPF_SOCK_OPS_TSTAMP_SCHED_CB;
5543 break;
5544 case SCM_TSTAMP_SND:
5545 if (hwtstamps) {
5546 op = BPF_SOCK_OPS_TSTAMP_SND_HW_CB;
5547 *skb_hwtstamps(skb) = *hwtstamps;
5548 } else {
5549 op = BPF_SOCK_OPS_TSTAMP_SND_SW_CB;
5550 }
5551 break;
5552 case SCM_TSTAMP_ACK:
5553 op = BPF_SOCK_OPS_TSTAMP_ACK_CB;
5554 break;
5555 default:
5556 return;
5557 }
5558
5559 bpf_skops_tx_timestamping(sk, skb, op);
5560 }
5561
__skb_tstamp_tx(struct sk_buff * orig_skb,const struct sk_buff * ack_skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)5562 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5563 const struct sk_buff *ack_skb,
5564 struct skb_shared_hwtstamps *hwtstamps,
5565 struct sock *sk, int tstype)
5566 {
5567 struct sk_buff *skb;
5568 bool tsonly, opt_stats = false;
5569 u32 tsflags;
5570
5571 if (!sk)
5572 return;
5573
5574 if (skb_shinfo(orig_skb)->tx_flags & SKBTX_BPF)
5575 skb_tstamp_tx_report_bpf_timestamping(orig_skb, hwtstamps,
5576 sk, tstype);
5577
5578 if (!skb_tstamp_tx_report_so_timestamping(orig_skb, hwtstamps, tstype))
5579 return;
5580
5581 tsflags = READ_ONCE(sk->sk_tsflags);
5582 if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5583 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5584 return;
5585
5586 tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5587 if (!skb_may_tx_timestamp(sk, tsonly))
5588 return;
5589
5590 if (tsonly) {
5591 #ifdef CONFIG_INET
5592 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5593 sk_is_tcp(sk)) {
5594 skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5595 ack_skb);
5596 opt_stats = true;
5597 } else
5598 #endif
5599 skb = alloc_skb(0, GFP_ATOMIC);
5600 } else {
5601 skb = skb_clone(orig_skb, GFP_ATOMIC);
5602
5603 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5604 kfree_skb(skb);
5605 return;
5606 }
5607 }
5608 if (!skb)
5609 return;
5610
5611 if (tsonly) {
5612 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5613 SKBTX_ANY_TSTAMP;
5614 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5615 }
5616
5617 if (hwtstamps)
5618 *skb_hwtstamps(skb) = *hwtstamps;
5619 else
5620 __net_timestamp(skb);
5621
5622 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5623 }
5624 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5625
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)5626 void skb_tstamp_tx(struct sk_buff *orig_skb,
5627 struct skb_shared_hwtstamps *hwtstamps)
5628 {
5629 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5630 SCM_TSTAMP_SND);
5631 }
5632 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5633
5634 #ifdef CONFIG_WIRELESS
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)5635 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5636 {
5637 struct sock *sk = skb->sk;
5638 struct sock_exterr_skb *serr;
5639 int err = 1;
5640
5641 skb->wifi_acked_valid = 1;
5642 skb->wifi_acked = acked;
5643
5644 serr = SKB_EXT_ERR(skb);
5645 memset(serr, 0, sizeof(*serr));
5646 serr->ee.ee_errno = ENOMSG;
5647 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5648
5649 /* Take a reference to prevent skb_orphan() from freeing the socket,
5650 * but only if the socket refcount is not zero.
5651 */
5652 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5653 err = sock_queue_err_skb(sk, skb);
5654 sock_put(sk);
5655 }
5656 if (err)
5657 kfree_skb(skb);
5658 }
5659 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5660 #endif /* CONFIG_WIRELESS */
5661
5662 /**
5663 * skb_partial_csum_set - set up and verify partial csum values for packet
5664 * @skb: the skb to set
5665 * @start: the number of bytes after skb->data to start checksumming.
5666 * @off: the offset from start to place the checksum.
5667 *
5668 * For untrusted partially-checksummed packets, we need to make sure the values
5669 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5670 *
5671 * This function checks and sets those values and skb->ip_summed: if this
5672 * returns false you should drop the packet.
5673 */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)5674 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5675 {
5676 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5677 u32 csum_start = skb_headroom(skb) + (u32)start;
5678
5679 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5680 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5681 start, off, skb_headroom(skb), skb_headlen(skb));
5682 return false;
5683 }
5684 skb->ip_summed = CHECKSUM_PARTIAL;
5685 skb->csum_start = csum_start;
5686 skb->csum_offset = off;
5687 skb->transport_header = csum_start;
5688 return true;
5689 }
5690 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5691
skb_maybe_pull_tail(struct sk_buff * skb,unsigned int len,unsigned int max)5692 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5693 unsigned int max)
5694 {
5695 if (skb_headlen(skb) >= len)
5696 return 0;
5697
5698 /* If we need to pullup then pullup to the max, so we
5699 * won't need to do it again.
5700 */
5701 if (max > skb->len)
5702 max = skb->len;
5703
5704 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5705 return -ENOMEM;
5706
5707 if (skb_headlen(skb) < len)
5708 return -EPROTO;
5709
5710 return 0;
5711 }
5712
5713 #define MAX_TCP_HDR_LEN (15 * 4)
5714
skb_checksum_setup_ip(struct sk_buff * skb,typeof(IPPROTO_IP) proto,unsigned int off)5715 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5716 typeof(IPPROTO_IP) proto,
5717 unsigned int off)
5718 {
5719 int err;
5720
5721 switch (proto) {
5722 case IPPROTO_TCP:
5723 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5724 off + MAX_TCP_HDR_LEN);
5725 if (!err && !skb_partial_csum_set(skb, off,
5726 offsetof(struct tcphdr,
5727 check)))
5728 err = -EPROTO;
5729 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5730
5731 case IPPROTO_UDP:
5732 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5733 off + sizeof(struct udphdr));
5734 if (!err && !skb_partial_csum_set(skb, off,
5735 offsetof(struct udphdr,
5736 check)))
5737 err = -EPROTO;
5738 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5739 }
5740
5741 return ERR_PTR(-EPROTO);
5742 }
5743
5744 /* This value should be large enough to cover a tagged ethernet header plus
5745 * maximally sized IP and TCP or UDP headers.
5746 */
5747 #define MAX_IP_HDR_LEN 128
5748
skb_checksum_setup_ipv4(struct sk_buff * skb,bool recalculate)5749 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5750 {
5751 unsigned int off;
5752 bool fragment;
5753 __sum16 *csum;
5754 int err;
5755
5756 fragment = false;
5757
5758 err = skb_maybe_pull_tail(skb,
5759 sizeof(struct iphdr),
5760 MAX_IP_HDR_LEN);
5761 if (err < 0)
5762 goto out;
5763
5764 if (ip_is_fragment(ip_hdr(skb)))
5765 fragment = true;
5766
5767 off = ip_hdrlen(skb);
5768
5769 err = -EPROTO;
5770
5771 if (fragment)
5772 goto out;
5773
5774 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5775 if (IS_ERR(csum))
5776 return PTR_ERR(csum);
5777
5778 if (recalculate)
5779 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5780 ip_hdr(skb)->daddr,
5781 skb->len - off,
5782 ip_hdr(skb)->protocol, 0);
5783 err = 0;
5784
5785 out:
5786 return err;
5787 }
5788
5789 /* This value should be large enough to cover a tagged ethernet header plus
5790 * an IPv6 header, all options, and a maximal TCP or UDP header.
5791 */
5792 #define MAX_IPV6_HDR_LEN 256
5793
5794 #define OPT_HDR(type, skb, off) \
5795 (type *)(skb_network_header(skb) + (off))
5796
skb_checksum_setup_ipv6(struct sk_buff * skb,bool recalculate)5797 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5798 {
5799 int err;
5800 u8 nexthdr;
5801 unsigned int off;
5802 unsigned int len;
5803 bool fragment;
5804 bool done;
5805 __sum16 *csum;
5806
5807 fragment = false;
5808 done = false;
5809
5810 off = sizeof(struct ipv6hdr);
5811
5812 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5813 if (err < 0)
5814 goto out;
5815
5816 nexthdr = ipv6_hdr(skb)->nexthdr;
5817
5818 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5819 while (off <= len && !done) {
5820 switch (nexthdr) {
5821 case IPPROTO_DSTOPTS:
5822 case IPPROTO_HOPOPTS:
5823 case IPPROTO_ROUTING: {
5824 struct ipv6_opt_hdr *hp;
5825
5826 err = skb_maybe_pull_tail(skb,
5827 off +
5828 sizeof(struct ipv6_opt_hdr),
5829 MAX_IPV6_HDR_LEN);
5830 if (err < 0)
5831 goto out;
5832
5833 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5834 nexthdr = hp->nexthdr;
5835 off += ipv6_optlen(hp);
5836 break;
5837 }
5838 case IPPROTO_AH: {
5839 struct ip_auth_hdr *hp;
5840
5841 err = skb_maybe_pull_tail(skb,
5842 off +
5843 sizeof(struct ip_auth_hdr),
5844 MAX_IPV6_HDR_LEN);
5845 if (err < 0)
5846 goto out;
5847
5848 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5849 nexthdr = hp->nexthdr;
5850 off += ipv6_authlen(hp);
5851 break;
5852 }
5853 case IPPROTO_FRAGMENT: {
5854 struct frag_hdr *hp;
5855
5856 err = skb_maybe_pull_tail(skb,
5857 off +
5858 sizeof(struct frag_hdr),
5859 MAX_IPV6_HDR_LEN);
5860 if (err < 0)
5861 goto out;
5862
5863 hp = OPT_HDR(struct frag_hdr, skb, off);
5864
5865 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5866 fragment = true;
5867
5868 nexthdr = hp->nexthdr;
5869 off += sizeof(struct frag_hdr);
5870 break;
5871 }
5872 default:
5873 done = true;
5874 break;
5875 }
5876 }
5877
5878 err = -EPROTO;
5879
5880 if (!done || fragment)
5881 goto out;
5882
5883 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5884 if (IS_ERR(csum))
5885 return PTR_ERR(csum);
5886
5887 if (recalculate)
5888 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5889 &ipv6_hdr(skb)->daddr,
5890 skb->len - off, nexthdr, 0);
5891 err = 0;
5892
5893 out:
5894 return err;
5895 }
5896
5897 /**
5898 * skb_checksum_setup - set up partial checksum offset
5899 * @skb: the skb to set up
5900 * @recalculate: if true the pseudo-header checksum will be recalculated
5901 */
skb_checksum_setup(struct sk_buff * skb,bool recalculate)5902 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5903 {
5904 int err;
5905
5906 switch (skb->protocol) {
5907 case htons(ETH_P_IP):
5908 err = skb_checksum_setup_ipv4(skb, recalculate);
5909 break;
5910
5911 case htons(ETH_P_IPV6):
5912 err = skb_checksum_setup_ipv6(skb, recalculate);
5913 break;
5914
5915 default:
5916 err = -EPROTO;
5917 break;
5918 }
5919
5920 return err;
5921 }
5922 EXPORT_SYMBOL(skb_checksum_setup);
5923
5924 /**
5925 * skb_checksum_maybe_trim - maybe trims the given skb
5926 * @skb: the skb to check
5927 * @transport_len: the data length beyond the network header
5928 *
5929 * Checks whether the given skb has data beyond the given transport length.
5930 * If so, returns a cloned skb trimmed to this transport length.
5931 * Otherwise returns the provided skb. Returns NULL in error cases
5932 * (e.g. transport_len exceeds skb length or out-of-memory).
5933 *
5934 * Caller needs to set the skb transport header and free any returned skb if it
5935 * differs from the provided skb.
5936 */
skb_checksum_maybe_trim(struct sk_buff * skb,unsigned int transport_len)5937 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5938 unsigned int transport_len)
5939 {
5940 struct sk_buff *skb_chk;
5941 unsigned int len = skb_transport_offset(skb) + transport_len;
5942 int ret;
5943
5944 if (skb->len < len)
5945 return NULL;
5946 else if (skb->len == len)
5947 return skb;
5948
5949 skb_chk = skb_clone(skb, GFP_ATOMIC);
5950 if (!skb_chk)
5951 return NULL;
5952
5953 ret = pskb_trim_rcsum(skb_chk, len);
5954 if (ret) {
5955 kfree_skb(skb_chk);
5956 return NULL;
5957 }
5958
5959 return skb_chk;
5960 }
5961
5962 /**
5963 * skb_checksum_trimmed - validate checksum of an skb
5964 * @skb: the skb to check
5965 * @transport_len: the data length beyond the network header
5966 * @skb_chkf: checksum function to use
5967 *
5968 * Applies the given checksum function skb_chkf to the provided skb.
5969 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5970 *
5971 * If the skb has data beyond the given transport length, then a
5972 * trimmed & cloned skb is checked and returned.
5973 *
5974 * Caller needs to set the skb transport header and free any returned skb if it
5975 * differs from the provided skb.
5976 */
skb_checksum_trimmed(struct sk_buff * skb,unsigned int transport_len,__sum16 (* skb_chkf)(struct sk_buff * skb))5977 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5978 unsigned int transport_len,
5979 __sum16(*skb_chkf)(struct sk_buff *skb))
5980 {
5981 struct sk_buff *skb_chk;
5982 unsigned int offset = skb_transport_offset(skb);
5983 __sum16 ret;
5984
5985 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5986 if (!skb_chk)
5987 goto err;
5988
5989 if (!pskb_may_pull(skb_chk, offset))
5990 goto err;
5991
5992 skb_pull_rcsum(skb_chk, offset);
5993 ret = skb_chkf(skb_chk);
5994 skb_push_rcsum(skb_chk, offset);
5995
5996 if (ret)
5997 goto err;
5998
5999 return skb_chk;
6000
6001 err:
6002 if (skb_chk && skb_chk != skb)
6003 kfree_skb(skb_chk);
6004
6005 return NULL;
6006
6007 }
6008 EXPORT_SYMBOL(skb_checksum_trimmed);
6009
__skb_warn_lro_forwarding(const struct sk_buff * skb)6010 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
6011 {
6012 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
6013 skb->dev->name);
6014 }
6015 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
6016
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)6017 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
6018 {
6019 if (head_stolen) {
6020 skb_release_head_state(skb);
6021 kmem_cache_free(net_hotdata.skbuff_cache, skb);
6022 } else {
6023 __kfree_skb(skb);
6024 }
6025 }
6026 EXPORT_SYMBOL(kfree_skb_partial);
6027
6028 /**
6029 * skb_try_coalesce - try to merge skb to prior one
6030 * @to: prior buffer
6031 * @from: buffer to add
6032 * @fragstolen: pointer to boolean
6033 * @delta_truesize: how much more was allocated than was requested
6034 */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)6035 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
6036 bool *fragstolen, int *delta_truesize)
6037 {
6038 struct skb_shared_info *to_shinfo, *from_shinfo;
6039 int i, delta, len = from->len;
6040
6041 *fragstolen = false;
6042
6043 if (skb_cloned(to))
6044 return false;
6045
6046 /* In general, avoid mixing page_pool and non-page_pool allocated
6047 * pages within the same SKB. In theory we could take full
6048 * references if @from is cloned and !@to->pp_recycle but its
6049 * tricky (due to potential race with the clone disappearing) and
6050 * rare, so not worth dealing with.
6051 */
6052 if (to->pp_recycle != from->pp_recycle)
6053 return false;
6054
6055 if (skb_frags_readable(from) != skb_frags_readable(to))
6056 return false;
6057
6058 if (len <= skb_tailroom(to) && skb_frags_readable(from)) {
6059 if (len)
6060 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
6061 *delta_truesize = 0;
6062 return true;
6063 }
6064
6065 to_shinfo = skb_shinfo(to);
6066 from_shinfo = skb_shinfo(from);
6067 if (to_shinfo->frag_list || from_shinfo->frag_list)
6068 return false;
6069 if (skb_zcopy(to) || skb_zcopy(from))
6070 return false;
6071
6072 if (skb_headlen(from) != 0) {
6073 struct page *page;
6074 unsigned int offset;
6075
6076 if (to_shinfo->nr_frags +
6077 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
6078 return false;
6079
6080 if (skb_head_is_locked(from))
6081 return false;
6082
6083 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
6084
6085 page = virt_to_head_page(from->head);
6086 offset = from->data - (unsigned char *)page_address(page);
6087
6088 skb_fill_page_desc(to, to_shinfo->nr_frags,
6089 page, offset, skb_headlen(from));
6090 *fragstolen = true;
6091 } else {
6092 if (to_shinfo->nr_frags +
6093 from_shinfo->nr_frags > MAX_SKB_FRAGS)
6094 return false;
6095
6096 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
6097 }
6098
6099 WARN_ON_ONCE(delta < len);
6100
6101 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
6102 from_shinfo->frags,
6103 from_shinfo->nr_frags * sizeof(skb_frag_t));
6104 to_shinfo->nr_frags += from_shinfo->nr_frags;
6105
6106 if (!skb_cloned(from))
6107 from_shinfo->nr_frags = 0;
6108
6109 /* if the skb is not cloned this does nothing
6110 * since we set nr_frags to 0.
6111 */
6112 if (skb_pp_frag_ref(from)) {
6113 for (i = 0; i < from_shinfo->nr_frags; i++)
6114 __skb_frag_ref(&from_shinfo->frags[i]);
6115 }
6116
6117 to->truesize += delta;
6118 to->len += len;
6119 to->data_len += len;
6120
6121 *delta_truesize = delta;
6122 return true;
6123 }
6124 EXPORT_SYMBOL(skb_try_coalesce);
6125
6126 /**
6127 * skb_scrub_packet - scrub an skb
6128 *
6129 * @skb: buffer to clean
6130 * @xnet: packet is crossing netns
6131 *
6132 * skb_scrub_packet can be used after encapsulating or decapsulating a packet
6133 * into/from a tunnel. Some information have to be cleared during these
6134 * operations.
6135 * skb_scrub_packet can also be used to clean a skb before injecting it in
6136 * another namespace (@xnet == true). We have to clear all information in the
6137 * skb that could impact namespace isolation.
6138 */
skb_scrub_packet(struct sk_buff * skb,bool xnet)6139 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
6140 {
6141 skb->pkt_type = PACKET_HOST;
6142 skb->skb_iif = 0;
6143 skb->ignore_df = 0;
6144 skb_dst_drop(skb);
6145 skb_ext_reset(skb);
6146 nf_reset_ct(skb);
6147 nf_reset_trace(skb);
6148
6149 #ifdef CONFIG_NET_SWITCHDEV
6150 skb->offload_fwd_mark = 0;
6151 skb->offload_l3_fwd_mark = 0;
6152 #endif
6153 ipvs_reset(skb);
6154
6155 if (!xnet)
6156 return;
6157
6158 skb->mark = 0;
6159 skb_clear_tstamp(skb);
6160 }
6161 EXPORT_SYMBOL_GPL(skb_scrub_packet);
6162
skb_reorder_vlan_header(struct sk_buff * skb)6163 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
6164 {
6165 int mac_len, meta_len;
6166 void *meta;
6167
6168 if (skb_cow(skb, skb_headroom(skb)) < 0) {
6169 kfree_skb(skb);
6170 return NULL;
6171 }
6172
6173 mac_len = skb->data - skb_mac_header(skb);
6174 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
6175 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
6176 mac_len - VLAN_HLEN - ETH_TLEN);
6177 }
6178
6179 meta_len = skb_metadata_len(skb);
6180 if (meta_len) {
6181 meta = skb_metadata_end(skb) - meta_len;
6182 memmove(meta + VLAN_HLEN, meta, meta_len);
6183 }
6184
6185 skb->mac_header += VLAN_HLEN;
6186 return skb;
6187 }
6188
skb_vlan_untag(struct sk_buff * skb)6189 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
6190 {
6191 struct vlan_hdr *vhdr;
6192 u16 vlan_tci;
6193
6194 if (unlikely(skb_vlan_tag_present(skb))) {
6195 /* vlan_tci is already set-up so leave this for another time */
6196 return skb;
6197 }
6198
6199 skb = skb_share_check(skb, GFP_ATOMIC);
6200 if (unlikely(!skb))
6201 goto err_free;
6202 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
6203 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
6204 goto err_free;
6205
6206 vhdr = (struct vlan_hdr *)skb->data;
6207 vlan_tci = ntohs(vhdr->h_vlan_TCI);
6208 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
6209
6210 skb_pull_rcsum(skb, VLAN_HLEN);
6211 vlan_set_encap_proto(skb, vhdr);
6212
6213 skb = skb_reorder_vlan_header(skb);
6214 if (unlikely(!skb))
6215 goto err_free;
6216
6217 skb_reset_network_header(skb);
6218 if (!skb_transport_header_was_set(skb))
6219 skb_reset_transport_header(skb);
6220 skb_reset_mac_len(skb);
6221
6222 return skb;
6223
6224 err_free:
6225 kfree_skb(skb);
6226 return NULL;
6227 }
6228 EXPORT_SYMBOL(skb_vlan_untag);
6229
skb_ensure_writable(struct sk_buff * skb,unsigned int write_len)6230 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
6231 {
6232 if (!pskb_may_pull(skb, write_len))
6233 return -ENOMEM;
6234
6235 if (!skb_frags_readable(skb))
6236 return -EFAULT;
6237
6238 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
6239 return 0;
6240
6241 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
6242 }
6243 EXPORT_SYMBOL(skb_ensure_writable);
6244
skb_ensure_writable_head_tail(struct sk_buff * skb,struct net_device * dev)6245 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6246 {
6247 int needed_headroom = dev->needed_headroom;
6248 int needed_tailroom = dev->needed_tailroom;
6249
6250 /* For tail taggers, we need to pad short frames ourselves, to ensure
6251 * that the tail tag does not fail at its role of being at the end of
6252 * the packet, once the conduit interface pads the frame. Account for
6253 * that pad length here, and pad later.
6254 */
6255 if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6256 needed_tailroom += ETH_ZLEN - skb->len;
6257 /* skb_headroom() returns unsigned int... */
6258 needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6259 needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6260
6261 if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6262 /* No reallocation needed, yay! */
6263 return 0;
6264
6265 return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6266 GFP_ATOMIC);
6267 }
6268 EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6269
6270 /* remove VLAN header from packet and update csum accordingly.
6271 * expects a non skb_vlan_tag_present skb with a vlan tag payload
6272 */
__skb_vlan_pop(struct sk_buff * skb,u16 * vlan_tci)6273 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6274 {
6275 int offset = skb->data - skb_mac_header(skb);
6276 int err;
6277
6278 if (WARN_ONCE(offset,
6279 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6280 offset)) {
6281 return -EINVAL;
6282 }
6283
6284 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6285 if (unlikely(err))
6286 return err;
6287
6288 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6289
6290 vlan_remove_tag(skb, vlan_tci);
6291
6292 skb->mac_header += VLAN_HLEN;
6293
6294 if (skb_network_offset(skb) < ETH_HLEN)
6295 skb_set_network_header(skb, ETH_HLEN);
6296
6297 skb_reset_mac_len(skb);
6298
6299 return err;
6300 }
6301 EXPORT_SYMBOL(__skb_vlan_pop);
6302
6303 /* Pop a vlan tag either from hwaccel or from payload.
6304 * Expects skb->data at mac header.
6305 */
skb_vlan_pop(struct sk_buff * skb)6306 int skb_vlan_pop(struct sk_buff *skb)
6307 {
6308 u16 vlan_tci;
6309 __be16 vlan_proto;
6310 int err;
6311
6312 if (likely(skb_vlan_tag_present(skb))) {
6313 __vlan_hwaccel_clear_tag(skb);
6314 } else {
6315 if (unlikely(!eth_type_vlan(skb->protocol)))
6316 return 0;
6317
6318 err = __skb_vlan_pop(skb, &vlan_tci);
6319 if (err)
6320 return err;
6321 }
6322 /* move next vlan tag to hw accel tag */
6323 if (likely(!eth_type_vlan(skb->protocol)))
6324 return 0;
6325
6326 vlan_proto = skb->protocol;
6327 err = __skb_vlan_pop(skb, &vlan_tci);
6328 if (unlikely(err))
6329 return err;
6330
6331 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6332 return 0;
6333 }
6334 EXPORT_SYMBOL(skb_vlan_pop);
6335
6336 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6337 * Expects skb->data at mac header.
6338 */
skb_vlan_push(struct sk_buff * skb,__be16 vlan_proto,u16 vlan_tci)6339 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6340 {
6341 if (skb_vlan_tag_present(skb)) {
6342 int offset = skb->data - skb_mac_header(skb);
6343 int err;
6344
6345 if (WARN_ONCE(offset,
6346 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6347 offset)) {
6348 return -EINVAL;
6349 }
6350
6351 err = __vlan_insert_tag(skb, skb->vlan_proto,
6352 skb_vlan_tag_get(skb));
6353 if (err)
6354 return err;
6355
6356 skb->protocol = skb->vlan_proto;
6357 skb->network_header -= VLAN_HLEN;
6358
6359 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6360 }
6361 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6362 return 0;
6363 }
6364 EXPORT_SYMBOL(skb_vlan_push);
6365
6366 /**
6367 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6368 *
6369 * @skb: Socket buffer to modify
6370 *
6371 * Drop the Ethernet header of @skb.
6372 *
6373 * Expects that skb->data points to the mac header and that no VLAN tags are
6374 * present.
6375 *
6376 * Returns 0 on success, -errno otherwise.
6377 */
skb_eth_pop(struct sk_buff * skb)6378 int skb_eth_pop(struct sk_buff *skb)
6379 {
6380 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6381 skb_network_offset(skb) < ETH_HLEN)
6382 return -EPROTO;
6383
6384 skb_pull_rcsum(skb, ETH_HLEN);
6385 skb_reset_mac_header(skb);
6386 skb_reset_mac_len(skb);
6387
6388 return 0;
6389 }
6390 EXPORT_SYMBOL(skb_eth_pop);
6391
6392 /**
6393 * skb_eth_push() - Add a new Ethernet header at the head of a packet
6394 *
6395 * @skb: Socket buffer to modify
6396 * @dst: Destination MAC address of the new header
6397 * @src: Source MAC address of the new header
6398 *
6399 * Prepend @skb with a new Ethernet header.
6400 *
6401 * Expects that skb->data points to the mac header, which must be empty.
6402 *
6403 * Returns 0 on success, -errno otherwise.
6404 */
skb_eth_push(struct sk_buff * skb,const unsigned char * dst,const unsigned char * src)6405 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6406 const unsigned char *src)
6407 {
6408 struct ethhdr *eth;
6409 int err;
6410
6411 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6412 return -EPROTO;
6413
6414 err = skb_cow_head(skb, sizeof(*eth));
6415 if (err < 0)
6416 return err;
6417
6418 skb_push(skb, sizeof(*eth));
6419 skb_reset_mac_header(skb);
6420 skb_reset_mac_len(skb);
6421
6422 eth = eth_hdr(skb);
6423 ether_addr_copy(eth->h_dest, dst);
6424 ether_addr_copy(eth->h_source, src);
6425 eth->h_proto = skb->protocol;
6426
6427 skb_postpush_rcsum(skb, eth, sizeof(*eth));
6428
6429 return 0;
6430 }
6431 EXPORT_SYMBOL(skb_eth_push);
6432
6433 /* Update the ethertype of hdr and the skb csum value if required. */
skb_mod_eth_type(struct sk_buff * skb,struct ethhdr * hdr,__be16 ethertype)6434 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6435 __be16 ethertype)
6436 {
6437 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6438 __be16 diff[] = { ~hdr->h_proto, ethertype };
6439
6440 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6441 }
6442
6443 hdr->h_proto = ethertype;
6444 }
6445
6446 /**
6447 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6448 * the packet
6449 *
6450 * @skb: buffer
6451 * @mpls_lse: MPLS label stack entry to push
6452 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6453 * @mac_len: length of the MAC header
6454 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6455 * ethernet
6456 *
6457 * Expects skb->data at mac header.
6458 *
6459 * Returns 0 on success, -errno otherwise.
6460 */
skb_mpls_push(struct sk_buff * skb,__be32 mpls_lse,__be16 mpls_proto,int mac_len,bool ethernet)6461 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6462 int mac_len, bool ethernet)
6463 {
6464 struct mpls_shim_hdr *lse;
6465 int err;
6466
6467 if (unlikely(!eth_p_mpls(mpls_proto)))
6468 return -EINVAL;
6469
6470 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6471 if (skb->encapsulation)
6472 return -EINVAL;
6473
6474 err = skb_cow_head(skb, MPLS_HLEN);
6475 if (unlikely(err))
6476 return err;
6477
6478 if (!skb->inner_protocol) {
6479 skb_set_inner_network_header(skb, skb_network_offset(skb));
6480 skb_set_inner_protocol(skb, skb->protocol);
6481 }
6482
6483 skb_push(skb, MPLS_HLEN);
6484 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6485 mac_len);
6486 skb_reset_mac_header(skb);
6487 skb_set_network_header(skb, mac_len);
6488 skb_reset_mac_len(skb);
6489
6490 lse = mpls_hdr(skb);
6491 lse->label_stack_entry = mpls_lse;
6492 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6493
6494 if (ethernet && mac_len >= ETH_HLEN)
6495 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6496 skb->protocol = mpls_proto;
6497
6498 return 0;
6499 }
6500 EXPORT_SYMBOL_GPL(skb_mpls_push);
6501
6502 /**
6503 * skb_mpls_pop() - pop the outermost MPLS header
6504 *
6505 * @skb: buffer
6506 * @next_proto: ethertype of header after popped MPLS header
6507 * @mac_len: length of the MAC header
6508 * @ethernet: flag to indicate if the packet is ethernet
6509 *
6510 * Expects skb->data at mac header.
6511 *
6512 * Returns 0 on success, -errno otherwise.
6513 */
skb_mpls_pop(struct sk_buff * skb,__be16 next_proto,int mac_len,bool ethernet)6514 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6515 bool ethernet)
6516 {
6517 int err;
6518
6519 if (unlikely(!eth_p_mpls(skb->protocol)))
6520 return 0;
6521
6522 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6523 if (unlikely(err))
6524 return err;
6525
6526 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6527 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6528 mac_len);
6529
6530 __skb_pull(skb, MPLS_HLEN);
6531 skb_reset_mac_header(skb);
6532 skb_set_network_header(skb, mac_len);
6533
6534 if (ethernet && mac_len >= ETH_HLEN) {
6535 struct ethhdr *hdr;
6536
6537 /* use mpls_hdr() to get ethertype to account for VLANs. */
6538 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6539 skb_mod_eth_type(skb, hdr, next_proto);
6540 }
6541 skb->protocol = next_proto;
6542
6543 return 0;
6544 }
6545 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6546
6547 /**
6548 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6549 *
6550 * @skb: buffer
6551 * @mpls_lse: new MPLS label stack entry to update to
6552 *
6553 * Expects skb->data at mac header.
6554 *
6555 * Returns 0 on success, -errno otherwise.
6556 */
skb_mpls_update_lse(struct sk_buff * skb,__be32 mpls_lse)6557 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6558 {
6559 int err;
6560
6561 if (unlikely(!eth_p_mpls(skb->protocol)))
6562 return -EINVAL;
6563
6564 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6565 if (unlikely(err))
6566 return err;
6567
6568 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6569 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6570
6571 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6572 }
6573
6574 mpls_hdr(skb)->label_stack_entry = mpls_lse;
6575
6576 return 0;
6577 }
6578 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6579
6580 /**
6581 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6582 *
6583 * @skb: buffer
6584 *
6585 * Expects skb->data at mac header.
6586 *
6587 * Returns 0 on success, -errno otherwise.
6588 */
skb_mpls_dec_ttl(struct sk_buff * skb)6589 int skb_mpls_dec_ttl(struct sk_buff *skb)
6590 {
6591 u32 lse;
6592 u8 ttl;
6593
6594 if (unlikely(!eth_p_mpls(skb->protocol)))
6595 return -EINVAL;
6596
6597 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6598 return -ENOMEM;
6599
6600 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6601 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6602 if (!--ttl)
6603 return -EINVAL;
6604
6605 lse &= ~MPLS_LS_TTL_MASK;
6606 lse |= ttl << MPLS_LS_TTL_SHIFT;
6607
6608 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6609 }
6610 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6611
6612 /**
6613 * alloc_skb_with_frags - allocate skb with page frags
6614 *
6615 * @header_len: size of linear part
6616 * @data_len: needed length in frags
6617 * @order: max page order desired.
6618 * @errcode: pointer to error code if any
6619 * @gfp_mask: allocation mask
6620 *
6621 * This can be used to allocate a paged skb, given a maximal order for frags.
6622 */
alloc_skb_with_frags(unsigned long header_len,unsigned long data_len,int order,int * errcode,gfp_t gfp_mask)6623 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6624 unsigned long data_len,
6625 int order,
6626 int *errcode,
6627 gfp_t gfp_mask)
6628 {
6629 unsigned long chunk;
6630 struct sk_buff *skb;
6631 struct page *page;
6632 int nr_frags = 0;
6633
6634 *errcode = -EMSGSIZE;
6635 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6636 return NULL;
6637
6638 *errcode = -ENOBUFS;
6639 skb = alloc_skb(header_len, gfp_mask);
6640 if (!skb)
6641 return NULL;
6642
6643 while (data_len) {
6644 if (nr_frags == MAX_SKB_FRAGS - 1)
6645 goto failure;
6646 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6647 order--;
6648
6649 if (order) {
6650 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6651 __GFP_COMP |
6652 __GFP_NOWARN,
6653 order);
6654 if (!page) {
6655 order--;
6656 continue;
6657 }
6658 } else {
6659 page = alloc_page(gfp_mask);
6660 if (!page)
6661 goto failure;
6662 }
6663 chunk = min_t(unsigned long, data_len,
6664 PAGE_SIZE << order);
6665 skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6666 nr_frags++;
6667 skb->truesize += (PAGE_SIZE << order);
6668 data_len -= chunk;
6669 }
6670 return skb;
6671
6672 failure:
6673 kfree_skb(skb);
6674 return NULL;
6675 }
6676 EXPORT_SYMBOL(alloc_skb_with_frags);
6677
6678 /* carve out the first off bytes from skb when off < headlen */
pskb_carve_inside_header(struct sk_buff * skb,const u32 off,const int headlen,gfp_t gfp_mask)6679 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6680 const int headlen, gfp_t gfp_mask)
6681 {
6682 int i;
6683 unsigned int size = skb_end_offset(skb);
6684 int new_hlen = headlen - off;
6685 u8 *data;
6686
6687 if (skb_pfmemalloc(skb))
6688 gfp_mask |= __GFP_MEMALLOC;
6689
6690 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6691 if (!data)
6692 return -ENOMEM;
6693 size = SKB_WITH_OVERHEAD(size);
6694
6695 /* Copy real data, and all frags */
6696 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6697 skb->len -= off;
6698
6699 memcpy((struct skb_shared_info *)(data + size),
6700 skb_shinfo(skb),
6701 offsetof(struct skb_shared_info,
6702 frags[skb_shinfo(skb)->nr_frags]));
6703 if (skb_cloned(skb)) {
6704 /* drop the old head gracefully */
6705 if (skb_orphan_frags(skb, gfp_mask)) {
6706 skb_kfree_head(data, size);
6707 return -ENOMEM;
6708 }
6709 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6710 skb_frag_ref(skb, i);
6711 if (skb_has_frag_list(skb))
6712 skb_clone_fraglist(skb);
6713 skb_release_data(skb, SKB_CONSUMED);
6714 } else {
6715 /* we can reuse existing recount- all we did was
6716 * relocate values
6717 */
6718 skb_free_head(skb);
6719 }
6720
6721 skb->head = data;
6722 skb->data = data;
6723 skb->head_frag = 0;
6724 skb_set_end_offset(skb, size);
6725 skb_set_tail_pointer(skb, skb_headlen(skb));
6726 skb_headers_offset_update(skb, 0);
6727 skb->cloned = 0;
6728 skb->hdr_len = 0;
6729 skb->nohdr = 0;
6730 atomic_set(&skb_shinfo(skb)->dataref, 1);
6731
6732 return 0;
6733 }
6734
6735 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6736
6737 /* carve out the first eat bytes from skb's frag_list. May recurse into
6738 * pskb_carve()
6739 */
pskb_carve_frag_list(struct sk_buff * skb,struct skb_shared_info * shinfo,int eat,gfp_t gfp_mask)6740 static int pskb_carve_frag_list(struct sk_buff *skb,
6741 struct skb_shared_info *shinfo, int eat,
6742 gfp_t gfp_mask)
6743 {
6744 struct sk_buff *list = shinfo->frag_list;
6745 struct sk_buff *clone = NULL;
6746 struct sk_buff *insp = NULL;
6747
6748 do {
6749 if (!list) {
6750 pr_err("Not enough bytes to eat. Want %d\n", eat);
6751 return -EFAULT;
6752 }
6753 if (list->len <= eat) {
6754 /* Eaten as whole. */
6755 eat -= list->len;
6756 list = list->next;
6757 insp = list;
6758 } else {
6759 /* Eaten partially. */
6760 if (skb_shared(list)) {
6761 clone = skb_clone(list, gfp_mask);
6762 if (!clone)
6763 return -ENOMEM;
6764 insp = list->next;
6765 list = clone;
6766 } else {
6767 /* This may be pulled without problems. */
6768 insp = list;
6769 }
6770 if (pskb_carve(list, eat, gfp_mask) < 0) {
6771 kfree_skb(clone);
6772 return -ENOMEM;
6773 }
6774 break;
6775 }
6776 } while (eat);
6777
6778 /* Free pulled out fragments. */
6779 while ((list = shinfo->frag_list) != insp) {
6780 shinfo->frag_list = list->next;
6781 consume_skb(list);
6782 }
6783 /* And insert new clone at head. */
6784 if (clone) {
6785 clone->next = list;
6786 shinfo->frag_list = clone;
6787 }
6788 return 0;
6789 }
6790
6791 /* carve off first len bytes from skb. Split line (off) is in the
6792 * non-linear part of skb
6793 */
pskb_carve_inside_nonlinear(struct sk_buff * skb,const u32 off,int pos,gfp_t gfp_mask)6794 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6795 int pos, gfp_t gfp_mask)
6796 {
6797 int i, k = 0;
6798 unsigned int size = skb_end_offset(skb);
6799 u8 *data;
6800 const int nfrags = skb_shinfo(skb)->nr_frags;
6801 struct skb_shared_info *shinfo;
6802
6803 if (skb_pfmemalloc(skb))
6804 gfp_mask |= __GFP_MEMALLOC;
6805
6806 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6807 if (!data)
6808 return -ENOMEM;
6809 size = SKB_WITH_OVERHEAD(size);
6810
6811 memcpy((struct skb_shared_info *)(data + size),
6812 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6813 if (skb_orphan_frags(skb, gfp_mask)) {
6814 skb_kfree_head(data, size);
6815 return -ENOMEM;
6816 }
6817 shinfo = (struct skb_shared_info *)(data + size);
6818 for (i = 0; i < nfrags; i++) {
6819 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6820
6821 if (pos + fsize > off) {
6822 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6823
6824 if (pos < off) {
6825 /* Split frag.
6826 * We have two variants in this case:
6827 * 1. Move all the frag to the second
6828 * part, if it is possible. F.e.
6829 * this approach is mandatory for TUX,
6830 * where splitting is expensive.
6831 * 2. Split is accurately. We make this.
6832 */
6833 skb_frag_off_add(&shinfo->frags[0], off - pos);
6834 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6835 }
6836 skb_frag_ref(skb, i);
6837 k++;
6838 }
6839 pos += fsize;
6840 }
6841 shinfo->nr_frags = k;
6842 if (skb_has_frag_list(skb))
6843 skb_clone_fraglist(skb);
6844
6845 /* split line is in frag list */
6846 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6847 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6848 if (skb_has_frag_list(skb))
6849 kfree_skb_list(skb_shinfo(skb)->frag_list);
6850 skb_kfree_head(data, size);
6851 return -ENOMEM;
6852 }
6853 skb_release_data(skb, SKB_CONSUMED);
6854
6855 skb->head = data;
6856 skb->head_frag = 0;
6857 skb->data = data;
6858 skb_set_end_offset(skb, size);
6859 skb_reset_tail_pointer(skb);
6860 skb_headers_offset_update(skb, 0);
6861 skb->cloned = 0;
6862 skb->hdr_len = 0;
6863 skb->nohdr = 0;
6864 skb->len -= off;
6865 skb->data_len = skb->len;
6866 atomic_set(&skb_shinfo(skb)->dataref, 1);
6867 return 0;
6868 }
6869
6870 /* remove len bytes from the beginning of the skb */
pskb_carve(struct sk_buff * skb,const u32 len,gfp_t gfp)6871 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6872 {
6873 int headlen = skb_headlen(skb);
6874
6875 if (len < headlen)
6876 return pskb_carve_inside_header(skb, len, headlen, gfp);
6877 else
6878 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6879 }
6880
6881 /* Extract to_copy bytes starting at off from skb, and return this in
6882 * a new skb
6883 */
pskb_extract(struct sk_buff * skb,int off,int to_copy,gfp_t gfp)6884 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6885 int to_copy, gfp_t gfp)
6886 {
6887 struct sk_buff *clone = skb_clone(skb, gfp);
6888
6889 if (!clone)
6890 return NULL;
6891
6892 if (pskb_carve(clone, off, gfp) < 0 ||
6893 pskb_trim(clone, to_copy)) {
6894 kfree_skb(clone);
6895 return NULL;
6896 }
6897 return clone;
6898 }
6899 EXPORT_SYMBOL(pskb_extract);
6900
6901 /**
6902 * skb_condense - try to get rid of fragments/frag_list if possible
6903 * @skb: buffer
6904 *
6905 * Can be used to save memory before skb is added to a busy queue.
6906 * If packet has bytes in frags and enough tail room in skb->head,
6907 * pull all of them, so that we can free the frags right now and adjust
6908 * truesize.
6909 * Notes:
6910 * We do not reallocate skb->head thus can not fail.
6911 * Caller must re-evaluate skb->truesize if needed.
6912 */
skb_condense(struct sk_buff * skb)6913 void skb_condense(struct sk_buff *skb)
6914 {
6915 if (skb->data_len) {
6916 if (skb->data_len > skb->end - skb->tail ||
6917 skb_cloned(skb) || !skb_frags_readable(skb))
6918 return;
6919
6920 /* Nice, we can free page frag(s) right now */
6921 __pskb_pull_tail(skb, skb->data_len);
6922 }
6923 /* At this point, skb->truesize might be over estimated,
6924 * because skb had a fragment, and fragments do not tell
6925 * their truesize.
6926 * When we pulled its content into skb->head, fragment
6927 * was freed, but __pskb_pull_tail() could not possibly
6928 * adjust skb->truesize, not knowing the frag truesize.
6929 */
6930 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6931 }
6932 EXPORT_SYMBOL(skb_condense);
6933
6934 #ifdef CONFIG_SKB_EXTENSIONS
skb_ext_get_ptr(struct skb_ext * ext,enum skb_ext_id id)6935 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6936 {
6937 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6938 }
6939
6940 /**
6941 * __skb_ext_alloc - allocate a new skb extensions storage
6942 *
6943 * @flags: See kmalloc().
6944 *
6945 * Returns the newly allocated pointer. The pointer can later attached to a
6946 * skb via __skb_ext_set().
6947 * Note: caller must handle the skb_ext as an opaque data.
6948 */
__skb_ext_alloc(gfp_t flags)6949 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6950 {
6951 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6952
6953 if (new) {
6954 memset(new->offset, 0, sizeof(new->offset));
6955 refcount_set(&new->refcnt, 1);
6956 }
6957
6958 return new;
6959 }
6960
skb_ext_maybe_cow(struct skb_ext * old,unsigned int old_active)6961 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6962 unsigned int old_active)
6963 {
6964 struct skb_ext *new;
6965
6966 if (refcount_read(&old->refcnt) == 1)
6967 return old;
6968
6969 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6970 if (!new)
6971 return NULL;
6972
6973 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6974 refcount_set(&new->refcnt, 1);
6975
6976 #ifdef CONFIG_XFRM
6977 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6978 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6979 unsigned int i;
6980
6981 for (i = 0; i < sp->len; i++)
6982 xfrm_state_hold(sp->xvec[i]);
6983 }
6984 #endif
6985 #ifdef CONFIG_MCTP_FLOWS
6986 if (old_active & (1 << SKB_EXT_MCTP)) {
6987 struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
6988
6989 if (flow->key)
6990 refcount_inc(&flow->key->refs);
6991 }
6992 #endif
6993 __skb_ext_put(old);
6994 return new;
6995 }
6996
6997 /**
6998 * __skb_ext_set - attach the specified extension storage to this skb
6999 * @skb: buffer
7000 * @id: extension id
7001 * @ext: extension storage previously allocated via __skb_ext_alloc()
7002 *
7003 * Existing extensions, if any, are cleared.
7004 *
7005 * Returns the pointer to the extension.
7006 */
__skb_ext_set(struct sk_buff * skb,enum skb_ext_id id,struct skb_ext * ext)7007 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
7008 struct skb_ext *ext)
7009 {
7010 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
7011
7012 skb_ext_put(skb);
7013 newlen = newoff + skb_ext_type_len[id];
7014 ext->chunks = newlen;
7015 ext->offset[id] = newoff;
7016 skb->extensions = ext;
7017 skb->active_extensions = 1 << id;
7018 return skb_ext_get_ptr(ext, id);
7019 }
7020
7021 /**
7022 * skb_ext_add - allocate space for given extension, COW if needed
7023 * @skb: buffer
7024 * @id: extension to allocate space for
7025 *
7026 * Allocates enough space for the given extension.
7027 * If the extension is already present, a pointer to that extension
7028 * is returned.
7029 *
7030 * If the skb was cloned, COW applies and the returned memory can be
7031 * modified without changing the extension space of clones buffers.
7032 *
7033 * Returns pointer to the extension or NULL on allocation failure.
7034 */
skb_ext_add(struct sk_buff * skb,enum skb_ext_id id)7035 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
7036 {
7037 struct skb_ext *new, *old = NULL;
7038 unsigned int newlen, newoff;
7039
7040 if (skb->active_extensions) {
7041 old = skb->extensions;
7042
7043 new = skb_ext_maybe_cow(old, skb->active_extensions);
7044 if (!new)
7045 return NULL;
7046
7047 if (__skb_ext_exist(new, id))
7048 goto set_active;
7049
7050 newoff = new->chunks;
7051 } else {
7052 newoff = SKB_EXT_CHUNKSIZEOF(*new);
7053
7054 new = __skb_ext_alloc(GFP_ATOMIC);
7055 if (!new)
7056 return NULL;
7057 }
7058
7059 newlen = newoff + skb_ext_type_len[id];
7060 new->chunks = newlen;
7061 new->offset[id] = newoff;
7062 set_active:
7063 skb->slow_gro = 1;
7064 skb->extensions = new;
7065 skb->active_extensions |= 1 << id;
7066 return skb_ext_get_ptr(new, id);
7067 }
7068 EXPORT_SYMBOL(skb_ext_add);
7069
7070 #ifdef CONFIG_XFRM
skb_ext_put_sp(struct sec_path * sp)7071 static void skb_ext_put_sp(struct sec_path *sp)
7072 {
7073 unsigned int i;
7074
7075 for (i = 0; i < sp->len; i++)
7076 xfrm_state_put(sp->xvec[i]);
7077 }
7078 #endif
7079
7080 #ifdef CONFIG_MCTP_FLOWS
skb_ext_put_mctp(struct mctp_flow * flow)7081 static void skb_ext_put_mctp(struct mctp_flow *flow)
7082 {
7083 if (flow->key)
7084 mctp_key_unref(flow->key);
7085 }
7086 #endif
7087
__skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)7088 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
7089 {
7090 struct skb_ext *ext = skb->extensions;
7091
7092 skb->active_extensions &= ~(1 << id);
7093 if (skb->active_extensions == 0) {
7094 skb->extensions = NULL;
7095 __skb_ext_put(ext);
7096 #ifdef CONFIG_XFRM
7097 } else if (id == SKB_EXT_SEC_PATH &&
7098 refcount_read(&ext->refcnt) == 1) {
7099 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
7100
7101 skb_ext_put_sp(sp);
7102 sp->len = 0;
7103 #endif
7104 }
7105 }
7106 EXPORT_SYMBOL(__skb_ext_del);
7107
__skb_ext_put(struct skb_ext * ext)7108 void __skb_ext_put(struct skb_ext *ext)
7109 {
7110 /* If this is last clone, nothing can increment
7111 * it after check passes. Avoids one atomic op.
7112 */
7113 if (refcount_read(&ext->refcnt) == 1)
7114 goto free_now;
7115
7116 if (!refcount_dec_and_test(&ext->refcnt))
7117 return;
7118 free_now:
7119 #ifdef CONFIG_XFRM
7120 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
7121 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
7122 #endif
7123 #ifdef CONFIG_MCTP_FLOWS
7124 if (__skb_ext_exist(ext, SKB_EXT_MCTP))
7125 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
7126 #endif
7127
7128 kmem_cache_free(skbuff_ext_cache, ext);
7129 }
7130 EXPORT_SYMBOL(__skb_ext_put);
7131 #endif /* CONFIG_SKB_EXTENSIONS */
7132
kfree_skb_napi_cache(struct sk_buff * skb)7133 static void kfree_skb_napi_cache(struct sk_buff *skb)
7134 {
7135 /* if SKB is a clone, don't handle this case */
7136 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
7137 __kfree_skb(skb);
7138 return;
7139 }
7140
7141 local_bh_disable();
7142 __napi_kfree_skb(skb, SKB_CONSUMED);
7143 local_bh_enable();
7144 }
7145
7146 /**
7147 * skb_attempt_defer_free - queue skb for remote freeing
7148 * @skb: buffer
7149 *
7150 * Put @skb in a per-cpu list, using the cpu which
7151 * allocated the skb/pages to reduce false sharing
7152 * and memory zone spinlock contention.
7153 */
skb_attempt_defer_free(struct sk_buff * skb)7154 void skb_attempt_defer_free(struct sk_buff *skb)
7155 {
7156 int cpu = skb->alloc_cpu;
7157 struct softnet_data *sd;
7158 unsigned int defer_max;
7159 bool kick;
7160
7161 if (cpu == raw_smp_processor_id() ||
7162 WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
7163 !cpu_online(cpu)) {
7164 nodefer: kfree_skb_napi_cache(skb);
7165 return;
7166 }
7167
7168 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
7169 DEBUG_NET_WARN_ON_ONCE(skb->destructor);
7170
7171 sd = &per_cpu(softnet_data, cpu);
7172 defer_max = READ_ONCE(net_hotdata.sysctl_skb_defer_max);
7173 if (READ_ONCE(sd->defer_count) >= defer_max)
7174 goto nodefer;
7175
7176 spin_lock_bh(&sd->defer_lock);
7177 /* Send an IPI every time queue reaches half capacity. */
7178 kick = sd->defer_count == (defer_max >> 1);
7179 /* Paired with the READ_ONCE() few lines above */
7180 WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
7181
7182 skb->next = sd->defer_list;
7183 /* Paired with READ_ONCE() in skb_defer_free_flush() */
7184 WRITE_ONCE(sd->defer_list, skb);
7185 spin_unlock_bh(&sd->defer_lock);
7186
7187 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
7188 * if we are unlucky enough (this seems very unlikely).
7189 */
7190 if (unlikely(kick))
7191 kick_defer_list_purge(sd, cpu);
7192 }
7193
skb_splice_csum_page(struct sk_buff * skb,struct page * page,size_t offset,size_t len)7194 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
7195 size_t offset, size_t len)
7196 {
7197 const char *kaddr;
7198 __wsum csum;
7199
7200 kaddr = kmap_local_page(page);
7201 csum = csum_partial(kaddr + offset, len, 0);
7202 kunmap_local(kaddr);
7203 skb->csum = csum_block_add(skb->csum, csum, skb->len);
7204 }
7205
7206 /**
7207 * skb_splice_from_iter - Splice (or copy) pages to skbuff
7208 * @skb: The buffer to add pages to
7209 * @iter: Iterator representing the pages to be added
7210 * @maxsize: Maximum amount of pages to be added
7211 * @gfp: Allocation flags
7212 *
7213 * This is a common helper function for supporting MSG_SPLICE_PAGES. It
7214 * extracts pages from an iterator and adds them to the socket buffer if
7215 * possible, copying them to fragments if not possible (such as if they're slab
7216 * pages).
7217 *
7218 * Returns the amount of data spliced/copied or -EMSGSIZE if there's
7219 * insufficient space in the buffer to transfer anything.
7220 */
skb_splice_from_iter(struct sk_buff * skb,struct iov_iter * iter,ssize_t maxsize,gfp_t gfp)7221 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
7222 ssize_t maxsize, gfp_t gfp)
7223 {
7224 size_t frag_limit = READ_ONCE(net_hotdata.sysctl_max_skb_frags);
7225 struct page *pages[8], **ppages = pages;
7226 ssize_t spliced = 0, ret = 0;
7227 unsigned int i;
7228
7229 while (iter->count > 0) {
7230 ssize_t space, nr, len;
7231 size_t off;
7232
7233 ret = -EMSGSIZE;
7234 space = frag_limit - skb_shinfo(skb)->nr_frags;
7235 if (space < 0)
7236 break;
7237
7238 /* We might be able to coalesce without increasing nr_frags */
7239 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
7240
7241 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
7242 if (len <= 0) {
7243 ret = len ?: -EIO;
7244 break;
7245 }
7246
7247 i = 0;
7248 do {
7249 struct page *page = pages[i++];
7250 size_t part = min_t(size_t, PAGE_SIZE - off, len);
7251
7252 ret = -EIO;
7253 if (WARN_ON_ONCE(!sendpage_ok(page)))
7254 goto out;
7255
7256 ret = skb_append_pagefrags(skb, page, off, part,
7257 frag_limit);
7258 if (ret < 0) {
7259 iov_iter_revert(iter, len);
7260 goto out;
7261 }
7262
7263 if (skb->ip_summed == CHECKSUM_NONE)
7264 skb_splice_csum_page(skb, page, off, part);
7265
7266 off = 0;
7267 spliced += part;
7268 maxsize -= part;
7269 len -= part;
7270 } while (len > 0);
7271
7272 if (maxsize <= 0)
7273 break;
7274 }
7275
7276 out:
7277 skb_len_add(skb, spliced);
7278 return spliced ?: ret;
7279 }
7280 EXPORT_SYMBOL(skb_splice_from_iter);
7281
7282 static __always_inline
memcpy_from_iter_csum(void * iter_from,size_t progress,size_t len,void * to,void * priv2)7283 size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7284 size_t len, void *to, void *priv2)
7285 {
7286 __wsum *csum = priv2;
7287 __wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7288
7289 *csum = csum_block_add(*csum, next, progress);
7290 return 0;
7291 }
7292
7293 static __always_inline
copy_from_user_iter_csum(void __user * iter_from,size_t progress,size_t len,void * to,void * priv2)7294 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7295 size_t len, void *to, void *priv2)
7296 {
7297 __wsum next, *csum = priv2;
7298
7299 next = csum_and_copy_from_user(iter_from, to + progress, len);
7300 *csum = csum_block_add(*csum, next, progress);
7301 return next ? 0 : len;
7302 }
7303
csum_and_copy_from_iter_full(void * addr,size_t bytes,__wsum * csum,struct iov_iter * i)7304 bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7305 __wsum *csum, struct iov_iter *i)
7306 {
7307 size_t copied;
7308
7309 if (WARN_ON_ONCE(!i->data_source))
7310 return false;
7311 copied = iterate_and_advance2(i, bytes, addr, csum,
7312 copy_from_user_iter_csum,
7313 memcpy_from_iter_csum);
7314 if (likely(copied == bytes))
7315 return true;
7316 iov_iter_revert(i, copied);
7317 return false;
7318 }
7319 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
7320