xref: /linux/arch/um/include/asm/pgtable.h (revision 399ead3a6d76cbdd29a716660db5c84a314dab70)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
4  * Copyright 2003 PathScale, Inc.
5  * Derived from include/asm-i386/pgtable.h
6  */
7 
8 #ifndef __UM_PGTABLE_H
9 #define __UM_PGTABLE_H
10 
11 #include <asm/page.h>
12 #include <linux/mm_types.h>
13 
14 #define _PAGE_PRESENT	0x001
15 #define _PAGE_NEEDSYNC	0x002
16 #define _PAGE_RW	0x020
17 #define _PAGE_USER	0x040
18 #define _PAGE_ACCESSED	0x080
19 #define _PAGE_DIRTY	0x100
20 /* If _PAGE_PRESENT is clear, we use these: */
21 #define _PAGE_PROTNONE	0x010	/* if the user mapped it with PROT_NONE;
22 				   pte_present gives true */
23 
24 /* We borrow bit 10 to store the exclusive marker in swap PTEs. */
25 #define _PAGE_SWP_EXCLUSIVE	0x400
26 
27 #if CONFIG_PGTABLE_LEVELS == 4
28 #include <asm/pgtable-4level.h>
29 #elif CONFIG_PGTABLE_LEVELS == 2
30 #include <asm/pgtable-2level.h>
31 #else
32 #error "Unsupported number of page table levels"
33 #endif
34 
35 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
36 
37 /* zero page used for uninitialized stuff */
38 extern unsigned long *empty_zero_page;
39 
40 /* Just any arbitrary offset to the start of the vmalloc VM area: the
41  * current 8MB value just means that there will be a 8MB "hole" after the
42  * physical memory until the kernel virtual memory starts.  That means that
43  * any out-of-bounds memory accesses will hopefully be caught.
44  * The vmalloc() routines leaves a hole of 4kB between each vmalloced
45  * area for the same reason. ;)
46  */
47 
48 #ifndef COMPILE_OFFSETS
49 #include <as-layout.h> /* for high_physmem */
50 #endif
51 
52 #define VMALLOC_OFFSET	(__va_space)
53 #define VMALLOC_START	((high_physmem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
54 #define VMALLOC_END	(TASK_SIZE-2*PAGE_SIZE)
55 #define MODULES_VADDR	VMALLOC_START
56 #define MODULES_END	VMALLOC_END
57 
58 #define _PAGE_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
59 #define _KERNPG_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
60 #define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
61 #define __PAGE_KERNEL_EXEC                                              \
62 	 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
63 #define PAGE_NONE	__pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
64 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
65 #define PAGE_COPY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
66 #define PAGE_READONLY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
67 #define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
68 #define PAGE_KERNEL_EXEC	__pgprot(__PAGE_KERNEL_EXEC)
69 
70 /*
71  * The i386 can't do page protection for execute, and considers that the same
72  * are read.
73  * Also, write permissions imply read permissions. This is the closest we can
74  * get..
75  */
76 
77 /*
78  * ZERO_PAGE is a global shared page that is always zero: used
79  * for zero-mapped memory areas etc..
80  */
81 #define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
82 
83 #define pte_clear(mm, addr, xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEEDSYNC))
84 
85 #define pmd_none(x)	(!((unsigned long)pmd_val(x) & ~_PAGE_NEEDSYNC))
86 #define	pmd_bad(x)	((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
87 
88 #define pmd_present(x)	(pmd_val(x) & _PAGE_PRESENT)
89 #define pmd_clear(xp)	do { pmd_val(*(xp)) = _PAGE_NEEDSYNC; } while (0)
90 
91 #define pmd_needsync(x)   (pmd_val(x) & _PAGE_NEEDSYNC)
92 #define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEEDSYNC)
93 
94 #define pud_needsync(x)   (pud_val(x) & _PAGE_NEEDSYNC)
95 #define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEEDSYNC)
96 
97 #define p4d_needsync(x)   (p4d_val(x) & _PAGE_NEEDSYNC)
98 #define p4d_mkuptodate(x) (p4d_val(x) &= ~_PAGE_NEEDSYNC)
99 
100 #define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT)
101 #define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
102 
103 #define pte_page(x) pfn_to_page(pte_pfn(x))
104 
105 #define pte_present(x)	pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
106 
107 /*
108  * =================================
109  * Flags checking section.
110  * =================================
111  */
112 
pte_none(pte_t pte)113 static inline int pte_none(pte_t pte)
114 {
115 	return pte_is_zero(pte);
116 }
117 
118 /*
119  * The following only work if pte_present() is true.
120  * Undefined behaviour if not..
121  */
pte_read(pte_t pte)122 static inline int pte_read(pte_t pte)
123 {
124 	return((pte_get_bits(pte, _PAGE_USER)) &&
125 	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
126 }
127 
pte_exec(pte_t pte)128 static inline int pte_exec(pte_t pte){
129 	return((pte_get_bits(pte, _PAGE_USER)) &&
130 	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
131 }
132 
pte_write(pte_t pte)133 static inline int pte_write(pte_t pte)
134 {
135 	return((pte_get_bits(pte, _PAGE_RW)) &&
136 	       !(pte_get_bits(pte, _PAGE_PROTNONE)));
137 }
138 
pte_dirty(pte_t pte)139 static inline int pte_dirty(pte_t pte)
140 {
141 	return pte_get_bits(pte, _PAGE_DIRTY);
142 }
143 
pte_young(pte_t pte)144 static inline int pte_young(pte_t pte)
145 {
146 	return pte_get_bits(pte, _PAGE_ACCESSED);
147 }
148 
pte_needsync(pte_t pte)149 static inline int pte_needsync(pte_t pte)
150 {
151 	return pte_get_bits(pte, _PAGE_NEEDSYNC);
152 }
153 
154 /*
155  * =================================
156  * Flags setting section.
157  * =================================
158  */
159 
pte_mkclean(pte_t pte)160 static inline pte_t pte_mkclean(pte_t pte)
161 {
162 	pte_clear_bits(pte, _PAGE_DIRTY);
163 	return(pte);
164 }
165 
pte_mkold(pte_t pte)166 static inline pte_t pte_mkold(pte_t pte)
167 {
168 	pte_clear_bits(pte, _PAGE_ACCESSED);
169 	return(pte);
170 }
171 
pte_wrprotect(pte_t pte)172 static inline pte_t pte_wrprotect(pte_t pte)
173 {
174 	pte_clear_bits(pte, _PAGE_RW);
175 	return pte;
176 }
177 
pte_mkread(pte_t pte)178 static inline pte_t pte_mkread(pte_t pte)
179 {
180 	pte_set_bits(pte, _PAGE_USER);
181 	return pte;
182 }
183 
pte_mkdirty(pte_t pte)184 static inline pte_t pte_mkdirty(pte_t pte)
185 {
186 	pte_set_bits(pte, _PAGE_DIRTY);
187 	return(pte);
188 }
189 
pte_mkyoung(pte_t pte)190 static inline pte_t pte_mkyoung(pte_t pte)
191 {
192 	pte_set_bits(pte, _PAGE_ACCESSED);
193 	return(pte);
194 }
195 
pte_mkwrite_novma(pte_t pte)196 static inline pte_t pte_mkwrite_novma(pte_t pte)
197 {
198 	pte_set_bits(pte, _PAGE_RW);
199 	return pte;
200 }
201 
pte_mkuptodate(pte_t pte)202 static inline pte_t pte_mkuptodate(pte_t pte)
203 {
204 	pte_clear_bits(pte, _PAGE_NEEDSYNC);
205 	return pte;
206 }
207 
pte_mkneedsync(pte_t pte)208 static inline pte_t pte_mkneedsync(pte_t pte)
209 {
210 	pte_set_bits(pte, _PAGE_NEEDSYNC);
211 	return(pte);
212 }
213 
set_pte(pte_t * pteptr,pte_t pteval)214 static inline void set_pte(pte_t *pteptr, pte_t pteval)
215 {
216 	pte_copy(*pteptr, pteval);
217 
218 	/* If it's a swap entry, it needs to be marked _PAGE_NEEDSYNC so
219 	 * update_pte_range knows to unmap it.
220 	 */
221 
222 	*pteptr = pte_mkneedsync(*pteptr);
223 }
224 
225 #define PFN_PTE_SHIFT		PAGE_SHIFT
226 
um_tlb_mark_sync(struct mm_struct * mm,unsigned long start,unsigned long end)227 static inline void um_tlb_mark_sync(struct mm_struct *mm, unsigned long start,
228 				    unsigned long end)
229 {
230 	guard(spinlock_irqsave)(&mm->context.sync_tlb_lock);
231 
232 	if (!mm->context.sync_tlb_range_to) {
233 		mm->context.sync_tlb_range_from = start;
234 		mm->context.sync_tlb_range_to = end;
235 	} else {
236 		if (start < mm->context.sync_tlb_range_from)
237 			mm->context.sync_tlb_range_from = start;
238 		if (end > mm->context.sync_tlb_range_to)
239 			mm->context.sync_tlb_range_to = end;
240 	}
241 }
242 
243 #define set_ptes set_ptes
set_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte,int nr)244 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
245 			    pte_t *ptep, pte_t pte, int nr)
246 {
247 	/* Basically the default implementation */
248 	size_t length = nr * PAGE_SIZE;
249 
250 	for (;;) {
251 		set_pte(ptep, pte);
252 		if (--nr == 0)
253 			break;
254 		ptep++;
255 		pte = __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT));
256 	}
257 
258 	um_tlb_mark_sync(mm, addr, addr + length);
259 }
260 
261 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)262 static inline int pte_same(pte_t pte_a, pte_t pte_b)
263 {
264 	return !((pte_val(pte_a) ^ pte_val(pte_b)) & ~_PAGE_NEEDSYNC);
265 }
266 
267 #define __virt_to_page(virt) phys_to_page(__pa(virt))
268 #define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
269 
pfn_pte(unsigned long pfn,pgprot_t pgprot)270 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
271 {
272 	pte_t pte;
273 
274 	pte_set_val(pte, pfn_to_phys(pfn), pgprot);
275 
276 	return pte;
277 }
278 
pte_modify(pte_t pte,pgprot_t newprot)279 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
280 {
281 	pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
282 	return pte;
283 }
284 
285 /*
286  * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
287  *
288  * this macro returns the index of the entry in the pmd page which would
289  * control the given virtual address
290  */
291 #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
292 
293 struct mm_struct;
294 extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
295 
296 #define update_mmu_cache(vma,address,ptep) do {} while (0)
297 #define update_mmu_cache_range(vmf, vma, address, ptep, nr) do {} while (0)
298 
299 /*
300  * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
301  * are !pte_none() && !pte_present().
302  *
303  * Format of swap PTEs:
304  *
305  *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
306  *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
307  *   <--------------- offset ----------------> E < type -> 0 0 0 1 0
308  *
309  *   E is the exclusive marker that is not stored in swap entries.
310  *   _PAGE_NEEDSYNC (bit 1) is always set to 1 in set_pte().
311  */
312 #define __swp_type(x)			(((x).val >> 5) & 0x1f)
313 #define __swp_offset(x)			((x).val >> 11)
314 
315 #define __swp_entry(type, offset) \
316 	((swp_entry_t) { (((type) & 0x1f) << 5) | ((offset) << 11) })
317 #define __pte_to_swp_entry(pte) \
318 	((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
319 #define __swp_entry_to_pte(x)		((pte_t) { (x).val })
320 
pte_swp_exclusive(pte_t pte)321 static inline bool pte_swp_exclusive(pte_t pte)
322 {
323 	return pte_get_bits(pte, _PAGE_SWP_EXCLUSIVE);
324 }
325 
pte_swp_mkexclusive(pte_t pte)326 static inline pte_t pte_swp_mkexclusive(pte_t pte)
327 {
328 	pte_set_bits(pte, _PAGE_SWP_EXCLUSIVE);
329 	return pte;
330 }
331 
pte_swp_clear_exclusive(pte_t pte)332 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
333 {
334 	pte_clear_bits(pte, _PAGE_SWP_EXCLUSIVE);
335 	return pte;
336 }
337 
338 #endif
339