xref: /linux/arch/x86/kvm/mmu/mmu_internal.h (revision 43db1111073049220381944af4a3b8a5400eda71)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __KVM_X86_MMU_INTERNAL_H
3 #define __KVM_X86_MMU_INTERNAL_H
4 
5 #include <linux/types.h>
6 #include <linux/kvm_host.h>
7 #include <asm/kvm_host.h>
8 
9 #include "mmu.h"
10 
11 #ifdef CONFIG_KVM_PROVE_MMU
12 #define KVM_MMU_WARN_ON(x) WARN_ON_ONCE(x)
13 #else
14 #define KVM_MMU_WARN_ON(x) BUILD_BUG_ON_INVALID(x)
15 #endif
16 
17 /* Page table builder macros common to shadow (host) PTEs and guest PTEs. */
18 #define __PT_BASE_ADDR_MASK GENMASK_ULL(51, 12)
19 #define __PT_LEVEL_SHIFT(level, bits_per_level)	\
20 	(PAGE_SHIFT + ((level) - 1) * (bits_per_level))
21 #define __PT_INDEX(address, level, bits_per_level) \
22 	(((address) >> __PT_LEVEL_SHIFT(level, bits_per_level)) & ((1 << (bits_per_level)) - 1))
23 
24 #define __PT_LVL_ADDR_MASK(base_addr_mask, level, bits_per_level) \
25 	((base_addr_mask) & ~((1ULL << (PAGE_SHIFT + (((level) - 1) * (bits_per_level)))) - 1))
26 
27 #define __PT_LVL_OFFSET_MASK(base_addr_mask, level, bits_per_level) \
28 	((base_addr_mask) & ((1ULL << (PAGE_SHIFT + (((level) - 1) * (bits_per_level)))) - 1))
29 
30 #define __PT_ENT_PER_PAGE(bits_per_level)  (1 << (bits_per_level))
31 
32 /*
33  * Unlike regular MMU roots, PAE "roots", a.k.a. PDPTEs/PDPTRs, have a PRESENT
34  * bit, and thus are guaranteed to be non-zero when valid.  And, when a guest
35  * PDPTR is !PRESENT, its corresponding PAE root cannot be set to INVALID_PAGE,
36  * as the CPU would treat that as PRESENT PDPTR with reserved bits set.  Use
37  * '0' instead of INVALID_PAGE to indicate an invalid PAE root.
38  */
39 #define INVALID_PAE_ROOT	0
40 #define IS_VALID_PAE_ROOT(x)	(!!(x))
41 
kvm_mmu_get_dummy_root(void)42 static inline hpa_t kvm_mmu_get_dummy_root(void)
43 {
44 	return my_zero_pfn(0) << PAGE_SHIFT;
45 }
46 
kvm_mmu_is_dummy_root(hpa_t shadow_page)47 static inline bool kvm_mmu_is_dummy_root(hpa_t shadow_page)
48 {
49 	return is_zero_pfn(shadow_page >> PAGE_SHIFT);
50 }
51 
52 typedef u64 __rcu *tdp_ptep_t;
53 
54 struct kvm_mmu_page {
55 	/*
56 	 * Note, "link" through "spt" fit in a single 64 byte cache line on
57 	 * 64-bit kernels, keep it that way unless there's a reason not to.
58 	 */
59 	struct list_head link;
60 	struct hlist_node hash_link;
61 
62 	bool tdp_mmu_page;
63 	bool unsync;
64 	union {
65 		u8 mmu_valid_gen;
66 
67 		/* Only accessed under slots_lock.  */
68 		bool tdp_mmu_scheduled_root_to_zap;
69 	};
70 
71 	 /*
72 	  * The shadow page can't be replaced by an equivalent huge page
73 	  * because it is being used to map an executable page in the guest
74 	  * and the NX huge page mitigation is enabled.
75 	  */
76 	bool nx_huge_page_disallowed;
77 
78 	/*
79 	 * The following two entries are used to key the shadow page in the
80 	 * hash table.
81 	 */
82 	union kvm_mmu_page_role role;
83 	gfn_t gfn;
84 
85 	u64 *spt;
86 
87 	/*
88 	 * Stores the result of the guest translation being shadowed by each
89 	 * SPTE.  KVM shadows two types of guest translations: nGPA -> GPA
90 	 * (shadow EPT/NPT) and GVA -> GPA (traditional shadow paging). In both
91 	 * cases the result of the translation is a GPA and a set of access
92 	 * constraints.
93 	 *
94 	 * The GFN is stored in the upper bits (PAGE_SHIFT) and the shadowed
95 	 * access permissions are stored in the lower bits. Note, for
96 	 * convenience and uniformity across guests, the access permissions are
97 	 * stored in KVM format (e.g.  ACC_EXEC_MASK) not the raw guest format.
98 	 */
99 	u64 *shadowed_translation;
100 
101 	/* Currently serving as active root */
102 	union {
103 		int root_count;
104 		refcount_t tdp_mmu_root_count;
105 	};
106 	union {
107 		/* These two members aren't used for TDP MMU */
108 		struct {
109 			unsigned int unsync_children;
110 			/*
111 			 * Number of writes since the last time traversal
112 			 * visited this page.
113 			 */
114 			atomic_t write_flooding_count;
115 		};
116 		/*
117 		 * Page table page of external PT.
118 		 * Passed to TDX module, not accessed by KVM.
119 		 */
120 		void *external_spt;
121 	};
122 	union {
123 		struct kvm_rmap_head parent_ptes; /* rmap pointers to parent sptes */
124 		tdp_ptep_t ptep;
125 	};
126 	DECLARE_BITMAP(unsync_child_bitmap, 512);
127 
128 	/*
129 	 * Tracks shadow pages that, if zapped, would allow KVM to create an NX
130 	 * huge page.  A shadow page will have nx_huge_page_disallowed set but
131 	 * not be on the list if a huge page is disallowed for other reasons,
132 	 * e.g. because KVM is shadowing a PTE at the same gfn, the memslot
133 	 * isn't properly aligned, etc...
134 	 */
135 	struct list_head possible_nx_huge_page_link;
136 #ifdef CONFIG_X86_32
137 	/*
138 	 * Used out of the mmu-lock to avoid reading spte values while an
139 	 * update is in progress; see the comments in __get_spte_lockless().
140 	 */
141 	int clear_spte_count;
142 #endif
143 
144 #ifdef CONFIG_X86_64
145 	/* Used for freeing the page asynchronously if it is a TDP MMU page. */
146 	struct rcu_head rcu_head;
147 #endif
148 };
149 
150 extern struct kmem_cache *mmu_page_header_cache;
151 
kvm_mmu_role_as_id(union kvm_mmu_page_role role)152 static inline int kvm_mmu_role_as_id(union kvm_mmu_page_role role)
153 {
154 	return role.smm ? 1 : 0;
155 }
156 
kvm_mmu_page_as_id(struct kvm_mmu_page * sp)157 static inline int kvm_mmu_page_as_id(struct kvm_mmu_page *sp)
158 {
159 	return kvm_mmu_role_as_id(sp->role);
160 }
161 
is_mirror_sp(const struct kvm_mmu_page * sp)162 static inline bool is_mirror_sp(const struct kvm_mmu_page *sp)
163 {
164 	return sp->role.is_mirror;
165 }
166 
kvm_mmu_alloc_external_spt(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)167 static inline void kvm_mmu_alloc_external_spt(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
168 {
169 	/*
170 	 * external_spt is allocated for TDX module to hold private EPT mappings,
171 	 * TDX module will initialize the page by itself.
172 	 * Therefore, KVM does not need to initialize or access external_spt.
173 	 * KVM only interacts with sp->spt for private EPT operations.
174 	 */
175 	sp->external_spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_external_spt_cache);
176 }
177 
kvm_gfn_root_bits(const struct kvm * kvm,const struct kvm_mmu_page * root)178 static inline gfn_t kvm_gfn_root_bits(const struct kvm *kvm, const struct kvm_mmu_page *root)
179 {
180 	/*
181 	 * Since mirror SPs are used only for TDX, which maps private memory
182 	 * at its "natural" GFN, no mask needs to be applied to them - and, dually,
183 	 * we expect that the bits is only used for the shared PT.
184 	 */
185 	if (is_mirror_sp(root))
186 		return 0;
187 	return kvm_gfn_direct_bits(kvm);
188 }
189 
kvm_mmu_page_ad_need_write_protect(struct kvm * kvm,struct kvm_mmu_page * sp)190 static inline bool kvm_mmu_page_ad_need_write_protect(struct kvm *kvm,
191 						      struct kvm_mmu_page *sp)
192 {
193 	/*
194 	 * When using the EPT page-modification log, the GPAs in the CPU dirty
195 	 * log would come from L2 rather than L1.  Therefore, we need to rely
196 	 * on write protection to record dirty pages, which bypasses PML, since
197 	 * writes now result in a vmexit.  Note, the check on CPU dirty logging
198 	 * being enabled is mandatory as the bits used to denote WP-only SPTEs
199 	 * are reserved for PAE paging (32-bit KVM).
200 	 */
201 	return kvm->arch.cpu_dirty_log_size && sp->role.guest_mode;
202 }
203 
gfn_round_for_level(gfn_t gfn,int level)204 static inline gfn_t gfn_round_for_level(gfn_t gfn, int level)
205 {
206 	return gfn & -KVM_PAGES_PER_HPAGE(level);
207 }
208 
209 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
210 			    gfn_t gfn, bool synchronizing, bool prefetch);
211 
212 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn);
213 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn);
214 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
215 				    struct kvm_memory_slot *slot, u64 gfn,
216 				    int min_level);
217 
218 /* Flush the given page (huge or not) of guest memory. */
kvm_flush_remote_tlbs_gfn(struct kvm * kvm,gfn_t gfn,int level)219 static inline void kvm_flush_remote_tlbs_gfn(struct kvm *kvm, gfn_t gfn, int level)
220 {
221 	kvm_flush_remote_tlbs_range(kvm, gfn_round_for_level(gfn, level),
222 				    KVM_PAGES_PER_HPAGE(level));
223 }
224 
225 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head);
226 
227 extern int nx_huge_pages;
is_nx_huge_page_enabled(struct kvm * kvm)228 static inline bool is_nx_huge_page_enabled(struct kvm *kvm)
229 {
230 	return READ_ONCE(nx_huge_pages) && !kvm->arch.disable_nx_huge_pages;
231 }
232 
233 struct kvm_page_fault {
234 	/* arguments to kvm_mmu_do_page_fault.  */
235 	const gpa_t addr;
236 	const u64 error_code;
237 	const bool prefetch;
238 
239 	/* Derived from error_code.  */
240 	const bool exec;
241 	const bool write;
242 	const bool present;
243 	const bool rsvd;
244 	const bool user;
245 
246 	/* Derived from mmu and global state.  */
247 	const bool is_tdp;
248 	const bool is_private;
249 	const bool nx_huge_page_workaround_enabled;
250 
251 	/*
252 	 * Whether a >4KB mapping can be created or is forbidden due to NX
253 	 * hugepages.
254 	 */
255 	bool huge_page_disallowed;
256 
257 	/*
258 	 * Maximum page size that can be created for this fault; input to
259 	 * FNAME(fetch), direct_map() and kvm_tdp_mmu_map().
260 	 */
261 	u8 max_level;
262 
263 	/*
264 	 * Page size that can be created based on the max_level and the
265 	 * page size used by the host mapping.
266 	 */
267 	u8 req_level;
268 
269 	/*
270 	 * Page size that will be created based on the req_level and
271 	 * huge_page_disallowed.
272 	 */
273 	u8 goal_level;
274 
275 	/*
276 	 * Shifted addr, or result of guest page table walk if addr is a gva. In
277 	 * the case of VM where memslot's can be mapped at multiple GPA aliases
278 	 * (i.e. TDX), the gfn field does not contain the bit that selects between
279 	 * the aliases (i.e. the shared bit for TDX).
280 	 */
281 	gfn_t gfn;
282 
283 	/* The memslot containing gfn. May be NULL. */
284 	struct kvm_memory_slot *slot;
285 
286 	/* Outputs of kvm_mmu_faultin_pfn().  */
287 	unsigned long mmu_seq;
288 	kvm_pfn_t pfn;
289 	struct page *refcounted_page;
290 	bool map_writable;
291 
292 	/*
293 	 * Indicates the guest is trying to write a gfn that contains one or
294 	 * more of the PTEs used to translate the write itself, i.e. the access
295 	 * is changing its own translation in the guest page tables.
296 	 */
297 	bool write_fault_to_shadow_pgtable;
298 };
299 
300 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
301 
302 /*
303  * Return values of handle_mmio_page_fault(), mmu.page_fault(), fast_page_fault(),
304  * and of course kvm_mmu_do_page_fault().
305  *
306  * RET_PF_CONTINUE: So far, so good, keep handling the page fault.
307  * RET_PF_RETRY: let CPU fault again on the address.
308  * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
309  * RET_PF_WRITE_PROTECTED: the gfn is write-protected, either unprotected the
310  *                         gfn and retry, or emulate the instruction directly.
311  * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
312  * RET_PF_FIXED: The faulting entry has been fixed.
313  * RET_PF_SPURIOUS: The faulting entry was already fixed, e.g. by another vCPU.
314  *
315  * Any names added to this enum should be exported to userspace for use in
316  * tracepoints via TRACE_DEFINE_ENUM() in mmutrace.h
317  *
318  * Note, all values must be greater than or equal to zero so as not to encroach
319  * on -errno return values.
320  */
321 enum {
322 	RET_PF_CONTINUE = 0,
323 	RET_PF_RETRY,
324 	RET_PF_EMULATE,
325 	RET_PF_WRITE_PROTECTED,
326 	RET_PF_INVALID,
327 	RET_PF_FIXED,
328 	RET_PF_SPURIOUS,
329 };
330 
331 /*
332  * Define RET_PF_CONTINUE as 0 to allow for
333  * - efficient machine code when checking for CONTINUE, e.g.
334  *   "TEST %rax, %rax, JNZ", as all "stop!" values are non-zero,
335  * - kvm_mmu_do_page_fault() to return other RET_PF_* as a positive value.
336  */
337 static_assert(RET_PF_CONTINUE == 0);
338 
kvm_mmu_prepare_memory_fault_exit(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)339 static inline void kvm_mmu_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
340 						     struct kvm_page_fault *fault)
341 {
342 	kvm_prepare_memory_fault_exit(vcpu, fault->gfn << PAGE_SHIFT,
343 				      PAGE_SIZE, fault->write, fault->exec,
344 				      fault->is_private);
345 }
346 
kvm_mmu_do_page_fault(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,u64 err,bool prefetch,int * emulation_type,u8 * level)347 static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
348 					u64 err, bool prefetch,
349 					int *emulation_type, u8 *level)
350 {
351 	struct kvm_page_fault fault = {
352 		.addr = cr2_or_gpa,
353 		.error_code = err,
354 		.exec = err & PFERR_FETCH_MASK,
355 		.write = err & PFERR_WRITE_MASK,
356 		.present = err & PFERR_PRESENT_MASK,
357 		.rsvd = err & PFERR_RSVD_MASK,
358 		.user = err & PFERR_USER_MASK,
359 		.prefetch = prefetch,
360 		.is_tdp = likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault),
361 		.nx_huge_page_workaround_enabled =
362 			is_nx_huge_page_enabled(vcpu->kvm),
363 
364 		.max_level = KVM_MAX_HUGEPAGE_LEVEL,
365 		.req_level = PG_LEVEL_4K,
366 		.goal_level = PG_LEVEL_4K,
367 		.is_private = err & PFERR_PRIVATE_ACCESS,
368 
369 		.pfn = KVM_PFN_ERR_FAULT,
370 	};
371 	int r;
372 
373 	if (vcpu->arch.mmu->root_role.direct) {
374 		/*
375 		 * Things like memslots don't understand the concept of a shared
376 		 * bit. Strip it so that the GFN can be used like normal, and the
377 		 * fault.addr can be used when the shared bit is needed.
378 		 */
379 		fault.gfn = gpa_to_gfn(fault.addr) & ~kvm_gfn_direct_bits(vcpu->kvm);
380 		fault.slot = kvm_vcpu_gfn_to_memslot(vcpu, fault.gfn);
381 	}
382 
383 	/*
384 	 * With retpoline being active an indirect call is rather expensive,
385 	 * so do a direct call in the most common case.
386 	 */
387 	if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && fault.is_tdp)
388 		r = kvm_tdp_page_fault(vcpu, &fault);
389 	else
390 		r = vcpu->arch.mmu->page_fault(vcpu, &fault);
391 
392 	/*
393 	 * Not sure what's happening, but punt to userspace and hope that
394 	 * they can fix it by changing memory to shared, or they can
395 	 * provide a better error.
396 	 */
397 	if (r == RET_PF_EMULATE && fault.is_private) {
398 		pr_warn_ratelimited("kvm: unexpected emulation request on private memory\n");
399 		kvm_mmu_prepare_memory_fault_exit(vcpu, &fault);
400 		return -EFAULT;
401 	}
402 
403 	if (fault.write_fault_to_shadow_pgtable && emulation_type)
404 		*emulation_type |= EMULTYPE_WRITE_PF_TO_SP;
405 	if (level)
406 		*level = fault.goal_level;
407 
408 	return r;
409 }
410 
411 int kvm_mmu_max_mapping_level(struct kvm *kvm,
412 			      const struct kvm_memory_slot *slot, gfn_t gfn);
413 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
414 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level);
415 
416 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp);
417 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp);
418 
419 #endif /* __KVM_X86_MMU_INTERNAL_H */
420