1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4 */
5 #include <linux/list_sort.h>
6 #include <linux/libnvdimm.h>
7 #include <linux/module.h>
8 #include <linux/nospec.h>
9 #include <linux/mutex.h>
10 #include <linux/ndctl.h>
11 #include <linux/sysfs.h>
12 #include <linux/delay.h>
13 #include <linux/list.h>
14 #include <linux/acpi.h>
15 #include <linux/sort.h>
16 #include <linux/io.h>
17 #include <linux/nd.h>
18 #include <asm/cacheflush.h>
19 #include <acpi/nfit.h>
20 #include "intel.h"
21 #include "nfit.h"
22
23 /*
24 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
25 * irrelevant.
26 */
27 #include <linux/io-64-nonatomic-hi-lo.h>
28
29 static bool force_enable_dimms;
30 module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR);
31 MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status");
32
33 static bool disable_vendor_specific;
34 module_param(disable_vendor_specific, bool, S_IRUGO);
35 MODULE_PARM_DESC(disable_vendor_specific,
36 "Limit commands to the publicly specified set");
37
38 static unsigned long override_dsm_mask;
39 module_param(override_dsm_mask, ulong, S_IRUGO);
40 MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions");
41
42 static int default_dsm_family = -1;
43 module_param(default_dsm_family, int, S_IRUGO);
44 MODULE_PARM_DESC(default_dsm_family,
45 "Try this DSM type first when identifying NVDIMM family");
46
47 static bool no_init_ars;
48 module_param(no_init_ars, bool, 0644);
49 MODULE_PARM_DESC(no_init_ars, "Skip ARS run at nfit init time");
50
51 static bool force_labels;
52 module_param(force_labels, bool, 0444);
53 MODULE_PARM_DESC(force_labels, "Opt-in to labels despite missing methods");
54
55 LIST_HEAD(acpi_descs);
56 DEFINE_MUTEX(acpi_desc_lock);
57
58 static struct workqueue_struct *nfit_wq;
59
60 struct nfit_table_prev {
61 struct list_head spas;
62 struct list_head memdevs;
63 struct list_head dcrs;
64 struct list_head bdws;
65 struct list_head idts;
66 struct list_head flushes;
67 };
68
69 static guid_t nfit_uuid[NFIT_UUID_MAX];
70
to_nfit_uuid(enum nfit_uuids id)71 const guid_t *to_nfit_uuid(enum nfit_uuids id)
72 {
73 return &nfit_uuid[id];
74 }
75 EXPORT_SYMBOL(to_nfit_uuid);
76
to_nfit_bus_uuid(int family)77 static const guid_t *to_nfit_bus_uuid(int family)
78 {
79 if (WARN_ONCE(family == NVDIMM_BUS_FAMILY_NFIT,
80 "only secondary bus families can be translated\n"))
81 return NULL;
82 /*
83 * The index of bus UUIDs starts immediately following the last
84 * NVDIMM/leaf family.
85 */
86 return to_nfit_uuid(family + NVDIMM_FAMILY_MAX);
87 }
88
to_acpi_dev(struct acpi_nfit_desc * acpi_desc)89 static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc)
90 {
91 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
92
93 /*
94 * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct
95 * acpi_device.
96 */
97 if (!nd_desc->provider_name
98 || strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0)
99 return NULL;
100
101 return to_acpi_device(acpi_desc->dev);
102 }
103
xlat_bus_status(void * buf,unsigned int cmd,u32 status)104 static int xlat_bus_status(void *buf, unsigned int cmd, u32 status)
105 {
106 struct nd_cmd_clear_error *clear_err;
107 struct nd_cmd_ars_status *ars_status;
108 u16 flags;
109
110 switch (cmd) {
111 case ND_CMD_ARS_CAP:
112 if ((status & 0xffff) == NFIT_ARS_CAP_NONE)
113 return -ENOTTY;
114
115 /* Command failed */
116 if (status & 0xffff)
117 return -EIO;
118
119 /* No supported scan types for this range */
120 flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE;
121 if ((status >> 16 & flags) == 0)
122 return -ENOTTY;
123 return 0;
124 case ND_CMD_ARS_START:
125 /* ARS is in progress */
126 if ((status & 0xffff) == NFIT_ARS_START_BUSY)
127 return -EBUSY;
128
129 /* Command failed */
130 if (status & 0xffff)
131 return -EIO;
132 return 0;
133 case ND_CMD_ARS_STATUS:
134 ars_status = buf;
135 /* Command failed */
136 if (status & 0xffff)
137 return -EIO;
138 /* Check extended status (Upper two bytes) */
139 if (status == NFIT_ARS_STATUS_DONE)
140 return 0;
141
142 /* ARS is in progress */
143 if (status == NFIT_ARS_STATUS_BUSY)
144 return -EBUSY;
145
146 /* No ARS performed for the current boot */
147 if (status == NFIT_ARS_STATUS_NONE)
148 return -EAGAIN;
149
150 /*
151 * ARS interrupted, either we overflowed or some other
152 * agent wants the scan to stop. If we didn't overflow
153 * then just continue with the returned results.
154 */
155 if (status == NFIT_ARS_STATUS_INTR) {
156 if (ars_status->out_length >= 40 && (ars_status->flags
157 & NFIT_ARS_F_OVERFLOW))
158 return -ENOSPC;
159 return 0;
160 }
161
162 /* Unknown status */
163 if (status >> 16)
164 return -EIO;
165 return 0;
166 case ND_CMD_CLEAR_ERROR:
167 clear_err = buf;
168 if (status & 0xffff)
169 return -EIO;
170 if (!clear_err->cleared)
171 return -EIO;
172 if (clear_err->length > clear_err->cleared)
173 return clear_err->cleared;
174 return 0;
175 default:
176 break;
177 }
178
179 /* all other non-zero status results in an error */
180 if (status)
181 return -EIO;
182 return 0;
183 }
184
185 #define ACPI_LABELS_LOCKED 3
186
xlat_nvdimm_status(struct nvdimm * nvdimm,void * buf,unsigned int cmd,u32 status)187 static int xlat_nvdimm_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
188 u32 status)
189 {
190 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
191
192 switch (cmd) {
193 case ND_CMD_GET_CONFIG_SIZE:
194 /*
195 * In the _LSI, _LSR, _LSW case the locked status is
196 * communicated via the read/write commands
197 */
198 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
199 break;
200
201 if (status >> 16 & ND_CONFIG_LOCKED)
202 return -EACCES;
203 break;
204 case ND_CMD_GET_CONFIG_DATA:
205 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
206 && status == ACPI_LABELS_LOCKED)
207 return -EACCES;
208 break;
209 case ND_CMD_SET_CONFIG_DATA:
210 if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags)
211 && status == ACPI_LABELS_LOCKED)
212 return -EACCES;
213 break;
214 default:
215 break;
216 }
217
218 /* all other non-zero status results in an error */
219 if (status)
220 return -EIO;
221 return 0;
222 }
223
xlat_status(struct nvdimm * nvdimm,void * buf,unsigned int cmd,u32 status)224 static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
225 u32 status)
226 {
227 if (!nvdimm)
228 return xlat_bus_status(buf, cmd, status);
229 return xlat_nvdimm_status(nvdimm, buf, cmd, status);
230 }
231
232 /* convert _LS{I,R} packages to the buffer object acpi_nfit_ctl expects */
pkg_to_buf(union acpi_object * pkg)233 static union acpi_object *pkg_to_buf(union acpi_object *pkg)
234 {
235 int i;
236 void *dst;
237 size_t size = 0;
238 union acpi_object *buf = NULL;
239
240 if (pkg->type != ACPI_TYPE_PACKAGE) {
241 WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
242 pkg->type);
243 goto err;
244 }
245
246 for (i = 0; i < pkg->package.count; i++) {
247 union acpi_object *obj = &pkg->package.elements[i];
248
249 if (obj->type == ACPI_TYPE_INTEGER)
250 size += 4;
251 else if (obj->type == ACPI_TYPE_BUFFER)
252 size += obj->buffer.length;
253 else {
254 WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
255 obj->type);
256 goto err;
257 }
258 }
259
260 buf = ACPI_ALLOCATE(sizeof(*buf) + size);
261 if (!buf)
262 goto err;
263
264 dst = buf + 1;
265 buf->type = ACPI_TYPE_BUFFER;
266 buf->buffer.length = size;
267 buf->buffer.pointer = dst;
268 for (i = 0; i < pkg->package.count; i++) {
269 union acpi_object *obj = &pkg->package.elements[i];
270
271 if (obj->type == ACPI_TYPE_INTEGER) {
272 memcpy(dst, &obj->integer.value, 4);
273 dst += 4;
274 } else if (obj->type == ACPI_TYPE_BUFFER) {
275 memcpy(dst, obj->buffer.pointer, obj->buffer.length);
276 dst += obj->buffer.length;
277 }
278 }
279 err:
280 ACPI_FREE(pkg);
281 return buf;
282 }
283
int_to_buf(union acpi_object * integer)284 static union acpi_object *int_to_buf(union acpi_object *integer)
285 {
286 union acpi_object *buf = NULL;
287 void *dst = NULL;
288
289 if (integer->type != ACPI_TYPE_INTEGER) {
290 WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
291 integer->type);
292 goto err;
293 }
294
295 buf = ACPI_ALLOCATE(sizeof(*buf) + 4);
296 if (!buf)
297 goto err;
298
299 dst = buf + 1;
300 buf->type = ACPI_TYPE_BUFFER;
301 buf->buffer.length = 4;
302 buf->buffer.pointer = dst;
303 memcpy(dst, &integer->integer.value, 4);
304 err:
305 ACPI_FREE(integer);
306 return buf;
307 }
308
acpi_label_write(acpi_handle handle,u32 offset,u32 len,void * data)309 static union acpi_object *acpi_label_write(acpi_handle handle, u32 offset,
310 u32 len, void *data)
311 {
312 acpi_status rc;
313 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
314 struct acpi_object_list input = {
315 .count = 3,
316 .pointer = (union acpi_object []) {
317 [0] = {
318 .integer.type = ACPI_TYPE_INTEGER,
319 .integer.value = offset,
320 },
321 [1] = {
322 .integer.type = ACPI_TYPE_INTEGER,
323 .integer.value = len,
324 },
325 [2] = {
326 .buffer.type = ACPI_TYPE_BUFFER,
327 .buffer.pointer = data,
328 .buffer.length = len,
329 },
330 },
331 };
332
333 rc = acpi_evaluate_object(handle, "_LSW", &input, &buf);
334 if (ACPI_FAILURE(rc))
335 return NULL;
336 return int_to_buf(buf.pointer);
337 }
338
acpi_label_read(acpi_handle handle,u32 offset,u32 len)339 static union acpi_object *acpi_label_read(acpi_handle handle, u32 offset,
340 u32 len)
341 {
342 acpi_status rc;
343 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
344 struct acpi_object_list input = {
345 .count = 2,
346 .pointer = (union acpi_object []) {
347 [0] = {
348 .integer.type = ACPI_TYPE_INTEGER,
349 .integer.value = offset,
350 },
351 [1] = {
352 .integer.type = ACPI_TYPE_INTEGER,
353 .integer.value = len,
354 },
355 },
356 };
357
358 rc = acpi_evaluate_object(handle, "_LSR", &input, &buf);
359 if (ACPI_FAILURE(rc))
360 return NULL;
361 return pkg_to_buf(buf.pointer);
362 }
363
acpi_label_info(acpi_handle handle)364 static union acpi_object *acpi_label_info(acpi_handle handle)
365 {
366 acpi_status rc;
367 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
368
369 rc = acpi_evaluate_object(handle, "_LSI", NULL, &buf);
370 if (ACPI_FAILURE(rc))
371 return NULL;
372 return pkg_to_buf(buf.pointer);
373 }
374
nfit_dsm_revid(unsigned family,unsigned func)375 static u8 nfit_dsm_revid(unsigned family, unsigned func)
376 {
377 static const u8 revid_table[NVDIMM_FAMILY_MAX+1][NVDIMM_CMD_MAX+1] = {
378 [NVDIMM_FAMILY_INTEL] = {
379 [NVDIMM_INTEL_GET_MODES ...
380 NVDIMM_INTEL_FW_ACTIVATE_ARM] = 2,
381 },
382 };
383 u8 id;
384
385 if (family > NVDIMM_FAMILY_MAX)
386 return 0;
387 if (func > NVDIMM_CMD_MAX)
388 return 0;
389 id = revid_table[family][func];
390 if (id == 0)
391 return 1; /* default */
392 return id;
393 }
394
payload_dumpable(struct nvdimm * nvdimm,unsigned int func)395 static bool payload_dumpable(struct nvdimm *nvdimm, unsigned int func)
396 {
397 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
398
399 if (nfit_mem && nfit_mem->family == NVDIMM_FAMILY_INTEL
400 && func >= NVDIMM_INTEL_GET_SECURITY_STATE
401 && func <= NVDIMM_INTEL_MASTER_SECURE_ERASE)
402 return IS_ENABLED(CONFIG_NFIT_SECURITY_DEBUG);
403 return true;
404 }
405
cmd_to_func(struct nfit_mem * nfit_mem,unsigned int cmd,struct nd_cmd_pkg * call_pkg,int * family)406 static int cmd_to_func(struct nfit_mem *nfit_mem, unsigned int cmd,
407 struct nd_cmd_pkg *call_pkg, int *family)
408 {
409 if (call_pkg) {
410 int i;
411
412 if (nfit_mem && nfit_mem->family != call_pkg->nd_family)
413 return -ENOTTY;
414
415 for (i = 0; i < ARRAY_SIZE(call_pkg->nd_reserved2); i++)
416 if (call_pkg->nd_reserved2[i])
417 return -EINVAL;
418 *family = call_pkg->nd_family;
419 return call_pkg->nd_command;
420 }
421
422 /* In the !call_pkg case, bus commands == bus functions */
423 if (!nfit_mem)
424 return cmd;
425
426 /* Linux ND commands == NVDIMM_FAMILY_INTEL function numbers */
427 if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
428 return cmd;
429
430 /*
431 * Force function number validation to fail since 0 is never
432 * published as a valid function in dsm_mask.
433 */
434 return 0;
435 }
436
acpi_nfit_ctl(struct nvdimm_bus_descriptor * nd_desc,struct nvdimm * nvdimm,unsigned int cmd,void * buf,unsigned int buf_len,int * cmd_rc)437 int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm,
438 unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc)
439 {
440 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
441 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
442 union acpi_object in_obj, in_buf, *out_obj;
443 const struct nd_cmd_desc *desc = NULL;
444 struct device *dev = acpi_desc->dev;
445 struct nd_cmd_pkg *call_pkg = NULL;
446 const char *cmd_name, *dimm_name;
447 unsigned long cmd_mask, dsm_mask;
448 u32 offset, fw_status = 0;
449 acpi_handle handle;
450 const guid_t *guid;
451 int func, rc, i;
452 int family = 0;
453
454 if (cmd_rc)
455 *cmd_rc = -EINVAL;
456
457 if (cmd == ND_CMD_CALL)
458 call_pkg = buf;
459 func = cmd_to_func(nfit_mem, cmd, call_pkg, &family);
460 if (func < 0)
461 return func;
462
463 if (nvdimm) {
464 struct acpi_device *adev = nfit_mem->adev;
465
466 if (!adev)
467 return -ENOTTY;
468
469 dimm_name = nvdimm_name(nvdimm);
470 cmd_name = nvdimm_cmd_name(cmd);
471 cmd_mask = nvdimm_cmd_mask(nvdimm);
472 dsm_mask = nfit_mem->dsm_mask;
473 desc = nd_cmd_dimm_desc(cmd);
474 guid = to_nfit_uuid(nfit_mem->family);
475 handle = adev->handle;
476 } else {
477 struct acpi_device *adev = to_acpi_dev(acpi_desc);
478
479 cmd_name = nvdimm_bus_cmd_name(cmd);
480 cmd_mask = nd_desc->cmd_mask;
481 if (cmd == ND_CMD_CALL && call_pkg->nd_family) {
482 family = call_pkg->nd_family;
483 if (family > NVDIMM_BUS_FAMILY_MAX ||
484 !test_bit(family, &nd_desc->bus_family_mask))
485 return -EINVAL;
486 family = array_index_nospec(family,
487 NVDIMM_BUS_FAMILY_MAX + 1);
488 dsm_mask = acpi_desc->family_dsm_mask[family];
489 guid = to_nfit_bus_uuid(family);
490 } else {
491 dsm_mask = acpi_desc->bus_dsm_mask;
492 guid = to_nfit_uuid(NFIT_DEV_BUS);
493 }
494 desc = nd_cmd_bus_desc(cmd);
495 handle = adev->handle;
496 dimm_name = "bus";
497 }
498
499 if (!desc || (cmd && (desc->out_num + desc->in_num == 0)))
500 return -ENOTTY;
501
502 /*
503 * Check for a valid command. For ND_CMD_CALL, we also have to
504 * make sure that the DSM function is supported.
505 */
506 if (cmd == ND_CMD_CALL &&
507 (func > NVDIMM_CMD_MAX || !test_bit(func, &dsm_mask)))
508 return -ENOTTY;
509 else if (!test_bit(cmd, &cmd_mask))
510 return -ENOTTY;
511
512 in_obj.type = ACPI_TYPE_PACKAGE;
513 in_obj.package.count = 1;
514 in_obj.package.elements = &in_buf;
515 in_buf.type = ACPI_TYPE_BUFFER;
516 in_buf.buffer.pointer = buf;
517 in_buf.buffer.length = 0;
518
519 /* libnvdimm has already validated the input envelope */
520 for (i = 0; i < desc->in_num; i++)
521 in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc,
522 i, buf);
523
524 if (call_pkg) {
525 /* skip over package wrapper */
526 in_buf.buffer.pointer = (void *) &call_pkg->nd_payload;
527 in_buf.buffer.length = call_pkg->nd_size_in;
528 }
529
530 dev_dbg(dev, "%s cmd: %d: family: %d func: %d input length: %d\n",
531 dimm_name, cmd, family, func, in_buf.buffer.length);
532 if (payload_dumpable(nvdimm, func))
533 print_hex_dump_debug("nvdimm in ", DUMP_PREFIX_OFFSET, 4, 4,
534 in_buf.buffer.pointer,
535 min_t(u32, 256, in_buf.buffer.length), true);
536
537 /* call the BIOS, prefer the named methods over _DSM if available */
538 if (nvdimm && cmd == ND_CMD_GET_CONFIG_SIZE
539 && test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
540 out_obj = acpi_label_info(handle);
541 else if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA
542 && test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
543 struct nd_cmd_get_config_data_hdr *p = buf;
544
545 out_obj = acpi_label_read(handle, p->in_offset, p->in_length);
546 } else if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA
547 && test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) {
548 struct nd_cmd_set_config_hdr *p = buf;
549
550 out_obj = acpi_label_write(handle, p->in_offset, p->in_length,
551 p->in_buf);
552 } else {
553 u8 revid;
554
555 if (nvdimm)
556 revid = nfit_dsm_revid(nfit_mem->family, func);
557 else
558 revid = 1;
559 out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
560 }
561
562 if (!out_obj) {
563 dev_dbg(dev, "%s _DSM failed cmd: %s\n", dimm_name, cmd_name);
564 return -EINVAL;
565 }
566
567 if (out_obj->type != ACPI_TYPE_BUFFER) {
568 dev_dbg(dev, "%s unexpected output object type cmd: %s type: %d\n",
569 dimm_name, cmd_name, out_obj->type);
570 rc = -EINVAL;
571 goto out;
572 }
573
574 dev_dbg(dev, "%s cmd: %s output length: %d\n", dimm_name,
575 cmd_name, out_obj->buffer.length);
576 print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4,
577 out_obj->buffer.pointer,
578 min_t(u32, 128, out_obj->buffer.length), true);
579
580 if (call_pkg) {
581 call_pkg->nd_fw_size = out_obj->buffer.length;
582 memcpy(call_pkg->nd_payload + call_pkg->nd_size_in,
583 out_obj->buffer.pointer,
584 min(call_pkg->nd_fw_size, call_pkg->nd_size_out));
585
586 ACPI_FREE(out_obj);
587 /*
588 * Need to support FW function w/o known size in advance.
589 * Caller can determine required size based upon nd_fw_size.
590 * If we return an error (like elsewhere) then caller wouldn't
591 * be able to rely upon data returned to make calculation.
592 */
593 if (cmd_rc)
594 *cmd_rc = 0;
595 return 0;
596 }
597
598 for (i = 0, offset = 0; i < desc->out_num; i++) {
599 u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf,
600 (u32 *) out_obj->buffer.pointer,
601 out_obj->buffer.length - offset);
602
603 if (offset + out_size > out_obj->buffer.length) {
604 dev_dbg(dev, "%s output object underflow cmd: %s field: %d\n",
605 dimm_name, cmd_name, i);
606 break;
607 }
608
609 if (in_buf.buffer.length + offset + out_size > buf_len) {
610 dev_dbg(dev, "%s output overrun cmd: %s field: %d\n",
611 dimm_name, cmd_name, i);
612 rc = -ENXIO;
613 goto out;
614 }
615 memcpy(buf + in_buf.buffer.length + offset,
616 out_obj->buffer.pointer + offset, out_size);
617 offset += out_size;
618 }
619
620 /*
621 * Set fw_status for all the commands with a known format to be
622 * later interpreted by xlat_status().
623 */
624 if (i >= 1 && ((!nvdimm && cmd >= ND_CMD_ARS_CAP
625 && cmd <= ND_CMD_CLEAR_ERROR)
626 || (nvdimm && cmd >= ND_CMD_SMART
627 && cmd <= ND_CMD_VENDOR)))
628 fw_status = *(u32 *) out_obj->buffer.pointer;
629
630 if (offset + in_buf.buffer.length < buf_len) {
631 if (i >= 1) {
632 /*
633 * status valid, return the number of bytes left
634 * unfilled in the output buffer
635 */
636 rc = buf_len - offset - in_buf.buffer.length;
637 if (cmd_rc)
638 *cmd_rc = xlat_status(nvdimm, buf, cmd,
639 fw_status);
640 } else {
641 dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n",
642 __func__, dimm_name, cmd_name, buf_len,
643 offset);
644 rc = -ENXIO;
645 }
646 } else {
647 rc = 0;
648 if (cmd_rc)
649 *cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status);
650 }
651
652 out:
653 ACPI_FREE(out_obj);
654
655 return rc;
656 }
657 EXPORT_SYMBOL_GPL(acpi_nfit_ctl);
658
spa_type_name(u16 type)659 static const char *spa_type_name(u16 type)
660 {
661 static const char *to_name[] = {
662 [NFIT_SPA_VOLATILE] = "volatile",
663 [NFIT_SPA_PM] = "pmem",
664 [NFIT_SPA_DCR] = "dimm-control-region",
665 [NFIT_SPA_BDW] = "block-data-window",
666 [NFIT_SPA_VDISK] = "volatile-disk",
667 [NFIT_SPA_VCD] = "volatile-cd",
668 [NFIT_SPA_PDISK] = "persistent-disk",
669 [NFIT_SPA_PCD] = "persistent-cd",
670
671 };
672
673 if (type > NFIT_SPA_PCD)
674 return "unknown";
675
676 return to_name[type];
677 }
678
nfit_spa_type(struct acpi_nfit_system_address * spa)679 int nfit_spa_type(struct acpi_nfit_system_address *spa)
680 {
681 guid_t guid;
682 int i;
683
684 import_guid(&guid, spa->range_guid);
685 for (i = 0; i < NFIT_UUID_MAX; i++)
686 if (guid_equal(to_nfit_uuid(i), &guid))
687 return i;
688 return -1;
689 }
690
sizeof_spa(struct acpi_nfit_system_address * spa)691 static size_t sizeof_spa(struct acpi_nfit_system_address *spa)
692 {
693 if (spa->flags & ACPI_NFIT_LOCATION_COOKIE_VALID)
694 return sizeof(*spa);
695 return sizeof(*spa) - 8;
696 }
697
add_spa(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_system_address * spa)698 static bool add_spa(struct acpi_nfit_desc *acpi_desc,
699 struct nfit_table_prev *prev,
700 struct acpi_nfit_system_address *spa)
701 {
702 struct device *dev = acpi_desc->dev;
703 struct nfit_spa *nfit_spa;
704
705 if (spa->header.length != sizeof_spa(spa))
706 return false;
707
708 list_for_each_entry(nfit_spa, &prev->spas, list) {
709 if (memcmp(nfit_spa->spa, spa, sizeof_spa(spa)) == 0) {
710 list_move_tail(&nfit_spa->list, &acpi_desc->spas);
711 return true;
712 }
713 }
714
715 nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof_spa(spa),
716 GFP_KERNEL);
717 if (!nfit_spa)
718 return false;
719 INIT_LIST_HEAD(&nfit_spa->list);
720 memcpy(nfit_spa->spa, spa, sizeof_spa(spa));
721 list_add_tail(&nfit_spa->list, &acpi_desc->spas);
722 dev_dbg(dev, "spa index: %d type: %s\n",
723 spa->range_index,
724 spa_type_name(nfit_spa_type(spa)));
725 return true;
726 }
727
add_memdev(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_memory_map * memdev)728 static bool add_memdev(struct acpi_nfit_desc *acpi_desc,
729 struct nfit_table_prev *prev,
730 struct acpi_nfit_memory_map *memdev)
731 {
732 struct device *dev = acpi_desc->dev;
733 struct nfit_memdev *nfit_memdev;
734
735 if (memdev->header.length != sizeof(*memdev))
736 return false;
737
738 list_for_each_entry(nfit_memdev, &prev->memdevs, list)
739 if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) {
740 list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs);
741 return true;
742 }
743
744 nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev),
745 GFP_KERNEL);
746 if (!nfit_memdev)
747 return false;
748 INIT_LIST_HEAD(&nfit_memdev->list);
749 memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev));
750 list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs);
751 dev_dbg(dev, "memdev handle: %#x spa: %d dcr: %d flags: %#x\n",
752 memdev->device_handle, memdev->range_index,
753 memdev->region_index, memdev->flags);
754 return true;
755 }
756
nfit_get_smbios_id(u32 device_handle,u16 * flags)757 int nfit_get_smbios_id(u32 device_handle, u16 *flags)
758 {
759 struct acpi_nfit_memory_map *memdev;
760 struct acpi_nfit_desc *acpi_desc;
761 struct nfit_mem *nfit_mem;
762 u16 physical_id;
763
764 mutex_lock(&acpi_desc_lock);
765 list_for_each_entry(acpi_desc, &acpi_descs, list) {
766 mutex_lock(&acpi_desc->init_mutex);
767 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
768 memdev = __to_nfit_memdev(nfit_mem);
769 if (memdev->device_handle == device_handle) {
770 *flags = memdev->flags;
771 physical_id = memdev->physical_id;
772 mutex_unlock(&acpi_desc->init_mutex);
773 mutex_unlock(&acpi_desc_lock);
774 return physical_id;
775 }
776 }
777 mutex_unlock(&acpi_desc->init_mutex);
778 }
779 mutex_unlock(&acpi_desc_lock);
780
781 return -ENODEV;
782 }
783 EXPORT_SYMBOL_GPL(nfit_get_smbios_id);
784
785 /*
786 * An implementation may provide a truncated control region if no block windows
787 * are defined.
788 */
sizeof_dcr(struct acpi_nfit_control_region * dcr)789 static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr)
790 {
791 if (dcr->header.length < offsetof(struct acpi_nfit_control_region,
792 window_size))
793 return 0;
794 if (dcr->windows)
795 return sizeof(*dcr);
796 return offsetof(struct acpi_nfit_control_region, window_size);
797 }
798
add_dcr(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_control_region * dcr)799 static bool add_dcr(struct acpi_nfit_desc *acpi_desc,
800 struct nfit_table_prev *prev,
801 struct acpi_nfit_control_region *dcr)
802 {
803 struct device *dev = acpi_desc->dev;
804 struct nfit_dcr *nfit_dcr;
805
806 if (!sizeof_dcr(dcr))
807 return false;
808
809 list_for_each_entry(nfit_dcr, &prev->dcrs, list)
810 if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) {
811 list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs);
812 return true;
813 }
814
815 nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr),
816 GFP_KERNEL);
817 if (!nfit_dcr)
818 return false;
819 INIT_LIST_HEAD(&nfit_dcr->list);
820 memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr));
821 list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs);
822 dev_dbg(dev, "dcr index: %d windows: %d\n",
823 dcr->region_index, dcr->windows);
824 return true;
825 }
826
add_bdw(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_data_region * bdw)827 static bool add_bdw(struct acpi_nfit_desc *acpi_desc,
828 struct nfit_table_prev *prev,
829 struct acpi_nfit_data_region *bdw)
830 {
831 struct device *dev = acpi_desc->dev;
832 struct nfit_bdw *nfit_bdw;
833
834 if (bdw->header.length != sizeof(*bdw))
835 return false;
836 list_for_each_entry(nfit_bdw, &prev->bdws, list)
837 if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) {
838 list_move_tail(&nfit_bdw->list, &acpi_desc->bdws);
839 return true;
840 }
841
842 nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw),
843 GFP_KERNEL);
844 if (!nfit_bdw)
845 return false;
846 INIT_LIST_HEAD(&nfit_bdw->list);
847 memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw));
848 list_add_tail(&nfit_bdw->list, &acpi_desc->bdws);
849 dev_dbg(dev, "bdw dcr: %d windows: %d\n",
850 bdw->region_index, bdw->windows);
851 return true;
852 }
853
sizeof_idt(struct acpi_nfit_interleave * idt)854 static size_t sizeof_idt(struct acpi_nfit_interleave *idt)
855 {
856 if (idt->header.length < sizeof(*idt))
857 return 0;
858 return sizeof(*idt) + sizeof(u32) * idt->line_count;
859 }
860
add_idt(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_interleave * idt)861 static bool add_idt(struct acpi_nfit_desc *acpi_desc,
862 struct nfit_table_prev *prev,
863 struct acpi_nfit_interleave *idt)
864 {
865 struct device *dev = acpi_desc->dev;
866 struct nfit_idt *nfit_idt;
867
868 if (!sizeof_idt(idt))
869 return false;
870
871 list_for_each_entry(nfit_idt, &prev->idts, list) {
872 if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt))
873 continue;
874
875 if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) {
876 list_move_tail(&nfit_idt->list, &acpi_desc->idts);
877 return true;
878 }
879 }
880
881 nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt),
882 GFP_KERNEL);
883 if (!nfit_idt)
884 return false;
885 INIT_LIST_HEAD(&nfit_idt->list);
886 memcpy(nfit_idt->idt, idt, sizeof_idt(idt));
887 list_add_tail(&nfit_idt->list, &acpi_desc->idts);
888 dev_dbg(dev, "idt index: %d num_lines: %d\n",
889 idt->interleave_index, idt->line_count);
890 return true;
891 }
892
sizeof_flush(struct acpi_nfit_flush_address * flush)893 static size_t sizeof_flush(struct acpi_nfit_flush_address *flush)
894 {
895 if (flush->header.length < sizeof(*flush))
896 return 0;
897 return struct_size(flush, hint_address, flush->hint_count);
898 }
899
add_flush(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_flush_address * flush)900 static bool add_flush(struct acpi_nfit_desc *acpi_desc,
901 struct nfit_table_prev *prev,
902 struct acpi_nfit_flush_address *flush)
903 {
904 struct device *dev = acpi_desc->dev;
905 struct nfit_flush *nfit_flush;
906
907 if (!sizeof_flush(flush))
908 return false;
909
910 list_for_each_entry(nfit_flush, &prev->flushes, list) {
911 if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush))
912 continue;
913
914 if (memcmp(nfit_flush->flush, flush,
915 sizeof_flush(flush)) == 0) {
916 list_move_tail(&nfit_flush->list, &acpi_desc->flushes);
917 return true;
918 }
919 }
920
921 nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush)
922 + sizeof_flush(flush), GFP_KERNEL);
923 if (!nfit_flush)
924 return false;
925 INIT_LIST_HEAD(&nfit_flush->list);
926 memcpy(nfit_flush->flush, flush, sizeof_flush(flush));
927 list_add_tail(&nfit_flush->list, &acpi_desc->flushes);
928 dev_dbg(dev, "nfit_flush handle: %d hint_count: %d\n",
929 flush->device_handle, flush->hint_count);
930 return true;
931 }
932
add_platform_cap(struct acpi_nfit_desc * acpi_desc,struct acpi_nfit_capabilities * pcap)933 static bool add_platform_cap(struct acpi_nfit_desc *acpi_desc,
934 struct acpi_nfit_capabilities *pcap)
935 {
936 struct device *dev = acpi_desc->dev;
937 u32 mask;
938
939 mask = (1 << (pcap->highest_capability + 1)) - 1;
940 acpi_desc->platform_cap = pcap->capabilities & mask;
941 dev_dbg(dev, "cap: %#x\n", acpi_desc->platform_cap);
942 return true;
943 }
944
add_table(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,void * table,const void * end)945 static void *add_table(struct acpi_nfit_desc *acpi_desc,
946 struct nfit_table_prev *prev, void *table, const void *end)
947 {
948 struct device *dev = acpi_desc->dev;
949 struct acpi_nfit_header *hdr;
950 void *err = ERR_PTR(-ENOMEM);
951
952 if (table >= end)
953 return NULL;
954
955 hdr = table;
956 if (!hdr->length) {
957 dev_warn(dev, "found a zero length table '%d' parsing nfit\n",
958 hdr->type);
959 return NULL;
960 }
961
962 switch (hdr->type) {
963 case ACPI_NFIT_TYPE_SYSTEM_ADDRESS:
964 if (!add_spa(acpi_desc, prev, table))
965 return err;
966 break;
967 case ACPI_NFIT_TYPE_MEMORY_MAP:
968 if (!add_memdev(acpi_desc, prev, table))
969 return err;
970 break;
971 case ACPI_NFIT_TYPE_CONTROL_REGION:
972 if (!add_dcr(acpi_desc, prev, table))
973 return err;
974 break;
975 case ACPI_NFIT_TYPE_DATA_REGION:
976 if (!add_bdw(acpi_desc, prev, table))
977 return err;
978 break;
979 case ACPI_NFIT_TYPE_INTERLEAVE:
980 if (!add_idt(acpi_desc, prev, table))
981 return err;
982 break;
983 case ACPI_NFIT_TYPE_FLUSH_ADDRESS:
984 if (!add_flush(acpi_desc, prev, table))
985 return err;
986 break;
987 case ACPI_NFIT_TYPE_SMBIOS:
988 dev_dbg(dev, "smbios\n");
989 break;
990 case ACPI_NFIT_TYPE_CAPABILITIES:
991 if (!add_platform_cap(acpi_desc, table))
992 return err;
993 break;
994 default:
995 dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type);
996 break;
997 }
998
999 return table + hdr->length;
1000 }
1001
__nfit_mem_init(struct acpi_nfit_desc * acpi_desc,struct acpi_nfit_system_address * spa)1002 static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc,
1003 struct acpi_nfit_system_address *spa)
1004 {
1005 struct nfit_mem *nfit_mem, *found;
1006 struct nfit_memdev *nfit_memdev;
1007 int type = spa ? nfit_spa_type(spa) : 0;
1008
1009 switch (type) {
1010 case NFIT_SPA_DCR:
1011 case NFIT_SPA_PM:
1012 break;
1013 default:
1014 if (spa)
1015 return 0;
1016 }
1017
1018 /*
1019 * This loop runs in two modes, when a dimm is mapped the loop
1020 * adds memdev associations to an existing dimm, or creates a
1021 * dimm. In the unmapped dimm case this loop sweeps for memdev
1022 * instances with an invalid / zero range_index and adds those
1023 * dimms without spa associations.
1024 */
1025 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1026 struct nfit_flush *nfit_flush;
1027 struct nfit_dcr *nfit_dcr;
1028 u32 device_handle;
1029 u16 dcr;
1030
1031 if (spa && nfit_memdev->memdev->range_index != spa->range_index)
1032 continue;
1033 if (!spa && nfit_memdev->memdev->range_index)
1034 continue;
1035 found = NULL;
1036 dcr = nfit_memdev->memdev->region_index;
1037 device_handle = nfit_memdev->memdev->device_handle;
1038 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1039 if (__to_nfit_memdev(nfit_mem)->device_handle
1040 == device_handle) {
1041 found = nfit_mem;
1042 break;
1043 }
1044
1045 if (found)
1046 nfit_mem = found;
1047 else {
1048 nfit_mem = devm_kzalloc(acpi_desc->dev,
1049 sizeof(*nfit_mem), GFP_KERNEL);
1050 if (!nfit_mem)
1051 return -ENOMEM;
1052 INIT_LIST_HEAD(&nfit_mem->list);
1053 nfit_mem->acpi_desc = acpi_desc;
1054 list_add(&nfit_mem->list, &acpi_desc->dimms);
1055 }
1056
1057 list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1058 if (nfit_dcr->dcr->region_index != dcr)
1059 continue;
1060 /*
1061 * Record the control region for the dimm. For
1062 * the ACPI 6.1 case, where there are separate
1063 * control regions for the pmem vs blk
1064 * interfaces, be sure to record the extended
1065 * blk details.
1066 */
1067 if (!nfit_mem->dcr)
1068 nfit_mem->dcr = nfit_dcr->dcr;
1069 else if (nfit_mem->dcr->windows == 0
1070 && nfit_dcr->dcr->windows)
1071 nfit_mem->dcr = nfit_dcr->dcr;
1072 break;
1073 }
1074
1075 list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) {
1076 struct acpi_nfit_flush_address *flush;
1077 u16 i;
1078
1079 if (nfit_flush->flush->device_handle != device_handle)
1080 continue;
1081 nfit_mem->nfit_flush = nfit_flush;
1082 flush = nfit_flush->flush;
1083 nfit_mem->flush_wpq = devm_kcalloc(acpi_desc->dev,
1084 flush->hint_count,
1085 sizeof(struct resource),
1086 GFP_KERNEL);
1087 if (!nfit_mem->flush_wpq)
1088 return -ENOMEM;
1089 for (i = 0; i < flush->hint_count; i++) {
1090 struct resource *res = &nfit_mem->flush_wpq[i];
1091
1092 res->start = flush->hint_address[i];
1093 res->end = res->start + 8 - 1;
1094 }
1095 break;
1096 }
1097
1098 if (dcr && !nfit_mem->dcr) {
1099 dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n",
1100 spa->range_index, dcr);
1101 return -ENODEV;
1102 }
1103
1104 if (type == NFIT_SPA_DCR) {
1105 struct nfit_idt *nfit_idt;
1106 u16 idt_idx;
1107
1108 /* multiple dimms may share a SPA when interleaved */
1109 nfit_mem->spa_dcr = spa;
1110 nfit_mem->memdev_dcr = nfit_memdev->memdev;
1111 idt_idx = nfit_memdev->memdev->interleave_index;
1112 list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
1113 if (nfit_idt->idt->interleave_index != idt_idx)
1114 continue;
1115 nfit_mem->idt_dcr = nfit_idt->idt;
1116 break;
1117 }
1118 } else if (type == NFIT_SPA_PM) {
1119 /*
1120 * A single dimm may belong to multiple SPA-PM
1121 * ranges, record at least one in addition to
1122 * any SPA-DCR range.
1123 */
1124 nfit_mem->memdev_pmem = nfit_memdev->memdev;
1125 } else
1126 nfit_mem->memdev_dcr = nfit_memdev->memdev;
1127 }
1128
1129 return 0;
1130 }
1131
nfit_mem_cmp(void * priv,const struct list_head * _a,const struct list_head * _b)1132 static int nfit_mem_cmp(void *priv, const struct list_head *_a,
1133 const struct list_head *_b)
1134 {
1135 struct nfit_mem *a = container_of(_a, typeof(*a), list);
1136 struct nfit_mem *b = container_of(_b, typeof(*b), list);
1137 u32 handleA, handleB;
1138
1139 handleA = __to_nfit_memdev(a)->device_handle;
1140 handleB = __to_nfit_memdev(b)->device_handle;
1141 if (handleA < handleB)
1142 return -1;
1143 else if (handleA > handleB)
1144 return 1;
1145 return 0;
1146 }
1147
nfit_mem_init(struct acpi_nfit_desc * acpi_desc)1148 static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc)
1149 {
1150 struct nfit_spa *nfit_spa;
1151 int rc;
1152
1153
1154 /*
1155 * For each SPA-DCR or SPA-PMEM address range find its
1156 * corresponding MEMDEV(s). From each MEMDEV find the
1157 * corresponding DCR. Then, if we're operating on a SPA-DCR,
1158 * try to find a SPA-BDW and a corresponding BDW that references
1159 * the DCR. Throw it all into an nfit_mem object. Note, that
1160 * BDWs are optional.
1161 */
1162 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
1163 rc = __nfit_mem_init(acpi_desc, nfit_spa->spa);
1164 if (rc)
1165 return rc;
1166 }
1167
1168 /*
1169 * If a DIMM has failed to be mapped into SPA there will be no
1170 * SPA entries above. Find and register all the unmapped DIMMs
1171 * for reporting and recovery purposes.
1172 */
1173 rc = __nfit_mem_init(acpi_desc, NULL);
1174 if (rc)
1175 return rc;
1176
1177 list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp);
1178
1179 return 0;
1180 }
1181
bus_dsm_mask_show(struct device * dev,struct device_attribute * attr,char * buf)1182 static ssize_t bus_dsm_mask_show(struct device *dev,
1183 struct device_attribute *attr, char *buf)
1184 {
1185 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1186 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1187 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1188
1189 return sysfs_emit(buf, "%#lx\n", acpi_desc->bus_dsm_mask);
1190 }
1191 static struct device_attribute dev_attr_bus_dsm_mask =
1192 __ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL);
1193
revision_show(struct device * dev,struct device_attribute * attr,char * buf)1194 static ssize_t revision_show(struct device *dev,
1195 struct device_attribute *attr, char *buf)
1196 {
1197 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1198 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1199 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1200
1201 return sysfs_emit(buf, "%d\n", acpi_desc->acpi_header.revision);
1202 }
1203 static DEVICE_ATTR_RO(revision);
1204
hw_error_scrub_show(struct device * dev,struct device_attribute * attr,char * buf)1205 static ssize_t hw_error_scrub_show(struct device *dev,
1206 struct device_attribute *attr, char *buf)
1207 {
1208 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1209 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1210 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1211
1212 return sysfs_emit(buf, "%d\n", acpi_desc->scrub_mode);
1213 }
1214
1215 /*
1216 * The 'hw_error_scrub' attribute can have the following values written to it:
1217 * '0': Switch to the default mode where an exception will only insert
1218 * the address of the memory error into the poison and badblocks lists.
1219 * '1': Enable a full scrub to happen if an exception for a memory error is
1220 * received.
1221 */
hw_error_scrub_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)1222 static ssize_t hw_error_scrub_store(struct device *dev,
1223 struct device_attribute *attr, const char *buf, size_t size)
1224 {
1225 struct nvdimm_bus_descriptor *nd_desc;
1226 ssize_t rc;
1227 long val;
1228
1229 rc = kstrtol(buf, 0, &val);
1230 if (rc)
1231 return rc;
1232
1233 device_lock(dev);
1234 nd_desc = dev_get_drvdata(dev);
1235 if (nd_desc) {
1236 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1237
1238 switch (val) {
1239 case HW_ERROR_SCRUB_ON:
1240 acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON;
1241 break;
1242 case HW_ERROR_SCRUB_OFF:
1243 acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF;
1244 break;
1245 default:
1246 rc = -EINVAL;
1247 break;
1248 }
1249 }
1250 device_unlock(dev);
1251 if (rc)
1252 return rc;
1253 return size;
1254 }
1255 static DEVICE_ATTR_RW(hw_error_scrub);
1256
1257 /*
1258 * This shows the number of full Address Range Scrubs that have been
1259 * completed since driver load time. Userspace can wait on this using
1260 * select/poll etc. A '+' at the end indicates an ARS is in progress
1261 */
scrub_show(struct device * dev,struct device_attribute * attr,char * buf)1262 static ssize_t scrub_show(struct device *dev,
1263 struct device_attribute *attr, char *buf)
1264 {
1265 struct nvdimm_bus_descriptor *nd_desc;
1266 struct acpi_nfit_desc *acpi_desc;
1267 ssize_t rc = -ENXIO;
1268 bool busy;
1269
1270 device_lock(dev);
1271 nd_desc = dev_get_drvdata(dev);
1272 if (!nd_desc) {
1273 device_unlock(dev);
1274 return rc;
1275 }
1276 acpi_desc = to_acpi_desc(nd_desc);
1277
1278 mutex_lock(&acpi_desc->init_mutex);
1279 busy = test_bit(ARS_BUSY, &acpi_desc->scrub_flags)
1280 && !test_bit(ARS_CANCEL, &acpi_desc->scrub_flags);
1281 rc = sysfs_emit(buf, "%d%s", acpi_desc->scrub_count, busy ? "+\n" : "\n");
1282 /* Allow an admin to poll the busy state at a higher rate */
1283 if (busy && capable(CAP_SYS_RAWIO) && !test_and_set_bit(ARS_POLL,
1284 &acpi_desc->scrub_flags)) {
1285 acpi_desc->scrub_tmo = 1;
1286 mod_delayed_work(nfit_wq, &acpi_desc->dwork, HZ);
1287 }
1288
1289 mutex_unlock(&acpi_desc->init_mutex);
1290 device_unlock(dev);
1291 return rc;
1292 }
1293
scrub_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)1294 static ssize_t scrub_store(struct device *dev,
1295 struct device_attribute *attr, const char *buf, size_t size)
1296 {
1297 struct nvdimm_bus_descriptor *nd_desc;
1298 ssize_t rc;
1299 long val;
1300
1301 rc = kstrtol(buf, 0, &val);
1302 if (rc)
1303 return rc;
1304 if (val != 1)
1305 return -EINVAL;
1306
1307 device_lock(dev);
1308 nd_desc = dev_get_drvdata(dev);
1309 if (nd_desc) {
1310 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1311
1312 rc = acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
1313 }
1314 device_unlock(dev);
1315 if (rc)
1316 return rc;
1317 return size;
1318 }
1319 static DEVICE_ATTR_RW(scrub);
1320
ars_supported(struct nvdimm_bus * nvdimm_bus)1321 static bool ars_supported(struct nvdimm_bus *nvdimm_bus)
1322 {
1323 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1324 const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START
1325 | 1 << ND_CMD_ARS_STATUS;
1326
1327 return (nd_desc->cmd_mask & mask) == mask;
1328 }
1329
nfit_visible(struct kobject * kobj,struct attribute * a,int n)1330 static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n)
1331 {
1332 struct device *dev = kobj_to_dev(kobj);
1333 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1334
1335 if (a == &dev_attr_scrub.attr)
1336 return ars_supported(nvdimm_bus) ? a->mode : 0;
1337
1338 if (a == &dev_attr_firmware_activate_noidle.attr)
1339 return intel_fwa_supported(nvdimm_bus) ? a->mode : 0;
1340
1341 return a->mode;
1342 }
1343
1344 static struct attribute *acpi_nfit_attributes[] = {
1345 &dev_attr_revision.attr,
1346 &dev_attr_scrub.attr,
1347 &dev_attr_hw_error_scrub.attr,
1348 &dev_attr_bus_dsm_mask.attr,
1349 &dev_attr_firmware_activate_noidle.attr,
1350 NULL,
1351 };
1352
1353 static const struct attribute_group acpi_nfit_attribute_group = {
1354 .name = "nfit",
1355 .attrs = acpi_nfit_attributes,
1356 .is_visible = nfit_visible,
1357 };
1358
1359 static const struct attribute_group *acpi_nfit_attribute_groups[] = {
1360 &acpi_nfit_attribute_group,
1361 NULL,
1362 };
1363
to_nfit_memdev(struct device * dev)1364 static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev)
1365 {
1366 struct nvdimm *nvdimm = to_nvdimm(dev);
1367 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1368
1369 return __to_nfit_memdev(nfit_mem);
1370 }
1371
to_nfit_dcr(struct device * dev)1372 static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev)
1373 {
1374 struct nvdimm *nvdimm = to_nvdimm(dev);
1375 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1376
1377 return nfit_mem->dcr;
1378 }
1379
handle_show(struct device * dev,struct device_attribute * attr,char * buf)1380 static ssize_t handle_show(struct device *dev,
1381 struct device_attribute *attr, char *buf)
1382 {
1383 struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1384
1385 return sysfs_emit(buf, "%#x\n", memdev->device_handle);
1386 }
1387 static DEVICE_ATTR_RO(handle);
1388
phys_id_show(struct device * dev,struct device_attribute * attr,char * buf)1389 static ssize_t phys_id_show(struct device *dev,
1390 struct device_attribute *attr, char *buf)
1391 {
1392 struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1393
1394 return sysfs_emit(buf, "%#x\n", memdev->physical_id);
1395 }
1396 static DEVICE_ATTR_RO(phys_id);
1397
vendor_show(struct device * dev,struct device_attribute * attr,char * buf)1398 static ssize_t vendor_show(struct device *dev,
1399 struct device_attribute *attr, char *buf)
1400 {
1401 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1402
1403 return sysfs_emit(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id));
1404 }
1405 static DEVICE_ATTR_RO(vendor);
1406
rev_id_show(struct device * dev,struct device_attribute * attr,char * buf)1407 static ssize_t rev_id_show(struct device *dev,
1408 struct device_attribute *attr, char *buf)
1409 {
1410 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1411
1412 return sysfs_emit(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id));
1413 }
1414 static DEVICE_ATTR_RO(rev_id);
1415
device_show(struct device * dev,struct device_attribute * attr,char * buf)1416 static ssize_t device_show(struct device *dev,
1417 struct device_attribute *attr, char *buf)
1418 {
1419 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1420
1421 return sysfs_emit(buf, "0x%04x\n", be16_to_cpu(dcr->device_id));
1422 }
1423 static DEVICE_ATTR_RO(device);
1424
subsystem_vendor_show(struct device * dev,struct device_attribute * attr,char * buf)1425 static ssize_t subsystem_vendor_show(struct device *dev,
1426 struct device_attribute *attr, char *buf)
1427 {
1428 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1429
1430 return sysfs_emit(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id));
1431 }
1432 static DEVICE_ATTR_RO(subsystem_vendor);
1433
subsystem_rev_id_show(struct device * dev,struct device_attribute * attr,char * buf)1434 static ssize_t subsystem_rev_id_show(struct device *dev,
1435 struct device_attribute *attr, char *buf)
1436 {
1437 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1438
1439 return sysfs_emit(buf, "0x%04x\n",
1440 be16_to_cpu(dcr->subsystem_revision_id));
1441 }
1442 static DEVICE_ATTR_RO(subsystem_rev_id);
1443
subsystem_device_show(struct device * dev,struct device_attribute * attr,char * buf)1444 static ssize_t subsystem_device_show(struct device *dev,
1445 struct device_attribute *attr, char *buf)
1446 {
1447 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1448
1449 return sysfs_emit(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id));
1450 }
1451 static DEVICE_ATTR_RO(subsystem_device);
1452
num_nvdimm_formats(struct nvdimm * nvdimm)1453 static int num_nvdimm_formats(struct nvdimm *nvdimm)
1454 {
1455 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1456 int formats = 0;
1457
1458 if (nfit_mem->memdev_pmem)
1459 formats++;
1460 return formats;
1461 }
1462
format_show(struct device * dev,struct device_attribute * attr,char * buf)1463 static ssize_t format_show(struct device *dev,
1464 struct device_attribute *attr, char *buf)
1465 {
1466 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1467
1468 return sysfs_emit(buf, "0x%04x\n", le16_to_cpu(dcr->code));
1469 }
1470 static DEVICE_ATTR_RO(format);
1471
format1_show(struct device * dev,struct device_attribute * attr,char * buf)1472 static ssize_t format1_show(struct device *dev,
1473 struct device_attribute *attr, char *buf)
1474 {
1475 u32 handle;
1476 ssize_t rc = -ENXIO;
1477 struct nfit_mem *nfit_mem;
1478 struct nfit_memdev *nfit_memdev;
1479 struct acpi_nfit_desc *acpi_desc;
1480 struct nvdimm *nvdimm = to_nvdimm(dev);
1481 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1482
1483 nfit_mem = nvdimm_provider_data(nvdimm);
1484 acpi_desc = nfit_mem->acpi_desc;
1485 handle = to_nfit_memdev(dev)->device_handle;
1486
1487 /* assumes DIMMs have at most 2 published interface codes */
1488 mutex_lock(&acpi_desc->init_mutex);
1489 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1490 struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
1491 struct nfit_dcr *nfit_dcr;
1492
1493 if (memdev->device_handle != handle)
1494 continue;
1495
1496 list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1497 if (nfit_dcr->dcr->region_index != memdev->region_index)
1498 continue;
1499 if (nfit_dcr->dcr->code == dcr->code)
1500 continue;
1501 rc = sysfs_emit(buf, "0x%04x\n",
1502 le16_to_cpu(nfit_dcr->dcr->code));
1503 break;
1504 }
1505 if (rc != -ENXIO)
1506 break;
1507 }
1508 mutex_unlock(&acpi_desc->init_mutex);
1509 return rc;
1510 }
1511 static DEVICE_ATTR_RO(format1);
1512
formats_show(struct device * dev,struct device_attribute * attr,char * buf)1513 static ssize_t formats_show(struct device *dev,
1514 struct device_attribute *attr, char *buf)
1515 {
1516 struct nvdimm *nvdimm = to_nvdimm(dev);
1517
1518 return sysfs_emit(buf, "%d\n", num_nvdimm_formats(nvdimm));
1519 }
1520 static DEVICE_ATTR_RO(formats);
1521
serial_show(struct device * dev,struct device_attribute * attr,char * buf)1522 static ssize_t serial_show(struct device *dev,
1523 struct device_attribute *attr, char *buf)
1524 {
1525 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1526
1527 return sysfs_emit(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number));
1528 }
1529 static DEVICE_ATTR_RO(serial);
1530
family_show(struct device * dev,struct device_attribute * attr,char * buf)1531 static ssize_t family_show(struct device *dev,
1532 struct device_attribute *attr, char *buf)
1533 {
1534 struct nvdimm *nvdimm = to_nvdimm(dev);
1535 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1536
1537 if (nfit_mem->family < 0)
1538 return -ENXIO;
1539 return sysfs_emit(buf, "%d\n", nfit_mem->family);
1540 }
1541 static DEVICE_ATTR_RO(family);
1542
dsm_mask_show(struct device * dev,struct device_attribute * attr,char * buf)1543 static ssize_t dsm_mask_show(struct device *dev,
1544 struct device_attribute *attr, char *buf)
1545 {
1546 struct nvdimm *nvdimm = to_nvdimm(dev);
1547 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1548
1549 if (nfit_mem->family < 0)
1550 return -ENXIO;
1551 return sysfs_emit(buf, "%#lx\n", nfit_mem->dsm_mask);
1552 }
1553 static DEVICE_ATTR_RO(dsm_mask);
1554
flags_show(struct device * dev,struct device_attribute * attr,char * buf)1555 static ssize_t flags_show(struct device *dev,
1556 struct device_attribute *attr, char *buf)
1557 {
1558 struct nvdimm *nvdimm = to_nvdimm(dev);
1559 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1560 u16 flags = __to_nfit_memdev(nfit_mem)->flags;
1561
1562 if (test_bit(NFIT_MEM_DIRTY, &nfit_mem->flags))
1563 flags |= ACPI_NFIT_MEM_FLUSH_FAILED;
1564
1565 return sysfs_emit(buf, "%s%s%s%s%s%s%s\n",
1566 flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "",
1567 flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "",
1568 flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "",
1569 flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "",
1570 flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "",
1571 flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "",
1572 flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : "");
1573 }
1574 static DEVICE_ATTR_RO(flags);
1575
id_show(struct device * dev,struct device_attribute * attr,char * buf)1576 static ssize_t id_show(struct device *dev,
1577 struct device_attribute *attr, char *buf)
1578 {
1579 struct nvdimm *nvdimm = to_nvdimm(dev);
1580 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1581
1582 return sysfs_emit(buf, "%s\n", nfit_mem->id);
1583 }
1584 static DEVICE_ATTR_RO(id);
1585
dirty_shutdown_show(struct device * dev,struct device_attribute * attr,char * buf)1586 static ssize_t dirty_shutdown_show(struct device *dev,
1587 struct device_attribute *attr, char *buf)
1588 {
1589 struct nvdimm *nvdimm = to_nvdimm(dev);
1590 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1591
1592 return sysfs_emit(buf, "%d\n", nfit_mem->dirty_shutdown);
1593 }
1594 static DEVICE_ATTR_RO(dirty_shutdown);
1595
1596 static struct attribute *acpi_nfit_dimm_attributes[] = {
1597 &dev_attr_handle.attr,
1598 &dev_attr_phys_id.attr,
1599 &dev_attr_vendor.attr,
1600 &dev_attr_device.attr,
1601 &dev_attr_rev_id.attr,
1602 &dev_attr_subsystem_vendor.attr,
1603 &dev_attr_subsystem_device.attr,
1604 &dev_attr_subsystem_rev_id.attr,
1605 &dev_attr_format.attr,
1606 &dev_attr_formats.attr,
1607 &dev_attr_format1.attr,
1608 &dev_attr_serial.attr,
1609 &dev_attr_flags.attr,
1610 &dev_attr_id.attr,
1611 &dev_attr_family.attr,
1612 &dev_attr_dsm_mask.attr,
1613 &dev_attr_dirty_shutdown.attr,
1614 NULL,
1615 };
1616
acpi_nfit_dimm_attr_visible(struct kobject * kobj,struct attribute * a,int n)1617 static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj,
1618 struct attribute *a, int n)
1619 {
1620 struct device *dev = kobj_to_dev(kobj);
1621 struct nvdimm *nvdimm = to_nvdimm(dev);
1622 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1623
1624 if (!to_nfit_dcr(dev)) {
1625 /* Without a dcr only the memdev attributes can be surfaced */
1626 if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr
1627 || a == &dev_attr_flags.attr
1628 || a == &dev_attr_family.attr
1629 || a == &dev_attr_dsm_mask.attr)
1630 return a->mode;
1631 return 0;
1632 }
1633
1634 if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1)
1635 return 0;
1636
1637 if (!test_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags)
1638 && a == &dev_attr_dirty_shutdown.attr)
1639 return 0;
1640
1641 return a->mode;
1642 }
1643
1644 static const struct attribute_group acpi_nfit_dimm_attribute_group = {
1645 .name = "nfit",
1646 .attrs = acpi_nfit_dimm_attributes,
1647 .is_visible = acpi_nfit_dimm_attr_visible,
1648 };
1649
1650 static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = {
1651 &acpi_nfit_dimm_attribute_group,
1652 NULL,
1653 };
1654
acpi_nfit_dimm_by_handle(struct acpi_nfit_desc * acpi_desc,u32 device_handle)1655 static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc,
1656 u32 device_handle)
1657 {
1658 struct nfit_mem *nfit_mem;
1659
1660 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1661 if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle)
1662 return nfit_mem->nvdimm;
1663
1664 return NULL;
1665 }
1666
__acpi_nvdimm_notify(struct device * dev,u32 event)1667 void __acpi_nvdimm_notify(struct device *dev, u32 event)
1668 {
1669 struct nfit_mem *nfit_mem;
1670 struct acpi_nfit_desc *acpi_desc;
1671
1672 dev_dbg(dev->parent, "%s: event: %d\n", dev_name(dev),
1673 event);
1674
1675 if (event != NFIT_NOTIFY_DIMM_HEALTH) {
1676 dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev),
1677 event);
1678 return;
1679 }
1680
1681 acpi_desc = dev_get_drvdata(dev->parent);
1682 if (!acpi_desc)
1683 return;
1684
1685 /*
1686 * If we successfully retrieved acpi_desc, then we know nfit_mem data
1687 * is still valid.
1688 */
1689 nfit_mem = dev_get_drvdata(dev);
1690 if (nfit_mem && nfit_mem->flags_attr)
1691 sysfs_notify_dirent(nfit_mem->flags_attr);
1692 }
1693 EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify);
1694
acpi_nvdimm_notify(acpi_handle handle,u32 event,void * data)1695 static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data)
1696 {
1697 struct acpi_device *adev = data;
1698 struct device *dev = &adev->dev;
1699
1700 device_lock(dev->parent);
1701 __acpi_nvdimm_notify(dev, event);
1702 device_unlock(dev->parent);
1703 }
1704
acpi_nvdimm_has_method(struct acpi_device * adev,char * method)1705 static bool acpi_nvdimm_has_method(struct acpi_device *adev, char *method)
1706 {
1707 acpi_handle handle;
1708 acpi_status status;
1709
1710 status = acpi_get_handle(adev->handle, method, &handle);
1711
1712 if (ACPI_SUCCESS(status))
1713 return true;
1714 return false;
1715 }
1716
nfit_intel_shutdown_status(struct nfit_mem * nfit_mem)1717 __weak void nfit_intel_shutdown_status(struct nfit_mem *nfit_mem)
1718 {
1719 struct device *dev = &nfit_mem->adev->dev;
1720 struct nd_intel_smart smart = { 0 };
1721 union acpi_object in_buf = {
1722 .buffer.type = ACPI_TYPE_BUFFER,
1723 .buffer.length = 0,
1724 };
1725 union acpi_object in_obj = {
1726 .package.type = ACPI_TYPE_PACKAGE,
1727 .package.count = 1,
1728 .package.elements = &in_buf,
1729 };
1730 const u8 func = ND_INTEL_SMART;
1731 const guid_t *guid = to_nfit_uuid(nfit_mem->family);
1732 u8 revid = nfit_dsm_revid(nfit_mem->family, func);
1733 struct acpi_device *adev = nfit_mem->adev;
1734 acpi_handle handle = adev->handle;
1735 union acpi_object *out_obj;
1736
1737 if ((nfit_mem->dsm_mask & (1 << func)) == 0)
1738 return;
1739
1740 out_obj = acpi_evaluate_dsm_typed(handle, guid, revid, func, &in_obj, ACPI_TYPE_BUFFER);
1741 if (!out_obj || out_obj->buffer.length < sizeof(smart)) {
1742 dev_dbg(dev->parent, "%s: failed to retrieve initial health\n",
1743 dev_name(dev));
1744 ACPI_FREE(out_obj);
1745 return;
1746 }
1747 memcpy(&smart, out_obj->buffer.pointer, sizeof(smart));
1748 ACPI_FREE(out_obj);
1749
1750 if (smart.flags & ND_INTEL_SMART_SHUTDOWN_VALID) {
1751 if (smart.shutdown_state)
1752 set_bit(NFIT_MEM_DIRTY, &nfit_mem->flags);
1753 }
1754
1755 if (smart.flags & ND_INTEL_SMART_SHUTDOWN_COUNT_VALID) {
1756 set_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags);
1757 nfit_mem->dirty_shutdown = smart.shutdown_count;
1758 }
1759 }
1760
populate_shutdown_status(struct nfit_mem * nfit_mem)1761 static void populate_shutdown_status(struct nfit_mem *nfit_mem)
1762 {
1763 /*
1764 * For DIMMs that provide a dynamic facility to retrieve a
1765 * dirty-shutdown status and/or a dirty-shutdown count, cache
1766 * these values in nfit_mem.
1767 */
1768 if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
1769 nfit_intel_shutdown_status(nfit_mem);
1770 }
1771
acpi_nfit_add_dimm(struct acpi_nfit_desc * acpi_desc,struct nfit_mem * nfit_mem,u32 device_handle)1772 static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc,
1773 struct nfit_mem *nfit_mem, u32 device_handle)
1774 {
1775 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1776 struct acpi_device *adev, *adev_dimm;
1777 struct device *dev = acpi_desc->dev;
1778 unsigned long dsm_mask, label_mask;
1779 const guid_t *guid;
1780 int i;
1781 int family = -1;
1782 struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
1783
1784 /* nfit test assumes 1:1 relationship between commands and dsms */
1785 nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en;
1786 nfit_mem->family = NVDIMM_FAMILY_INTEL;
1787 set_bit(NVDIMM_FAMILY_INTEL, &nd_desc->dimm_family_mask);
1788
1789 if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID)
1790 sprintf(nfit_mem->id, "%04x-%02x-%04x-%08x",
1791 be16_to_cpu(dcr->vendor_id),
1792 dcr->manufacturing_location,
1793 be16_to_cpu(dcr->manufacturing_date),
1794 be32_to_cpu(dcr->serial_number));
1795 else
1796 sprintf(nfit_mem->id, "%04x-%08x",
1797 be16_to_cpu(dcr->vendor_id),
1798 be32_to_cpu(dcr->serial_number));
1799
1800 adev = to_acpi_dev(acpi_desc);
1801 if (!adev) {
1802 /* unit test case */
1803 populate_shutdown_status(nfit_mem);
1804 return 0;
1805 }
1806
1807 adev_dimm = acpi_find_child_device(adev, device_handle, false);
1808 nfit_mem->adev = adev_dimm;
1809 if (!adev_dimm) {
1810 dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n",
1811 device_handle);
1812 return force_enable_dimms ? 0 : -ENODEV;
1813 }
1814
1815 if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle,
1816 ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) {
1817 dev_err(dev, "%s: notification registration failed\n",
1818 dev_name(&adev_dimm->dev));
1819 return -ENXIO;
1820 }
1821 /*
1822 * Record nfit_mem for the notification path to track back to
1823 * the nfit sysfs attributes for this dimm device object.
1824 */
1825 dev_set_drvdata(&adev_dimm->dev, nfit_mem);
1826
1827 /*
1828 * There are 4 "legacy" NVDIMM command sets
1829 * (NVDIMM_FAMILY_{INTEL,MSFT,HPE1,HPE2}) that were created before
1830 * an EFI working group was established to constrain this
1831 * proliferation. The nfit driver probes for the supported command
1832 * set by GUID. Note, if you're a platform developer looking to add
1833 * a new command set to this probe, consider using an existing set,
1834 * or otherwise seek approval to publish the command set at
1835 * http://www.uefi.org/RFIC_LIST.
1836 *
1837 * Note, that checking for function0 (bit0) tells us if any commands
1838 * are reachable through this GUID.
1839 */
1840 clear_bit(NVDIMM_FAMILY_INTEL, &nd_desc->dimm_family_mask);
1841 for (i = 0; i <= NVDIMM_FAMILY_MAX; i++)
1842 if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1)) {
1843 set_bit(i, &nd_desc->dimm_family_mask);
1844 if (family < 0 || i == default_dsm_family)
1845 family = i;
1846 }
1847
1848 /* limit the supported commands to those that are publicly documented */
1849 nfit_mem->family = family;
1850 if (override_dsm_mask && !disable_vendor_specific)
1851 dsm_mask = override_dsm_mask;
1852 else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1853 dsm_mask = NVDIMM_INTEL_CMDMASK;
1854 if (disable_vendor_specific)
1855 dsm_mask &= ~(1 << ND_CMD_VENDOR);
1856 } else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) {
1857 dsm_mask = 0x1c3c76;
1858 } else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) {
1859 dsm_mask = 0x1fe;
1860 if (disable_vendor_specific)
1861 dsm_mask &= ~(1 << 8);
1862 } else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) {
1863 dsm_mask = 0xffffffff;
1864 } else if (nfit_mem->family == NVDIMM_FAMILY_HYPERV) {
1865 dsm_mask = 0x1f;
1866 } else {
1867 dev_dbg(dev, "unknown dimm command family\n");
1868 nfit_mem->family = -1;
1869 /* DSMs are optional, continue loading the driver... */
1870 return 0;
1871 }
1872
1873 /*
1874 * Function 0 is the command interrogation function, don't
1875 * export it to potential userspace use, and enable it to be
1876 * used as an error value in acpi_nfit_ctl().
1877 */
1878 dsm_mask &= ~1UL;
1879
1880 guid = to_nfit_uuid(nfit_mem->family);
1881 for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
1882 if (acpi_check_dsm(adev_dimm->handle, guid,
1883 nfit_dsm_revid(nfit_mem->family, i),
1884 1ULL << i))
1885 set_bit(i, &nfit_mem->dsm_mask);
1886
1887 /*
1888 * Prefer the NVDIMM_FAMILY_INTEL label read commands if present
1889 * due to their better semantics handling locked capacity.
1890 */
1891 label_mask = 1 << ND_CMD_GET_CONFIG_SIZE | 1 << ND_CMD_GET_CONFIG_DATA
1892 | 1 << ND_CMD_SET_CONFIG_DATA;
1893 if (family == NVDIMM_FAMILY_INTEL
1894 && (dsm_mask & label_mask) == label_mask)
1895 /* skip _LS{I,R,W} enabling */;
1896 else {
1897 if (acpi_nvdimm_has_method(adev_dimm, "_LSI")
1898 && acpi_nvdimm_has_method(adev_dimm, "_LSR")) {
1899 dev_dbg(dev, "%s: has _LSR\n", dev_name(&adev_dimm->dev));
1900 set_bit(NFIT_MEM_LSR, &nfit_mem->flags);
1901 }
1902
1903 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
1904 && acpi_nvdimm_has_method(adev_dimm, "_LSW")) {
1905 dev_dbg(dev, "%s: has _LSW\n", dev_name(&adev_dimm->dev));
1906 set_bit(NFIT_MEM_LSW, &nfit_mem->flags);
1907 }
1908
1909 /*
1910 * Quirk read-only label configurations to preserve
1911 * access to label-less namespaces by default.
1912 */
1913 if (!test_bit(NFIT_MEM_LSW, &nfit_mem->flags)
1914 && !force_labels) {
1915 dev_dbg(dev, "%s: No _LSW, disable labels\n",
1916 dev_name(&adev_dimm->dev));
1917 clear_bit(NFIT_MEM_LSR, &nfit_mem->flags);
1918 } else
1919 dev_dbg(dev, "%s: Force enable labels\n",
1920 dev_name(&adev_dimm->dev));
1921 }
1922
1923 populate_shutdown_status(nfit_mem);
1924
1925 return 0;
1926 }
1927
shutdown_dimm_notify(void * data)1928 static void shutdown_dimm_notify(void *data)
1929 {
1930 struct acpi_nfit_desc *acpi_desc = data;
1931 struct nfit_mem *nfit_mem;
1932
1933 mutex_lock(&acpi_desc->init_mutex);
1934 /*
1935 * Clear out the nfit_mem->flags_attr and shut down dimm event
1936 * notifications.
1937 */
1938 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1939 struct acpi_device *adev_dimm = nfit_mem->adev;
1940
1941 if (nfit_mem->flags_attr) {
1942 sysfs_put(nfit_mem->flags_attr);
1943 nfit_mem->flags_attr = NULL;
1944 }
1945 if (adev_dimm) {
1946 acpi_remove_notify_handler(adev_dimm->handle,
1947 ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify);
1948 dev_set_drvdata(&adev_dimm->dev, NULL);
1949 }
1950 }
1951 mutex_unlock(&acpi_desc->init_mutex);
1952 }
1953
acpi_nfit_get_security_ops(int family)1954 static const struct nvdimm_security_ops *acpi_nfit_get_security_ops(int family)
1955 {
1956 switch (family) {
1957 case NVDIMM_FAMILY_INTEL:
1958 return intel_security_ops;
1959 default:
1960 return NULL;
1961 }
1962 }
1963
acpi_nfit_get_fw_ops(struct nfit_mem * nfit_mem)1964 static const struct nvdimm_fw_ops *acpi_nfit_get_fw_ops(
1965 struct nfit_mem *nfit_mem)
1966 {
1967 unsigned long mask;
1968 struct acpi_nfit_desc *acpi_desc = nfit_mem->acpi_desc;
1969 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1970
1971 if (!nd_desc->fw_ops)
1972 return NULL;
1973
1974 if (nfit_mem->family != NVDIMM_FAMILY_INTEL)
1975 return NULL;
1976
1977 mask = nfit_mem->dsm_mask & NVDIMM_INTEL_FW_ACTIVATE_CMDMASK;
1978 if (mask != NVDIMM_INTEL_FW_ACTIVATE_CMDMASK)
1979 return NULL;
1980
1981 return intel_fw_ops;
1982 }
1983
acpi_nfit_register_dimms(struct acpi_nfit_desc * acpi_desc)1984 static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc)
1985 {
1986 struct nfit_mem *nfit_mem;
1987 int dimm_count = 0, rc;
1988 struct nvdimm *nvdimm;
1989
1990 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1991 struct acpi_nfit_flush_address *flush;
1992 unsigned long flags = 0, cmd_mask;
1993 struct nfit_memdev *nfit_memdev;
1994 u32 device_handle;
1995 u16 mem_flags;
1996
1997 device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
1998 nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle);
1999 if (nvdimm) {
2000 dimm_count++;
2001 continue;
2002 }
2003
2004 /* collate flags across all memdevs for this dimm */
2005 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2006 struct acpi_nfit_memory_map *dimm_memdev;
2007
2008 dimm_memdev = __to_nfit_memdev(nfit_mem);
2009 if (dimm_memdev->device_handle
2010 != nfit_memdev->memdev->device_handle)
2011 continue;
2012 dimm_memdev->flags |= nfit_memdev->memdev->flags;
2013 }
2014
2015 mem_flags = __to_nfit_memdev(nfit_mem)->flags;
2016 if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED)
2017 set_bit(NDD_UNARMED, &flags);
2018
2019 rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle);
2020 if (rc)
2021 continue;
2022
2023 /*
2024 * TODO: provide translation for non-NVDIMM_FAMILY_INTEL
2025 * devices (i.e. from nd_cmd to acpi_dsm) to standardize the
2026 * userspace interface.
2027 */
2028 cmd_mask = 1UL << ND_CMD_CALL;
2029 if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
2030 /*
2031 * These commands have a 1:1 correspondence
2032 * between DSM payload and libnvdimm ioctl
2033 * payload format.
2034 */
2035 cmd_mask |= nfit_mem->dsm_mask & NVDIMM_STANDARD_CMDMASK;
2036 }
2037
2038 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
2039 set_bit(ND_CMD_GET_CONFIG_SIZE, &cmd_mask);
2040 set_bit(ND_CMD_GET_CONFIG_DATA, &cmd_mask);
2041 }
2042 if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags))
2043 set_bit(ND_CMD_SET_CONFIG_DATA, &cmd_mask);
2044
2045 flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush
2046 : NULL;
2047 nvdimm = __nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem,
2048 acpi_nfit_dimm_attribute_groups,
2049 flags, cmd_mask, flush ? flush->hint_count : 0,
2050 nfit_mem->flush_wpq, &nfit_mem->id[0],
2051 acpi_nfit_get_security_ops(nfit_mem->family),
2052 acpi_nfit_get_fw_ops(nfit_mem));
2053 if (!nvdimm)
2054 return -ENOMEM;
2055
2056 nfit_mem->nvdimm = nvdimm;
2057 dimm_count++;
2058
2059 if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0)
2060 continue;
2061
2062 dev_err(acpi_desc->dev, "Error found in NVDIMM %s flags:%s%s%s%s%s\n",
2063 nvdimm_name(nvdimm),
2064 mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "",
2065 mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"",
2066 mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "",
2067 mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "",
2068 mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : "");
2069
2070 }
2071
2072 rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count);
2073 if (rc)
2074 return rc;
2075
2076 /*
2077 * Now that dimms are successfully registered, and async registration
2078 * is flushed, attempt to enable event notification.
2079 */
2080 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
2081 struct kernfs_node *nfit_kernfs;
2082
2083 nvdimm = nfit_mem->nvdimm;
2084 if (!nvdimm)
2085 continue;
2086
2087 nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit");
2088 if (nfit_kernfs)
2089 nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs,
2090 "flags");
2091 sysfs_put(nfit_kernfs);
2092 if (!nfit_mem->flags_attr)
2093 dev_warn(acpi_desc->dev, "%s: notifications disabled\n",
2094 nvdimm_name(nvdimm));
2095 }
2096
2097 return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify,
2098 acpi_desc);
2099 }
2100
2101 /*
2102 * These constants are private because there are no kernel consumers of
2103 * these commands.
2104 */
2105 enum nfit_aux_cmds {
2106 NFIT_CMD_TRANSLATE_SPA = 5,
2107 NFIT_CMD_ARS_INJECT_SET = 7,
2108 NFIT_CMD_ARS_INJECT_CLEAR = 8,
2109 NFIT_CMD_ARS_INJECT_GET = 9,
2110 };
2111
acpi_nfit_init_dsms(struct acpi_nfit_desc * acpi_desc)2112 static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc)
2113 {
2114 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2115 const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS);
2116 unsigned long dsm_mask, *mask;
2117 struct acpi_device *adev;
2118 int i;
2119
2120 set_bit(ND_CMD_CALL, &nd_desc->cmd_mask);
2121 set_bit(NVDIMM_BUS_FAMILY_NFIT, &nd_desc->bus_family_mask);
2122
2123 /* enable nfit_test to inject bus command emulation */
2124 if (acpi_desc->bus_cmd_force_en) {
2125 nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en;
2126 mask = &nd_desc->bus_family_mask;
2127 if (acpi_desc->family_dsm_mask[NVDIMM_BUS_FAMILY_INTEL]) {
2128 set_bit(NVDIMM_BUS_FAMILY_INTEL, mask);
2129 nd_desc->fw_ops = intel_bus_fw_ops;
2130 }
2131 }
2132
2133 adev = to_acpi_dev(acpi_desc);
2134 if (!adev)
2135 return;
2136
2137 for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++)
2138 if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2139 set_bit(i, &nd_desc->cmd_mask);
2140
2141 dsm_mask =
2142 (1 << ND_CMD_ARS_CAP) |
2143 (1 << ND_CMD_ARS_START) |
2144 (1 << ND_CMD_ARS_STATUS) |
2145 (1 << ND_CMD_CLEAR_ERROR) |
2146 (1 << NFIT_CMD_TRANSLATE_SPA) |
2147 (1 << NFIT_CMD_ARS_INJECT_SET) |
2148 (1 << NFIT_CMD_ARS_INJECT_CLEAR) |
2149 (1 << NFIT_CMD_ARS_INJECT_GET);
2150 for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
2151 if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2152 set_bit(i, &acpi_desc->bus_dsm_mask);
2153
2154 /* Enumerate allowed NVDIMM_BUS_FAMILY_INTEL commands */
2155 dsm_mask = NVDIMM_BUS_INTEL_FW_ACTIVATE_CMDMASK;
2156 guid = to_nfit_bus_uuid(NVDIMM_BUS_FAMILY_INTEL);
2157 mask = &acpi_desc->family_dsm_mask[NVDIMM_BUS_FAMILY_INTEL];
2158 for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
2159 if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2160 set_bit(i, mask);
2161
2162 if (*mask == dsm_mask) {
2163 set_bit(NVDIMM_BUS_FAMILY_INTEL, &nd_desc->bus_family_mask);
2164 nd_desc->fw_ops = intel_bus_fw_ops;
2165 }
2166 }
2167
range_index_show(struct device * dev,struct device_attribute * attr,char * buf)2168 static ssize_t range_index_show(struct device *dev,
2169 struct device_attribute *attr, char *buf)
2170 {
2171 struct nd_region *nd_region = to_nd_region(dev);
2172 struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region);
2173
2174 return sysfs_emit(buf, "%d\n", nfit_spa->spa->range_index);
2175 }
2176 static DEVICE_ATTR_RO(range_index);
2177
2178 static struct attribute *acpi_nfit_region_attributes[] = {
2179 &dev_attr_range_index.attr,
2180 NULL,
2181 };
2182
2183 static const struct attribute_group acpi_nfit_region_attribute_group = {
2184 .name = "nfit",
2185 .attrs = acpi_nfit_region_attributes,
2186 };
2187
2188 static const struct attribute_group *acpi_nfit_region_attribute_groups[] = {
2189 &acpi_nfit_region_attribute_group,
2190 NULL,
2191 };
2192
2193 /* enough info to uniquely specify an interleave set */
2194 struct nfit_set_info {
2195 u64 region_offset;
2196 u32 serial_number;
2197 u32 pad;
2198 };
2199
2200 struct nfit_set_info2 {
2201 u64 region_offset;
2202 u32 serial_number;
2203 u16 vendor_id;
2204 u16 manufacturing_date;
2205 u8 manufacturing_location;
2206 u8 reserved[31];
2207 };
2208
cmp_map_compat(const void * m0,const void * m1)2209 static int cmp_map_compat(const void *m0, const void *m1)
2210 {
2211 const struct nfit_set_info *map0 = m0;
2212 const struct nfit_set_info *map1 = m1;
2213
2214 return memcmp(&map0->region_offset, &map1->region_offset,
2215 sizeof(u64));
2216 }
2217
cmp_map(const void * m0,const void * m1)2218 static int cmp_map(const void *m0, const void *m1)
2219 {
2220 const struct nfit_set_info *map0 = m0;
2221 const struct nfit_set_info *map1 = m1;
2222
2223 if (map0->region_offset < map1->region_offset)
2224 return -1;
2225 else if (map0->region_offset > map1->region_offset)
2226 return 1;
2227 return 0;
2228 }
2229
cmp_map2(const void * m0,const void * m1)2230 static int cmp_map2(const void *m0, const void *m1)
2231 {
2232 const struct nfit_set_info2 *map0 = m0;
2233 const struct nfit_set_info2 *map1 = m1;
2234
2235 if (map0->region_offset < map1->region_offset)
2236 return -1;
2237 else if (map0->region_offset > map1->region_offset)
2238 return 1;
2239 return 0;
2240 }
2241
2242 /* Retrieve the nth entry referencing this spa */
memdev_from_spa(struct acpi_nfit_desc * acpi_desc,u16 range_index,int n)2243 static struct acpi_nfit_memory_map *memdev_from_spa(
2244 struct acpi_nfit_desc *acpi_desc, u16 range_index, int n)
2245 {
2246 struct nfit_memdev *nfit_memdev;
2247
2248 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list)
2249 if (nfit_memdev->memdev->range_index == range_index)
2250 if (n-- == 0)
2251 return nfit_memdev->memdev;
2252 return NULL;
2253 }
2254
acpi_nfit_init_interleave_set(struct acpi_nfit_desc * acpi_desc,struct nd_region_desc * ndr_desc,struct acpi_nfit_system_address * spa)2255 static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc,
2256 struct nd_region_desc *ndr_desc,
2257 struct acpi_nfit_system_address *spa)
2258 {
2259 u16 nr = ndr_desc->num_mappings;
2260 struct nfit_set_info2 *info2 __free(kfree) =
2261 kcalloc(nr, sizeof(*info2), GFP_KERNEL);
2262 struct nfit_set_info *info __free(kfree) =
2263 kcalloc(nr, sizeof(*info), GFP_KERNEL);
2264 struct device *dev = acpi_desc->dev;
2265 struct nd_interleave_set *nd_set;
2266 int i;
2267
2268 if (!info || !info2)
2269 return -ENOMEM;
2270
2271 nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL);
2272 if (!nd_set)
2273 return -ENOMEM;
2274 import_guid(&nd_set->type_guid, spa->range_guid);
2275
2276 for (i = 0; i < nr; i++) {
2277 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
2278 struct nvdimm *nvdimm = mapping->nvdimm;
2279 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2280 struct nfit_set_info *map = &info[i];
2281 struct nfit_set_info2 *map2 = &info2[i];
2282 struct acpi_nfit_memory_map *memdev =
2283 memdev_from_spa(acpi_desc, spa->range_index, i);
2284 struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2285
2286 if (!memdev || !nfit_mem->dcr) {
2287 dev_err(dev, "%s: failed to find DCR\n", __func__);
2288 return -ENODEV;
2289 }
2290
2291 map->region_offset = memdev->region_offset;
2292 map->serial_number = dcr->serial_number;
2293
2294 map2->region_offset = memdev->region_offset;
2295 map2->serial_number = dcr->serial_number;
2296 map2->vendor_id = dcr->vendor_id;
2297 map2->manufacturing_date = dcr->manufacturing_date;
2298 map2->manufacturing_location = dcr->manufacturing_location;
2299 }
2300
2301 /* v1.1 namespaces */
2302 sort(info, nr, sizeof(*info), cmp_map, NULL);
2303 nd_set->cookie1 = nd_fletcher64(info, sizeof(*info) * nr, 0);
2304
2305 /* v1.2 namespaces */
2306 sort(info2, nr, sizeof(*info2), cmp_map2, NULL);
2307 nd_set->cookie2 = nd_fletcher64(info2, sizeof(*info2) * nr, 0);
2308
2309 /* support v1.1 namespaces created with the wrong sort order */
2310 sort(info, nr, sizeof(*info), cmp_map_compat, NULL);
2311 nd_set->altcookie = nd_fletcher64(info, sizeof(*info) * nr, 0);
2312
2313 /* record the result of the sort for the mapping position */
2314 for (i = 0; i < nr; i++) {
2315 struct nfit_set_info2 *map2 = &info2[i];
2316 int j;
2317
2318 for (j = 0; j < nr; j++) {
2319 struct nd_mapping_desc *mapping = &ndr_desc->mapping[j];
2320 struct nvdimm *nvdimm = mapping->nvdimm;
2321 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2322 struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2323
2324 if (map2->serial_number == dcr->serial_number &&
2325 map2->vendor_id == dcr->vendor_id &&
2326 map2->manufacturing_date == dcr->manufacturing_date &&
2327 map2->manufacturing_location
2328 == dcr->manufacturing_location) {
2329 mapping->position = i;
2330 break;
2331 }
2332 }
2333 }
2334
2335 ndr_desc->nd_set = nd_set;
2336
2337 return 0;
2338 }
2339
ars_get_cap(struct acpi_nfit_desc * acpi_desc,struct nd_cmd_ars_cap * cmd,struct nfit_spa * nfit_spa)2340 static int ars_get_cap(struct acpi_nfit_desc *acpi_desc,
2341 struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa)
2342 {
2343 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2344 struct acpi_nfit_system_address *spa = nfit_spa->spa;
2345 int cmd_rc, rc;
2346
2347 cmd->address = spa->address;
2348 cmd->length = spa->length;
2349 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd,
2350 sizeof(*cmd), &cmd_rc);
2351 if (rc < 0)
2352 return rc;
2353 return cmd_rc;
2354 }
2355
ars_start(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa,enum nfit_ars_state req_type)2356 static int ars_start(struct acpi_nfit_desc *acpi_desc,
2357 struct nfit_spa *nfit_spa, enum nfit_ars_state req_type)
2358 {
2359 int rc;
2360 int cmd_rc;
2361 struct nd_cmd_ars_start ars_start;
2362 struct acpi_nfit_system_address *spa = nfit_spa->spa;
2363 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2364
2365 memset(&ars_start, 0, sizeof(ars_start));
2366 ars_start.address = spa->address;
2367 ars_start.length = spa->length;
2368 if (req_type == ARS_REQ_SHORT)
2369 ars_start.flags = ND_ARS_RETURN_PREV_DATA;
2370 if (nfit_spa_type(spa) == NFIT_SPA_PM)
2371 ars_start.type = ND_ARS_PERSISTENT;
2372 else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE)
2373 ars_start.type = ND_ARS_VOLATILE;
2374 else
2375 return -ENOTTY;
2376
2377 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2378 sizeof(ars_start), &cmd_rc);
2379
2380 if (rc < 0)
2381 return rc;
2382 if (cmd_rc < 0)
2383 return cmd_rc;
2384 set_bit(ARS_VALID, &acpi_desc->scrub_flags);
2385 return 0;
2386 }
2387
ars_continue(struct acpi_nfit_desc * acpi_desc)2388 static int ars_continue(struct acpi_nfit_desc *acpi_desc)
2389 {
2390 int rc, cmd_rc;
2391 struct nd_cmd_ars_start ars_start;
2392 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2393 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2394
2395 ars_start = (struct nd_cmd_ars_start) {
2396 .address = ars_status->restart_address,
2397 .length = ars_status->restart_length,
2398 .type = ars_status->type,
2399 };
2400 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2401 sizeof(ars_start), &cmd_rc);
2402 if (rc < 0)
2403 return rc;
2404 return cmd_rc;
2405 }
2406
ars_get_status(struct acpi_nfit_desc * acpi_desc)2407 static int ars_get_status(struct acpi_nfit_desc *acpi_desc)
2408 {
2409 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2410 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2411 int rc, cmd_rc;
2412
2413 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status,
2414 acpi_desc->max_ars, &cmd_rc);
2415 if (rc < 0)
2416 return rc;
2417 return cmd_rc;
2418 }
2419
ars_complete(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa)2420 static void ars_complete(struct acpi_nfit_desc *acpi_desc,
2421 struct nfit_spa *nfit_spa)
2422 {
2423 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2424 struct acpi_nfit_system_address *spa = nfit_spa->spa;
2425 struct nd_region *nd_region = nfit_spa->nd_region;
2426 struct device *dev;
2427
2428 lockdep_assert_held(&acpi_desc->init_mutex);
2429 /*
2430 * Only advance the ARS state for ARS runs initiated by the
2431 * kernel, ignore ARS results from BIOS initiated runs for scrub
2432 * completion tracking.
2433 */
2434 if (acpi_desc->scrub_spa != nfit_spa)
2435 return;
2436
2437 if ((ars_status->address >= spa->address && ars_status->address
2438 < spa->address + spa->length)
2439 || (ars_status->address < spa->address)) {
2440 /*
2441 * Assume that if a scrub starts at an offset from the
2442 * start of nfit_spa that we are in the continuation
2443 * case.
2444 *
2445 * Otherwise, if the scrub covers the spa range, mark
2446 * any pending request complete.
2447 */
2448 if (ars_status->address + ars_status->length
2449 >= spa->address + spa->length)
2450 /* complete */;
2451 else
2452 return;
2453 } else
2454 return;
2455
2456 acpi_desc->scrub_spa = NULL;
2457 if (nd_region) {
2458 dev = nd_region_dev(nd_region);
2459 nvdimm_region_notify(nd_region, NVDIMM_REVALIDATE_POISON);
2460 } else
2461 dev = acpi_desc->dev;
2462 dev_dbg(dev, "ARS: range %d complete\n", spa->range_index);
2463 }
2464
ars_status_process_records(struct acpi_nfit_desc * acpi_desc)2465 static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc)
2466 {
2467 struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus;
2468 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2469 int rc;
2470 u32 i;
2471
2472 /*
2473 * First record starts at 44 byte offset from the start of the
2474 * payload.
2475 */
2476 if (ars_status->out_length < 44)
2477 return 0;
2478
2479 /*
2480 * Ignore potentially stale results that are only refreshed
2481 * after a start-ARS event.
2482 */
2483 if (!test_and_clear_bit(ARS_VALID, &acpi_desc->scrub_flags)) {
2484 dev_dbg(acpi_desc->dev, "skip %d stale records\n",
2485 ars_status->num_records);
2486 return 0;
2487 }
2488
2489 for (i = 0; i < ars_status->num_records; i++) {
2490 /* only process full records */
2491 if (ars_status->out_length
2492 < 44 + sizeof(struct nd_ars_record) * (i + 1))
2493 break;
2494 rc = nvdimm_bus_add_badrange(nvdimm_bus,
2495 ars_status->records[i].err_address,
2496 ars_status->records[i].length);
2497 if (rc)
2498 return rc;
2499 }
2500 if (i < ars_status->num_records)
2501 dev_warn(acpi_desc->dev, "detected truncated ars results\n");
2502
2503 return 0;
2504 }
2505
acpi_nfit_remove_resource(void * data)2506 static void acpi_nfit_remove_resource(void *data)
2507 {
2508 struct resource *res = data;
2509
2510 remove_resource(res);
2511 }
2512
acpi_nfit_insert_resource(struct acpi_nfit_desc * acpi_desc,struct nd_region_desc * ndr_desc)2513 static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc,
2514 struct nd_region_desc *ndr_desc)
2515 {
2516 struct resource *res, *nd_res = ndr_desc->res;
2517 int is_pmem, ret;
2518
2519 /* No operation if the region is already registered as PMEM */
2520 is_pmem = region_intersects(nd_res->start, resource_size(nd_res),
2521 IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY);
2522 if (is_pmem == REGION_INTERSECTS)
2523 return 0;
2524
2525 res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL);
2526 if (!res)
2527 return -ENOMEM;
2528
2529 res->name = "Persistent Memory";
2530 res->start = nd_res->start;
2531 res->end = nd_res->end;
2532 res->flags = IORESOURCE_MEM;
2533 res->desc = IORES_DESC_PERSISTENT_MEMORY;
2534
2535 ret = insert_resource(&iomem_resource, res);
2536 if (ret)
2537 return ret;
2538
2539 ret = devm_add_action_or_reset(acpi_desc->dev,
2540 acpi_nfit_remove_resource,
2541 res);
2542 if (ret)
2543 return ret;
2544
2545 return 0;
2546 }
2547
acpi_nfit_init_mapping(struct acpi_nfit_desc * acpi_desc,struct nd_mapping_desc * mapping,struct nd_region_desc * ndr_desc,struct acpi_nfit_memory_map * memdev,struct nfit_spa * nfit_spa)2548 static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc,
2549 struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc,
2550 struct acpi_nfit_memory_map *memdev,
2551 struct nfit_spa *nfit_spa)
2552 {
2553 struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc,
2554 memdev->device_handle);
2555 struct acpi_nfit_system_address *spa = nfit_spa->spa;
2556
2557 if (!nvdimm) {
2558 dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n",
2559 spa->range_index, memdev->device_handle);
2560 return -ENODEV;
2561 }
2562
2563 mapping->nvdimm = nvdimm;
2564 switch (nfit_spa_type(spa)) {
2565 case NFIT_SPA_PM:
2566 case NFIT_SPA_VOLATILE:
2567 mapping->start = memdev->address;
2568 mapping->size = memdev->region_size;
2569 break;
2570 }
2571
2572 return 0;
2573 }
2574
nfit_spa_is_virtual(struct acpi_nfit_system_address * spa)2575 static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa)
2576 {
2577 return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2578 nfit_spa_type(spa) == NFIT_SPA_VCD ||
2579 nfit_spa_type(spa) == NFIT_SPA_PDISK ||
2580 nfit_spa_type(spa) == NFIT_SPA_PCD);
2581 }
2582
nfit_spa_is_volatile(struct acpi_nfit_system_address * spa)2583 static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa)
2584 {
2585 return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2586 nfit_spa_type(spa) == NFIT_SPA_VCD ||
2587 nfit_spa_type(spa) == NFIT_SPA_VOLATILE);
2588 }
2589
acpi_nfit_register_region(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa)2590 static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc,
2591 struct nfit_spa *nfit_spa)
2592 {
2593 static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS];
2594 struct acpi_nfit_system_address *spa = nfit_spa->spa;
2595 struct nd_region_desc *ndr_desc, _ndr_desc;
2596 struct nfit_memdev *nfit_memdev;
2597 struct nvdimm_bus *nvdimm_bus;
2598 struct resource res;
2599 int count = 0, rc;
2600
2601 if (nfit_spa->nd_region)
2602 return 0;
2603
2604 if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) {
2605 dev_dbg(acpi_desc->dev, "detected invalid spa index\n");
2606 return 0;
2607 }
2608
2609 memset(&res, 0, sizeof(res));
2610 memset(&mappings, 0, sizeof(mappings));
2611 memset(&_ndr_desc, 0, sizeof(_ndr_desc));
2612 res.start = spa->address;
2613 res.end = res.start + spa->length - 1;
2614 ndr_desc = &_ndr_desc;
2615 ndr_desc->res = &res;
2616 ndr_desc->provider_data = nfit_spa;
2617 ndr_desc->attr_groups = acpi_nfit_region_attribute_groups;
2618 if (spa->flags & ACPI_NFIT_PROXIMITY_VALID) {
2619 ndr_desc->numa_node = pxm_to_online_node(spa->proximity_domain);
2620 ndr_desc->target_node = pxm_to_node(spa->proximity_domain);
2621 } else {
2622 ndr_desc->numa_node = NUMA_NO_NODE;
2623 ndr_desc->target_node = NUMA_NO_NODE;
2624 }
2625
2626 /* Fallback to address based numa information if node lookup failed */
2627 if (ndr_desc->numa_node == NUMA_NO_NODE) {
2628 ndr_desc->numa_node = memory_add_physaddr_to_nid(spa->address);
2629 dev_info(acpi_desc->dev, "changing numa node from %d to %d for nfit region [%pa-%pa]",
2630 NUMA_NO_NODE, ndr_desc->numa_node, &res.start, &res.end);
2631 }
2632 if (ndr_desc->target_node == NUMA_NO_NODE) {
2633 ndr_desc->target_node = phys_to_target_node(spa->address);
2634 dev_info(acpi_desc->dev, "changing target node from %d to %d for nfit region [%pa-%pa]",
2635 NUMA_NO_NODE, ndr_desc->numa_node, &res.start, &res.end);
2636 }
2637
2638 /*
2639 * Persistence domain bits are hierarchical, if
2640 * ACPI_NFIT_CAPABILITY_CACHE_FLUSH is set then
2641 * ACPI_NFIT_CAPABILITY_MEM_FLUSH is implied.
2642 */
2643 if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_CACHE_FLUSH)
2644 set_bit(ND_REGION_PERSIST_CACHE, &ndr_desc->flags);
2645 else if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_MEM_FLUSH)
2646 set_bit(ND_REGION_PERSIST_MEMCTRL, &ndr_desc->flags);
2647
2648 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2649 struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
2650 struct nd_mapping_desc *mapping;
2651
2652 /* range index 0 == unmapped in SPA or invalid-SPA */
2653 if (memdev->range_index == 0 || spa->range_index == 0)
2654 continue;
2655 if (memdev->range_index != spa->range_index)
2656 continue;
2657 if (count >= ND_MAX_MAPPINGS) {
2658 dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n",
2659 spa->range_index, ND_MAX_MAPPINGS);
2660 return -ENXIO;
2661 }
2662 mapping = &mappings[count++];
2663 rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc,
2664 memdev, nfit_spa);
2665 if (rc)
2666 goto out;
2667 }
2668
2669 ndr_desc->mapping = mappings;
2670 ndr_desc->num_mappings = count;
2671 rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2672 if (rc)
2673 goto out;
2674
2675 nvdimm_bus = acpi_desc->nvdimm_bus;
2676 if (nfit_spa_type(spa) == NFIT_SPA_PM) {
2677 rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc);
2678 if (rc) {
2679 dev_warn(acpi_desc->dev,
2680 "failed to insert pmem resource to iomem: %d\n",
2681 rc);
2682 goto out;
2683 }
2684
2685 nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2686 ndr_desc);
2687 if (!nfit_spa->nd_region)
2688 rc = -ENOMEM;
2689 } else if (nfit_spa_is_volatile(spa)) {
2690 nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus,
2691 ndr_desc);
2692 if (!nfit_spa->nd_region)
2693 rc = -ENOMEM;
2694 } else if (nfit_spa_is_virtual(spa)) {
2695 nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2696 ndr_desc);
2697 if (!nfit_spa->nd_region)
2698 rc = -ENOMEM;
2699 }
2700
2701 out:
2702 if (rc)
2703 dev_err(acpi_desc->dev, "failed to register spa range %d\n",
2704 nfit_spa->spa->range_index);
2705 return rc;
2706 }
2707
ars_status_alloc(struct acpi_nfit_desc * acpi_desc)2708 static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc)
2709 {
2710 struct device *dev = acpi_desc->dev;
2711 struct nd_cmd_ars_status *ars_status;
2712
2713 if (acpi_desc->ars_status) {
2714 memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
2715 return 0;
2716 }
2717
2718 ars_status = devm_kzalloc(dev, acpi_desc->max_ars, GFP_KERNEL);
2719 if (!ars_status)
2720 return -ENOMEM;
2721 acpi_desc->ars_status = ars_status;
2722 return 0;
2723 }
2724
acpi_nfit_query_poison(struct acpi_nfit_desc * acpi_desc)2725 static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc)
2726 {
2727 int rc;
2728
2729 if (ars_status_alloc(acpi_desc))
2730 return -ENOMEM;
2731
2732 rc = ars_get_status(acpi_desc);
2733
2734 if (rc < 0 && rc != -ENOSPC)
2735 return rc;
2736
2737 if (ars_status_process_records(acpi_desc))
2738 dev_err(acpi_desc->dev, "Failed to process ARS records\n");
2739
2740 return rc;
2741 }
2742
ars_register(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa)2743 static int ars_register(struct acpi_nfit_desc *acpi_desc,
2744 struct nfit_spa *nfit_spa)
2745 {
2746 int rc;
2747
2748 if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
2749 return acpi_nfit_register_region(acpi_desc, nfit_spa);
2750
2751 set_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
2752 if (!no_init_ars)
2753 set_bit(ARS_REQ_LONG, &nfit_spa->ars_state);
2754
2755 switch (acpi_nfit_query_poison(acpi_desc)) {
2756 case 0:
2757 case -ENOSPC:
2758 case -EAGAIN:
2759 rc = ars_start(acpi_desc, nfit_spa, ARS_REQ_SHORT);
2760 /* shouldn't happen, try again later */
2761 if (rc == -EBUSY)
2762 break;
2763 if (rc) {
2764 set_bit(ARS_FAILED, &nfit_spa->ars_state);
2765 break;
2766 }
2767 clear_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
2768 rc = acpi_nfit_query_poison(acpi_desc);
2769 if (rc)
2770 break;
2771 acpi_desc->scrub_spa = nfit_spa;
2772 ars_complete(acpi_desc, nfit_spa);
2773 /*
2774 * If ars_complete() says we didn't complete the
2775 * short scrub, we'll try again with a long
2776 * request.
2777 */
2778 acpi_desc->scrub_spa = NULL;
2779 break;
2780 case -EBUSY:
2781 case -ENOMEM:
2782 /*
2783 * BIOS was using ARS, wait for it to complete (or
2784 * resources to become available) and then perform our
2785 * own scrubs.
2786 */
2787 break;
2788 default:
2789 set_bit(ARS_FAILED, &nfit_spa->ars_state);
2790 break;
2791 }
2792
2793 return acpi_nfit_register_region(acpi_desc, nfit_spa);
2794 }
2795
ars_complete_all(struct acpi_nfit_desc * acpi_desc)2796 static void ars_complete_all(struct acpi_nfit_desc *acpi_desc)
2797 {
2798 struct nfit_spa *nfit_spa;
2799
2800 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2801 if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
2802 continue;
2803 ars_complete(acpi_desc, nfit_spa);
2804 }
2805 }
2806
__acpi_nfit_scrub(struct acpi_nfit_desc * acpi_desc,int query_rc)2807 static unsigned int __acpi_nfit_scrub(struct acpi_nfit_desc *acpi_desc,
2808 int query_rc)
2809 {
2810 unsigned int tmo = acpi_desc->scrub_tmo;
2811 struct device *dev = acpi_desc->dev;
2812 struct nfit_spa *nfit_spa;
2813
2814 lockdep_assert_held(&acpi_desc->init_mutex);
2815
2816 if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags))
2817 return 0;
2818
2819 if (query_rc == -EBUSY) {
2820 dev_dbg(dev, "ARS: ARS busy\n");
2821 return min(30U * 60U, tmo * 2);
2822 }
2823 if (query_rc == -ENOSPC) {
2824 dev_dbg(dev, "ARS: ARS continue\n");
2825 ars_continue(acpi_desc);
2826 return 1;
2827 }
2828 if (query_rc && query_rc != -EAGAIN) {
2829 unsigned long long addr, end;
2830
2831 addr = acpi_desc->ars_status->address;
2832 end = addr + acpi_desc->ars_status->length;
2833 dev_dbg(dev, "ARS: %llx-%llx failed (%d)\n", addr, end,
2834 query_rc);
2835 }
2836
2837 ars_complete_all(acpi_desc);
2838 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2839 enum nfit_ars_state req_type;
2840 int rc;
2841
2842 if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
2843 continue;
2844
2845 /* prefer short ARS requests first */
2846 if (test_bit(ARS_REQ_SHORT, &nfit_spa->ars_state))
2847 req_type = ARS_REQ_SHORT;
2848 else if (test_bit(ARS_REQ_LONG, &nfit_spa->ars_state))
2849 req_type = ARS_REQ_LONG;
2850 else
2851 continue;
2852 rc = ars_start(acpi_desc, nfit_spa, req_type);
2853
2854 dev = nd_region_dev(nfit_spa->nd_region);
2855 dev_dbg(dev, "ARS: range %d ARS start %s (%d)\n",
2856 nfit_spa->spa->range_index,
2857 req_type == ARS_REQ_SHORT ? "short" : "long",
2858 rc);
2859 /*
2860 * Hmm, we raced someone else starting ARS? Try again in
2861 * a bit.
2862 */
2863 if (rc == -EBUSY)
2864 return 1;
2865 if (rc == 0) {
2866 dev_WARN_ONCE(dev, acpi_desc->scrub_spa,
2867 "scrub start while range %d active\n",
2868 acpi_desc->scrub_spa->spa->range_index);
2869 clear_bit(req_type, &nfit_spa->ars_state);
2870 acpi_desc->scrub_spa = nfit_spa;
2871 /*
2872 * Consider this spa last for future scrub
2873 * requests
2874 */
2875 list_move_tail(&nfit_spa->list, &acpi_desc->spas);
2876 return 1;
2877 }
2878
2879 dev_err(dev, "ARS: range %d ARS failed (%d)\n",
2880 nfit_spa->spa->range_index, rc);
2881 set_bit(ARS_FAILED, &nfit_spa->ars_state);
2882 }
2883 return 0;
2884 }
2885
__sched_ars(struct acpi_nfit_desc * acpi_desc,unsigned int tmo)2886 static void __sched_ars(struct acpi_nfit_desc *acpi_desc, unsigned int tmo)
2887 {
2888 lockdep_assert_held(&acpi_desc->init_mutex);
2889
2890 set_bit(ARS_BUSY, &acpi_desc->scrub_flags);
2891 /* note this should only be set from within the workqueue */
2892 if (tmo)
2893 acpi_desc->scrub_tmo = tmo;
2894 queue_delayed_work(nfit_wq, &acpi_desc->dwork, tmo * HZ);
2895 }
2896
sched_ars(struct acpi_nfit_desc * acpi_desc)2897 static void sched_ars(struct acpi_nfit_desc *acpi_desc)
2898 {
2899 __sched_ars(acpi_desc, 0);
2900 }
2901
notify_ars_done(struct acpi_nfit_desc * acpi_desc)2902 static void notify_ars_done(struct acpi_nfit_desc *acpi_desc)
2903 {
2904 lockdep_assert_held(&acpi_desc->init_mutex);
2905
2906 clear_bit(ARS_BUSY, &acpi_desc->scrub_flags);
2907 acpi_desc->scrub_count++;
2908 if (acpi_desc->scrub_count_state)
2909 sysfs_notify_dirent(acpi_desc->scrub_count_state);
2910 }
2911
acpi_nfit_scrub(struct work_struct * work)2912 static void acpi_nfit_scrub(struct work_struct *work)
2913 {
2914 struct acpi_nfit_desc *acpi_desc;
2915 unsigned int tmo;
2916 int query_rc;
2917
2918 acpi_desc = container_of(work, typeof(*acpi_desc), dwork.work);
2919 mutex_lock(&acpi_desc->init_mutex);
2920 query_rc = acpi_nfit_query_poison(acpi_desc);
2921 tmo = __acpi_nfit_scrub(acpi_desc, query_rc);
2922 if (tmo)
2923 __sched_ars(acpi_desc, tmo);
2924 else
2925 notify_ars_done(acpi_desc);
2926 memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
2927 clear_bit(ARS_POLL, &acpi_desc->scrub_flags);
2928 mutex_unlock(&acpi_desc->init_mutex);
2929 }
2930
acpi_nfit_init_ars(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa)2931 static void acpi_nfit_init_ars(struct acpi_nfit_desc *acpi_desc,
2932 struct nfit_spa *nfit_spa)
2933 {
2934 int type = nfit_spa_type(nfit_spa->spa);
2935 struct nd_cmd_ars_cap ars_cap;
2936 int rc;
2937
2938 set_bit(ARS_FAILED, &nfit_spa->ars_state);
2939 memset(&ars_cap, 0, sizeof(ars_cap));
2940 rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa);
2941 if (rc < 0)
2942 return;
2943 /* check that the supported scrub types match the spa type */
2944 if (type == NFIT_SPA_VOLATILE && ((ars_cap.status >> 16)
2945 & ND_ARS_VOLATILE) == 0)
2946 return;
2947 if (type == NFIT_SPA_PM && ((ars_cap.status >> 16)
2948 & ND_ARS_PERSISTENT) == 0)
2949 return;
2950
2951 nfit_spa->max_ars = ars_cap.max_ars_out;
2952 nfit_spa->clear_err_unit = ars_cap.clear_err_unit;
2953 acpi_desc->max_ars = max(nfit_spa->max_ars, acpi_desc->max_ars);
2954 clear_bit(ARS_FAILED, &nfit_spa->ars_state);
2955 }
2956
acpi_nfit_register_regions(struct acpi_nfit_desc * acpi_desc)2957 static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc)
2958 {
2959 struct nfit_spa *nfit_spa;
2960 int rc, do_sched_ars = 0;
2961
2962 set_bit(ARS_VALID, &acpi_desc->scrub_flags);
2963 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2964 switch (nfit_spa_type(nfit_spa->spa)) {
2965 case NFIT_SPA_VOLATILE:
2966 case NFIT_SPA_PM:
2967 acpi_nfit_init_ars(acpi_desc, nfit_spa);
2968 break;
2969 }
2970 }
2971
2972 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2973 switch (nfit_spa_type(nfit_spa->spa)) {
2974 case NFIT_SPA_VOLATILE:
2975 case NFIT_SPA_PM:
2976 /* register regions and kick off initial ARS run */
2977 rc = ars_register(acpi_desc, nfit_spa);
2978 if (rc)
2979 return rc;
2980
2981 /*
2982 * Kick off background ARS if at least one
2983 * region successfully registered ARS
2984 */
2985 if (!test_bit(ARS_FAILED, &nfit_spa->ars_state))
2986 do_sched_ars++;
2987 break;
2988 case NFIT_SPA_BDW:
2989 /* nothing to register */
2990 break;
2991 case NFIT_SPA_DCR:
2992 case NFIT_SPA_VDISK:
2993 case NFIT_SPA_VCD:
2994 case NFIT_SPA_PDISK:
2995 case NFIT_SPA_PCD:
2996 /* register known regions that don't support ARS */
2997 rc = acpi_nfit_register_region(acpi_desc, nfit_spa);
2998 if (rc)
2999 return rc;
3000 break;
3001 default:
3002 /* don't register unknown regions */
3003 break;
3004 }
3005 }
3006
3007 if (do_sched_ars)
3008 sched_ars(acpi_desc);
3009 return 0;
3010 }
3011
acpi_nfit_check_deletions(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev)3012 static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc,
3013 struct nfit_table_prev *prev)
3014 {
3015 struct device *dev = acpi_desc->dev;
3016
3017 if (!list_empty(&prev->spas) ||
3018 !list_empty(&prev->memdevs) ||
3019 !list_empty(&prev->dcrs) ||
3020 !list_empty(&prev->bdws) ||
3021 !list_empty(&prev->idts) ||
3022 !list_empty(&prev->flushes)) {
3023 dev_err(dev, "new nfit deletes entries (unsupported)\n");
3024 return -ENXIO;
3025 }
3026 return 0;
3027 }
3028
acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc * acpi_desc)3029 static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc)
3030 {
3031 struct device *dev = acpi_desc->dev;
3032 struct kernfs_node *nfit;
3033 struct device *bus_dev;
3034
3035 if (!ars_supported(acpi_desc->nvdimm_bus))
3036 return 0;
3037
3038 bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3039 nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit");
3040 if (!nfit) {
3041 dev_err(dev, "sysfs_get_dirent 'nfit' failed\n");
3042 return -ENODEV;
3043 }
3044 acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub");
3045 sysfs_put(nfit);
3046 if (!acpi_desc->scrub_count_state) {
3047 dev_err(dev, "sysfs_get_dirent 'scrub' failed\n");
3048 return -ENODEV;
3049 }
3050
3051 return 0;
3052 }
3053
acpi_nfit_unregister(void * data)3054 static void acpi_nfit_unregister(void *data)
3055 {
3056 struct acpi_nfit_desc *acpi_desc = data;
3057
3058 nvdimm_bus_unregister(acpi_desc->nvdimm_bus);
3059 }
3060
acpi_nfit_init(struct acpi_nfit_desc * acpi_desc,void * data,acpi_size sz)3061 int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz)
3062 {
3063 struct device *dev = acpi_desc->dev;
3064 struct nfit_table_prev prev;
3065 const void *end;
3066 int rc;
3067
3068 if (!acpi_desc->nvdimm_bus) {
3069 acpi_nfit_init_dsms(acpi_desc);
3070
3071 acpi_desc->nvdimm_bus = nvdimm_bus_register(dev,
3072 &acpi_desc->nd_desc);
3073 if (!acpi_desc->nvdimm_bus)
3074 return -ENOMEM;
3075
3076 rc = devm_add_action_or_reset(dev, acpi_nfit_unregister,
3077 acpi_desc);
3078 if (rc)
3079 return rc;
3080
3081 rc = acpi_nfit_desc_init_scrub_attr(acpi_desc);
3082 if (rc)
3083 return rc;
3084
3085 /* register this acpi_desc for mce notifications */
3086 mutex_lock(&acpi_desc_lock);
3087 list_add_tail(&acpi_desc->list, &acpi_descs);
3088 mutex_unlock(&acpi_desc_lock);
3089 }
3090
3091 mutex_lock(&acpi_desc->init_mutex);
3092
3093 INIT_LIST_HEAD(&prev.spas);
3094 INIT_LIST_HEAD(&prev.memdevs);
3095 INIT_LIST_HEAD(&prev.dcrs);
3096 INIT_LIST_HEAD(&prev.bdws);
3097 INIT_LIST_HEAD(&prev.idts);
3098 INIT_LIST_HEAD(&prev.flushes);
3099
3100 list_cut_position(&prev.spas, &acpi_desc->spas,
3101 acpi_desc->spas.prev);
3102 list_cut_position(&prev.memdevs, &acpi_desc->memdevs,
3103 acpi_desc->memdevs.prev);
3104 list_cut_position(&prev.dcrs, &acpi_desc->dcrs,
3105 acpi_desc->dcrs.prev);
3106 list_cut_position(&prev.bdws, &acpi_desc->bdws,
3107 acpi_desc->bdws.prev);
3108 list_cut_position(&prev.idts, &acpi_desc->idts,
3109 acpi_desc->idts.prev);
3110 list_cut_position(&prev.flushes, &acpi_desc->flushes,
3111 acpi_desc->flushes.prev);
3112
3113 end = data + sz;
3114 while (!IS_ERR_OR_NULL(data))
3115 data = add_table(acpi_desc, &prev, data, end);
3116
3117 if (IS_ERR(data)) {
3118 dev_dbg(dev, "nfit table parsing error: %ld\n", PTR_ERR(data));
3119 rc = PTR_ERR(data);
3120 goto out_unlock;
3121 }
3122
3123 rc = acpi_nfit_check_deletions(acpi_desc, &prev);
3124 if (rc)
3125 goto out_unlock;
3126
3127 rc = nfit_mem_init(acpi_desc);
3128 if (rc)
3129 goto out_unlock;
3130
3131 rc = acpi_nfit_register_dimms(acpi_desc);
3132 if (rc)
3133 goto out_unlock;
3134
3135 rc = acpi_nfit_register_regions(acpi_desc);
3136
3137 out_unlock:
3138 mutex_unlock(&acpi_desc->init_mutex);
3139 return rc;
3140 }
3141 EXPORT_SYMBOL_GPL(acpi_nfit_init);
3142
acpi_nfit_flush_probe(struct nvdimm_bus_descriptor * nd_desc)3143 static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc)
3144 {
3145 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
3146 struct device *dev = acpi_desc->dev;
3147
3148 /* Bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */
3149 device_lock(dev);
3150 device_unlock(dev);
3151
3152 /* Bounce the init_mutex to complete initial registration */
3153 mutex_lock(&acpi_desc->init_mutex);
3154 mutex_unlock(&acpi_desc->init_mutex);
3155
3156 return 0;
3157 }
3158
__acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor * nd_desc,struct nvdimm * nvdimm,unsigned int cmd)3159 static int __acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3160 struct nvdimm *nvdimm, unsigned int cmd)
3161 {
3162 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
3163
3164 if (nvdimm)
3165 return 0;
3166 if (cmd != ND_CMD_ARS_START)
3167 return 0;
3168
3169 /*
3170 * The kernel and userspace may race to initiate a scrub, but
3171 * the scrub thread is prepared to lose that initial race. It
3172 * just needs guarantees that any ARS it initiates are not
3173 * interrupted by any intervening start requests from userspace.
3174 */
3175 if (work_busy(&acpi_desc->dwork.work))
3176 return -EBUSY;
3177
3178 return 0;
3179 }
3180
3181 /*
3182 * Prevent security and firmware activate commands from being issued via
3183 * ioctl.
3184 */
acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor * nd_desc,struct nvdimm * nvdimm,unsigned int cmd,void * buf)3185 static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3186 struct nvdimm *nvdimm, unsigned int cmd, void *buf)
3187 {
3188 struct nd_cmd_pkg *call_pkg = buf;
3189 unsigned int func;
3190
3191 if (nvdimm && cmd == ND_CMD_CALL &&
3192 call_pkg->nd_family == NVDIMM_FAMILY_INTEL) {
3193 func = call_pkg->nd_command;
3194 if (func > NVDIMM_CMD_MAX ||
3195 (1 << func) & NVDIMM_INTEL_DENY_CMDMASK)
3196 return -EOPNOTSUPP;
3197 }
3198
3199 /* block all non-nfit bus commands */
3200 if (!nvdimm && cmd == ND_CMD_CALL &&
3201 call_pkg->nd_family != NVDIMM_BUS_FAMILY_NFIT)
3202 return -EOPNOTSUPP;
3203
3204 return __acpi_nfit_clear_to_send(nd_desc, nvdimm, cmd);
3205 }
3206
acpi_nfit_ars_rescan(struct acpi_nfit_desc * acpi_desc,enum nfit_ars_state req_type)3207 int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc,
3208 enum nfit_ars_state req_type)
3209 {
3210 struct device *dev = acpi_desc->dev;
3211 int scheduled = 0, busy = 0;
3212 struct nfit_spa *nfit_spa;
3213
3214 mutex_lock(&acpi_desc->init_mutex);
3215 if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags)) {
3216 mutex_unlock(&acpi_desc->init_mutex);
3217 return 0;
3218 }
3219
3220 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3221 int type = nfit_spa_type(nfit_spa->spa);
3222
3223 if (type != NFIT_SPA_PM && type != NFIT_SPA_VOLATILE)
3224 continue;
3225 if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3226 continue;
3227
3228 if (test_and_set_bit(req_type, &nfit_spa->ars_state))
3229 busy++;
3230 else
3231 scheduled++;
3232 }
3233 if (scheduled) {
3234 sched_ars(acpi_desc);
3235 dev_dbg(dev, "ars_scan triggered\n");
3236 }
3237 mutex_unlock(&acpi_desc->init_mutex);
3238
3239 if (scheduled)
3240 return 0;
3241 if (busy)
3242 return -EBUSY;
3243 return -ENOTTY;
3244 }
3245
acpi_nfit_desc_init(struct acpi_nfit_desc * acpi_desc,struct device * dev)3246 void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev)
3247 {
3248 struct nvdimm_bus_descriptor *nd_desc;
3249
3250 dev_set_drvdata(dev, acpi_desc);
3251 acpi_desc->dev = dev;
3252 nd_desc = &acpi_desc->nd_desc;
3253 nd_desc->provider_name = "ACPI.NFIT";
3254 nd_desc->module = THIS_MODULE;
3255 nd_desc->ndctl = acpi_nfit_ctl;
3256 nd_desc->flush_probe = acpi_nfit_flush_probe;
3257 nd_desc->clear_to_send = acpi_nfit_clear_to_send;
3258 nd_desc->attr_groups = acpi_nfit_attribute_groups;
3259
3260 INIT_LIST_HEAD(&acpi_desc->spas);
3261 INIT_LIST_HEAD(&acpi_desc->dcrs);
3262 INIT_LIST_HEAD(&acpi_desc->bdws);
3263 INIT_LIST_HEAD(&acpi_desc->idts);
3264 INIT_LIST_HEAD(&acpi_desc->flushes);
3265 INIT_LIST_HEAD(&acpi_desc->memdevs);
3266 INIT_LIST_HEAD(&acpi_desc->dimms);
3267 INIT_LIST_HEAD(&acpi_desc->list);
3268 mutex_init(&acpi_desc->init_mutex);
3269 acpi_desc->scrub_tmo = 1;
3270 INIT_DELAYED_WORK(&acpi_desc->dwork, acpi_nfit_scrub);
3271 }
3272 EXPORT_SYMBOL_GPL(acpi_nfit_desc_init);
3273
acpi_nfit_put_table(void * table)3274 static void acpi_nfit_put_table(void *table)
3275 {
3276 acpi_put_table(table);
3277 }
3278
acpi_nfit_notify(acpi_handle handle,u32 event,void * data)3279 static void acpi_nfit_notify(acpi_handle handle, u32 event, void *data)
3280 {
3281 struct acpi_device *adev = data;
3282
3283 device_lock(&adev->dev);
3284 __acpi_nfit_notify(&adev->dev, handle, event);
3285 device_unlock(&adev->dev);
3286 }
3287
acpi_nfit_remove_notify_handler(void * data)3288 static void acpi_nfit_remove_notify_handler(void *data)
3289 {
3290 struct acpi_device *adev = data;
3291
3292 acpi_dev_remove_notify_handler(adev, ACPI_DEVICE_NOTIFY,
3293 acpi_nfit_notify);
3294 }
3295
acpi_nfit_shutdown(void * data)3296 void acpi_nfit_shutdown(void *data)
3297 {
3298 struct acpi_nfit_desc *acpi_desc = data;
3299 struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3300
3301 /*
3302 * Destruct under acpi_desc_lock so that nfit_handle_mce does not
3303 * race teardown
3304 */
3305 mutex_lock(&acpi_desc_lock);
3306 list_del(&acpi_desc->list);
3307 mutex_unlock(&acpi_desc_lock);
3308
3309 mutex_lock(&acpi_desc->init_mutex);
3310 set_bit(ARS_CANCEL, &acpi_desc->scrub_flags);
3311 mutex_unlock(&acpi_desc->init_mutex);
3312 cancel_delayed_work_sync(&acpi_desc->dwork);
3313
3314 /*
3315 * Bounce the nvdimm bus lock to make sure any in-flight
3316 * acpi_nfit_ars_rescan() submissions have had a chance to
3317 * either submit or see ->cancel set.
3318 */
3319 device_lock(bus_dev);
3320 device_unlock(bus_dev);
3321
3322 flush_workqueue(nfit_wq);
3323 }
3324 EXPORT_SYMBOL_GPL(acpi_nfit_shutdown);
3325
acpi_nfit_add(struct acpi_device * adev)3326 static int acpi_nfit_add(struct acpi_device *adev)
3327 {
3328 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3329 struct acpi_nfit_desc *acpi_desc;
3330 struct device *dev = &adev->dev;
3331 struct acpi_table_header *tbl;
3332 acpi_status status = AE_OK;
3333 acpi_size sz;
3334 int rc = 0;
3335
3336 rc = acpi_dev_install_notify_handler(adev, ACPI_DEVICE_NOTIFY,
3337 acpi_nfit_notify, adev);
3338 if (rc)
3339 return rc;
3340
3341 rc = devm_add_action_or_reset(dev, acpi_nfit_remove_notify_handler,
3342 adev);
3343 if (rc)
3344 return rc;
3345
3346 status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl);
3347 if (ACPI_FAILURE(status)) {
3348 /* The NVDIMM root device allows OS to trigger enumeration of
3349 * NVDIMMs through NFIT at boot time and re-enumeration at
3350 * root level via the _FIT method during runtime.
3351 * This is ok to return 0 here, we could have an nvdimm
3352 * hotplugged later and evaluate _FIT method which returns
3353 * data in the format of a series of NFIT Structures.
3354 */
3355 dev_dbg(dev, "failed to find NFIT at startup\n");
3356 return 0;
3357 }
3358
3359 rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl);
3360 if (rc)
3361 return rc;
3362 sz = tbl->length;
3363
3364 acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3365 if (!acpi_desc)
3366 return -ENOMEM;
3367 acpi_nfit_desc_init(acpi_desc, &adev->dev);
3368
3369 /* Save the acpi header for exporting the revision via sysfs */
3370 acpi_desc->acpi_header = *tbl;
3371
3372 /* Evaluate _FIT and override with that if present */
3373 status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf);
3374 if (ACPI_SUCCESS(status) && buf.length > 0) {
3375 union acpi_object *obj = buf.pointer;
3376
3377 if (obj->type == ACPI_TYPE_BUFFER)
3378 rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3379 obj->buffer.length);
3380 else
3381 dev_dbg(dev, "invalid type %d, ignoring _FIT\n",
3382 (int) obj->type);
3383 kfree(buf.pointer);
3384 } else
3385 /* skip over the lead-in header table */
3386 rc = acpi_nfit_init(acpi_desc, (void *) tbl
3387 + sizeof(struct acpi_table_nfit),
3388 sz - sizeof(struct acpi_table_nfit));
3389
3390 if (rc)
3391 return rc;
3392
3393 return devm_add_action_or_reset(dev, acpi_nfit_shutdown, acpi_desc);
3394 }
3395
acpi_nfit_update_notify(struct device * dev,acpi_handle handle)3396 static void acpi_nfit_update_notify(struct device *dev, acpi_handle handle)
3397 {
3398 struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3399 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3400 union acpi_object *obj;
3401 acpi_status status;
3402 int ret;
3403
3404 if (!dev->driver) {
3405 /* dev->driver may be null if we're being removed */
3406 dev_dbg(dev, "no driver found for dev\n");
3407 return;
3408 }
3409
3410 if (!acpi_desc) {
3411 acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3412 if (!acpi_desc)
3413 return;
3414 acpi_nfit_desc_init(acpi_desc, dev);
3415 } else {
3416 /*
3417 * Finish previous registration before considering new
3418 * regions.
3419 */
3420 flush_workqueue(nfit_wq);
3421 }
3422
3423 /* Evaluate _FIT */
3424 status = acpi_evaluate_object(handle, "_FIT", NULL, &buf);
3425 if (ACPI_FAILURE(status)) {
3426 dev_err(dev, "failed to evaluate _FIT\n");
3427 return;
3428 }
3429
3430 obj = buf.pointer;
3431 if (obj->type == ACPI_TYPE_BUFFER) {
3432 ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3433 obj->buffer.length);
3434 if (ret)
3435 dev_err(dev, "failed to merge updated NFIT\n");
3436 } else
3437 dev_err(dev, "Invalid _FIT\n");
3438 kfree(buf.pointer);
3439 }
3440
acpi_nfit_uc_error_notify(struct device * dev,acpi_handle handle)3441 static void acpi_nfit_uc_error_notify(struct device *dev, acpi_handle handle)
3442 {
3443 struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3444
3445 if (acpi_desc->scrub_mode == HW_ERROR_SCRUB_ON)
3446 acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
3447 else
3448 acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_SHORT);
3449 }
3450
__acpi_nfit_notify(struct device * dev,acpi_handle handle,u32 event)3451 void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event)
3452 {
3453 dev_dbg(dev, "event: 0x%x\n", event);
3454
3455 switch (event) {
3456 case NFIT_NOTIFY_UPDATE:
3457 return acpi_nfit_update_notify(dev, handle);
3458 case NFIT_NOTIFY_UC_MEMORY_ERROR:
3459 return acpi_nfit_uc_error_notify(dev, handle);
3460 default:
3461 return;
3462 }
3463 }
3464 EXPORT_SYMBOL_GPL(__acpi_nfit_notify);
3465
3466 static const struct acpi_device_id acpi_nfit_ids[] = {
3467 { "ACPI0012", 0 },
3468 { "", 0 },
3469 };
3470 MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids);
3471
3472 static struct acpi_driver acpi_nfit_driver = {
3473 .name = KBUILD_MODNAME,
3474 .ids = acpi_nfit_ids,
3475 .ops = {
3476 .add = acpi_nfit_add,
3477 },
3478 };
3479
nfit_init(void)3480 static __init int nfit_init(void)
3481 {
3482 int ret;
3483
3484 BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40);
3485 BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 64);
3486 BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48);
3487 BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 16);
3488 BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 8);
3489 BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80);
3490 BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40);
3491 BUILD_BUG_ON(sizeof(struct acpi_nfit_capabilities) != 16);
3492
3493 guid_parse(UUID_VOLATILE_MEMORY, &nfit_uuid[NFIT_SPA_VOLATILE]);
3494 guid_parse(UUID_PERSISTENT_MEMORY, &nfit_uuid[NFIT_SPA_PM]);
3495 guid_parse(UUID_CONTROL_REGION, &nfit_uuid[NFIT_SPA_DCR]);
3496 guid_parse(UUID_DATA_REGION, &nfit_uuid[NFIT_SPA_BDW]);
3497 guid_parse(UUID_VOLATILE_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_VDISK]);
3498 guid_parse(UUID_VOLATILE_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_VCD]);
3499 guid_parse(UUID_PERSISTENT_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_PDISK]);
3500 guid_parse(UUID_PERSISTENT_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_PCD]);
3501 guid_parse(UUID_NFIT_BUS, &nfit_uuid[NFIT_DEV_BUS]);
3502 guid_parse(UUID_NFIT_DIMM, &nfit_uuid[NFIT_DEV_DIMM]);
3503 guid_parse(UUID_NFIT_DIMM_N_HPE1, &nfit_uuid[NFIT_DEV_DIMM_N_HPE1]);
3504 guid_parse(UUID_NFIT_DIMM_N_HPE2, &nfit_uuid[NFIT_DEV_DIMM_N_HPE2]);
3505 guid_parse(UUID_NFIT_DIMM_N_MSFT, &nfit_uuid[NFIT_DEV_DIMM_N_MSFT]);
3506 guid_parse(UUID_NFIT_DIMM_N_HYPERV, &nfit_uuid[NFIT_DEV_DIMM_N_HYPERV]);
3507 guid_parse(UUID_INTEL_BUS, &nfit_uuid[NFIT_BUS_INTEL]);
3508
3509 nfit_wq = create_singlethread_workqueue("nfit");
3510 if (!nfit_wq)
3511 return -ENOMEM;
3512
3513 nfit_mce_register();
3514 ret = acpi_bus_register_driver(&acpi_nfit_driver);
3515 if (ret) {
3516 nfit_mce_unregister();
3517 destroy_workqueue(nfit_wq);
3518 }
3519
3520 return ret;
3521
3522 }
3523
nfit_exit(void)3524 static __exit void nfit_exit(void)
3525 {
3526 nfit_mce_unregister();
3527 acpi_bus_unregister_driver(&acpi_nfit_driver);
3528 destroy_workqueue(nfit_wq);
3529 WARN_ON(!list_empty(&acpi_descs));
3530 }
3531
3532 module_init(nfit_init);
3533 module_exit(nfit_exit);
3534 MODULE_DESCRIPTION("ACPI NVDIMM Firmware Interface Table (NFIT) driver");
3535 MODULE_LICENSE("GPL v2");
3536 MODULE_AUTHOR("Intel Corporation");
3537