xref: /linux/arch/s390/include/asm/pgtable.h (revision f73a058be5d70dd81a43f16b2bbff4b1576a7af8)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  *  S390 version
4  *    Copyright IBM Corp. 1999, 2000
5  *    Author(s): Hartmut Penner (hp@de.ibm.com)
6  *               Ulrich Weigand (weigand@de.ibm.com)
7  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
8  *
9  *  Derived from "include/asm-i386/pgtable.h"
10  */
11 
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
14 
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/page-flags.h>
18 #include <linux/radix-tree.h>
19 #include <linux/atomic.h>
20 #include <asm/sections.h>
21 #include <asm/ctlreg.h>
22 #include <asm/bug.h>
23 #include <asm/page.h>
24 #include <asm/uv.h>
25 
26 extern pgd_t swapper_pg_dir[];
27 extern pgd_t invalid_pg_dir[];
28 extern void paging_init(void);
29 extern struct ctlreg s390_invalid_asce;
30 
31 enum {
32 	PG_DIRECT_MAP_4K = 0,
33 	PG_DIRECT_MAP_1M,
34 	PG_DIRECT_MAP_2G,
35 	PG_DIRECT_MAP_MAX
36 };
37 
38 extern atomic_long_t __bootdata_preserved(direct_pages_count[PG_DIRECT_MAP_MAX]);
39 
40 static inline void update_page_count(int level, long count)
41 {
42 	if (IS_ENABLED(CONFIG_PROC_FS))
43 		atomic_long_add(count, &direct_pages_count[level]);
44 }
45 
46 /*
47  * The S390 doesn't have any external MMU info: the kernel page
48  * tables contain all the necessary information.
49  */
50 #define update_mmu_cache(vma, address, ptep)     do { } while (0)
51 #define update_mmu_cache_range(vmf, vma, addr, ptep, nr) do { } while (0)
52 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
53 
54 /*
55  * ZERO_PAGE is a global shared page that is always zero; used
56  * for zero-mapped memory areas etc..
57  */
58 
59 extern unsigned long empty_zero_page;
60 extern unsigned long zero_page_mask;
61 
62 #define ZERO_PAGE(vaddr) \
63 	(virt_to_page((void *)(empty_zero_page + \
64 	 (((unsigned long)(vaddr)) &zero_page_mask))))
65 #define __HAVE_COLOR_ZERO_PAGE
66 
67 /* TODO: s390 cannot support io_remap_pfn_range... */
68 
69 #define pte_ERROR(e) \
70 	pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
71 #define pmd_ERROR(e) \
72 	pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
73 #define pud_ERROR(e) \
74 	pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
75 #define p4d_ERROR(e) \
76 	pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e))
77 #define pgd_ERROR(e) \
78 	pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
79 
80 /*
81  * The vmalloc and module area will always be on the topmost area of the
82  * kernel mapping. 512GB are reserved for vmalloc by default.
83  * At the top of the vmalloc area a 2GB area is reserved where modules
84  * will reside. That makes sure that inter module branches always
85  * happen without trampolines and in addition the placement within a
86  * 2GB frame is branch prediction unit friendly.
87  */
88 extern unsigned long __bootdata_preserved(VMALLOC_START);
89 extern unsigned long __bootdata_preserved(VMALLOC_END);
90 #define VMALLOC_DEFAULT_SIZE	((512UL << 30) - MODULES_LEN)
91 extern struct page *__bootdata_preserved(vmemmap);
92 extern unsigned long __bootdata_preserved(vmemmap_size);
93 
94 extern unsigned long __bootdata_preserved(MODULES_VADDR);
95 extern unsigned long __bootdata_preserved(MODULES_END);
96 #define MODULES_VADDR	MODULES_VADDR
97 #define MODULES_END	MODULES_END
98 #define MODULES_LEN	(1UL << 31)
99 
100 static inline int is_module_addr(void *addr)
101 {
102 	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
103 	if (addr < (void *)MODULES_VADDR)
104 		return 0;
105 	if (addr > (void *)MODULES_END)
106 		return 0;
107 	return 1;
108 }
109 
110 #ifdef CONFIG_RANDOMIZE_BASE
111 #define KASLR_LEN	(1UL << 31)
112 #else
113 #define KASLR_LEN	0UL
114 #endif
115 
116 /*
117  * A 64 bit pagetable entry of S390 has following format:
118  * |			 PFRA			      |0IPC|  OS  |
119  * 0000000000111111111122222222223333333333444444444455555555556666
120  * 0123456789012345678901234567890123456789012345678901234567890123
121  *
122  * I Page-Invalid Bit:    Page is not available for address-translation
123  * P Page-Protection Bit: Store access not possible for page
124  * C Change-bit override: HW is not required to set change bit
125  *
126  * A 64 bit segmenttable entry of S390 has following format:
127  * |        P-table origin                              |      TT
128  * 0000000000111111111122222222223333333333444444444455555555556666
129  * 0123456789012345678901234567890123456789012345678901234567890123
130  *
131  * I Segment-Invalid Bit:    Segment is not available for address-translation
132  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
133  * P Page-Protection Bit: Store access not possible for page
134  * TT Type 00
135  *
136  * A 64 bit region table entry of S390 has following format:
137  * |        S-table origin                             |   TF  TTTL
138  * 0000000000111111111122222222223333333333444444444455555555556666
139  * 0123456789012345678901234567890123456789012345678901234567890123
140  *
141  * I Segment-Invalid Bit:    Segment is not available for address-translation
142  * TT Type 01
143  * TF
144  * TL Table length
145  *
146  * The 64 bit regiontable origin of S390 has following format:
147  * |      region table origon                          |       DTTL
148  * 0000000000111111111122222222223333333333444444444455555555556666
149  * 0123456789012345678901234567890123456789012345678901234567890123
150  *
151  * X Space-Switch event:
152  * G Segment-Invalid Bit:
153  * P Private-Space Bit:
154  * S Storage-Alteration:
155  * R Real space
156  * TL Table-Length:
157  *
158  * A storage key has the following format:
159  * | ACC |F|R|C|0|
160  *  0   3 4 5 6 7
161  * ACC: access key
162  * F  : fetch protection bit
163  * R  : referenced bit
164  * C  : changed bit
165  */
166 
167 /* Hardware bits in the page table entry */
168 #define _PAGE_NOEXEC	0x100		/* HW no-execute bit  */
169 #define _PAGE_PROTECT	0x200		/* HW read-only bit  */
170 #define _PAGE_INVALID	0x400		/* HW invalid bit    */
171 #define _PAGE_LARGE	0x800		/* Bit to mark a large pte */
172 
173 /* Software bits in the page table entry */
174 #define _PAGE_PRESENT	0x001		/* SW pte present bit */
175 #define _PAGE_YOUNG	0x004		/* SW pte young bit */
176 #define _PAGE_DIRTY	0x008		/* SW pte dirty bit */
177 #define _PAGE_READ	0x010		/* SW pte read bit */
178 #define _PAGE_WRITE	0x020		/* SW pte write bit */
179 #define _PAGE_SPECIAL	0x040		/* SW associated with special page */
180 #define _PAGE_UNUSED	0x080		/* SW bit for pgste usage state */
181 
182 #ifdef CONFIG_MEM_SOFT_DIRTY
183 #define _PAGE_SOFT_DIRTY 0x002		/* SW pte soft dirty bit */
184 #else
185 #define _PAGE_SOFT_DIRTY 0x000
186 #endif
187 
188 #define _PAGE_SW_BITS	0xffUL		/* All SW bits */
189 
190 #define _PAGE_SWP_EXCLUSIVE _PAGE_LARGE	/* SW pte exclusive swap bit */
191 
192 /* Set of bits not changed in pte_modify */
193 #define _PAGE_CHG_MASK		(PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
194 				 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
195 
196 /*
197  * Mask of bits that must not be changed with RDP. Allow only _PAGE_PROTECT
198  * HW bit and all SW bits.
199  */
200 #define _PAGE_RDP_MASK		~(_PAGE_PROTECT | _PAGE_SW_BITS)
201 
202 /*
203  * handle_pte_fault uses pte_present and pte_none to find out the pte type
204  * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
205  * distinguish present from not-present ptes. It is changed only with the page
206  * table lock held.
207  *
208  * The following table gives the different possible bit combinations for
209  * the pte hardware and software bits in the last 12 bits of a pte
210  * (. unassigned bit, x don't care, t swap type):
211  *
212  *				842100000000
213  *				000084210000
214  *				000000008421
215  *				.IR.uswrdy.p
216  * empty			.10.00000000
217  * swap				.11..ttttt.0
218  * prot-none, clean, old	.11.xx0000.1
219  * prot-none, clean, young	.11.xx0001.1
220  * prot-none, dirty, old	.11.xx0010.1
221  * prot-none, dirty, young	.11.xx0011.1
222  * read-only, clean, old	.11.xx0100.1
223  * read-only, clean, young	.01.xx0101.1
224  * read-only, dirty, old	.11.xx0110.1
225  * read-only, dirty, young	.01.xx0111.1
226  * read-write, clean, old	.11.xx1100.1
227  * read-write, clean, young	.01.xx1101.1
228  * read-write, dirty, old	.10.xx1110.1
229  * read-write, dirty, young	.00.xx1111.1
230  * HW-bits: R read-only, I invalid
231  * SW-bits: p present, y young, d dirty, r read, w write, s special,
232  *	    u unused, l large
233  *
234  * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
235  * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
236  * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
237  */
238 
239 /* Bits in the segment/region table address-space-control-element */
240 #define _ASCE_ORIGIN		~0xfffUL/* region/segment table origin	    */
241 #define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
242 #define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
243 #define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
244 #define _ASCE_REAL_SPACE	0x20	/* real space control		    */
245 #define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
246 #define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
247 #define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
248 #define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
249 #define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
250 #define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
251 
252 /* Bits in the region table entry */
253 #define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
254 #define _REGION_ENTRY_PROTECT	0x200	/* region protection bit	    */
255 #define _REGION_ENTRY_NOEXEC	0x100	/* region no-execute bit	    */
256 #define _REGION_ENTRY_OFFSET	0xc0	/* region table offset		    */
257 #define _REGION_ENTRY_INVALID	0x20	/* invalid region table entry	    */
258 #define _REGION_ENTRY_TYPE_MASK	0x0c	/* region table type mask	    */
259 #define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
260 #define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
261 #define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
262 #define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
263 
264 #define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
265 #define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
266 #define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
267 #define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
268 #define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
269 #define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
270 
271 #define _REGION3_ENTRY_HARDWARE_BITS		0xfffffffffffff6ffUL
272 #define _REGION3_ENTRY_HARDWARE_BITS_LARGE	0xffffffff8001073cUL
273 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address	     */
274 #define _REGION3_ENTRY_DIRTY	0x2000	/* SW region dirty bit */
275 #define _REGION3_ENTRY_YOUNG	0x1000	/* SW region young bit */
276 #define _REGION3_ENTRY_LARGE	0x0400	/* RTTE-format control, large page  */
277 #define _REGION3_ENTRY_WRITE	0x0002	/* SW region write bit */
278 #define _REGION3_ENTRY_READ	0x0001	/* SW region read bit */
279 
280 #ifdef CONFIG_MEM_SOFT_DIRTY
281 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
282 #else
283 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
284 #endif
285 
286 #define _REGION_ENTRY_BITS	 0xfffffffffffff22fUL
287 
288 /* Bits in the segment table entry */
289 #define _SEGMENT_ENTRY_BITS			0xfffffffffffffe3fUL
290 #define _SEGMENT_ENTRY_HARDWARE_BITS		0xfffffffffffffe3cUL
291 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE	0xfffffffffff1073cUL
292 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address	    */
293 #define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* page table origin		    */
294 #define _SEGMENT_ENTRY_PROTECT	0x200	/* segment protection bit	    */
295 #define _SEGMENT_ENTRY_NOEXEC	0x100	/* segment no-execute bit	    */
296 #define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
297 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c	/* segment table type mask	    */
298 
299 #define _SEGMENT_ENTRY		(0)
300 #define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
301 
302 #define _SEGMENT_ENTRY_DIRTY	0x2000	/* SW segment dirty bit */
303 #define _SEGMENT_ENTRY_YOUNG	0x1000	/* SW segment young bit */
304 #define _SEGMENT_ENTRY_LARGE	0x0400	/* STE-format control, large page */
305 #define _SEGMENT_ENTRY_WRITE	0x0002	/* SW segment write bit */
306 #define _SEGMENT_ENTRY_READ	0x0001	/* SW segment read bit */
307 
308 #ifdef CONFIG_MEM_SOFT_DIRTY
309 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
310 #else
311 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
312 #endif
313 
314 #define _CRST_ENTRIES	2048	/* number of region/segment table entries */
315 #define _PAGE_ENTRIES	256	/* number of page table entries	*/
316 
317 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
318 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
319 
320 #define _REGION1_SHIFT	53
321 #define _REGION2_SHIFT	42
322 #define _REGION3_SHIFT	31
323 #define _SEGMENT_SHIFT	20
324 
325 #define _REGION1_INDEX	(0x7ffUL << _REGION1_SHIFT)
326 #define _REGION2_INDEX	(0x7ffUL << _REGION2_SHIFT)
327 #define _REGION3_INDEX	(0x7ffUL << _REGION3_SHIFT)
328 #define _SEGMENT_INDEX	(0x7ffUL << _SEGMENT_SHIFT)
329 #define _PAGE_INDEX	(0xffUL  << _PAGE_SHIFT)
330 
331 #define _REGION1_SIZE	(1UL << _REGION1_SHIFT)
332 #define _REGION2_SIZE	(1UL << _REGION2_SHIFT)
333 #define _REGION3_SIZE	(1UL << _REGION3_SHIFT)
334 #define _SEGMENT_SIZE	(1UL << _SEGMENT_SHIFT)
335 
336 #define _REGION1_MASK	(~(_REGION1_SIZE - 1))
337 #define _REGION2_MASK	(~(_REGION2_SIZE - 1))
338 #define _REGION3_MASK	(~(_REGION3_SIZE - 1))
339 #define _SEGMENT_MASK	(~(_SEGMENT_SIZE - 1))
340 
341 #define PMD_SHIFT	_SEGMENT_SHIFT
342 #define PUD_SHIFT	_REGION3_SHIFT
343 #define P4D_SHIFT	_REGION2_SHIFT
344 #define PGDIR_SHIFT	_REGION1_SHIFT
345 
346 #define PMD_SIZE	_SEGMENT_SIZE
347 #define PUD_SIZE	_REGION3_SIZE
348 #define P4D_SIZE	_REGION2_SIZE
349 #define PGDIR_SIZE	_REGION1_SIZE
350 
351 #define PMD_MASK	_SEGMENT_MASK
352 #define PUD_MASK	_REGION3_MASK
353 #define P4D_MASK	_REGION2_MASK
354 #define PGDIR_MASK	_REGION1_MASK
355 
356 #define PTRS_PER_PTE	_PAGE_ENTRIES
357 #define PTRS_PER_PMD	_CRST_ENTRIES
358 #define PTRS_PER_PUD	_CRST_ENTRIES
359 #define PTRS_PER_P4D	_CRST_ENTRIES
360 #define PTRS_PER_PGD	_CRST_ENTRIES
361 
362 /*
363  * Segment table and region3 table entry encoding
364  * (R = read-only, I = invalid, y = young bit):
365  *				dy..R...I...wr
366  * prot-none, clean, old	00..1...1...00
367  * prot-none, clean, young	01..1...1...00
368  * prot-none, dirty, old	10..1...1...00
369  * prot-none, dirty, young	11..1...1...00
370  * read-only, clean, old	00..1...1...01
371  * read-only, clean, young	01..1...0...01
372  * read-only, dirty, old	10..1...1...01
373  * read-only, dirty, young	11..1...0...01
374  * read-write, clean, old	00..1...1...11
375  * read-write, clean, young	01..1...0...11
376  * read-write, dirty, old	10..0...1...11
377  * read-write, dirty, young	11..0...0...11
378  * The segment table origin is used to distinguish empty (origin==0) from
379  * read-write, old segment table entries (origin!=0)
380  * HW-bits: R read-only, I invalid
381  * SW-bits: y young, d dirty, r read, w write
382  */
383 
384 /* Page status table bits for virtualization */
385 #define PGSTE_ACC_BITS	0xf000000000000000UL
386 #define PGSTE_FP_BIT	0x0800000000000000UL
387 #define PGSTE_PCL_BIT	0x0080000000000000UL
388 #define PGSTE_HR_BIT	0x0040000000000000UL
389 #define PGSTE_HC_BIT	0x0020000000000000UL
390 #define PGSTE_GR_BIT	0x0004000000000000UL
391 #define PGSTE_GC_BIT	0x0002000000000000UL
392 #define PGSTE_UC_BIT	0x0000800000000000UL	/* user dirty (migration) */
393 #define PGSTE_IN_BIT	0x0000400000000000UL	/* IPTE notify bit */
394 #define PGSTE_VSIE_BIT	0x0000200000000000UL	/* ref'd in a shadow table */
395 
396 /* Guest Page State used for virtualization */
397 #define _PGSTE_GPS_ZERO			0x0000000080000000UL
398 #define _PGSTE_GPS_NODAT		0x0000000040000000UL
399 #define _PGSTE_GPS_USAGE_MASK		0x0000000003000000UL
400 #define _PGSTE_GPS_USAGE_STABLE		0x0000000000000000UL
401 #define _PGSTE_GPS_USAGE_UNUSED		0x0000000001000000UL
402 #define _PGSTE_GPS_USAGE_POT_VOLATILE	0x0000000002000000UL
403 #define _PGSTE_GPS_USAGE_VOLATILE	_PGSTE_GPS_USAGE_MASK
404 
405 /*
406  * A user page table pointer has the space-switch-event bit, the
407  * private-space-control bit and the storage-alteration-event-control
408  * bit set. A kernel page table pointer doesn't need them.
409  */
410 #define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
411 				 _ASCE_ALT_EVENT)
412 
413 /*
414  * Page protection definitions.
415  */
416 #define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
417 #define PAGE_RO		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
418 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
419 #define PAGE_RX		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
420 				 _PAGE_INVALID | _PAGE_PROTECT)
421 #define PAGE_RW		__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
422 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
423 #define PAGE_RWX	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
424 				 _PAGE_INVALID | _PAGE_PROTECT)
425 
426 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
427 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
428 #define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
429 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
430 #define PAGE_KERNEL_RO	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
431 				 _PAGE_PROTECT | _PAGE_NOEXEC)
432 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
433 				  _PAGE_YOUNG |	_PAGE_DIRTY)
434 
435 /*
436  * On s390 the page table entry has an invalid bit and a read-only bit.
437  * Read permission implies execute permission and write permission
438  * implies read permission.
439  */
440          /*xwr*/
441 
442 /*
443  * Segment entry (large page) protection definitions.
444  */
445 #define SEGMENT_NONE	__pgprot(_SEGMENT_ENTRY_INVALID | \
446 				 _SEGMENT_ENTRY_PROTECT)
447 #define SEGMENT_RO	__pgprot(_SEGMENT_ENTRY_PROTECT | \
448 				 _SEGMENT_ENTRY_READ | \
449 				 _SEGMENT_ENTRY_NOEXEC)
450 #define SEGMENT_RX	__pgprot(_SEGMENT_ENTRY_PROTECT | \
451 				 _SEGMENT_ENTRY_READ)
452 #define SEGMENT_RW	__pgprot(_SEGMENT_ENTRY_READ | \
453 				 _SEGMENT_ENTRY_WRITE | \
454 				 _SEGMENT_ENTRY_NOEXEC)
455 #define SEGMENT_RWX	__pgprot(_SEGMENT_ENTRY_READ | \
456 				 _SEGMENT_ENTRY_WRITE)
457 #define SEGMENT_KERNEL	__pgprot(_SEGMENT_ENTRY |	\
458 				 _SEGMENT_ENTRY_LARGE |	\
459 				 _SEGMENT_ENTRY_READ |	\
460 				 _SEGMENT_ENTRY_WRITE | \
461 				 _SEGMENT_ENTRY_YOUNG | \
462 				 _SEGMENT_ENTRY_DIRTY | \
463 				 _SEGMENT_ENTRY_NOEXEC)
464 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY |	\
465 				 _SEGMENT_ENTRY_LARGE |	\
466 				 _SEGMENT_ENTRY_READ |	\
467 				 _SEGMENT_ENTRY_YOUNG |	\
468 				 _SEGMENT_ENTRY_PROTECT | \
469 				 _SEGMENT_ENTRY_NOEXEC)
470 #define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY |	\
471 				 _SEGMENT_ENTRY_LARGE |	\
472 				 _SEGMENT_ENTRY_READ |	\
473 				 _SEGMENT_ENTRY_WRITE | \
474 				 _SEGMENT_ENTRY_YOUNG |	\
475 				 _SEGMENT_ENTRY_DIRTY)
476 
477 /*
478  * Region3 entry (large page) protection definitions.
479  */
480 
481 #define REGION3_KERNEL	__pgprot(_REGION_ENTRY_TYPE_R3 | \
482 				 _REGION3_ENTRY_LARGE |	 \
483 				 _REGION3_ENTRY_READ |	 \
484 				 _REGION3_ENTRY_WRITE |	 \
485 				 _REGION3_ENTRY_YOUNG |	 \
486 				 _REGION3_ENTRY_DIRTY | \
487 				 _REGION_ENTRY_NOEXEC)
488 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
489 				   _REGION3_ENTRY_LARGE |  \
490 				   _REGION3_ENTRY_READ |   \
491 				   _REGION3_ENTRY_YOUNG |  \
492 				   _REGION_ENTRY_PROTECT | \
493 				   _REGION_ENTRY_NOEXEC)
494 #define REGION3_KERNEL_EXEC __pgprot(_REGION_ENTRY_TYPE_R3 | \
495 				 _REGION3_ENTRY_LARGE |	 \
496 				 _REGION3_ENTRY_READ |	 \
497 				 _REGION3_ENTRY_WRITE |	 \
498 				 _REGION3_ENTRY_YOUNG |	 \
499 				 _REGION3_ENTRY_DIRTY)
500 
501 static inline bool mm_p4d_folded(struct mm_struct *mm)
502 {
503 	return mm->context.asce_limit <= _REGION1_SIZE;
504 }
505 #define mm_p4d_folded(mm) mm_p4d_folded(mm)
506 
507 static inline bool mm_pud_folded(struct mm_struct *mm)
508 {
509 	return mm->context.asce_limit <= _REGION2_SIZE;
510 }
511 #define mm_pud_folded(mm) mm_pud_folded(mm)
512 
513 static inline bool mm_pmd_folded(struct mm_struct *mm)
514 {
515 	return mm->context.asce_limit <= _REGION3_SIZE;
516 }
517 #define mm_pmd_folded(mm) mm_pmd_folded(mm)
518 
519 static inline int mm_has_pgste(struct mm_struct *mm)
520 {
521 #ifdef CONFIG_PGSTE
522 	if (unlikely(mm->context.has_pgste))
523 		return 1;
524 #endif
525 	return 0;
526 }
527 
528 static inline int mm_is_protected(struct mm_struct *mm)
529 {
530 #ifdef CONFIG_PGSTE
531 	if (unlikely(atomic_read(&mm->context.protected_count)))
532 		return 1;
533 #endif
534 	return 0;
535 }
536 
537 static inline int mm_alloc_pgste(struct mm_struct *mm)
538 {
539 #ifdef CONFIG_PGSTE
540 	if (unlikely(mm->context.alloc_pgste))
541 		return 1;
542 #endif
543 	return 0;
544 }
545 
546 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
547 {
548 	return __pte(pte_val(pte) & ~pgprot_val(prot));
549 }
550 
551 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
552 {
553 	return __pte(pte_val(pte) | pgprot_val(prot));
554 }
555 
556 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
557 {
558 	return __pmd(pmd_val(pmd) & ~pgprot_val(prot));
559 }
560 
561 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
562 {
563 	return __pmd(pmd_val(pmd) | pgprot_val(prot));
564 }
565 
566 static inline pud_t clear_pud_bit(pud_t pud, pgprot_t prot)
567 {
568 	return __pud(pud_val(pud) & ~pgprot_val(prot));
569 }
570 
571 static inline pud_t set_pud_bit(pud_t pud, pgprot_t prot)
572 {
573 	return __pud(pud_val(pud) | pgprot_val(prot));
574 }
575 
576 /*
577  * As soon as the guest uses storage keys or enables PV, we deduplicate all
578  * mapped shared zeropages and prevent new shared zeropages from getting
579  * mapped.
580  */
581 #define mm_forbids_zeropage mm_forbids_zeropage
582 static inline int mm_forbids_zeropage(struct mm_struct *mm)
583 {
584 #ifdef CONFIG_PGSTE
585 	if (!mm->context.allow_cow_sharing)
586 		return 1;
587 #endif
588 	return 0;
589 }
590 
591 static inline int mm_uses_skeys(struct mm_struct *mm)
592 {
593 #ifdef CONFIG_PGSTE
594 	if (mm->context.uses_skeys)
595 		return 1;
596 #endif
597 	return 0;
598 }
599 
600 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
601 {
602 	union register_pair r1 = { .even = old, .odd = new, };
603 	unsigned long address = (unsigned long)ptr | 1;
604 
605 	asm volatile(
606 		"	csp	%[r1],%[address]"
607 		: [r1] "+&d" (r1.pair), "+m" (*ptr)
608 		: [address] "d" (address)
609 		: "cc");
610 }
611 
612 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
613 {
614 	union register_pair r1 = { .even = old, .odd = new, };
615 	unsigned long address = (unsigned long)ptr | 1;
616 
617 	asm volatile(
618 		"	cspg	%[r1],%[address]"
619 		: [r1] "+&d" (r1.pair), "+m" (*ptr)
620 		: [address] "d" (address)
621 		: "cc");
622 }
623 
624 #define CRDTE_DTT_PAGE		0x00UL
625 #define CRDTE_DTT_SEGMENT	0x10UL
626 #define CRDTE_DTT_REGION3	0x14UL
627 #define CRDTE_DTT_REGION2	0x18UL
628 #define CRDTE_DTT_REGION1	0x1cUL
629 
630 static inline void crdte(unsigned long old, unsigned long new,
631 			 unsigned long *table, unsigned long dtt,
632 			 unsigned long address, unsigned long asce)
633 {
634 	union register_pair r1 = { .even = old, .odd = new, };
635 	union register_pair r2 = { .even = __pa(table) | dtt, .odd = address, };
636 
637 	asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0"
638 		     : [r1] "+&d" (r1.pair)
639 		     : [r2] "d" (r2.pair), [asce] "a" (asce)
640 		     : "memory", "cc");
641 }
642 
643 /*
644  * pgd/p4d/pud/pmd/pte query functions
645  */
646 static inline int pgd_folded(pgd_t pgd)
647 {
648 	return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
649 }
650 
651 static inline int pgd_present(pgd_t pgd)
652 {
653 	if (pgd_folded(pgd))
654 		return 1;
655 	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
656 }
657 
658 static inline int pgd_none(pgd_t pgd)
659 {
660 	if (pgd_folded(pgd))
661 		return 0;
662 	return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
663 }
664 
665 static inline int pgd_bad(pgd_t pgd)
666 {
667 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
668 		return 0;
669 	return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
670 }
671 
672 static inline unsigned long pgd_pfn(pgd_t pgd)
673 {
674 	unsigned long origin_mask;
675 
676 	origin_mask = _REGION_ENTRY_ORIGIN;
677 	return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
678 }
679 
680 static inline int p4d_folded(p4d_t p4d)
681 {
682 	return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
683 }
684 
685 static inline int p4d_present(p4d_t p4d)
686 {
687 	if (p4d_folded(p4d))
688 		return 1;
689 	return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
690 }
691 
692 static inline int p4d_none(p4d_t p4d)
693 {
694 	if (p4d_folded(p4d))
695 		return 0;
696 	return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
697 }
698 
699 static inline unsigned long p4d_pfn(p4d_t p4d)
700 {
701 	unsigned long origin_mask;
702 
703 	origin_mask = _REGION_ENTRY_ORIGIN;
704 	return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
705 }
706 
707 static inline int pud_folded(pud_t pud)
708 {
709 	return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
710 }
711 
712 static inline int pud_present(pud_t pud)
713 {
714 	if (pud_folded(pud))
715 		return 1;
716 	return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
717 }
718 
719 static inline int pud_none(pud_t pud)
720 {
721 	if (pud_folded(pud))
722 		return 0;
723 	return pud_val(pud) == _REGION3_ENTRY_EMPTY;
724 }
725 
726 #define pud_leaf pud_leaf
727 static inline bool pud_leaf(pud_t pud)
728 {
729 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
730 		return 0;
731 	return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
732 }
733 
734 #define pmd_leaf pmd_leaf
735 static inline bool pmd_leaf(pmd_t pmd)
736 {
737 	return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
738 }
739 
740 static inline int pmd_bad(pmd_t pmd)
741 {
742 	if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_leaf(pmd))
743 		return 1;
744 	return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
745 }
746 
747 static inline int pud_bad(pud_t pud)
748 {
749 	unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
750 
751 	if (type > _REGION_ENTRY_TYPE_R3 || pud_leaf(pud))
752 		return 1;
753 	if (type < _REGION_ENTRY_TYPE_R3)
754 		return 0;
755 	return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
756 }
757 
758 static inline int p4d_bad(p4d_t p4d)
759 {
760 	unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
761 
762 	if (type > _REGION_ENTRY_TYPE_R2)
763 		return 1;
764 	if (type < _REGION_ENTRY_TYPE_R2)
765 		return 0;
766 	return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
767 }
768 
769 static inline int pmd_present(pmd_t pmd)
770 {
771 	return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
772 }
773 
774 static inline int pmd_none(pmd_t pmd)
775 {
776 	return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
777 }
778 
779 #define pmd_write pmd_write
780 static inline int pmd_write(pmd_t pmd)
781 {
782 	return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
783 }
784 
785 #define pud_write pud_write
786 static inline int pud_write(pud_t pud)
787 {
788 	return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
789 }
790 
791 #define pmd_dirty pmd_dirty
792 static inline int pmd_dirty(pmd_t pmd)
793 {
794 	return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
795 }
796 
797 #define pmd_young pmd_young
798 static inline int pmd_young(pmd_t pmd)
799 {
800 	return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
801 }
802 
803 static inline int pte_present(pte_t pte)
804 {
805 	/* Bit pattern: (pte & 0x001) == 0x001 */
806 	return (pte_val(pte) & _PAGE_PRESENT) != 0;
807 }
808 
809 static inline int pte_none(pte_t pte)
810 {
811 	/* Bit pattern: pte == 0x400 */
812 	return pte_val(pte) == _PAGE_INVALID;
813 }
814 
815 static inline int pte_swap(pte_t pte)
816 {
817 	/* Bit pattern: (pte & 0x201) == 0x200 */
818 	return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
819 		== _PAGE_PROTECT;
820 }
821 
822 static inline int pte_special(pte_t pte)
823 {
824 	return (pte_val(pte) & _PAGE_SPECIAL);
825 }
826 
827 #define __HAVE_ARCH_PTE_SAME
828 static inline int pte_same(pte_t a, pte_t b)
829 {
830 	return pte_val(a) == pte_val(b);
831 }
832 
833 #ifdef CONFIG_NUMA_BALANCING
834 static inline int pte_protnone(pte_t pte)
835 {
836 	return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
837 }
838 
839 static inline int pmd_protnone(pmd_t pmd)
840 {
841 	/* pmd_leaf(pmd) implies pmd_present(pmd) */
842 	return pmd_leaf(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
843 }
844 #endif
845 
846 static inline int pte_swp_exclusive(pte_t pte)
847 {
848 	return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
849 }
850 
851 static inline pte_t pte_swp_mkexclusive(pte_t pte)
852 {
853 	return set_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
854 }
855 
856 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
857 {
858 	return clear_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
859 }
860 
861 static inline int pte_soft_dirty(pte_t pte)
862 {
863 	return pte_val(pte) & _PAGE_SOFT_DIRTY;
864 }
865 #define pte_swp_soft_dirty pte_soft_dirty
866 
867 static inline pte_t pte_mksoft_dirty(pte_t pte)
868 {
869 	return set_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
870 }
871 #define pte_swp_mksoft_dirty pte_mksoft_dirty
872 
873 static inline pte_t pte_clear_soft_dirty(pte_t pte)
874 {
875 	return clear_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
876 }
877 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
878 
879 static inline int pmd_soft_dirty(pmd_t pmd)
880 {
881 	return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
882 }
883 
884 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
885 {
886 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
887 }
888 
889 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
890 {
891 	return clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
892 }
893 
894 /*
895  * query functions pte_write/pte_dirty/pte_young only work if
896  * pte_present() is true. Undefined behaviour if not..
897  */
898 static inline int pte_write(pte_t pte)
899 {
900 	return (pte_val(pte) & _PAGE_WRITE) != 0;
901 }
902 
903 static inline int pte_dirty(pte_t pte)
904 {
905 	return (pte_val(pte) & _PAGE_DIRTY) != 0;
906 }
907 
908 static inline int pte_young(pte_t pte)
909 {
910 	return (pte_val(pte) & _PAGE_YOUNG) != 0;
911 }
912 
913 #define __HAVE_ARCH_PTE_UNUSED
914 static inline int pte_unused(pte_t pte)
915 {
916 	return pte_val(pte) & _PAGE_UNUSED;
917 }
918 
919 /*
920  * Extract the pgprot value from the given pte while at the same time making it
921  * usable for kernel address space mappings where fault driven dirty and
922  * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID
923  * must not be set.
924  */
925 static inline pgprot_t pte_pgprot(pte_t pte)
926 {
927 	unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK;
928 
929 	if (pte_write(pte))
930 		pte_flags |= pgprot_val(PAGE_KERNEL);
931 	else
932 		pte_flags |= pgprot_val(PAGE_KERNEL_RO);
933 	pte_flags |= pte_val(pte) & mio_wb_bit_mask;
934 
935 	return __pgprot(pte_flags);
936 }
937 
938 /*
939  * pgd/pmd/pte modification functions
940  */
941 
942 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
943 {
944 	WRITE_ONCE(*pgdp, pgd);
945 }
946 
947 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
948 {
949 	WRITE_ONCE(*p4dp, p4d);
950 }
951 
952 static inline void set_pud(pud_t *pudp, pud_t pud)
953 {
954 	WRITE_ONCE(*pudp, pud);
955 }
956 
957 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
958 {
959 	WRITE_ONCE(*pmdp, pmd);
960 }
961 
962 static inline void set_pte(pte_t *ptep, pte_t pte)
963 {
964 	WRITE_ONCE(*ptep, pte);
965 }
966 
967 static inline void pgd_clear(pgd_t *pgd)
968 {
969 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
970 		set_pgd(pgd, __pgd(_REGION1_ENTRY_EMPTY));
971 }
972 
973 static inline void p4d_clear(p4d_t *p4d)
974 {
975 	if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
976 		set_p4d(p4d, __p4d(_REGION2_ENTRY_EMPTY));
977 }
978 
979 static inline void pud_clear(pud_t *pud)
980 {
981 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
982 		set_pud(pud, __pud(_REGION3_ENTRY_EMPTY));
983 }
984 
985 static inline void pmd_clear(pmd_t *pmdp)
986 {
987 	set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
988 }
989 
990 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
991 {
992 	set_pte(ptep, __pte(_PAGE_INVALID));
993 }
994 
995 /*
996  * The following pte modification functions only work if
997  * pte_present() is true. Undefined behaviour if not..
998  */
999 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1000 {
1001 	pte = clear_pte_bit(pte, __pgprot(~_PAGE_CHG_MASK));
1002 	pte = set_pte_bit(pte, newprot);
1003 	/*
1004 	 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
1005 	 * has the invalid bit set, clear it again for readable, young pages
1006 	 */
1007 	if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
1008 		pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
1009 	/*
1010 	 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
1011 	 * protection bit set, clear it again for writable, dirty pages
1012 	 */
1013 	if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
1014 		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1015 	return pte;
1016 }
1017 
1018 static inline pte_t pte_wrprotect(pte_t pte)
1019 {
1020 	pte = clear_pte_bit(pte, __pgprot(_PAGE_WRITE));
1021 	return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1022 }
1023 
1024 static inline pte_t pte_mkwrite_novma(pte_t pte)
1025 {
1026 	pte = set_pte_bit(pte, __pgprot(_PAGE_WRITE));
1027 	if (pte_val(pte) & _PAGE_DIRTY)
1028 		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1029 	return pte;
1030 }
1031 
1032 static inline pte_t pte_mkclean(pte_t pte)
1033 {
1034 	pte = clear_pte_bit(pte, __pgprot(_PAGE_DIRTY));
1035 	return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1036 }
1037 
1038 static inline pte_t pte_mkdirty(pte_t pte)
1039 {
1040 	pte = set_pte_bit(pte, __pgprot(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
1041 	if (pte_val(pte) & _PAGE_WRITE)
1042 		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1043 	return pte;
1044 }
1045 
1046 static inline pte_t pte_mkold(pte_t pte)
1047 {
1048 	pte = clear_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1049 	return set_pte_bit(pte, __pgprot(_PAGE_INVALID));
1050 }
1051 
1052 static inline pte_t pte_mkyoung(pte_t pte)
1053 {
1054 	pte = set_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1055 	if (pte_val(pte) & _PAGE_READ)
1056 		pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
1057 	return pte;
1058 }
1059 
1060 static inline pte_t pte_mkspecial(pte_t pte)
1061 {
1062 	return set_pte_bit(pte, __pgprot(_PAGE_SPECIAL));
1063 }
1064 
1065 #ifdef CONFIG_HUGETLB_PAGE
1066 static inline pte_t pte_mkhuge(pte_t pte)
1067 {
1068 	return set_pte_bit(pte, __pgprot(_PAGE_LARGE));
1069 }
1070 #endif
1071 
1072 #define IPTE_GLOBAL	0
1073 #define	IPTE_LOCAL	1
1074 
1075 #define IPTE_NODAT	0x400
1076 #define IPTE_GUEST_ASCE	0x800
1077 
1078 static __always_inline void __ptep_rdp(unsigned long addr, pte_t *ptep,
1079 				       unsigned long opt, unsigned long asce,
1080 				       int local)
1081 {
1082 	unsigned long pto;
1083 
1084 	pto = __pa(ptep) & ~(PTRS_PER_PTE * sizeof(pte_t) - 1);
1085 	asm volatile(".insn rrf,0xb98b0000,%[r1],%[r2],%[asce],%[m4]"
1086 		     : "+m" (*ptep)
1087 		     : [r1] "a" (pto), [r2] "a" ((addr & PAGE_MASK) | opt),
1088 		       [asce] "a" (asce), [m4] "i" (local));
1089 }
1090 
1091 static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1092 					unsigned long opt, unsigned long asce,
1093 					int local)
1094 {
1095 	unsigned long pto = __pa(ptep);
1096 
1097 	if (__builtin_constant_p(opt) && opt == 0) {
1098 		/* Invalidation + TLB flush for the pte */
1099 		asm volatile(
1100 			"	ipte	%[r1],%[r2],0,%[m4]"
1101 			: "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1102 			  [m4] "i" (local));
1103 		return;
1104 	}
1105 
1106 	/* Invalidate ptes with options + TLB flush of the ptes */
1107 	opt = opt | (asce & _ASCE_ORIGIN);
1108 	asm volatile(
1109 		"	ipte	%[r1],%[r2],%[r3],%[m4]"
1110 		: [r2] "+a" (address), [r3] "+a" (opt)
1111 		: [r1] "a" (pto), [m4] "i" (local) : "memory");
1112 }
1113 
1114 static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1115 					      pte_t *ptep, int local)
1116 {
1117 	unsigned long pto = __pa(ptep);
1118 
1119 	/* Invalidate a range of ptes + TLB flush of the ptes */
1120 	do {
1121 		asm volatile(
1122 			"	ipte %[r1],%[r2],%[r3],%[m4]"
1123 			: [r2] "+a" (address), [r3] "+a" (nr)
1124 			: [r1] "a" (pto), [m4] "i" (local) : "memory");
1125 	} while (nr != 255);
1126 }
1127 
1128 /*
1129  * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1130  * both clear the TLB for the unmapped pte. The reason is that
1131  * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1132  * to modify an active pte. The sequence is
1133  *   1) ptep_get_and_clear
1134  *   2) set_pte_at
1135  *   3) flush_tlb_range
1136  * On s390 the tlb needs to get flushed with the modification of the pte
1137  * if the pte is active. The only way how this can be implemented is to
1138  * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1139  * is a nop.
1140  */
1141 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1142 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1143 
1144 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1145 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1146 					    unsigned long addr, pte_t *ptep)
1147 {
1148 	pte_t pte = *ptep;
1149 
1150 	pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1151 	return pte_young(pte);
1152 }
1153 
1154 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1155 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1156 					 unsigned long address, pte_t *ptep)
1157 {
1158 	return ptep_test_and_clear_young(vma, address, ptep);
1159 }
1160 
1161 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1162 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1163 				       unsigned long addr, pte_t *ptep)
1164 {
1165 	pte_t res;
1166 
1167 	res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1168 	/* At this point the reference through the mapping is still present */
1169 	if (mm_is_protected(mm) && pte_present(res))
1170 		uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1171 	return res;
1172 }
1173 
1174 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1175 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1176 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1177 			     pte_t *, pte_t, pte_t);
1178 
1179 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1180 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1181 				     unsigned long addr, pte_t *ptep)
1182 {
1183 	pte_t res;
1184 
1185 	res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1186 	/* At this point the reference through the mapping is still present */
1187 	if (mm_is_protected(vma->vm_mm) && pte_present(res))
1188 		uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1189 	return res;
1190 }
1191 
1192 /*
1193  * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1194  * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1195  * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1196  * cannot be accessed while the batched unmap is running. In this case
1197  * full==1 and a simple pte_clear is enough. See tlb.h.
1198  */
1199 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1200 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1201 					    unsigned long addr,
1202 					    pte_t *ptep, int full)
1203 {
1204 	pte_t res;
1205 
1206 	if (full) {
1207 		res = *ptep;
1208 		set_pte(ptep, __pte(_PAGE_INVALID));
1209 	} else {
1210 		res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1211 	}
1212 	/* Nothing to do */
1213 	if (!mm_is_protected(mm) || !pte_present(res))
1214 		return res;
1215 	/*
1216 	 * At this point the reference through the mapping is still present.
1217 	 * The notifier should have destroyed all protected vCPUs at this
1218 	 * point, so the destroy should be successful.
1219 	 */
1220 	if (full && !uv_destroy_owned_page(pte_val(res) & PAGE_MASK))
1221 		return res;
1222 	/*
1223 	 * If something went wrong and the page could not be destroyed, or
1224 	 * if this is not a mm teardown, the slower export is used as
1225 	 * fallback instead.
1226 	 */
1227 	uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1228 	return res;
1229 }
1230 
1231 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1232 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1233 				      unsigned long addr, pte_t *ptep)
1234 {
1235 	pte_t pte = *ptep;
1236 
1237 	if (pte_write(pte))
1238 		ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1239 }
1240 
1241 /*
1242  * Check if PTEs only differ in _PAGE_PROTECT HW bit, but also allow SW PTE
1243  * bits in the comparison. Those might change e.g. because of dirty and young
1244  * tracking.
1245  */
1246 static inline int pte_allow_rdp(pte_t old, pte_t new)
1247 {
1248 	/*
1249 	 * Only allow changes from RO to RW
1250 	 */
1251 	if (!(pte_val(old) & _PAGE_PROTECT) || pte_val(new) & _PAGE_PROTECT)
1252 		return 0;
1253 
1254 	return (pte_val(old) & _PAGE_RDP_MASK) == (pte_val(new) & _PAGE_RDP_MASK);
1255 }
1256 
1257 static inline void flush_tlb_fix_spurious_fault(struct vm_area_struct *vma,
1258 						unsigned long address,
1259 						pte_t *ptep)
1260 {
1261 	/*
1262 	 * RDP might not have propagated the PTE protection reset to all CPUs,
1263 	 * so there could be spurious TLB protection faults.
1264 	 * NOTE: This will also be called when a racing pagetable update on
1265 	 * another thread already installed the correct PTE. Both cases cannot
1266 	 * really be distinguished.
1267 	 * Therefore, only do the local TLB flush when RDP can be used, and the
1268 	 * PTE does not have _PAGE_PROTECT set, to avoid unnecessary overhead.
1269 	 * A local RDP can be used to do the flush.
1270 	 */
1271 	if (MACHINE_HAS_RDP && !(pte_val(*ptep) & _PAGE_PROTECT))
1272 		__ptep_rdp(address, ptep, 0, 0, 1);
1273 }
1274 #define flush_tlb_fix_spurious_fault flush_tlb_fix_spurious_fault
1275 
1276 void ptep_reset_dat_prot(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
1277 			 pte_t new);
1278 
1279 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1280 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1281 					unsigned long addr, pte_t *ptep,
1282 					pte_t entry, int dirty)
1283 {
1284 	if (pte_same(*ptep, entry))
1285 		return 0;
1286 	if (MACHINE_HAS_RDP && !mm_has_pgste(vma->vm_mm) && pte_allow_rdp(*ptep, entry))
1287 		ptep_reset_dat_prot(vma->vm_mm, addr, ptep, entry);
1288 	else
1289 		ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1290 	return 1;
1291 }
1292 
1293 /*
1294  * Additional functions to handle KVM guest page tables
1295  */
1296 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1297 		     pte_t *ptep, pte_t entry);
1298 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1299 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1300 		 pte_t *ptep, unsigned long bits);
1301 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1302 		    pte_t *ptep, int prot, unsigned long bit);
1303 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1304 		     pte_t *ptep , int reset);
1305 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1306 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1307 		    pte_t *sptep, pte_t *tptep, pte_t pte);
1308 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1309 
1310 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1311 			    pte_t *ptep);
1312 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1313 			  unsigned char key, bool nq);
1314 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1315 			       unsigned char key, unsigned char *oldkey,
1316 			       bool nq, bool mr, bool mc);
1317 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1318 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1319 			  unsigned char *key);
1320 
1321 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1322 				unsigned long bits, unsigned long value);
1323 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1324 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1325 			unsigned long *oldpte, unsigned long *oldpgste);
1326 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1327 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1328 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1329 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1330 
1331 #define pgprot_writecombine	pgprot_writecombine
1332 pgprot_t pgprot_writecombine(pgprot_t prot);
1333 
1334 #define pgprot_writethrough	pgprot_writethrough
1335 pgprot_t pgprot_writethrough(pgprot_t prot);
1336 
1337 #define PFN_PTE_SHIFT		PAGE_SHIFT
1338 
1339 /*
1340  * Set multiple PTEs to consecutive pages with a single call.  All PTEs
1341  * are within the same folio, PMD and VMA.
1342  */
1343 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1344 			      pte_t *ptep, pte_t entry, unsigned int nr)
1345 {
1346 	if (pte_present(entry))
1347 		entry = clear_pte_bit(entry, __pgprot(_PAGE_UNUSED));
1348 	if (mm_has_pgste(mm)) {
1349 		for (;;) {
1350 			ptep_set_pte_at(mm, addr, ptep, entry);
1351 			if (--nr == 0)
1352 				break;
1353 			ptep++;
1354 			entry = __pte(pte_val(entry) + PAGE_SIZE);
1355 			addr += PAGE_SIZE;
1356 		}
1357 	} else {
1358 		for (;;) {
1359 			set_pte(ptep, entry);
1360 			if (--nr == 0)
1361 				break;
1362 			ptep++;
1363 			entry = __pte(pte_val(entry) + PAGE_SIZE);
1364 		}
1365 	}
1366 }
1367 #define set_ptes set_ptes
1368 
1369 /*
1370  * Conversion functions: convert a page and protection to a page entry,
1371  * and a page entry and page directory to the page they refer to.
1372  */
1373 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1374 {
1375 	pte_t __pte;
1376 
1377 	__pte = __pte(physpage | pgprot_val(pgprot));
1378 	if (!MACHINE_HAS_NX)
1379 		__pte = clear_pte_bit(__pte, __pgprot(_PAGE_NOEXEC));
1380 	return pte_mkyoung(__pte);
1381 }
1382 
1383 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1384 {
1385 	unsigned long physpage = page_to_phys(page);
1386 	pte_t __pte = mk_pte_phys(physpage, pgprot);
1387 
1388 	if (pte_write(__pte) && PageDirty(page))
1389 		__pte = pte_mkdirty(__pte);
1390 	return __pte;
1391 }
1392 
1393 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1394 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1395 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1396 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1397 
1398 #define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN))
1399 #define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN))
1400 
1401 static inline unsigned long pmd_deref(pmd_t pmd)
1402 {
1403 	unsigned long origin_mask;
1404 
1405 	origin_mask = _SEGMENT_ENTRY_ORIGIN;
1406 	if (pmd_leaf(pmd))
1407 		origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1408 	return (unsigned long)__va(pmd_val(pmd) & origin_mask);
1409 }
1410 
1411 static inline unsigned long pmd_pfn(pmd_t pmd)
1412 {
1413 	return __pa(pmd_deref(pmd)) >> PAGE_SHIFT;
1414 }
1415 
1416 static inline unsigned long pud_deref(pud_t pud)
1417 {
1418 	unsigned long origin_mask;
1419 
1420 	origin_mask = _REGION_ENTRY_ORIGIN;
1421 	if (pud_leaf(pud))
1422 		origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1423 	return (unsigned long)__va(pud_val(pud) & origin_mask);
1424 }
1425 
1426 #define pud_pfn pud_pfn
1427 static inline unsigned long pud_pfn(pud_t pud)
1428 {
1429 	return __pa(pud_deref(pud)) >> PAGE_SHIFT;
1430 }
1431 
1432 /*
1433  * The pgd_offset function *always* adds the index for the top-level
1434  * region/segment table. This is done to get a sequence like the
1435  * following to work:
1436  *	pgdp = pgd_offset(current->mm, addr);
1437  *	pgd = READ_ONCE(*pgdp);
1438  *	p4dp = p4d_offset(&pgd, addr);
1439  *	...
1440  * The subsequent p4d_offset, pud_offset and pmd_offset functions
1441  * only add an index if they dereferenced the pointer.
1442  */
1443 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1444 {
1445 	unsigned long rste;
1446 	unsigned int shift;
1447 
1448 	/* Get the first entry of the top level table */
1449 	rste = pgd_val(*pgd);
1450 	/* Pick up the shift from the table type of the first entry */
1451 	shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1452 	return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1453 }
1454 
1455 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1456 
1457 static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1458 {
1459 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1460 		return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1461 	return (p4d_t *) pgdp;
1462 }
1463 #define p4d_offset_lockless p4d_offset_lockless
1464 
1465 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1466 {
1467 	return p4d_offset_lockless(pgdp, *pgdp, address);
1468 }
1469 
1470 static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1471 {
1472 	if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1473 		return (pud_t *) p4d_deref(p4d) + pud_index(address);
1474 	return (pud_t *) p4dp;
1475 }
1476 #define pud_offset_lockless pud_offset_lockless
1477 
1478 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1479 {
1480 	return pud_offset_lockless(p4dp, *p4dp, address);
1481 }
1482 #define pud_offset pud_offset
1483 
1484 static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1485 {
1486 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1487 		return (pmd_t *) pud_deref(pud) + pmd_index(address);
1488 	return (pmd_t *) pudp;
1489 }
1490 #define pmd_offset_lockless pmd_offset_lockless
1491 
1492 static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1493 {
1494 	return pmd_offset_lockless(pudp, *pudp, address);
1495 }
1496 #define pmd_offset pmd_offset
1497 
1498 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1499 {
1500 	return (unsigned long) pmd_deref(pmd);
1501 }
1502 
1503 static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1504 {
1505 	return end <= current->mm->context.asce_limit;
1506 }
1507 #define gup_fast_permitted gup_fast_permitted
1508 
1509 #define pfn_pte(pfn, pgprot)	mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot))
1510 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1511 #define pte_page(x) pfn_to_page(pte_pfn(x))
1512 
1513 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1514 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1515 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1516 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1517 
1518 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1519 {
1520 	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1521 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1522 }
1523 
1524 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
1525 {
1526 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1527 	if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1528 		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1529 	return pmd;
1530 }
1531 
1532 static inline pmd_t pmd_mkclean(pmd_t pmd)
1533 {
1534 	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY));
1535 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1536 }
1537 
1538 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1539 {
1540 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY));
1541 	if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1542 		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1543 	return pmd;
1544 }
1545 
1546 static inline pud_t pud_wrprotect(pud_t pud)
1547 {
1548 	pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1549 	return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1550 }
1551 
1552 static inline pud_t pud_mkwrite(pud_t pud)
1553 {
1554 	pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1555 	if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1556 		pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1557 	return pud;
1558 }
1559 
1560 static inline pud_t pud_mkclean(pud_t pud)
1561 {
1562 	pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY));
1563 	return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1564 }
1565 
1566 static inline pud_t pud_mkdirty(pud_t pud)
1567 {
1568 	pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY));
1569 	if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1570 		pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1571 	return pud;
1572 }
1573 
1574 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1575 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1576 {
1577 	/*
1578 	 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1579 	 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1580 	 */
1581 	if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1582 		return pgprot_val(SEGMENT_NONE);
1583 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1584 		return pgprot_val(SEGMENT_RO);
1585 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1586 		return pgprot_val(SEGMENT_RX);
1587 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1588 		return pgprot_val(SEGMENT_RW);
1589 	return pgprot_val(SEGMENT_RWX);
1590 }
1591 
1592 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1593 {
1594 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1595 	if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1596 		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1597 	return pmd;
1598 }
1599 
1600 static inline pmd_t pmd_mkold(pmd_t pmd)
1601 {
1602 	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1603 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1604 }
1605 
1606 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1607 {
1608 	unsigned long mask;
1609 
1610 	mask  = _SEGMENT_ENTRY_ORIGIN_LARGE;
1611 	mask |= _SEGMENT_ENTRY_DIRTY;
1612 	mask |= _SEGMENT_ENTRY_YOUNG;
1613 	mask |=	_SEGMENT_ENTRY_LARGE;
1614 	mask |= _SEGMENT_ENTRY_SOFT_DIRTY;
1615 	pmd = __pmd(pmd_val(pmd) & mask);
1616 	pmd = set_pmd_bit(pmd, __pgprot(massage_pgprot_pmd(newprot)));
1617 	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1618 		pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1619 	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1620 		pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1621 	return pmd;
1622 }
1623 
1624 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1625 {
1626 	return __pmd(physpage + massage_pgprot_pmd(pgprot));
1627 }
1628 
1629 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1630 
1631 static inline void __pmdp_csp(pmd_t *pmdp)
1632 {
1633 	csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1634 	    pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1635 }
1636 
1637 #define IDTE_GLOBAL	0
1638 #define IDTE_LOCAL	1
1639 
1640 #define IDTE_PTOA	0x0800
1641 #define IDTE_NODAT	0x1000
1642 #define IDTE_GUEST_ASCE	0x2000
1643 
1644 static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1645 					unsigned long opt, unsigned long asce,
1646 					int local)
1647 {
1648 	unsigned long sto;
1649 
1650 	sto = __pa(pmdp) - pmd_index(addr) * sizeof(pmd_t);
1651 	if (__builtin_constant_p(opt) && opt == 0) {
1652 		/* flush without guest asce */
1653 		asm volatile(
1654 			"	idte	%[r1],0,%[r2],%[m4]"
1655 			: "+m" (*pmdp)
1656 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1657 			  [m4] "i" (local)
1658 			: "cc" );
1659 	} else {
1660 		/* flush with guest asce */
1661 		asm volatile(
1662 			"	idte	%[r1],%[r3],%[r2],%[m4]"
1663 			: "+m" (*pmdp)
1664 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1665 			  [r3] "a" (asce), [m4] "i" (local)
1666 			: "cc" );
1667 	}
1668 }
1669 
1670 static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1671 					unsigned long opt, unsigned long asce,
1672 					int local)
1673 {
1674 	unsigned long r3o;
1675 
1676 	r3o = __pa(pudp) - pud_index(addr) * sizeof(pud_t);
1677 	r3o |= _ASCE_TYPE_REGION3;
1678 	if (__builtin_constant_p(opt) && opt == 0) {
1679 		/* flush without guest asce */
1680 		asm volatile(
1681 			"	idte	%[r1],0,%[r2],%[m4]"
1682 			: "+m" (*pudp)
1683 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1684 			  [m4] "i" (local)
1685 			: "cc");
1686 	} else {
1687 		/* flush with guest asce */
1688 		asm volatile(
1689 			"	idte	%[r1],%[r3],%[r2],%[m4]"
1690 			: "+m" (*pudp)
1691 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1692 			  [r3] "a" (asce), [m4] "i" (local)
1693 			: "cc" );
1694 	}
1695 }
1696 
1697 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1698 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1699 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1700 
1701 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1702 
1703 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1704 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1705 				pgtable_t pgtable);
1706 
1707 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1708 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1709 
1710 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1711 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1712 					unsigned long addr, pmd_t *pmdp,
1713 					pmd_t entry, int dirty)
1714 {
1715 	VM_BUG_ON(addr & ~HPAGE_MASK);
1716 
1717 	entry = pmd_mkyoung(entry);
1718 	if (dirty)
1719 		entry = pmd_mkdirty(entry);
1720 	if (pmd_val(*pmdp) == pmd_val(entry))
1721 		return 0;
1722 	pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1723 	return 1;
1724 }
1725 
1726 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1727 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1728 					    unsigned long addr, pmd_t *pmdp)
1729 {
1730 	pmd_t pmd = *pmdp;
1731 
1732 	pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1733 	return pmd_young(pmd);
1734 }
1735 
1736 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1737 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1738 					 unsigned long addr, pmd_t *pmdp)
1739 {
1740 	VM_BUG_ON(addr & ~HPAGE_MASK);
1741 	return pmdp_test_and_clear_young(vma, addr, pmdp);
1742 }
1743 
1744 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1745 			      pmd_t *pmdp, pmd_t entry)
1746 {
1747 	if (!MACHINE_HAS_NX)
1748 		entry = clear_pmd_bit(entry, __pgprot(_SEGMENT_ENTRY_NOEXEC));
1749 	set_pmd(pmdp, entry);
1750 }
1751 
1752 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1753 {
1754 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_LARGE));
1755 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1756 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1757 }
1758 
1759 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1760 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1761 					    unsigned long addr, pmd_t *pmdp)
1762 {
1763 	return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1764 }
1765 
1766 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1767 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1768 						 unsigned long addr,
1769 						 pmd_t *pmdp, int full)
1770 {
1771 	if (full) {
1772 		pmd_t pmd = *pmdp;
1773 		set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1774 		return pmd;
1775 	}
1776 	return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1777 }
1778 
1779 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1780 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1781 					  unsigned long addr, pmd_t *pmdp)
1782 {
1783 	return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1784 }
1785 
1786 #define __HAVE_ARCH_PMDP_INVALIDATE
1787 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1788 				   unsigned long addr, pmd_t *pmdp)
1789 {
1790 	pmd_t pmd;
1791 
1792 	VM_WARN_ON_ONCE(!pmd_present(*pmdp));
1793 	pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1794 	return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1795 }
1796 
1797 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1798 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1799 				      unsigned long addr, pmd_t *pmdp)
1800 {
1801 	pmd_t pmd = *pmdp;
1802 
1803 	if (pmd_write(pmd))
1804 		pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1805 }
1806 
1807 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1808 					unsigned long address,
1809 					pmd_t *pmdp)
1810 {
1811 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1812 }
1813 #define pmdp_collapse_flush pmdp_collapse_flush
1814 
1815 #define pfn_pmd(pfn, pgprot)	mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot))
1816 #define mk_pmd(page, pgprot)	pfn_pmd(page_to_pfn(page), (pgprot))
1817 
1818 static inline int pmd_trans_huge(pmd_t pmd)
1819 {
1820 	return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1821 }
1822 
1823 #define has_transparent_hugepage has_transparent_hugepage
1824 static inline int has_transparent_hugepage(void)
1825 {
1826 	return MACHINE_HAS_EDAT1 ? 1 : 0;
1827 }
1828 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1829 
1830 /*
1831  * 64 bit swap entry format:
1832  * A page-table entry has some bits we have to treat in a special way.
1833  * Bits 54 and 63 are used to indicate the page type. Bit 53 marks the pte
1834  * as invalid.
1835  * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1836  * |			  offset			|E11XX|type |S0|
1837  * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1838  * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1839  *
1840  * Bits 0-51 store the offset.
1841  * Bit 52 (E) is used to remember PG_anon_exclusive.
1842  * Bits 57-61 store the type.
1843  * Bit 62 (S) is used for softdirty tracking.
1844  * Bits 55 and 56 (X) are unused.
1845  */
1846 
1847 #define __SWP_OFFSET_MASK	((1UL << 52) - 1)
1848 #define __SWP_OFFSET_SHIFT	12
1849 #define __SWP_TYPE_MASK		((1UL << 5) - 1)
1850 #define __SWP_TYPE_SHIFT	2
1851 
1852 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1853 {
1854 	unsigned long pteval;
1855 
1856 	pteval = _PAGE_INVALID | _PAGE_PROTECT;
1857 	pteval |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1858 	pteval |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1859 	return __pte(pteval);
1860 }
1861 
1862 static inline unsigned long __swp_type(swp_entry_t entry)
1863 {
1864 	return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1865 }
1866 
1867 static inline unsigned long __swp_offset(swp_entry_t entry)
1868 {
1869 	return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1870 }
1871 
1872 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1873 {
1874 	return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1875 }
1876 
1877 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1878 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1879 
1880 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1881 extern void vmem_remove_mapping(unsigned long start, unsigned long size);
1882 extern int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc);
1883 extern int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot);
1884 extern void vmem_unmap_4k_page(unsigned long addr);
1885 extern pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc);
1886 extern int s390_enable_sie(void);
1887 extern int s390_enable_skey(void);
1888 extern void s390_reset_cmma(struct mm_struct *mm);
1889 
1890 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1891 #define HAVE_ARCH_UNMAPPED_AREA
1892 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1893 
1894 #define pmd_pgtable(pmd) \
1895 	((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE))
1896 
1897 #endif /* _S390_PAGE_H */
1898