xref: /linux/tools/sched_ext/include/scx/common.bpf.h (revision a23cd25baed2316e50597f8b67192bdc904f955b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
4  * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
5  * Copyright (c) 2022 David Vernet <dvernet@meta.com>
6  */
7 #ifndef __SCX_COMMON_BPF_H
8 #define __SCX_COMMON_BPF_H
9 
10 /*
11  * The generated kfunc prototypes in vmlinux.h are missing address space
12  * attributes which cause build failures. For now, suppress the generated
13  * prototypes. See https://github.com/sched-ext/scx/issues/1111.
14  */
15 #define BPF_NO_KFUNC_PROTOTYPES
16 
17 #ifdef LSP
18 #define __bpf__
19 #include "../vmlinux.h"
20 #else
21 #include "vmlinux.h"
22 #endif
23 
24 #include <bpf/bpf_helpers.h>
25 #include <bpf/bpf_tracing.h>
26 #include <asm-generic/errno.h>
27 #include "user_exit_info.bpf.h"
28 #include "enum_defs.autogen.h"
29 
30 #define PF_IDLE				0x00000002	/* I am an IDLE thread */
31 #define PF_IO_WORKER			0x00000010	/* Task is an IO worker */
32 #define PF_WQ_WORKER			0x00000020	/* I'm a workqueue worker */
33 #define PF_KCOMPACTD			0x00010000      /* I am kcompactd */
34 #define PF_KSWAPD			0x00020000      /* I am kswapd */
35 #define PF_KTHREAD			0x00200000	/* I am a kernel thread */
36 #define PF_EXITING			0x00000004
37 #define CLOCK_MONOTONIC			1
38 
39 #ifndef NR_CPUS
40 #define NR_CPUS 1024
41 #endif
42 
43 #ifndef NUMA_NO_NODE
44 #define	NUMA_NO_NODE	(-1)
45 #endif
46 
47 extern int LINUX_KERNEL_VERSION __kconfig;
48 extern const char CONFIG_CC_VERSION_TEXT[64] __kconfig __weak;
49 extern const char CONFIG_LOCALVERSION[64] __kconfig __weak;
50 
51 /*
52  * Earlier versions of clang/pahole lost upper 32bits in 64bit enums which can
53  * lead to really confusing misbehaviors. Let's trigger a build failure.
54  */
___vmlinux_h_sanity_check___(void)55 static inline void ___vmlinux_h_sanity_check___(void)
56 {
57 	_Static_assert(SCX_DSQ_FLAG_BUILTIN,
58 		       "bpftool generated vmlinux.h is missing high bits for 64bit enums, upgrade clang and pahole");
59 }
60 
61 s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) __ksym;
62 s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, u64 wake_flags, bool *is_idle) __ksym;
63 s32 scx_bpf_select_cpu_and(struct task_struct *p, s32 prev_cpu, u64 wake_flags,
64 			   const struct cpumask *cpus_allowed, u64 flags) __ksym __weak;
65 void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id, u64 slice, u64 enq_flags) __ksym __weak;
66 void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id, u64 slice, u64 vtime, u64 enq_flags) __ksym __weak;
67 u32 scx_bpf_dispatch_nr_slots(void) __ksym;
68 void scx_bpf_dispatch_cancel(void) __ksym;
69 bool scx_bpf_dsq_move_to_local(u64 dsq_id) __ksym __weak;
70 void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter, u64 slice) __ksym __weak;
71 void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter, u64 vtime) __ksym __weak;
72 bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter, struct task_struct *p, u64 dsq_id, u64 enq_flags) __ksym __weak;
73 bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter, struct task_struct *p, u64 dsq_id, u64 enq_flags) __ksym __weak;
74 u32 scx_bpf_reenqueue_local(void) __ksym;
75 void scx_bpf_kick_cpu(s32 cpu, u64 flags) __ksym;
76 s32 scx_bpf_dsq_nr_queued(u64 dsq_id) __ksym;
77 void scx_bpf_destroy_dsq(u64 dsq_id) __ksym;
78 int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, u64 flags) __ksym __weak;
79 struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) __ksym __weak;
80 void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) __ksym __weak;
81 void scx_bpf_exit_bstr(s64 exit_code, char *fmt, unsigned long long *data, u32 data__sz) __ksym __weak;
82 void scx_bpf_error_bstr(char *fmt, unsigned long long *data, u32 data_len) __ksym;
83 void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, u32 data_len) __ksym __weak;
84 u32 scx_bpf_cpuperf_cap(s32 cpu) __ksym __weak;
85 u32 scx_bpf_cpuperf_cur(s32 cpu) __ksym __weak;
86 void scx_bpf_cpuperf_set(s32 cpu, u32 perf) __ksym __weak;
87 u32 scx_bpf_nr_node_ids(void) __ksym __weak;
88 u32 scx_bpf_nr_cpu_ids(void) __ksym __weak;
89 int scx_bpf_cpu_node(s32 cpu) __ksym __weak;
90 const struct cpumask *scx_bpf_get_possible_cpumask(void) __ksym __weak;
91 const struct cpumask *scx_bpf_get_online_cpumask(void) __ksym __weak;
92 void scx_bpf_put_cpumask(const struct cpumask *cpumask) __ksym __weak;
93 const struct cpumask *scx_bpf_get_idle_cpumask_node(int node) __ksym __weak;
94 const struct cpumask *scx_bpf_get_idle_cpumask(void) __ksym;
95 const struct cpumask *scx_bpf_get_idle_smtmask_node(int node) __ksym __weak;
96 const struct cpumask *scx_bpf_get_idle_smtmask(void) __ksym;
97 void scx_bpf_put_idle_cpumask(const struct cpumask *cpumask) __ksym;
98 bool scx_bpf_test_and_clear_cpu_idle(s32 cpu) __ksym;
99 s32 scx_bpf_pick_idle_cpu_node(const cpumask_t *cpus_allowed, int node, u64 flags) __ksym __weak;
100 s32 scx_bpf_pick_idle_cpu(const cpumask_t *cpus_allowed, u64 flags) __ksym;
101 s32 scx_bpf_pick_any_cpu_node(const cpumask_t *cpus_allowed, int node, u64 flags) __ksym __weak;
102 s32 scx_bpf_pick_any_cpu(const cpumask_t *cpus_allowed, u64 flags) __ksym;
103 bool scx_bpf_task_running(const struct task_struct *p) __ksym;
104 s32 scx_bpf_task_cpu(const struct task_struct *p) __ksym;
105 struct rq *scx_bpf_cpu_rq(s32 cpu) __ksym;
106 struct rq *scx_bpf_locked_rq(void) __ksym;
107 struct task_struct *scx_bpf_cpu_curr(s32 cpu) __ksym __weak;
108 struct cgroup *scx_bpf_task_cgroup(struct task_struct *p) __ksym __weak;
109 u64 scx_bpf_now(void) __ksym __weak;
110 void scx_bpf_events(struct scx_event_stats *events, size_t events__sz) __ksym __weak;
111 
112 /*
113  * Use the following as @it__iter when calling scx_bpf_dsq_move[_vtime]() from
114  * within bpf_for_each() loops.
115  */
116 #define BPF_FOR_EACH_ITER	(&___it)
117 
118 #define scx_read_event(e, name)							\
119 	(bpf_core_field_exists((e)->name) ? (e)->name : 0)
120 
121 static inline __attribute__((format(printf, 1, 2)))
___scx_bpf_bstr_format_checker(const char * fmt,...)122 void ___scx_bpf_bstr_format_checker(const char *fmt, ...) {}
123 
124 #define SCX_STRINGIFY(x) #x
125 #define SCX_TOSTRING(x) SCX_STRINGIFY(x)
126 
127 /*
128  * Helper macro for initializing the fmt and variadic argument inputs to both
129  * bstr exit kfuncs. Callers to this function should use ___fmt and ___param to
130  * refer to the initialized list of inputs to the bstr kfunc.
131  */
132 #define scx_bpf_bstr_preamble(fmt, args...)					\
133 	static char ___fmt[] = fmt;						\
134 	/*									\
135 	 * Note that __param[] must have at least one				\
136 	 * element to keep the verifier happy.					\
137 	 */									\
138 	unsigned long long ___param[___bpf_narg(args) ?: 1] = {};		\
139 										\
140 	_Pragma("GCC diagnostic push")						\
141 	_Pragma("GCC diagnostic ignored \"-Wint-conversion\"")			\
142 	___bpf_fill(___param, args);						\
143 	_Pragma("GCC diagnostic pop")
144 
145 /*
146  * scx_bpf_exit() wraps the scx_bpf_exit_bstr() kfunc with variadic arguments
147  * instead of an array of u64. Using this macro will cause the scheduler to
148  * exit cleanly with the specified exit code being passed to user space.
149  */
150 #define scx_bpf_exit(code, fmt, args...)					\
151 ({										\
152 	scx_bpf_bstr_preamble(fmt, args)					\
153 	scx_bpf_exit_bstr(code, ___fmt, ___param, sizeof(___param));		\
154 	___scx_bpf_bstr_format_checker(fmt, ##args);				\
155 })
156 
157 /*
158  * scx_bpf_error() wraps the scx_bpf_error_bstr() kfunc with variadic arguments
159  * instead of an array of u64. Invoking this macro will cause the scheduler to
160  * exit in an erroneous state, with diagnostic information being passed to the
161  * user. It appends the file and line number to aid debugging.
162  */
163 #define scx_bpf_error(fmt, args...)						\
164 ({										\
165 	scx_bpf_bstr_preamble(							\
166 		__FILE__ ":" SCX_TOSTRING(__LINE__) ": " fmt, ##args)		\
167 	scx_bpf_error_bstr(___fmt, ___param, sizeof(___param));			\
168 	___scx_bpf_bstr_format_checker(						\
169 		__FILE__ ":" SCX_TOSTRING(__LINE__) ": " fmt, ##args);		\
170 })
171 
172 /*
173  * scx_bpf_dump() wraps the scx_bpf_dump_bstr() kfunc with variadic arguments
174  * instead of an array of u64. To be used from ops.dump() and friends.
175  */
176 #define scx_bpf_dump(fmt, args...)						\
177 ({										\
178 	scx_bpf_bstr_preamble(fmt, args)					\
179 	scx_bpf_dump_bstr(___fmt, ___param, sizeof(___param));			\
180 	___scx_bpf_bstr_format_checker(fmt, ##args);				\
181 })
182 
183 /*
184  * scx_bpf_dump_header() is a wrapper around scx_bpf_dump that adds a header
185  * of system information for debugging.
186  */
187 #define scx_bpf_dump_header()							\
188 ({										\
189 	scx_bpf_dump("kernel: %d.%d.%d %s\ncc: %s\n",				\
190 		     LINUX_KERNEL_VERSION >> 16,				\
191 		     LINUX_KERNEL_VERSION >> 8 & 0xFF,				\
192 		     LINUX_KERNEL_VERSION & 0xFF,				\
193 		     CONFIG_LOCALVERSION,					\
194 		     CONFIG_CC_VERSION_TEXT);					\
195 })
196 
197 #define BPF_STRUCT_OPS(name, args...)						\
198 SEC("struct_ops/"#name)								\
199 BPF_PROG(name, ##args)
200 
201 #define BPF_STRUCT_OPS_SLEEPABLE(name, args...)					\
202 SEC("struct_ops.s/"#name)							\
203 BPF_PROG(name, ##args)
204 
205 /**
206  * RESIZABLE_ARRAY - Generates annotations for an array that may be resized
207  * @elfsec: the data section of the BPF program in which to place the array
208  * @arr: the name of the array
209  *
210  * libbpf has an API for setting map value sizes. Since data sections (i.e.
211  * bss, data, rodata) themselves are maps, a data section can be resized. If
212  * a data section has an array as its last element, the BTF info for that
213  * array will be adjusted so that length of the array is extended to meet the
214  * new length of the data section. This macro annotates an array to have an
215  * element count of one with the assumption that this array can be resized
216  * within the userspace program. It also annotates the section specifier so
217  * this array exists in a custom sub data section which can be resized
218  * independently.
219  *
220  * See RESIZE_ARRAY() for the userspace convenience macro for resizing an
221  * array declared with RESIZABLE_ARRAY().
222  */
223 #define RESIZABLE_ARRAY(elfsec, arr) arr[1] SEC("."#elfsec"."#arr)
224 
225 /**
226  * MEMBER_VPTR - Obtain the verified pointer to a struct or array member
227  * @base: struct or array to index
228  * @member: dereferenced member (e.g. .field, [idx0][idx1], .field[idx0] ...)
229  *
230  * The verifier often gets confused by the instruction sequence the compiler
231  * generates for indexing struct fields or arrays. This macro forces the
232  * compiler to generate a code sequence which first calculates the byte offset,
233  * checks it against the struct or array size and add that byte offset to
234  * generate the pointer to the member to help the verifier.
235  *
236  * Ideally, we want to abort if the calculated offset is out-of-bounds. However,
237  * BPF currently doesn't support abort, so evaluate to %NULL instead. The caller
238  * must check for %NULL and take appropriate action to appease the verifier. To
239  * avoid confusing the verifier, it's best to check for %NULL and dereference
240  * immediately.
241  *
242  *	vptr = MEMBER_VPTR(my_array, [i][j]);
243  *	if (!vptr)
244  *		return error;
245  *	*vptr = new_value;
246  *
247  * sizeof(@base) should encompass the memory area to be accessed and thus can't
248  * be a pointer to the area. Use `MEMBER_VPTR(*ptr, .member)` instead of
249  * `MEMBER_VPTR(ptr, ->member)`.
250  */
251 #ifndef MEMBER_VPTR
252 #define MEMBER_VPTR(base, member) (typeof((base) member) *)			\
253 ({										\
254 	u64 __base = (u64)&(base);						\
255 	u64 __addr = (u64)&((base) member) - __base;				\
256 	_Static_assert(sizeof(base) >= sizeof((base) member),			\
257 		       "@base is smaller than @member, is @base a pointer?");	\
258 	asm volatile (								\
259 		"if %0 <= %[max] goto +2\n"					\
260 		"%0 = 0\n"							\
261 		"goto +1\n"							\
262 		"%0 += %1\n"							\
263 		: "+r"(__addr)							\
264 		: "r"(__base),							\
265 		  [max]"i"(sizeof(base) - sizeof((base) member)));		\
266 	__addr;									\
267 })
268 #endif /* MEMBER_VPTR */
269 
270 /**
271  * ARRAY_ELEM_PTR - Obtain the verified pointer to an array element
272  * @arr: array to index into
273  * @i: array index
274  * @n: number of elements in array
275  *
276  * Similar to MEMBER_VPTR() but is intended for use with arrays where the
277  * element count needs to be explicit.
278  * It can be used in cases where a global array is defined with an initial
279  * size but is intended to be be resized before loading the BPF program.
280  * Without this version of the macro, MEMBER_VPTR() will use the compile time
281  * size of the array to compute the max, which will result in rejection by
282  * the verifier.
283  */
284 #ifndef ARRAY_ELEM_PTR
285 #define ARRAY_ELEM_PTR(arr, i, n) (typeof(arr[i]) *)				\
286 ({										\
287 	u64 __base = (u64)arr;							\
288 	u64 __addr = (u64)&(arr[i]) - __base;					\
289 	asm volatile (								\
290 		"if %0 <= %[max] goto +2\n"					\
291 		"%0 = 0\n"							\
292 		"goto +1\n"							\
293 		"%0 += %1\n"							\
294 		: "+r"(__addr)							\
295 		: "r"(__base),							\
296 		  [max]"r"(sizeof(arr[0]) * ((n) - 1)));			\
297 	__addr;									\
298 })
299 #endif /* ARRAY_ELEM_PTR */
300 
301 /*
302  * BPF declarations and helpers
303  */
304 
305 /* list and rbtree */
306 #define __contains(name, node) __attribute__((btf_decl_tag("contains:" #name ":" #node)))
307 #define private(name) SEC(".data." #name) __hidden __attribute__((aligned(8)))
308 
309 void *bpf_obj_new_impl(__u64 local_type_id, void *meta) __ksym;
310 void bpf_obj_drop_impl(void *kptr, void *meta) __ksym;
311 
312 #define bpf_obj_new(type) ((type *)bpf_obj_new_impl(bpf_core_type_id_local(type), NULL))
313 #define bpf_obj_drop(kptr) bpf_obj_drop_impl(kptr, NULL)
314 
315 int bpf_list_push_front_impl(struct bpf_list_head *head,
316 				    struct bpf_list_node *node,
317 				    void *meta, __u64 off) __ksym;
318 #define bpf_list_push_front(head, node) bpf_list_push_front_impl(head, node, NULL, 0)
319 
320 int bpf_list_push_back_impl(struct bpf_list_head *head,
321 				   struct bpf_list_node *node,
322 				   void *meta, __u64 off) __ksym;
323 #define bpf_list_push_back(head, node) bpf_list_push_back_impl(head, node, NULL, 0)
324 
325 struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head) __ksym;
326 struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head) __ksym;
327 struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root,
328 				      struct bpf_rb_node *node) __ksym;
329 int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
330 			bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b),
331 			void *meta, __u64 off) __ksym;
332 #define bpf_rbtree_add(head, node, less) bpf_rbtree_add_impl(head, node, less, NULL, 0)
333 
334 struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root) __ksym;
335 
336 void *bpf_refcount_acquire_impl(void *kptr, void *meta) __ksym;
337 #define bpf_refcount_acquire(kptr) bpf_refcount_acquire_impl(kptr, NULL)
338 
339 /* task */
340 struct task_struct *bpf_task_from_pid(s32 pid) __ksym;
341 struct task_struct *bpf_task_acquire(struct task_struct *p) __ksym;
342 void bpf_task_release(struct task_struct *p) __ksym;
343 
344 /* cgroup */
345 struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level) __ksym;
346 void bpf_cgroup_release(struct cgroup *cgrp) __ksym;
347 struct cgroup *bpf_cgroup_from_id(u64 cgid) __ksym;
348 
349 /* css iteration */
350 struct bpf_iter_css;
351 struct cgroup_subsys_state;
352 extern int bpf_iter_css_new(struct bpf_iter_css *it,
353 			    struct cgroup_subsys_state *start,
354 			    unsigned int flags) __weak __ksym;
355 extern struct cgroup_subsys_state *
356 bpf_iter_css_next(struct bpf_iter_css *it) __weak __ksym;
357 extern void bpf_iter_css_destroy(struct bpf_iter_css *it) __weak __ksym;
358 
359 /* cpumask */
360 struct bpf_cpumask *bpf_cpumask_create(void) __ksym;
361 struct bpf_cpumask *bpf_cpumask_acquire(struct bpf_cpumask *cpumask) __ksym;
362 void bpf_cpumask_release(struct bpf_cpumask *cpumask) __ksym;
363 u32 bpf_cpumask_first(const struct cpumask *cpumask) __ksym;
364 u32 bpf_cpumask_first_zero(const struct cpumask *cpumask) __ksym;
365 void bpf_cpumask_set_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym;
366 void bpf_cpumask_clear_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym;
367 bool bpf_cpumask_test_cpu(u32 cpu, const struct cpumask *cpumask) __ksym;
368 bool bpf_cpumask_test_and_set_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym;
369 bool bpf_cpumask_test_and_clear_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym;
370 void bpf_cpumask_setall(struct bpf_cpumask *cpumask) __ksym;
371 void bpf_cpumask_clear(struct bpf_cpumask *cpumask) __ksym;
372 bool bpf_cpumask_and(struct bpf_cpumask *dst, const struct cpumask *src1,
373 		     const struct cpumask *src2) __ksym;
374 void bpf_cpumask_or(struct bpf_cpumask *dst, const struct cpumask *src1,
375 		    const struct cpumask *src2) __ksym;
376 void bpf_cpumask_xor(struct bpf_cpumask *dst, const struct cpumask *src1,
377 		     const struct cpumask *src2) __ksym;
378 bool bpf_cpumask_equal(const struct cpumask *src1, const struct cpumask *src2) __ksym;
379 bool bpf_cpumask_intersects(const struct cpumask *src1, const struct cpumask *src2) __ksym;
380 bool bpf_cpumask_subset(const struct cpumask *src1, const struct cpumask *src2) __ksym;
381 bool bpf_cpumask_empty(const struct cpumask *cpumask) __ksym;
382 bool bpf_cpumask_full(const struct cpumask *cpumask) __ksym;
383 void bpf_cpumask_copy(struct bpf_cpumask *dst, const struct cpumask *src) __ksym;
384 u32 bpf_cpumask_any_distribute(const struct cpumask *cpumask) __ksym;
385 u32 bpf_cpumask_any_and_distribute(const struct cpumask *src1,
386 				   const struct cpumask *src2) __ksym;
387 u32 bpf_cpumask_weight(const struct cpumask *cpumask) __ksym;
388 
389 int bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_words) __ksym;
390 int *bpf_iter_bits_next(struct bpf_iter_bits *it) __ksym;
391 void bpf_iter_bits_destroy(struct bpf_iter_bits *it) __ksym;
392 
393 #define def_iter_struct(name)							\
394 struct bpf_iter_##name {							\
395     struct bpf_iter_bits it;							\
396     const struct cpumask *bitmap;						\
397 };
398 
399 #define def_iter_new(name)							\
400 static inline int bpf_iter_##name##_new(					\
401 	struct bpf_iter_##name *it, const u64 *unsafe_ptr__ign, u32 nr_words)	\
402 {										\
403 	it->bitmap = scx_bpf_get_##name##_cpumask();				\
404 	return bpf_iter_bits_new(&it->it, (const u64 *)it->bitmap,		\
405 				 sizeof(struct cpumask) / 8);			\
406 }
407 
408 #define def_iter_next(name)							\
409 static inline int *bpf_iter_##name##_next(struct bpf_iter_##name *it) {		\
410 	return bpf_iter_bits_next(&it->it);					\
411 }
412 
413 #define def_iter_destroy(name)							\
414 static inline void bpf_iter_##name##_destroy(struct bpf_iter_##name *it) {	\
415 	scx_bpf_put_cpumask(it->bitmap);					\
416 	bpf_iter_bits_destroy(&it->it);						\
417 }
418 #define def_for_each_cpu(cpu, name) for_each_##name##_cpu(cpu)
419 
420 /// Provides iterator for possible and online cpus.
421 ///
422 /// # Example
423 ///
424 /// ```
425 /// static inline void example_use() {
426 ///     int *cpu;
427 ///
428 ///     for_each_possible_cpu(cpu){
429 ///         bpf_printk("CPU %d is possible", *cpu);
430 ///     }
431 ///
432 ///     for_each_online_cpu(cpu){
433 ///         bpf_printk("CPU %d is online", *cpu);
434 ///     }
435 /// }
436 /// ```
437 def_iter_struct(possible);
438 def_iter_new(possible);
439 def_iter_next(possible);
440 def_iter_destroy(possible);
441 #define for_each_possible_cpu(cpu) bpf_for_each(possible, cpu, NULL, 0)
442 
443 def_iter_struct(online);
444 def_iter_new(online);
445 def_iter_next(online);
446 def_iter_destroy(online);
447 #define for_each_online_cpu(cpu) bpf_for_each(online, cpu, NULL, 0)
448 
449 /*
450  * Access a cpumask in read-only mode (typically to check bits).
451  */
cast_mask(struct bpf_cpumask * mask)452 static __always_inline const struct cpumask *cast_mask(struct bpf_cpumask *mask)
453 {
454 	return (const struct cpumask *)mask;
455 }
456 
457 /*
458  * Return true if task @p cannot migrate to a different CPU, false
459  * otherwise.
460  */
is_migration_disabled(const struct task_struct * p)461 static inline bool is_migration_disabled(const struct task_struct *p)
462 {
463 	/*
464 	 * Testing p->migration_disabled in a BPF code is tricky because the
465 	 * migration is _always_ disabled while running the BPF code.
466 	 * The prolog (__bpf_prog_enter) and epilog (__bpf_prog_exit) for BPF
467 	 * code execution disable and re-enable the migration of the current
468 	 * task, respectively. So, the _current_ task of the sched_ext ops is
469 	 * always migration-disabled. Moreover, p->migration_disabled could be
470 	 * two or greater when a sched_ext ops BPF code (e.g., ops.tick) is
471 	 * executed in the middle of the other BPF code execution.
472 	 *
473 	 * Therefore, we should decide that the _current_ task is
474 	 * migration-disabled only when its migration_disabled count is greater
475 	 * than one. In other words, when  p->migration_disabled == 1, there is
476 	 * an ambiguity, so we should check if @p is the current task or not.
477 	 */
478 	if (bpf_core_field_exists(p->migration_disabled)) {
479 		if (p->migration_disabled == 1)
480 			return bpf_get_current_task_btf() != p;
481 		else
482 			return p->migration_disabled;
483 	}
484 	return false;
485 }
486 
487 /* rcu */
488 void bpf_rcu_read_lock(void) __ksym;
489 void bpf_rcu_read_unlock(void) __ksym;
490 
491 /*
492  * Time helpers, most of which are from jiffies.h.
493  */
494 
495 /**
496  * time_delta - Calculate the delta between new and old time stamp
497  * @after: first comparable as u64
498  * @before: second comparable as u64
499  *
500  * Return: the time difference, which is >= 0
501  */
time_delta(u64 after,u64 before)502 static inline s64 time_delta(u64 after, u64 before)
503 {
504 	return (s64)(after - before) > 0 ? (s64)(after - before) : 0;
505 }
506 
507 /**
508  * time_after - returns true if the time a is after time b.
509  * @a: first comparable as u64
510  * @b: second comparable as u64
511  *
512  * Do this with "<0" and ">=0" to only test the sign of the result. A
513  * good compiler would generate better code (and a really good compiler
514  * wouldn't care). Gcc is currently neither.
515  *
516  * Return: %true is time a is after time b, otherwise %false.
517  */
time_after(u64 a,u64 b)518 static inline bool time_after(u64 a, u64 b)
519 {
520 	return (s64)(b - a) < 0;
521 }
522 
523 /**
524  * time_before - returns true if the time a is before time b.
525  * @a: first comparable as u64
526  * @b: second comparable as u64
527  *
528  * Return: %true is time a is before time b, otherwise %false.
529  */
time_before(u64 a,u64 b)530 static inline bool time_before(u64 a, u64 b)
531 {
532 	return time_after(b, a);
533 }
534 
535 /**
536  * time_after_eq - returns true if the time a is after or the same as time b.
537  * @a: first comparable as u64
538  * @b: second comparable as u64
539  *
540  * Return: %true is time a is after or the same as time b, otherwise %false.
541  */
time_after_eq(u64 a,u64 b)542 static inline bool time_after_eq(u64 a, u64 b)
543 {
544 	return (s64)(a - b) >= 0;
545 }
546 
547 /**
548  * time_before_eq - returns true if the time a is before or the same as time b.
549  * @a: first comparable as u64
550  * @b: second comparable as u64
551  *
552  * Return: %true is time a is before or the same as time b, otherwise %false.
553  */
time_before_eq(u64 a,u64 b)554 static inline bool time_before_eq(u64 a, u64 b)
555 {
556 	return time_after_eq(b, a);
557 }
558 
559 /**
560  * time_in_range - Calculate whether a is in the range of [b, c].
561  * @a: time to test
562  * @b: beginning of the range
563  * @c: end of the range
564  *
565  * Return: %true is time a is in the range [b, c], otherwise %false.
566  */
time_in_range(u64 a,u64 b,u64 c)567 static inline bool time_in_range(u64 a, u64 b, u64 c)
568 {
569 	return time_after_eq(a, b) && time_before_eq(a, c);
570 }
571 
572 /**
573  * time_in_range_open - Calculate whether a is in the range of [b, c).
574  * @a: time to test
575  * @b: beginning of the range
576  * @c: end of the range
577  *
578  * Return: %true is time a is in the range [b, c), otherwise %false.
579  */
time_in_range_open(u64 a,u64 b,u64 c)580 static inline bool time_in_range_open(u64 a, u64 b, u64 c)
581 {
582 	return time_after_eq(a, b) && time_before(a, c);
583 }
584 
585 
586 /*
587  * Other helpers
588  */
589 
590 /* useful compiler attributes */
591 #ifndef likely
592 #define likely(x) __builtin_expect(!!(x), 1)
593 #endif
594 #ifndef unlikely
595 #define unlikely(x) __builtin_expect(!!(x), 0)
596 #endif
597 #ifndef __maybe_unused
598 #define __maybe_unused __attribute__((__unused__))
599 #endif
600 
601 /*
602  * READ/WRITE_ONCE() are from kernel (include/asm-generic/rwonce.h). They
603  * prevent compiler from caching, redoing or reordering reads or writes.
604  */
605 typedef __u8  __attribute__((__may_alias__))  __u8_alias_t;
606 typedef __u16 __attribute__((__may_alias__)) __u16_alias_t;
607 typedef __u32 __attribute__((__may_alias__)) __u32_alias_t;
608 typedef __u64 __attribute__((__may_alias__)) __u64_alias_t;
609 
__read_once_size(const volatile void * p,void * res,int size)610 static __always_inline void __read_once_size(const volatile void *p, void *res, int size)
611 {
612 	switch (size) {
613 	case 1: *(__u8_alias_t  *) res = *(volatile __u8_alias_t  *) p; break;
614 	case 2: *(__u16_alias_t *) res = *(volatile __u16_alias_t *) p; break;
615 	case 4: *(__u32_alias_t *) res = *(volatile __u32_alias_t *) p; break;
616 	case 8: *(__u64_alias_t *) res = *(volatile __u64_alias_t *) p; break;
617 	default:
618 		barrier();
619 		__builtin_memcpy((void *)res, (const void *)p, size);
620 		barrier();
621 	}
622 }
623 
__write_once_size(volatile void * p,void * res,int size)624 static __always_inline void __write_once_size(volatile void *p, void *res, int size)
625 {
626 	switch (size) {
627 	case 1: *(volatile  __u8_alias_t *) p = *(__u8_alias_t  *) res; break;
628 	case 2: *(volatile __u16_alias_t *) p = *(__u16_alias_t *) res; break;
629 	case 4: *(volatile __u32_alias_t *) p = *(__u32_alias_t *) res; break;
630 	case 8: *(volatile __u64_alias_t *) p = *(__u64_alias_t *) res; break;
631 	default:
632 		barrier();
633 		__builtin_memcpy((void *)p, (const void *)res, size);
634 		barrier();
635 	}
636 }
637 
638 /*
639  * __unqual_typeof(x) - Declare an unqualified scalar type, leaving
640  *			non-scalar types unchanged,
641  *
642  * Prefer C11 _Generic for better compile-times and simpler code. Note: 'char'
643  * is not type-compatible with 'signed char', and we define a separate case.
644  *
645  * This is copied verbatim from kernel's include/linux/compiler_types.h, but
646  * with default expression (for pointers) changed from (x) to (typeof(x)0).
647  *
648  * This is because LLVM has a bug where for lvalue (x), it does not get rid of
649  * an extra address_space qualifier, but does in case of rvalue (typeof(x)0).
650  * Hence, for pointers, we need to create an rvalue expression to get the
651  * desired type. See https://github.com/llvm/llvm-project/issues/53400.
652  */
653 #define __scalar_type_to_expr_cases(type) \
654 	unsigned type : (unsigned type)0, signed type : (signed type)0
655 
656 #define __unqual_typeof(x)                              \
657 	typeof(_Generic((x),                            \
658 		char: (char)0,                          \
659 		__scalar_type_to_expr_cases(char),      \
660 		__scalar_type_to_expr_cases(short),     \
661 		__scalar_type_to_expr_cases(int),       \
662 		__scalar_type_to_expr_cases(long),      \
663 		__scalar_type_to_expr_cases(long long), \
664 		default: (typeof(x))0))
665 
666 #define READ_ONCE(x)								\
667 ({										\
668 	union { __unqual_typeof(x) __val; char __c[1]; } __u =			\
669 		{ .__c = { 0 } };						\
670 	__read_once_size((__unqual_typeof(x) *)&(x), __u.__c, sizeof(x));	\
671 	__u.__val;								\
672 })
673 
674 #define WRITE_ONCE(x, val)							\
675 ({										\
676 	union { __unqual_typeof(x) __val; char __c[1]; } __u =			\
677 		{ .__val = (val) }; 						\
678 	__write_once_size((__unqual_typeof(x) *)&(x), __u.__c, sizeof(x));	\
679 	__u.__val;								\
680 })
681 
682 /*
683  * __calc_avg - Calculate exponential weighted moving average (EWMA) with
684  * @old and @new values. @decay represents how large the @old value remains.
685  * With a larger @decay value, the moving average changes slowly, exhibiting
686  * fewer fluctuations.
687  */
688 #define __calc_avg(old, new, decay) ({						\
689 	typeof(decay) thr = 1 << (decay);					\
690 	typeof(old) ret;							\
691 	if (((old) < thr) || ((new) < thr)) {					\
692 		if (((old) == 1) && ((new) == 0))				\
693 			ret = 0;						\
694 		else								\
695 			ret = ((old) - ((old) >> 1)) + ((new) >> 1);		\
696 	} else {								\
697 		ret = ((old) - ((old) >> (decay))) + ((new) >> (decay));	\
698 	}									\
699 	ret;									\
700 })
701 
702 /*
703  * log2_u32 - Compute the base 2 logarithm of a 32-bit exponential value.
704  * @v: The value for which we're computing the base 2 logarithm.
705  */
log2_u32(u32 v)706 static inline u32 log2_u32(u32 v)
707 {
708         u32 r;
709         u32 shift;
710 
711         r = (v > 0xFFFF) << 4; v >>= r;
712         shift = (v > 0xFF) << 3; v >>= shift; r |= shift;
713         shift = (v > 0xF) << 2; v >>= shift; r |= shift;
714         shift = (v > 0x3) << 1; v >>= shift; r |= shift;
715         r |= (v >> 1);
716         return r;
717 }
718 
719 /*
720  * log2_u64 - Compute the base 2 logarithm of a 64-bit exponential value.
721  * @v: The value for which we're computing the base 2 logarithm.
722  */
log2_u64(u64 v)723 static inline u32 log2_u64(u64 v)
724 {
725         u32 hi = v >> 32;
726         if (hi)
727                 return log2_u32(hi) + 32 + 1;
728         else
729                 return log2_u32(v) + 1;
730 }
731 
732 /*
733  * sqrt_u64 - Calculate the square root of value @x using Newton's method.
734  */
__sqrt_u64(u64 x)735 static inline u64 __sqrt_u64(u64 x)
736 {
737 	if (x == 0 || x == 1)
738 		return x;
739 
740 	u64 r = ((1ULL << 32) > x) ? x : (1ULL << 32);
741 
742 	for (int i = 0; i < 8; ++i) {
743 		u64 q = x / r;
744 		if (r <= q)
745 			break;
746 		r = (r + q) >> 1;
747 	}
748 	return r;
749 }
750 
751 /*
752  * Return a value proportionally scaled to the task's weight.
753  */
scale_by_task_weight(const struct task_struct * p,u64 value)754 static inline u64 scale_by_task_weight(const struct task_struct *p, u64 value)
755 {
756 	return (value * p->scx.weight) / 100;
757 }
758 
759 /*
760  * Return a value inversely proportional to the task's weight.
761  */
scale_by_task_weight_inverse(const struct task_struct * p,u64 value)762 static inline u64 scale_by_task_weight_inverse(const struct task_struct *p, u64 value)
763 {
764 	return value * 100 / p->scx.weight;
765 }
766 
767 
768 #include "compat.bpf.h"
769 #include "enums.bpf.h"
770 
771 #endif	/* __SCX_COMMON_BPF_H */
772