xref: /linux/arch/x86/kvm/vmx/vmx.h (revision 63eb28bb1402891b1ad2be02a530f29a9dd7f1cd)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __KVM_X86_VMX_H
3 #define __KVM_X86_VMX_H
4 
5 #include <linux/kvm_host.h>
6 
7 #include <asm/kvm.h>
8 #include <asm/intel_pt.h>
9 #include <asm/perf_event.h>
10 #include <asm/posted_intr.h>
11 
12 #include "capabilities.h"
13 #include "../kvm_cache_regs.h"
14 #include "pmu_intel.h"
15 #include "vmcs.h"
16 #include "vmx_ops.h"
17 #include "../cpuid.h"
18 #include "run_flags.h"
19 #include "../mmu.h"
20 #include "common.h"
21 
22 #ifdef CONFIG_X86_64
23 #define MAX_NR_USER_RETURN_MSRS	7
24 #else
25 #define MAX_NR_USER_RETURN_MSRS	4
26 #endif
27 
28 #define MAX_NR_LOADSTORE_MSRS	8
29 
30 struct vmx_msrs {
31 	unsigned int		nr;
32 	struct vmx_msr_entry	val[MAX_NR_LOADSTORE_MSRS];
33 };
34 
35 struct vmx_uret_msr {
36 	bool load_into_hardware;
37 	u64 data;
38 	u64 mask;
39 };
40 
41 enum segment_cache_field {
42 	SEG_FIELD_SEL = 0,
43 	SEG_FIELD_BASE = 1,
44 	SEG_FIELD_LIMIT = 2,
45 	SEG_FIELD_AR = 3,
46 
47 	SEG_FIELD_NR = 4
48 };
49 
50 #define RTIT_ADDR_RANGE		4
51 
52 struct pt_ctx {
53 	u64 ctl;
54 	u64 status;
55 	u64 output_base;
56 	u64 output_mask;
57 	u64 cr3_match;
58 	u64 addr_a[RTIT_ADDR_RANGE];
59 	u64 addr_b[RTIT_ADDR_RANGE];
60 };
61 
62 struct pt_desc {
63 	u64 ctl_bitmask;
64 	u32 num_address_ranges;
65 	u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES];
66 	struct pt_ctx host;
67 	struct pt_ctx guest;
68 };
69 
70 /*
71  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
72  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
73  */
74 struct nested_vmx {
75 	/* Has the level1 guest done vmxon? */
76 	bool vmxon;
77 	gpa_t vmxon_ptr;
78 	bool pml_full;
79 
80 	/* The guest-physical address of the current VMCS L1 keeps for L2 */
81 	gpa_t current_vmptr;
82 	/*
83 	 * Cache of the guest's VMCS, existing outside of guest memory.
84 	 * Loaded from guest memory during VMPTRLD. Flushed to guest
85 	 * memory during VMCLEAR and VMPTRLD.
86 	 */
87 	struct vmcs12 *cached_vmcs12;
88 	/*
89 	 * Cache of the guest's shadow VMCS, existing outside of guest
90 	 * memory. Loaded from guest memory during VM entry. Flushed
91 	 * to guest memory during VM exit.
92 	 */
93 	struct vmcs12 *cached_shadow_vmcs12;
94 
95 	/*
96 	 * GPA to HVA cache for accessing vmcs12->vmcs_link_pointer
97 	 */
98 	struct gfn_to_hva_cache shadow_vmcs12_cache;
99 
100 	/*
101 	 * GPA to HVA cache for VMCS12
102 	 */
103 	struct gfn_to_hva_cache vmcs12_cache;
104 
105 	/*
106 	 * Indicates if the shadow vmcs or enlightened vmcs must be updated
107 	 * with the data held by struct vmcs12.
108 	 */
109 	bool need_vmcs12_to_shadow_sync;
110 	bool dirty_vmcs12;
111 
112 	/*
113 	 * Indicates whether MSR bitmap for L2 needs to be rebuilt due to
114 	 * changes in MSR bitmap for L1 or switching to a different L2. Note,
115 	 * this flag can only be used reliably in conjunction with a paravirt L1
116 	 * which informs L0 whether any changes to MSR bitmap for L2 were done
117 	 * on its side.
118 	 */
119 	bool force_msr_bitmap_recalc;
120 
121 	/*
122 	 * Indicates lazily loaded guest state has not yet been decached from
123 	 * vmcs02.
124 	 */
125 	bool need_sync_vmcs02_to_vmcs12_rare;
126 
127 	/*
128 	 * vmcs02 has been initialized, i.e. state that is constant for
129 	 * vmcs02 has been written to the backing VMCS.  Initialization
130 	 * is delayed until L1 actually attempts to run a nested VM.
131 	 */
132 	bool vmcs02_initialized;
133 
134 	bool change_vmcs01_virtual_apic_mode;
135 	bool reload_vmcs01_apic_access_page;
136 	bool update_vmcs01_cpu_dirty_logging;
137 	bool update_vmcs01_apicv_status;
138 	bool update_vmcs01_hwapic_isr;
139 
140 	/*
141 	 * Enlightened VMCS has been enabled. It does not mean that L1 has to
142 	 * use it. However, VMX features available to L1 will be limited based
143 	 * on what the enlightened VMCS supports.
144 	 */
145 	bool enlightened_vmcs_enabled;
146 
147 	/* L2 must run next, and mustn't decide to exit to L1. */
148 	bool nested_run_pending;
149 
150 	/* Pending MTF VM-exit into L1.  */
151 	bool mtf_pending;
152 
153 	struct loaded_vmcs vmcs02;
154 
155 	/*
156 	 * Guest pages referred to in the vmcs02 with host-physical
157 	 * pointers, so we must keep them pinned while L2 runs.
158 	 */
159 	struct kvm_host_map apic_access_page_map;
160 	struct kvm_host_map virtual_apic_map;
161 	struct kvm_host_map pi_desc_map;
162 
163 	struct pi_desc *pi_desc;
164 	bool pi_pending;
165 	u16 posted_intr_nv;
166 
167 	struct hrtimer preemption_timer;
168 	u64 preemption_timer_deadline;
169 	bool has_preemption_timer_deadline;
170 	bool preemption_timer_expired;
171 
172 	/*
173 	 * Used to snapshot MSRs that are conditionally loaded on VM-Enter in
174 	 * order to propagate the guest's pre-VM-Enter value into vmcs02.  For
175 	 * emulation of VMLAUNCH/VMRESUME, the snapshot will be of L1's value.
176 	 * For KVM_SET_NESTED_STATE, the snapshot is of L2's value, _if_
177 	 * userspace restores MSRs before nested state.  If userspace restores
178 	 * MSRs after nested state, the snapshot holds garbage, but KVM can't
179 	 * detect that, and the garbage value in vmcs02 will be overwritten by
180 	 * MSR restoration in any case.
181 	 */
182 	u64 pre_vmenter_debugctl;
183 	u64 pre_vmenter_bndcfgs;
184 
185 	/* to migrate it to L1 if L2 writes to L1's CR8 directly */
186 	int l1_tpr_threshold;
187 
188 	u16 vpid02;
189 	u16 last_vpid;
190 
191 	struct nested_vmx_msrs msrs;
192 
193 	/* SMM related state */
194 	struct {
195 		/* in VMX operation on SMM entry? */
196 		bool vmxon;
197 		/* in guest mode on SMM entry? */
198 		bool guest_mode;
199 	} smm;
200 
201 #ifdef CONFIG_KVM_HYPERV
202 	gpa_t hv_evmcs_vmptr;
203 	struct kvm_host_map hv_evmcs_map;
204 	struct hv_enlightened_vmcs *hv_evmcs;
205 #endif
206 };
207 
208 struct vcpu_vmx {
209 	struct kvm_vcpu       vcpu;
210 	struct vcpu_vt	      vt;
211 	u8                    fail;
212 	u8		      x2apic_msr_bitmap_mode;
213 
214 	u32                   idt_vectoring_info;
215 	ulong                 rflags;
216 
217 	/*
218 	 * User return MSRs are always emulated when enabled in the guest, but
219 	 * only loaded into hardware when necessary, e.g. SYSCALL #UDs outside
220 	 * of 64-bit mode or if EFER.SCE=1, thus the SYSCALL MSRs don't need to
221 	 * be loaded into hardware if those conditions aren't met.
222 	 */
223 	struct vmx_uret_msr   guest_uret_msrs[MAX_NR_USER_RETURN_MSRS];
224 	bool                  guest_uret_msrs_loaded;
225 #ifdef CONFIG_X86_64
226 	u64		      msr_guest_kernel_gs_base;
227 #endif
228 
229 	u64		      spec_ctrl;
230 	u32		      msr_ia32_umwait_control;
231 
232 	/*
233 	 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
234 	 * non-nested (L1) guest, it always points to vmcs01. For a nested
235 	 * guest (L2), it points to a different VMCS.
236 	 */
237 	struct loaded_vmcs    vmcs01;
238 	struct loaded_vmcs   *loaded_vmcs;
239 
240 	struct msr_autoload {
241 		struct vmx_msrs guest;
242 		struct vmx_msrs host;
243 	} msr_autoload;
244 
245 	struct msr_autostore {
246 		struct vmx_msrs guest;
247 	} msr_autostore;
248 
249 	struct {
250 		int vm86_active;
251 		ulong save_rflags;
252 		struct kvm_segment segs[8];
253 	} rmode;
254 	struct {
255 		u32 bitmask; /* 4 bits per segment (1 bit per field) */
256 		struct kvm_save_segment {
257 			u16 selector;
258 			unsigned long base;
259 			u32 limit;
260 			u32 ar;
261 		} seg[8];
262 	} segment_cache;
263 	int vpid;
264 
265 	/* Support for a guest hypervisor (nested VMX) */
266 	struct nested_vmx nested;
267 
268 	/* Dynamic PLE window. */
269 	unsigned int ple_window;
270 	bool ple_window_dirty;
271 
272 	/* Support for PML */
273 #define PML_LOG_NR_ENTRIES	512
274 	/* PML is written backwards: this is the first entry written by the CPU */
275 #define PML_HEAD_INDEX		(PML_LOG_NR_ENTRIES-1)
276 
277 	struct page *pml_pg;
278 
279 	/* apic deadline value in host tsc */
280 	u64 hv_deadline_tsc;
281 
282 	/*
283 	 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
284 	 * msr_ia32_feature_control. FEAT_CTL_LOCKED is always included
285 	 * in msr_ia32_feature_control_valid_bits.
286 	 */
287 	u64 msr_ia32_feature_control;
288 	u64 msr_ia32_feature_control_valid_bits;
289 	/* SGX Launch Control public key hash */
290 	u64 msr_ia32_sgxlepubkeyhash[4];
291 	u64 msr_ia32_mcu_opt_ctrl;
292 	bool disable_fb_clear;
293 
294 	struct pt_desc pt_desc;
295 	struct lbr_desc lbr_desc;
296 
297 	/* ve_info must be page aligned. */
298 	struct vmx_ve_information *ve_info;
299 };
300 
301 struct kvm_vmx {
302 	struct kvm kvm;
303 
304 	unsigned int tss_addr;
305 	bool ept_identity_pagetable_done;
306 	gpa_t ept_identity_map_addr;
307 	/* Posted Interrupt Descriptor (PID) table for IPI virtualization */
308 	u64 *pid_table;
309 };
310 
to_vt(struct kvm_vcpu * vcpu)311 static __always_inline struct vcpu_vt *to_vt(struct kvm_vcpu *vcpu)
312 {
313 	return &(container_of(vcpu, struct vcpu_vmx, vcpu)->vt);
314 }
315 
vt_to_vcpu(struct vcpu_vt * vt)316 static __always_inline struct kvm_vcpu *vt_to_vcpu(struct vcpu_vt *vt)
317 {
318 	return &(container_of(vt, struct vcpu_vmx, vt)->vcpu);
319 }
320 
vmx_get_exit_reason(struct kvm_vcpu * vcpu)321 static __always_inline union vmx_exit_reason vmx_get_exit_reason(struct kvm_vcpu *vcpu)
322 {
323 	return to_vt(vcpu)->exit_reason;
324 }
325 
vmx_get_exit_qual(struct kvm_vcpu * vcpu)326 static __always_inline unsigned long vmx_get_exit_qual(struct kvm_vcpu *vcpu)
327 {
328 	struct vcpu_vt *vt = to_vt(vcpu);
329 
330 	if (!kvm_register_test_and_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1) &&
331 	    !WARN_ON_ONCE(is_td_vcpu(vcpu)))
332 		vt->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
333 
334 	return vt->exit_qualification;
335 }
336 
vmx_get_intr_info(struct kvm_vcpu * vcpu)337 static __always_inline u32 vmx_get_intr_info(struct kvm_vcpu *vcpu)
338 {
339 	struct vcpu_vt *vt = to_vt(vcpu);
340 
341 	if (!kvm_register_test_and_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2) &&
342 	    !WARN_ON_ONCE(is_td_vcpu(vcpu)))
343 		vt->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
344 
345 	return vt->exit_intr_info;
346 }
347 
348 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu);
349 int allocate_vpid(void);
350 void free_vpid(int vpid);
351 void vmx_set_constant_host_state(struct vcpu_vmx *vmx);
352 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu);
353 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
354 			unsigned long fs_base, unsigned long gs_base);
355 int vmx_get_cpl(struct kvm_vcpu *vcpu);
356 int vmx_get_cpl_no_cache(struct kvm_vcpu *vcpu);
357 bool vmx_emulation_required(struct kvm_vcpu *vcpu);
358 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu);
359 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
360 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu);
361 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask);
362 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer);
363 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
364 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
365 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx);
366 void ept_save_pdptrs(struct kvm_vcpu *vcpu);
367 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
368 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
369 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level);
370 
371 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu);
372 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu);
373 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu);
374 bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu);
375 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu);
376 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
377 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
378 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu);
379 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr);
380 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu);
381 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp);
382 void vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, unsigned int flags);
383 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx);
384 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs,
385 		    unsigned int flags);
386 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr);
387 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu);
388 
389 void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type, bool set);
390 
vmx_disable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)391 static inline void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu,
392 						 u32 msr, int type)
393 {
394 	vmx_set_intercept_for_msr(vcpu, msr, type, false);
395 }
396 
vmx_enable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)397 static inline void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu,
398 						u32 msr, int type)
399 {
400 	vmx_set_intercept_for_msr(vcpu, msr, type, true);
401 }
402 
403 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu);
404 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu);
405 
406 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags);
407 
408 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu);
409 
410 u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated);
411 bool vmx_is_valid_debugctl(struct kvm_vcpu *vcpu, u64 data, bool host_initiated);
412 
413 #define VMX_HOST_OWNED_DEBUGCTL_BITS	(DEBUGCTLMSR_FREEZE_IN_SMM)
414 
vmx_guest_debugctl_write(struct kvm_vcpu * vcpu,u64 val)415 static inline void vmx_guest_debugctl_write(struct kvm_vcpu *vcpu, u64 val)
416 {
417 	WARN_ON_ONCE(val & VMX_HOST_OWNED_DEBUGCTL_BITS);
418 
419 	val |= vcpu->arch.host_debugctl & VMX_HOST_OWNED_DEBUGCTL_BITS;
420 	vmcs_write64(GUEST_IA32_DEBUGCTL, val);
421 }
422 
vmx_guest_debugctl_read(void)423 static inline u64 vmx_guest_debugctl_read(void)
424 {
425 	return vmcs_read64(GUEST_IA32_DEBUGCTL) & ~VMX_HOST_OWNED_DEBUGCTL_BITS;
426 }
427 
vmx_reload_guest_debugctl(struct kvm_vcpu * vcpu)428 static inline void vmx_reload_guest_debugctl(struct kvm_vcpu *vcpu)
429 {
430 	u64 val = vmcs_read64(GUEST_IA32_DEBUGCTL);
431 
432 	if (!((val ^ vcpu->arch.host_debugctl) & VMX_HOST_OWNED_DEBUGCTL_BITS))
433 		return;
434 
435 	vmx_guest_debugctl_write(vcpu, val & ~VMX_HOST_OWNED_DEBUGCTL_BITS);
436 }
437 
438 /*
439  * Note, early Intel manuals have the write-low and read-high bitmap offsets
440  * the wrong way round.  The bitmaps control MSRs 0x00000000-0x00001fff and
441  * 0xc0000000-0xc0001fff.  The former (low) uses bytes 0-0x3ff for reads and
442  * 0x800-0xbff for writes.  The latter (high) uses 0x400-0x7ff for reads and
443  * 0xc00-0xfff for writes.  MSRs not covered by either of the ranges always
444  * VM-Exit.
445  */
446 #define __BUILD_VMX_MSR_BITMAP_HELPER(rtype, action, bitop, access, base)      \
447 static inline rtype vmx_##action##_msr_bitmap_##access(unsigned long *bitmap,  \
448 						       u32 msr)		       \
449 {									       \
450 	int f = sizeof(unsigned long);					       \
451 									       \
452 	if (msr <= 0x1fff)						       \
453 		return bitop##_bit(msr, bitmap + base / f);		       \
454 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))		       \
455 		return bitop##_bit(msr & 0x1fff, bitmap + (base + 0x400) / f); \
456 	return (rtype)true;						       \
457 }
458 #define BUILD_VMX_MSR_BITMAP_HELPERS(ret_type, action, bitop)		       \
459 	__BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, read,  0x0)     \
460 	__BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, write, 0x800)
461 
BUILD_VMX_MSR_BITMAP_HELPERS(bool,test,test)462 BUILD_VMX_MSR_BITMAP_HELPERS(bool, test, test)
463 BUILD_VMX_MSR_BITMAP_HELPERS(void, clear, __clear)
464 BUILD_VMX_MSR_BITMAP_HELPERS(void, set, __set)
465 
466 static inline u8 vmx_get_rvi(void)
467 {
468 	return vmcs_read16(GUEST_INTR_STATUS) & 0xff;
469 }
470 
471 #define __KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS				\
472 	(VM_ENTRY_LOAD_DEBUG_CONTROLS)
473 #ifdef CONFIG_X86_64
474 	#define KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS			\
475 		(__KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS |			\
476 		 VM_ENTRY_IA32E_MODE)
477 #else
478 	#define KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS			\
479 		__KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS
480 #endif
481 #define KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS				\
482 	(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |				\
483 	 VM_ENTRY_LOAD_IA32_PAT |					\
484 	 VM_ENTRY_LOAD_IA32_EFER |					\
485 	 VM_ENTRY_LOAD_BNDCFGS |					\
486 	 VM_ENTRY_PT_CONCEAL_PIP |					\
487 	 VM_ENTRY_LOAD_IA32_RTIT_CTL)
488 
489 #define __KVM_REQUIRED_VMX_VM_EXIT_CONTROLS				\
490 	(VM_EXIT_SAVE_DEBUG_CONTROLS |					\
491 	 VM_EXIT_ACK_INTR_ON_EXIT)
492 #ifdef CONFIG_X86_64
493 	#define KVM_REQUIRED_VMX_VM_EXIT_CONTROLS			\
494 		(__KVM_REQUIRED_VMX_VM_EXIT_CONTROLS |			\
495 		 VM_EXIT_HOST_ADDR_SPACE_SIZE)
496 #else
497 	#define KVM_REQUIRED_VMX_VM_EXIT_CONTROLS			\
498 		__KVM_REQUIRED_VMX_VM_EXIT_CONTROLS
499 #endif
500 #define KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS				\
501 	      (VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |			\
502 	       VM_EXIT_SAVE_IA32_PAT |					\
503 	       VM_EXIT_LOAD_IA32_PAT |					\
504 	       VM_EXIT_SAVE_IA32_EFER |					\
505 	       VM_EXIT_SAVE_VMX_PREEMPTION_TIMER |			\
506 	       VM_EXIT_LOAD_IA32_EFER |					\
507 	       VM_EXIT_CLEAR_BNDCFGS |					\
508 	       VM_EXIT_PT_CONCEAL_PIP |					\
509 	       VM_EXIT_CLEAR_IA32_RTIT_CTL)
510 
511 #define KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL			\
512 	(PIN_BASED_EXT_INTR_MASK |					\
513 	 PIN_BASED_NMI_EXITING)
514 #define KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL			\
515 	(PIN_BASED_VIRTUAL_NMIS |					\
516 	 PIN_BASED_POSTED_INTR |					\
517 	 PIN_BASED_VMX_PREEMPTION_TIMER)
518 
519 #define __KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL			\
520 	(CPU_BASED_HLT_EXITING |					\
521 	 CPU_BASED_CR3_LOAD_EXITING |					\
522 	 CPU_BASED_CR3_STORE_EXITING |					\
523 	 CPU_BASED_UNCOND_IO_EXITING |					\
524 	 CPU_BASED_MOV_DR_EXITING |					\
525 	 CPU_BASED_USE_TSC_OFFSETTING |					\
526 	 CPU_BASED_MWAIT_EXITING |					\
527 	 CPU_BASED_MONITOR_EXITING |					\
528 	 CPU_BASED_INVLPG_EXITING |					\
529 	 CPU_BASED_RDPMC_EXITING |					\
530 	 CPU_BASED_INTR_WINDOW_EXITING)
531 
532 #ifdef CONFIG_X86_64
533 	#define KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL		\
534 		(__KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL |		\
535 		 CPU_BASED_CR8_LOAD_EXITING |				\
536 		 CPU_BASED_CR8_STORE_EXITING)
537 #else
538 	#define KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL		\
539 		__KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL
540 #endif
541 
542 #define KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL			\
543 	(CPU_BASED_RDTSC_EXITING |					\
544 	 CPU_BASED_TPR_SHADOW |						\
545 	 CPU_BASED_USE_IO_BITMAPS |					\
546 	 CPU_BASED_MONITOR_TRAP_FLAG |					\
547 	 CPU_BASED_USE_MSR_BITMAPS |					\
548 	 CPU_BASED_NMI_WINDOW_EXITING |					\
549 	 CPU_BASED_PAUSE_EXITING |					\
550 	 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS |			\
551 	 CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
552 
553 #define KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL 0
554 #define KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL			\
555 	(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |			\
556 	 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |			\
557 	 SECONDARY_EXEC_WBINVD_EXITING |				\
558 	 SECONDARY_EXEC_ENABLE_VPID |					\
559 	 SECONDARY_EXEC_ENABLE_EPT |					\
560 	 SECONDARY_EXEC_UNRESTRICTED_GUEST |				\
561 	 SECONDARY_EXEC_PAUSE_LOOP_EXITING |				\
562 	 SECONDARY_EXEC_DESC |						\
563 	 SECONDARY_EXEC_ENABLE_RDTSCP |					\
564 	 SECONDARY_EXEC_ENABLE_INVPCID |				\
565 	 SECONDARY_EXEC_APIC_REGISTER_VIRT |				\
566 	 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |				\
567 	 SECONDARY_EXEC_SHADOW_VMCS |					\
568 	 SECONDARY_EXEC_ENABLE_XSAVES |					\
569 	 SECONDARY_EXEC_RDSEED_EXITING |				\
570 	 SECONDARY_EXEC_RDRAND_EXITING |				\
571 	 SECONDARY_EXEC_ENABLE_PML |					\
572 	 SECONDARY_EXEC_TSC_SCALING |					\
573 	 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |				\
574 	 SECONDARY_EXEC_PT_USE_GPA |					\
575 	 SECONDARY_EXEC_PT_CONCEAL_VMX |				\
576 	 SECONDARY_EXEC_ENABLE_VMFUNC |					\
577 	 SECONDARY_EXEC_BUS_LOCK_DETECTION |				\
578 	 SECONDARY_EXEC_NOTIFY_VM_EXITING |				\
579 	 SECONDARY_EXEC_ENCLS_EXITING |					\
580 	 SECONDARY_EXEC_EPT_VIOLATION_VE)
581 
582 #define KVM_REQUIRED_VMX_TERTIARY_VM_EXEC_CONTROL 0
583 #define KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL			\
584 	(TERTIARY_EXEC_IPI_VIRT)
585 
586 #define BUILD_CONTROLS_SHADOW(lname, uname, bits)						\
587 static inline void lname##_controls_set(struct vcpu_vmx *vmx, u##bits val)			\
588 {												\
589 	if (vmx->loaded_vmcs->controls_shadow.lname != val) {					\
590 		vmcs_write##bits(uname, val);							\
591 		vmx->loaded_vmcs->controls_shadow.lname = val;					\
592 	}											\
593 }												\
594 static inline u##bits __##lname##_controls_get(struct loaded_vmcs *vmcs)			\
595 {												\
596 	return vmcs->controls_shadow.lname;							\
597 }												\
598 static inline u##bits lname##_controls_get(struct vcpu_vmx *vmx)				\
599 {												\
600 	return __##lname##_controls_get(vmx->loaded_vmcs);					\
601 }												\
602 static __always_inline void lname##_controls_setbit(struct vcpu_vmx *vmx, u##bits val)		\
603 {												\
604 	BUILD_BUG_ON(!(val & (KVM_REQUIRED_VMX_##uname | KVM_OPTIONAL_VMX_##uname)));		\
605 	lname##_controls_set(vmx, lname##_controls_get(vmx) | val);				\
606 }												\
607 static __always_inline void lname##_controls_clearbit(struct vcpu_vmx *vmx, u##bits val)	\
608 {												\
609 	BUILD_BUG_ON(!(val & (KVM_REQUIRED_VMX_##uname | KVM_OPTIONAL_VMX_##uname)));		\
610 	lname##_controls_set(vmx, lname##_controls_get(vmx) & ~val);				\
611 }
612 BUILD_CONTROLS_SHADOW(vm_entry, VM_ENTRY_CONTROLS, 32)
613 BUILD_CONTROLS_SHADOW(vm_exit, VM_EXIT_CONTROLS, 32)
614 BUILD_CONTROLS_SHADOW(pin, PIN_BASED_VM_EXEC_CONTROL, 32)
615 BUILD_CONTROLS_SHADOW(exec, CPU_BASED_VM_EXEC_CONTROL, 32)
616 BUILD_CONTROLS_SHADOW(secondary_exec, SECONDARY_VM_EXEC_CONTROL, 32)
617 BUILD_CONTROLS_SHADOW(tertiary_exec, TERTIARY_VM_EXEC_CONTROL, 64)
618 
619 /*
620  * VMX_REGS_LAZY_LOAD_SET - The set of registers that will be updated in the
621  * cache on demand.  Other registers not listed here are synced to
622  * the cache immediately after VM-Exit.
623  */
624 #define VMX_REGS_LAZY_LOAD_SET	((1 << VCPU_REGS_RIP) |         \
625 				(1 << VCPU_REGS_RSP) |          \
626 				(1 << VCPU_EXREG_RFLAGS) |      \
627 				(1 << VCPU_EXREG_PDPTR) |       \
628 				(1 << VCPU_EXREG_SEGMENTS) |    \
629 				(1 << VCPU_EXREG_CR0) |         \
630 				(1 << VCPU_EXREG_CR3) |         \
631 				(1 << VCPU_EXREG_CR4) |         \
632 				(1 << VCPU_EXREG_EXIT_INFO_1) | \
633 				(1 << VCPU_EXREG_EXIT_INFO_2))
634 
vmx_l1_guest_owned_cr0_bits(void)635 static inline unsigned long vmx_l1_guest_owned_cr0_bits(void)
636 {
637 	unsigned long bits = KVM_POSSIBLE_CR0_GUEST_BITS;
638 
639 	/*
640 	 * CR0.WP needs to be intercepted when KVM is shadowing legacy paging
641 	 * in order to construct shadow PTEs with the correct protections.
642 	 * Note!  CR0.WP technically can be passed through to the guest if
643 	 * paging is disabled, but checking CR0.PG would generate a cyclical
644 	 * dependency of sorts due to forcing the caller to ensure CR0 holds
645 	 * the correct value prior to determining which CR0 bits can be owned
646 	 * by L1.  Keep it simple and limit the optimization to EPT.
647 	 */
648 	if (!enable_ept)
649 		bits &= ~X86_CR0_WP;
650 	return bits;
651 }
652 
to_kvm_vmx(struct kvm * kvm)653 static __always_inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
654 {
655 	return container_of(kvm, struct kvm_vmx, kvm);
656 }
657 
to_vmx(struct kvm_vcpu * vcpu)658 static __always_inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
659 {
660 	return container_of(vcpu, struct vcpu_vmx, vcpu);
661 }
662 
663 void intel_pmu_cross_mapped_check(struct kvm_pmu *pmu);
664 int intel_pmu_create_guest_lbr_event(struct kvm_vcpu *vcpu);
665 void vmx_passthrough_lbr_msrs(struct kvm_vcpu *vcpu);
666 
667 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags);
668 void free_vmcs(struct vmcs *vmcs);
669 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
670 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
671 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs);
672 
alloc_vmcs(bool shadow)673 static inline struct vmcs *alloc_vmcs(bool shadow)
674 {
675 	return alloc_vmcs_cpu(shadow, raw_smp_processor_id(),
676 			      GFP_KERNEL_ACCOUNT);
677 }
678 
vmx_has_waitpkg(struct vcpu_vmx * vmx)679 static inline bool vmx_has_waitpkg(struct vcpu_vmx *vmx)
680 {
681 	return secondary_exec_controls_get(vmx) &
682 		SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
683 }
684 
vmx_need_pf_intercept(struct kvm_vcpu * vcpu)685 static inline bool vmx_need_pf_intercept(struct kvm_vcpu *vcpu)
686 {
687 	if (!enable_ept)
688 		return true;
689 
690 	return allow_smaller_maxphyaddr &&
691 	       cpuid_maxphyaddr(vcpu) < kvm_host.maxphyaddr;
692 }
693 
is_unrestricted_guest(struct kvm_vcpu * vcpu)694 static inline bool is_unrestricted_guest(struct kvm_vcpu *vcpu)
695 {
696 	return enable_unrestricted_guest && (!is_guest_mode(vcpu) ||
697 	    (secondary_exec_controls_get(to_vmx(vcpu)) &
698 	    SECONDARY_EXEC_UNRESTRICTED_GUEST));
699 }
700 
701 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu);
vmx_guest_state_valid(struct kvm_vcpu * vcpu)702 static inline bool vmx_guest_state_valid(struct kvm_vcpu *vcpu)
703 {
704 	return is_unrestricted_guest(vcpu) || __vmx_guest_state_valid(vcpu);
705 }
706 
707 void dump_vmcs(struct kvm_vcpu *vcpu);
708 
vmx_get_instr_info_reg2(u32 vmx_instr_info)709 static inline int vmx_get_instr_info_reg2(u32 vmx_instr_info)
710 {
711 	return (vmx_instr_info >> 28) & 0xf;
712 }
713 
vmx_can_use_ipiv(struct kvm_vcpu * vcpu)714 static inline bool vmx_can_use_ipiv(struct kvm_vcpu *vcpu)
715 {
716 	return  lapic_in_kernel(vcpu) && enable_ipiv;
717 }
718 
vmx_segment_cache_clear(struct vcpu_vmx * vmx)719 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
720 {
721 	vmx->segment_cache.bitmask = 0;
722 }
723 
724 int vmx_init(void);
725 void vmx_exit(void);
726 
727 #endif /* __KVM_X86_VMX_H */
728