1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/gfp.h>
4 #include <linux/hugetlb.h>
5 #include <asm/pgalloc.h>
6 #include <asm/tlb.h>
7 #include <asm/fixmap.h>
8 #include <asm/mtrr.h>
9
10 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
11 phys_addr_t physical_mask __ro_after_init = (1ULL << __PHYSICAL_MASK_SHIFT) - 1;
12 EXPORT_SYMBOL(physical_mask);
13 #endif
14
15 #ifdef CONFIG_HIGHPTE
16 #define PGTABLE_HIGHMEM __GFP_HIGHMEM
17 #else
18 #define PGTABLE_HIGHMEM 0
19 #endif
20
21 #ifndef CONFIG_PARAVIRT
22 static inline
paravirt_tlb_remove_table(struct mmu_gather * tlb,void * table)23 void paravirt_tlb_remove_table(struct mmu_gather *tlb, void *table)
24 {
25 tlb_remove_page(tlb, table);
26 }
27 #endif
28
29 gfp_t __userpte_alloc_gfp = GFP_PGTABLE_USER | PGTABLE_HIGHMEM;
30
pte_alloc_one(struct mm_struct * mm)31 pgtable_t pte_alloc_one(struct mm_struct *mm)
32 {
33 return __pte_alloc_one(mm, __userpte_alloc_gfp);
34 }
35
setup_userpte(char * arg)36 static int __init setup_userpte(char *arg)
37 {
38 if (!arg)
39 return -EINVAL;
40
41 /*
42 * "userpte=nohigh" disables allocation of user pagetables in
43 * high memory.
44 */
45 if (strcmp(arg, "nohigh") == 0)
46 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
47 else
48 return -EINVAL;
49 return 0;
50 }
51 early_param("userpte", setup_userpte);
52
___pte_free_tlb(struct mmu_gather * tlb,struct page * pte)53 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
54 {
55 pagetable_pte_dtor(page_ptdesc(pte));
56 paravirt_release_pte(page_to_pfn(pte));
57 paravirt_tlb_remove_table(tlb, pte);
58 }
59
60 #if CONFIG_PGTABLE_LEVELS > 2
___pmd_free_tlb(struct mmu_gather * tlb,pmd_t * pmd)61 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
62 {
63 struct ptdesc *ptdesc = virt_to_ptdesc(pmd);
64 paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
65 /*
66 * NOTE! For PAE, any changes to the top page-directory-pointer-table
67 * entries need a full cr3 reload to flush.
68 */
69 #ifdef CONFIG_X86_PAE
70 tlb->need_flush_all = 1;
71 #endif
72 pagetable_pmd_dtor(ptdesc);
73 paravirt_tlb_remove_table(tlb, ptdesc_page(ptdesc));
74 }
75
76 #if CONFIG_PGTABLE_LEVELS > 3
___pud_free_tlb(struct mmu_gather * tlb,pud_t * pud)77 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
78 {
79 struct ptdesc *ptdesc = virt_to_ptdesc(pud);
80
81 pagetable_pud_dtor(ptdesc);
82 paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
83 paravirt_tlb_remove_table(tlb, virt_to_page(pud));
84 }
85
86 #if CONFIG_PGTABLE_LEVELS > 4
___p4d_free_tlb(struct mmu_gather * tlb,p4d_t * p4d)87 void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
88 {
89 paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
90 paravirt_tlb_remove_table(tlb, virt_to_page(p4d));
91 }
92 #endif /* CONFIG_PGTABLE_LEVELS > 4 */
93 #endif /* CONFIG_PGTABLE_LEVELS > 3 */
94 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
95
pgd_list_add(pgd_t * pgd)96 static inline void pgd_list_add(pgd_t *pgd)
97 {
98 struct ptdesc *ptdesc = virt_to_ptdesc(pgd);
99
100 list_add(&ptdesc->pt_list, &pgd_list);
101 }
102
pgd_list_del(pgd_t * pgd)103 static inline void pgd_list_del(pgd_t *pgd)
104 {
105 struct ptdesc *ptdesc = virt_to_ptdesc(pgd);
106
107 list_del(&ptdesc->pt_list);
108 }
109
110 #define UNSHARED_PTRS_PER_PGD \
111 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
112 #define MAX_UNSHARED_PTRS_PER_PGD \
113 MAX_T(size_t, KERNEL_PGD_BOUNDARY, PTRS_PER_PGD)
114
115
pgd_set_mm(pgd_t * pgd,struct mm_struct * mm)116 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
117 {
118 virt_to_ptdesc(pgd)->pt_mm = mm;
119 }
120
pgd_page_get_mm(struct page * page)121 struct mm_struct *pgd_page_get_mm(struct page *page)
122 {
123 return page_ptdesc(page)->pt_mm;
124 }
125
pgd_ctor(struct mm_struct * mm,pgd_t * pgd)126 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
127 {
128 /* If the pgd points to a shared pagetable level (either the
129 ptes in non-PAE, or shared PMD in PAE), then just copy the
130 references from swapper_pg_dir. */
131 if (CONFIG_PGTABLE_LEVELS == 2 ||
132 (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
133 CONFIG_PGTABLE_LEVELS >= 4) {
134 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
135 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
136 KERNEL_PGD_PTRS);
137 }
138
139 /* list required to sync kernel mapping updates */
140 if (!SHARED_KERNEL_PMD) {
141 pgd_set_mm(pgd, mm);
142 pgd_list_add(pgd);
143 }
144 }
145
pgd_dtor(pgd_t * pgd)146 static void pgd_dtor(pgd_t *pgd)
147 {
148 if (SHARED_KERNEL_PMD)
149 return;
150
151 spin_lock(&pgd_lock);
152 pgd_list_del(pgd);
153 spin_unlock(&pgd_lock);
154 }
155
156 /*
157 * List of all pgd's needed for non-PAE so it can invalidate entries
158 * in both cached and uncached pgd's; not needed for PAE since the
159 * kernel pmd is shared. If PAE were not to share the pmd a similar
160 * tactic would be needed. This is essentially codepath-based locking
161 * against pageattr.c; it is the unique case in which a valid change
162 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
163 * vmalloc faults work because attached pagetables are never freed.
164 * -- nyc
165 */
166
167 #ifdef CONFIG_X86_PAE
168 /*
169 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
170 * updating the top-level pagetable entries to guarantee the
171 * processor notices the update. Since this is expensive, and
172 * all 4 top-level entries are used almost immediately in a
173 * new process's life, we just pre-populate them here.
174 *
175 * Also, if we're in a paravirt environment where the kernel pmd is
176 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
177 * and initialize the kernel pmds here.
178 */
179 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
180 #define MAX_PREALLOCATED_PMDS MAX_UNSHARED_PTRS_PER_PGD
181
182 /*
183 * We allocate separate PMDs for the kernel part of the user page-table
184 * when PTI is enabled. We need them to map the per-process LDT into the
185 * user-space page-table.
186 */
187 #define PREALLOCATED_USER_PMDS (boot_cpu_has(X86_FEATURE_PTI) ? \
188 KERNEL_PGD_PTRS : 0)
189 #define MAX_PREALLOCATED_USER_PMDS KERNEL_PGD_PTRS
190
pud_populate(struct mm_struct * mm,pud_t * pudp,pmd_t * pmd)191 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
192 {
193 paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
194
195 /* Note: almost everything apart from _PAGE_PRESENT is
196 reserved at the pmd (PDPT) level. */
197 set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
198
199 /*
200 * According to Intel App note "TLBs, Paging-Structure Caches,
201 * and Their Invalidation", April 2007, document 317080-001,
202 * section 8.1: in PAE mode we explicitly have to flush the
203 * TLB via cr3 if the top-level pgd is changed...
204 */
205 flush_tlb_mm(mm);
206 }
207 #else /* !CONFIG_X86_PAE */
208
209 /* No need to prepopulate any pagetable entries in non-PAE modes. */
210 #define PREALLOCATED_PMDS 0
211 #define MAX_PREALLOCATED_PMDS 0
212 #define PREALLOCATED_USER_PMDS 0
213 #define MAX_PREALLOCATED_USER_PMDS 0
214 #endif /* CONFIG_X86_PAE */
215
free_pmds(struct mm_struct * mm,pmd_t * pmds[],int count)216 static void free_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
217 {
218 int i;
219 struct ptdesc *ptdesc;
220
221 for (i = 0; i < count; i++)
222 if (pmds[i]) {
223 ptdesc = virt_to_ptdesc(pmds[i]);
224
225 pagetable_pmd_dtor(ptdesc);
226 pagetable_free(ptdesc);
227 mm_dec_nr_pmds(mm);
228 }
229 }
230
preallocate_pmds(struct mm_struct * mm,pmd_t * pmds[],int count)231 static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
232 {
233 int i;
234 bool failed = false;
235 gfp_t gfp = GFP_PGTABLE_USER;
236
237 if (mm == &init_mm)
238 gfp &= ~__GFP_ACCOUNT;
239 gfp &= ~__GFP_HIGHMEM;
240
241 for (i = 0; i < count; i++) {
242 pmd_t *pmd = NULL;
243 struct ptdesc *ptdesc = pagetable_alloc(gfp, 0);
244
245 if (!ptdesc)
246 failed = true;
247 if (ptdesc && !pagetable_pmd_ctor(ptdesc)) {
248 pagetable_free(ptdesc);
249 ptdesc = NULL;
250 failed = true;
251 }
252 if (ptdesc) {
253 mm_inc_nr_pmds(mm);
254 pmd = ptdesc_address(ptdesc);
255 }
256
257 pmds[i] = pmd;
258 }
259
260 if (failed) {
261 free_pmds(mm, pmds, count);
262 return -ENOMEM;
263 }
264
265 return 0;
266 }
267
268 /*
269 * Mop up any pmd pages which may still be attached to the pgd.
270 * Normally they will be freed by munmap/exit_mmap, but any pmd we
271 * preallocate which never got a corresponding vma will need to be
272 * freed manually.
273 */
mop_up_one_pmd(struct mm_struct * mm,pgd_t * pgdp)274 static void mop_up_one_pmd(struct mm_struct *mm, pgd_t *pgdp)
275 {
276 pgd_t pgd = *pgdp;
277
278 if (pgd_val(pgd) != 0) {
279 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
280
281 pgd_clear(pgdp);
282
283 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
284 pmd_free(mm, pmd);
285 mm_dec_nr_pmds(mm);
286 }
287 }
288
pgd_mop_up_pmds(struct mm_struct * mm,pgd_t * pgdp)289 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
290 {
291 int i;
292
293 for (i = 0; i < PREALLOCATED_PMDS; i++)
294 mop_up_one_pmd(mm, &pgdp[i]);
295
296 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
297
298 if (!boot_cpu_has(X86_FEATURE_PTI))
299 return;
300
301 pgdp = kernel_to_user_pgdp(pgdp);
302
303 for (i = 0; i < PREALLOCATED_USER_PMDS; i++)
304 mop_up_one_pmd(mm, &pgdp[i + KERNEL_PGD_BOUNDARY]);
305 #endif
306 }
307
pgd_prepopulate_pmd(struct mm_struct * mm,pgd_t * pgd,pmd_t * pmds[])308 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
309 {
310 p4d_t *p4d;
311 pud_t *pud;
312 int i;
313
314 p4d = p4d_offset(pgd, 0);
315 pud = pud_offset(p4d, 0);
316
317 for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
318 pmd_t *pmd = pmds[i];
319
320 if (i >= KERNEL_PGD_BOUNDARY)
321 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
322 sizeof(pmd_t) * PTRS_PER_PMD);
323
324 pud_populate(mm, pud, pmd);
325 }
326 }
327
328 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
pgd_prepopulate_user_pmd(struct mm_struct * mm,pgd_t * k_pgd,pmd_t * pmds[])329 static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
330 pgd_t *k_pgd, pmd_t *pmds[])
331 {
332 pgd_t *s_pgd = kernel_to_user_pgdp(swapper_pg_dir);
333 pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
334 p4d_t *u_p4d;
335 pud_t *u_pud;
336 int i;
337
338 u_p4d = p4d_offset(u_pgd, 0);
339 u_pud = pud_offset(u_p4d, 0);
340
341 s_pgd += KERNEL_PGD_BOUNDARY;
342 u_pud += KERNEL_PGD_BOUNDARY;
343
344 for (i = 0; i < PREALLOCATED_USER_PMDS; i++, u_pud++, s_pgd++) {
345 pmd_t *pmd = pmds[i];
346
347 memcpy(pmd, (pmd_t *)pgd_page_vaddr(*s_pgd),
348 sizeof(pmd_t) * PTRS_PER_PMD);
349
350 pud_populate(mm, u_pud, pmd);
351 }
352
353 }
354 #else
pgd_prepopulate_user_pmd(struct mm_struct * mm,pgd_t * k_pgd,pmd_t * pmds[])355 static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
356 pgd_t *k_pgd, pmd_t *pmds[])
357 {
358 }
359 #endif
360 /*
361 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
362 * assumes that pgd should be in one page.
363 *
364 * But kernel with PAE paging that is not running as a Xen domain
365 * only needs to allocate 32 bytes for pgd instead of one page.
366 */
367 #ifdef CONFIG_X86_PAE
368
369 #include <linux/slab.h>
370
371 #define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
372 #define PGD_ALIGN 32
373
374 static struct kmem_cache *pgd_cache;
375
pgtable_cache_init(void)376 void __init pgtable_cache_init(void)
377 {
378 /*
379 * When PAE kernel is running as a Xen domain, it does not use
380 * shared kernel pmd. And this requires a whole page for pgd.
381 */
382 if (!SHARED_KERNEL_PMD)
383 return;
384
385 /*
386 * when PAE kernel is not running as a Xen domain, it uses
387 * shared kernel pmd. Shared kernel pmd does not require a whole
388 * page for pgd. We are able to just allocate a 32-byte for pgd.
389 * During boot time, we create a 32-byte slab for pgd table allocation.
390 */
391 pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
392 SLAB_PANIC, NULL);
393 }
394
_pgd_alloc(void)395 static inline pgd_t *_pgd_alloc(void)
396 {
397 /*
398 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
399 * We allocate one page for pgd.
400 */
401 if (!SHARED_KERNEL_PMD)
402 return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER,
403 PGD_ALLOCATION_ORDER);
404
405 /*
406 * Now PAE kernel is not running as a Xen domain. We can allocate
407 * a 32-byte slab for pgd to save memory space.
408 */
409 return kmem_cache_alloc(pgd_cache, GFP_PGTABLE_USER);
410 }
411
_pgd_free(pgd_t * pgd)412 static inline void _pgd_free(pgd_t *pgd)
413 {
414 if (!SHARED_KERNEL_PMD)
415 free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
416 else
417 kmem_cache_free(pgd_cache, pgd);
418 }
419 #else
420
_pgd_alloc(void)421 static inline pgd_t *_pgd_alloc(void)
422 {
423 return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER,
424 PGD_ALLOCATION_ORDER);
425 }
426
_pgd_free(pgd_t * pgd)427 static inline void _pgd_free(pgd_t *pgd)
428 {
429 free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
430 }
431 #endif /* CONFIG_X86_PAE */
432
pgd_alloc(struct mm_struct * mm)433 pgd_t *pgd_alloc(struct mm_struct *mm)
434 {
435 pgd_t *pgd;
436 pmd_t *u_pmds[MAX_PREALLOCATED_USER_PMDS];
437 pmd_t *pmds[MAX_PREALLOCATED_PMDS];
438
439 pgd = _pgd_alloc();
440
441 if (pgd == NULL)
442 goto out;
443
444 mm->pgd = pgd;
445
446 if (sizeof(pmds) != 0 &&
447 preallocate_pmds(mm, pmds, PREALLOCATED_PMDS) != 0)
448 goto out_free_pgd;
449
450 if (sizeof(u_pmds) != 0 &&
451 preallocate_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS) != 0)
452 goto out_free_pmds;
453
454 if (paravirt_pgd_alloc(mm) != 0)
455 goto out_free_user_pmds;
456
457 /*
458 * Make sure that pre-populating the pmds is atomic with
459 * respect to anything walking the pgd_list, so that they
460 * never see a partially populated pgd.
461 */
462 spin_lock(&pgd_lock);
463
464 pgd_ctor(mm, pgd);
465 if (sizeof(pmds) != 0)
466 pgd_prepopulate_pmd(mm, pgd, pmds);
467
468 if (sizeof(u_pmds) != 0)
469 pgd_prepopulate_user_pmd(mm, pgd, u_pmds);
470
471 spin_unlock(&pgd_lock);
472
473 return pgd;
474
475 out_free_user_pmds:
476 if (sizeof(u_pmds) != 0)
477 free_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS);
478 out_free_pmds:
479 if (sizeof(pmds) != 0)
480 free_pmds(mm, pmds, PREALLOCATED_PMDS);
481 out_free_pgd:
482 _pgd_free(pgd);
483 out:
484 return NULL;
485 }
486
pgd_free(struct mm_struct * mm,pgd_t * pgd)487 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
488 {
489 pgd_mop_up_pmds(mm, pgd);
490 pgd_dtor(pgd);
491 paravirt_pgd_free(mm, pgd);
492 _pgd_free(pgd);
493 }
494
495 /*
496 * Used to set accessed or dirty bits in the page table entries
497 * on other architectures. On x86, the accessed and dirty bits
498 * are tracked by hardware. However, do_wp_page calls this function
499 * to also make the pte writeable at the same time the dirty bit is
500 * set. In that case we do actually need to write the PTE.
501 */
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long address,pte_t * ptep,pte_t entry,int dirty)502 int ptep_set_access_flags(struct vm_area_struct *vma,
503 unsigned long address, pte_t *ptep,
504 pte_t entry, int dirty)
505 {
506 int changed = !pte_same(*ptep, entry);
507
508 if (changed && dirty)
509 set_pte(ptep, entry);
510
511 return changed;
512 }
513
514 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)515 int pmdp_set_access_flags(struct vm_area_struct *vma,
516 unsigned long address, pmd_t *pmdp,
517 pmd_t entry, int dirty)
518 {
519 int changed = !pmd_same(*pmdp, entry);
520
521 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
522
523 if (changed && dirty) {
524 set_pmd(pmdp, entry);
525 /*
526 * We had a write-protection fault here and changed the pmd
527 * to to more permissive. No need to flush the TLB for that,
528 * #PF is architecturally guaranteed to do that and in the
529 * worst-case we'll generate a spurious fault.
530 */
531 }
532
533 return changed;
534 }
535
pudp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,pud_t entry,int dirty)536 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
537 pud_t *pudp, pud_t entry, int dirty)
538 {
539 int changed = !pud_same(*pudp, entry);
540
541 VM_BUG_ON(address & ~HPAGE_PUD_MASK);
542
543 if (changed && dirty) {
544 set_pud(pudp, entry);
545 /*
546 * We had a write-protection fault here and changed the pud
547 * to to more permissive. No need to flush the TLB for that,
548 * #PF is architecturally guaranteed to do that and in the
549 * worst-case we'll generate a spurious fault.
550 */
551 }
552
553 return changed;
554 }
555 #endif
556
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)557 int ptep_test_and_clear_young(struct vm_area_struct *vma,
558 unsigned long addr, pte_t *ptep)
559 {
560 int ret = 0;
561
562 if (pte_young(*ptep))
563 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
564 (unsigned long *) &ptep->pte);
565
566 return ret;
567 }
568
569 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)570 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
571 unsigned long addr, pmd_t *pmdp)
572 {
573 int ret = 0;
574
575 if (pmd_young(*pmdp))
576 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
577 (unsigned long *)pmdp);
578
579 return ret;
580 }
581 #endif
582
583 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pudp_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pud_t * pudp)584 int pudp_test_and_clear_young(struct vm_area_struct *vma,
585 unsigned long addr, pud_t *pudp)
586 {
587 int ret = 0;
588
589 if (pud_young(*pudp))
590 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
591 (unsigned long *)pudp);
592
593 return ret;
594 }
595 #endif
596
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)597 int ptep_clear_flush_young(struct vm_area_struct *vma,
598 unsigned long address, pte_t *ptep)
599 {
600 /*
601 * On x86 CPUs, clearing the accessed bit without a TLB flush
602 * doesn't cause data corruption. [ It could cause incorrect
603 * page aging and the (mistaken) reclaim of hot pages, but the
604 * chance of that should be relatively low. ]
605 *
606 * So as a performance optimization don't flush the TLB when
607 * clearing the accessed bit, it will eventually be flushed by
608 * a context switch or a VM operation anyway. [ In the rare
609 * event of it not getting flushed for a long time the delay
610 * shouldn't really matter because there's no real memory
611 * pressure for swapout to react to. ]
612 */
613 return ptep_test_and_clear_young(vma, address, ptep);
614 }
615
616 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)617 int pmdp_clear_flush_young(struct vm_area_struct *vma,
618 unsigned long address, pmd_t *pmdp)
619 {
620 int young;
621
622 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
623
624 young = pmdp_test_and_clear_young(vma, address, pmdp);
625 if (young)
626 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
627
628 return young;
629 }
630
pmdp_invalidate_ad(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)631 pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma, unsigned long address,
632 pmd_t *pmdp)
633 {
634 VM_WARN_ON_ONCE(!pmd_present(*pmdp));
635
636 /*
637 * No flush is necessary. Once an invalid PTE is established, the PTE's
638 * access and dirty bits cannot be updated.
639 */
640 return pmdp_establish(vma, address, pmdp, pmd_mkinvalid(*pmdp));
641 }
642 #endif
643
644 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
645 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
pudp_invalidate(struct vm_area_struct * vma,unsigned long address,pud_t * pudp)646 pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address,
647 pud_t *pudp)
648 {
649 VM_WARN_ON_ONCE(!pud_present(*pudp));
650 pud_t old = pudp_establish(vma, address, pudp, pud_mkinvalid(*pudp));
651 flush_pud_tlb_range(vma, address, address + HPAGE_PUD_SIZE);
652 return old;
653 }
654 #endif
655
656 /**
657 * reserve_top_address - reserves a hole in the top of kernel address space
658 * @reserve - size of hole to reserve
659 *
660 * Can be used to relocate the fixmap area and poke a hole in the top
661 * of kernel address space to make room for a hypervisor.
662 */
reserve_top_address(unsigned long reserve)663 void __init reserve_top_address(unsigned long reserve)
664 {
665 #ifdef CONFIG_X86_32
666 BUG_ON(fixmaps_set > 0);
667 __FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
668 printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
669 -reserve, __FIXADDR_TOP + PAGE_SIZE);
670 #endif
671 }
672
673 int fixmaps_set;
674
__native_set_fixmap(enum fixed_addresses idx,pte_t pte)675 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
676 {
677 unsigned long address = __fix_to_virt(idx);
678
679 #ifdef CONFIG_X86_64
680 /*
681 * Ensure that the static initial page tables are covering the
682 * fixmap completely.
683 */
684 BUILD_BUG_ON(__end_of_permanent_fixed_addresses >
685 (FIXMAP_PMD_NUM * PTRS_PER_PTE));
686 #endif
687
688 if (idx >= __end_of_fixed_addresses) {
689 BUG();
690 return;
691 }
692 set_pte_vaddr(address, pte);
693 fixmaps_set++;
694 }
695
native_set_fixmap(unsigned idx,phys_addr_t phys,pgprot_t flags)696 void native_set_fixmap(unsigned /* enum fixed_addresses */ idx,
697 phys_addr_t phys, pgprot_t flags)
698 {
699 /* Sanitize 'prot' against any unsupported bits: */
700 pgprot_val(flags) &= __default_kernel_pte_mask;
701
702 __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
703 }
704
705 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
706 #ifdef CONFIG_X86_5LEVEL
707 /**
708 * p4d_set_huge - setup kernel P4D mapping
709 *
710 * No 512GB pages yet -- always return 0
711 */
p4d_set_huge(p4d_t * p4d,phys_addr_t addr,pgprot_t prot)712 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
713 {
714 return 0;
715 }
716
717 /**
718 * p4d_clear_huge - clear kernel P4D mapping when it is set
719 *
720 * No 512GB pages yet -- always return 0
721 */
p4d_clear_huge(p4d_t * p4d)722 void p4d_clear_huge(p4d_t *p4d)
723 {
724 }
725 #endif
726
727 /**
728 * pud_set_huge - setup kernel PUD mapping
729 *
730 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
731 * function sets up a huge page only if the complete range has the same MTRR
732 * caching mode.
733 *
734 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
735 * page mapping attempt fails.
736 *
737 * Returns 1 on success and 0 on failure.
738 */
pud_set_huge(pud_t * pud,phys_addr_t addr,pgprot_t prot)739 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
740 {
741 u8 uniform;
742
743 mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
744 if (!uniform)
745 return 0;
746
747 /* Bail out if we are we on a populated non-leaf entry: */
748 if (pud_present(*pud) && !pud_leaf(*pud))
749 return 0;
750
751 set_pte((pte_t *)pud, pfn_pte(
752 (u64)addr >> PAGE_SHIFT,
753 __pgprot(protval_4k_2_large(pgprot_val(prot)) | _PAGE_PSE)));
754
755 return 1;
756 }
757
758 /**
759 * pmd_set_huge - setup kernel PMD mapping
760 *
761 * See text over pud_set_huge() above.
762 *
763 * Returns 1 on success and 0 on failure.
764 */
pmd_set_huge(pmd_t * pmd,phys_addr_t addr,pgprot_t prot)765 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
766 {
767 u8 uniform;
768
769 mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
770 if (!uniform) {
771 pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
772 __func__, addr, addr + PMD_SIZE);
773 return 0;
774 }
775
776 /* Bail out if we are we on a populated non-leaf entry: */
777 if (pmd_present(*pmd) && !pmd_leaf(*pmd))
778 return 0;
779
780 set_pte((pte_t *)pmd, pfn_pte(
781 (u64)addr >> PAGE_SHIFT,
782 __pgprot(protval_4k_2_large(pgprot_val(prot)) | _PAGE_PSE)));
783
784 return 1;
785 }
786
787 /**
788 * pud_clear_huge - clear kernel PUD mapping when it is set
789 *
790 * Returns 1 on success and 0 on failure (no PUD map is found).
791 */
pud_clear_huge(pud_t * pud)792 int pud_clear_huge(pud_t *pud)
793 {
794 if (pud_leaf(*pud)) {
795 pud_clear(pud);
796 return 1;
797 }
798
799 return 0;
800 }
801
802 /**
803 * pmd_clear_huge - clear kernel PMD mapping when it is set
804 *
805 * Returns 1 on success and 0 on failure (no PMD map is found).
806 */
pmd_clear_huge(pmd_t * pmd)807 int pmd_clear_huge(pmd_t *pmd)
808 {
809 if (pmd_leaf(*pmd)) {
810 pmd_clear(pmd);
811 return 1;
812 }
813
814 return 0;
815 }
816
817 #ifdef CONFIG_X86_64
818 /**
819 * pud_free_pmd_page - Clear pud entry and free pmd page.
820 * @pud: Pointer to a PUD.
821 * @addr: Virtual address associated with pud.
822 *
823 * Context: The pud range has been unmapped and TLB purged.
824 * Return: 1 if clearing the entry succeeded. 0 otherwise.
825 *
826 * NOTE: Callers must allow a single page allocation.
827 */
pud_free_pmd_page(pud_t * pud,unsigned long addr)828 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
829 {
830 pmd_t *pmd, *pmd_sv;
831 pte_t *pte;
832 int i;
833
834 pmd = pud_pgtable(*pud);
835 pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL);
836 if (!pmd_sv)
837 return 0;
838
839 for (i = 0; i < PTRS_PER_PMD; i++) {
840 pmd_sv[i] = pmd[i];
841 if (!pmd_none(pmd[i]))
842 pmd_clear(&pmd[i]);
843 }
844
845 pud_clear(pud);
846
847 /* INVLPG to clear all paging-structure caches */
848 flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
849
850 for (i = 0; i < PTRS_PER_PMD; i++) {
851 if (!pmd_none(pmd_sv[i])) {
852 pte = (pte_t *)pmd_page_vaddr(pmd_sv[i]);
853 free_page((unsigned long)pte);
854 }
855 }
856
857 free_page((unsigned long)pmd_sv);
858
859 pagetable_pmd_dtor(virt_to_ptdesc(pmd));
860 free_page((unsigned long)pmd);
861
862 return 1;
863 }
864
865 /**
866 * pmd_free_pte_page - Clear pmd entry and free pte page.
867 * @pmd: Pointer to a PMD.
868 * @addr: Virtual address associated with pmd.
869 *
870 * Context: The pmd range has been unmapped and TLB purged.
871 * Return: 1 if clearing the entry succeeded. 0 otherwise.
872 */
pmd_free_pte_page(pmd_t * pmd,unsigned long addr)873 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
874 {
875 pte_t *pte;
876
877 pte = (pte_t *)pmd_page_vaddr(*pmd);
878 pmd_clear(pmd);
879
880 /* INVLPG to clear all paging-structure caches */
881 flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
882
883 free_page((unsigned long)pte);
884
885 return 1;
886 }
887
888 #else /* !CONFIG_X86_64 */
889
890 /*
891 * Disable free page handling on x86-PAE. This assures that ioremap()
892 * does not update sync'd pmd entries. See vmalloc_sync_one().
893 */
pmd_free_pte_page(pmd_t * pmd,unsigned long addr)894 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
895 {
896 return pmd_none(*pmd);
897 }
898
899 #endif /* CONFIG_X86_64 */
900 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
901
pte_mkwrite(pte_t pte,struct vm_area_struct * vma)902 pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma)
903 {
904 if (vma->vm_flags & VM_SHADOW_STACK)
905 return pte_mkwrite_shstk(pte);
906
907 pte = pte_mkwrite_novma(pte);
908
909 return pte_clear_saveddirty(pte);
910 }
911
pmd_mkwrite(pmd_t pmd,struct vm_area_struct * vma)912 pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
913 {
914 if (vma->vm_flags & VM_SHADOW_STACK)
915 return pmd_mkwrite_shstk(pmd);
916
917 pmd = pmd_mkwrite_novma(pmd);
918
919 return pmd_clear_saveddirty(pmd);
920 }
921
arch_check_zapped_pte(struct vm_area_struct * vma,pte_t pte)922 void arch_check_zapped_pte(struct vm_area_struct *vma, pte_t pte)
923 {
924 /*
925 * Hardware before shadow stack can (rarely) set Dirty=1
926 * on a Write=0 PTE. So the below condition
927 * only indicates a software bug when shadow stack is
928 * supported by the HW. This checking is covered in
929 * pte_shstk().
930 */
931 VM_WARN_ON_ONCE(!(vma->vm_flags & VM_SHADOW_STACK) &&
932 pte_shstk(pte));
933 }
934
arch_check_zapped_pmd(struct vm_area_struct * vma,pmd_t pmd)935 void arch_check_zapped_pmd(struct vm_area_struct *vma, pmd_t pmd)
936 {
937 /* See note in arch_check_zapped_pte() */
938 VM_WARN_ON_ONCE(!(vma->vm_flags & VM_SHADOW_STACK) &&
939 pmd_shstk(pmd));
940 }
941
arch_check_zapped_pud(struct vm_area_struct * vma,pud_t pud)942 void arch_check_zapped_pud(struct vm_area_struct *vma, pud_t pud)
943 {
944 /* See note in arch_check_zapped_pte() */
945 VM_WARN_ON_ONCE(!(vma->vm_flags & VM_SHADOW_STACK) && pud_shstk(pud));
946 }
947