1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_FS_H 3 #define _LINUX_FS_H 4 5 #include <linux/fs/super.h> 6 #include <linux/vfsdebug.h> 7 #include <linux/linkage.h> 8 #include <linux/wait_bit.h> 9 #include <linux/kdev_t.h> 10 #include <linux/dcache.h> 11 #include <linux/path.h> 12 #include <linux/stat.h> 13 #include <linux/cache.h> 14 #include <linux/list.h> 15 #include <linux/llist.h> 16 #include <linux/radix-tree.h> 17 #include <linux/xarray.h> 18 #include <linux/rbtree.h> 19 #include <linux/init.h> 20 #include <linux/pid.h> 21 #include <linux/bug.h> 22 #include <linux/mutex.h> 23 #include <linux/rwsem.h> 24 #include <linux/mm_types.h> 25 #include <linux/capability.h> 26 #include <linux/semaphore.h> 27 #include <linux/fcntl.h> 28 #include <linux/rculist_bl.h> 29 #include <linux/atomic.h> 30 #include <linux/shrinker.h> 31 #include <linux/migrate_mode.h> 32 #include <linux/uidgid.h> 33 #include <linux/lockdep.h> 34 #include <linux/percpu-rwsem.h> 35 #include <linux/workqueue.h> 36 #include <linux/delayed_call.h> 37 #include <linux/uuid.h> 38 #include <linux/errseq.h> 39 #include <linux/ioprio.h> 40 #include <linux/build_bug.h> 41 #include <linux/stddef.h> 42 #include <linux/mount.h> 43 #include <linux/cred.h> 44 #include <linux/mnt_idmapping.h> 45 #include <linux/slab.h> 46 #include <linux/maple_tree.h> 47 #include <linux/rw_hint.h> 48 #include <linux/file_ref.h> 49 #include <linux/unicode.h> 50 51 #include <asm/byteorder.h> 52 #include <uapi/linux/fs.h> 53 54 struct bdi_writeback; 55 struct bio; 56 struct io_comp_batch; 57 struct fiemap_extent_info; 58 struct hd_geometry; 59 struct iovec; 60 struct kiocb; 61 struct kobject; 62 struct pipe_inode_info; 63 struct poll_table_struct; 64 struct kstatfs; 65 struct vm_area_struct; 66 struct vfsmount; 67 struct cred; 68 struct swap_info_struct; 69 struct seq_file; 70 struct iov_iter; 71 struct fsnotify_mark_connector; 72 struct fs_context; 73 struct fs_parameter_spec; 74 struct file_kattr; 75 struct iomap_ops; 76 struct delegated_inode; 77 78 extern void __init inode_init(void); 79 extern void __init inode_init_early(void); 80 extern void __init files_init(void); 81 extern void __init files_maxfiles_init(void); 82 83 extern unsigned long get_max_files(void); 84 extern unsigned int sysctl_nr_open; 85 86 typedef __kernel_rwf_t rwf_t; 87 88 struct buffer_head; 89 typedef int (get_block_t)(struct inode *inode, sector_t iblock, 90 struct buffer_head *bh_result, int create); 91 typedef int (dio_iodone_t)(struct kiocb *iocb, loff_t offset, 92 ssize_t bytes, void *private); 93 94 #define MAY_EXEC 0x00000001 95 #define MAY_WRITE 0x00000002 96 #define MAY_READ 0x00000004 97 #define MAY_APPEND 0x00000008 98 #define MAY_ACCESS 0x00000010 99 #define MAY_OPEN 0x00000020 100 #define MAY_CHDIR 0x00000040 101 /* called from RCU mode, don't block */ 102 #define MAY_NOT_BLOCK 0x00000080 103 104 /* 105 * flags in file.f_mode. Note that FMODE_READ and FMODE_WRITE must correspond 106 * to O_WRONLY and O_RDWR via the strange trick in do_dentry_open() 107 */ 108 109 /* file is open for reading */ 110 #define FMODE_READ ((__force fmode_t)(1 << 0)) 111 /* file is open for writing */ 112 #define FMODE_WRITE ((__force fmode_t)(1 << 1)) 113 /* file is seekable */ 114 #define FMODE_LSEEK ((__force fmode_t)(1 << 2)) 115 /* file can be accessed using pread */ 116 #define FMODE_PREAD ((__force fmode_t)(1 << 3)) 117 /* file can be accessed using pwrite */ 118 #define FMODE_PWRITE ((__force fmode_t)(1 << 4)) 119 /* File is opened for execution with sys_execve / sys_uselib */ 120 #define FMODE_EXEC ((__force fmode_t)(1 << 5)) 121 /* File writes are restricted (block device specific) */ 122 #define FMODE_WRITE_RESTRICTED ((__force fmode_t)(1 << 6)) 123 /* File supports atomic writes */ 124 #define FMODE_CAN_ATOMIC_WRITE ((__force fmode_t)(1 << 7)) 125 126 /* FMODE_* bit 8 */ 127 128 /* 32bit hashes as llseek() offset (for directories) */ 129 #define FMODE_32BITHASH ((__force fmode_t)(1 << 9)) 130 /* 64bit hashes as llseek() offset (for directories) */ 131 #define FMODE_64BITHASH ((__force fmode_t)(1 << 10)) 132 133 /* 134 * Don't update ctime and mtime. 135 * 136 * Currently a special hack for the XFS open_by_handle ioctl, but we'll 137 * hopefully graduate it to a proper O_CMTIME flag supported by open(2) soon. 138 */ 139 #define FMODE_NOCMTIME ((__force fmode_t)(1 << 11)) 140 141 /* Expect random access pattern */ 142 #define FMODE_RANDOM ((__force fmode_t)(1 << 12)) 143 144 /* Supports IOCB_HAS_METADATA */ 145 #define FMODE_HAS_METADATA ((__force fmode_t)(1 << 13)) 146 147 /* File is opened with O_PATH; almost nothing can be done with it */ 148 #define FMODE_PATH ((__force fmode_t)(1 << 14)) 149 150 /* File needs atomic accesses to f_pos */ 151 #define FMODE_ATOMIC_POS ((__force fmode_t)(1 << 15)) 152 /* Write access to underlying fs */ 153 #define FMODE_WRITER ((__force fmode_t)(1 << 16)) 154 /* Has read method(s) */ 155 #define FMODE_CAN_READ ((__force fmode_t)(1 << 17)) 156 /* Has write method(s) */ 157 #define FMODE_CAN_WRITE ((__force fmode_t)(1 << 18)) 158 159 #define FMODE_OPENED ((__force fmode_t)(1 << 19)) 160 #define FMODE_CREATED ((__force fmode_t)(1 << 20)) 161 162 /* File is stream-like */ 163 #define FMODE_STREAM ((__force fmode_t)(1 << 21)) 164 165 /* File supports DIRECT IO */ 166 #define FMODE_CAN_ODIRECT ((__force fmode_t)(1 << 22)) 167 168 #define FMODE_NOREUSE ((__force fmode_t)(1 << 23)) 169 170 /* File is embedded in backing_file object */ 171 #define FMODE_BACKING ((__force fmode_t)(1 << 24)) 172 173 /* 174 * Together with FMODE_NONOTIFY_PERM defines which fsnotify events shouldn't be 175 * generated (see below) 176 */ 177 #define FMODE_NONOTIFY ((__force fmode_t)(1 << 25)) 178 179 /* 180 * Together with FMODE_NONOTIFY defines which fsnotify events shouldn't be 181 * generated (see below) 182 */ 183 #define FMODE_NONOTIFY_PERM ((__force fmode_t)(1 << 26)) 184 185 /* File is capable of returning -EAGAIN if I/O will block */ 186 #define FMODE_NOWAIT ((__force fmode_t)(1 << 27)) 187 188 /* File represents mount that needs unmounting */ 189 #define FMODE_NEED_UNMOUNT ((__force fmode_t)(1 << 28)) 190 191 /* File does not contribute to nr_files count */ 192 #define FMODE_NOACCOUNT ((__force fmode_t)(1 << 29)) 193 194 /* 195 * The two FMODE_NONOTIFY* define which fsnotify events should not be generated 196 * for an open file. These are the possible values of 197 * (f->f_mode & FMODE_FSNOTIFY_MASK) and their meaning: 198 * 199 * FMODE_NONOTIFY - suppress all (incl. non-permission) events. 200 * FMODE_NONOTIFY_PERM - suppress permission (incl. pre-content) events. 201 * FMODE_NONOTIFY | FMODE_NONOTIFY_PERM - suppress only FAN_ACCESS_PERM. 202 */ 203 #define FMODE_FSNOTIFY_MASK \ 204 (FMODE_NONOTIFY | FMODE_NONOTIFY_PERM) 205 206 #define FMODE_FSNOTIFY_NONE(mode) \ 207 ((mode & FMODE_FSNOTIFY_MASK) == FMODE_NONOTIFY) 208 #ifdef CONFIG_FANOTIFY_ACCESS_PERMISSIONS 209 #define FMODE_FSNOTIFY_HSM(mode) \ 210 ((mode & FMODE_FSNOTIFY_MASK) == 0 || \ 211 (mode & FMODE_FSNOTIFY_MASK) == (FMODE_NONOTIFY | FMODE_NONOTIFY_PERM)) 212 #define FMODE_FSNOTIFY_ACCESS_PERM(mode) \ 213 ((mode & FMODE_FSNOTIFY_MASK) == 0) 214 #else 215 #define FMODE_FSNOTIFY_ACCESS_PERM(mode) 0 216 #define FMODE_FSNOTIFY_HSM(mode) 0 217 #endif 218 219 /* 220 * Attribute flags. These should be or-ed together to figure out what 221 * has been changed! 222 */ 223 #define ATTR_MODE (1 << 0) 224 #define ATTR_UID (1 << 1) 225 #define ATTR_GID (1 << 2) 226 #define ATTR_SIZE (1 << 3) 227 #define ATTR_ATIME (1 << 4) 228 #define ATTR_MTIME (1 << 5) 229 #define ATTR_CTIME (1 << 6) 230 #define ATTR_ATIME_SET (1 << 7) 231 #define ATTR_MTIME_SET (1 << 8) 232 #define ATTR_FORCE (1 << 9) /* Not a change, but a change it */ 233 #define ATTR_CTIME_SET (1 << 10) 234 #define ATTR_KILL_SUID (1 << 11) 235 #define ATTR_KILL_SGID (1 << 12) 236 #define ATTR_FILE (1 << 13) 237 #define ATTR_KILL_PRIV (1 << 14) 238 #define ATTR_OPEN (1 << 15) /* Truncating from open(O_TRUNC) */ 239 #define ATTR_TIMES_SET (1 << 16) 240 #define ATTR_TOUCH (1 << 17) 241 #define ATTR_DELEG (1 << 18) /* Delegated attrs. Don't break write delegations */ 242 243 /* 244 * Whiteout is represented by a char device. The following constants define the 245 * mode and device number to use. 246 */ 247 #define WHITEOUT_MODE 0 248 #define WHITEOUT_DEV 0 249 250 /* 251 * This is the Inode Attributes structure, used for notify_change(). It 252 * uses the above definitions as flags, to know which values have changed. 253 * Also, in this manner, a Filesystem can look at only the values it cares 254 * about. Basically, these are the attributes that the VFS layer can 255 * request to change from the FS layer. 256 * 257 * Derek Atkins <warlord@MIT.EDU> 94-10-20 258 */ 259 struct iattr { 260 unsigned int ia_valid; 261 umode_t ia_mode; 262 /* 263 * The two anonymous unions wrap structures with the same member. 264 * 265 * Filesystems raising FS_ALLOW_IDMAP need to use ia_vfs{g,u}id which 266 * are a dedicated type requiring the filesystem to use the dedicated 267 * helpers. Other filesystem can continue to use ia_{g,u}id until they 268 * have been ported. 269 * 270 * They always contain the same value. In other words FS_ALLOW_IDMAP 271 * pass down the same value on idmapped mounts as they would on regular 272 * mounts. 273 */ 274 union { 275 kuid_t ia_uid; 276 vfsuid_t ia_vfsuid; 277 }; 278 union { 279 kgid_t ia_gid; 280 vfsgid_t ia_vfsgid; 281 }; 282 loff_t ia_size; 283 struct timespec64 ia_atime; 284 struct timespec64 ia_mtime; 285 struct timespec64 ia_ctime; 286 287 /* 288 * Not an attribute, but an auxiliary info for filesystems wanting to 289 * implement an ftruncate() like method. NOTE: filesystem should 290 * check for (ia_valid & ATTR_FILE), and not for (ia_file != NULL). 291 */ 292 struct file *ia_file; 293 }; 294 295 /* 296 * Maximum number of layers of fs stack. Needs to be limited to 297 * prevent kernel stack overflow 298 */ 299 #define FILESYSTEM_MAX_STACK_DEPTH 2 300 301 /** 302 * enum positive_aop_returns - aop return codes with specific semantics 303 * 304 * @AOP_WRITEPAGE_ACTIVATE: Informs the caller that page writeback has 305 * completed, that the page is still locked, and 306 * should be considered active. The VM uses this hint 307 * to return the page to the active list -- it won't 308 * be a candidate for writeback again in the near 309 * future. Other callers must be careful to unlock 310 * the page if they get this return. Returned by 311 * writepage(); 312 * 313 * @AOP_TRUNCATED_PAGE: The AOP method that was handed a locked page has 314 * unlocked it and the page might have been truncated. 315 * The caller should back up to acquiring a new page and 316 * trying again. The aop will be taking reasonable 317 * precautions not to livelock. If the caller held a page 318 * reference, it should drop it before retrying. Returned 319 * by read_folio(). 320 * 321 * address_space_operation functions return these large constants to indicate 322 * special semantics to the caller. These are much larger than the bytes in a 323 * page to allow for functions that return the number of bytes operated on in a 324 * given page. 325 */ 326 327 enum positive_aop_returns { 328 AOP_WRITEPAGE_ACTIVATE = 0x80000, 329 AOP_TRUNCATED_PAGE = 0x80001, 330 }; 331 332 /* 333 * oh the beauties of C type declarations. 334 */ 335 struct page; 336 struct address_space; 337 struct writeback_control; 338 struct readahead_control; 339 340 /* Match RWF_* bits to IOCB bits */ 341 #define IOCB_HIPRI (__force int) RWF_HIPRI 342 #define IOCB_DSYNC (__force int) RWF_DSYNC 343 #define IOCB_SYNC (__force int) RWF_SYNC 344 #define IOCB_NOWAIT (__force int) RWF_NOWAIT 345 #define IOCB_APPEND (__force int) RWF_APPEND 346 #define IOCB_ATOMIC (__force int) RWF_ATOMIC 347 #define IOCB_DONTCACHE (__force int) RWF_DONTCACHE 348 #define IOCB_NOSIGNAL (__force int) RWF_NOSIGNAL 349 350 /* non-RWF related bits - start at 16 */ 351 #define IOCB_EVENTFD (1 << 16) 352 #define IOCB_DIRECT (1 << 17) 353 #define IOCB_WRITE (1 << 18) 354 /* iocb->ki_waitq is valid */ 355 #define IOCB_WAITQ (1 << 19) 356 #define IOCB_NOIO (1 << 20) 357 /* can use bio alloc cache */ 358 #define IOCB_ALLOC_CACHE (1 << 21) 359 /* kiocb is a read or write operation submitted by fs/aio.c. */ 360 #define IOCB_AIO_RW (1 << 22) 361 #define IOCB_HAS_METADATA (1 << 23) 362 363 /* for use in trace events */ 364 #define TRACE_IOCB_STRINGS \ 365 { IOCB_HIPRI, "HIPRI" }, \ 366 { IOCB_DSYNC, "DSYNC" }, \ 367 { IOCB_SYNC, "SYNC" }, \ 368 { IOCB_NOWAIT, "NOWAIT" }, \ 369 { IOCB_APPEND, "APPEND" }, \ 370 { IOCB_ATOMIC, "ATOMIC" }, \ 371 { IOCB_DONTCACHE, "DONTCACHE" }, \ 372 { IOCB_EVENTFD, "EVENTFD"}, \ 373 { IOCB_DIRECT, "DIRECT" }, \ 374 { IOCB_WRITE, "WRITE" }, \ 375 { IOCB_WAITQ, "WAITQ" }, \ 376 { IOCB_NOIO, "NOIO" }, \ 377 { IOCB_ALLOC_CACHE, "ALLOC_CACHE" }, \ 378 { IOCB_AIO_RW, "AIO_RW" }, \ 379 { IOCB_HAS_METADATA, "AIO_HAS_METADATA" } 380 381 struct kiocb { 382 struct file *ki_filp; 383 loff_t ki_pos; 384 void (*ki_complete)(struct kiocb *iocb, long ret); 385 void *private; 386 int ki_flags; 387 u16 ki_ioprio; /* See linux/ioprio.h */ 388 u8 ki_write_stream; 389 390 /* 391 * Only used for async buffered reads, where it denotes the page 392 * waitqueue associated with completing the read. 393 * Valid IFF IOCB_WAITQ is set. 394 */ 395 struct wait_page_queue *ki_waitq; 396 }; 397 398 static inline bool is_sync_kiocb(struct kiocb *kiocb) 399 { 400 return kiocb->ki_complete == NULL; 401 } 402 403 struct address_space_operations { 404 int (*read_folio)(struct file *, struct folio *); 405 406 /* Write back some dirty pages from this mapping. */ 407 int (*writepages)(struct address_space *, struct writeback_control *); 408 409 /* Mark a folio dirty. Return true if this dirtied it */ 410 bool (*dirty_folio)(struct address_space *, struct folio *); 411 412 void (*readahead)(struct readahead_control *); 413 414 int (*write_begin)(const struct kiocb *, struct address_space *mapping, 415 loff_t pos, unsigned len, 416 struct folio **foliop, void **fsdata); 417 int (*write_end)(const struct kiocb *, struct address_space *mapping, 418 loff_t pos, unsigned len, unsigned copied, 419 struct folio *folio, void *fsdata); 420 421 /* Unfortunately this kludge is needed for FIBMAP. Don't use it */ 422 sector_t (*bmap)(struct address_space *, sector_t); 423 void (*invalidate_folio) (struct folio *, size_t offset, size_t len); 424 bool (*release_folio)(struct folio *, gfp_t); 425 void (*free_folio)(struct folio *folio); 426 ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter); 427 /* 428 * migrate the contents of a folio to the specified target. If 429 * migrate_mode is MIGRATE_ASYNC, it must not block. 430 */ 431 int (*migrate_folio)(struct address_space *, struct folio *dst, 432 struct folio *src, enum migrate_mode); 433 int (*launder_folio)(struct folio *); 434 bool (*is_partially_uptodate) (struct folio *, size_t from, 435 size_t count); 436 void (*is_dirty_writeback) (struct folio *, bool *dirty, bool *wb); 437 int (*error_remove_folio)(struct address_space *, struct folio *); 438 439 /* swapfile support */ 440 int (*swap_activate)(struct swap_info_struct *sis, struct file *file, 441 sector_t *span); 442 void (*swap_deactivate)(struct file *file); 443 int (*swap_rw)(struct kiocb *iocb, struct iov_iter *iter); 444 }; 445 446 extern const struct address_space_operations empty_aops; 447 448 /** 449 * struct address_space - Contents of a cacheable, mappable object. 450 * @host: Owner, either the inode or the block_device. 451 * @i_pages: Cached pages. 452 * @invalidate_lock: Guards coherency between page cache contents and 453 * file offset->disk block mappings in the filesystem during invalidates. 454 * It is also used to block modification of page cache contents through 455 * memory mappings. 456 * @gfp_mask: Memory allocation flags to use for allocating pages. 457 * @i_mmap_writable: Number of VM_SHARED, VM_MAYWRITE mappings. 458 * @nr_thps: Number of THPs in the pagecache (non-shmem only). 459 * @i_mmap: Tree of private and shared mappings. 460 * @i_mmap_rwsem: Protects @i_mmap and @i_mmap_writable. 461 * @nrpages: Number of page entries, protected by the i_pages lock. 462 * @writeback_index: Writeback starts here. 463 * @a_ops: Methods. 464 * @flags: Error bits and flags (AS_*). 465 * @wb_err: The most recent error which has occurred. 466 * @i_private_lock: For use by the owner of the address_space. 467 * @i_private_list: For use by the owner of the address_space. 468 * @i_private_data: For use by the owner of the address_space. 469 */ 470 struct address_space { 471 struct inode *host; 472 struct xarray i_pages; 473 struct rw_semaphore invalidate_lock; 474 gfp_t gfp_mask; 475 atomic_t i_mmap_writable; 476 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 477 /* number of thp, only for non-shmem files */ 478 atomic_t nr_thps; 479 #endif 480 struct rb_root_cached i_mmap; 481 unsigned long nrpages; 482 pgoff_t writeback_index; 483 const struct address_space_operations *a_ops; 484 unsigned long flags; 485 errseq_t wb_err; 486 spinlock_t i_private_lock; 487 struct list_head i_private_list; 488 struct rw_semaphore i_mmap_rwsem; 489 void * i_private_data; 490 } __attribute__((aligned(sizeof(long)))) __randomize_layout; 491 /* 492 * On most architectures that alignment is already the case; but 493 * must be enforced here for CRIS, to let the least significant bit 494 * of struct folio's "mapping" pointer be used for FOLIO_MAPPING_ANON. 495 */ 496 497 /* XArray tags, for tagging dirty and writeback pages in the pagecache. */ 498 #define PAGECACHE_TAG_DIRTY XA_MARK_0 499 #define PAGECACHE_TAG_WRITEBACK XA_MARK_1 500 #define PAGECACHE_TAG_TOWRITE XA_MARK_2 501 502 /* 503 * Returns true if any of the pages in the mapping are marked with the tag. 504 */ 505 static inline bool mapping_tagged(const struct address_space *mapping, xa_mark_t tag) 506 { 507 return xa_marked(&mapping->i_pages, tag); 508 } 509 510 static inline void i_mmap_lock_write(struct address_space *mapping) 511 { 512 down_write(&mapping->i_mmap_rwsem); 513 } 514 515 static inline int i_mmap_trylock_write(struct address_space *mapping) 516 { 517 return down_write_trylock(&mapping->i_mmap_rwsem); 518 } 519 520 static inline void i_mmap_unlock_write(struct address_space *mapping) 521 { 522 up_write(&mapping->i_mmap_rwsem); 523 } 524 525 static inline int i_mmap_trylock_read(struct address_space *mapping) 526 { 527 return down_read_trylock(&mapping->i_mmap_rwsem); 528 } 529 530 static inline void i_mmap_lock_read(struct address_space *mapping) 531 { 532 down_read(&mapping->i_mmap_rwsem); 533 } 534 535 static inline void i_mmap_unlock_read(struct address_space *mapping) 536 { 537 up_read(&mapping->i_mmap_rwsem); 538 } 539 540 static inline void i_mmap_assert_locked(struct address_space *mapping) 541 { 542 lockdep_assert_held(&mapping->i_mmap_rwsem); 543 } 544 545 static inline void i_mmap_assert_write_locked(struct address_space *mapping) 546 { 547 lockdep_assert_held_write(&mapping->i_mmap_rwsem); 548 } 549 550 /* 551 * Might pages of this file be mapped into userspace? 552 */ 553 static inline int mapping_mapped(const struct address_space *mapping) 554 { 555 return !RB_EMPTY_ROOT(&mapping->i_mmap.rb_root); 556 } 557 558 /* 559 * Might pages of this file have been modified in userspace? 560 * Note that i_mmap_writable counts all VM_SHARED, VM_MAYWRITE vmas: do_mmap 561 * marks vma as VM_SHARED if it is shared, and the file was opened for 562 * writing i.e. vma may be mprotected writable even if now readonly. 563 * 564 * If i_mmap_writable is negative, no new writable mappings are allowed. You 565 * can only deny writable mappings, if none exists right now. 566 */ 567 static inline int mapping_writably_mapped(const struct address_space *mapping) 568 { 569 return atomic_read(&mapping->i_mmap_writable) > 0; 570 } 571 572 static inline int mapping_map_writable(struct address_space *mapping) 573 { 574 return atomic_inc_unless_negative(&mapping->i_mmap_writable) ? 575 0 : -EPERM; 576 } 577 578 static inline void mapping_unmap_writable(struct address_space *mapping) 579 { 580 atomic_dec(&mapping->i_mmap_writable); 581 } 582 583 static inline int mapping_deny_writable(struct address_space *mapping) 584 { 585 return atomic_dec_unless_positive(&mapping->i_mmap_writable) ? 586 0 : -EBUSY; 587 } 588 589 static inline void mapping_allow_writable(struct address_space *mapping) 590 { 591 atomic_inc(&mapping->i_mmap_writable); 592 } 593 594 /* 595 * Use sequence counter to get consistent i_size on 32-bit processors. 596 */ 597 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 598 #include <linux/seqlock.h> 599 #define __NEED_I_SIZE_ORDERED 600 #define i_size_ordered_init(inode) seqcount_init(&inode->i_size_seqcount) 601 #else 602 #define i_size_ordered_init(inode) do { } while (0) 603 #endif 604 605 struct posix_acl; 606 #define ACL_NOT_CACHED ((void *)(-1)) 607 /* 608 * ACL_DONT_CACHE is for stacked filesystems, that rely on underlying fs to 609 * cache the ACL. This also means that ->get_inode_acl() can be called in RCU 610 * mode with the LOOKUP_RCU flag. 611 */ 612 #define ACL_DONT_CACHE ((void *)(-3)) 613 614 static inline struct posix_acl * 615 uncached_acl_sentinel(struct task_struct *task) 616 { 617 return (void *)task + 1; 618 } 619 620 static inline bool 621 is_uncached_acl(struct posix_acl *acl) 622 { 623 return (long)acl & 1; 624 } 625 626 #define IOP_FASTPERM 0x0001 627 #define IOP_LOOKUP 0x0002 628 #define IOP_NOFOLLOW 0x0004 629 #define IOP_XATTR 0x0008 630 #define IOP_DEFAULT_READLINK 0x0010 631 #define IOP_MGTIME 0x0020 632 #define IOP_CACHED_LINK 0x0040 633 #define IOP_FASTPERM_MAY_EXEC 0x0080 634 #define IOP_FLCTX 0x0100 635 636 /* 637 * Inode state bits. Protected by inode->i_lock 638 * 639 * Four bits determine the dirty state of the inode: I_DIRTY_SYNC, 640 * I_DIRTY_DATASYNC, I_DIRTY_PAGES, and I_DIRTY_TIME. 641 * 642 * Four bits define the lifetime of an inode. Initially, inodes are I_NEW, 643 * until that flag is cleared. I_WILL_FREE, I_FREEING and I_CLEAR are set at 644 * various stages of removing an inode. 645 * 646 * Two bits are used for locking and completion notification, I_NEW and I_SYNC. 647 * 648 * I_DIRTY_SYNC Inode is dirty, but doesn't have to be written on 649 * fdatasync() (unless I_DIRTY_DATASYNC is also set). 650 * Timestamp updates are the usual cause. 651 * I_DIRTY_DATASYNC Data-related inode changes pending. We keep track of 652 * these changes separately from I_DIRTY_SYNC so that we 653 * don't have to write inode on fdatasync() when only 654 * e.g. the timestamps have changed. 655 * I_DIRTY_PAGES Inode has dirty pages. Inode itself may be clean. 656 * I_DIRTY_TIME The inode itself has dirty timestamps, and the 657 * lazytime mount option is enabled. We keep track of this 658 * separately from I_DIRTY_SYNC in order to implement 659 * lazytime. This gets cleared if I_DIRTY_INODE 660 * (I_DIRTY_SYNC and/or I_DIRTY_DATASYNC) gets set. But 661 * I_DIRTY_TIME can still be set if I_DIRTY_SYNC is already 662 * in place because writeback might already be in progress 663 * and we don't want to lose the time update 664 * I_NEW Serves as both a mutex and completion notification. 665 * New inodes set I_NEW. If two processes both create 666 * the same inode, one of them will release its inode and 667 * wait for I_NEW to be released before returning. 668 * Inodes in I_WILL_FREE, I_FREEING or I_CLEAR state can 669 * also cause waiting on I_NEW, without I_NEW actually 670 * being set. find_inode() uses this to prevent returning 671 * nearly-dead inodes. 672 * I_WILL_FREE Must be set when calling write_inode_now() if i_count 673 * is zero. I_FREEING must be set when I_WILL_FREE is 674 * cleared. 675 * I_FREEING Set when inode is about to be freed but still has dirty 676 * pages or buffers attached or the inode itself is still 677 * dirty. 678 * I_CLEAR Added by clear_inode(). In this state the inode is 679 * clean and can be destroyed. Inode keeps I_FREEING. 680 * 681 * Inodes that are I_WILL_FREE, I_FREEING or I_CLEAR are 682 * prohibited for many purposes. iget() must wait for 683 * the inode to be completely released, then create it 684 * anew. Other functions will just ignore such inodes, 685 * if appropriate. I_NEW is used for waiting. 686 * 687 * I_SYNC Writeback of inode is running. The bit is set during 688 * data writeback, and cleared with a wakeup on the bit 689 * address once it is done. The bit is also used to pin 690 * the inode in memory for flusher thread. 691 * 692 * I_REFERENCED Marks the inode as recently references on the LRU list. 693 * 694 * I_WB_SWITCH Cgroup bdi_writeback switching in progress. Used to 695 * synchronize competing switching instances and to tell 696 * wb stat updates to grab the i_pages lock. See 697 * inode_switch_wbs_work_fn() for details. 698 * 699 * I_OVL_INUSE Used by overlayfs to get exclusive ownership on upper 700 * and work dirs among overlayfs mounts. 701 * 702 * I_CREATING New object's inode in the middle of setting up. 703 * 704 * I_DONTCACHE Evict inode as soon as it is not used anymore. 705 * 706 * I_SYNC_QUEUED Inode is queued in b_io or b_more_io writeback lists. 707 * Used to detect that mark_inode_dirty() should not move 708 * inode between dirty lists. 709 * 710 * I_PINNING_FSCACHE_WB Inode is pinning an fscache object for writeback. 711 * 712 * I_LRU_ISOLATING Inode is pinned being isolated from LRU without holding 713 * i_count. 714 * 715 * Q: What is the difference between I_WILL_FREE and I_FREEING? 716 * 717 * __I_{SYNC,NEW,LRU_ISOLATING} are used to derive unique addresses to wait 718 * upon. There's one free address left. 719 */ 720 721 enum inode_state_bits { 722 __I_NEW = 0U, 723 __I_SYNC = 1U, 724 __I_LRU_ISOLATING = 2U 725 /* reserved wait address bit 3 */ 726 }; 727 728 enum inode_state_flags_enum { 729 I_NEW = (1U << __I_NEW), 730 I_SYNC = (1U << __I_SYNC), 731 I_LRU_ISOLATING = (1U << __I_LRU_ISOLATING), 732 /* reserved flag bit 3 */ 733 I_DIRTY_SYNC = (1U << 4), 734 I_DIRTY_DATASYNC = (1U << 5), 735 I_DIRTY_PAGES = (1U << 6), 736 I_WILL_FREE = (1U << 7), 737 I_FREEING = (1U << 8), 738 I_CLEAR = (1U << 9), 739 I_REFERENCED = (1U << 10), 740 I_LINKABLE = (1U << 11), 741 I_DIRTY_TIME = (1U << 12), 742 I_WB_SWITCH = (1U << 13), 743 I_OVL_INUSE = (1U << 14), 744 I_CREATING = (1U << 15), 745 I_DONTCACHE = (1U << 16), 746 I_SYNC_QUEUED = (1U << 17), 747 I_PINNING_NETFS_WB = (1U << 18) 748 }; 749 750 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC) 751 #define I_DIRTY (I_DIRTY_INODE | I_DIRTY_PAGES) 752 #define I_DIRTY_ALL (I_DIRTY | I_DIRTY_TIME) 753 754 /* 755 * Use inode_state_read() & friends to access. 756 */ 757 struct inode_state_flags { 758 enum inode_state_flags_enum __state; 759 }; 760 761 /* 762 * Keep mostly read-only and often accessed (especially for 763 * the RCU path lookup and 'stat' data) fields at the beginning 764 * of the 'struct inode' 765 */ 766 struct inode { 767 umode_t i_mode; 768 unsigned short i_opflags; 769 unsigned int i_flags; 770 #ifdef CONFIG_FS_POSIX_ACL 771 struct posix_acl *i_acl; 772 struct posix_acl *i_default_acl; 773 #endif 774 kuid_t i_uid; 775 kgid_t i_gid; 776 777 const struct inode_operations *i_op; 778 struct super_block *i_sb; 779 struct address_space *i_mapping; 780 781 #ifdef CONFIG_SECURITY 782 void *i_security; 783 #endif 784 785 /* Stat data, not accessed from path walking */ 786 unsigned long i_ino; 787 /* 788 * Filesystems may only read i_nlink directly. They shall use the 789 * following functions for modification: 790 * 791 * (set|clear|inc|drop)_nlink 792 * inode_(inc|dec)_link_count 793 */ 794 union { 795 const unsigned int i_nlink; 796 unsigned int __i_nlink; 797 }; 798 dev_t i_rdev; 799 loff_t i_size; 800 time64_t i_atime_sec; 801 time64_t i_mtime_sec; 802 time64_t i_ctime_sec; 803 u32 i_atime_nsec; 804 u32 i_mtime_nsec; 805 u32 i_ctime_nsec; 806 u32 i_generation; 807 spinlock_t i_lock; /* i_blocks, i_bytes, maybe i_size */ 808 unsigned short i_bytes; 809 u8 i_blkbits; 810 enum rw_hint i_write_hint; 811 blkcnt_t i_blocks; 812 813 #ifdef __NEED_I_SIZE_ORDERED 814 seqcount_t i_size_seqcount; 815 #endif 816 817 /* Misc */ 818 struct inode_state_flags i_state; 819 /* 32-bit hole */ 820 struct rw_semaphore i_rwsem; 821 822 unsigned long dirtied_when; /* jiffies of first dirtying */ 823 unsigned long dirtied_time_when; 824 825 struct hlist_node i_hash; 826 struct list_head i_io_list; /* backing dev IO list */ 827 #ifdef CONFIG_CGROUP_WRITEBACK 828 struct bdi_writeback *i_wb; /* the associated cgroup wb */ 829 830 /* foreign inode detection, see wbc_detach_inode() */ 831 int i_wb_frn_winner; 832 u16 i_wb_frn_avg_time; 833 u16 i_wb_frn_history; 834 #endif 835 struct list_head i_lru; /* inode LRU list */ 836 struct list_head i_sb_list; 837 struct list_head i_wb_list; /* backing dev writeback list */ 838 union { 839 struct hlist_head i_dentry; 840 struct rcu_head i_rcu; 841 }; 842 atomic64_t i_version; 843 atomic64_t i_sequence; /* see futex */ 844 atomic_t i_count; 845 atomic_t i_dio_count; 846 atomic_t i_writecount; 847 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) 848 atomic_t i_readcount; /* struct files open RO */ 849 #endif 850 union { 851 const struct file_operations *i_fop; /* former ->i_op->default_file_ops */ 852 void (*free_inode)(struct inode *); 853 }; 854 struct file_lock_context *i_flctx; 855 struct address_space i_data; 856 union { 857 struct list_head i_devices; 858 int i_linklen; 859 }; 860 union { 861 struct pipe_inode_info *i_pipe; 862 struct cdev *i_cdev; 863 char *i_link; 864 unsigned i_dir_seq; 865 }; 866 867 868 #ifdef CONFIG_FSNOTIFY 869 __u32 i_fsnotify_mask; /* all events this inode cares about */ 870 /* 32-bit hole reserved for expanding i_fsnotify_mask */ 871 struct fsnotify_mark_connector __rcu *i_fsnotify_marks; 872 #endif 873 874 void *i_private; /* fs or device private pointer */ 875 } __randomize_layout; 876 877 /* 878 * i_state handling 879 * 880 * We hide all of it behind helpers so that we can validate consumers. 881 */ 882 static inline enum inode_state_flags_enum inode_state_read_once(struct inode *inode) 883 { 884 return READ_ONCE(inode->i_state.__state); 885 } 886 887 static inline enum inode_state_flags_enum inode_state_read(struct inode *inode) 888 { 889 lockdep_assert_held(&inode->i_lock); 890 return inode->i_state.__state; 891 } 892 893 static inline void inode_state_set_raw(struct inode *inode, 894 enum inode_state_flags_enum flags) 895 { 896 WRITE_ONCE(inode->i_state.__state, inode->i_state.__state | flags); 897 } 898 899 static inline void inode_state_set(struct inode *inode, 900 enum inode_state_flags_enum flags) 901 { 902 lockdep_assert_held(&inode->i_lock); 903 inode_state_set_raw(inode, flags); 904 } 905 906 static inline void inode_state_clear_raw(struct inode *inode, 907 enum inode_state_flags_enum flags) 908 { 909 WRITE_ONCE(inode->i_state.__state, inode->i_state.__state & ~flags); 910 } 911 912 static inline void inode_state_clear(struct inode *inode, 913 enum inode_state_flags_enum flags) 914 { 915 lockdep_assert_held(&inode->i_lock); 916 inode_state_clear_raw(inode, flags); 917 } 918 919 static inline void inode_state_assign_raw(struct inode *inode, 920 enum inode_state_flags_enum flags) 921 { 922 WRITE_ONCE(inode->i_state.__state, flags); 923 } 924 925 static inline void inode_state_assign(struct inode *inode, 926 enum inode_state_flags_enum flags) 927 { 928 lockdep_assert_held(&inode->i_lock); 929 inode_state_assign_raw(inode, flags); 930 } 931 932 static inline void inode_state_replace_raw(struct inode *inode, 933 enum inode_state_flags_enum clearflags, 934 enum inode_state_flags_enum setflags) 935 { 936 enum inode_state_flags_enum flags; 937 flags = inode->i_state.__state; 938 flags &= ~clearflags; 939 flags |= setflags; 940 inode_state_assign_raw(inode, flags); 941 } 942 943 static inline void inode_state_replace(struct inode *inode, 944 enum inode_state_flags_enum clearflags, 945 enum inode_state_flags_enum setflags) 946 { 947 lockdep_assert_held(&inode->i_lock); 948 inode_state_replace_raw(inode, clearflags, setflags); 949 } 950 951 static inline void inode_set_cached_link(struct inode *inode, char *link, int linklen) 952 { 953 VFS_WARN_ON_INODE(strlen(link) != linklen, inode); 954 VFS_WARN_ON_INODE(inode->i_opflags & IOP_CACHED_LINK, inode); 955 inode->i_link = link; 956 inode->i_linklen = linklen; 957 inode->i_opflags |= IOP_CACHED_LINK; 958 } 959 960 /* 961 * Get bit address from inode->i_state to use with wait_var_event() 962 * infrastructre. 963 */ 964 #define inode_state_wait_address(inode, bit) ((char *)&(inode)->i_state + (bit)) 965 966 struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe, 967 struct inode *inode, u32 bit); 968 969 static inline void inode_wake_up_bit(struct inode *inode, u32 bit) 970 { 971 /* Caller is responsible for correct memory barriers. */ 972 wake_up_var(inode_state_wait_address(inode, bit)); 973 } 974 975 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode); 976 977 static inline unsigned int i_blocksize(const struct inode *node) 978 { 979 return (1 << node->i_blkbits); 980 } 981 982 static inline int inode_unhashed(struct inode *inode) 983 { 984 return hlist_unhashed(&inode->i_hash); 985 } 986 987 /* 988 * __mark_inode_dirty expects inodes to be hashed. Since we don't 989 * want special inodes in the fileset inode space, we make them 990 * appear hashed, but do not put on any lists. hlist_del() 991 * will work fine and require no locking. 992 */ 993 static inline void inode_fake_hash(struct inode *inode) 994 { 995 hlist_add_fake(&inode->i_hash); 996 } 997 998 void wait_on_new_inode(struct inode *inode); 999 1000 /* 1001 * inode->i_rwsem nesting subclasses for the lock validator: 1002 * 1003 * 0: the object of the current VFS operation 1004 * 1: parent 1005 * 2: child/target 1006 * 3: xattr 1007 * 4: second non-directory 1008 * 5: second parent (when locking independent directories in rename) 1009 * 1010 * I_MUTEX_NONDIR2 is for certain operations (such as rename) which lock two 1011 * non-directories at once. 1012 * 1013 * The locking order between these classes is 1014 * parent[2] -> child -> grandchild -> normal -> xattr -> second non-directory 1015 */ 1016 enum inode_i_mutex_lock_class 1017 { 1018 I_MUTEX_NORMAL, 1019 I_MUTEX_PARENT, 1020 I_MUTEX_CHILD, 1021 I_MUTEX_XATTR, 1022 I_MUTEX_NONDIR2, 1023 I_MUTEX_PARENT2, 1024 }; 1025 1026 static inline void inode_lock(struct inode *inode) 1027 { 1028 down_write(&inode->i_rwsem); 1029 } 1030 1031 static inline __must_check int inode_lock_killable(struct inode *inode) 1032 { 1033 return down_write_killable(&inode->i_rwsem); 1034 } 1035 1036 static inline void inode_unlock(struct inode *inode) 1037 { 1038 up_write(&inode->i_rwsem); 1039 } 1040 1041 static inline void inode_lock_shared(struct inode *inode) 1042 { 1043 down_read(&inode->i_rwsem); 1044 } 1045 1046 static inline __must_check int inode_lock_shared_killable(struct inode *inode) 1047 { 1048 return down_read_killable(&inode->i_rwsem); 1049 } 1050 1051 static inline void inode_unlock_shared(struct inode *inode) 1052 { 1053 up_read(&inode->i_rwsem); 1054 } 1055 1056 static inline int inode_trylock(struct inode *inode) 1057 { 1058 return down_write_trylock(&inode->i_rwsem); 1059 } 1060 1061 static inline int inode_trylock_shared(struct inode *inode) 1062 { 1063 return down_read_trylock(&inode->i_rwsem); 1064 } 1065 1066 static inline int inode_is_locked(struct inode *inode) 1067 { 1068 return rwsem_is_locked(&inode->i_rwsem); 1069 } 1070 1071 static inline void inode_lock_nested(struct inode *inode, unsigned subclass) 1072 { 1073 down_write_nested(&inode->i_rwsem, subclass); 1074 } 1075 1076 static inline void inode_lock_shared_nested(struct inode *inode, unsigned subclass) 1077 { 1078 down_read_nested(&inode->i_rwsem, subclass); 1079 } 1080 1081 static inline void filemap_invalidate_lock(struct address_space *mapping) 1082 { 1083 down_write(&mapping->invalidate_lock); 1084 } 1085 1086 static inline void filemap_invalidate_unlock(struct address_space *mapping) 1087 { 1088 up_write(&mapping->invalidate_lock); 1089 } 1090 1091 static inline void filemap_invalidate_lock_shared(struct address_space *mapping) 1092 { 1093 down_read(&mapping->invalidate_lock); 1094 } 1095 1096 static inline int filemap_invalidate_trylock_shared( 1097 struct address_space *mapping) 1098 { 1099 return down_read_trylock(&mapping->invalidate_lock); 1100 } 1101 1102 static inline void filemap_invalidate_unlock_shared( 1103 struct address_space *mapping) 1104 { 1105 up_read(&mapping->invalidate_lock); 1106 } 1107 1108 void lock_two_nondirectories(struct inode *, struct inode*); 1109 void unlock_two_nondirectories(struct inode *, struct inode*); 1110 1111 void filemap_invalidate_lock_two(struct address_space *mapping1, 1112 struct address_space *mapping2); 1113 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1114 struct address_space *mapping2); 1115 1116 1117 /* 1118 * NOTE: in a 32bit arch with a preemptable kernel and 1119 * an UP compile the i_size_read/write must be atomic 1120 * with respect to the local cpu (unlike with preempt disabled), 1121 * but they don't need to be atomic with respect to other cpus like in 1122 * true SMP (so they need either to either locally disable irq around 1123 * the read or for example on x86 they can be still implemented as a 1124 * cmpxchg8b without the need of the lock prefix). For SMP compiles 1125 * and 64bit archs it makes no difference if preempt is enabled or not. 1126 */ 1127 static inline loff_t i_size_read(const struct inode *inode) 1128 { 1129 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 1130 loff_t i_size; 1131 unsigned int seq; 1132 1133 do { 1134 seq = read_seqcount_begin(&inode->i_size_seqcount); 1135 i_size = inode->i_size; 1136 } while (read_seqcount_retry(&inode->i_size_seqcount, seq)); 1137 return i_size; 1138 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 1139 loff_t i_size; 1140 1141 preempt_disable(); 1142 i_size = inode->i_size; 1143 preempt_enable(); 1144 return i_size; 1145 #else 1146 /* Pairs with smp_store_release() in i_size_write() */ 1147 return smp_load_acquire(&inode->i_size); 1148 #endif 1149 } 1150 1151 /* 1152 * NOTE: unlike i_size_read(), i_size_write() does need locking around it 1153 * (normally i_rwsem), otherwise on 32bit/SMP an update of i_size_seqcount 1154 * can be lost, resulting in subsequent i_size_read() calls spinning forever. 1155 */ 1156 static inline void i_size_write(struct inode *inode, loff_t i_size) 1157 { 1158 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 1159 preempt_disable(); 1160 write_seqcount_begin(&inode->i_size_seqcount); 1161 inode->i_size = i_size; 1162 write_seqcount_end(&inode->i_size_seqcount); 1163 preempt_enable(); 1164 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 1165 preempt_disable(); 1166 inode->i_size = i_size; 1167 preempt_enable(); 1168 #else 1169 /* 1170 * Pairs with smp_load_acquire() in i_size_read() to ensure 1171 * changes related to inode size (such as page contents) are 1172 * visible before we see the changed inode size. 1173 */ 1174 smp_store_release(&inode->i_size, i_size); 1175 #endif 1176 } 1177 1178 static inline unsigned iminor(const struct inode *inode) 1179 { 1180 return MINOR(inode->i_rdev); 1181 } 1182 1183 static inline unsigned imajor(const struct inode *inode) 1184 { 1185 return MAJOR(inode->i_rdev); 1186 } 1187 1188 struct fown_struct { 1189 struct file *file; /* backpointer for security modules */ 1190 rwlock_t lock; /* protects pid, uid, euid fields */ 1191 struct pid *pid; /* pid or -pgrp where SIGIO should be sent */ 1192 enum pid_type pid_type; /* Kind of process group SIGIO should be sent to */ 1193 kuid_t uid, euid; /* uid/euid of process setting the owner */ 1194 int signum; /* posix.1b rt signal to be delivered on IO */ 1195 }; 1196 1197 /** 1198 * struct file_ra_state - Track a file's readahead state. 1199 * @start: Where the most recent readahead started. 1200 * @size: Number of pages read in the most recent readahead. 1201 * @async_size: Numer of pages that were/are not needed immediately 1202 * and so were/are genuinely "ahead". Start next readahead when 1203 * the first of these pages is accessed. 1204 * @ra_pages: Maximum size of a readahead request, copied from the bdi. 1205 * @order: Preferred folio order used for most recent readahead. 1206 * @mmap_miss: How many mmap accesses missed in the page cache. 1207 * @prev_pos: The last byte in the most recent read request. 1208 * 1209 * When this structure is passed to ->readahead(), the "most recent" 1210 * readahead means the current readahead. 1211 */ 1212 struct file_ra_state { 1213 pgoff_t start; 1214 unsigned int size; 1215 unsigned int async_size; 1216 unsigned int ra_pages; 1217 unsigned short order; 1218 unsigned short mmap_miss; 1219 loff_t prev_pos; 1220 }; 1221 1222 /* 1223 * Check if @index falls in the readahead windows. 1224 */ 1225 static inline int ra_has_index(struct file_ra_state *ra, pgoff_t index) 1226 { 1227 return (index >= ra->start && 1228 index < ra->start + ra->size); 1229 } 1230 1231 /** 1232 * struct file - Represents a file 1233 * @f_lock: Protects f_ep, f_flags. Must not be taken from IRQ context. 1234 * @f_mode: FMODE_* flags often used in hotpaths 1235 * @f_op: file operations 1236 * @f_mapping: Contents of a cacheable, mappable object. 1237 * @private_data: filesystem or driver specific data 1238 * @f_inode: cached inode 1239 * @f_flags: file flags 1240 * @f_iocb_flags: iocb flags 1241 * @f_cred: stashed credentials of creator/opener 1242 * @f_owner: file owner 1243 * @f_path: path of the file 1244 * @__f_path: writable alias for @f_path; *ONLY* for core VFS and only before 1245 * the file gets open 1246 * @f_pos_lock: lock protecting file position 1247 * @f_pipe: specific to pipes 1248 * @f_pos: file position 1249 * @f_security: LSM security context of this file 1250 * @f_wb_err: writeback error 1251 * @f_sb_err: per sb writeback errors 1252 * @f_ep: link of all epoll hooks for this file 1253 * @f_task_work: task work entry point 1254 * @f_llist: work queue entrypoint 1255 * @f_ra: file's readahead state 1256 * @f_freeptr: Pointer used by SLAB_TYPESAFE_BY_RCU file cache (don't touch.) 1257 * @f_ref: reference count 1258 */ 1259 struct file { 1260 spinlock_t f_lock; 1261 fmode_t f_mode; 1262 const struct file_operations *f_op; 1263 struct address_space *f_mapping; 1264 void *private_data; 1265 struct inode *f_inode; 1266 unsigned int f_flags; 1267 unsigned int f_iocb_flags; 1268 const struct cred *f_cred; 1269 struct fown_struct *f_owner; 1270 /* --- cacheline 1 boundary (64 bytes) --- */ 1271 union { 1272 const struct path f_path; 1273 struct path __f_path; 1274 }; 1275 union { 1276 /* regular files (with FMODE_ATOMIC_POS) and directories */ 1277 struct mutex f_pos_lock; 1278 /* pipes */ 1279 u64 f_pipe; 1280 }; 1281 loff_t f_pos; 1282 #ifdef CONFIG_SECURITY 1283 void *f_security; 1284 #endif 1285 /* --- cacheline 2 boundary (128 bytes) --- */ 1286 errseq_t f_wb_err; 1287 errseq_t f_sb_err; 1288 #ifdef CONFIG_EPOLL 1289 struct hlist_head *f_ep; 1290 #endif 1291 union { 1292 struct callback_head f_task_work; 1293 struct llist_node f_llist; 1294 struct file_ra_state f_ra; 1295 freeptr_t f_freeptr; 1296 }; 1297 file_ref_t f_ref; 1298 /* --- cacheline 3 boundary (192 bytes) --- */ 1299 } __randomize_layout 1300 __attribute__((aligned(4))); /* lest something weird decides that 2 is OK */ 1301 1302 struct file_handle { 1303 __u32 handle_bytes; 1304 int handle_type; 1305 /* file identifier */ 1306 unsigned char f_handle[] __counted_by(handle_bytes); 1307 }; 1308 1309 static inline struct file *get_file(struct file *f) 1310 { 1311 file_ref_inc(&f->f_ref); 1312 return f; 1313 } 1314 1315 struct file *get_file_rcu(struct file __rcu **f); 1316 struct file *get_file_active(struct file **f); 1317 1318 #define file_count(f) file_ref_read(&(f)->f_ref) 1319 1320 #define MAX_NON_LFS ((1UL<<31) - 1) 1321 1322 /* Page cache limit. The filesystems should put that into their s_maxbytes 1323 limits, otherwise bad things can happen in VM. */ 1324 #if BITS_PER_LONG==32 1325 #define MAX_LFS_FILESIZE ((loff_t)ULONG_MAX << PAGE_SHIFT) 1326 #elif BITS_PER_LONG==64 1327 #define MAX_LFS_FILESIZE ((loff_t)LLONG_MAX) 1328 #endif 1329 1330 /* legacy typedef, should eventually be removed */ 1331 typedef void *fl_owner_t; 1332 1333 struct file_lock; 1334 struct file_lease; 1335 1336 /* The following constant reflects the upper bound of the file/locking space */ 1337 #ifndef OFFSET_MAX 1338 #define OFFSET_MAX type_max(loff_t) 1339 #define OFFT_OFFSET_MAX type_max(off_t) 1340 #endif 1341 1342 int file_f_owner_allocate(struct file *file); 1343 static inline struct fown_struct *file_f_owner(const struct file *file) 1344 { 1345 return READ_ONCE(file->f_owner); 1346 } 1347 1348 extern void send_sigio(struct fown_struct *fown, int fd, int band); 1349 1350 static inline struct inode *file_inode(const struct file *f) 1351 { 1352 return f->f_inode; 1353 } 1354 1355 /* 1356 * file_dentry() is a relic from the days that overlayfs was using files with a 1357 * "fake" path, meaning, f_path on overlayfs and f_inode on underlying fs. 1358 * In those days, file_dentry() was needed to get the underlying fs dentry that 1359 * matches f_inode. 1360 * Files with "fake" path should not exist nowadays, so use an assertion to make 1361 * sure that file_dentry() was not papering over filesystem bugs. 1362 */ 1363 static inline struct dentry *file_dentry(const struct file *file) 1364 { 1365 struct dentry *dentry = file->f_path.dentry; 1366 1367 WARN_ON_ONCE(d_inode(dentry) != file_inode(file)); 1368 return dentry; 1369 } 1370 1371 struct fasync_struct { 1372 rwlock_t fa_lock; 1373 int magic; 1374 int fa_fd; 1375 struct fasync_struct *fa_next; /* singly linked list */ 1376 struct file *fa_file; 1377 struct rcu_head fa_rcu; 1378 }; 1379 1380 #define FASYNC_MAGIC 0x4601 1381 1382 /* SMP safe fasync helpers: */ 1383 extern int fasync_helper(int, struct file *, int, struct fasync_struct **); 1384 extern struct fasync_struct *fasync_insert_entry(int, struct file *, struct fasync_struct **, struct fasync_struct *); 1385 extern int fasync_remove_entry(struct file *, struct fasync_struct **); 1386 extern struct fasync_struct *fasync_alloc(void); 1387 extern void fasync_free(struct fasync_struct *); 1388 1389 /* can be called from interrupts */ 1390 extern void kill_fasync(struct fasync_struct **, int, int); 1391 1392 extern void __f_setown(struct file *filp, struct pid *, enum pid_type, int force); 1393 extern int f_setown(struct file *filp, int who, int force); 1394 extern void f_delown(struct file *filp); 1395 extern pid_t f_getown(struct file *filp); 1396 extern int send_sigurg(struct file *file); 1397 1398 /* 1399 * Umount options 1400 */ 1401 1402 #define MNT_FORCE 0x00000001 /* Attempt to forcibily umount */ 1403 #define MNT_DETACH 0x00000002 /* Just detach from the tree */ 1404 #define MNT_EXPIRE 0x00000004 /* Mark for expiry */ 1405 #define UMOUNT_NOFOLLOW 0x00000008 /* Don't follow symlink on umount */ 1406 #define UMOUNT_UNUSED 0x80000000 /* Flag guaranteed to be unused */ 1407 1408 static inline struct user_namespace *i_user_ns(const struct inode *inode) 1409 { 1410 return inode->i_sb->s_user_ns; 1411 } 1412 1413 /* Helper functions so that in most cases filesystems will 1414 * not need to deal directly with kuid_t and kgid_t and can 1415 * instead deal with the raw numeric values that are stored 1416 * in the filesystem. 1417 */ 1418 static inline uid_t i_uid_read(const struct inode *inode) 1419 { 1420 return from_kuid(i_user_ns(inode), inode->i_uid); 1421 } 1422 1423 static inline gid_t i_gid_read(const struct inode *inode) 1424 { 1425 return from_kgid(i_user_ns(inode), inode->i_gid); 1426 } 1427 1428 static inline void i_uid_write(struct inode *inode, uid_t uid) 1429 { 1430 inode->i_uid = make_kuid(i_user_ns(inode), uid); 1431 } 1432 1433 static inline void i_gid_write(struct inode *inode, gid_t gid) 1434 { 1435 inode->i_gid = make_kgid(i_user_ns(inode), gid); 1436 } 1437 1438 /** 1439 * i_uid_into_vfsuid - map an inode's i_uid down according to an idmapping 1440 * @idmap: idmap of the mount the inode was found from 1441 * @inode: inode to map 1442 * 1443 * Return: whe inode's i_uid mapped down according to @idmap. 1444 * If the inode's i_uid has no mapping INVALID_VFSUID is returned. 1445 */ 1446 static inline vfsuid_t i_uid_into_vfsuid(struct mnt_idmap *idmap, 1447 const struct inode *inode) 1448 { 1449 return make_vfsuid(idmap, i_user_ns(inode), inode->i_uid); 1450 } 1451 1452 /** 1453 * i_uid_needs_update - check whether inode's i_uid needs to be updated 1454 * @idmap: idmap of the mount the inode was found from 1455 * @attr: the new attributes of @inode 1456 * @inode: the inode to update 1457 * 1458 * Check whether the $inode's i_uid field needs to be updated taking idmapped 1459 * mounts into account if the filesystem supports it. 1460 * 1461 * Return: true if @inode's i_uid field needs to be updated, false if not. 1462 */ 1463 static inline bool i_uid_needs_update(struct mnt_idmap *idmap, 1464 const struct iattr *attr, 1465 const struct inode *inode) 1466 { 1467 return ((attr->ia_valid & ATTR_UID) && 1468 !vfsuid_eq(attr->ia_vfsuid, 1469 i_uid_into_vfsuid(idmap, inode))); 1470 } 1471 1472 /** 1473 * i_uid_update - update @inode's i_uid field 1474 * @idmap: idmap of the mount the inode was found from 1475 * @attr: the new attributes of @inode 1476 * @inode: the inode to update 1477 * 1478 * Safely update @inode's i_uid field translating the vfsuid of any idmapped 1479 * mount into the filesystem kuid. 1480 */ 1481 static inline void i_uid_update(struct mnt_idmap *idmap, 1482 const struct iattr *attr, 1483 struct inode *inode) 1484 { 1485 if (attr->ia_valid & ATTR_UID) 1486 inode->i_uid = from_vfsuid(idmap, i_user_ns(inode), 1487 attr->ia_vfsuid); 1488 } 1489 1490 /** 1491 * i_gid_into_vfsgid - map an inode's i_gid down according to an idmapping 1492 * @idmap: idmap of the mount the inode was found from 1493 * @inode: inode to map 1494 * 1495 * Return: the inode's i_gid mapped down according to @idmap. 1496 * If the inode's i_gid has no mapping INVALID_VFSGID is returned. 1497 */ 1498 static inline vfsgid_t i_gid_into_vfsgid(struct mnt_idmap *idmap, 1499 const struct inode *inode) 1500 { 1501 return make_vfsgid(idmap, i_user_ns(inode), inode->i_gid); 1502 } 1503 1504 /** 1505 * i_gid_needs_update - check whether inode's i_gid needs to be updated 1506 * @idmap: idmap of the mount the inode was found from 1507 * @attr: the new attributes of @inode 1508 * @inode: the inode to update 1509 * 1510 * Check whether the $inode's i_gid field needs to be updated taking idmapped 1511 * mounts into account if the filesystem supports it. 1512 * 1513 * Return: true if @inode's i_gid field needs to be updated, false if not. 1514 */ 1515 static inline bool i_gid_needs_update(struct mnt_idmap *idmap, 1516 const struct iattr *attr, 1517 const struct inode *inode) 1518 { 1519 return ((attr->ia_valid & ATTR_GID) && 1520 !vfsgid_eq(attr->ia_vfsgid, 1521 i_gid_into_vfsgid(idmap, inode))); 1522 } 1523 1524 /** 1525 * i_gid_update - update @inode's i_gid field 1526 * @idmap: idmap of the mount the inode was found from 1527 * @attr: the new attributes of @inode 1528 * @inode: the inode to update 1529 * 1530 * Safely update @inode's i_gid field translating the vfsgid of any idmapped 1531 * mount into the filesystem kgid. 1532 */ 1533 static inline void i_gid_update(struct mnt_idmap *idmap, 1534 const struct iattr *attr, 1535 struct inode *inode) 1536 { 1537 if (attr->ia_valid & ATTR_GID) 1538 inode->i_gid = from_vfsgid(idmap, i_user_ns(inode), 1539 attr->ia_vfsgid); 1540 } 1541 1542 /** 1543 * inode_fsuid_set - initialize inode's i_uid field with callers fsuid 1544 * @inode: inode to initialize 1545 * @idmap: idmap of the mount the inode was found from 1546 * 1547 * Initialize the i_uid field of @inode. If the inode was found/created via 1548 * an idmapped mount map the caller's fsuid according to @idmap. 1549 */ 1550 static inline void inode_fsuid_set(struct inode *inode, 1551 struct mnt_idmap *idmap) 1552 { 1553 inode->i_uid = mapped_fsuid(idmap, i_user_ns(inode)); 1554 } 1555 1556 /** 1557 * inode_fsgid_set - initialize inode's i_gid field with callers fsgid 1558 * @inode: inode to initialize 1559 * @idmap: idmap of the mount the inode was found from 1560 * 1561 * Initialize the i_gid field of @inode. If the inode was found/created via 1562 * an idmapped mount map the caller's fsgid according to @idmap. 1563 */ 1564 static inline void inode_fsgid_set(struct inode *inode, 1565 struct mnt_idmap *idmap) 1566 { 1567 inode->i_gid = mapped_fsgid(idmap, i_user_ns(inode)); 1568 } 1569 1570 /** 1571 * fsuidgid_has_mapping() - check whether caller's fsuid/fsgid is mapped 1572 * @sb: the superblock we want a mapping in 1573 * @idmap: idmap of the relevant mount 1574 * 1575 * Check whether the caller's fsuid and fsgid have a valid mapping in the 1576 * s_user_ns of the superblock @sb. If the caller is on an idmapped mount map 1577 * the caller's fsuid and fsgid according to the @idmap first. 1578 * 1579 * Return: true if fsuid and fsgid is mapped, false if not. 1580 */ 1581 static inline bool fsuidgid_has_mapping(struct super_block *sb, 1582 struct mnt_idmap *idmap) 1583 { 1584 struct user_namespace *fs_userns = sb->s_user_ns; 1585 kuid_t kuid; 1586 kgid_t kgid; 1587 1588 kuid = mapped_fsuid(idmap, fs_userns); 1589 if (!uid_valid(kuid)) 1590 return false; 1591 kgid = mapped_fsgid(idmap, fs_userns); 1592 if (!gid_valid(kgid)) 1593 return false; 1594 return kuid_has_mapping(fs_userns, kuid) && 1595 kgid_has_mapping(fs_userns, kgid); 1596 } 1597 1598 struct timespec64 current_time(struct inode *inode); 1599 struct timespec64 inode_set_ctime_current(struct inode *inode); 1600 struct timespec64 inode_set_ctime_deleg(struct inode *inode, 1601 struct timespec64 update); 1602 1603 static inline time64_t inode_get_atime_sec(const struct inode *inode) 1604 { 1605 return inode->i_atime_sec; 1606 } 1607 1608 static inline long inode_get_atime_nsec(const struct inode *inode) 1609 { 1610 return inode->i_atime_nsec; 1611 } 1612 1613 static inline struct timespec64 inode_get_atime(const struct inode *inode) 1614 { 1615 struct timespec64 ts = { .tv_sec = inode_get_atime_sec(inode), 1616 .tv_nsec = inode_get_atime_nsec(inode) }; 1617 1618 return ts; 1619 } 1620 1621 static inline struct timespec64 inode_set_atime_to_ts(struct inode *inode, 1622 struct timespec64 ts) 1623 { 1624 inode->i_atime_sec = ts.tv_sec; 1625 inode->i_atime_nsec = ts.tv_nsec; 1626 return ts; 1627 } 1628 1629 static inline struct timespec64 inode_set_atime(struct inode *inode, 1630 time64_t sec, long nsec) 1631 { 1632 struct timespec64 ts = { .tv_sec = sec, 1633 .tv_nsec = nsec }; 1634 1635 return inode_set_atime_to_ts(inode, ts); 1636 } 1637 1638 static inline time64_t inode_get_mtime_sec(const struct inode *inode) 1639 { 1640 return inode->i_mtime_sec; 1641 } 1642 1643 static inline long inode_get_mtime_nsec(const struct inode *inode) 1644 { 1645 return inode->i_mtime_nsec; 1646 } 1647 1648 static inline struct timespec64 inode_get_mtime(const struct inode *inode) 1649 { 1650 struct timespec64 ts = { .tv_sec = inode_get_mtime_sec(inode), 1651 .tv_nsec = inode_get_mtime_nsec(inode) }; 1652 return ts; 1653 } 1654 1655 static inline struct timespec64 inode_set_mtime_to_ts(struct inode *inode, 1656 struct timespec64 ts) 1657 { 1658 inode->i_mtime_sec = ts.tv_sec; 1659 inode->i_mtime_nsec = ts.tv_nsec; 1660 return ts; 1661 } 1662 1663 static inline struct timespec64 inode_set_mtime(struct inode *inode, 1664 time64_t sec, long nsec) 1665 { 1666 struct timespec64 ts = { .tv_sec = sec, 1667 .tv_nsec = nsec }; 1668 return inode_set_mtime_to_ts(inode, ts); 1669 } 1670 1671 /* 1672 * Multigrain timestamps 1673 * 1674 * Conditionally use fine-grained ctime and mtime timestamps when there 1675 * are users actively observing them via getattr. The primary use-case 1676 * for this is NFS clients that use the ctime to distinguish between 1677 * different states of the file, and that are often fooled by multiple 1678 * operations that occur in the same coarse-grained timer tick. 1679 */ 1680 #define I_CTIME_QUERIED ((u32)BIT(31)) 1681 1682 static inline time64_t inode_get_ctime_sec(const struct inode *inode) 1683 { 1684 return inode->i_ctime_sec; 1685 } 1686 1687 static inline long inode_get_ctime_nsec(const struct inode *inode) 1688 { 1689 return inode->i_ctime_nsec & ~I_CTIME_QUERIED; 1690 } 1691 1692 static inline struct timespec64 inode_get_ctime(const struct inode *inode) 1693 { 1694 struct timespec64 ts = { .tv_sec = inode_get_ctime_sec(inode), 1695 .tv_nsec = inode_get_ctime_nsec(inode) }; 1696 1697 return ts; 1698 } 1699 1700 struct timespec64 inode_set_ctime_to_ts(struct inode *inode, struct timespec64 ts); 1701 1702 /** 1703 * inode_set_ctime - set the ctime in the inode 1704 * @inode: inode in which to set the ctime 1705 * @sec: tv_sec value to set 1706 * @nsec: tv_nsec value to set 1707 * 1708 * Set the ctime in @inode to { @sec, @nsec } 1709 */ 1710 static inline struct timespec64 inode_set_ctime(struct inode *inode, 1711 time64_t sec, long nsec) 1712 { 1713 struct timespec64 ts = { .tv_sec = sec, 1714 .tv_nsec = nsec }; 1715 1716 return inode_set_ctime_to_ts(inode, ts); 1717 } 1718 1719 struct timespec64 simple_inode_init_ts(struct inode *inode); 1720 1721 static inline int inode_time_dirty_flag(struct inode *inode) 1722 { 1723 if (inode->i_sb->s_flags & SB_LAZYTIME) 1724 return I_DIRTY_TIME; 1725 return I_DIRTY_SYNC; 1726 } 1727 1728 /* 1729 * Snapshotting support. 1730 */ 1731 1732 /** 1733 * file_write_started - check if SB_FREEZE_WRITE is held 1734 * @file: the file we write to 1735 * 1736 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1737 * May be false positive with !S_ISREG, because file_start_write() has 1738 * no effect on !S_ISREG. 1739 */ 1740 static inline bool file_write_started(const struct file *file) 1741 { 1742 if (!S_ISREG(file_inode(file)->i_mode)) 1743 return true; 1744 return sb_write_started(file_inode(file)->i_sb); 1745 } 1746 1747 /** 1748 * file_write_not_started - check if SB_FREEZE_WRITE is not held 1749 * @file: the file we write to 1750 * 1751 * May be false positive with !CONFIG_LOCKDEP/LOCK_STATE_UNKNOWN. 1752 * May be false positive with !S_ISREG, because file_start_write() has 1753 * no effect on !S_ISREG. 1754 */ 1755 static inline bool file_write_not_started(const struct file *file) 1756 { 1757 if (!S_ISREG(file_inode(file)->i_mode)) 1758 return true; 1759 return sb_write_not_started(file_inode(file)->i_sb); 1760 } 1761 1762 bool inode_owner_or_capable(struct mnt_idmap *idmap, 1763 const struct inode *inode); 1764 1765 /* 1766 * VFS helper functions.. 1767 */ 1768 int vfs_create(struct mnt_idmap *, struct dentry *, umode_t, 1769 struct delegated_inode *); 1770 struct dentry *vfs_mkdir(struct mnt_idmap *, struct inode *, 1771 struct dentry *, umode_t, struct delegated_inode *); 1772 int vfs_mknod(struct mnt_idmap *, struct inode *, struct dentry *, 1773 umode_t, dev_t, struct delegated_inode *); 1774 int vfs_symlink(struct mnt_idmap *, struct inode *, 1775 struct dentry *, const char *, struct delegated_inode *); 1776 int vfs_link(struct dentry *, struct mnt_idmap *, struct inode *, 1777 struct dentry *, struct delegated_inode *); 1778 int vfs_rmdir(struct mnt_idmap *, struct inode *, struct dentry *, 1779 struct delegated_inode *); 1780 int vfs_unlink(struct mnt_idmap *, struct inode *, struct dentry *, 1781 struct delegated_inode *); 1782 1783 /** 1784 * struct renamedata - contains all information required for renaming 1785 * @mnt_idmap: idmap of the mount in which the rename is happening. 1786 * @old_parent: parent of source 1787 * @old_dentry: source 1788 * @new_parent: parent of destination 1789 * @new_dentry: destination 1790 * @delegated_inode: returns an inode needing a delegation break 1791 * @flags: rename flags 1792 */ 1793 struct renamedata { 1794 struct mnt_idmap *mnt_idmap; 1795 struct dentry *old_parent; 1796 struct dentry *old_dentry; 1797 struct dentry *new_parent; 1798 struct dentry *new_dentry; 1799 struct delegated_inode *delegated_inode; 1800 unsigned int flags; 1801 } __randomize_layout; 1802 1803 int vfs_rename(struct renamedata *); 1804 1805 static inline int vfs_whiteout(struct mnt_idmap *idmap, 1806 struct inode *dir, struct dentry *dentry) 1807 { 1808 return vfs_mknod(idmap, dir, dentry, S_IFCHR | WHITEOUT_MODE, 1809 WHITEOUT_DEV, NULL); 1810 } 1811 1812 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap, 1813 const struct path *parentpath, 1814 umode_t mode, int open_flag, 1815 const struct cred *cred); 1816 struct file *kernel_file_open(const struct path *path, int flags, 1817 const struct cred *cred); 1818 1819 int vfs_mkobj(struct dentry *, umode_t, 1820 int (*f)(struct dentry *, umode_t, void *), 1821 void *); 1822 1823 int vfs_fchown(struct file *file, uid_t user, gid_t group); 1824 int vfs_fchmod(struct file *file, umode_t mode); 1825 int vfs_utimes(const struct path *path, struct timespec64 *times); 1826 1827 #ifdef CONFIG_COMPAT 1828 extern long compat_ptr_ioctl(struct file *file, unsigned int cmd, 1829 unsigned long arg); 1830 #else 1831 #define compat_ptr_ioctl NULL 1832 #endif 1833 1834 /* 1835 * VFS file helper functions. 1836 */ 1837 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, 1838 const struct inode *dir, umode_t mode); 1839 extern bool may_open_dev(const struct path *path); 1840 umode_t mode_strip_sgid(struct mnt_idmap *idmap, 1841 const struct inode *dir, umode_t mode); 1842 bool in_group_or_capable(struct mnt_idmap *idmap, 1843 const struct inode *inode, vfsgid_t vfsgid); 1844 1845 /* 1846 * This is the "filldir" function type, used by readdir() to let 1847 * the kernel specify what kind of dirent layout it wants to have. 1848 * This allows the kernel to read directories into kernel space or 1849 * to have different dirent layouts depending on the binary type. 1850 * Return 'true' to keep going and 'false' if there are no more entries. 1851 */ 1852 struct dir_context; 1853 typedef bool (*filldir_t)(struct dir_context *, const char *, int, loff_t, u64, 1854 unsigned); 1855 1856 struct dir_context { 1857 filldir_t actor; 1858 loff_t pos; 1859 /* 1860 * Filesystems MUST NOT MODIFY count, but may use as a hint: 1861 * 0 unknown 1862 * > 0 space in buffer (assume at least one entry) 1863 * INT_MAX unlimited 1864 */ 1865 int count; 1866 /* @actor supports these flags in d_type high bits */ 1867 unsigned int dt_flags_mask; 1868 }; 1869 1870 /* If OR-ed with d_type, pending signals are not checked */ 1871 #define FILLDIR_FLAG_NOINTR 0x1000 1872 1873 /* 1874 * These flags let !MMU mmap() govern direct device mapping vs immediate 1875 * copying more easily for MAP_PRIVATE, especially for ROM filesystems. 1876 * 1877 * NOMMU_MAP_COPY: Copy can be mapped (MAP_PRIVATE) 1878 * NOMMU_MAP_DIRECT: Can be mapped directly (MAP_SHARED) 1879 * NOMMU_MAP_READ: Can be mapped for reading 1880 * NOMMU_MAP_WRITE: Can be mapped for writing 1881 * NOMMU_MAP_EXEC: Can be mapped for execution 1882 */ 1883 #define NOMMU_MAP_COPY 0x00000001 1884 #define NOMMU_MAP_DIRECT 0x00000008 1885 #define NOMMU_MAP_READ VM_MAYREAD 1886 #define NOMMU_MAP_WRITE VM_MAYWRITE 1887 #define NOMMU_MAP_EXEC VM_MAYEXEC 1888 1889 #define NOMMU_VMFLAGS \ 1890 (NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC) 1891 1892 /* 1893 * These flags control the behavior of the remap_file_range function pointer. 1894 * If it is called with len == 0 that means "remap to end of source file". 1895 * See Documentation/filesystems/vfs.rst for more details about this call. 1896 * 1897 * REMAP_FILE_DEDUP: only remap if contents identical (i.e. deduplicate) 1898 * REMAP_FILE_CAN_SHORTEN: caller can handle a shortened request 1899 */ 1900 #define REMAP_FILE_DEDUP (1 << 0) 1901 #define REMAP_FILE_CAN_SHORTEN (1 << 1) 1902 1903 /* 1904 * These flags signal that the caller is ok with altering various aspects of 1905 * the behavior of the remap operation. The changes must be made by the 1906 * implementation; the vfs remap helper functions can take advantage of them. 1907 * Flags in this category exist to preserve the quirky behavior of the hoisted 1908 * btrfs clone/dedupe ioctls. 1909 */ 1910 #define REMAP_FILE_ADVISORY (REMAP_FILE_CAN_SHORTEN) 1911 1912 /* 1913 * These flags control the behavior of vfs_copy_file_range(). 1914 * They are not available to the user via syscall. 1915 * 1916 * COPY_FILE_SPLICE: call splice direct instead of fs clone/copy ops 1917 */ 1918 #define COPY_FILE_SPLICE (1 << 0) 1919 1920 struct iov_iter; 1921 struct io_uring_cmd; 1922 struct offset_ctx; 1923 1924 typedef unsigned int __bitwise fop_flags_t; 1925 1926 struct file_operations { 1927 struct module *owner; 1928 fop_flags_t fop_flags; 1929 loff_t (*llseek) (struct file *, loff_t, int); 1930 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *); 1931 ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *); 1932 ssize_t (*read_iter) (struct kiocb *, struct iov_iter *); 1933 ssize_t (*write_iter) (struct kiocb *, struct iov_iter *); 1934 int (*iopoll)(struct kiocb *kiocb, struct io_comp_batch *, 1935 unsigned int flags); 1936 int (*iterate_shared) (struct file *, struct dir_context *); 1937 __poll_t (*poll) (struct file *, struct poll_table_struct *); 1938 long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long); 1939 long (*compat_ioctl) (struct file *, unsigned int, unsigned long); 1940 int (*mmap) (struct file *, struct vm_area_struct *); 1941 int (*open) (struct inode *, struct file *); 1942 int (*flush) (struct file *, fl_owner_t id); 1943 int (*release) (struct inode *, struct file *); 1944 int (*fsync) (struct file *, loff_t, loff_t, int datasync); 1945 int (*fasync) (int, struct file *, int); 1946 int (*lock) (struct file *, int, struct file_lock *); 1947 unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1948 int (*check_flags)(int); 1949 int (*flock) (struct file *, int, struct file_lock *); 1950 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int); 1951 ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int); 1952 void (*splice_eof)(struct file *file); 1953 int (*setlease)(struct file *, int, struct file_lease **, void **); 1954 long (*fallocate)(struct file *file, int mode, loff_t offset, 1955 loff_t len); 1956 void (*show_fdinfo)(struct seq_file *m, struct file *f); 1957 #ifndef CONFIG_MMU 1958 unsigned (*mmap_capabilities)(struct file *); 1959 #endif 1960 ssize_t (*copy_file_range)(struct file *, loff_t, struct file *, 1961 loff_t, size_t, unsigned int); 1962 loff_t (*remap_file_range)(struct file *file_in, loff_t pos_in, 1963 struct file *file_out, loff_t pos_out, 1964 loff_t len, unsigned int remap_flags); 1965 int (*fadvise)(struct file *, loff_t, loff_t, int); 1966 int (*uring_cmd)(struct io_uring_cmd *ioucmd, unsigned int issue_flags); 1967 int (*uring_cmd_iopoll)(struct io_uring_cmd *, struct io_comp_batch *, 1968 unsigned int poll_flags); 1969 int (*mmap_prepare)(struct vm_area_desc *); 1970 } __randomize_layout; 1971 1972 /* Supports async buffered reads */ 1973 #define FOP_BUFFER_RASYNC ((__force fop_flags_t)(1 << 0)) 1974 /* Supports async buffered writes */ 1975 #define FOP_BUFFER_WASYNC ((__force fop_flags_t)(1 << 1)) 1976 /* Supports synchronous page faults for mappings */ 1977 #define FOP_MMAP_SYNC ((__force fop_flags_t)(1 << 2)) 1978 /* Supports non-exclusive O_DIRECT writes from multiple threads */ 1979 #define FOP_DIO_PARALLEL_WRITE ((__force fop_flags_t)(1 << 3)) 1980 /* Contains huge pages */ 1981 #define FOP_HUGE_PAGES ((__force fop_flags_t)(1 << 4)) 1982 /* Treat loff_t as unsigned (e.g., /dev/mem) */ 1983 #define FOP_UNSIGNED_OFFSET ((__force fop_flags_t)(1 << 5)) 1984 /* Supports asynchronous lock callbacks */ 1985 #define FOP_ASYNC_LOCK ((__force fop_flags_t)(1 << 6)) 1986 /* File system supports uncached read/write buffered IO */ 1987 #define FOP_DONTCACHE ((__force fop_flags_t)(1 << 7)) 1988 1989 /* Wrap a directory iterator that needs exclusive inode access */ 1990 int wrap_directory_iterator(struct file *, struct dir_context *, 1991 int (*) (struct file *, struct dir_context *)); 1992 #define WRAP_DIR_ITER(x) \ 1993 static int shared_##x(struct file *file , struct dir_context *ctx) \ 1994 { return wrap_directory_iterator(file, ctx, x); } 1995 1996 enum fs_update_time { 1997 FS_UPD_ATIME, 1998 FS_UPD_CMTIME, 1999 }; 2000 2001 struct inode_operations { 2002 struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int); 2003 const char * (*get_link) (struct dentry *, struct inode *, struct delayed_call *); 2004 int (*permission) (struct mnt_idmap *, struct inode *, int); 2005 struct posix_acl * (*get_inode_acl)(struct inode *, int, bool); 2006 2007 int (*readlink) (struct dentry *, char __user *,int); 2008 2009 int (*create) (struct mnt_idmap *, struct inode *,struct dentry *, 2010 umode_t, bool); 2011 int (*link) (struct dentry *,struct inode *,struct dentry *); 2012 int (*unlink) (struct inode *,struct dentry *); 2013 int (*symlink) (struct mnt_idmap *, struct inode *,struct dentry *, 2014 const char *); 2015 struct dentry *(*mkdir) (struct mnt_idmap *, struct inode *, 2016 struct dentry *, umode_t); 2017 int (*rmdir) (struct inode *,struct dentry *); 2018 int (*mknod) (struct mnt_idmap *, struct inode *,struct dentry *, 2019 umode_t,dev_t); 2020 int (*rename) (struct mnt_idmap *, struct inode *, struct dentry *, 2021 struct inode *, struct dentry *, unsigned int); 2022 int (*setattr) (struct mnt_idmap *, struct dentry *, struct iattr *); 2023 int (*getattr) (struct mnt_idmap *, const struct path *, 2024 struct kstat *, u32, unsigned int); 2025 ssize_t (*listxattr) (struct dentry *, char *, size_t); 2026 int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start, 2027 u64 len); 2028 int (*update_time)(struct inode *inode, enum fs_update_time type, 2029 unsigned int flags); 2030 void (*sync_lazytime)(struct inode *inode); 2031 int (*atomic_open)(struct inode *, struct dentry *, 2032 struct file *, unsigned open_flag, 2033 umode_t create_mode); 2034 int (*tmpfile) (struct mnt_idmap *, struct inode *, 2035 struct file *, umode_t); 2036 struct posix_acl *(*get_acl)(struct mnt_idmap *, struct dentry *, 2037 int); 2038 int (*set_acl)(struct mnt_idmap *, struct dentry *, 2039 struct posix_acl *, int); 2040 int (*fileattr_set)(struct mnt_idmap *idmap, 2041 struct dentry *dentry, struct file_kattr *fa); 2042 int (*fileattr_get)(struct dentry *dentry, struct file_kattr *fa); 2043 struct offset_ctx *(*get_offset_ctx)(struct inode *inode); 2044 } ____cacheline_aligned; 2045 2046 /* Did the driver provide valid mmap hook configuration? */ 2047 static inline bool can_mmap_file(struct file *file) 2048 { 2049 bool has_mmap = file->f_op->mmap; 2050 bool has_mmap_prepare = file->f_op->mmap_prepare; 2051 2052 /* Hooks are mutually exclusive. */ 2053 if (WARN_ON_ONCE(has_mmap && has_mmap_prepare)) 2054 return false; 2055 if (!has_mmap && !has_mmap_prepare) 2056 return false; 2057 2058 return true; 2059 } 2060 2061 int __compat_vma_mmap(const struct file_operations *f_op, 2062 struct file *file, struct vm_area_struct *vma); 2063 int compat_vma_mmap(struct file *file, struct vm_area_struct *vma); 2064 2065 static inline int vfs_mmap(struct file *file, struct vm_area_struct *vma) 2066 { 2067 if (file->f_op->mmap_prepare) 2068 return compat_vma_mmap(file, vma); 2069 2070 return file->f_op->mmap(file, vma); 2071 } 2072 2073 static inline int vfs_mmap_prepare(struct file *file, struct vm_area_desc *desc) 2074 { 2075 return file->f_op->mmap_prepare(desc); 2076 } 2077 2078 extern ssize_t vfs_read(struct file *, char __user *, size_t, loff_t *); 2079 extern ssize_t vfs_write(struct file *, const char __user *, size_t, loff_t *); 2080 extern ssize_t vfs_copy_file_range(struct file *, loff_t , struct file *, 2081 loff_t, size_t, unsigned int); 2082 int remap_verify_area(struct file *file, loff_t pos, loff_t len, bool write); 2083 int __generic_remap_file_range_prep(struct file *file_in, loff_t pos_in, 2084 struct file *file_out, loff_t pos_out, 2085 loff_t *len, unsigned int remap_flags, 2086 const struct iomap_ops *dax_read_ops); 2087 int generic_remap_file_range_prep(struct file *file_in, loff_t pos_in, 2088 struct file *file_out, loff_t pos_out, 2089 loff_t *count, unsigned int remap_flags); 2090 extern loff_t vfs_clone_file_range(struct file *file_in, loff_t pos_in, 2091 struct file *file_out, loff_t pos_out, 2092 loff_t len, unsigned int remap_flags); 2093 extern int vfs_dedupe_file_range(struct file *file, 2094 struct file_dedupe_range *same); 2095 extern loff_t vfs_dedupe_file_range_one(struct file *src_file, loff_t src_pos, 2096 struct file *dst_file, loff_t dst_pos, 2097 loff_t len, unsigned int remap_flags); 2098 2099 /* 2100 * Inode flags - they have no relation to superblock flags now 2101 */ 2102 #define S_SYNC (1 << 0) /* Writes are synced at once */ 2103 #define S_NOATIME (1 << 1) /* Do not update access times */ 2104 #define S_APPEND (1 << 2) /* Append-only file */ 2105 #define S_IMMUTABLE (1 << 3) /* Immutable file */ 2106 #define S_DEAD (1 << 4) /* removed, but still open directory */ 2107 #define S_NOQUOTA (1 << 5) /* Inode is not counted to quota */ 2108 #define S_DIRSYNC (1 << 6) /* Directory modifications are synchronous */ 2109 #define S_NOCMTIME (1 << 7) /* Do not update file c/mtime */ 2110 #define S_SWAPFILE (1 << 8) /* Do not truncate: swapon got its bmaps */ 2111 #define S_PRIVATE (1 << 9) /* Inode is fs-internal */ 2112 #define S_IMA (1 << 10) /* Inode has an associated IMA struct */ 2113 #define S_AUTOMOUNT (1 << 11) /* Automount/referral quasi-directory */ 2114 #define S_NOSEC (1 << 12) /* no suid or xattr security attributes */ 2115 #ifdef CONFIG_FS_DAX 2116 #define S_DAX (1 << 13) /* Direct Access, avoiding the page cache */ 2117 #else 2118 #define S_DAX 0 /* Make all the DAX code disappear */ 2119 #endif 2120 #define S_ENCRYPTED (1 << 14) /* Encrypted file (using fs/crypto/) */ 2121 #define S_CASEFOLD (1 << 15) /* Casefolded file */ 2122 #define S_VERITY (1 << 16) /* Verity file (using fs/verity/) */ 2123 #define S_KERNEL_FILE (1 << 17) /* File is in use by the kernel (eg. fs/cachefiles) */ 2124 #define S_ANON_INODE (1 << 19) /* Inode is an anonymous inode */ 2125 2126 /* 2127 * Note that nosuid etc flags are inode-specific: setting some file-system 2128 * flags just means all the inodes inherit those flags by default. It might be 2129 * possible to override it selectively if you really wanted to with some 2130 * ioctl() that is not currently implemented. 2131 * 2132 * Exception: SB_RDONLY is always applied to the entire file system. 2133 * 2134 * Unfortunately, it is possible to change a filesystems flags with it mounted 2135 * with files in use. This means that all of the inodes will not have their 2136 * i_flags updated. Hence, i_flags no longer inherit the superblock mount 2137 * flags, so these have to be checked separately. -- rmk@arm.uk.linux.org 2138 */ 2139 #define __IS_FLG(inode, flg) ((inode)->i_sb->s_flags & (flg)) 2140 2141 #define IS_RDONLY(inode) sb_rdonly((inode)->i_sb) 2142 #define IS_SYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS) || \ 2143 ((inode)->i_flags & S_SYNC)) 2144 #define IS_DIRSYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS|SB_DIRSYNC) || \ 2145 ((inode)->i_flags & (S_SYNC|S_DIRSYNC))) 2146 #define IS_MANDLOCK(inode) __IS_FLG(inode, SB_MANDLOCK) 2147 #define IS_NOATIME(inode) __IS_FLG(inode, SB_RDONLY|SB_NOATIME) 2148 #define IS_I_VERSION(inode) __IS_FLG(inode, SB_I_VERSION) 2149 2150 #define IS_NOQUOTA(inode) ((inode)->i_flags & S_NOQUOTA) 2151 #define IS_APPEND(inode) ((inode)->i_flags & S_APPEND) 2152 #define IS_IMMUTABLE(inode) ((inode)->i_flags & S_IMMUTABLE) 2153 2154 #ifdef CONFIG_FS_POSIX_ACL 2155 #define IS_POSIXACL(inode) __IS_FLG(inode, SB_POSIXACL) 2156 #else 2157 #define IS_POSIXACL(inode) 0 2158 #endif 2159 2160 #define IS_DEADDIR(inode) ((inode)->i_flags & S_DEAD) 2161 #define IS_NOCMTIME(inode) ((inode)->i_flags & S_NOCMTIME) 2162 2163 #ifdef CONFIG_SWAP 2164 #define IS_SWAPFILE(inode) ((inode)->i_flags & S_SWAPFILE) 2165 #else 2166 #define IS_SWAPFILE(inode) ((void)(inode), 0U) 2167 #endif 2168 2169 #define IS_PRIVATE(inode) ((inode)->i_flags & S_PRIVATE) 2170 #define IS_IMA(inode) ((inode)->i_flags & S_IMA) 2171 #define IS_AUTOMOUNT(inode) ((inode)->i_flags & S_AUTOMOUNT) 2172 #define IS_NOSEC(inode) ((inode)->i_flags & S_NOSEC) 2173 #define IS_DAX(inode) ((inode)->i_flags & S_DAX) 2174 #define IS_ENCRYPTED(inode) ((inode)->i_flags & S_ENCRYPTED) 2175 #define IS_CASEFOLDED(inode) ((inode)->i_flags & S_CASEFOLD) 2176 #define IS_VERITY(inode) ((inode)->i_flags & S_VERITY) 2177 2178 #define IS_WHITEOUT(inode) (S_ISCHR(inode->i_mode) && \ 2179 (inode)->i_rdev == WHITEOUT_DEV) 2180 #define IS_ANON_FILE(inode) ((inode)->i_flags & S_ANON_INODE) 2181 2182 static inline bool HAS_UNMAPPED_ID(struct mnt_idmap *idmap, 2183 struct inode *inode) 2184 { 2185 return !vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 2186 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)); 2187 } 2188 2189 static inline void init_sync_kiocb(struct kiocb *kiocb, struct file *filp) 2190 { 2191 *kiocb = (struct kiocb) { 2192 .ki_filp = filp, 2193 .ki_flags = filp->f_iocb_flags, 2194 .ki_ioprio = get_current_ioprio(), 2195 }; 2196 } 2197 2198 static inline void kiocb_clone(struct kiocb *kiocb, struct kiocb *kiocb_src, 2199 struct file *filp) 2200 { 2201 *kiocb = (struct kiocb) { 2202 .ki_filp = filp, 2203 .ki_flags = kiocb_src->ki_flags, 2204 .ki_ioprio = kiocb_src->ki_ioprio, 2205 .ki_pos = kiocb_src->ki_pos, 2206 }; 2207 } 2208 2209 extern void __mark_inode_dirty(struct inode *, int); 2210 static inline void mark_inode_dirty(struct inode *inode) 2211 { 2212 __mark_inode_dirty(inode, I_DIRTY); 2213 } 2214 2215 static inline void mark_inode_dirty_sync(struct inode *inode) 2216 { 2217 __mark_inode_dirty(inode, I_DIRTY_SYNC); 2218 } 2219 2220 static inline int icount_read(const struct inode *inode) 2221 { 2222 return atomic_read(&inode->i_count); 2223 } 2224 2225 /* 2226 * Returns true if the given inode itself only has dirty timestamps (its pages 2227 * may still be dirty) and isn't currently being allocated or freed. 2228 * Filesystems should call this if when writing an inode when lazytime is 2229 * enabled, they want to opportunistically write the timestamps of other inodes 2230 * located very nearby on-disk, e.g. in the same inode block. This returns true 2231 * if the given inode is in need of such an opportunistic update. Requires 2232 * i_lock, or at least later re-checking under i_lock. 2233 */ 2234 static inline bool inode_is_dirtytime_only(struct inode *inode) 2235 { 2236 return (inode_state_read_once(inode) & 2237 (I_DIRTY_TIME | I_NEW | I_FREEING | I_WILL_FREE)) == I_DIRTY_TIME; 2238 } 2239 2240 extern void inc_nlink(struct inode *inode); 2241 extern void drop_nlink(struct inode *inode); 2242 extern void clear_nlink(struct inode *inode); 2243 extern void set_nlink(struct inode *inode, unsigned int nlink); 2244 2245 static inline void inode_inc_link_count(struct inode *inode) 2246 { 2247 inc_nlink(inode); 2248 mark_inode_dirty(inode); 2249 } 2250 2251 static inline void inode_dec_link_count(struct inode *inode) 2252 { 2253 drop_nlink(inode); 2254 mark_inode_dirty(inode); 2255 } 2256 2257 extern bool atime_needs_update(const struct path *, struct inode *); 2258 extern void touch_atime(const struct path *); 2259 2260 static inline void file_accessed(struct file *file) 2261 { 2262 if (!(file->f_flags & O_NOATIME)) 2263 touch_atime(&file->f_path); 2264 } 2265 2266 extern int file_modified(struct file *file); 2267 int kiocb_modified(struct kiocb *iocb); 2268 2269 int sync_inode_metadata(struct inode *inode, int wait); 2270 2271 struct file_system_type { 2272 const char *name; 2273 int fs_flags; 2274 #define FS_REQUIRES_DEV 1 2275 #define FS_BINARY_MOUNTDATA 2 2276 #define FS_HAS_SUBTYPE 4 2277 #define FS_USERNS_MOUNT 8 /* Can be mounted by userns root */ 2278 #define FS_DISALLOW_NOTIFY_PERM 16 /* Disable fanotify permission events */ 2279 #define FS_ALLOW_IDMAP 32 /* FS has been updated to handle vfs idmappings. */ 2280 #define FS_MGTIME 64 /* FS uses multigrain timestamps */ 2281 #define FS_LBS 128 /* FS supports LBS */ 2282 #define FS_POWER_FREEZE 256 /* Always freeze on suspend/hibernate */ 2283 #define FS_RENAME_DOES_D_MOVE 32768 /* FS will handle d_move() during rename() internally. */ 2284 int (*init_fs_context)(struct fs_context *); 2285 const struct fs_parameter_spec *parameters; 2286 void (*kill_sb) (struct super_block *); 2287 struct module *owner; 2288 struct file_system_type * next; 2289 struct hlist_head fs_supers; 2290 2291 struct lock_class_key s_lock_key; 2292 struct lock_class_key s_umount_key; 2293 struct lock_class_key s_vfs_rename_key; 2294 struct lock_class_key s_writers_key[SB_FREEZE_LEVELS]; 2295 2296 struct lock_class_key i_lock_key; 2297 struct lock_class_key i_mutex_key; 2298 struct lock_class_key invalidate_lock_key; 2299 struct lock_class_key i_mutex_dir_key; 2300 }; 2301 2302 #define MODULE_ALIAS_FS(NAME) MODULE_ALIAS("fs-" NAME) 2303 2304 /** 2305 * is_mgtime: is this inode using multigrain timestamps 2306 * @inode: inode to test for multigrain timestamps 2307 * 2308 * Return true if the inode uses multigrain timestamps, false otherwise. 2309 */ 2310 static inline bool is_mgtime(const struct inode *inode) 2311 { 2312 return inode->i_opflags & IOP_MGTIME; 2313 } 2314 2315 extern struct dentry *mount_subtree(struct vfsmount *mnt, const char *path); 2316 void retire_super(struct super_block *sb); 2317 void generic_shutdown_super(struct super_block *sb); 2318 void kill_block_super(struct super_block *sb); 2319 void kill_anon_super(struct super_block *sb); 2320 void deactivate_super(struct super_block *sb); 2321 void deactivate_locked_super(struct super_block *sb); 2322 int set_anon_super(struct super_block *s, void *data); 2323 int set_anon_super_fc(struct super_block *s, struct fs_context *fc); 2324 int get_anon_bdev(dev_t *); 2325 void free_anon_bdev(dev_t); 2326 struct super_block *sget_fc(struct fs_context *fc, 2327 int (*test)(struct super_block *, struct fs_context *), 2328 int (*set)(struct super_block *, struct fs_context *)); 2329 struct super_block *sget(struct file_system_type *type, 2330 int (*test)(struct super_block *,void *), 2331 int (*set)(struct super_block *,void *), 2332 int flags, void *data); 2333 struct super_block *sget_dev(struct fs_context *fc, dev_t dev); 2334 2335 /* Alas, no aliases. Too much hassle with bringing module.h everywhere */ 2336 #define fops_get(fops) ({ \ 2337 const struct file_operations *_fops = (fops); \ 2338 (((_fops) && try_module_get((_fops)->owner) ? (_fops) : NULL)); \ 2339 }) 2340 2341 #define fops_put(fops) ({ \ 2342 const struct file_operations *_fops = (fops); \ 2343 if (_fops) \ 2344 module_put((_fops)->owner); \ 2345 }) 2346 2347 /* 2348 * This one is to be used *ONLY* from ->open() instances. 2349 * fops must be non-NULL, pinned down *and* module dependencies 2350 * should be sufficient to pin the caller down as well. 2351 */ 2352 #define replace_fops(f, fops) \ 2353 do { \ 2354 struct file *__file = (f); \ 2355 fops_put(__file->f_op); \ 2356 BUG_ON(!(__file->f_op = (fops))); \ 2357 } while(0) 2358 2359 extern int register_filesystem(struct file_system_type *); 2360 extern int unregister_filesystem(struct file_system_type *); 2361 extern int vfs_statfs(const struct path *, struct kstatfs *); 2362 extern int user_statfs(const char __user *, struct kstatfs *); 2363 extern int fd_statfs(int, struct kstatfs *); 2364 extern __printf(2, 3) 2365 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...); 2366 extern int super_setup_bdi(struct super_block *sb); 2367 2368 static inline void super_set_uuid(struct super_block *sb, const u8 *uuid, unsigned len) 2369 { 2370 if (WARN_ON(len > sizeof(sb->s_uuid))) 2371 len = sizeof(sb->s_uuid); 2372 sb->s_uuid_len = len; 2373 memcpy(&sb->s_uuid, uuid, len); 2374 } 2375 2376 /* set sb sysfs name based on sb->s_bdev */ 2377 static inline void super_set_sysfs_name_bdev(struct super_block *sb) 2378 { 2379 snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pg", sb->s_bdev); 2380 } 2381 2382 /* set sb sysfs name based on sb->s_uuid */ 2383 static inline void super_set_sysfs_name_uuid(struct super_block *sb) 2384 { 2385 WARN_ON(sb->s_uuid_len != sizeof(sb->s_uuid)); 2386 snprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), "%pU", sb->s_uuid.b); 2387 } 2388 2389 /* set sb sysfs name based on sb->s_id */ 2390 static inline void super_set_sysfs_name_id(struct super_block *sb) 2391 { 2392 strscpy(sb->s_sysfs_name, sb->s_id, sizeof(sb->s_sysfs_name)); 2393 } 2394 2395 /* try to use something standard before you use this */ 2396 __printf(2, 3) 2397 static inline void super_set_sysfs_name_generic(struct super_block *sb, const char *fmt, ...) 2398 { 2399 va_list args; 2400 2401 va_start(args, fmt); 2402 vsnprintf(sb->s_sysfs_name, sizeof(sb->s_sysfs_name), fmt, args); 2403 va_end(args); 2404 } 2405 2406 extern void ihold(struct inode * inode); 2407 extern void iput(struct inode *); 2408 void iput_not_last(struct inode *); 2409 int inode_update_time(struct inode *inode, enum fs_update_time type, 2410 unsigned int flags); 2411 int generic_update_time(struct inode *inode, enum fs_update_time type, 2412 unsigned int flags); 2413 2414 /* /sys/fs */ 2415 extern struct kobject *fs_kobj; 2416 2417 #define MAX_RW_COUNT (INT_MAX & PAGE_MASK) 2418 2419 /* fs/open.c */ 2420 struct audit_names; 2421 struct filename { 2422 const char *name; /* pointer to actual string */ 2423 const __user char *uptr; /* original userland pointer */ 2424 atomic_t refcnt; 2425 struct audit_names *aname; 2426 const char iname[]; 2427 }; 2428 static_assert(offsetof(struct filename, iname) % sizeof(long) == 0); 2429 2430 static inline struct mnt_idmap *file_mnt_idmap(const struct file *file) 2431 { 2432 return mnt_idmap(file->f_path.mnt); 2433 } 2434 2435 /** 2436 * is_idmapped_mnt - check whether a mount is mapped 2437 * @mnt: the mount to check 2438 * 2439 * If @mnt has an non @nop_mnt_idmap attached to it then @mnt is mapped. 2440 * 2441 * Return: true if mount is mapped, false if not. 2442 */ 2443 static inline bool is_idmapped_mnt(const struct vfsmount *mnt) 2444 { 2445 return mnt_idmap(mnt) != &nop_mnt_idmap; 2446 } 2447 2448 int vfs_truncate(const struct path *, loff_t); 2449 int do_truncate(struct mnt_idmap *, struct dentry *, loff_t start, 2450 unsigned int time_attrs, struct file *filp); 2451 extern int vfs_fallocate(struct file *file, int mode, loff_t offset, 2452 loff_t len); 2453 int do_sys_open(int dfd, const char __user *filename, int flags, 2454 umode_t mode); 2455 extern struct file *file_open_name(struct filename *, int, umode_t); 2456 extern struct file *filp_open(const char *, int, umode_t); 2457 extern struct file *file_open_root(const struct path *, 2458 const char *, int, umode_t); 2459 static inline struct file *file_open_root_mnt(struct vfsmount *mnt, 2460 const char *name, int flags, umode_t mode) 2461 { 2462 return file_open_root(&(struct path){.mnt = mnt, .dentry = mnt->mnt_root}, 2463 name, flags, mode); 2464 } 2465 struct file *dentry_open(const struct path *path, int flags, 2466 const struct cred *creds); 2467 struct file *dentry_open_nonotify(const struct path *path, int flags, 2468 const struct cred *cred); 2469 struct file *dentry_create(struct path *path, int flags, umode_t mode, 2470 const struct cred *cred); 2471 const struct path *backing_file_user_path(const struct file *f); 2472 2473 /* 2474 * When mmapping a file on a stackable filesystem (e.g., overlayfs), the file 2475 * stored in ->vm_file is a backing file whose f_inode is on the underlying 2476 * filesystem. When the mapped file path and inode number are displayed to 2477 * user (e.g. via /proc/<pid>/maps), these helpers should be used to get the 2478 * path and inode number to display to the user, which is the path of the fd 2479 * that user has requested to map and the inode number that would be returned 2480 * by fstat() on that same fd. 2481 */ 2482 /* Get the path to display in /proc/<pid>/maps */ 2483 static inline const struct path *file_user_path(const struct file *f) 2484 { 2485 if (unlikely(f->f_mode & FMODE_BACKING)) 2486 return backing_file_user_path(f); 2487 return &f->f_path; 2488 } 2489 /* Get the inode whose inode number to display in /proc/<pid>/maps */ 2490 static inline const struct inode *file_user_inode(const struct file *f) 2491 { 2492 if (unlikely(f->f_mode & FMODE_BACKING)) 2493 return d_inode(backing_file_user_path(f)->dentry); 2494 return file_inode(f); 2495 } 2496 2497 static inline struct file *file_clone_open(struct file *file) 2498 { 2499 return dentry_open(&file->f_path, file->f_flags, file->f_cred); 2500 } 2501 extern int filp_close(struct file *, fl_owner_t id); 2502 2503 extern struct filename *getname_flags(const char __user *, int); 2504 extern struct filename *getname_uflags(const char __user *, int); 2505 static inline struct filename *getname(const char __user *name) 2506 { 2507 return getname_flags(name, 0); 2508 } 2509 extern struct filename *getname_kernel(const char *); 2510 extern struct filename *__getname_maybe_null(const char __user *); 2511 static inline struct filename *getname_maybe_null(const char __user *name, int flags) 2512 { 2513 if (!(flags & AT_EMPTY_PATH)) 2514 return getname(name); 2515 2516 if (!name) 2517 return NULL; 2518 return __getname_maybe_null(name); 2519 } 2520 extern void putname(struct filename *name); 2521 DEFINE_FREE(putname, struct filename *, if (!IS_ERR_OR_NULL(_T)) putname(_T)) 2522 2523 static inline struct filename *refname(struct filename *name) 2524 { 2525 atomic_inc(&name->refcnt); 2526 return name; 2527 } 2528 2529 extern int finish_open(struct file *file, struct dentry *dentry, 2530 int (*open)(struct inode *, struct file *)); 2531 extern int finish_no_open(struct file *file, struct dentry *dentry); 2532 2533 /* Helper for the simple case when original dentry is used */ 2534 static inline int finish_open_simple(struct file *file, int error) 2535 { 2536 if (error) 2537 return error; 2538 2539 return finish_open(file, file->f_path.dentry, NULL); 2540 } 2541 2542 /* fs/dcache.c */ 2543 extern void __init vfs_caches_init_early(void); 2544 extern void __init vfs_caches_init(void); 2545 2546 extern struct kmem_cache *names_cachep; 2547 2548 #define __getname() kmem_cache_alloc(names_cachep, GFP_KERNEL) 2549 #define __putname(name) kmem_cache_free(names_cachep, (void *)(name)) 2550 2551 void emergency_thaw_all(void); 2552 extern int sync_filesystem(struct super_block *); 2553 extern const struct file_operations def_blk_fops; 2554 extern const struct file_operations def_chr_fops; 2555 2556 /* fs/char_dev.c */ 2557 #define CHRDEV_MAJOR_MAX 512 2558 /* Marks the bottom of the first segment of free char majors */ 2559 #define CHRDEV_MAJOR_DYN_END 234 2560 /* Marks the top and bottom of the second segment of free char majors */ 2561 #define CHRDEV_MAJOR_DYN_EXT_START 511 2562 #define CHRDEV_MAJOR_DYN_EXT_END 384 2563 2564 extern int alloc_chrdev_region(dev_t *, unsigned, unsigned, const char *); 2565 extern int register_chrdev_region(dev_t, unsigned, const char *); 2566 extern int __register_chrdev(unsigned int major, unsigned int baseminor, 2567 unsigned int count, const char *name, 2568 const struct file_operations *fops); 2569 extern void __unregister_chrdev(unsigned int major, unsigned int baseminor, 2570 unsigned int count, const char *name); 2571 extern void unregister_chrdev_region(dev_t, unsigned); 2572 extern void chrdev_show(struct seq_file *,off_t); 2573 2574 static inline int register_chrdev(unsigned int major, const char *name, 2575 const struct file_operations *fops) 2576 { 2577 return __register_chrdev(major, 0, 256, name, fops); 2578 } 2579 2580 static inline void unregister_chrdev(unsigned int major, const char *name) 2581 { 2582 __unregister_chrdev(major, 0, 256, name); 2583 } 2584 2585 extern void init_special_inode(struct inode *, umode_t, dev_t); 2586 2587 /* Invalid inode operations -- fs/bad_inode.c */ 2588 extern void make_bad_inode(struct inode *); 2589 extern bool is_bad_inode(struct inode *); 2590 2591 extern int __must_check file_fdatawait_range(struct file *file, loff_t lstart, 2592 loff_t lend); 2593 extern int __must_check file_check_and_advance_wb_err(struct file *file); 2594 extern int __must_check file_write_and_wait_range(struct file *file, 2595 loff_t start, loff_t end); 2596 int filemap_flush_range(struct address_space *mapping, loff_t start, 2597 loff_t end); 2598 2599 static inline int file_write_and_wait(struct file *file) 2600 { 2601 return file_write_and_wait_range(file, 0, LLONG_MAX); 2602 } 2603 2604 extern int vfs_fsync_range(struct file *file, loff_t start, loff_t end, 2605 int datasync); 2606 extern int vfs_fsync(struct file *file, int datasync); 2607 2608 extern int sync_file_range(struct file *file, loff_t offset, loff_t nbytes, 2609 unsigned int flags); 2610 2611 static inline bool iocb_is_dsync(const struct kiocb *iocb) 2612 { 2613 return (iocb->ki_flags & IOCB_DSYNC) || 2614 IS_SYNC(iocb->ki_filp->f_mapping->host); 2615 } 2616 2617 /* 2618 * Sync the bytes written if this was a synchronous write. Expect ki_pos 2619 * to already be updated for the write, and will return either the amount 2620 * of bytes passed in, or an error if syncing the file failed. 2621 */ 2622 static inline ssize_t generic_write_sync(struct kiocb *iocb, ssize_t count) 2623 { 2624 if (iocb_is_dsync(iocb)) { 2625 int ret = vfs_fsync_range(iocb->ki_filp, 2626 iocb->ki_pos - count, iocb->ki_pos - 1, 2627 (iocb->ki_flags & IOCB_SYNC) ? 0 : 1); 2628 if (ret) 2629 return ret; 2630 } else if (iocb->ki_flags & IOCB_DONTCACHE) { 2631 struct address_space *mapping = iocb->ki_filp->f_mapping; 2632 2633 filemap_flush_range(mapping, iocb->ki_pos - count, 2634 iocb->ki_pos - 1); 2635 } 2636 2637 return count; 2638 } 2639 2640 extern void emergency_sync(void); 2641 extern void emergency_remount(void); 2642 2643 #ifdef CONFIG_BLOCK 2644 extern int bmap(struct inode *inode, sector_t *block); 2645 #else 2646 static inline int bmap(struct inode *inode, sector_t *block) 2647 { 2648 return -EINVAL; 2649 } 2650 #endif 2651 2652 int notify_change(struct mnt_idmap *, struct dentry *, 2653 struct iattr *, struct delegated_inode *); 2654 int inode_permission(struct mnt_idmap *, struct inode *, int); 2655 int generic_permission(struct mnt_idmap *, struct inode *, int); 2656 static inline int file_permission(struct file *file, int mask) 2657 { 2658 return inode_permission(file_mnt_idmap(file), 2659 file_inode(file), mask); 2660 } 2661 static inline int path_permission(const struct path *path, int mask) 2662 { 2663 return inode_permission(mnt_idmap(path->mnt), 2664 d_inode(path->dentry), mask); 2665 } 2666 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir, 2667 struct inode *inode); 2668 2669 int may_delete_dentry(struct mnt_idmap *idmap, struct inode *dir, 2670 struct dentry *victim, bool isdir); 2671 int may_create_dentry(struct mnt_idmap *idmap, 2672 struct inode *dir, struct dentry *child); 2673 2674 static inline bool execute_ok(struct inode *inode) 2675 { 2676 return (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode); 2677 } 2678 2679 static inline bool inode_wrong_type(const struct inode *inode, umode_t mode) 2680 { 2681 return (inode->i_mode ^ mode) & S_IFMT; 2682 } 2683 2684 /** 2685 * file_start_write - get write access to a superblock for regular file io 2686 * @file: the file we want to write to 2687 * 2688 * This is a variant of sb_start_write() which is a noop on non-regular file. 2689 * Should be matched with a call to file_end_write(). 2690 */ 2691 static inline void file_start_write(struct file *file) 2692 { 2693 if (!S_ISREG(file_inode(file)->i_mode)) 2694 return; 2695 sb_start_write(file_inode(file)->i_sb); 2696 } 2697 2698 static inline bool file_start_write_trylock(struct file *file) 2699 { 2700 if (!S_ISREG(file_inode(file)->i_mode)) 2701 return true; 2702 return sb_start_write_trylock(file_inode(file)->i_sb); 2703 } 2704 2705 /** 2706 * file_end_write - drop write access to a superblock of a regular file 2707 * @file: the file we wrote to 2708 * 2709 * Should be matched with a call to file_start_write(). 2710 */ 2711 static inline void file_end_write(struct file *file) 2712 { 2713 if (!S_ISREG(file_inode(file)->i_mode)) 2714 return; 2715 sb_end_write(file_inode(file)->i_sb); 2716 } 2717 2718 /** 2719 * kiocb_start_write - get write access to a superblock for async file io 2720 * @iocb: the io context we want to submit the write with 2721 * 2722 * This is a variant of sb_start_write() for async io submission. 2723 * Should be matched with a call to kiocb_end_write(). 2724 */ 2725 static inline void kiocb_start_write(struct kiocb *iocb) 2726 { 2727 struct inode *inode = file_inode(iocb->ki_filp); 2728 2729 sb_start_write(inode->i_sb); 2730 /* 2731 * Fool lockdep by telling it the lock got released so that it 2732 * doesn't complain about the held lock when we return to userspace. 2733 */ 2734 __sb_writers_release(inode->i_sb, SB_FREEZE_WRITE); 2735 } 2736 2737 /** 2738 * kiocb_end_write - drop write access to a superblock after async file io 2739 * @iocb: the io context we sumbitted the write with 2740 * 2741 * Should be matched with a call to kiocb_start_write(). 2742 */ 2743 static inline void kiocb_end_write(struct kiocb *iocb) 2744 { 2745 struct inode *inode = file_inode(iocb->ki_filp); 2746 2747 /* 2748 * Tell lockdep we inherited freeze protection from submission thread. 2749 */ 2750 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE); 2751 sb_end_write(inode->i_sb); 2752 } 2753 2754 /* 2755 * This is used for regular files where some users -- especially the 2756 * currently executed binary in a process, previously handled via 2757 * VM_DENYWRITE -- cannot handle concurrent write (and maybe mmap 2758 * read-write shared) accesses. 2759 * 2760 * get_write_access() gets write permission for a file. 2761 * put_write_access() releases this write permission. 2762 * deny_write_access() denies write access to a file. 2763 * allow_write_access() re-enables write access to a file. 2764 * 2765 * The i_writecount field of an inode can have the following values: 2766 * 0: no write access, no denied write access 2767 * < 0: (-i_writecount) users that denied write access to the file. 2768 * > 0: (i_writecount) users that have write access to the file. 2769 * 2770 * Normally we operate on that counter with atomic_{inc,dec} and it's safe 2771 * except for the cases where we don't hold i_writecount yet. Then we need to 2772 * use {get,deny}_write_access() - these functions check the sign and refuse 2773 * to do the change if sign is wrong. 2774 */ 2775 static inline int get_write_access(struct inode *inode) 2776 { 2777 return atomic_inc_unless_negative(&inode->i_writecount) ? 0 : -ETXTBSY; 2778 } 2779 static inline int deny_write_access(struct file *file) 2780 { 2781 struct inode *inode = file_inode(file); 2782 return atomic_dec_unless_positive(&inode->i_writecount) ? 0 : -ETXTBSY; 2783 } 2784 static inline void put_write_access(struct inode * inode) 2785 { 2786 atomic_dec(&inode->i_writecount); 2787 } 2788 static inline void allow_write_access(struct file *file) 2789 { 2790 if (file) 2791 atomic_inc(&file_inode(file)->i_writecount); 2792 } 2793 2794 /* 2795 * Do not prevent write to executable file when watched by pre-content events. 2796 * 2797 * Note that FMODE_FSNOTIFY_HSM mode is set depending on pre-content watches at 2798 * the time of file open and remains constant for entire lifetime of the file, 2799 * so if pre-content watches are added post execution or removed before the end 2800 * of the execution, it will not cause i_writecount reference leak. 2801 */ 2802 static inline int exe_file_deny_write_access(struct file *exe_file) 2803 { 2804 if (unlikely(FMODE_FSNOTIFY_HSM(exe_file->f_mode))) 2805 return 0; 2806 return deny_write_access(exe_file); 2807 } 2808 static inline void exe_file_allow_write_access(struct file *exe_file) 2809 { 2810 if (unlikely(!exe_file || FMODE_FSNOTIFY_HSM(exe_file->f_mode))) 2811 return; 2812 allow_write_access(exe_file); 2813 } 2814 2815 static inline void file_set_fsnotify_mode(struct file *file, fmode_t mode) 2816 { 2817 file->f_mode &= ~FMODE_FSNOTIFY_MASK; 2818 file->f_mode |= mode; 2819 } 2820 2821 static inline bool inode_is_open_for_write(const struct inode *inode) 2822 { 2823 return atomic_read(&inode->i_writecount) > 0; 2824 } 2825 2826 #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) 2827 static inline void i_readcount_dec(struct inode *inode) 2828 { 2829 BUG_ON(atomic_dec_return(&inode->i_readcount) < 0); 2830 } 2831 static inline void i_readcount_inc(struct inode *inode) 2832 { 2833 atomic_inc(&inode->i_readcount); 2834 } 2835 #else 2836 static inline void i_readcount_dec(struct inode *inode) 2837 { 2838 return; 2839 } 2840 static inline void i_readcount_inc(struct inode *inode) 2841 { 2842 return; 2843 } 2844 #endif 2845 extern int do_pipe_flags(int *, int); 2846 2847 extern ssize_t kernel_read(struct file *, void *, size_t, loff_t *); 2848 ssize_t __kernel_read(struct file *file, void *buf, size_t count, loff_t *pos); 2849 extern ssize_t kernel_write(struct file *, const void *, size_t, loff_t *); 2850 extern ssize_t __kernel_write(struct file *, const void *, size_t, loff_t *); 2851 extern struct file * open_exec(const char *); 2852 2853 /* fs/dcache.c -- generic fs support functions */ 2854 extern bool is_subdir(struct dentry *, struct dentry *); 2855 extern bool path_is_under(const struct path *, const struct path *); 2856 u64 vfsmount_to_propagation_flags(struct vfsmount *mnt); 2857 2858 extern char *file_path(struct file *, char *, int); 2859 2860 /** 2861 * is_dot_dotdot - returns true only if @name is "." or ".." 2862 * @name: file name to check 2863 * @len: length of file name, in bytes 2864 */ 2865 static inline bool is_dot_dotdot(const char *name, size_t len) 2866 { 2867 return len && unlikely(name[0] == '.') && 2868 (len == 1 || (len == 2 && name[1] == '.')); 2869 } 2870 2871 /** 2872 * name_contains_dotdot - check if a file name contains ".." path components 2873 * @name: File path string to check 2874 * Search for ".." surrounded by either '/' or start/end of string. 2875 */ 2876 static inline bool name_contains_dotdot(const char *name) 2877 { 2878 size_t name_len; 2879 2880 name_len = strlen(name); 2881 return strcmp(name, "..") == 0 || 2882 strncmp(name, "../", 3) == 0 || 2883 strstr(name, "/../") != NULL || 2884 (name_len >= 3 && strcmp(name + name_len - 3, "/..") == 0); 2885 } 2886 2887 #include <linux/err.h> 2888 2889 /* needed for stackable file system support */ 2890 extern loff_t default_llseek(struct file *file, loff_t offset, int whence); 2891 2892 extern loff_t vfs_llseek(struct file *file, loff_t offset, int whence); 2893 2894 extern int inode_init_always_gfp(struct super_block *, struct inode *, gfp_t); 2895 static inline int inode_init_always(struct super_block *sb, struct inode *inode) 2896 { 2897 return inode_init_always_gfp(sb, inode, GFP_NOFS); 2898 } 2899 2900 extern void inode_init_once(struct inode *); 2901 extern void address_space_init_once(struct address_space *mapping); 2902 extern struct inode * igrab(struct inode *); 2903 extern ino_t iunique(struct super_block *, ino_t); 2904 extern int inode_needs_sync(struct inode *inode); 2905 extern int inode_just_drop(struct inode *inode); 2906 static inline int inode_generic_drop(struct inode *inode) 2907 { 2908 return !inode->i_nlink || inode_unhashed(inode); 2909 } 2910 extern void d_mark_dontcache(struct inode *inode); 2911 2912 extern struct inode *ilookup5_nowait(struct super_block *sb, 2913 unsigned long hashval, int (*test)(struct inode *, void *), 2914 void *data, bool *isnew); 2915 extern struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 2916 int (*test)(struct inode *, void *), void *data); 2917 extern struct inode *ilookup(struct super_block *sb, unsigned long ino); 2918 2919 extern struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 2920 int (*test)(struct inode *, void *), 2921 int (*set)(struct inode *, void *), 2922 void *data); 2923 struct inode *iget5_locked(struct super_block *, unsigned long, 2924 int (*test)(struct inode *, void *), 2925 int (*set)(struct inode *, void *), void *); 2926 struct inode *iget5_locked_rcu(struct super_block *, unsigned long, 2927 int (*test)(struct inode *, void *), 2928 int (*set)(struct inode *, void *), void *); 2929 extern struct inode * iget_locked(struct super_block *, unsigned long); 2930 extern struct inode *find_inode_nowait(struct super_block *, 2931 unsigned long, 2932 int (*match)(struct inode *, 2933 unsigned long, void *), 2934 void *data); 2935 extern struct inode *find_inode_rcu(struct super_block *, unsigned long, 2936 int (*)(struct inode *, void *), void *); 2937 extern struct inode *find_inode_by_ino_rcu(struct super_block *, unsigned long); 2938 extern int insert_inode_locked4(struct inode *, unsigned long, int (*test)(struct inode *, void *), void *); 2939 extern int insert_inode_locked(struct inode *); 2940 #ifdef CONFIG_DEBUG_LOCK_ALLOC 2941 extern void lockdep_annotate_inode_mutex_key(struct inode *inode); 2942 #else 2943 static inline void lockdep_annotate_inode_mutex_key(struct inode *inode) { }; 2944 #endif 2945 extern void unlock_new_inode(struct inode *); 2946 extern void discard_new_inode(struct inode *); 2947 extern unsigned int get_next_ino(void); 2948 extern void evict_inodes(struct super_block *sb); 2949 void dump_mapping(const struct address_space *); 2950 2951 /* 2952 * Userspace may rely on the inode number being non-zero. For example, glibc 2953 * simply ignores files with zero i_ino in unlink() and other places. 2954 * 2955 * As an additional complication, if userspace was compiled with 2956 * _FILE_OFFSET_BITS=32 on a 64-bit kernel we'll only end up reading out the 2957 * lower 32 bits, so we need to check that those aren't zero explicitly. With 2958 * _FILE_OFFSET_BITS=64, this may cause some harmless false-negatives, but 2959 * better safe than sorry. 2960 */ 2961 static inline bool is_zero_ino(ino_t ino) 2962 { 2963 return (u32)ino == 0; 2964 } 2965 2966 static inline void __iget(struct inode *inode) 2967 { 2968 lockdep_assert_held(&inode->i_lock); 2969 atomic_inc(&inode->i_count); 2970 } 2971 2972 extern void iget_failed(struct inode *); 2973 extern void clear_inode(struct inode *); 2974 extern void __destroy_inode(struct inode *); 2975 struct inode *alloc_inode(struct super_block *sb); 2976 static inline struct inode *new_inode_pseudo(struct super_block *sb) 2977 { 2978 return alloc_inode(sb); 2979 } 2980 extern struct inode *new_inode(struct super_block *sb); 2981 extern void free_inode_nonrcu(struct inode *inode); 2982 extern int setattr_should_drop_suidgid(struct mnt_idmap *, struct inode *); 2983 extern int file_remove_privs(struct file *); 2984 int setattr_should_drop_sgid(struct mnt_idmap *idmap, 2985 const struct inode *inode); 2986 2987 /* 2988 * This must be used for allocating filesystems specific inodes to set 2989 * up the inode reclaim context correctly. 2990 */ 2991 #define alloc_inode_sb(_sb, _cache, _gfp) kmem_cache_alloc_lru(_cache, &_sb->s_inode_lru, _gfp) 2992 2993 extern void __insert_inode_hash(struct inode *, unsigned long hashval); 2994 static inline void insert_inode_hash(struct inode *inode) 2995 { 2996 __insert_inode_hash(inode, inode->i_ino); 2997 } 2998 2999 extern void __remove_inode_hash(struct inode *); 3000 static inline void remove_inode_hash(struct inode *inode) 3001 { 3002 if (!inode_unhashed(inode) && !hlist_fake(&inode->i_hash)) 3003 __remove_inode_hash(inode); 3004 } 3005 3006 extern void inode_sb_list_add(struct inode *inode); 3007 extern void inode_lru_list_add(struct inode *inode); 3008 3009 int generic_file_mmap(struct file *, struct vm_area_struct *); 3010 int generic_file_mmap_prepare(struct vm_area_desc *desc); 3011 int generic_file_readonly_mmap(struct file *, struct vm_area_struct *); 3012 int generic_file_readonly_mmap_prepare(struct vm_area_desc *desc); 3013 extern ssize_t generic_write_checks(struct kiocb *, struct iov_iter *); 3014 int generic_write_checks_count(struct kiocb *iocb, loff_t *count); 3015 extern int generic_write_check_limits(struct file *file, loff_t pos, 3016 loff_t *count); 3017 extern int generic_file_rw_checks(struct file *file_in, struct file *file_out); 3018 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *to, 3019 ssize_t already_read); 3020 extern ssize_t generic_file_read_iter(struct kiocb *, struct iov_iter *); 3021 extern ssize_t __generic_file_write_iter(struct kiocb *, struct iov_iter *); 3022 extern ssize_t generic_file_write_iter(struct kiocb *, struct iov_iter *); 3023 extern ssize_t generic_file_direct_write(struct kiocb *, struct iov_iter *); 3024 ssize_t generic_perform_write(struct kiocb *, struct iov_iter *); 3025 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter, 3026 ssize_t direct_written, ssize_t buffered_written); 3027 3028 ssize_t vfs_iter_read(struct file *file, struct iov_iter *iter, loff_t *ppos, 3029 rwf_t flags); 3030 ssize_t vfs_iter_write(struct file *file, struct iov_iter *iter, loff_t *ppos, 3031 rwf_t flags); 3032 ssize_t vfs_iocb_iter_read(struct file *file, struct kiocb *iocb, 3033 struct iov_iter *iter); 3034 ssize_t vfs_iocb_iter_write(struct file *file, struct kiocb *iocb, 3035 struct iov_iter *iter); 3036 3037 /* fs/splice.c */ 3038 ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 3039 struct pipe_inode_info *pipe, 3040 size_t len, unsigned int flags); 3041 ssize_t copy_splice_read(struct file *in, loff_t *ppos, 3042 struct pipe_inode_info *pipe, 3043 size_t len, unsigned int flags); 3044 extern ssize_t iter_file_splice_write(struct pipe_inode_info *, 3045 struct file *, loff_t *, size_t, unsigned int); 3046 3047 3048 extern void 3049 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping); 3050 extern loff_t noop_llseek(struct file *file, loff_t offset, int whence); 3051 extern loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize); 3052 extern loff_t generic_file_llseek(struct file *file, loff_t offset, int whence); 3053 extern loff_t generic_file_llseek_size(struct file *file, loff_t offset, 3054 int whence, loff_t maxsize, loff_t eof); 3055 loff_t generic_llseek_cookie(struct file *file, loff_t offset, int whence, 3056 u64 *cookie); 3057 extern loff_t fixed_size_llseek(struct file *file, loff_t offset, 3058 int whence, loff_t size); 3059 extern loff_t no_seek_end_llseek_size(struct file *, loff_t, int, loff_t); 3060 extern loff_t no_seek_end_llseek(struct file *, loff_t, int); 3061 int rw_verify_area(int, struct file *, const loff_t *, size_t); 3062 extern int generic_file_open(struct inode * inode, struct file * filp); 3063 extern int nonseekable_open(struct inode * inode, struct file * filp); 3064 extern int stream_open(struct inode * inode, struct file * filp); 3065 3066 #ifdef CONFIG_BLOCK 3067 typedef void (dio_submit_t)(struct bio *bio, struct inode *inode, 3068 loff_t file_offset); 3069 3070 enum { 3071 /* need locking between buffered and direct access */ 3072 DIO_LOCKING = 0x01, 3073 3074 /* filesystem does not support filling holes */ 3075 DIO_SKIP_HOLES = 0x02, 3076 }; 3077 3078 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 3079 struct block_device *bdev, struct iov_iter *iter, 3080 get_block_t get_block, 3081 dio_iodone_t end_io, 3082 int flags); 3083 3084 static inline ssize_t blockdev_direct_IO(struct kiocb *iocb, 3085 struct inode *inode, 3086 struct iov_iter *iter, 3087 get_block_t get_block) 3088 { 3089 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 3090 get_block, NULL, DIO_LOCKING | DIO_SKIP_HOLES); 3091 } 3092 #endif 3093 3094 bool inode_dio_finished(const struct inode *inode); 3095 void inode_dio_wait(struct inode *inode); 3096 void inode_dio_wait_interruptible(struct inode *inode); 3097 3098 /** 3099 * inode_dio_begin - signal start of a direct I/O requests 3100 * @inode: inode the direct I/O happens on 3101 * 3102 * This is called once we've finished processing a direct I/O request, 3103 * and is used to wake up callers waiting for direct I/O to be quiesced. 3104 */ 3105 static inline void inode_dio_begin(struct inode *inode) 3106 { 3107 atomic_inc(&inode->i_dio_count); 3108 } 3109 3110 /** 3111 * inode_dio_end - signal finish of a direct I/O requests 3112 * @inode: inode the direct I/O happens on 3113 * 3114 * This is called once we've finished processing a direct I/O request, 3115 * and is used to wake up callers waiting for direct I/O to be quiesced. 3116 */ 3117 static inline void inode_dio_end(struct inode *inode) 3118 { 3119 if (atomic_dec_and_test(&inode->i_dio_count)) 3120 wake_up_var(&inode->i_dio_count); 3121 } 3122 3123 extern void inode_set_flags(struct inode *inode, unsigned int flags, 3124 unsigned int mask); 3125 3126 extern const struct file_operations generic_ro_fops; 3127 3128 #define special_file(m) (S_ISCHR(m)||S_ISBLK(m)||S_ISFIFO(m)||S_ISSOCK(m)) 3129 3130 extern int readlink_copy(char __user *, int, const char *, int); 3131 extern int page_readlink(struct dentry *, char __user *, int); 3132 extern const char *page_get_link_raw(struct dentry *, struct inode *, 3133 struct delayed_call *); 3134 extern const char *page_get_link(struct dentry *, struct inode *, 3135 struct delayed_call *); 3136 extern void page_put_link(void *); 3137 extern int page_symlink(struct inode *inode, const char *symname, int len); 3138 extern const struct inode_operations page_symlink_inode_operations; 3139 extern void kfree_link(void *); 3140 void fill_mg_cmtime(struct kstat *stat, u32 request_mask, struct inode *inode); 3141 void generic_fillattr(struct mnt_idmap *, u32, struct inode *, struct kstat *); 3142 void generic_fill_statx_attr(struct inode *inode, struct kstat *stat); 3143 void generic_fill_statx_atomic_writes(struct kstat *stat, 3144 unsigned int unit_min, 3145 unsigned int unit_max, 3146 unsigned int unit_max_opt); 3147 extern int vfs_getattr_nosec(const struct path *, struct kstat *, u32, unsigned int); 3148 extern int vfs_getattr(const struct path *, struct kstat *, u32, unsigned int); 3149 void __inode_add_bytes(struct inode *inode, loff_t bytes); 3150 void inode_add_bytes(struct inode *inode, loff_t bytes); 3151 void __inode_sub_bytes(struct inode *inode, loff_t bytes); 3152 void inode_sub_bytes(struct inode *inode, loff_t bytes); 3153 static inline loff_t __inode_get_bytes(struct inode *inode) 3154 { 3155 return (((loff_t)inode->i_blocks) << 9) + inode->i_bytes; 3156 } 3157 loff_t inode_get_bytes(struct inode *inode); 3158 void inode_set_bytes(struct inode *inode, loff_t bytes); 3159 const char *simple_get_link(struct dentry *, struct inode *, 3160 struct delayed_call *); 3161 extern const struct inode_operations simple_symlink_inode_operations; 3162 3163 extern int iterate_dir(struct file *, struct dir_context *); 3164 3165 int vfs_fstatat(int dfd, const char __user *filename, struct kstat *stat, 3166 int flags); 3167 int vfs_fstat(int fd, struct kstat *stat); 3168 3169 static inline int vfs_stat(const char __user *filename, struct kstat *stat) 3170 { 3171 return vfs_fstatat(AT_FDCWD, filename, stat, 0); 3172 } 3173 static inline int vfs_lstat(const char __user *name, struct kstat *stat) 3174 { 3175 return vfs_fstatat(AT_FDCWD, name, stat, AT_SYMLINK_NOFOLLOW); 3176 } 3177 3178 extern const char *vfs_get_link(struct dentry *, struct delayed_call *); 3179 extern int vfs_readlink(struct dentry *, char __user *, int); 3180 3181 extern struct file_system_type *get_filesystem(struct file_system_type *fs); 3182 extern void put_filesystem(struct file_system_type *fs); 3183 extern struct file_system_type *get_fs_type(const char *name); 3184 extern void drop_super(struct super_block *sb); 3185 extern void drop_super_exclusive(struct super_block *sb); 3186 extern void iterate_supers(void (*f)(struct super_block *, void *), void *arg); 3187 extern void iterate_supers_type(struct file_system_type *, 3188 void (*)(struct super_block *, void *), void *); 3189 void filesystems_freeze(bool freeze_all); 3190 void filesystems_thaw(void); 3191 3192 void end_dirop(struct dentry *de); 3193 3194 extern int dcache_dir_open(struct inode *, struct file *); 3195 extern int dcache_dir_close(struct inode *, struct file *); 3196 extern loff_t dcache_dir_lseek(struct file *, loff_t, int); 3197 extern int dcache_readdir(struct file *, struct dir_context *); 3198 extern int simple_setattr(struct mnt_idmap *, struct dentry *, 3199 struct iattr *); 3200 extern int simple_getattr(struct mnt_idmap *, const struct path *, 3201 struct kstat *, u32, unsigned int); 3202 extern int simple_statfs(struct dentry *, struct kstatfs *); 3203 extern int simple_open(struct inode *inode, struct file *file); 3204 extern int simple_link(struct dentry *, struct inode *, struct dentry *); 3205 extern int simple_unlink(struct inode *, struct dentry *); 3206 extern int simple_rmdir(struct inode *, struct dentry *); 3207 extern void __simple_unlink(struct inode *, struct dentry *); 3208 extern void __simple_rmdir(struct inode *, struct dentry *); 3209 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry, 3210 struct inode *new_dir, struct dentry *new_dentry); 3211 extern int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, 3212 struct inode *new_dir, struct dentry *new_dentry); 3213 extern int simple_rename(struct mnt_idmap *, struct inode *, 3214 struct dentry *, struct inode *, struct dentry *, 3215 unsigned int); 3216 extern void simple_recursive_removal(struct dentry *, 3217 void (*callback)(struct dentry *)); 3218 extern void simple_remove_by_name(struct dentry *, const char *, 3219 void (*callback)(struct dentry *)); 3220 extern void locked_recursive_removal(struct dentry *, 3221 void (*callback)(struct dentry *)); 3222 extern int noop_fsync(struct file *, loff_t, loff_t, int); 3223 extern ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter); 3224 extern int simple_empty(struct dentry *); 3225 extern int simple_write_begin(const struct kiocb *iocb, 3226 struct address_space *mapping, 3227 loff_t pos, unsigned len, 3228 struct folio **foliop, void **fsdata); 3229 extern const struct address_space_operations ram_aops; 3230 extern int always_delete_dentry(const struct dentry *); 3231 extern struct inode *alloc_anon_inode(struct super_block *); 3232 struct inode *anon_inode_make_secure_inode(struct super_block *sb, const char *name, 3233 const struct inode *context_inode); 3234 3235 extern struct dentry *simple_lookup(struct inode *, struct dentry *, unsigned int flags); 3236 extern ssize_t generic_read_dir(struct file *, char __user *, size_t, loff_t *); 3237 extern const struct file_operations simple_dir_operations; 3238 extern const struct inode_operations simple_dir_inode_operations; 3239 extern void make_empty_dir_inode(struct inode *inode); 3240 extern bool is_empty_dir_inode(struct inode *inode); 3241 struct tree_descr { const char *name; const struct file_operations *ops; int mode; }; 3242 struct dentry *d_alloc_name(struct dentry *, const char *); 3243 extern int simple_fill_super(struct super_block *, unsigned long, 3244 const struct tree_descr *); 3245 extern int simple_pin_fs(struct file_system_type *, struct vfsmount **mount, int *count); 3246 extern void simple_release_fs(struct vfsmount **mount, int *count); 3247 struct dentry *simple_start_creating(struct dentry *, const char *); 3248 void simple_done_creating(struct dentry *); 3249 3250 extern ssize_t simple_read_from_buffer(void __user *to, size_t count, 3251 loff_t *ppos, const void *from, size_t available); 3252 extern ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 3253 const void __user *from, size_t count); 3254 3255 struct offset_ctx { 3256 struct maple_tree mt; 3257 unsigned long next_offset; 3258 }; 3259 3260 void simple_offset_init(struct offset_ctx *octx); 3261 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry); 3262 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry); 3263 void simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry, 3264 struct inode *new_dir, struct dentry *new_dentry); 3265 int simple_offset_rename_exchange(struct inode *old_dir, 3266 struct dentry *old_dentry, 3267 struct inode *new_dir, 3268 struct dentry *new_dentry); 3269 void simple_offset_destroy(struct offset_ctx *octx); 3270 3271 extern const struct file_operations simple_offset_dir_operations; 3272 3273 extern int __generic_file_fsync(struct file *, loff_t, loff_t, int); 3274 extern int generic_file_fsync(struct file *, loff_t, loff_t, int); 3275 3276 extern int generic_check_addressable(unsigned, u64); 3277 3278 extern void generic_set_sb_d_ops(struct super_block *sb); 3279 extern int generic_ci_match(const struct inode *parent, 3280 const struct qstr *name, 3281 const struct qstr *folded_name, 3282 const u8 *de_name, u32 de_name_len); 3283 3284 #if IS_ENABLED(CONFIG_UNICODE) 3285 int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str); 3286 int generic_ci_d_compare(const struct dentry *dentry, unsigned int len, 3287 const char *str, const struct qstr *name); 3288 3289 /** 3290 * generic_ci_validate_strict_name - Check if a given name is suitable 3291 * for a directory 3292 * 3293 * This functions checks if the proposed filename is valid for the 3294 * parent directory. That means that only valid UTF-8 filenames will be 3295 * accepted for casefold directories from filesystems created with the 3296 * strict encoding flag. That also means that any name will be 3297 * accepted for directories that doesn't have casefold enabled, or 3298 * aren't being strict with the encoding. 3299 * 3300 * @dir: inode of the directory where the new file will be created 3301 * @name: name of the new file 3302 * 3303 * Return: 3304 * * True: if the filename is suitable for this directory. It can be 3305 * true if a given name is not suitable for a strict encoding 3306 * directory, but the directory being used isn't strict 3307 * * False if the filename isn't suitable for this directory. This only 3308 * happens when a directory is casefolded and the filesystem is strict 3309 * about its encoding. 3310 */ 3311 static inline bool generic_ci_validate_strict_name(struct inode *dir, 3312 const struct qstr *name) 3313 { 3314 if (!IS_CASEFOLDED(dir) || !sb_has_strict_encoding(dir->i_sb)) 3315 return true; 3316 3317 /* 3318 * A casefold dir must have a encoding set, unless the filesystem 3319 * is corrupted 3320 */ 3321 if (WARN_ON_ONCE(!dir->i_sb->s_encoding)) 3322 return true; 3323 3324 return !utf8_validate(dir->i_sb->s_encoding, name); 3325 } 3326 #else 3327 static inline bool generic_ci_validate_strict_name(struct inode *dir, 3328 const struct qstr *name) 3329 { 3330 return true; 3331 } 3332 #endif 3333 3334 int may_setattr(struct mnt_idmap *idmap, struct inode *inode, 3335 unsigned int ia_valid); 3336 int setattr_prepare(struct mnt_idmap *, struct dentry *, struct iattr *); 3337 extern int inode_newsize_ok(const struct inode *, loff_t offset); 3338 void setattr_copy(struct mnt_idmap *, struct inode *inode, 3339 const struct iattr *attr); 3340 3341 extern int file_update_time(struct file *file); 3342 3343 static inline bool file_is_dax(const struct file *file) 3344 { 3345 return file && IS_DAX(file->f_mapping->host); 3346 } 3347 3348 static inline bool vma_is_dax(const struct vm_area_struct *vma) 3349 { 3350 return file_is_dax(vma->vm_file); 3351 } 3352 3353 static inline bool vma_is_fsdax(struct vm_area_struct *vma) 3354 { 3355 struct inode *inode; 3356 3357 if (!IS_ENABLED(CONFIG_FS_DAX) || !vma->vm_file) 3358 return false; 3359 if (!vma_is_dax(vma)) 3360 return false; 3361 inode = file_inode(vma->vm_file); 3362 if (S_ISCHR(inode->i_mode)) 3363 return false; /* device-dax */ 3364 return true; 3365 } 3366 3367 static inline int iocb_flags(struct file *file) 3368 { 3369 int res = 0; 3370 if (file->f_flags & O_APPEND) 3371 res |= IOCB_APPEND; 3372 if (file->f_flags & O_DIRECT) 3373 res |= IOCB_DIRECT; 3374 if (file->f_flags & O_DSYNC) 3375 res |= IOCB_DSYNC; 3376 if (file->f_flags & __O_SYNC) 3377 res |= IOCB_SYNC; 3378 return res; 3379 } 3380 3381 static inline int kiocb_set_rw_flags(struct kiocb *ki, rwf_t flags, 3382 int rw_type) 3383 { 3384 int kiocb_flags = 0; 3385 3386 /* make sure there's no overlap between RWF and private IOCB flags */ 3387 BUILD_BUG_ON((__force int) RWF_SUPPORTED & IOCB_EVENTFD); 3388 3389 if (!flags) 3390 return 0; 3391 if (unlikely(flags & ~RWF_SUPPORTED)) 3392 return -EOPNOTSUPP; 3393 if (unlikely((flags & RWF_APPEND) && (flags & RWF_NOAPPEND))) 3394 return -EINVAL; 3395 3396 if (flags & RWF_NOWAIT) { 3397 if (!(ki->ki_filp->f_mode & FMODE_NOWAIT)) 3398 return -EOPNOTSUPP; 3399 } 3400 if (flags & RWF_ATOMIC) { 3401 if (rw_type != WRITE) 3402 return -EOPNOTSUPP; 3403 if (!(ki->ki_filp->f_mode & FMODE_CAN_ATOMIC_WRITE)) 3404 return -EOPNOTSUPP; 3405 } 3406 if (flags & RWF_DONTCACHE) { 3407 /* file system must support it */ 3408 if (!(ki->ki_filp->f_op->fop_flags & FOP_DONTCACHE)) 3409 return -EOPNOTSUPP; 3410 /* DAX mappings not supported */ 3411 if (IS_DAX(ki->ki_filp->f_mapping->host)) 3412 return -EOPNOTSUPP; 3413 } 3414 kiocb_flags |= (__force int) (flags & RWF_SUPPORTED); 3415 if (flags & RWF_SYNC) 3416 kiocb_flags |= IOCB_DSYNC; 3417 3418 if ((flags & RWF_NOAPPEND) && (ki->ki_flags & IOCB_APPEND)) { 3419 if (IS_APPEND(file_inode(ki->ki_filp))) 3420 return -EPERM; 3421 ki->ki_flags &= ~IOCB_APPEND; 3422 } 3423 3424 ki->ki_flags |= kiocb_flags; 3425 return 0; 3426 } 3427 3428 /* Transaction based IO helpers */ 3429 3430 /* 3431 * An argresp is stored in an allocated page and holds the 3432 * size of the argument or response, along with its content 3433 */ 3434 struct simple_transaction_argresp { 3435 ssize_t size; 3436 char data[]; 3437 }; 3438 3439 #define SIMPLE_TRANSACTION_LIMIT (PAGE_SIZE - sizeof(struct simple_transaction_argresp)) 3440 3441 char *simple_transaction_get(struct file *file, const char __user *buf, 3442 size_t size); 3443 ssize_t simple_transaction_read(struct file *file, char __user *buf, 3444 size_t size, loff_t *pos); 3445 int simple_transaction_release(struct inode *inode, struct file *file); 3446 3447 void simple_transaction_set(struct file *file, size_t n); 3448 3449 /* 3450 * simple attribute files 3451 * 3452 * These attributes behave similar to those in sysfs: 3453 * 3454 * Writing to an attribute immediately sets a value, an open file can be 3455 * written to multiple times. 3456 * 3457 * Reading from an attribute creates a buffer from the value that might get 3458 * read with multiple read calls. When the attribute has been read 3459 * completely, no further read calls are possible until the file is opened 3460 * again. 3461 * 3462 * All attributes contain a text representation of a numeric value 3463 * that are accessed with the get() and set() functions. 3464 */ 3465 #define DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, __is_signed) \ 3466 static int __fops ## _open(struct inode *inode, struct file *file) \ 3467 { \ 3468 __simple_attr_check_format(__fmt, 0ull); \ 3469 return simple_attr_open(inode, file, __get, __set, __fmt); \ 3470 } \ 3471 static const struct file_operations __fops = { \ 3472 .owner = THIS_MODULE, \ 3473 .open = __fops ## _open, \ 3474 .release = simple_attr_release, \ 3475 .read = simple_attr_read, \ 3476 .write = (__is_signed) ? simple_attr_write_signed : simple_attr_write, \ 3477 .llseek = generic_file_llseek, \ 3478 } 3479 3480 #define DEFINE_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \ 3481 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, false) 3482 3483 #define DEFINE_SIMPLE_ATTRIBUTE_SIGNED(__fops, __get, __set, __fmt) \ 3484 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, true) 3485 3486 static inline __printf(1, 2) 3487 void __simple_attr_check_format(const char *fmt, ...) 3488 { 3489 /* don't do anything, just let the compiler check the arguments; */ 3490 } 3491 3492 int simple_attr_open(struct inode *inode, struct file *file, 3493 int (*get)(void *, u64 *), int (*set)(void *, u64), 3494 const char *fmt); 3495 int simple_attr_release(struct inode *inode, struct file *file); 3496 ssize_t simple_attr_read(struct file *file, char __user *buf, 3497 size_t len, loff_t *ppos); 3498 ssize_t simple_attr_write(struct file *file, const char __user *buf, 3499 size_t len, loff_t *ppos); 3500 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf, 3501 size_t len, loff_t *ppos); 3502 3503 struct ctl_table; 3504 int __init list_bdev_fs_names(char *buf, size_t size); 3505 3506 #define __FMODE_EXEC ((__force int) FMODE_EXEC) 3507 3508 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE]) 3509 #define OPEN_FMODE(flag) ((__force fmode_t)((flag + 1) & O_ACCMODE)) 3510 3511 static inline bool is_sxid(umode_t mode) 3512 { 3513 return mode & (S_ISUID | S_ISGID); 3514 } 3515 3516 static inline int check_sticky(struct mnt_idmap *idmap, 3517 struct inode *dir, struct inode *inode) 3518 { 3519 if (!(dir->i_mode & S_ISVTX)) 3520 return 0; 3521 3522 return __check_sticky(idmap, dir, inode); 3523 } 3524 3525 static inline void inode_has_no_xattr(struct inode *inode) 3526 { 3527 if (!is_sxid(inode->i_mode) && (inode->i_sb->s_flags & SB_NOSEC)) 3528 inode->i_flags |= S_NOSEC; 3529 } 3530 3531 static inline bool is_root_inode(struct inode *inode) 3532 { 3533 return inode == inode->i_sb->s_root->d_inode; 3534 } 3535 3536 static inline bool dir_emit(struct dir_context *ctx, 3537 const char *name, int namelen, 3538 u64 ino, unsigned type) 3539 { 3540 unsigned int dt_mask = S_DT_MASK | ctx->dt_flags_mask; 3541 3542 return ctx->actor(ctx, name, namelen, ctx->pos, ino, type & dt_mask); 3543 } 3544 static inline bool dir_emit_dot(struct file *file, struct dir_context *ctx) 3545 { 3546 return ctx->actor(ctx, ".", 1, ctx->pos, 3547 file->f_path.dentry->d_inode->i_ino, DT_DIR); 3548 } 3549 static inline bool dir_emit_dotdot(struct file *file, struct dir_context *ctx) 3550 { 3551 return ctx->actor(ctx, "..", 2, ctx->pos, 3552 d_parent_ino(file->f_path.dentry), DT_DIR); 3553 } 3554 static inline bool dir_emit_dots(struct file *file, struct dir_context *ctx) 3555 { 3556 if (ctx->pos == 0) { 3557 if (!dir_emit_dot(file, ctx)) 3558 return false; 3559 ctx->pos = 1; 3560 } 3561 if (ctx->pos == 1) { 3562 if (!dir_emit_dotdot(file, ctx)) 3563 return false; 3564 ctx->pos = 2; 3565 } 3566 return true; 3567 } 3568 static inline bool dir_relax(struct inode *inode) 3569 { 3570 inode_unlock(inode); 3571 inode_lock(inode); 3572 return !IS_DEADDIR(inode); 3573 } 3574 3575 static inline bool dir_relax_shared(struct inode *inode) 3576 { 3577 inode_unlock_shared(inode); 3578 inode_lock_shared(inode); 3579 return !IS_DEADDIR(inode); 3580 } 3581 3582 extern bool path_noexec(const struct path *path); 3583 extern void inode_nohighmem(struct inode *inode); 3584 3585 /* mm/fadvise.c */ 3586 extern int vfs_fadvise(struct file *file, loff_t offset, loff_t len, 3587 int advice); 3588 extern int generic_fadvise(struct file *file, loff_t offset, loff_t len, 3589 int advice); 3590 3591 static inline bool vfs_empty_path(int dfd, const char __user *path) 3592 { 3593 char c; 3594 3595 if (dfd < 0) 3596 return false; 3597 3598 /* We now allow NULL to be used for empty path. */ 3599 if (!path) 3600 return true; 3601 3602 if (unlikely(get_user(c, path))) 3603 return false; 3604 3605 return !c; 3606 } 3607 3608 int generic_atomic_write_valid(struct kiocb *iocb, struct iov_iter *iter); 3609 3610 static inline bool extensible_ioctl_valid(unsigned int cmd_a, 3611 unsigned int cmd_b, size_t min_size) 3612 { 3613 if (_IOC_DIR(cmd_a) != _IOC_DIR(cmd_b)) 3614 return false; 3615 if (_IOC_TYPE(cmd_a) != _IOC_TYPE(cmd_b)) 3616 return false; 3617 if (_IOC_NR(cmd_a) != _IOC_NR(cmd_b)) 3618 return false; 3619 if (_IOC_SIZE(cmd_a) < min_size) 3620 return false; 3621 return true; 3622 } 3623 3624 #endif /* _LINUX_FS_H */ 3625