xref: /linux/drivers/net/ethernet/intel/i40e/i40e_txrx.h (revision 8be4d31cb8aaeea27bde4b7ddb26e28a89062ebf)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #ifndef _I40E_TXRX_H_
5 #define _I40E_TXRX_H_
6 
7 #include <linux/net/intel/libie/pctype.h>
8 #include <net/xdp.h>
9 #include "i40e_type.h"
10 
11 /* Interrupt Throttling and Rate Limiting Goodies */
12 #define I40E_DEFAULT_IRQ_WORK      256
13 
14 /* The datasheet for the X710 and XL710 indicate that the maximum value for
15  * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec
16  * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing
17  * the register value which is divided by 2 lets use the actual values and
18  * avoid an excessive amount of translation.
19  */
20 #define I40E_ITR_DYNAMIC	0x8000	/* use top bit as a flag */
21 #define I40E_ITR_MASK		0x1FFE	/* mask for ITR register value */
22 #define I40E_MIN_ITR		     2	/* reg uses 2 usec resolution */
23 #define I40E_ITR_20K		    50
24 #define I40E_ITR_8K		   122
25 #define I40E_MAX_ITR		  8160	/* maximum value as per datasheet */
26 #define ITR_TO_REG(setting) ((setting) & ~I40E_ITR_DYNAMIC)
27 #define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~I40E_ITR_MASK)
28 #define ITR_IS_DYNAMIC(setting) (!!((setting) & I40E_ITR_DYNAMIC))
29 
30 #define I40E_ITR_RX_DEF		(I40E_ITR_20K | I40E_ITR_DYNAMIC)
31 #define I40E_ITR_TX_DEF		(I40E_ITR_20K | I40E_ITR_DYNAMIC)
32 
33 /* 0x40 is the enable bit for interrupt rate limiting, and must be set if
34  * the value of the rate limit is non-zero
35  */
36 #define INTRL_ENA                  BIT(6)
37 #define I40E_MAX_INTRL             0x3B    /* reg uses 4 usec resolution */
38 #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
39 
40 /**
41  * i40e_intrl_usec_to_reg - convert interrupt rate limit to register
42  * @intrl: interrupt rate limit to convert
43  *
44  * This function converts a decimal interrupt rate limit to the appropriate
45  * register format expected by the firmware when setting interrupt rate limit.
46  */
i40e_intrl_usec_to_reg(int intrl)47 static inline u16 i40e_intrl_usec_to_reg(int intrl)
48 {
49 	if (intrl >> 2)
50 		return ((intrl >> 2) | INTRL_ENA);
51 	else
52 		return 0;
53 }
54 
55 #define I40E_QUEUE_END_OF_LIST 0x7FF
56 
57 /* this enum matches hardware bits and is meant to be used by DYN_CTLN
58  * registers and QINT registers or more generally anywhere in the manual
59  * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
60  * register but instead is a special value meaning "don't update" ITR0/1/2.
61  */
62 enum i40e_dyn_idx {
63 	I40E_IDX_ITR0 = 0,
64 	I40E_IDX_ITR1 = 1,
65 	I40E_IDX_ITR2 = 2,
66 	I40E_ITR_NONE = 3	/* ITR_NONE must not be used as an index */
67 };
68 
69 /* these are indexes into ITRN registers */
70 #define I40E_RX_ITR    I40E_IDX_ITR0
71 #define I40E_TX_ITR    I40E_IDX_ITR1
72 #define I40E_SW_ITR    I40E_IDX_ITR2
73 
74 /* Supported RSS offloads */
75 #define I40E_DEFAULT_RSS_HASHCFG ( \
76 	BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_IPV4_UDP) | \
77 	BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
78 	BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_IPV4_TCP) | \
79 	BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
80 	BIT_ULL(LIBIE_FILTER_PCTYPE_FRAG_IPV4) | \
81 	BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_IPV6_UDP) | \
82 	BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_IPV6_TCP) | \
83 	BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
84 	BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
85 	BIT_ULL(LIBIE_FILTER_PCTYPE_FRAG_IPV6) | \
86 	BIT_ULL(LIBIE_FILTER_PCTYPE_L2_PAYLOAD))
87 
88 #define I40E_DEFAULT_RSS_HASHCFG_EXPANDED (I40E_DEFAULT_RSS_HASHCFG | \
89 	BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
90 	BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
91 	BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
92 	BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
93 	BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
94 	BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
95 
96 #define i40e_pf_get_default_rss_hashcfg(pf) \
97 	(test_bit(I40E_HW_CAP_MULTI_TCP_UDP_RSS_PCTYPE, (pf)->hw.caps) ? \
98 	 I40E_DEFAULT_RSS_HASHCFG_EXPANDED : I40E_DEFAULT_RSS_HASHCFG)
99 
100 /* Supported Rx Buffer Sizes (a multiple of 128) */
101 #define I40E_RXBUFFER_256   256
102 #define I40E_RXBUFFER_1536  1536  /* 128B aligned standard Ethernet frame */
103 #define I40E_RXBUFFER_2048  2048
104 #define I40E_RXBUFFER_3072  3072  /* Used for large frames w/ padding */
105 #define I40E_MAX_RXBUFFER   9728  /* largest size for single descriptor */
106 
107 /* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
108  * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
109  * this adds up to 512 bytes of extra data meaning the smallest allocation
110  * we could have is 1K.
111  * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab)
112  * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab)
113  */
114 #define I40E_RX_HDR_SIZE I40E_RXBUFFER_256
115 #define I40E_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
116 #define i40e_rx_desc i40e_16byte_rx_desc
117 
118 #define I40E_RX_DMA_ATTR \
119 	(DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
120 
121 /* Attempt to maximize the headroom available for incoming frames.  We
122  * use a 2K buffer for receives and need 1536/1534 to store the data for
123  * the frame.  This leaves us with 512 bytes of room.  From that we need
124  * to deduct the space needed for the shared info and the padding needed
125  * to IP align the frame.
126  *
127  * Note: For cache line sizes 256 or larger this value is going to end
128  *	 up negative.  In these cases we should fall back to the legacy
129  *	 receive path.
130  */
131 #if (PAGE_SIZE < 8192)
132 #define I40E_2K_TOO_SMALL_WITH_PADDING \
133 ((NET_SKB_PAD + I40E_RXBUFFER_1536) > SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048))
134 
i40e_compute_pad(int rx_buf_len)135 static inline int i40e_compute_pad(int rx_buf_len)
136 {
137 	int page_size, pad_size;
138 
139 	page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
140 	pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len;
141 
142 	return pad_size;
143 }
144 
i40e_skb_pad(void)145 static inline int i40e_skb_pad(void)
146 {
147 	int rx_buf_len;
148 
149 	/* If a 2K buffer cannot handle a standard Ethernet frame then
150 	 * optimize padding for a 3K buffer instead of a 1.5K buffer.
151 	 *
152 	 * For a 3K buffer we need to add enough padding to allow for
153 	 * tailroom due to NET_IP_ALIGN possibly shifting us out of
154 	 * cache-line alignment.
155 	 */
156 	if (I40E_2K_TOO_SMALL_WITH_PADDING)
157 		rx_buf_len = I40E_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
158 	else
159 		rx_buf_len = I40E_RXBUFFER_1536;
160 
161 	/* if needed make room for NET_IP_ALIGN */
162 	rx_buf_len -= NET_IP_ALIGN;
163 
164 	return i40e_compute_pad(rx_buf_len);
165 }
166 
167 #define I40E_SKB_PAD i40e_skb_pad()
168 #else
169 #define I40E_2K_TOO_SMALL_WITH_PADDING false
170 #define I40E_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
171 #endif
172 
173 /**
174  * i40e_test_staterr - tests bits in Rx descriptor status and error fields
175  * @rx_desc: pointer to receive descriptor (in le64 format)
176  * @stat_err_bits: value to mask
177  *
178  * This function does some fast chicanery in order to return the
179  * value of the mask which is really only used for boolean tests.
180  * The status_error_len doesn't need to be shifted because it begins
181  * at offset zero.
182  */
i40e_test_staterr(union i40e_rx_desc * rx_desc,const u64 stat_err_bits)183 static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc,
184 				     const u64 stat_err_bits)
185 {
186 	return !!(rx_desc->wb.qword1.status_error_len &
187 		  cpu_to_le64(stat_err_bits));
188 }
189 
190 /* How many Rx Buffers do we bundle into one write to the hardware ? */
191 #define I40E_RX_BUFFER_WRITE	32	/* Must be power of 2 */
192 
193 #define I40E_RX_NEXT_DESC(r, i, n)		\
194 	do {					\
195 		(i)++;				\
196 		if ((i) == (r)->count)		\
197 			i = 0;			\
198 		(n) = I40E_RX_DESC((r), (i));	\
199 	} while (0)
200 
201 
202 #define I40E_MAX_BUFFER_TXD	8
203 #define I40E_MIN_TX_LEN		17
204 
205 /* The size limit for a transmit buffer in a descriptor is (16K - 1).
206  * In order to align with the read requests we will align the value to
207  * the nearest 4K which represents our maximum read request size.
208  */
209 #define I40E_MAX_READ_REQ_SIZE		4096
210 #define I40E_MAX_DATA_PER_TXD		(16 * 1024 - 1)
211 #define I40E_MAX_DATA_PER_TXD_ALIGNED \
212 	(I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1))
213 
214 /**
215  * i40e_txd_use_count  - estimate the number of descriptors needed for Tx
216  * @size: transmit request size in bytes
217  *
218  * Due to hardware alignment restrictions (4K alignment), we need to
219  * assume that we can have no more than 12K of data per descriptor, even
220  * though each descriptor can take up to 16K - 1 bytes of aligned memory.
221  * Thus, we need to divide by 12K. But division is slow! Instead,
222  * we decompose the operation into shifts and one relatively cheap
223  * multiply operation.
224  *
225  * To divide by 12K, we first divide by 4K, then divide by 3:
226  *     To divide by 4K, shift right by 12 bits
227  *     To divide by 3, multiply by 85, then divide by 256
228  *     (Divide by 256 is done by shifting right by 8 bits)
229  * Finally, we add one to round up. Because 256 isn't an exact multiple of
230  * 3, we'll underestimate near each multiple of 12K. This is actually more
231  * accurate as we have 4K - 1 of wiggle room that we can fit into the last
232  * segment.  For our purposes this is accurate out to 1M which is orders of
233  * magnitude greater than our largest possible GSO size.
234  *
235  * This would then be implemented as:
236  *     return (((size >> 12) * 85) >> 8) + 1;
237  *
238  * Since multiplication and division are commutative, we can reorder
239  * operations into:
240  *     return ((size * 85) >> 20) + 1;
241  */
i40e_txd_use_count(unsigned int size)242 static inline unsigned int i40e_txd_use_count(unsigned int size)
243 {
244 	return ((size * 85) >> 20) + 1;
245 }
246 
247 /* Tx Descriptors needed, worst case */
248 #define DESC_NEEDED (MAX_SKB_FRAGS + 6)
249 
250 #define I40E_TX_FLAGS_HW_VLAN		BIT(1)
251 #define I40E_TX_FLAGS_SW_VLAN		BIT(2)
252 #define I40E_TX_FLAGS_TSO		BIT(3)
253 #define I40E_TX_FLAGS_IPV4		BIT(4)
254 #define I40E_TX_FLAGS_IPV6		BIT(5)
255 #define I40E_TX_FLAGS_TSYN		BIT(8)
256 #define I40E_TX_FLAGS_FD_SB		BIT(9)
257 #define I40E_TX_FLAGS_UDP_TUNNEL	BIT(10)
258 #define I40E_TX_FLAGS_VLAN_MASK		0xffff0000
259 #define I40E_TX_FLAGS_VLAN_PRIO_MASK	0xe0000000
260 #define I40E_TX_FLAGS_VLAN_PRIO_SHIFT	29
261 #define I40E_TX_FLAGS_VLAN_SHIFT	16
262 
263 struct i40e_tx_buffer {
264 	struct i40e_tx_desc *next_to_watch;
265 	union {
266 		struct xdp_frame *xdpf;
267 		struct sk_buff *skb;
268 		void *raw_buf;
269 	};
270 	unsigned int bytecount;
271 	unsigned short gso_segs;
272 
273 	DEFINE_DMA_UNMAP_ADDR(dma);
274 	DEFINE_DMA_UNMAP_LEN(len);
275 	u32 tx_flags;
276 };
277 
278 struct i40e_rx_buffer {
279 	dma_addr_t dma;
280 	struct page *page;
281 	__u32 page_offset;
282 	__u16 pagecnt_bias;
283 	__u32 page_count;
284 };
285 
286 struct i40e_queue_stats {
287 	u64 packets;
288 	u64 bytes;
289 };
290 
291 struct i40e_tx_queue_stats {
292 	u64 restart_queue;
293 	u64 tx_busy;
294 	u64 tx_done_old;
295 	u64 tx_linearize;
296 	u64 tx_force_wb;
297 	u64 tx_stopped;
298 	int prev_pkt_ctr;
299 };
300 
301 struct i40e_rx_queue_stats {
302 	u64 non_eop_descs;
303 	u64 alloc_page_failed;
304 	u64 alloc_buff_failed;
305 	u64 page_reuse_count;
306 	u64 page_alloc_count;
307 	u64 page_waive_count;
308 	u64 page_busy_count;
309 };
310 
311 enum i40e_ring_state {
312 	__I40E_TX_FDIR_INIT_DONE,
313 	__I40E_TX_XPS_INIT_DONE,
314 	__I40E_RING_STATE_NBITS /* must be last */
315 };
316 
317 /* some useful defines for virtchannel interface, which
318  * is the only remaining user of header split
319  */
320 #define I40E_RX_DTYPE_HEADER_SPLIT  1
321 #define I40E_RX_SPLIT_L2      0x1
322 #define I40E_RX_SPLIT_IP      0x2
323 #define I40E_RX_SPLIT_TCP_UDP 0x4
324 #define I40E_RX_SPLIT_SCTP    0x8
325 
326 /* struct that defines a descriptor ring, associated with a VSI */
327 struct i40e_ring {
328 	struct i40e_ring *next;		/* pointer to next ring in q_vector */
329 	void *desc;			/* Descriptor ring memory */
330 	struct device *dev;		/* Used for DMA mapping */
331 	struct net_device *netdev;	/* netdev ring maps to */
332 	struct bpf_prog *xdp_prog;
333 	union {
334 		struct i40e_tx_buffer *tx_bi;
335 		struct i40e_rx_buffer *rx_bi;
336 		struct xdp_buff **rx_bi_zc;
337 	};
338 	DECLARE_BITMAP(state, __I40E_RING_STATE_NBITS);
339 	u16 queue_index;		/* Queue number of ring */
340 	u8 dcb_tc;			/* Traffic class of ring */
341 	u8 __iomem *tail;
342 
343 	/* Storing xdp_buff on ring helps in saving the state of partially built
344 	 * packet when i40e_clean_rx_ring_irq() must return before it sees EOP
345 	 * and to resume packet building for this ring in the next call to
346 	 * i40e_clean_rx_ring_irq().
347 	 */
348 	struct xdp_buff xdp;
349 
350 	/* Next descriptor to be processed; next_to_clean is updated only on
351 	 * processing EOP descriptor
352 	 */
353 	u16 next_to_process;
354 	/* high bit set means dynamic, use accessor routines to read/write.
355 	 * hardware only supports 2us resolution for the ITR registers.
356 	 * these values always store the USER setting, and must be converted
357 	 * before programming to a register.
358 	 */
359 	u16 itr_setting;
360 
361 	u16 count;			/* Number of descriptors */
362 	u16 reg_idx;			/* HW register index of the ring */
363 	u16 rx_buf_len;
364 
365 	/* used in interrupt processing */
366 	u16 next_to_use;
367 	u16 next_to_clean;
368 	u16 xdp_tx_active;
369 
370 	u8 atr_sample_rate;
371 	u8 atr_count;
372 
373 	bool ring_active;		/* is ring online or not */
374 	bool arm_wb;		/* do something to arm write back */
375 	u8 packet_stride;
376 
377 	u16 flags;
378 #define I40E_TXR_FLAGS_WB_ON_ITR		BIT(0)
379 #define I40E_RXR_FLAGS_BUILD_SKB_ENABLED	BIT(1)
380 #define I40E_TXR_FLAGS_XDP			BIT(2)
381 
382 	/* stats structs */
383 	struct i40e_queue_stats	stats;
384 	struct u64_stats_sync syncp;
385 	union {
386 		struct i40e_tx_queue_stats tx_stats;
387 		struct i40e_rx_queue_stats rx_stats;
388 	};
389 
390 	unsigned int size;		/* length of descriptor ring in bytes */
391 	dma_addr_t dma;			/* physical address of ring */
392 
393 	struct i40e_vsi *vsi;		/* Backreference to associated VSI */
394 	struct i40e_q_vector *q_vector;	/* Backreference to associated vector */
395 
396 	struct rcu_head rcu;		/* to avoid race on free */
397 	u16 next_to_alloc;
398 
399 	struct i40e_channel *ch;
400 	u16 rx_offset;
401 	struct xdp_rxq_info xdp_rxq;
402 	struct xsk_buff_pool *xsk_pool;
403 } ____cacheline_internodealigned_in_smp;
404 
ring_uses_build_skb(struct i40e_ring * ring)405 static inline bool ring_uses_build_skb(struct i40e_ring *ring)
406 {
407 	return !!(ring->flags & I40E_RXR_FLAGS_BUILD_SKB_ENABLED);
408 }
409 
set_ring_build_skb_enabled(struct i40e_ring * ring)410 static inline void set_ring_build_skb_enabled(struct i40e_ring *ring)
411 {
412 	ring->flags |= I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
413 }
414 
clear_ring_build_skb_enabled(struct i40e_ring * ring)415 static inline void clear_ring_build_skb_enabled(struct i40e_ring *ring)
416 {
417 	ring->flags &= ~I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
418 }
419 
ring_is_xdp(struct i40e_ring * ring)420 static inline bool ring_is_xdp(struct i40e_ring *ring)
421 {
422 	return !!(ring->flags & I40E_TXR_FLAGS_XDP);
423 }
424 
set_ring_xdp(struct i40e_ring * ring)425 static inline void set_ring_xdp(struct i40e_ring *ring)
426 {
427 	ring->flags |= I40E_TXR_FLAGS_XDP;
428 }
429 
430 #define I40E_ITR_ADAPTIVE_MIN_INC	0x0002
431 #define I40E_ITR_ADAPTIVE_MIN_USECS	0x0002
432 #define I40E_ITR_ADAPTIVE_MAX_USECS	0x007e
433 #define I40E_ITR_ADAPTIVE_LATENCY	0x8000
434 #define I40E_ITR_ADAPTIVE_BULK		0x0000
435 
436 struct i40e_ring_container {
437 	struct i40e_ring *ring;		/* pointer to linked list of ring(s) */
438 	unsigned long next_update;	/* jiffies value of next update */
439 	unsigned int total_bytes;	/* total bytes processed this int */
440 	unsigned int total_packets;	/* total packets processed this int */
441 	u16 count;
442 	u16 target_itr;			/* target ITR setting for ring(s) */
443 	u16 current_itr;		/* current ITR setting for ring(s) */
444 };
445 
446 /* iterator for handling rings in ring container */
447 #define i40e_for_each_ring(pos, head) \
448 	for (pos = (head).ring; pos != NULL; pos = pos->next)
449 
i40e_rx_pg_order(struct i40e_ring * ring)450 static inline unsigned int i40e_rx_pg_order(struct i40e_ring *ring)
451 {
452 #if (PAGE_SIZE < 8192)
453 	if (ring->rx_buf_len > (PAGE_SIZE / 2))
454 		return 1;
455 #endif
456 	return 0;
457 }
458 
459 #define i40e_rx_pg_size(_ring) (PAGE_SIZE << i40e_rx_pg_order(_ring))
460 
461 bool i40e_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count);
462 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
463 u16 i40e_lan_select_queue(struct net_device *netdev, struct sk_buff *skb,
464 			  struct net_device *sb_dev);
465 void i40e_clean_tx_ring(struct i40e_ring *tx_ring);
466 void i40e_clean_rx_ring(struct i40e_ring *rx_ring);
467 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring);
468 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring);
469 void i40e_free_tx_resources(struct i40e_ring *tx_ring);
470 void i40e_free_rx_resources(struct i40e_ring *rx_ring);
471 int i40e_napi_poll(struct napi_struct *napi, int budget);
472 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector);
473 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw);
474 void i40e_detect_recover_hung(struct i40e_pf *pf);
475 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size);
476 bool __i40e_chk_linearize(struct sk_buff *skb);
477 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
478 		  u32 flags);
479 bool i40e_is_non_eop(struct i40e_ring *rx_ring,
480 		     union i40e_rx_desc *rx_desc);
481 
482 /**
483  * i40e_get_head - Retrieve head from head writeback
484  * @tx_ring:  tx ring to fetch head of
485  *
486  * Returns value of Tx ring head based on value stored
487  * in head write-back location
488  **/
i40e_get_head(struct i40e_ring * tx_ring)489 static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
490 {
491 	void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
492 
493 	return le32_to_cpu(*(volatile __le32 *)head);
494 }
495 
496 /**
497  * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed
498  * @skb:     send buffer
499  *
500  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
501  * there is not enough descriptors available in this ring since we need at least
502  * one descriptor.
503  **/
i40e_xmit_descriptor_count(struct sk_buff * skb)504 static inline int i40e_xmit_descriptor_count(struct sk_buff *skb)
505 {
506 	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
507 	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
508 	int count = 0, size = skb_headlen(skb);
509 
510 	for (;;) {
511 		count += i40e_txd_use_count(size);
512 
513 		if (!nr_frags--)
514 			break;
515 
516 		size = skb_frag_size(frag++);
517 	}
518 
519 	return count;
520 }
521 
522 /**
523  * i40e_maybe_stop_tx - 1st level check for Tx stop conditions
524  * @tx_ring: the ring to be checked
525  * @size:    the size buffer we want to assure is available
526  *
527  * Returns 0 if stop is not needed
528  **/
i40e_maybe_stop_tx(struct i40e_ring * tx_ring,int size)529 static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
530 {
531 	if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
532 		return 0;
533 	return __i40e_maybe_stop_tx(tx_ring, size);
534 }
535 
536 /**
537  * i40e_chk_linearize - Check if there are more than 8 fragments per packet
538  * @skb:      send buffer
539  * @count:    number of buffers used
540  *
541  * Note: Our HW can't scatter-gather more than 8 fragments to build
542  * a packet on the wire and so we need to figure out the cases where we
543  * need to linearize the skb.
544  **/
i40e_chk_linearize(struct sk_buff * skb,int count)545 static inline bool i40e_chk_linearize(struct sk_buff *skb, int count)
546 {
547 	/* Both TSO and single send will work if count is less than 8 */
548 	if (likely(count < I40E_MAX_BUFFER_TXD))
549 		return false;
550 
551 	if (skb_is_gso(skb))
552 		return __i40e_chk_linearize(skb);
553 
554 	/* we can support up to 8 data buffers for a single send */
555 	return count != I40E_MAX_BUFFER_TXD;
556 }
557 
558 /**
559  * txring_txq - Find the netdev Tx ring based on the i40e Tx ring
560  * @ring: Tx ring to find the netdev equivalent of
561  **/
txring_txq(const struct i40e_ring * ring)562 static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring)
563 {
564 	return netdev_get_tx_queue(ring->netdev, ring->queue_index);
565 }
566 #endif /* _I40E_TXRX_H_ */
567