xref: /linux/security/security.c (revision 33fc69a05c50f00f1218408a56348bcab95b831d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com>
10  */
11 
12 #define pr_fmt(fmt) "LSM: " fmt
13 
14 #include <linux/bpf.h>
15 #include <linux/capability.h>
16 #include <linux/dcache.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/lsm_hooks.h>
22 #include <linux/mman.h>
23 #include <linux/mount.h>
24 #include <linux/personality.h>
25 #include <linux/backing-dev.h>
26 #include <linux/string.h>
27 #include <linux/xattr.h>
28 #include <linux/msg.h>
29 #include <linux/overflow.h>
30 #include <linux/perf_event.h>
31 #include <linux/fs.h>
32 #include <net/flow.h>
33 #include <net/sock.h>
34 
35 #define SECURITY_HOOK_ACTIVE_KEY(HOOK, IDX) security_hook_active_##HOOK##_##IDX
36 
37 /*
38  * Identifier for the LSM static calls.
39  * HOOK is an LSM hook as defined in linux/lsm_hookdefs.h
40  * IDX is the index of the static call. 0 <= NUM < MAX_LSM_COUNT
41  */
42 #define LSM_STATIC_CALL(HOOK, IDX) lsm_static_call_##HOOK##_##IDX
43 
44 /*
45  * Call the macro M for each LSM hook MAX_LSM_COUNT times.
46  */
47 #define LSM_LOOP_UNROLL(M, ...) 		\
48 do {						\
49 	UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__)	\
50 } while (0)
51 
52 #define LSM_DEFINE_UNROLL(M, ...) UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__)
53 
54 /*
55  * These are descriptions of the reasons that can be passed to the
56  * security_locked_down() LSM hook. Placing this array here allows
57  * all security modules to use the same descriptions for auditing
58  * purposes.
59  */
60 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = {
61 	[LOCKDOWN_NONE] = "none",
62 	[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
63 	[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
64 	[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
65 	[LOCKDOWN_KEXEC] = "kexec of unsigned images",
66 	[LOCKDOWN_HIBERNATION] = "hibernation",
67 	[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
68 	[LOCKDOWN_IOPORT] = "raw io port access",
69 	[LOCKDOWN_MSR] = "raw MSR access",
70 	[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
71 	[LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
72 	[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
73 	[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
74 	[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
75 	[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
76 	[LOCKDOWN_DEBUGFS] = "debugfs access",
77 	[LOCKDOWN_XMON_WR] = "xmon write access",
78 	[LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
79 	[LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
80 	[LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
81 	[LOCKDOWN_INTEGRITY_MAX] = "integrity",
82 	[LOCKDOWN_KCORE] = "/proc/kcore access",
83 	[LOCKDOWN_KPROBES] = "use of kprobes",
84 	[LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
85 	[LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
86 	[LOCKDOWN_PERF] = "unsafe use of perf",
87 	[LOCKDOWN_TRACEFS] = "use of tracefs",
88 	[LOCKDOWN_XMON_RW] = "xmon read and write access",
89 	[LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
90 	[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
91 };
92 
93 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
94 
95 static struct kmem_cache *lsm_file_cache;
96 static struct kmem_cache *lsm_inode_cache;
97 
98 char *lsm_names;
99 static struct lsm_blob_sizes blob_sizes __ro_after_init;
100 
101 /* Boot-time LSM user choice */
102 static __initdata const char *chosen_lsm_order;
103 static __initdata const char *chosen_major_lsm;
104 
105 static __initconst const char *const builtin_lsm_order = CONFIG_LSM;
106 
107 /* Ordered list of LSMs to initialize. */
108 static __initdata struct lsm_info *ordered_lsms[MAX_LSM_COUNT + 1];
109 static __initdata struct lsm_info *exclusive;
110 
111 #ifdef CONFIG_HAVE_STATIC_CALL
112 #define LSM_HOOK_TRAMP(NAME, NUM) \
113 	&STATIC_CALL_TRAMP(LSM_STATIC_CALL(NAME, NUM))
114 #else
115 #define LSM_HOOK_TRAMP(NAME, NUM) NULL
116 #endif
117 
118 /*
119  * Define static calls and static keys for each LSM hook.
120  */
121 #define DEFINE_LSM_STATIC_CALL(NUM, NAME, RET, ...)			\
122 	DEFINE_STATIC_CALL_NULL(LSM_STATIC_CALL(NAME, NUM),		\
123 				*((RET(*)(__VA_ARGS__))NULL));		\
124 	DEFINE_STATIC_KEY_FALSE(SECURITY_HOOK_ACTIVE_KEY(NAME, NUM));
125 
126 #define LSM_HOOK(RET, DEFAULT, NAME, ...)				\
127 	LSM_DEFINE_UNROLL(DEFINE_LSM_STATIC_CALL, NAME, RET, __VA_ARGS__)
128 #include <linux/lsm_hook_defs.h>
129 #undef LSM_HOOK
130 #undef DEFINE_LSM_STATIC_CALL
131 
132 /*
133  * Initialise a table of static calls for each LSM hook.
134  * DEFINE_STATIC_CALL_NULL invocation above generates a key (STATIC_CALL_KEY)
135  * and a trampoline (STATIC_CALL_TRAMP) which are used to call
136  * __static_call_update when updating the static call.
137  *
138  * The static calls table is used by early LSMs, some architectures can fault on
139  * unaligned accesses and the fault handling code may not be ready by then.
140  * Thus, the static calls table should be aligned to avoid any unhandled faults
141  * in early init.
142  */
143 struct lsm_static_calls_table
144 	static_calls_table __ro_after_init __aligned(sizeof(u64)) = {
145 #define INIT_LSM_STATIC_CALL(NUM, NAME)					\
146 	(struct lsm_static_call) {					\
147 		.key = &STATIC_CALL_KEY(LSM_STATIC_CALL(NAME, NUM)),	\
148 		.trampoline = LSM_HOOK_TRAMP(NAME, NUM),		\
149 		.active = &SECURITY_HOOK_ACTIVE_KEY(NAME, NUM),		\
150 	},
151 #define LSM_HOOK(RET, DEFAULT, NAME, ...)				\
152 	.NAME = {							\
153 		LSM_DEFINE_UNROLL(INIT_LSM_STATIC_CALL, NAME)		\
154 	},
155 #include <linux/lsm_hook_defs.h>
156 #undef LSM_HOOK
157 #undef INIT_LSM_STATIC_CALL
158 	};
159 
160 static __initdata bool debug;
161 #define init_debug(...)						\
162 	do {							\
163 		if (debug)					\
164 			pr_info(__VA_ARGS__);			\
165 	} while (0)
166 
is_enabled(struct lsm_info * lsm)167 static bool __init is_enabled(struct lsm_info *lsm)
168 {
169 	if (!lsm->enabled)
170 		return false;
171 
172 	return *lsm->enabled;
173 }
174 
175 /* Mark an LSM's enabled flag. */
176 static int lsm_enabled_true __initdata = 1;
177 static int lsm_enabled_false __initdata = 0;
set_enabled(struct lsm_info * lsm,bool enabled)178 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
179 {
180 	/*
181 	 * When an LSM hasn't configured an enable variable, we can use
182 	 * a hard-coded location for storing the default enabled state.
183 	 */
184 	if (!lsm->enabled) {
185 		if (enabled)
186 			lsm->enabled = &lsm_enabled_true;
187 		else
188 			lsm->enabled = &lsm_enabled_false;
189 	} else if (lsm->enabled == &lsm_enabled_true) {
190 		if (!enabled)
191 			lsm->enabled = &lsm_enabled_false;
192 	} else if (lsm->enabled == &lsm_enabled_false) {
193 		if (enabled)
194 			lsm->enabled = &lsm_enabled_true;
195 	} else {
196 		*lsm->enabled = enabled;
197 	}
198 }
199 
200 /* Is an LSM already listed in the ordered LSMs list? */
exists_ordered_lsm(struct lsm_info * lsm)201 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
202 {
203 	struct lsm_info **check;
204 
205 	for (check = ordered_lsms; *check; check++)
206 		if (*check == lsm)
207 			return true;
208 
209 	return false;
210 }
211 
212 /* Append an LSM to the list of ordered LSMs to initialize. */
213 static int last_lsm __initdata;
append_ordered_lsm(struct lsm_info * lsm,const char * from)214 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
215 {
216 	/* Ignore duplicate selections. */
217 	if (exists_ordered_lsm(lsm))
218 		return;
219 
220 	if (WARN(last_lsm == MAX_LSM_COUNT, "%s: out of LSM static calls!?\n", from))
221 		return;
222 
223 	/* Enable this LSM, if it is not already set. */
224 	if (!lsm->enabled)
225 		lsm->enabled = &lsm_enabled_true;
226 	ordered_lsms[last_lsm++] = lsm;
227 
228 	init_debug("%s ordered: %s (%s)\n", from, lsm->name,
229 		   is_enabled(lsm) ? "enabled" : "disabled");
230 }
231 
232 /* Is an LSM allowed to be initialized? */
lsm_allowed(struct lsm_info * lsm)233 static bool __init lsm_allowed(struct lsm_info *lsm)
234 {
235 	/* Skip if the LSM is disabled. */
236 	if (!is_enabled(lsm))
237 		return false;
238 
239 	/* Not allowed if another exclusive LSM already initialized. */
240 	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
241 		init_debug("exclusive disabled: %s\n", lsm->name);
242 		return false;
243 	}
244 
245 	return true;
246 }
247 
lsm_set_blob_size(int * need,int * lbs)248 static void __init lsm_set_blob_size(int *need, int *lbs)
249 {
250 	int offset;
251 
252 	if (*need <= 0)
253 		return;
254 
255 	offset = ALIGN(*lbs, sizeof(void *));
256 	*lbs = offset + *need;
257 	*need = offset;
258 }
259 
lsm_set_blob_sizes(struct lsm_blob_sizes * needed)260 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
261 {
262 	if (!needed)
263 		return;
264 
265 	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
266 	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
267 	lsm_set_blob_size(&needed->lbs_ib, &blob_sizes.lbs_ib);
268 	/*
269 	 * The inode blob gets an rcu_head in addition to
270 	 * what the modules might need.
271 	 */
272 	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
273 		blob_sizes.lbs_inode = sizeof(struct rcu_head);
274 	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
275 	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
276 	lsm_set_blob_size(&needed->lbs_key, &blob_sizes.lbs_key);
277 	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
278 	lsm_set_blob_size(&needed->lbs_perf_event, &blob_sizes.lbs_perf_event);
279 	lsm_set_blob_size(&needed->lbs_sock, &blob_sizes.lbs_sock);
280 	lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
281 	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
282 	lsm_set_blob_size(&needed->lbs_tun_dev, &blob_sizes.lbs_tun_dev);
283 	lsm_set_blob_size(&needed->lbs_xattr_count,
284 			  &blob_sizes.lbs_xattr_count);
285 	lsm_set_blob_size(&needed->lbs_bdev, &blob_sizes.lbs_bdev);
286 	lsm_set_blob_size(&needed->lbs_bpf_map, &blob_sizes.lbs_bpf_map);
287 	lsm_set_blob_size(&needed->lbs_bpf_prog, &blob_sizes.lbs_bpf_prog);
288 	lsm_set_blob_size(&needed->lbs_bpf_token, &blob_sizes.lbs_bpf_token);
289 }
290 
291 /* Prepare LSM for initialization. */
prepare_lsm(struct lsm_info * lsm)292 static void __init prepare_lsm(struct lsm_info *lsm)
293 {
294 	int enabled = lsm_allowed(lsm);
295 
296 	/* Record enablement (to handle any following exclusive LSMs). */
297 	set_enabled(lsm, enabled);
298 
299 	/* If enabled, do pre-initialization work. */
300 	if (enabled) {
301 		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
302 			exclusive = lsm;
303 			init_debug("exclusive chosen:   %s\n", lsm->name);
304 		}
305 
306 		lsm_set_blob_sizes(lsm->blobs);
307 	}
308 }
309 
310 /* Initialize a given LSM, if it is enabled. */
initialize_lsm(struct lsm_info * lsm)311 static void __init initialize_lsm(struct lsm_info *lsm)
312 {
313 	if (is_enabled(lsm)) {
314 		int ret;
315 
316 		init_debug("initializing %s\n", lsm->name);
317 		ret = lsm->init();
318 		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
319 	}
320 }
321 
322 /*
323  * Current index to use while initializing the lsm id list.
324  */
325 u32 lsm_active_cnt __ro_after_init;
326 const struct lsm_id *lsm_idlist[MAX_LSM_COUNT];
327 
328 /* Populate ordered LSMs list from comma-separated LSM name list. */
ordered_lsm_parse(const char * order,const char * origin)329 static void __init ordered_lsm_parse(const char *order, const char *origin)
330 {
331 	struct lsm_info *lsm;
332 	char *sep, *name, *next;
333 
334 	/* LSM_ORDER_FIRST is always first. */
335 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
336 		if (lsm->order == LSM_ORDER_FIRST)
337 			append_ordered_lsm(lsm, "  first");
338 	}
339 
340 	/* Process "security=", if given. */
341 	if (chosen_major_lsm) {
342 		struct lsm_info *major;
343 
344 		/*
345 		 * To match the original "security=" behavior, this
346 		 * explicitly does NOT fallback to another Legacy Major
347 		 * if the selected one was separately disabled: disable
348 		 * all non-matching Legacy Major LSMs.
349 		 */
350 		for (major = __start_lsm_info; major < __end_lsm_info;
351 		     major++) {
352 			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
353 			    strcmp(major->name, chosen_major_lsm) != 0) {
354 				set_enabled(major, false);
355 				init_debug("security=%s disabled: %s (only one legacy major LSM)\n",
356 					   chosen_major_lsm, major->name);
357 			}
358 		}
359 	}
360 
361 	sep = kstrdup(order, GFP_KERNEL);
362 	next = sep;
363 	/* Walk the list, looking for matching LSMs. */
364 	while ((name = strsep(&next, ",")) != NULL) {
365 		bool found = false;
366 
367 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
368 			if (strcmp(lsm->name, name) == 0) {
369 				if (lsm->order == LSM_ORDER_MUTABLE)
370 					append_ordered_lsm(lsm, origin);
371 				found = true;
372 			}
373 		}
374 
375 		if (!found)
376 			init_debug("%s ignored: %s (not built into kernel)\n",
377 				   origin, name);
378 	}
379 
380 	/* Process "security=", if given. */
381 	if (chosen_major_lsm) {
382 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
383 			if (exists_ordered_lsm(lsm))
384 				continue;
385 			if (strcmp(lsm->name, chosen_major_lsm) == 0)
386 				append_ordered_lsm(lsm, "security=");
387 		}
388 	}
389 
390 	/* LSM_ORDER_LAST is always last. */
391 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
392 		if (lsm->order == LSM_ORDER_LAST)
393 			append_ordered_lsm(lsm, "   last");
394 	}
395 
396 	/* Disable all LSMs not in the ordered list. */
397 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
398 		if (exists_ordered_lsm(lsm))
399 			continue;
400 		set_enabled(lsm, false);
401 		init_debug("%s skipped: %s (not in requested order)\n",
402 			   origin, lsm->name);
403 	}
404 
405 	kfree(sep);
406 }
407 
lsm_static_call_init(struct security_hook_list * hl)408 static void __init lsm_static_call_init(struct security_hook_list *hl)
409 {
410 	struct lsm_static_call *scall = hl->scalls;
411 	int i;
412 
413 	for (i = 0; i < MAX_LSM_COUNT; i++) {
414 		/* Update the first static call that is not used yet */
415 		if (!scall->hl) {
416 			__static_call_update(scall->key, scall->trampoline,
417 					     hl->hook.lsm_func_addr);
418 			scall->hl = hl;
419 			static_branch_enable(scall->active);
420 			return;
421 		}
422 		scall++;
423 	}
424 	panic("%s - Ran out of static slots.\n", __func__);
425 }
426 
427 static void __init lsm_early_cred(struct cred *cred);
428 static void __init lsm_early_task(struct task_struct *task);
429 
430 static int lsm_append(const char *new, char **result);
431 
report_lsm_order(void)432 static void __init report_lsm_order(void)
433 {
434 	struct lsm_info **lsm, *early;
435 	int first = 0;
436 
437 	pr_info("initializing lsm=");
438 
439 	/* Report each enabled LSM name, comma separated. */
440 	for (early = __start_early_lsm_info;
441 	     early < __end_early_lsm_info; early++)
442 		if (is_enabled(early))
443 			pr_cont("%s%s", first++ == 0 ? "" : ",", early->name);
444 	for (lsm = ordered_lsms; *lsm; lsm++)
445 		if (is_enabled(*lsm))
446 			pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name);
447 
448 	pr_cont("\n");
449 }
450 
ordered_lsm_init(void)451 static void __init ordered_lsm_init(void)
452 {
453 	struct lsm_info **lsm;
454 
455 	if (chosen_lsm_order) {
456 		if (chosen_major_lsm) {
457 			pr_warn("security=%s is ignored because it is superseded by lsm=%s\n",
458 				chosen_major_lsm, chosen_lsm_order);
459 			chosen_major_lsm = NULL;
460 		}
461 		ordered_lsm_parse(chosen_lsm_order, "cmdline");
462 	} else
463 		ordered_lsm_parse(builtin_lsm_order, "builtin");
464 
465 	for (lsm = ordered_lsms; *lsm; lsm++)
466 		prepare_lsm(*lsm);
467 
468 	report_lsm_order();
469 
470 	init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
471 	init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
472 	init_debug("ib blob size         = %d\n", blob_sizes.lbs_ib);
473 	init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
474 	init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
475 #ifdef CONFIG_KEYS
476 	init_debug("key blob size        = %d\n", blob_sizes.lbs_key);
477 #endif /* CONFIG_KEYS */
478 	init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
479 	init_debug("sock blob size       = %d\n", blob_sizes.lbs_sock);
480 	init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
481 	init_debug("perf event blob size = %d\n", blob_sizes.lbs_perf_event);
482 	init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
483 	init_debug("tun device blob size = %d\n", blob_sizes.lbs_tun_dev);
484 	init_debug("xattr slots          = %d\n", blob_sizes.lbs_xattr_count);
485 	init_debug("bdev blob size       = %d\n", blob_sizes.lbs_bdev);
486 	init_debug("bpf map blob size    = %d\n", blob_sizes.lbs_bpf_map);
487 	init_debug("bpf prog blob size   = %d\n", blob_sizes.lbs_bpf_prog);
488 	init_debug("bpf token blob size  = %d\n", blob_sizes.lbs_bpf_token);
489 
490 	/*
491 	 * Create any kmem_caches needed for blobs
492 	 */
493 	if (blob_sizes.lbs_file)
494 		lsm_file_cache = kmem_cache_create("lsm_file_cache",
495 						   blob_sizes.lbs_file, 0,
496 						   SLAB_PANIC, NULL);
497 	if (blob_sizes.lbs_inode)
498 		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
499 						    blob_sizes.lbs_inode, 0,
500 						    SLAB_PANIC, NULL);
501 
502 	lsm_early_cred((struct cred *) current->cred);
503 	lsm_early_task(current);
504 	for (lsm = ordered_lsms; *lsm; lsm++)
505 		initialize_lsm(*lsm);
506 }
507 
early_security_init(void)508 int __init early_security_init(void)
509 {
510 	struct lsm_info *lsm;
511 
512 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
513 		if (!lsm->enabled)
514 			lsm->enabled = &lsm_enabled_true;
515 		prepare_lsm(lsm);
516 		initialize_lsm(lsm);
517 	}
518 
519 	return 0;
520 }
521 
522 /**
523  * security_init - initializes the security framework
524  *
525  * This should be called early in the kernel initialization sequence.
526  */
security_init(void)527 int __init security_init(void)
528 {
529 	struct lsm_info *lsm;
530 
531 	init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*");
532 	init_debug("  CONFIG_LSM=%s\n", builtin_lsm_order);
533 	init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*");
534 
535 	/*
536 	 * Append the names of the early LSM modules now that kmalloc() is
537 	 * available
538 	 */
539 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
540 		init_debug("  early started: %s (%s)\n", lsm->name,
541 			   is_enabled(lsm) ? "enabled" : "disabled");
542 		if (lsm->enabled)
543 			lsm_append(lsm->name, &lsm_names);
544 	}
545 
546 	/* Load LSMs in specified order. */
547 	ordered_lsm_init();
548 
549 	return 0;
550 }
551 
552 /* Save user chosen LSM */
choose_major_lsm(char * str)553 static int __init choose_major_lsm(char *str)
554 {
555 	chosen_major_lsm = str;
556 	return 1;
557 }
558 __setup("security=", choose_major_lsm);
559 
560 /* Explicitly choose LSM initialization order. */
choose_lsm_order(char * str)561 static int __init choose_lsm_order(char *str)
562 {
563 	chosen_lsm_order = str;
564 	return 1;
565 }
566 __setup("lsm=", choose_lsm_order);
567 
568 /* Enable LSM order debugging. */
enable_debug(char * str)569 static int __init enable_debug(char *str)
570 {
571 	debug = true;
572 	return 1;
573 }
574 __setup("lsm.debug", enable_debug);
575 
match_last_lsm(const char * list,const char * lsm)576 static bool match_last_lsm(const char *list, const char *lsm)
577 {
578 	const char *last;
579 
580 	if (WARN_ON(!list || !lsm))
581 		return false;
582 	last = strrchr(list, ',');
583 	if (last)
584 		/* Pass the comma, strcmp() will check for '\0' */
585 		last++;
586 	else
587 		last = list;
588 	return !strcmp(last, lsm);
589 }
590 
lsm_append(const char * new,char ** result)591 static int lsm_append(const char *new, char **result)
592 {
593 	char *cp;
594 
595 	if (*result == NULL) {
596 		*result = kstrdup(new, GFP_KERNEL);
597 		if (*result == NULL)
598 			return -ENOMEM;
599 	} else {
600 		/* Check if it is the last registered name */
601 		if (match_last_lsm(*result, new))
602 			return 0;
603 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
604 		if (cp == NULL)
605 			return -ENOMEM;
606 		kfree(*result);
607 		*result = cp;
608 	}
609 	return 0;
610 }
611 
612 /**
613  * security_add_hooks - Add a modules hooks to the hook lists.
614  * @hooks: the hooks to add
615  * @count: the number of hooks to add
616  * @lsmid: the identification information for the security module
617  *
618  * Each LSM has to register its hooks with the infrastructure.
619  */
security_add_hooks(struct security_hook_list * hooks,int count,const struct lsm_id * lsmid)620 void __init security_add_hooks(struct security_hook_list *hooks, int count,
621 			       const struct lsm_id *lsmid)
622 {
623 	int i;
624 
625 	/*
626 	 * A security module may call security_add_hooks() more
627 	 * than once during initialization, and LSM initialization
628 	 * is serialized. Landlock is one such case.
629 	 * Look at the previous entry, if there is one, for duplication.
630 	 */
631 	if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) {
632 		if (lsm_active_cnt >= MAX_LSM_COUNT)
633 			panic("%s Too many LSMs registered.\n", __func__);
634 		lsm_idlist[lsm_active_cnt++] = lsmid;
635 	}
636 
637 	for (i = 0; i < count; i++) {
638 		hooks[i].lsmid = lsmid;
639 		lsm_static_call_init(&hooks[i]);
640 	}
641 
642 	/*
643 	 * Don't try to append during early_security_init(), we'll come back
644 	 * and fix this up afterwards.
645 	 */
646 	if (slab_is_available()) {
647 		if (lsm_append(lsmid->name, &lsm_names) < 0)
648 			panic("%s - Cannot get early memory.\n", __func__);
649 	}
650 }
651 
call_blocking_lsm_notifier(enum lsm_event event,void * data)652 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
653 {
654 	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
655 					    event, data);
656 }
657 EXPORT_SYMBOL(call_blocking_lsm_notifier);
658 
register_blocking_lsm_notifier(struct notifier_block * nb)659 int register_blocking_lsm_notifier(struct notifier_block *nb)
660 {
661 	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
662 						nb);
663 }
664 EXPORT_SYMBOL(register_blocking_lsm_notifier);
665 
unregister_blocking_lsm_notifier(struct notifier_block * nb)666 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
667 {
668 	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
669 						  nb);
670 }
671 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
672 
673 /**
674  * lsm_blob_alloc - allocate a composite blob
675  * @dest: the destination for the blob
676  * @size: the size of the blob
677  * @gfp: allocation type
678  *
679  * Allocate a blob for all the modules
680  *
681  * Returns 0, or -ENOMEM if memory can't be allocated.
682  */
lsm_blob_alloc(void ** dest,size_t size,gfp_t gfp)683 static int lsm_blob_alloc(void **dest, size_t size, gfp_t gfp)
684 {
685 	if (size == 0) {
686 		*dest = NULL;
687 		return 0;
688 	}
689 
690 	*dest = kzalloc(size, gfp);
691 	if (*dest == NULL)
692 		return -ENOMEM;
693 	return 0;
694 }
695 
696 /**
697  * lsm_cred_alloc - allocate a composite cred blob
698  * @cred: the cred that needs a blob
699  * @gfp: allocation type
700  *
701  * Allocate the cred blob for all the modules
702  *
703  * Returns 0, or -ENOMEM if memory can't be allocated.
704  */
lsm_cred_alloc(struct cred * cred,gfp_t gfp)705 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
706 {
707 	return lsm_blob_alloc(&cred->security, blob_sizes.lbs_cred, gfp);
708 }
709 
710 /**
711  * lsm_early_cred - during initialization allocate a composite cred blob
712  * @cred: the cred that needs a blob
713  *
714  * Allocate the cred blob for all the modules
715  */
lsm_early_cred(struct cred * cred)716 static void __init lsm_early_cred(struct cred *cred)
717 {
718 	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
719 
720 	if (rc)
721 		panic("%s: Early cred alloc failed.\n", __func__);
722 }
723 
724 /**
725  * lsm_file_alloc - allocate a composite file blob
726  * @file: the file that needs a blob
727  *
728  * Allocate the file blob for all the modules
729  *
730  * Returns 0, or -ENOMEM if memory can't be allocated.
731  */
lsm_file_alloc(struct file * file)732 static int lsm_file_alloc(struct file *file)
733 {
734 	if (!lsm_file_cache) {
735 		file->f_security = NULL;
736 		return 0;
737 	}
738 
739 	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
740 	if (file->f_security == NULL)
741 		return -ENOMEM;
742 	return 0;
743 }
744 
745 /**
746  * lsm_inode_alloc - allocate a composite inode blob
747  * @inode: the inode that needs a blob
748  * @gfp: allocation flags
749  *
750  * Allocate the inode blob for all the modules
751  *
752  * Returns 0, or -ENOMEM if memory can't be allocated.
753  */
lsm_inode_alloc(struct inode * inode,gfp_t gfp)754 static int lsm_inode_alloc(struct inode *inode, gfp_t gfp)
755 {
756 	if (!lsm_inode_cache) {
757 		inode->i_security = NULL;
758 		return 0;
759 	}
760 
761 	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, gfp);
762 	if (inode->i_security == NULL)
763 		return -ENOMEM;
764 	return 0;
765 }
766 
767 /**
768  * lsm_task_alloc - allocate a composite task blob
769  * @task: the task that needs a blob
770  *
771  * Allocate the task blob for all the modules
772  *
773  * Returns 0, or -ENOMEM if memory can't be allocated.
774  */
lsm_task_alloc(struct task_struct * task)775 static int lsm_task_alloc(struct task_struct *task)
776 {
777 	return lsm_blob_alloc(&task->security, blob_sizes.lbs_task, GFP_KERNEL);
778 }
779 
780 /**
781  * lsm_ipc_alloc - allocate a composite ipc blob
782  * @kip: the ipc that needs a blob
783  *
784  * Allocate the ipc blob for all the modules
785  *
786  * Returns 0, or -ENOMEM if memory can't be allocated.
787  */
lsm_ipc_alloc(struct kern_ipc_perm * kip)788 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
789 {
790 	return lsm_blob_alloc(&kip->security, blob_sizes.lbs_ipc, GFP_KERNEL);
791 }
792 
793 #ifdef CONFIG_KEYS
794 /**
795  * lsm_key_alloc - allocate a composite key blob
796  * @key: the key that needs a blob
797  *
798  * Allocate the key blob for all the modules
799  *
800  * Returns 0, or -ENOMEM if memory can't be allocated.
801  */
lsm_key_alloc(struct key * key)802 static int lsm_key_alloc(struct key *key)
803 {
804 	return lsm_blob_alloc(&key->security, blob_sizes.lbs_key, GFP_KERNEL);
805 }
806 #endif /* CONFIG_KEYS */
807 
808 /**
809  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
810  * @mp: the msg_msg that needs a blob
811  *
812  * Allocate the ipc blob for all the modules
813  *
814  * Returns 0, or -ENOMEM if memory can't be allocated.
815  */
lsm_msg_msg_alloc(struct msg_msg * mp)816 static int lsm_msg_msg_alloc(struct msg_msg *mp)
817 {
818 	return lsm_blob_alloc(&mp->security, blob_sizes.lbs_msg_msg,
819 			      GFP_KERNEL);
820 }
821 
822 /**
823  * lsm_bdev_alloc - allocate a composite block_device blob
824  * @bdev: the block_device that needs a blob
825  *
826  * Allocate the block_device blob for all the modules
827  *
828  * Returns 0, or -ENOMEM if memory can't be allocated.
829  */
lsm_bdev_alloc(struct block_device * bdev)830 static int lsm_bdev_alloc(struct block_device *bdev)
831 {
832 	return lsm_blob_alloc(&bdev->bd_security, blob_sizes.lbs_bdev,
833 			      GFP_KERNEL);
834 }
835 
836 #ifdef CONFIG_BPF_SYSCALL
837 /**
838  * lsm_bpf_map_alloc - allocate a composite bpf_map blob
839  * @map: the bpf_map that needs a blob
840  *
841  * Allocate the bpf_map blob for all the modules
842  *
843  * Returns 0, or -ENOMEM if memory can't be allocated.
844  */
lsm_bpf_map_alloc(struct bpf_map * map)845 static int lsm_bpf_map_alloc(struct bpf_map *map)
846 {
847 	return lsm_blob_alloc(&map->security, blob_sizes.lbs_bpf_map, GFP_KERNEL);
848 }
849 
850 /**
851  * lsm_bpf_prog_alloc - allocate a composite bpf_prog blob
852  * @prog: the bpf_prog that needs a blob
853  *
854  * Allocate the bpf_prog blob for all the modules
855  *
856  * Returns 0, or -ENOMEM if memory can't be allocated.
857  */
lsm_bpf_prog_alloc(struct bpf_prog * prog)858 static int lsm_bpf_prog_alloc(struct bpf_prog *prog)
859 {
860 	return lsm_blob_alloc(&prog->aux->security, blob_sizes.lbs_bpf_prog, GFP_KERNEL);
861 }
862 
863 /**
864  * lsm_bpf_token_alloc - allocate a composite bpf_token blob
865  * @token: the bpf_token that needs a blob
866  *
867  * Allocate the bpf_token blob for all the modules
868  *
869  * Returns 0, or -ENOMEM if memory can't be allocated.
870  */
lsm_bpf_token_alloc(struct bpf_token * token)871 static int lsm_bpf_token_alloc(struct bpf_token *token)
872 {
873 	return lsm_blob_alloc(&token->security, blob_sizes.lbs_bpf_token, GFP_KERNEL);
874 }
875 #endif /* CONFIG_BPF_SYSCALL */
876 
877 /**
878  * lsm_early_task - during initialization allocate a composite task blob
879  * @task: the task that needs a blob
880  *
881  * Allocate the task blob for all the modules
882  */
lsm_early_task(struct task_struct * task)883 static void __init lsm_early_task(struct task_struct *task)
884 {
885 	int rc = lsm_task_alloc(task);
886 
887 	if (rc)
888 		panic("%s: Early task alloc failed.\n", __func__);
889 }
890 
891 /**
892  * lsm_superblock_alloc - allocate a composite superblock blob
893  * @sb: the superblock that needs a blob
894  *
895  * Allocate the superblock blob for all the modules
896  *
897  * Returns 0, or -ENOMEM if memory can't be allocated.
898  */
lsm_superblock_alloc(struct super_block * sb)899 static int lsm_superblock_alloc(struct super_block *sb)
900 {
901 	return lsm_blob_alloc(&sb->s_security, blob_sizes.lbs_superblock,
902 			      GFP_KERNEL);
903 }
904 
905 /**
906  * lsm_fill_user_ctx - Fill a user space lsm_ctx structure
907  * @uctx: a userspace LSM context to be filled
908  * @uctx_len: available uctx size (input), used uctx size (output)
909  * @val: the new LSM context value
910  * @val_len: the size of the new LSM context value
911  * @id: LSM id
912  * @flags: LSM defined flags
913  *
914  * Fill all of the fields in a userspace lsm_ctx structure.  If @uctx is NULL
915  * simply calculate the required size to output via @utc_len and return
916  * success.
917  *
918  * Returns 0 on success, -E2BIG if userspace buffer is not large enough,
919  * -EFAULT on a copyout error, -ENOMEM if memory can't be allocated.
920  */
lsm_fill_user_ctx(struct lsm_ctx __user * uctx,u32 * uctx_len,void * val,size_t val_len,u64 id,u64 flags)921 int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, u32 *uctx_len,
922 		      void *val, size_t val_len,
923 		      u64 id, u64 flags)
924 {
925 	struct lsm_ctx *nctx = NULL;
926 	size_t nctx_len;
927 	int rc = 0;
928 
929 	nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *));
930 	if (nctx_len > *uctx_len) {
931 		rc = -E2BIG;
932 		goto out;
933 	}
934 
935 	/* no buffer - return success/0 and set @uctx_len to the req size */
936 	if (!uctx)
937 		goto out;
938 
939 	nctx = kzalloc(nctx_len, GFP_KERNEL);
940 	if (nctx == NULL) {
941 		rc = -ENOMEM;
942 		goto out;
943 	}
944 	nctx->id = id;
945 	nctx->flags = flags;
946 	nctx->len = nctx_len;
947 	nctx->ctx_len = val_len;
948 	memcpy(nctx->ctx, val, val_len);
949 
950 	if (copy_to_user(uctx, nctx, nctx_len))
951 		rc = -EFAULT;
952 
953 out:
954 	kfree(nctx);
955 	*uctx_len = nctx_len;
956 	return rc;
957 }
958 
959 /*
960  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
961  * can be accessed with:
962  *
963  *	LSM_RET_DEFAULT(<hook_name>)
964  *
965  * The macros below define static constants for the default value of each
966  * LSM hook.
967  */
968 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
969 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
970 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
971 	static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
972 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
973 	DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
974 
975 #include <linux/lsm_hook_defs.h>
976 #undef LSM_HOOK
977 
978 /*
979  * Hook list operation macros.
980  *
981  * call_void_hook:
982  *	This is a hook that does not return a value.
983  *
984  * call_int_hook:
985  *	This is a hook that returns a value.
986  */
987 #define __CALL_STATIC_VOID(NUM, HOOK, ...)				     \
988 do {									     \
989 	if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) {    \
990 		static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__);	     \
991 	}								     \
992 } while (0);
993 
994 #define call_void_hook(HOOK, ...)                                 \
995 	do {                                                      \
996 		LSM_LOOP_UNROLL(__CALL_STATIC_VOID, HOOK, __VA_ARGS__); \
997 	} while (0)
998 
999 
1000 #define __CALL_STATIC_INT(NUM, R, HOOK, LABEL, ...)			     \
1001 do {									     \
1002 	if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) {  \
1003 		R = static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__);    \
1004 		if (R != LSM_RET_DEFAULT(HOOK))				     \
1005 			goto LABEL;					     \
1006 	}								     \
1007 } while (0);
1008 
1009 #define call_int_hook(HOOK, ...)					\
1010 ({									\
1011 	__label__ OUT;							\
1012 	int RC = LSM_RET_DEFAULT(HOOK);					\
1013 									\
1014 	LSM_LOOP_UNROLL(__CALL_STATIC_INT, RC, HOOK, OUT, __VA_ARGS__);	\
1015 OUT:									\
1016 	RC;								\
1017 })
1018 
1019 #define lsm_for_each_hook(scall, NAME)					\
1020 	for (scall = static_calls_table.NAME;				\
1021 	     scall - static_calls_table.NAME < MAX_LSM_COUNT; scall++)  \
1022 		if (static_key_enabled(&scall->active->key))
1023 
1024 /* Security operations */
1025 
1026 /**
1027  * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok
1028  * @mgr: task credentials of current binder process
1029  *
1030  * Check whether @mgr is allowed to be the binder context manager.
1031  *
1032  * Return: Return 0 if permission is granted.
1033  */
security_binder_set_context_mgr(const struct cred * mgr)1034 int security_binder_set_context_mgr(const struct cred *mgr)
1035 {
1036 	return call_int_hook(binder_set_context_mgr, mgr);
1037 }
1038 
1039 /**
1040  * security_binder_transaction() - Check if a binder transaction is allowed
1041  * @from: sending process
1042  * @to: receiving process
1043  *
1044  * Check whether @from is allowed to invoke a binder transaction call to @to.
1045  *
1046  * Return: Returns 0 if permission is granted.
1047  */
security_binder_transaction(const struct cred * from,const struct cred * to)1048 int security_binder_transaction(const struct cred *from,
1049 				const struct cred *to)
1050 {
1051 	return call_int_hook(binder_transaction, from, to);
1052 }
1053 
1054 /**
1055  * security_binder_transfer_binder() - Check if a binder transfer is allowed
1056  * @from: sending process
1057  * @to: receiving process
1058  *
1059  * Check whether @from is allowed to transfer a binder reference to @to.
1060  *
1061  * Return: Returns 0 if permission is granted.
1062  */
security_binder_transfer_binder(const struct cred * from,const struct cred * to)1063 int security_binder_transfer_binder(const struct cred *from,
1064 				    const struct cred *to)
1065 {
1066 	return call_int_hook(binder_transfer_binder, from, to);
1067 }
1068 
1069 /**
1070  * security_binder_transfer_file() - Check if a binder file xfer is allowed
1071  * @from: sending process
1072  * @to: receiving process
1073  * @file: file being transferred
1074  *
1075  * Check whether @from is allowed to transfer @file to @to.
1076  *
1077  * Return: Returns 0 if permission is granted.
1078  */
security_binder_transfer_file(const struct cred * from,const struct cred * to,const struct file * file)1079 int security_binder_transfer_file(const struct cred *from,
1080 				  const struct cred *to, const struct file *file)
1081 {
1082 	return call_int_hook(binder_transfer_file, from, to, file);
1083 }
1084 
1085 /**
1086  * security_ptrace_access_check() - Check if tracing is allowed
1087  * @child: target process
1088  * @mode: PTRACE_MODE flags
1089  *
1090  * Check permission before allowing the current process to trace the @child
1091  * process.  Security modules may also want to perform a process tracing check
1092  * during an execve in the set_security or apply_creds hooks of tracing check
1093  * during an execve in the bprm_set_creds hook of binprm_security_ops if the
1094  * process is being traced and its security attributes would be changed by the
1095  * execve.
1096  *
1097  * Return: Returns 0 if permission is granted.
1098  */
security_ptrace_access_check(struct task_struct * child,unsigned int mode)1099 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
1100 {
1101 	return call_int_hook(ptrace_access_check, child, mode);
1102 }
1103 
1104 /**
1105  * security_ptrace_traceme() - Check if tracing is allowed
1106  * @parent: tracing process
1107  *
1108  * Check that the @parent process has sufficient permission to trace the
1109  * current process before allowing the current process to present itself to the
1110  * @parent process for tracing.
1111  *
1112  * Return: Returns 0 if permission is granted.
1113  */
security_ptrace_traceme(struct task_struct * parent)1114 int security_ptrace_traceme(struct task_struct *parent)
1115 {
1116 	return call_int_hook(ptrace_traceme, parent);
1117 }
1118 
1119 /**
1120  * security_capget() - Get the capability sets for a process
1121  * @target: target process
1122  * @effective: effective capability set
1123  * @inheritable: inheritable capability set
1124  * @permitted: permitted capability set
1125  *
1126  * Get the @effective, @inheritable, and @permitted capability sets for the
1127  * @target process.  The hook may also perform permission checking to determine
1128  * if the current process is allowed to see the capability sets of the @target
1129  * process.
1130  *
1131  * Return: Returns 0 if the capability sets were successfully obtained.
1132  */
security_capget(const struct task_struct * target,kernel_cap_t * effective,kernel_cap_t * inheritable,kernel_cap_t * permitted)1133 int security_capget(const struct task_struct *target,
1134 		    kernel_cap_t *effective,
1135 		    kernel_cap_t *inheritable,
1136 		    kernel_cap_t *permitted)
1137 {
1138 	return call_int_hook(capget, target, effective, inheritable, permitted);
1139 }
1140 
1141 /**
1142  * security_capset() - Set the capability sets for a process
1143  * @new: new credentials for the target process
1144  * @old: current credentials of the target process
1145  * @effective: effective capability set
1146  * @inheritable: inheritable capability set
1147  * @permitted: permitted capability set
1148  *
1149  * Set the @effective, @inheritable, and @permitted capability sets for the
1150  * current process.
1151  *
1152  * Return: Returns 0 and update @new if permission is granted.
1153  */
security_capset(struct cred * new,const struct cred * old,const kernel_cap_t * effective,const kernel_cap_t * inheritable,const kernel_cap_t * permitted)1154 int security_capset(struct cred *new, const struct cred *old,
1155 		    const kernel_cap_t *effective,
1156 		    const kernel_cap_t *inheritable,
1157 		    const kernel_cap_t *permitted)
1158 {
1159 	return call_int_hook(capset, new, old, effective, inheritable,
1160 			     permitted);
1161 }
1162 
1163 /**
1164  * security_capable() - Check if a process has the necessary capability
1165  * @cred: credentials to examine
1166  * @ns: user namespace
1167  * @cap: capability requested
1168  * @opts: capability check options
1169  *
1170  * Check whether the @tsk process has the @cap capability in the indicated
1171  * credentials.  @cap contains the capability <include/linux/capability.h>.
1172  * @opts contains options for the capable check <include/linux/security.h>.
1173  *
1174  * Return: Returns 0 if the capability is granted.
1175  */
security_capable(const struct cred * cred,struct user_namespace * ns,int cap,unsigned int opts)1176 int security_capable(const struct cred *cred,
1177 		     struct user_namespace *ns,
1178 		     int cap,
1179 		     unsigned int opts)
1180 {
1181 	return call_int_hook(capable, cred, ns, cap, opts);
1182 }
1183 
1184 /**
1185  * security_quotactl() - Check if a quotactl() syscall is allowed for this fs
1186  * @cmds: commands
1187  * @type: type
1188  * @id: id
1189  * @sb: filesystem
1190  *
1191  * Check whether the quotactl syscall is allowed for this @sb.
1192  *
1193  * Return: Returns 0 if permission is granted.
1194  */
security_quotactl(int cmds,int type,int id,const struct super_block * sb)1195 int security_quotactl(int cmds, int type, int id, const struct super_block *sb)
1196 {
1197 	return call_int_hook(quotactl, cmds, type, id, sb);
1198 }
1199 
1200 /**
1201  * security_quota_on() - Check if QUOTAON is allowed for a dentry
1202  * @dentry: dentry
1203  *
1204  * Check whether QUOTAON is allowed for @dentry.
1205  *
1206  * Return: Returns 0 if permission is granted.
1207  */
security_quota_on(struct dentry * dentry)1208 int security_quota_on(struct dentry *dentry)
1209 {
1210 	return call_int_hook(quota_on, dentry);
1211 }
1212 
1213 /**
1214  * security_syslog() - Check if accessing the kernel message ring is allowed
1215  * @type: SYSLOG_ACTION_* type
1216  *
1217  * Check permission before accessing the kernel message ring or changing
1218  * logging to the console.  See the syslog(2) manual page for an explanation of
1219  * the @type values.
1220  *
1221  * Return: Return 0 if permission is granted.
1222  */
security_syslog(int type)1223 int security_syslog(int type)
1224 {
1225 	return call_int_hook(syslog, type);
1226 }
1227 
1228 /**
1229  * security_settime64() - Check if changing the system time is allowed
1230  * @ts: new time
1231  * @tz: timezone
1232  *
1233  * Check permission to change the system time, struct timespec64 is defined in
1234  * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>.
1235  *
1236  * Return: Returns 0 if permission is granted.
1237  */
security_settime64(const struct timespec64 * ts,const struct timezone * tz)1238 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
1239 {
1240 	return call_int_hook(settime, ts, tz);
1241 }
1242 
1243 /**
1244  * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed
1245  * @mm: mm struct
1246  * @pages: number of pages
1247  *
1248  * Check permissions for allocating a new virtual mapping.  If all LSMs return
1249  * a positive value, __vm_enough_memory() will be called with cap_sys_admin
1250  * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be
1251  * called with cap_sys_admin cleared.
1252  *
1253  * Return: Returns 0 if permission is granted by the LSM infrastructure to the
1254  *         caller.
1255  */
security_vm_enough_memory_mm(struct mm_struct * mm,long pages)1256 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
1257 {
1258 	struct lsm_static_call *scall;
1259 	int cap_sys_admin = 1;
1260 	int rc;
1261 
1262 	/*
1263 	 * The module will respond with 0 if it thinks the __vm_enough_memory()
1264 	 * call should be made with the cap_sys_admin set. If all of the modules
1265 	 * agree that it should be set it will. If any module thinks it should
1266 	 * not be set it won't.
1267 	 */
1268 	lsm_for_each_hook(scall, vm_enough_memory) {
1269 		rc = scall->hl->hook.vm_enough_memory(mm, pages);
1270 		if (rc < 0) {
1271 			cap_sys_admin = 0;
1272 			break;
1273 		}
1274 	}
1275 	return __vm_enough_memory(mm, pages, cap_sys_admin);
1276 }
1277 
1278 /**
1279  * security_bprm_creds_for_exec() - Prepare the credentials for exec()
1280  * @bprm: binary program information
1281  *
1282  * If the setup in prepare_exec_creds did not setup @bprm->cred->security
1283  * properly for executing @bprm->file, update the LSM's portion of
1284  * @bprm->cred->security to be what commit_creds needs to install for the new
1285  * program.  This hook may also optionally check permissions (e.g. for
1286  * transitions between security domains).  The hook must set @bprm->secureexec
1287  * to 1 if AT_SECURE should be set to request libc enable secure mode.  @bprm
1288  * contains the linux_binprm structure.
1289  *
1290  * If execveat(2) is called with the AT_EXECVE_CHECK flag, bprm->is_check is
1291  * set.  The result must be the same as without this flag even if the execution
1292  * will never really happen and @bprm will always be dropped.
1293  *
1294  * This hook must not change current->cred, only @bprm->cred.
1295  *
1296  * Return: Returns 0 if the hook is successful and permission is granted.
1297  */
security_bprm_creds_for_exec(struct linux_binprm * bprm)1298 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
1299 {
1300 	return call_int_hook(bprm_creds_for_exec, bprm);
1301 }
1302 
1303 /**
1304  * security_bprm_creds_from_file() - Update linux_binprm creds based on file
1305  * @bprm: binary program information
1306  * @file: associated file
1307  *
1308  * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon
1309  * exec, update @bprm->cred to reflect that change. This is called after
1310  * finding the binary that will be executed without an interpreter.  This
1311  * ensures that the credentials will not be derived from a script that the
1312  * binary will need to reopen, which when reopend may end up being a completely
1313  * different file.  This hook may also optionally check permissions (e.g. for
1314  * transitions between security domains).  The hook must set @bprm->secureexec
1315  * to 1 if AT_SECURE should be set to request libc enable secure mode.  The
1316  * hook must add to @bprm->per_clear any personality flags that should be
1317  * cleared from current->personality.  @bprm contains the linux_binprm
1318  * structure.
1319  *
1320  * Return: Returns 0 if the hook is successful and permission is granted.
1321  */
security_bprm_creds_from_file(struct linux_binprm * bprm,const struct file * file)1322 int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file)
1323 {
1324 	return call_int_hook(bprm_creds_from_file, bprm, file);
1325 }
1326 
1327 /**
1328  * security_bprm_check() - Mediate binary handler search
1329  * @bprm: binary program information
1330  *
1331  * This hook mediates the point when a search for a binary handler will begin.
1332  * It allows a check against the @bprm->cred->security value which was set in
1333  * the preceding creds_for_exec call.  The argv list and envp list are reliably
1334  * available in @bprm.  This hook may be called multiple times during a single
1335  * execve.  @bprm contains the linux_binprm structure.
1336  *
1337  * Return: Returns 0 if the hook is successful and permission is granted.
1338  */
security_bprm_check(struct linux_binprm * bprm)1339 int security_bprm_check(struct linux_binprm *bprm)
1340 {
1341 	return call_int_hook(bprm_check_security, bprm);
1342 }
1343 
1344 /**
1345  * security_bprm_committing_creds() - Install creds for a process during exec()
1346  * @bprm: binary program information
1347  *
1348  * Prepare to install the new security attributes of a process being
1349  * transformed by an execve operation, based on the old credentials pointed to
1350  * by @current->cred and the information set in @bprm->cred by the
1351  * bprm_creds_for_exec hook.  @bprm points to the linux_binprm structure.  This
1352  * hook is a good place to perform state changes on the process such as closing
1353  * open file descriptors to which access will no longer be granted when the
1354  * attributes are changed.  This is called immediately before commit_creds().
1355  */
security_bprm_committing_creds(const struct linux_binprm * bprm)1356 void security_bprm_committing_creds(const struct linux_binprm *bprm)
1357 {
1358 	call_void_hook(bprm_committing_creds, bprm);
1359 }
1360 
1361 /**
1362  * security_bprm_committed_creds() - Tidy up after cred install during exec()
1363  * @bprm: binary program information
1364  *
1365  * Tidy up after the installation of the new security attributes of a process
1366  * being transformed by an execve operation.  The new credentials have, by this
1367  * point, been set to @current->cred.  @bprm points to the linux_binprm
1368  * structure.  This hook is a good place to perform state changes on the
1369  * process such as clearing out non-inheritable signal state.  This is called
1370  * immediately after commit_creds().
1371  */
security_bprm_committed_creds(const struct linux_binprm * bprm)1372 void security_bprm_committed_creds(const struct linux_binprm *bprm)
1373 {
1374 	call_void_hook(bprm_committed_creds, bprm);
1375 }
1376 
1377 /**
1378  * security_fs_context_submount() - Initialise fc->security
1379  * @fc: new filesystem context
1380  * @reference: dentry reference for submount/remount
1381  *
1382  * Fill out the ->security field for a new fs_context.
1383  *
1384  * Return: Returns 0 on success or negative error code on failure.
1385  */
security_fs_context_submount(struct fs_context * fc,struct super_block * reference)1386 int security_fs_context_submount(struct fs_context *fc, struct super_block *reference)
1387 {
1388 	return call_int_hook(fs_context_submount, fc, reference);
1389 }
1390 
1391 /**
1392  * security_fs_context_dup() - Duplicate a fs_context LSM blob
1393  * @fc: destination filesystem context
1394  * @src_fc: source filesystem context
1395  *
1396  * Allocate and attach a security structure to sc->security.  This pointer is
1397  * initialised to NULL by the caller.  @fc indicates the new filesystem context.
1398  * @src_fc indicates the original filesystem context.
1399  *
1400  * Return: Returns 0 on success or a negative error code on failure.
1401  */
security_fs_context_dup(struct fs_context * fc,struct fs_context * src_fc)1402 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
1403 {
1404 	return call_int_hook(fs_context_dup, fc, src_fc);
1405 }
1406 
1407 /**
1408  * security_fs_context_parse_param() - Configure a filesystem context
1409  * @fc: filesystem context
1410  * @param: filesystem parameter
1411  *
1412  * Userspace provided a parameter to configure a superblock.  The LSM can
1413  * consume the parameter or return it to the caller for use elsewhere.
1414  *
1415  * Return: If the parameter is used by the LSM it should return 0, if it is
1416  *         returned to the caller -ENOPARAM is returned, otherwise a negative
1417  *         error code is returned.
1418  */
security_fs_context_parse_param(struct fs_context * fc,struct fs_parameter * param)1419 int security_fs_context_parse_param(struct fs_context *fc,
1420 				    struct fs_parameter *param)
1421 {
1422 	struct lsm_static_call *scall;
1423 	int trc;
1424 	int rc = -ENOPARAM;
1425 
1426 	lsm_for_each_hook(scall, fs_context_parse_param) {
1427 		trc = scall->hl->hook.fs_context_parse_param(fc, param);
1428 		if (trc == 0)
1429 			rc = 0;
1430 		else if (trc != -ENOPARAM)
1431 			return trc;
1432 	}
1433 	return rc;
1434 }
1435 
1436 /**
1437  * security_sb_alloc() - Allocate a super_block LSM blob
1438  * @sb: filesystem superblock
1439  *
1440  * Allocate and attach a security structure to the sb->s_security field.  The
1441  * s_security field is initialized to NULL when the structure is allocated.
1442  * @sb contains the super_block structure to be modified.
1443  *
1444  * Return: Returns 0 if operation was successful.
1445  */
security_sb_alloc(struct super_block * sb)1446 int security_sb_alloc(struct super_block *sb)
1447 {
1448 	int rc = lsm_superblock_alloc(sb);
1449 
1450 	if (unlikely(rc))
1451 		return rc;
1452 	rc = call_int_hook(sb_alloc_security, sb);
1453 	if (unlikely(rc))
1454 		security_sb_free(sb);
1455 	return rc;
1456 }
1457 
1458 /**
1459  * security_sb_delete() - Release super_block LSM associated objects
1460  * @sb: filesystem superblock
1461  *
1462  * Release objects tied to a superblock (e.g. inodes).  @sb contains the
1463  * super_block structure being released.
1464  */
security_sb_delete(struct super_block * sb)1465 void security_sb_delete(struct super_block *sb)
1466 {
1467 	call_void_hook(sb_delete, sb);
1468 }
1469 
1470 /**
1471  * security_sb_free() - Free a super_block LSM blob
1472  * @sb: filesystem superblock
1473  *
1474  * Deallocate and clear the sb->s_security field.  @sb contains the super_block
1475  * structure to be modified.
1476  */
security_sb_free(struct super_block * sb)1477 void security_sb_free(struct super_block *sb)
1478 {
1479 	call_void_hook(sb_free_security, sb);
1480 	kfree(sb->s_security);
1481 	sb->s_security = NULL;
1482 }
1483 
1484 /**
1485  * security_free_mnt_opts() - Free memory associated with mount options
1486  * @mnt_opts: LSM processed mount options
1487  *
1488  * Free memory associated with @mnt_ops.
1489  */
security_free_mnt_opts(void ** mnt_opts)1490 void security_free_mnt_opts(void **mnt_opts)
1491 {
1492 	if (!*mnt_opts)
1493 		return;
1494 	call_void_hook(sb_free_mnt_opts, *mnt_opts);
1495 	*mnt_opts = NULL;
1496 }
1497 EXPORT_SYMBOL(security_free_mnt_opts);
1498 
1499 /**
1500  * security_sb_eat_lsm_opts() - Consume LSM mount options
1501  * @options: mount options
1502  * @mnt_opts: LSM processed mount options
1503  *
1504  * Eat (scan @options) and save them in @mnt_opts.
1505  *
1506  * Return: Returns 0 on success, negative values on failure.
1507  */
security_sb_eat_lsm_opts(char * options,void ** mnt_opts)1508 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
1509 {
1510 	return call_int_hook(sb_eat_lsm_opts, options, mnt_opts);
1511 }
1512 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
1513 
1514 /**
1515  * security_sb_mnt_opts_compat() - Check if new mount options are allowed
1516  * @sb: filesystem superblock
1517  * @mnt_opts: new mount options
1518  *
1519  * Determine if the new mount options in @mnt_opts are allowed given the
1520  * existing mounted filesystem at @sb.  @sb superblock being compared.
1521  *
1522  * Return: Returns 0 if options are compatible.
1523  */
security_sb_mnt_opts_compat(struct super_block * sb,void * mnt_opts)1524 int security_sb_mnt_opts_compat(struct super_block *sb,
1525 				void *mnt_opts)
1526 {
1527 	return call_int_hook(sb_mnt_opts_compat, sb, mnt_opts);
1528 }
1529 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
1530 
1531 /**
1532  * security_sb_remount() - Verify no incompatible mount changes during remount
1533  * @sb: filesystem superblock
1534  * @mnt_opts: (re)mount options
1535  *
1536  * Extracts security system specific mount options and verifies no changes are
1537  * being made to those options.
1538  *
1539  * Return: Returns 0 if permission is granted.
1540  */
security_sb_remount(struct super_block * sb,void * mnt_opts)1541 int security_sb_remount(struct super_block *sb,
1542 			void *mnt_opts)
1543 {
1544 	return call_int_hook(sb_remount, sb, mnt_opts);
1545 }
1546 EXPORT_SYMBOL(security_sb_remount);
1547 
1548 /**
1549  * security_sb_kern_mount() - Check if a kernel mount is allowed
1550  * @sb: filesystem superblock
1551  *
1552  * Mount this @sb if allowed by permissions.
1553  *
1554  * Return: Returns 0 if permission is granted.
1555  */
security_sb_kern_mount(const struct super_block * sb)1556 int security_sb_kern_mount(const struct super_block *sb)
1557 {
1558 	return call_int_hook(sb_kern_mount, sb);
1559 }
1560 
1561 /**
1562  * security_sb_show_options() - Output the mount options for a superblock
1563  * @m: output file
1564  * @sb: filesystem superblock
1565  *
1566  * Show (print on @m) mount options for this @sb.
1567  *
1568  * Return: Returns 0 on success, negative values on failure.
1569  */
security_sb_show_options(struct seq_file * m,struct super_block * sb)1570 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
1571 {
1572 	return call_int_hook(sb_show_options, m, sb);
1573 }
1574 
1575 /**
1576  * security_sb_statfs() - Check if accessing fs stats is allowed
1577  * @dentry: superblock handle
1578  *
1579  * Check permission before obtaining filesystem statistics for the @mnt
1580  * mountpoint.  @dentry is a handle on the superblock for the filesystem.
1581  *
1582  * Return: Returns 0 if permission is granted.
1583  */
security_sb_statfs(struct dentry * dentry)1584 int security_sb_statfs(struct dentry *dentry)
1585 {
1586 	return call_int_hook(sb_statfs, dentry);
1587 }
1588 
1589 /**
1590  * security_sb_mount() - Check permission for mounting a filesystem
1591  * @dev_name: filesystem backing device
1592  * @path: mount point
1593  * @type: filesystem type
1594  * @flags: mount flags
1595  * @data: filesystem specific data
1596  *
1597  * Check permission before an object specified by @dev_name is mounted on the
1598  * mount point named by @nd.  For an ordinary mount, @dev_name identifies a
1599  * device if the file system type requires a device.  For a remount
1600  * (@flags & MS_REMOUNT), @dev_name is irrelevant.  For a loopback/bind mount
1601  * (@flags & MS_BIND), @dev_name identifies the	pathname of the object being
1602  * mounted.
1603  *
1604  * Return: Returns 0 if permission is granted.
1605  */
security_sb_mount(const char * dev_name,const struct path * path,const char * type,unsigned long flags,void * data)1606 int security_sb_mount(const char *dev_name, const struct path *path,
1607 		      const char *type, unsigned long flags, void *data)
1608 {
1609 	return call_int_hook(sb_mount, dev_name, path, type, flags, data);
1610 }
1611 
1612 /**
1613  * security_sb_umount() - Check permission for unmounting a filesystem
1614  * @mnt: mounted filesystem
1615  * @flags: unmount flags
1616  *
1617  * Check permission before the @mnt file system is unmounted.
1618  *
1619  * Return: Returns 0 if permission is granted.
1620  */
security_sb_umount(struct vfsmount * mnt,int flags)1621 int security_sb_umount(struct vfsmount *mnt, int flags)
1622 {
1623 	return call_int_hook(sb_umount, mnt, flags);
1624 }
1625 
1626 /**
1627  * security_sb_pivotroot() - Check permissions for pivoting the rootfs
1628  * @old_path: new location for current rootfs
1629  * @new_path: location of the new rootfs
1630  *
1631  * Check permission before pivoting the root filesystem.
1632  *
1633  * Return: Returns 0 if permission is granted.
1634  */
security_sb_pivotroot(const struct path * old_path,const struct path * new_path)1635 int security_sb_pivotroot(const struct path *old_path,
1636 			  const struct path *new_path)
1637 {
1638 	return call_int_hook(sb_pivotroot, old_path, new_path);
1639 }
1640 
1641 /**
1642  * security_sb_set_mnt_opts() - Set the mount options for a filesystem
1643  * @sb: filesystem superblock
1644  * @mnt_opts: binary mount options
1645  * @kern_flags: kernel flags (in)
1646  * @set_kern_flags: kernel flags (out)
1647  *
1648  * Set the security relevant mount options used for a superblock.
1649  *
1650  * Return: Returns 0 on success, error on failure.
1651  */
security_sb_set_mnt_opts(struct super_block * sb,void * mnt_opts,unsigned long kern_flags,unsigned long * set_kern_flags)1652 int security_sb_set_mnt_opts(struct super_block *sb,
1653 			     void *mnt_opts,
1654 			     unsigned long kern_flags,
1655 			     unsigned long *set_kern_flags)
1656 {
1657 	struct lsm_static_call *scall;
1658 	int rc = mnt_opts ? -EOPNOTSUPP : LSM_RET_DEFAULT(sb_set_mnt_opts);
1659 
1660 	lsm_for_each_hook(scall, sb_set_mnt_opts) {
1661 		rc = scall->hl->hook.sb_set_mnt_opts(sb, mnt_opts, kern_flags,
1662 					      set_kern_flags);
1663 		if (rc != LSM_RET_DEFAULT(sb_set_mnt_opts))
1664 			break;
1665 	}
1666 	return rc;
1667 }
1668 EXPORT_SYMBOL(security_sb_set_mnt_opts);
1669 
1670 /**
1671  * security_sb_clone_mnt_opts() - Duplicate superblock mount options
1672  * @oldsb: source superblock
1673  * @newsb: destination superblock
1674  * @kern_flags: kernel flags (in)
1675  * @set_kern_flags: kernel flags (out)
1676  *
1677  * Copy all security options from a given superblock to another.
1678  *
1679  * Return: Returns 0 on success, error on failure.
1680  */
security_sb_clone_mnt_opts(const struct super_block * oldsb,struct super_block * newsb,unsigned long kern_flags,unsigned long * set_kern_flags)1681 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1682 			       struct super_block *newsb,
1683 			       unsigned long kern_flags,
1684 			       unsigned long *set_kern_flags)
1685 {
1686 	return call_int_hook(sb_clone_mnt_opts, oldsb, newsb,
1687 			     kern_flags, set_kern_flags);
1688 }
1689 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1690 
1691 /**
1692  * security_move_mount() - Check permissions for moving a mount
1693  * @from_path: source mount point
1694  * @to_path: destination mount point
1695  *
1696  * Check permission before a mount is moved.
1697  *
1698  * Return: Returns 0 if permission is granted.
1699  */
security_move_mount(const struct path * from_path,const struct path * to_path)1700 int security_move_mount(const struct path *from_path,
1701 			const struct path *to_path)
1702 {
1703 	return call_int_hook(move_mount, from_path, to_path);
1704 }
1705 
1706 /**
1707  * security_path_notify() - Check if setting a watch is allowed
1708  * @path: file path
1709  * @mask: event mask
1710  * @obj_type: file path type
1711  *
1712  * Check permissions before setting a watch on events as defined by @mask, on
1713  * an object at @path, whose type is defined by @obj_type.
1714  *
1715  * Return: Returns 0 if permission is granted.
1716  */
security_path_notify(const struct path * path,u64 mask,unsigned int obj_type)1717 int security_path_notify(const struct path *path, u64 mask,
1718 			 unsigned int obj_type)
1719 {
1720 	return call_int_hook(path_notify, path, mask, obj_type);
1721 }
1722 
1723 /**
1724  * security_inode_alloc() - Allocate an inode LSM blob
1725  * @inode: the inode
1726  * @gfp: allocation flags
1727  *
1728  * Allocate and attach a security structure to @inode->i_security.  The
1729  * i_security field is initialized to NULL when the inode structure is
1730  * allocated.
1731  *
1732  * Return: Return 0 if operation was successful.
1733  */
security_inode_alloc(struct inode * inode,gfp_t gfp)1734 int security_inode_alloc(struct inode *inode, gfp_t gfp)
1735 {
1736 	int rc = lsm_inode_alloc(inode, gfp);
1737 
1738 	if (unlikely(rc))
1739 		return rc;
1740 	rc = call_int_hook(inode_alloc_security, inode);
1741 	if (unlikely(rc))
1742 		security_inode_free(inode);
1743 	return rc;
1744 }
1745 
inode_free_by_rcu(struct rcu_head * head)1746 static void inode_free_by_rcu(struct rcu_head *head)
1747 {
1748 	/* The rcu head is at the start of the inode blob */
1749 	call_void_hook(inode_free_security_rcu, head);
1750 	kmem_cache_free(lsm_inode_cache, head);
1751 }
1752 
1753 /**
1754  * security_inode_free() - Free an inode's LSM blob
1755  * @inode: the inode
1756  *
1757  * Release any LSM resources associated with @inode, although due to the
1758  * inode's RCU protections it is possible that the resources will not be
1759  * fully released until after the current RCU grace period has elapsed.
1760  *
1761  * It is important for LSMs to note that despite being present in a call to
1762  * security_inode_free(), @inode may still be referenced in a VFS path walk
1763  * and calls to security_inode_permission() may be made during, or after,
1764  * a call to security_inode_free().  For this reason the inode->i_security
1765  * field is released via a call_rcu() callback and any LSMs which need to
1766  * retain inode state for use in security_inode_permission() should only
1767  * release that state in the inode_free_security_rcu() LSM hook callback.
1768  */
security_inode_free(struct inode * inode)1769 void security_inode_free(struct inode *inode)
1770 {
1771 	call_void_hook(inode_free_security, inode);
1772 	if (!inode->i_security)
1773 		return;
1774 	call_rcu((struct rcu_head *)inode->i_security, inode_free_by_rcu);
1775 }
1776 
1777 /**
1778  * security_dentry_init_security() - Perform dentry initialization
1779  * @dentry: the dentry to initialize
1780  * @mode: mode used to determine resource type
1781  * @name: name of the last path component
1782  * @xattr_name: name of the security/LSM xattr
1783  * @lsmctx: pointer to the resulting LSM context
1784  *
1785  * Compute a context for a dentry as the inode is not yet available since NFSv4
1786  * has no label backed by an EA anyway.  It is important to note that
1787  * @xattr_name does not need to be free'd by the caller, it is a static string.
1788  *
1789  * Return: Returns 0 on success, negative values on failure.
1790  */
security_dentry_init_security(struct dentry * dentry,int mode,const struct qstr * name,const char ** xattr_name,struct lsm_context * lsmctx)1791 int security_dentry_init_security(struct dentry *dentry, int mode,
1792 				  const struct qstr *name,
1793 				  const char **xattr_name,
1794 				  struct lsm_context *lsmctx)
1795 {
1796 	return call_int_hook(dentry_init_security, dentry, mode, name,
1797 			     xattr_name, lsmctx);
1798 }
1799 EXPORT_SYMBOL(security_dentry_init_security);
1800 
1801 /**
1802  * security_dentry_create_files_as() - Perform dentry initialization
1803  * @dentry: the dentry to initialize
1804  * @mode: mode used to determine resource type
1805  * @name: name of the last path component
1806  * @old: creds to use for LSM context calculations
1807  * @new: creds to modify
1808  *
1809  * Compute a context for a dentry as the inode is not yet available and set
1810  * that context in passed in creds so that new files are created using that
1811  * context. Context is calculated using the passed in creds and not the creds
1812  * of the caller.
1813  *
1814  * Return: Returns 0 on success, error on failure.
1815  */
security_dentry_create_files_as(struct dentry * dentry,int mode,const struct qstr * name,const struct cred * old,struct cred * new)1816 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1817 				    const struct qstr *name,
1818 				    const struct cred *old, struct cred *new)
1819 {
1820 	return call_int_hook(dentry_create_files_as, dentry, mode,
1821 			     name, old, new);
1822 }
1823 EXPORT_SYMBOL(security_dentry_create_files_as);
1824 
1825 /**
1826  * security_inode_init_security() - Initialize an inode's LSM context
1827  * @inode: the inode
1828  * @dir: parent directory
1829  * @qstr: last component of the pathname
1830  * @initxattrs: callback function to write xattrs
1831  * @fs_data: filesystem specific data
1832  *
1833  * Obtain the security attribute name suffix and value to set on a newly
1834  * created inode and set up the incore security field for the new inode.  This
1835  * hook is called by the fs code as part of the inode creation transaction and
1836  * provides for atomic labeling of the inode, unlike the post_create/mkdir/...
1837  * hooks called by the VFS.
1838  *
1839  * The hook function is expected to populate the xattrs array, by calling
1840  * lsm_get_xattr_slot() to retrieve the slots reserved by the security module
1841  * with the lbs_xattr_count field of the lsm_blob_sizes structure.  For each
1842  * slot, the hook function should set ->name to the attribute name suffix
1843  * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it
1844  * to the attribute value, to set ->value_len to the length of the value.  If
1845  * the security module does not use security attributes or does not wish to put
1846  * a security attribute on this particular inode, then it should return
1847  * -EOPNOTSUPP to skip this processing.
1848  *
1849  * Return: Returns 0 if the LSM successfully initialized all of the inode
1850  *         security attributes that are required, negative values otherwise.
1851  */
security_inode_init_security(struct inode * inode,struct inode * dir,const struct qstr * qstr,const initxattrs initxattrs,void * fs_data)1852 int security_inode_init_security(struct inode *inode, struct inode *dir,
1853 				 const struct qstr *qstr,
1854 				 const initxattrs initxattrs, void *fs_data)
1855 {
1856 	struct lsm_static_call *scall;
1857 	struct xattr *new_xattrs = NULL;
1858 	int ret = -EOPNOTSUPP, xattr_count = 0;
1859 
1860 	if (unlikely(IS_PRIVATE(inode)))
1861 		return 0;
1862 
1863 	if (!blob_sizes.lbs_xattr_count)
1864 		return 0;
1865 
1866 	if (initxattrs) {
1867 		/* Allocate +1 as terminator. */
1868 		new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 1,
1869 				     sizeof(*new_xattrs), GFP_NOFS);
1870 		if (!new_xattrs)
1871 			return -ENOMEM;
1872 	}
1873 
1874 	lsm_for_each_hook(scall, inode_init_security) {
1875 		ret = scall->hl->hook.inode_init_security(inode, dir, qstr, new_xattrs,
1876 						  &xattr_count);
1877 		if (ret && ret != -EOPNOTSUPP)
1878 			goto out;
1879 		/*
1880 		 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context
1881 		 * means that the LSM is not willing to provide an xattr, not
1882 		 * that it wants to signal an error. Thus, continue to invoke
1883 		 * the remaining LSMs.
1884 		 */
1885 	}
1886 
1887 	/* If initxattrs() is NULL, xattr_count is zero, skip the call. */
1888 	if (!xattr_count)
1889 		goto out;
1890 
1891 	ret = initxattrs(inode, new_xattrs, fs_data);
1892 out:
1893 	for (; xattr_count > 0; xattr_count--)
1894 		kfree(new_xattrs[xattr_count - 1].value);
1895 	kfree(new_xattrs);
1896 	return (ret == -EOPNOTSUPP) ? 0 : ret;
1897 }
1898 EXPORT_SYMBOL(security_inode_init_security);
1899 
1900 /**
1901  * security_inode_init_security_anon() - Initialize an anonymous inode
1902  * @inode: the inode
1903  * @name: the anonymous inode class
1904  * @context_inode: an optional related inode
1905  *
1906  * Set up the incore security field for the new anonymous inode and return
1907  * whether the inode creation is permitted by the security module or not.
1908  *
1909  * Return: Returns 0 on success, -EACCES if the security module denies the
1910  * creation of this inode, or another -errno upon other errors.
1911  */
security_inode_init_security_anon(struct inode * inode,const struct qstr * name,const struct inode * context_inode)1912 int security_inode_init_security_anon(struct inode *inode,
1913 				      const struct qstr *name,
1914 				      const struct inode *context_inode)
1915 {
1916 	return call_int_hook(inode_init_security_anon, inode, name,
1917 			     context_inode);
1918 }
1919 
1920 #ifdef CONFIG_SECURITY_PATH
1921 /**
1922  * security_path_mknod() - Check if creating a special file is allowed
1923  * @dir: parent directory
1924  * @dentry: new file
1925  * @mode: new file mode
1926  * @dev: device number
1927  *
1928  * Check permissions when creating a file. Note that this hook is called even
1929  * if mknod operation is being done for a regular file.
1930  *
1931  * Return: Returns 0 if permission is granted.
1932  */
security_path_mknod(const struct path * dir,struct dentry * dentry,umode_t mode,unsigned int dev)1933 int security_path_mknod(const struct path *dir, struct dentry *dentry,
1934 			umode_t mode, unsigned int dev)
1935 {
1936 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1937 		return 0;
1938 	return call_int_hook(path_mknod, dir, dentry, mode, dev);
1939 }
1940 EXPORT_SYMBOL(security_path_mknod);
1941 
1942 /**
1943  * security_path_post_mknod() - Update inode security after reg file creation
1944  * @idmap: idmap of the mount
1945  * @dentry: new file
1946  *
1947  * Update inode security field after a regular file has been created.
1948  */
security_path_post_mknod(struct mnt_idmap * idmap,struct dentry * dentry)1949 void security_path_post_mknod(struct mnt_idmap *idmap, struct dentry *dentry)
1950 {
1951 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1952 		return;
1953 	call_void_hook(path_post_mknod, idmap, dentry);
1954 }
1955 
1956 /**
1957  * security_path_mkdir() - Check if creating a new directory is allowed
1958  * @dir: parent directory
1959  * @dentry: new directory
1960  * @mode: new directory mode
1961  *
1962  * Check permissions to create a new directory in the existing directory.
1963  *
1964  * Return: Returns 0 if permission is granted.
1965  */
security_path_mkdir(const struct path * dir,struct dentry * dentry,umode_t mode)1966 int security_path_mkdir(const struct path *dir, struct dentry *dentry,
1967 			umode_t mode)
1968 {
1969 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1970 		return 0;
1971 	return call_int_hook(path_mkdir, dir, dentry, mode);
1972 }
1973 EXPORT_SYMBOL(security_path_mkdir);
1974 
1975 /**
1976  * security_path_rmdir() - Check if removing a directory is allowed
1977  * @dir: parent directory
1978  * @dentry: directory to remove
1979  *
1980  * Check the permission to remove a directory.
1981  *
1982  * Return: Returns 0 if permission is granted.
1983  */
security_path_rmdir(const struct path * dir,struct dentry * dentry)1984 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1985 {
1986 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1987 		return 0;
1988 	return call_int_hook(path_rmdir, dir, dentry);
1989 }
1990 
1991 /**
1992  * security_path_unlink() - Check if removing a hard link is allowed
1993  * @dir: parent directory
1994  * @dentry: file
1995  *
1996  * Check the permission to remove a hard link to a file.
1997  *
1998  * Return: Returns 0 if permission is granted.
1999  */
security_path_unlink(const struct path * dir,struct dentry * dentry)2000 int security_path_unlink(const struct path *dir, struct dentry *dentry)
2001 {
2002 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
2003 		return 0;
2004 	return call_int_hook(path_unlink, dir, dentry);
2005 }
2006 EXPORT_SYMBOL(security_path_unlink);
2007 
2008 /**
2009  * security_path_symlink() - Check if creating a symbolic link is allowed
2010  * @dir: parent directory
2011  * @dentry: symbolic link
2012  * @old_name: file pathname
2013  *
2014  * Check the permission to create a symbolic link to a file.
2015  *
2016  * Return: Returns 0 if permission is granted.
2017  */
security_path_symlink(const struct path * dir,struct dentry * dentry,const char * old_name)2018 int security_path_symlink(const struct path *dir, struct dentry *dentry,
2019 			  const char *old_name)
2020 {
2021 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
2022 		return 0;
2023 	return call_int_hook(path_symlink, dir, dentry, old_name);
2024 }
2025 
2026 /**
2027  * security_path_link - Check if creating a hard link is allowed
2028  * @old_dentry: existing file
2029  * @new_dir: new parent directory
2030  * @new_dentry: new link
2031  *
2032  * Check permission before creating a new hard link to a file.
2033  *
2034  * Return: Returns 0 if permission is granted.
2035  */
security_path_link(struct dentry * old_dentry,const struct path * new_dir,struct dentry * new_dentry)2036 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
2037 		       struct dentry *new_dentry)
2038 {
2039 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
2040 		return 0;
2041 	return call_int_hook(path_link, old_dentry, new_dir, new_dentry);
2042 }
2043 
2044 /**
2045  * security_path_rename() - Check if renaming a file is allowed
2046  * @old_dir: parent directory of the old file
2047  * @old_dentry: the old file
2048  * @new_dir: parent directory of the new file
2049  * @new_dentry: the new file
2050  * @flags: flags
2051  *
2052  * Check for permission to rename a file or directory.
2053  *
2054  * Return: Returns 0 if permission is granted.
2055  */
security_path_rename(const struct path * old_dir,struct dentry * old_dentry,const struct path * new_dir,struct dentry * new_dentry,unsigned int flags)2056 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
2057 			 const struct path *new_dir, struct dentry *new_dentry,
2058 			 unsigned int flags)
2059 {
2060 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2061 		     (d_is_positive(new_dentry) &&
2062 		      IS_PRIVATE(d_backing_inode(new_dentry)))))
2063 		return 0;
2064 
2065 	return call_int_hook(path_rename, old_dir, old_dentry, new_dir,
2066 			     new_dentry, flags);
2067 }
2068 EXPORT_SYMBOL(security_path_rename);
2069 
2070 /**
2071  * security_path_truncate() - Check if truncating a file is allowed
2072  * @path: file
2073  *
2074  * Check permission before truncating the file indicated by path.  Note that
2075  * truncation permissions may also be checked based on already opened files,
2076  * using the security_file_truncate() hook.
2077  *
2078  * Return: Returns 0 if permission is granted.
2079  */
security_path_truncate(const struct path * path)2080 int security_path_truncate(const struct path *path)
2081 {
2082 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2083 		return 0;
2084 	return call_int_hook(path_truncate, path);
2085 }
2086 
2087 /**
2088  * security_path_chmod() - Check if changing the file's mode is allowed
2089  * @path: file
2090  * @mode: new mode
2091  *
2092  * Check for permission to change a mode of the file @path. The new mode is
2093  * specified in @mode which is a bitmask of constants from
2094  * <include/uapi/linux/stat.h>.
2095  *
2096  * Return: Returns 0 if permission is granted.
2097  */
security_path_chmod(const struct path * path,umode_t mode)2098 int security_path_chmod(const struct path *path, umode_t mode)
2099 {
2100 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2101 		return 0;
2102 	return call_int_hook(path_chmod, path, mode);
2103 }
2104 
2105 /**
2106  * security_path_chown() - Check if changing the file's owner/group is allowed
2107  * @path: file
2108  * @uid: file owner
2109  * @gid: file group
2110  *
2111  * Check for permission to change owner/group of a file or directory.
2112  *
2113  * Return: Returns 0 if permission is granted.
2114  */
security_path_chown(const struct path * path,kuid_t uid,kgid_t gid)2115 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
2116 {
2117 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2118 		return 0;
2119 	return call_int_hook(path_chown, path, uid, gid);
2120 }
2121 
2122 /**
2123  * security_path_chroot() - Check if changing the root directory is allowed
2124  * @path: directory
2125  *
2126  * Check for permission to change root directory.
2127  *
2128  * Return: Returns 0 if permission is granted.
2129  */
security_path_chroot(const struct path * path)2130 int security_path_chroot(const struct path *path)
2131 {
2132 	return call_int_hook(path_chroot, path);
2133 }
2134 #endif /* CONFIG_SECURITY_PATH */
2135 
2136 /**
2137  * security_inode_create() - Check if creating a file is allowed
2138  * @dir: the parent directory
2139  * @dentry: the file being created
2140  * @mode: requested file mode
2141  *
2142  * Check permission to create a regular file.
2143  *
2144  * Return: Returns 0 if permission is granted.
2145  */
security_inode_create(struct inode * dir,struct dentry * dentry,umode_t mode)2146 int security_inode_create(struct inode *dir, struct dentry *dentry,
2147 			  umode_t mode)
2148 {
2149 	if (unlikely(IS_PRIVATE(dir)))
2150 		return 0;
2151 	return call_int_hook(inode_create, dir, dentry, mode);
2152 }
2153 EXPORT_SYMBOL_GPL(security_inode_create);
2154 
2155 /**
2156  * security_inode_post_create_tmpfile() - Update inode security of new tmpfile
2157  * @idmap: idmap of the mount
2158  * @inode: inode of the new tmpfile
2159  *
2160  * Update inode security data after a tmpfile has been created.
2161  */
security_inode_post_create_tmpfile(struct mnt_idmap * idmap,struct inode * inode)2162 void security_inode_post_create_tmpfile(struct mnt_idmap *idmap,
2163 					struct inode *inode)
2164 {
2165 	if (unlikely(IS_PRIVATE(inode)))
2166 		return;
2167 	call_void_hook(inode_post_create_tmpfile, idmap, inode);
2168 }
2169 
2170 /**
2171  * security_inode_link() - Check if creating a hard link is allowed
2172  * @old_dentry: existing file
2173  * @dir: new parent directory
2174  * @new_dentry: new link
2175  *
2176  * Check permission before creating a new hard link to a file.
2177  *
2178  * Return: Returns 0 if permission is granted.
2179  */
security_inode_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry)2180 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
2181 			struct dentry *new_dentry)
2182 {
2183 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
2184 		return 0;
2185 	return call_int_hook(inode_link, old_dentry, dir, new_dentry);
2186 }
2187 
2188 /**
2189  * security_inode_unlink() - Check if removing a hard link is allowed
2190  * @dir: parent directory
2191  * @dentry: file
2192  *
2193  * Check the permission to remove a hard link to a file.
2194  *
2195  * Return: Returns 0 if permission is granted.
2196  */
security_inode_unlink(struct inode * dir,struct dentry * dentry)2197 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
2198 {
2199 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2200 		return 0;
2201 	return call_int_hook(inode_unlink, dir, dentry);
2202 }
2203 
2204 /**
2205  * security_inode_symlink() - Check if creating a symbolic link is allowed
2206  * @dir: parent directory
2207  * @dentry: symbolic link
2208  * @old_name: existing filename
2209  *
2210  * Check the permission to create a symbolic link to a file.
2211  *
2212  * Return: Returns 0 if permission is granted.
2213  */
security_inode_symlink(struct inode * dir,struct dentry * dentry,const char * old_name)2214 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
2215 			   const char *old_name)
2216 {
2217 	if (unlikely(IS_PRIVATE(dir)))
2218 		return 0;
2219 	return call_int_hook(inode_symlink, dir, dentry, old_name);
2220 }
2221 
2222 /**
2223  * security_inode_mkdir() - Check if creating a new directory is allowed
2224  * @dir: parent directory
2225  * @dentry: new directory
2226  * @mode: new directory mode
2227  *
2228  * Check permissions to create a new directory in the existing directory
2229  * associated with inode structure @dir.
2230  *
2231  * Return: Returns 0 if permission is granted.
2232  */
security_inode_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)2233 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2234 {
2235 	if (unlikely(IS_PRIVATE(dir)))
2236 		return 0;
2237 	return call_int_hook(inode_mkdir, dir, dentry, mode);
2238 }
2239 EXPORT_SYMBOL_GPL(security_inode_mkdir);
2240 
2241 /**
2242  * security_inode_rmdir() - Check if removing a directory is allowed
2243  * @dir: parent directory
2244  * @dentry: directory to be removed
2245  *
2246  * Check the permission to remove a directory.
2247  *
2248  * Return: Returns 0 if permission is granted.
2249  */
security_inode_rmdir(struct inode * dir,struct dentry * dentry)2250 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
2251 {
2252 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2253 		return 0;
2254 	return call_int_hook(inode_rmdir, dir, dentry);
2255 }
2256 
2257 /**
2258  * security_inode_mknod() - Check if creating a special file is allowed
2259  * @dir: parent directory
2260  * @dentry: new file
2261  * @mode: new file mode
2262  * @dev: device number
2263  *
2264  * Check permissions when creating a special file (or a socket or a fifo file
2265  * created via the mknod system call).  Note that if mknod operation is being
2266  * done for a regular file, then the create hook will be called and not this
2267  * hook.
2268  *
2269  * Return: Returns 0 if permission is granted.
2270  */
security_inode_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)2271 int security_inode_mknod(struct inode *dir, struct dentry *dentry,
2272 			 umode_t mode, dev_t dev)
2273 {
2274 	if (unlikely(IS_PRIVATE(dir)))
2275 		return 0;
2276 	return call_int_hook(inode_mknod, dir, dentry, mode, dev);
2277 }
2278 
2279 /**
2280  * security_inode_rename() - Check if renaming a file is allowed
2281  * @old_dir: parent directory of the old file
2282  * @old_dentry: the old file
2283  * @new_dir: parent directory of the new file
2284  * @new_dentry: the new file
2285  * @flags: flags
2286  *
2287  * Check for permission to rename a file or directory.
2288  *
2289  * Return: Returns 0 if permission is granted.
2290  */
security_inode_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)2291 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
2292 			  struct inode *new_dir, struct dentry *new_dentry,
2293 			  unsigned int flags)
2294 {
2295 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2296 		     (d_is_positive(new_dentry) &&
2297 		      IS_PRIVATE(d_backing_inode(new_dentry)))))
2298 		return 0;
2299 
2300 	if (flags & RENAME_EXCHANGE) {
2301 		int err = call_int_hook(inode_rename, new_dir, new_dentry,
2302 					old_dir, old_dentry);
2303 		if (err)
2304 			return err;
2305 	}
2306 
2307 	return call_int_hook(inode_rename, old_dir, old_dentry,
2308 			     new_dir, new_dentry);
2309 }
2310 
2311 /**
2312  * security_inode_readlink() - Check if reading a symbolic link is allowed
2313  * @dentry: link
2314  *
2315  * Check the permission to read the symbolic link.
2316  *
2317  * Return: Returns 0 if permission is granted.
2318  */
security_inode_readlink(struct dentry * dentry)2319 int security_inode_readlink(struct dentry *dentry)
2320 {
2321 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2322 		return 0;
2323 	return call_int_hook(inode_readlink, dentry);
2324 }
2325 
2326 /**
2327  * security_inode_follow_link() - Check if following a symbolic link is allowed
2328  * @dentry: link dentry
2329  * @inode: link inode
2330  * @rcu: true if in RCU-walk mode
2331  *
2332  * Check permission to follow a symbolic link when looking up a pathname.  If
2333  * @rcu is true, @inode is not stable.
2334  *
2335  * Return: Returns 0 if permission is granted.
2336  */
security_inode_follow_link(struct dentry * dentry,struct inode * inode,bool rcu)2337 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
2338 			       bool rcu)
2339 {
2340 	if (unlikely(IS_PRIVATE(inode)))
2341 		return 0;
2342 	return call_int_hook(inode_follow_link, dentry, inode, rcu);
2343 }
2344 
2345 /**
2346  * security_inode_permission() - Check if accessing an inode is allowed
2347  * @inode: inode
2348  * @mask: access mask
2349  *
2350  * Check permission before accessing an inode.  This hook is called by the
2351  * existing Linux permission function, so a security module can use it to
2352  * provide additional checking for existing Linux permission checks.  Notice
2353  * that this hook is called when a file is opened (as well as many other
2354  * operations), whereas the file_security_ops permission hook is called when
2355  * the actual read/write operations are performed.
2356  *
2357  * Return: Returns 0 if permission is granted.
2358  */
security_inode_permission(struct inode * inode,int mask)2359 int security_inode_permission(struct inode *inode, int mask)
2360 {
2361 	if (unlikely(IS_PRIVATE(inode)))
2362 		return 0;
2363 	return call_int_hook(inode_permission, inode, mask);
2364 }
2365 
2366 /**
2367  * security_inode_setattr() - Check if setting file attributes is allowed
2368  * @idmap: idmap of the mount
2369  * @dentry: file
2370  * @attr: new attributes
2371  *
2372  * Check permission before setting file attributes.  Note that the kernel call
2373  * to notify_change is performed from several locations, whenever file
2374  * attributes change (such as when a file is truncated, chown/chmod operations,
2375  * transferring disk quotas, etc).
2376  *
2377  * Return: Returns 0 if permission is granted.
2378  */
security_inode_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)2379 int security_inode_setattr(struct mnt_idmap *idmap,
2380 			   struct dentry *dentry, struct iattr *attr)
2381 {
2382 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2383 		return 0;
2384 	return call_int_hook(inode_setattr, idmap, dentry, attr);
2385 }
2386 EXPORT_SYMBOL_GPL(security_inode_setattr);
2387 
2388 /**
2389  * security_inode_post_setattr() - Update the inode after a setattr operation
2390  * @idmap: idmap of the mount
2391  * @dentry: file
2392  * @ia_valid: file attributes set
2393  *
2394  * Update inode security field after successful setting file attributes.
2395  */
security_inode_post_setattr(struct mnt_idmap * idmap,struct dentry * dentry,int ia_valid)2396 void security_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
2397 				 int ia_valid)
2398 {
2399 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2400 		return;
2401 	call_void_hook(inode_post_setattr, idmap, dentry, ia_valid);
2402 }
2403 
2404 /**
2405  * security_inode_getattr() - Check if getting file attributes is allowed
2406  * @path: file
2407  *
2408  * Check permission before obtaining file attributes.
2409  *
2410  * Return: Returns 0 if permission is granted.
2411  */
security_inode_getattr(const struct path * path)2412 int security_inode_getattr(const struct path *path)
2413 {
2414 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2415 		return 0;
2416 	return call_int_hook(inode_getattr, path);
2417 }
2418 
2419 /**
2420  * security_inode_setxattr() - Check if setting file xattrs is allowed
2421  * @idmap: idmap of the mount
2422  * @dentry: file
2423  * @name: xattr name
2424  * @value: xattr value
2425  * @size: size of xattr value
2426  * @flags: flags
2427  *
2428  * This hook performs the desired permission checks before setting the extended
2429  * attributes (xattrs) on @dentry.  It is important to note that we have some
2430  * additional logic before the main LSM implementation calls to detect if we
2431  * need to perform an additional capability check at the LSM layer.
2432  *
2433  * Normally we enforce a capability check prior to executing the various LSM
2434  * hook implementations, but if a LSM wants to avoid this capability check,
2435  * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2436  * xattrs that it wants to avoid the capability check, leaving the LSM fully
2437  * responsible for enforcing the access control for the specific xattr.  If all
2438  * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2439  * or return a 0 (the default return value), the capability check is still
2440  * performed.  If no 'inode_xattr_skipcap' hooks are registered the capability
2441  * check is performed.
2442  *
2443  * Return: Returns 0 if permission is granted.
2444  */
security_inode_setxattr(struct mnt_idmap * idmap,struct dentry * dentry,const char * name,const void * value,size_t size,int flags)2445 int security_inode_setxattr(struct mnt_idmap *idmap,
2446 			    struct dentry *dentry, const char *name,
2447 			    const void *value, size_t size, int flags)
2448 {
2449 	int rc;
2450 
2451 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2452 		return 0;
2453 
2454 	/* enforce the capability checks at the lsm layer, if needed */
2455 	if (!call_int_hook(inode_xattr_skipcap, name)) {
2456 		rc = cap_inode_setxattr(dentry, name, value, size, flags);
2457 		if (rc)
2458 			return rc;
2459 	}
2460 
2461 	return call_int_hook(inode_setxattr, idmap, dentry, name, value, size,
2462 			     flags);
2463 }
2464 
2465 /**
2466  * security_inode_set_acl() - Check if setting posix acls is allowed
2467  * @idmap: idmap of the mount
2468  * @dentry: file
2469  * @acl_name: acl name
2470  * @kacl: acl struct
2471  *
2472  * Check permission before setting posix acls, the posix acls in @kacl are
2473  * identified by @acl_name.
2474  *
2475  * Return: Returns 0 if permission is granted.
2476  */
security_inode_set_acl(struct mnt_idmap * idmap,struct dentry * dentry,const char * acl_name,struct posix_acl * kacl)2477 int security_inode_set_acl(struct mnt_idmap *idmap,
2478 			   struct dentry *dentry, const char *acl_name,
2479 			   struct posix_acl *kacl)
2480 {
2481 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2482 		return 0;
2483 	return call_int_hook(inode_set_acl, idmap, dentry, acl_name, kacl);
2484 }
2485 
2486 /**
2487  * security_inode_post_set_acl() - Update inode security from posix acls set
2488  * @dentry: file
2489  * @acl_name: acl name
2490  * @kacl: acl struct
2491  *
2492  * Update inode security data after successfully setting posix acls on @dentry.
2493  * The posix acls in @kacl are identified by @acl_name.
2494  */
security_inode_post_set_acl(struct dentry * dentry,const char * acl_name,struct posix_acl * kacl)2495 void security_inode_post_set_acl(struct dentry *dentry, const char *acl_name,
2496 				 struct posix_acl *kacl)
2497 {
2498 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2499 		return;
2500 	call_void_hook(inode_post_set_acl, dentry, acl_name, kacl);
2501 }
2502 
2503 /**
2504  * security_inode_get_acl() - Check if reading posix acls is allowed
2505  * @idmap: idmap of the mount
2506  * @dentry: file
2507  * @acl_name: acl name
2508  *
2509  * Check permission before getting osix acls, the posix acls are identified by
2510  * @acl_name.
2511  *
2512  * Return: Returns 0 if permission is granted.
2513  */
security_inode_get_acl(struct mnt_idmap * idmap,struct dentry * dentry,const char * acl_name)2514 int security_inode_get_acl(struct mnt_idmap *idmap,
2515 			   struct dentry *dentry, const char *acl_name)
2516 {
2517 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2518 		return 0;
2519 	return call_int_hook(inode_get_acl, idmap, dentry, acl_name);
2520 }
2521 
2522 /**
2523  * security_inode_remove_acl() - Check if removing a posix acl is allowed
2524  * @idmap: idmap of the mount
2525  * @dentry: file
2526  * @acl_name: acl name
2527  *
2528  * Check permission before removing posix acls, the posix acls are identified
2529  * by @acl_name.
2530  *
2531  * Return: Returns 0 if permission is granted.
2532  */
security_inode_remove_acl(struct mnt_idmap * idmap,struct dentry * dentry,const char * acl_name)2533 int security_inode_remove_acl(struct mnt_idmap *idmap,
2534 			      struct dentry *dentry, const char *acl_name)
2535 {
2536 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2537 		return 0;
2538 	return call_int_hook(inode_remove_acl, idmap, dentry, acl_name);
2539 }
2540 
2541 /**
2542  * security_inode_post_remove_acl() - Update inode security after rm posix acls
2543  * @idmap: idmap of the mount
2544  * @dentry: file
2545  * @acl_name: acl name
2546  *
2547  * Update inode security data after successfully removing posix acls on
2548  * @dentry in @idmap. The posix acls are identified by @acl_name.
2549  */
security_inode_post_remove_acl(struct mnt_idmap * idmap,struct dentry * dentry,const char * acl_name)2550 void security_inode_post_remove_acl(struct mnt_idmap *idmap,
2551 				    struct dentry *dentry, const char *acl_name)
2552 {
2553 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2554 		return;
2555 	call_void_hook(inode_post_remove_acl, idmap, dentry, acl_name);
2556 }
2557 
2558 /**
2559  * security_inode_post_setxattr() - Update the inode after a setxattr operation
2560  * @dentry: file
2561  * @name: xattr name
2562  * @value: xattr value
2563  * @size: xattr value size
2564  * @flags: flags
2565  *
2566  * Update inode security field after successful setxattr operation.
2567  */
security_inode_post_setxattr(struct dentry * dentry,const char * name,const void * value,size_t size,int flags)2568 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
2569 				  const void *value, size_t size, int flags)
2570 {
2571 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2572 		return;
2573 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
2574 }
2575 
2576 /**
2577  * security_inode_getxattr() - Check if xattr access is allowed
2578  * @dentry: file
2579  * @name: xattr name
2580  *
2581  * Check permission before obtaining the extended attributes identified by
2582  * @name for @dentry.
2583  *
2584  * Return: Returns 0 if permission is granted.
2585  */
security_inode_getxattr(struct dentry * dentry,const char * name)2586 int security_inode_getxattr(struct dentry *dentry, const char *name)
2587 {
2588 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2589 		return 0;
2590 	return call_int_hook(inode_getxattr, dentry, name);
2591 }
2592 
2593 /**
2594  * security_inode_listxattr() - Check if listing xattrs is allowed
2595  * @dentry: file
2596  *
2597  * Check permission before obtaining the list of extended attribute names for
2598  * @dentry.
2599  *
2600  * Return: Returns 0 if permission is granted.
2601  */
security_inode_listxattr(struct dentry * dentry)2602 int security_inode_listxattr(struct dentry *dentry)
2603 {
2604 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2605 		return 0;
2606 	return call_int_hook(inode_listxattr, dentry);
2607 }
2608 
2609 /**
2610  * security_inode_removexattr() - Check if removing an xattr is allowed
2611  * @idmap: idmap of the mount
2612  * @dentry: file
2613  * @name: xattr name
2614  *
2615  * This hook performs the desired permission checks before setting the extended
2616  * attributes (xattrs) on @dentry.  It is important to note that we have some
2617  * additional logic before the main LSM implementation calls to detect if we
2618  * need to perform an additional capability check at the LSM layer.
2619  *
2620  * Normally we enforce a capability check prior to executing the various LSM
2621  * hook implementations, but if a LSM wants to avoid this capability check,
2622  * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2623  * xattrs that it wants to avoid the capability check, leaving the LSM fully
2624  * responsible for enforcing the access control for the specific xattr.  If all
2625  * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2626  * or return a 0 (the default return value), the capability check is still
2627  * performed.  If no 'inode_xattr_skipcap' hooks are registered the capability
2628  * check is performed.
2629  *
2630  * Return: Returns 0 if permission is granted.
2631  */
security_inode_removexattr(struct mnt_idmap * idmap,struct dentry * dentry,const char * name)2632 int security_inode_removexattr(struct mnt_idmap *idmap,
2633 			       struct dentry *dentry, const char *name)
2634 {
2635 	int rc;
2636 
2637 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2638 		return 0;
2639 
2640 	/* enforce the capability checks at the lsm layer, if needed */
2641 	if (!call_int_hook(inode_xattr_skipcap, name)) {
2642 		rc = cap_inode_removexattr(idmap, dentry, name);
2643 		if (rc)
2644 			return rc;
2645 	}
2646 
2647 	return call_int_hook(inode_removexattr, idmap, dentry, name);
2648 }
2649 
2650 /**
2651  * security_inode_post_removexattr() - Update the inode after a removexattr op
2652  * @dentry: file
2653  * @name: xattr name
2654  *
2655  * Update the inode after a successful removexattr operation.
2656  */
security_inode_post_removexattr(struct dentry * dentry,const char * name)2657 void security_inode_post_removexattr(struct dentry *dentry, const char *name)
2658 {
2659 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2660 		return;
2661 	call_void_hook(inode_post_removexattr, dentry, name);
2662 }
2663 
2664 /**
2665  * security_inode_file_setattr() - check if setting fsxattr is allowed
2666  * @dentry: file to set filesystem extended attributes on
2667  * @fa: extended attributes to set on the inode
2668  *
2669  * Called when file_setattr() syscall or FS_IOC_FSSETXATTR ioctl() is called on
2670  * inode
2671  *
2672  * Return: Returns 0 if permission is granted.
2673  */
security_inode_file_setattr(struct dentry * dentry,struct file_kattr * fa)2674 int security_inode_file_setattr(struct dentry *dentry, struct file_kattr *fa)
2675 {
2676 	return call_int_hook(inode_file_setattr, dentry, fa);
2677 }
2678 
2679 /**
2680  * security_inode_file_getattr() - check if retrieving fsxattr is allowed
2681  * @dentry: file to retrieve filesystem extended attributes from
2682  * @fa: extended attributes to get
2683  *
2684  * Called when file_getattr() syscall or FS_IOC_FSGETXATTR ioctl() is called on
2685  * inode
2686  *
2687  * Return: Returns 0 if permission is granted.
2688  */
security_inode_file_getattr(struct dentry * dentry,struct file_kattr * fa)2689 int security_inode_file_getattr(struct dentry *dentry, struct file_kattr *fa)
2690 {
2691 	return call_int_hook(inode_file_getattr, dentry, fa);
2692 }
2693 
2694 /**
2695  * security_inode_need_killpriv() - Check if security_inode_killpriv() required
2696  * @dentry: associated dentry
2697  *
2698  * Called when an inode has been changed to determine if
2699  * security_inode_killpriv() should be called.
2700  *
2701  * Return: Return <0 on error to abort the inode change operation, return 0 if
2702  *         security_inode_killpriv() does not need to be called, return >0 if
2703  *         security_inode_killpriv() does need to be called.
2704  */
security_inode_need_killpriv(struct dentry * dentry)2705 int security_inode_need_killpriv(struct dentry *dentry)
2706 {
2707 	return call_int_hook(inode_need_killpriv, dentry);
2708 }
2709 
2710 /**
2711  * security_inode_killpriv() - The setuid bit is removed, update LSM state
2712  * @idmap: idmap of the mount
2713  * @dentry: associated dentry
2714  *
2715  * The @dentry's setuid bit is being removed.  Remove similar security labels.
2716  * Called with the dentry->d_inode->i_mutex held.
2717  *
2718  * Return: Return 0 on success.  If error is returned, then the operation
2719  *         causing setuid bit removal is failed.
2720  */
security_inode_killpriv(struct mnt_idmap * idmap,struct dentry * dentry)2721 int security_inode_killpriv(struct mnt_idmap *idmap,
2722 			    struct dentry *dentry)
2723 {
2724 	return call_int_hook(inode_killpriv, idmap, dentry);
2725 }
2726 
2727 /**
2728  * security_inode_getsecurity() - Get the xattr security label of an inode
2729  * @idmap: idmap of the mount
2730  * @inode: inode
2731  * @name: xattr name
2732  * @buffer: security label buffer
2733  * @alloc: allocation flag
2734  *
2735  * Retrieve a copy of the extended attribute representation of the security
2736  * label associated with @name for @inode via @buffer.  Note that @name is the
2737  * remainder of the attribute name after the security prefix has been removed.
2738  * @alloc is used to specify if the call should return a value via the buffer
2739  * or just the value length.
2740  *
2741  * Return: Returns size of buffer on success.
2742  */
security_inode_getsecurity(struct mnt_idmap * idmap,struct inode * inode,const char * name,void ** buffer,bool alloc)2743 int security_inode_getsecurity(struct mnt_idmap *idmap,
2744 			       struct inode *inode, const char *name,
2745 			       void **buffer, bool alloc)
2746 {
2747 	if (unlikely(IS_PRIVATE(inode)))
2748 		return LSM_RET_DEFAULT(inode_getsecurity);
2749 
2750 	return call_int_hook(inode_getsecurity, idmap, inode, name, buffer,
2751 			     alloc);
2752 }
2753 
2754 /**
2755  * security_inode_setsecurity() - Set the xattr security label of an inode
2756  * @inode: inode
2757  * @name: xattr name
2758  * @value: security label
2759  * @size: length of security label
2760  * @flags: flags
2761  *
2762  * Set the security label associated with @name for @inode from the extended
2763  * attribute value @value.  @size indicates the size of the @value in bytes.
2764  * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the
2765  * remainder of the attribute name after the security. prefix has been removed.
2766  *
2767  * Return: Returns 0 on success.
2768  */
security_inode_setsecurity(struct inode * inode,const char * name,const void * value,size_t size,int flags)2769 int security_inode_setsecurity(struct inode *inode, const char *name,
2770 			       const void *value, size_t size, int flags)
2771 {
2772 	if (unlikely(IS_PRIVATE(inode)))
2773 		return LSM_RET_DEFAULT(inode_setsecurity);
2774 
2775 	return call_int_hook(inode_setsecurity, inode, name, value, size,
2776 			     flags);
2777 }
2778 
2779 /**
2780  * security_inode_listsecurity() - List the xattr security label names
2781  * @inode: inode
2782  * @buffer: buffer
2783  * @buffer_size: size of buffer
2784  *
2785  * Copy the extended attribute names for the security labels associated with
2786  * @inode into @buffer.  The maximum size of @buffer is specified by
2787  * @buffer_size.  @buffer may be NULL to request the size of the buffer
2788  * required.
2789  *
2790  * Return: Returns number of bytes used/required on success.
2791  */
security_inode_listsecurity(struct inode * inode,char * buffer,size_t buffer_size)2792 int security_inode_listsecurity(struct inode *inode,
2793 				char *buffer, size_t buffer_size)
2794 {
2795 	if (unlikely(IS_PRIVATE(inode)))
2796 		return 0;
2797 	return call_int_hook(inode_listsecurity, inode, buffer, buffer_size);
2798 }
2799 EXPORT_SYMBOL(security_inode_listsecurity);
2800 
2801 /**
2802  * security_inode_getlsmprop() - Get an inode's LSM data
2803  * @inode: inode
2804  * @prop: lsm specific information to return
2805  *
2806  * Get the lsm specific information associated with the node.
2807  */
security_inode_getlsmprop(struct inode * inode,struct lsm_prop * prop)2808 void security_inode_getlsmprop(struct inode *inode, struct lsm_prop *prop)
2809 {
2810 	call_void_hook(inode_getlsmprop, inode, prop);
2811 }
2812 
2813 /**
2814  * security_inode_copy_up() - Create new creds for an overlayfs copy-up op
2815  * @src: union dentry of copy-up file
2816  * @new: newly created creds
2817  *
2818  * A file is about to be copied up from lower layer to upper layer of overlay
2819  * filesystem. Security module can prepare a set of new creds and modify as
2820  * need be and return new creds. Caller will switch to new creds temporarily to
2821  * create new file and release newly allocated creds.
2822  *
2823  * Return: Returns 0 on success or a negative error code on error.
2824  */
security_inode_copy_up(struct dentry * src,struct cred ** new)2825 int security_inode_copy_up(struct dentry *src, struct cred **new)
2826 {
2827 	return call_int_hook(inode_copy_up, src, new);
2828 }
2829 EXPORT_SYMBOL(security_inode_copy_up);
2830 
2831 /**
2832  * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op
2833  * @src: union dentry of copy-up file
2834  * @name: xattr name
2835  *
2836  * Filter the xattrs being copied up when a unioned file is copied up from a
2837  * lower layer to the union/overlay layer.   The caller is responsible for
2838  * reading and writing the xattrs, this hook is merely a filter.
2839  *
2840  * Return: Returns 0 to accept the xattr, -ECANCELED to discard the xattr,
2841  *         -EOPNOTSUPP if the security module does not know about attribute,
2842  *         or a negative error code to abort the copy up.
2843  */
security_inode_copy_up_xattr(struct dentry * src,const char * name)2844 int security_inode_copy_up_xattr(struct dentry *src, const char *name)
2845 {
2846 	int rc;
2847 
2848 	rc = call_int_hook(inode_copy_up_xattr, src, name);
2849 	if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
2850 		return rc;
2851 
2852 	return LSM_RET_DEFAULT(inode_copy_up_xattr);
2853 }
2854 EXPORT_SYMBOL(security_inode_copy_up_xattr);
2855 
2856 /**
2857  * security_inode_setintegrity() - Set the inode's integrity data
2858  * @inode: inode
2859  * @type: type of integrity, e.g. hash digest, signature, etc
2860  * @value: the integrity value
2861  * @size: size of the integrity value
2862  *
2863  * Register a verified integrity measurement of a inode with LSMs.
2864  * LSMs should free the previously saved data if @value is NULL.
2865  *
2866  * Return: Returns 0 on success, negative values on failure.
2867  */
security_inode_setintegrity(const struct inode * inode,enum lsm_integrity_type type,const void * value,size_t size)2868 int security_inode_setintegrity(const struct inode *inode,
2869 				enum lsm_integrity_type type, const void *value,
2870 				size_t size)
2871 {
2872 	return call_int_hook(inode_setintegrity, inode, type, value, size);
2873 }
2874 EXPORT_SYMBOL(security_inode_setintegrity);
2875 
2876 /**
2877  * security_kernfs_init_security() - Init LSM context for a kernfs node
2878  * @kn_dir: parent kernfs node
2879  * @kn: the kernfs node to initialize
2880  *
2881  * Initialize the security context of a newly created kernfs node based on its
2882  * own and its parent's attributes.
2883  *
2884  * Return: Returns 0 if permission is granted.
2885  */
security_kernfs_init_security(struct kernfs_node * kn_dir,struct kernfs_node * kn)2886 int security_kernfs_init_security(struct kernfs_node *kn_dir,
2887 				  struct kernfs_node *kn)
2888 {
2889 	return call_int_hook(kernfs_init_security, kn_dir, kn);
2890 }
2891 
2892 /**
2893  * security_file_permission() - Check file permissions
2894  * @file: file
2895  * @mask: requested permissions
2896  *
2897  * Check file permissions before accessing an open file.  This hook is called
2898  * by various operations that read or write files.  A security module can use
2899  * this hook to perform additional checking on these operations, e.g. to
2900  * revalidate permissions on use to support privilege bracketing or policy
2901  * changes.  Notice that this hook is used when the actual read/write
2902  * operations are performed, whereas the inode_security_ops hook is called when
2903  * a file is opened (as well as many other operations).  Although this hook can
2904  * be used to revalidate permissions for various system call operations that
2905  * read or write files, it does not address the revalidation of permissions for
2906  * memory-mapped files.  Security modules must handle this separately if they
2907  * need such revalidation.
2908  *
2909  * Return: Returns 0 if permission is granted.
2910  */
security_file_permission(struct file * file,int mask)2911 int security_file_permission(struct file *file, int mask)
2912 {
2913 	return call_int_hook(file_permission, file, mask);
2914 }
2915 
2916 /**
2917  * security_file_alloc() - Allocate and init a file's LSM blob
2918  * @file: the file
2919  *
2920  * Allocate and attach a security structure to the file->f_security field.  The
2921  * security field is initialized to NULL when the structure is first created.
2922  *
2923  * Return: Return 0 if the hook is successful and permission is granted.
2924  */
security_file_alloc(struct file * file)2925 int security_file_alloc(struct file *file)
2926 {
2927 	int rc = lsm_file_alloc(file);
2928 
2929 	if (rc)
2930 		return rc;
2931 	rc = call_int_hook(file_alloc_security, file);
2932 	if (unlikely(rc))
2933 		security_file_free(file);
2934 	return rc;
2935 }
2936 
2937 /**
2938  * security_file_release() - Perform actions before releasing the file ref
2939  * @file: the file
2940  *
2941  * Perform actions before releasing the last reference to a file.
2942  */
security_file_release(struct file * file)2943 void security_file_release(struct file *file)
2944 {
2945 	call_void_hook(file_release, file);
2946 }
2947 
2948 /**
2949  * security_file_free() - Free a file's LSM blob
2950  * @file: the file
2951  *
2952  * Deallocate and free any security structures stored in file->f_security.
2953  */
security_file_free(struct file * file)2954 void security_file_free(struct file *file)
2955 {
2956 	void *blob;
2957 
2958 	call_void_hook(file_free_security, file);
2959 
2960 	blob = file->f_security;
2961 	if (blob) {
2962 		file->f_security = NULL;
2963 		kmem_cache_free(lsm_file_cache, blob);
2964 	}
2965 }
2966 
2967 /**
2968  * security_file_ioctl() - Check if an ioctl is allowed
2969  * @file: associated file
2970  * @cmd: ioctl cmd
2971  * @arg: ioctl arguments
2972  *
2973  * Check permission for an ioctl operation on @file.  Note that @arg sometimes
2974  * represents a user space pointer; in other cases, it may be a simple integer
2975  * value.  When @arg represents a user space pointer, it should never be used
2976  * by the security module.
2977  *
2978  * Return: Returns 0 if permission is granted.
2979  */
security_file_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2980 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2981 {
2982 	return call_int_hook(file_ioctl, file, cmd, arg);
2983 }
2984 EXPORT_SYMBOL_GPL(security_file_ioctl);
2985 
2986 /**
2987  * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode
2988  * @file: associated file
2989  * @cmd: ioctl cmd
2990  * @arg: ioctl arguments
2991  *
2992  * Compat version of security_file_ioctl() that correctly handles 32-bit
2993  * processes running on 64-bit kernels.
2994  *
2995  * Return: Returns 0 if permission is granted.
2996  */
security_file_ioctl_compat(struct file * file,unsigned int cmd,unsigned long arg)2997 int security_file_ioctl_compat(struct file *file, unsigned int cmd,
2998 			       unsigned long arg)
2999 {
3000 	return call_int_hook(file_ioctl_compat, file, cmd, arg);
3001 }
3002 EXPORT_SYMBOL_GPL(security_file_ioctl_compat);
3003 
mmap_prot(struct file * file,unsigned long prot)3004 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
3005 {
3006 	/*
3007 	 * Does we have PROT_READ and does the application expect
3008 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
3009 	 */
3010 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
3011 		return prot;
3012 	if (!(current->personality & READ_IMPLIES_EXEC))
3013 		return prot;
3014 	/*
3015 	 * if that's an anonymous mapping, let it.
3016 	 */
3017 	if (!file)
3018 		return prot | PROT_EXEC;
3019 	/*
3020 	 * ditto if it's not on noexec mount, except that on !MMU we need
3021 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
3022 	 */
3023 	if (!path_noexec(&file->f_path)) {
3024 #ifndef CONFIG_MMU
3025 		if (file->f_op->mmap_capabilities) {
3026 			unsigned caps = file->f_op->mmap_capabilities(file);
3027 			if (!(caps & NOMMU_MAP_EXEC))
3028 				return prot;
3029 		}
3030 #endif
3031 		return prot | PROT_EXEC;
3032 	}
3033 	/* anything on noexec mount won't get PROT_EXEC */
3034 	return prot;
3035 }
3036 
3037 /**
3038  * security_mmap_file() - Check if mmap'ing a file is allowed
3039  * @file: file
3040  * @prot: protection applied by the kernel
3041  * @flags: flags
3042  *
3043  * Check permissions for a mmap operation.  The @file may be NULL, e.g. if
3044  * mapping anonymous memory.
3045  *
3046  * Return: Returns 0 if permission is granted.
3047  */
security_mmap_file(struct file * file,unsigned long prot,unsigned long flags)3048 int security_mmap_file(struct file *file, unsigned long prot,
3049 		       unsigned long flags)
3050 {
3051 	return call_int_hook(mmap_file, file, prot, mmap_prot(file, prot),
3052 			     flags);
3053 }
3054 
3055 /**
3056  * security_mmap_addr() - Check if mmap'ing an address is allowed
3057  * @addr: address
3058  *
3059  * Check permissions for a mmap operation at @addr.
3060  *
3061  * Return: Returns 0 if permission is granted.
3062  */
security_mmap_addr(unsigned long addr)3063 int security_mmap_addr(unsigned long addr)
3064 {
3065 	return call_int_hook(mmap_addr, addr);
3066 }
3067 
3068 /**
3069  * security_file_mprotect() - Check if changing memory protections is allowed
3070  * @vma: memory region
3071  * @reqprot: application requested protection
3072  * @prot: protection applied by the kernel
3073  *
3074  * Check permissions before changing memory access permissions.
3075  *
3076  * Return: Returns 0 if permission is granted.
3077  */
security_file_mprotect(struct vm_area_struct * vma,unsigned long reqprot,unsigned long prot)3078 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
3079 			   unsigned long prot)
3080 {
3081 	return call_int_hook(file_mprotect, vma, reqprot, prot);
3082 }
3083 
3084 /**
3085  * security_file_lock() - Check if a file lock is allowed
3086  * @file: file
3087  * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK)
3088  *
3089  * Check permission before performing file locking operations.  Note the hook
3090  * mediates both flock and fcntl style locks.
3091  *
3092  * Return: Returns 0 if permission is granted.
3093  */
security_file_lock(struct file * file,unsigned int cmd)3094 int security_file_lock(struct file *file, unsigned int cmd)
3095 {
3096 	return call_int_hook(file_lock, file, cmd);
3097 }
3098 
3099 /**
3100  * security_file_fcntl() - Check if fcntl() op is allowed
3101  * @file: file
3102  * @cmd: fcntl command
3103  * @arg: command argument
3104  *
3105  * Check permission before allowing the file operation specified by @cmd from
3106  * being performed on the file @file.  Note that @arg sometimes represents a
3107  * user space pointer; in other cases, it may be a simple integer value.  When
3108  * @arg represents a user space pointer, it should never be used by the
3109  * security module.
3110  *
3111  * Return: Returns 0 if permission is granted.
3112  */
security_file_fcntl(struct file * file,unsigned int cmd,unsigned long arg)3113 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
3114 {
3115 	return call_int_hook(file_fcntl, file, cmd, arg);
3116 }
3117 
3118 /**
3119  * security_file_set_fowner() - Set the file owner info in the LSM blob
3120  * @file: the file
3121  *
3122  * Save owner security information (typically from current->security) in
3123  * file->f_security for later use by the send_sigiotask hook.
3124  *
3125  * This hook is called with file->f_owner.lock held.
3126  *
3127  * Return: Returns 0 on success.
3128  */
security_file_set_fowner(struct file * file)3129 void security_file_set_fowner(struct file *file)
3130 {
3131 	call_void_hook(file_set_fowner, file);
3132 }
3133 
3134 /**
3135  * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed
3136  * @tsk: target task
3137  * @fown: signal sender
3138  * @sig: signal to be sent, SIGIO is sent if 0
3139  *
3140  * Check permission for the file owner @fown to send SIGIO or SIGURG to the
3141  * process @tsk.  Note that this hook is sometimes called from interrupt.  Note
3142  * that the fown_struct, @fown, is never outside the context of a struct file,
3143  * so the file structure (and associated security information) can always be
3144  * obtained: container_of(fown, struct file, f_owner).
3145  *
3146  * Return: Returns 0 if permission is granted.
3147  */
security_file_send_sigiotask(struct task_struct * tsk,struct fown_struct * fown,int sig)3148 int security_file_send_sigiotask(struct task_struct *tsk,
3149 				 struct fown_struct *fown, int sig)
3150 {
3151 	return call_int_hook(file_send_sigiotask, tsk, fown, sig);
3152 }
3153 
3154 /**
3155  * security_file_receive() - Check if receiving a file via IPC is allowed
3156  * @file: file being received
3157  *
3158  * This hook allows security modules to control the ability of a process to
3159  * receive an open file descriptor via socket IPC.
3160  *
3161  * Return: Returns 0 if permission is granted.
3162  */
security_file_receive(struct file * file)3163 int security_file_receive(struct file *file)
3164 {
3165 	return call_int_hook(file_receive, file);
3166 }
3167 
3168 /**
3169  * security_file_open() - Save open() time state for late use by the LSM
3170  * @file:
3171  *
3172  * Save open-time permission checking state for later use upon file_permission,
3173  * and recheck access if anything has changed since inode_permission.
3174  *
3175  * We can check if a file is opened for execution (e.g. execve(2) call), either
3176  * directly or indirectly (e.g. ELF's ld.so) by checking file->f_flags &
3177  * __FMODE_EXEC .
3178  *
3179  * Return: Returns 0 if permission is granted.
3180  */
security_file_open(struct file * file)3181 int security_file_open(struct file *file)
3182 {
3183 	return call_int_hook(file_open, file);
3184 }
3185 
3186 /**
3187  * security_file_post_open() - Evaluate a file after it has been opened
3188  * @file: the file
3189  * @mask: access mask
3190  *
3191  * Evaluate an opened file and the access mask requested with open(). The hook
3192  * is useful for LSMs that require the file content to be available in order to
3193  * make decisions.
3194  *
3195  * Return: Returns 0 if permission is granted.
3196  */
security_file_post_open(struct file * file,int mask)3197 int security_file_post_open(struct file *file, int mask)
3198 {
3199 	return call_int_hook(file_post_open, file, mask);
3200 }
3201 EXPORT_SYMBOL_GPL(security_file_post_open);
3202 
3203 /**
3204  * security_file_truncate() - Check if truncating a file is allowed
3205  * @file: file
3206  *
3207  * Check permission before truncating a file, i.e. using ftruncate.  Note that
3208  * truncation permission may also be checked based on the path, using the
3209  * @path_truncate hook.
3210  *
3211  * Return: Returns 0 if permission is granted.
3212  */
security_file_truncate(struct file * file)3213 int security_file_truncate(struct file *file)
3214 {
3215 	return call_int_hook(file_truncate, file);
3216 }
3217 
3218 /**
3219  * security_task_alloc() - Allocate a task's LSM blob
3220  * @task: the task
3221  * @clone_flags: flags indicating what is being shared
3222  *
3223  * Handle allocation of task-related resources.
3224  *
3225  * Return: Returns a zero on success, negative values on failure.
3226  */
security_task_alloc(struct task_struct * task,u64 clone_flags)3227 int security_task_alloc(struct task_struct *task, u64 clone_flags)
3228 {
3229 	int rc = lsm_task_alloc(task);
3230 
3231 	if (rc)
3232 		return rc;
3233 	rc = call_int_hook(task_alloc, task, clone_flags);
3234 	if (unlikely(rc))
3235 		security_task_free(task);
3236 	return rc;
3237 }
3238 
3239 /**
3240  * security_task_free() - Free a task's LSM blob and related resources
3241  * @task: task
3242  *
3243  * Handle release of task-related resources.  Note that this can be called from
3244  * interrupt context.
3245  */
security_task_free(struct task_struct * task)3246 void security_task_free(struct task_struct *task)
3247 {
3248 	call_void_hook(task_free, task);
3249 
3250 	kfree(task->security);
3251 	task->security = NULL;
3252 }
3253 
3254 /**
3255  * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer
3256  * @cred: credentials
3257  * @gfp: gfp flags
3258  *
3259  * Only allocate sufficient memory and attach to @cred such that
3260  * cred_transfer() will not get ENOMEM.
3261  *
3262  * Return: Returns 0 on success, negative values on failure.
3263  */
security_cred_alloc_blank(struct cred * cred,gfp_t gfp)3264 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3265 {
3266 	int rc = lsm_cred_alloc(cred, gfp);
3267 
3268 	if (rc)
3269 		return rc;
3270 
3271 	rc = call_int_hook(cred_alloc_blank, cred, gfp);
3272 	if (unlikely(rc))
3273 		security_cred_free(cred);
3274 	return rc;
3275 }
3276 
3277 /**
3278  * security_cred_free() - Free the cred's LSM blob and associated resources
3279  * @cred: credentials
3280  *
3281  * Deallocate and clear the cred->security field in a set of credentials.
3282  */
security_cred_free(struct cred * cred)3283 void security_cred_free(struct cred *cred)
3284 {
3285 	/*
3286 	 * There is a failure case in prepare_creds() that
3287 	 * may result in a call here with ->security being NULL.
3288 	 */
3289 	if (unlikely(cred->security == NULL))
3290 		return;
3291 
3292 	call_void_hook(cred_free, cred);
3293 
3294 	kfree(cred->security);
3295 	cred->security = NULL;
3296 }
3297 
3298 /**
3299  * security_prepare_creds() - Prepare a new set of credentials
3300  * @new: new credentials
3301  * @old: original credentials
3302  * @gfp: gfp flags
3303  *
3304  * Prepare a new set of credentials by copying the data from the old set.
3305  *
3306  * Return: Returns 0 on success, negative values on failure.
3307  */
security_prepare_creds(struct cred * new,const struct cred * old,gfp_t gfp)3308 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
3309 {
3310 	int rc = lsm_cred_alloc(new, gfp);
3311 
3312 	if (rc)
3313 		return rc;
3314 
3315 	rc = call_int_hook(cred_prepare, new, old, gfp);
3316 	if (unlikely(rc))
3317 		security_cred_free(new);
3318 	return rc;
3319 }
3320 
3321 /**
3322  * security_transfer_creds() - Transfer creds
3323  * @new: target credentials
3324  * @old: original credentials
3325  *
3326  * Transfer data from original creds to new creds.
3327  */
security_transfer_creds(struct cred * new,const struct cred * old)3328 void security_transfer_creds(struct cred *new, const struct cred *old)
3329 {
3330 	call_void_hook(cred_transfer, new, old);
3331 }
3332 
3333 /**
3334  * security_cred_getsecid() - Get the secid from a set of credentials
3335  * @c: credentials
3336  * @secid: secid value
3337  *
3338  * Retrieve the security identifier of the cred structure @c.  In case of
3339  * failure, @secid will be set to zero.
3340  */
security_cred_getsecid(const struct cred * c,u32 * secid)3341 void security_cred_getsecid(const struct cred *c, u32 *secid)
3342 {
3343 	*secid = 0;
3344 	call_void_hook(cred_getsecid, c, secid);
3345 }
3346 EXPORT_SYMBOL(security_cred_getsecid);
3347 
3348 /**
3349  * security_cred_getlsmprop() - Get the LSM data from a set of credentials
3350  * @c: credentials
3351  * @prop: destination for the LSM data
3352  *
3353  * Retrieve the security data of the cred structure @c.  In case of
3354  * failure, @prop will be cleared.
3355  */
security_cred_getlsmprop(const struct cred * c,struct lsm_prop * prop)3356 void security_cred_getlsmprop(const struct cred *c, struct lsm_prop *prop)
3357 {
3358 	lsmprop_init(prop);
3359 	call_void_hook(cred_getlsmprop, c, prop);
3360 }
3361 EXPORT_SYMBOL(security_cred_getlsmprop);
3362 
3363 /**
3364  * security_kernel_act_as() - Set the kernel credentials to act as secid
3365  * @new: credentials
3366  * @secid: secid
3367  *
3368  * Set the credentials for a kernel service to act as (subjective context).
3369  * The current task must be the one that nominated @secid.
3370  *
3371  * Return: Returns 0 if successful.
3372  */
security_kernel_act_as(struct cred * new,u32 secid)3373 int security_kernel_act_as(struct cred *new, u32 secid)
3374 {
3375 	return call_int_hook(kernel_act_as, new, secid);
3376 }
3377 
3378 /**
3379  * security_kernel_create_files_as() - Set file creation context using an inode
3380  * @new: target credentials
3381  * @inode: reference inode
3382  *
3383  * Set the file creation context in a set of credentials to be the same as the
3384  * objective context of the specified inode.  The current task must be the one
3385  * that nominated @inode.
3386  *
3387  * Return: Returns 0 if successful.
3388  */
security_kernel_create_files_as(struct cred * new,struct inode * inode)3389 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
3390 {
3391 	return call_int_hook(kernel_create_files_as, new, inode);
3392 }
3393 
3394 /**
3395  * security_kernel_module_request() - Check if loading a module is allowed
3396  * @kmod_name: module name
3397  *
3398  * Ability to trigger the kernel to automatically upcall to userspace for
3399  * userspace to load a kernel module with the given name.
3400  *
3401  * Return: Returns 0 if successful.
3402  */
security_kernel_module_request(char * kmod_name)3403 int security_kernel_module_request(char *kmod_name)
3404 {
3405 	return call_int_hook(kernel_module_request, kmod_name);
3406 }
3407 
3408 /**
3409  * security_kernel_read_file() - Read a file specified by userspace
3410  * @file: file
3411  * @id: file identifier
3412  * @contents: trust if security_kernel_post_read_file() will be called
3413  *
3414  * Read a file specified by userspace.
3415  *
3416  * Return: Returns 0 if permission is granted.
3417  */
security_kernel_read_file(struct file * file,enum kernel_read_file_id id,bool contents)3418 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
3419 			      bool contents)
3420 {
3421 	return call_int_hook(kernel_read_file, file, id, contents);
3422 }
3423 EXPORT_SYMBOL_GPL(security_kernel_read_file);
3424 
3425 /**
3426  * security_kernel_post_read_file() - Read a file specified by userspace
3427  * @file: file
3428  * @buf: file contents
3429  * @size: size of file contents
3430  * @id: file identifier
3431  *
3432  * Read a file specified by userspace.  This must be paired with a prior call
3433  * to security_kernel_read_file() call that indicated this hook would also be
3434  * called, see security_kernel_read_file() for more information.
3435  *
3436  * Return: Returns 0 if permission is granted.
3437  */
security_kernel_post_read_file(struct file * file,char * buf,loff_t size,enum kernel_read_file_id id)3438 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
3439 				   enum kernel_read_file_id id)
3440 {
3441 	return call_int_hook(kernel_post_read_file, file, buf, size, id);
3442 }
3443 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
3444 
3445 /**
3446  * security_kernel_load_data() - Load data provided by userspace
3447  * @id: data identifier
3448  * @contents: true if security_kernel_post_load_data() will be called
3449  *
3450  * Load data provided by userspace.
3451  *
3452  * Return: Returns 0 if permission is granted.
3453  */
security_kernel_load_data(enum kernel_load_data_id id,bool contents)3454 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
3455 {
3456 	return call_int_hook(kernel_load_data, id, contents);
3457 }
3458 EXPORT_SYMBOL_GPL(security_kernel_load_data);
3459 
3460 /**
3461  * security_kernel_post_load_data() - Load userspace data from a non-file source
3462  * @buf: data
3463  * @size: size of data
3464  * @id: data identifier
3465  * @description: text description of data, specific to the id value
3466  *
3467  * Load data provided by a non-file source (usually userspace buffer).  This
3468  * must be paired with a prior security_kernel_load_data() call that indicated
3469  * this hook would also be called, see security_kernel_load_data() for more
3470  * information.
3471  *
3472  * Return: Returns 0 if permission is granted.
3473  */
security_kernel_post_load_data(char * buf,loff_t size,enum kernel_load_data_id id,char * description)3474 int security_kernel_post_load_data(char *buf, loff_t size,
3475 				   enum kernel_load_data_id id,
3476 				   char *description)
3477 {
3478 	return call_int_hook(kernel_post_load_data, buf, size, id, description);
3479 }
3480 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
3481 
3482 /**
3483  * security_task_fix_setuid() - Update LSM with new user id attributes
3484  * @new: updated credentials
3485  * @old: credentials being replaced
3486  * @flags: LSM_SETID_* flag values
3487  *
3488  * Update the module's state after setting one or more of the user identity
3489  * attributes of the current process.  The @flags parameter indicates which of
3490  * the set*uid system calls invoked this hook.  If @new is the set of
3491  * credentials that will be installed.  Modifications should be made to this
3492  * rather than to @current->cred.
3493  *
3494  * Return: Returns 0 on success.
3495  */
security_task_fix_setuid(struct cred * new,const struct cred * old,int flags)3496 int security_task_fix_setuid(struct cred *new, const struct cred *old,
3497 			     int flags)
3498 {
3499 	return call_int_hook(task_fix_setuid, new, old, flags);
3500 }
3501 
3502 /**
3503  * security_task_fix_setgid() - Update LSM with new group id attributes
3504  * @new: updated credentials
3505  * @old: credentials being replaced
3506  * @flags: LSM_SETID_* flag value
3507  *
3508  * Update the module's state after setting one or more of the group identity
3509  * attributes of the current process.  The @flags parameter indicates which of
3510  * the set*gid system calls invoked this hook.  @new is the set of credentials
3511  * that will be installed.  Modifications should be made to this rather than to
3512  * @current->cred.
3513  *
3514  * Return: Returns 0 on success.
3515  */
security_task_fix_setgid(struct cred * new,const struct cred * old,int flags)3516 int security_task_fix_setgid(struct cred *new, const struct cred *old,
3517 			     int flags)
3518 {
3519 	return call_int_hook(task_fix_setgid, new, old, flags);
3520 }
3521 
3522 /**
3523  * security_task_fix_setgroups() - Update LSM with new supplementary groups
3524  * @new: updated credentials
3525  * @old: credentials being replaced
3526  *
3527  * Update the module's state after setting the supplementary group identity
3528  * attributes of the current process.  @new is the set of credentials that will
3529  * be installed.  Modifications should be made to this rather than to
3530  * @current->cred.
3531  *
3532  * Return: Returns 0 on success.
3533  */
security_task_fix_setgroups(struct cred * new,const struct cred * old)3534 int security_task_fix_setgroups(struct cred *new, const struct cred *old)
3535 {
3536 	return call_int_hook(task_fix_setgroups, new, old);
3537 }
3538 
3539 /**
3540  * security_task_setpgid() - Check if setting the pgid is allowed
3541  * @p: task being modified
3542  * @pgid: new pgid
3543  *
3544  * Check permission before setting the process group identifier of the process
3545  * @p to @pgid.
3546  *
3547  * Return: Returns 0 if permission is granted.
3548  */
security_task_setpgid(struct task_struct * p,pid_t pgid)3549 int security_task_setpgid(struct task_struct *p, pid_t pgid)
3550 {
3551 	return call_int_hook(task_setpgid, p, pgid);
3552 }
3553 
3554 /**
3555  * security_task_getpgid() - Check if getting the pgid is allowed
3556  * @p: task
3557  *
3558  * Check permission before getting the process group identifier of the process
3559  * @p.
3560  *
3561  * Return: Returns 0 if permission is granted.
3562  */
security_task_getpgid(struct task_struct * p)3563 int security_task_getpgid(struct task_struct *p)
3564 {
3565 	return call_int_hook(task_getpgid, p);
3566 }
3567 
3568 /**
3569  * security_task_getsid() - Check if getting the session id is allowed
3570  * @p: task
3571  *
3572  * Check permission before getting the session identifier of the process @p.
3573  *
3574  * Return: Returns 0 if permission is granted.
3575  */
security_task_getsid(struct task_struct * p)3576 int security_task_getsid(struct task_struct *p)
3577 {
3578 	return call_int_hook(task_getsid, p);
3579 }
3580 
3581 /**
3582  * security_current_getlsmprop_subj() - Current task's subjective LSM data
3583  * @prop: lsm specific information
3584  *
3585  * Retrieve the subjective security identifier of the current task and return
3586  * it in @prop.
3587  */
security_current_getlsmprop_subj(struct lsm_prop * prop)3588 void security_current_getlsmprop_subj(struct lsm_prop *prop)
3589 {
3590 	lsmprop_init(prop);
3591 	call_void_hook(current_getlsmprop_subj, prop);
3592 }
3593 EXPORT_SYMBOL(security_current_getlsmprop_subj);
3594 
3595 /**
3596  * security_task_getlsmprop_obj() - Get a task's objective LSM data
3597  * @p: target task
3598  * @prop: lsm specific information
3599  *
3600  * Retrieve the objective security identifier of the task_struct in @p and
3601  * return it in @prop.
3602  */
security_task_getlsmprop_obj(struct task_struct * p,struct lsm_prop * prop)3603 void security_task_getlsmprop_obj(struct task_struct *p, struct lsm_prop *prop)
3604 {
3605 	lsmprop_init(prop);
3606 	call_void_hook(task_getlsmprop_obj, p, prop);
3607 }
3608 EXPORT_SYMBOL(security_task_getlsmprop_obj);
3609 
3610 /**
3611  * security_task_setnice() - Check if setting a task's nice value is allowed
3612  * @p: target task
3613  * @nice: nice value
3614  *
3615  * Check permission before setting the nice value of @p to @nice.
3616  *
3617  * Return: Returns 0 if permission is granted.
3618  */
security_task_setnice(struct task_struct * p,int nice)3619 int security_task_setnice(struct task_struct *p, int nice)
3620 {
3621 	return call_int_hook(task_setnice, p, nice);
3622 }
3623 
3624 /**
3625  * security_task_setioprio() - Check if setting a task's ioprio is allowed
3626  * @p: target task
3627  * @ioprio: ioprio value
3628  *
3629  * Check permission before setting the ioprio value of @p to @ioprio.
3630  *
3631  * Return: Returns 0 if permission is granted.
3632  */
security_task_setioprio(struct task_struct * p,int ioprio)3633 int security_task_setioprio(struct task_struct *p, int ioprio)
3634 {
3635 	return call_int_hook(task_setioprio, p, ioprio);
3636 }
3637 
3638 /**
3639  * security_task_getioprio() - Check if getting a task's ioprio is allowed
3640  * @p: task
3641  *
3642  * Check permission before getting the ioprio value of @p.
3643  *
3644  * Return: Returns 0 if permission is granted.
3645  */
security_task_getioprio(struct task_struct * p)3646 int security_task_getioprio(struct task_struct *p)
3647 {
3648 	return call_int_hook(task_getioprio, p);
3649 }
3650 
3651 /**
3652  * security_task_prlimit() - Check if get/setting resources limits is allowed
3653  * @cred: current task credentials
3654  * @tcred: target task credentials
3655  * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both
3656  *
3657  * Check permission before getting and/or setting the resource limits of
3658  * another task.
3659  *
3660  * Return: Returns 0 if permission is granted.
3661  */
security_task_prlimit(const struct cred * cred,const struct cred * tcred,unsigned int flags)3662 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
3663 			  unsigned int flags)
3664 {
3665 	return call_int_hook(task_prlimit, cred, tcred, flags);
3666 }
3667 
3668 /**
3669  * security_task_setrlimit() - Check if setting a new rlimit value is allowed
3670  * @p: target task's group leader
3671  * @resource: resource whose limit is being set
3672  * @new_rlim: new resource limit
3673  *
3674  * Check permission before setting the resource limits of process @p for
3675  * @resource to @new_rlim.  The old resource limit values can be examined by
3676  * dereferencing (p->signal->rlim + resource).
3677  *
3678  * Return: Returns 0 if permission is granted.
3679  */
security_task_setrlimit(struct task_struct * p,unsigned int resource,struct rlimit * new_rlim)3680 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
3681 			    struct rlimit *new_rlim)
3682 {
3683 	return call_int_hook(task_setrlimit, p, resource, new_rlim);
3684 }
3685 
3686 /**
3687  * security_task_setscheduler() - Check if setting sched policy/param is allowed
3688  * @p: target task
3689  *
3690  * Check permission before setting scheduling policy and/or parameters of
3691  * process @p.
3692  *
3693  * Return: Returns 0 if permission is granted.
3694  */
security_task_setscheduler(struct task_struct * p)3695 int security_task_setscheduler(struct task_struct *p)
3696 {
3697 	return call_int_hook(task_setscheduler, p);
3698 }
3699 
3700 /**
3701  * security_task_getscheduler() - Check if getting scheduling info is allowed
3702  * @p: target task
3703  *
3704  * Check permission before obtaining scheduling information for process @p.
3705  *
3706  * Return: Returns 0 if permission is granted.
3707  */
security_task_getscheduler(struct task_struct * p)3708 int security_task_getscheduler(struct task_struct *p)
3709 {
3710 	return call_int_hook(task_getscheduler, p);
3711 }
3712 
3713 /**
3714  * security_task_movememory() - Check if moving memory is allowed
3715  * @p: task
3716  *
3717  * Check permission before moving memory owned by process @p.
3718  *
3719  * Return: Returns 0 if permission is granted.
3720  */
security_task_movememory(struct task_struct * p)3721 int security_task_movememory(struct task_struct *p)
3722 {
3723 	return call_int_hook(task_movememory, p);
3724 }
3725 
3726 /**
3727  * security_task_kill() - Check if sending a signal is allowed
3728  * @p: target process
3729  * @info: signal information
3730  * @sig: signal value
3731  * @cred: credentials of the signal sender, NULL if @current
3732  *
3733  * Check permission before sending signal @sig to @p.  @info can be NULL, the
3734  * constant 1, or a pointer to a kernel_siginfo structure.  If @info is 1 or
3735  * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from
3736  * the kernel and should typically be permitted.  SIGIO signals are handled
3737  * separately by the send_sigiotask hook in file_security_ops.
3738  *
3739  * Return: Returns 0 if permission is granted.
3740  */
security_task_kill(struct task_struct * p,struct kernel_siginfo * info,int sig,const struct cred * cred)3741 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
3742 		       int sig, const struct cred *cred)
3743 {
3744 	return call_int_hook(task_kill, p, info, sig, cred);
3745 }
3746 
3747 /**
3748  * security_task_prctl() - Check if a prctl op is allowed
3749  * @option: operation
3750  * @arg2: argument
3751  * @arg3: argument
3752  * @arg4: argument
3753  * @arg5: argument
3754  *
3755  * Check permission before performing a process control operation on the
3756  * current process.
3757  *
3758  * Return: Return -ENOSYS if no-one wanted to handle this op, any other value
3759  *         to cause prctl() to return immediately with that value.
3760  */
security_task_prctl(int option,unsigned long arg2,unsigned long arg3,unsigned long arg4,unsigned long arg5)3761 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
3762 			unsigned long arg4, unsigned long arg5)
3763 {
3764 	int thisrc;
3765 	int rc = LSM_RET_DEFAULT(task_prctl);
3766 	struct lsm_static_call *scall;
3767 
3768 	lsm_for_each_hook(scall, task_prctl) {
3769 		thisrc = scall->hl->hook.task_prctl(option, arg2, arg3, arg4, arg5);
3770 		if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
3771 			rc = thisrc;
3772 			if (thisrc != 0)
3773 				break;
3774 		}
3775 	}
3776 	return rc;
3777 }
3778 
3779 /**
3780  * security_task_to_inode() - Set the security attributes of a task's inode
3781  * @p: task
3782  * @inode: inode
3783  *
3784  * Set the security attributes for an inode based on an associated task's
3785  * security attributes, e.g. for /proc/pid inodes.
3786  */
security_task_to_inode(struct task_struct * p,struct inode * inode)3787 void security_task_to_inode(struct task_struct *p, struct inode *inode)
3788 {
3789 	call_void_hook(task_to_inode, p, inode);
3790 }
3791 
3792 /**
3793  * security_create_user_ns() - Check if creating a new userns is allowed
3794  * @cred: prepared creds
3795  *
3796  * Check permission prior to creating a new user namespace.
3797  *
3798  * Return: Returns 0 if successful, otherwise < 0 error code.
3799  */
security_create_user_ns(const struct cred * cred)3800 int security_create_user_ns(const struct cred *cred)
3801 {
3802 	return call_int_hook(userns_create, cred);
3803 }
3804 
3805 /**
3806  * security_ipc_permission() - Check if sysv ipc access is allowed
3807  * @ipcp: ipc permission structure
3808  * @flag: requested permissions
3809  *
3810  * Check permissions for access to IPC.
3811  *
3812  * Return: Returns 0 if permission is granted.
3813  */
security_ipc_permission(struct kern_ipc_perm * ipcp,short flag)3814 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
3815 {
3816 	return call_int_hook(ipc_permission, ipcp, flag);
3817 }
3818 
3819 /**
3820  * security_ipc_getlsmprop() - Get the sysv ipc object LSM data
3821  * @ipcp: ipc permission structure
3822  * @prop: pointer to lsm information
3823  *
3824  * Get the lsm information associated with the ipc object.
3825  */
3826 
security_ipc_getlsmprop(struct kern_ipc_perm * ipcp,struct lsm_prop * prop)3827 void security_ipc_getlsmprop(struct kern_ipc_perm *ipcp, struct lsm_prop *prop)
3828 {
3829 	lsmprop_init(prop);
3830 	call_void_hook(ipc_getlsmprop, ipcp, prop);
3831 }
3832 
3833 /**
3834  * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob
3835  * @msg: message structure
3836  *
3837  * Allocate and attach a security structure to the msg->security field.  The
3838  * security field is initialized to NULL when the structure is first created.
3839  *
3840  * Return: Return 0 if operation was successful and permission is granted.
3841  */
security_msg_msg_alloc(struct msg_msg * msg)3842 int security_msg_msg_alloc(struct msg_msg *msg)
3843 {
3844 	int rc = lsm_msg_msg_alloc(msg);
3845 
3846 	if (unlikely(rc))
3847 		return rc;
3848 	rc = call_int_hook(msg_msg_alloc_security, msg);
3849 	if (unlikely(rc))
3850 		security_msg_msg_free(msg);
3851 	return rc;
3852 }
3853 
3854 /**
3855  * security_msg_msg_free() - Free a sysv ipc message LSM blob
3856  * @msg: message structure
3857  *
3858  * Deallocate the security structure for this message.
3859  */
security_msg_msg_free(struct msg_msg * msg)3860 void security_msg_msg_free(struct msg_msg *msg)
3861 {
3862 	call_void_hook(msg_msg_free_security, msg);
3863 	kfree(msg->security);
3864 	msg->security = NULL;
3865 }
3866 
3867 /**
3868  * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob
3869  * @msq: sysv ipc permission structure
3870  *
3871  * Allocate and attach a security structure to @msg. The security field is
3872  * initialized to NULL when the structure is first created.
3873  *
3874  * Return: Returns 0 if operation was successful and permission is granted.
3875  */
security_msg_queue_alloc(struct kern_ipc_perm * msq)3876 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
3877 {
3878 	int rc = lsm_ipc_alloc(msq);
3879 
3880 	if (unlikely(rc))
3881 		return rc;
3882 	rc = call_int_hook(msg_queue_alloc_security, msq);
3883 	if (unlikely(rc))
3884 		security_msg_queue_free(msq);
3885 	return rc;
3886 }
3887 
3888 /**
3889  * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob
3890  * @msq: sysv ipc permission structure
3891  *
3892  * Deallocate security field @perm->security for the message queue.
3893  */
security_msg_queue_free(struct kern_ipc_perm * msq)3894 void security_msg_queue_free(struct kern_ipc_perm *msq)
3895 {
3896 	call_void_hook(msg_queue_free_security, msq);
3897 	kfree(msq->security);
3898 	msq->security = NULL;
3899 }
3900 
3901 /**
3902  * security_msg_queue_associate() - Check if a msg queue operation is allowed
3903  * @msq: sysv ipc permission structure
3904  * @msqflg: operation flags
3905  *
3906  * Check permission when a message queue is requested through the msgget system
3907  * call. This hook is only called when returning the message queue identifier
3908  * for an existing message queue, not when a new message queue is created.
3909  *
3910  * Return: Return 0 if permission is granted.
3911  */
security_msg_queue_associate(struct kern_ipc_perm * msq,int msqflg)3912 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
3913 {
3914 	return call_int_hook(msg_queue_associate, msq, msqflg);
3915 }
3916 
3917 /**
3918  * security_msg_queue_msgctl() - Check if a msg queue operation is allowed
3919  * @msq: sysv ipc permission structure
3920  * @cmd: operation
3921  *
3922  * Check permission when a message control operation specified by @cmd is to be
3923  * performed on the message queue with permissions.
3924  *
3925  * Return: Returns 0 if permission is granted.
3926  */
security_msg_queue_msgctl(struct kern_ipc_perm * msq,int cmd)3927 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
3928 {
3929 	return call_int_hook(msg_queue_msgctl, msq, cmd);
3930 }
3931 
3932 /**
3933  * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed
3934  * @msq: sysv ipc permission structure
3935  * @msg: message
3936  * @msqflg: operation flags
3937  *
3938  * Check permission before a message, @msg, is enqueued on the message queue
3939  * with permissions specified in @msq.
3940  *
3941  * Return: Returns 0 if permission is granted.
3942  */
security_msg_queue_msgsnd(struct kern_ipc_perm * msq,struct msg_msg * msg,int msqflg)3943 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
3944 			      struct msg_msg *msg, int msqflg)
3945 {
3946 	return call_int_hook(msg_queue_msgsnd, msq, msg, msqflg);
3947 }
3948 
3949 /**
3950  * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed
3951  * @msq: sysv ipc permission structure
3952  * @msg: message
3953  * @target: target task
3954  * @type: type of message requested
3955  * @mode: operation flags
3956  *
3957  * Check permission before a message, @msg, is removed from the message	queue.
3958  * The @target task structure contains a pointer to the process that will be
3959  * receiving the message (not equal to the current process when inline receives
3960  * are being performed).
3961  *
3962  * Return: Returns 0 if permission is granted.
3963  */
security_msg_queue_msgrcv(struct kern_ipc_perm * msq,struct msg_msg * msg,struct task_struct * target,long type,int mode)3964 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
3965 			      struct task_struct *target, long type, int mode)
3966 {
3967 	return call_int_hook(msg_queue_msgrcv, msq, msg, target, type, mode);
3968 }
3969 
3970 /**
3971  * security_shm_alloc() - Allocate a sysv shm LSM blob
3972  * @shp: sysv ipc permission structure
3973  *
3974  * Allocate and attach a security structure to the @shp security field.  The
3975  * security field is initialized to NULL when the structure is first created.
3976  *
3977  * Return: Returns 0 if operation was successful and permission is granted.
3978  */
security_shm_alloc(struct kern_ipc_perm * shp)3979 int security_shm_alloc(struct kern_ipc_perm *shp)
3980 {
3981 	int rc = lsm_ipc_alloc(shp);
3982 
3983 	if (unlikely(rc))
3984 		return rc;
3985 	rc = call_int_hook(shm_alloc_security, shp);
3986 	if (unlikely(rc))
3987 		security_shm_free(shp);
3988 	return rc;
3989 }
3990 
3991 /**
3992  * security_shm_free() - Free a sysv shm LSM blob
3993  * @shp: sysv ipc permission structure
3994  *
3995  * Deallocate the security structure @perm->security for the memory segment.
3996  */
security_shm_free(struct kern_ipc_perm * shp)3997 void security_shm_free(struct kern_ipc_perm *shp)
3998 {
3999 	call_void_hook(shm_free_security, shp);
4000 	kfree(shp->security);
4001 	shp->security = NULL;
4002 }
4003 
4004 /**
4005  * security_shm_associate() - Check if a sysv shm operation is allowed
4006  * @shp: sysv ipc permission structure
4007  * @shmflg: operation flags
4008  *
4009  * Check permission when a shared memory region is requested through the shmget
4010  * system call. This hook is only called when returning the shared memory
4011  * region identifier for an existing region, not when a new shared memory
4012  * region is created.
4013  *
4014  * Return: Returns 0 if permission is granted.
4015  */
security_shm_associate(struct kern_ipc_perm * shp,int shmflg)4016 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
4017 {
4018 	return call_int_hook(shm_associate, shp, shmflg);
4019 }
4020 
4021 /**
4022  * security_shm_shmctl() - Check if a sysv shm operation is allowed
4023  * @shp: sysv ipc permission structure
4024  * @cmd: operation
4025  *
4026  * Check permission when a shared memory control operation specified by @cmd is
4027  * to be performed on the shared memory region with permissions in @shp.
4028  *
4029  * Return: Return 0 if permission is granted.
4030  */
security_shm_shmctl(struct kern_ipc_perm * shp,int cmd)4031 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
4032 {
4033 	return call_int_hook(shm_shmctl, shp, cmd);
4034 }
4035 
4036 /**
4037  * security_shm_shmat() - Check if a sysv shm attach operation is allowed
4038  * @shp: sysv ipc permission structure
4039  * @shmaddr: address of memory region to attach
4040  * @shmflg: operation flags
4041  *
4042  * Check permissions prior to allowing the shmat system call to attach the
4043  * shared memory segment with permissions @shp to the data segment of the
4044  * calling process. The attaching address is specified by @shmaddr.
4045  *
4046  * Return: Returns 0 if permission is granted.
4047  */
security_shm_shmat(struct kern_ipc_perm * shp,char __user * shmaddr,int shmflg)4048 int security_shm_shmat(struct kern_ipc_perm *shp,
4049 		       char __user *shmaddr, int shmflg)
4050 {
4051 	return call_int_hook(shm_shmat, shp, shmaddr, shmflg);
4052 }
4053 
4054 /**
4055  * security_sem_alloc() - Allocate a sysv semaphore LSM blob
4056  * @sma: sysv ipc permission structure
4057  *
4058  * Allocate and attach a security structure to the @sma security field. The
4059  * security field is initialized to NULL when the structure is first created.
4060  *
4061  * Return: Returns 0 if operation was successful and permission is granted.
4062  */
security_sem_alloc(struct kern_ipc_perm * sma)4063 int security_sem_alloc(struct kern_ipc_perm *sma)
4064 {
4065 	int rc = lsm_ipc_alloc(sma);
4066 
4067 	if (unlikely(rc))
4068 		return rc;
4069 	rc = call_int_hook(sem_alloc_security, sma);
4070 	if (unlikely(rc))
4071 		security_sem_free(sma);
4072 	return rc;
4073 }
4074 
4075 /**
4076  * security_sem_free() - Free a sysv semaphore LSM blob
4077  * @sma: sysv ipc permission structure
4078  *
4079  * Deallocate security structure @sma->security for the semaphore.
4080  */
security_sem_free(struct kern_ipc_perm * sma)4081 void security_sem_free(struct kern_ipc_perm *sma)
4082 {
4083 	call_void_hook(sem_free_security, sma);
4084 	kfree(sma->security);
4085 	sma->security = NULL;
4086 }
4087 
4088 /**
4089  * security_sem_associate() - Check if a sysv semaphore operation is allowed
4090  * @sma: sysv ipc permission structure
4091  * @semflg: operation flags
4092  *
4093  * Check permission when a semaphore is requested through the semget system
4094  * call. This hook is only called when returning the semaphore identifier for
4095  * an existing semaphore, not when a new one must be created.
4096  *
4097  * Return: Returns 0 if permission is granted.
4098  */
security_sem_associate(struct kern_ipc_perm * sma,int semflg)4099 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
4100 {
4101 	return call_int_hook(sem_associate, sma, semflg);
4102 }
4103 
4104 /**
4105  * security_sem_semctl() - Check if a sysv semaphore operation is allowed
4106  * @sma: sysv ipc permission structure
4107  * @cmd: operation
4108  *
4109  * Check permission when a semaphore operation specified by @cmd is to be
4110  * performed on the semaphore.
4111  *
4112  * Return: Returns 0 if permission is granted.
4113  */
security_sem_semctl(struct kern_ipc_perm * sma,int cmd)4114 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
4115 {
4116 	return call_int_hook(sem_semctl, sma, cmd);
4117 }
4118 
4119 /**
4120  * security_sem_semop() - Check if a sysv semaphore operation is allowed
4121  * @sma: sysv ipc permission structure
4122  * @sops: operations to perform
4123  * @nsops: number of operations
4124  * @alter: flag indicating changes will be made
4125  *
4126  * Check permissions before performing operations on members of the semaphore
4127  * set. If the @alter flag is nonzero, the semaphore set may be modified.
4128  *
4129  * Return: Returns 0 if permission is granted.
4130  */
security_sem_semop(struct kern_ipc_perm * sma,struct sembuf * sops,unsigned nsops,int alter)4131 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
4132 		       unsigned nsops, int alter)
4133 {
4134 	return call_int_hook(sem_semop, sma, sops, nsops, alter);
4135 }
4136 
4137 /**
4138  * security_d_instantiate() - Populate an inode's LSM state based on a dentry
4139  * @dentry: dentry
4140  * @inode: inode
4141  *
4142  * Fill in @inode security information for a @dentry if allowed.
4143  */
security_d_instantiate(struct dentry * dentry,struct inode * inode)4144 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
4145 {
4146 	if (unlikely(inode && IS_PRIVATE(inode)))
4147 		return;
4148 	call_void_hook(d_instantiate, dentry, inode);
4149 }
4150 EXPORT_SYMBOL(security_d_instantiate);
4151 
4152 /*
4153  * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4154  */
4155 
4156 /**
4157  * security_getselfattr - Read an LSM attribute of the current process.
4158  * @attr: which attribute to return
4159  * @uctx: the user-space destination for the information, or NULL
4160  * @size: pointer to the size of space available to receive the data
4161  * @flags: special handling options. LSM_FLAG_SINGLE indicates that only
4162  * attributes associated with the LSM identified in the passed @ctx be
4163  * reported.
4164  *
4165  * A NULL value for @uctx can be used to get both the number of attributes
4166  * and the size of the data.
4167  *
4168  * Returns the number of attributes found on success, negative value
4169  * on error. @size is reset to the total size of the data.
4170  * If @size is insufficient to contain the data -E2BIG is returned.
4171  */
security_getselfattr(unsigned int attr,struct lsm_ctx __user * uctx,u32 __user * size,u32 flags)4172 int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4173 			 u32 __user *size, u32 flags)
4174 {
4175 	struct lsm_static_call *scall;
4176 	struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, };
4177 	u8 __user *base = (u8 __user *)uctx;
4178 	u32 entrysize;
4179 	u32 total = 0;
4180 	u32 left;
4181 	bool toobig = false;
4182 	bool single = false;
4183 	int count = 0;
4184 	int rc;
4185 
4186 	if (attr == LSM_ATTR_UNDEF)
4187 		return -EINVAL;
4188 	if (size == NULL)
4189 		return -EINVAL;
4190 	if (get_user(left, size))
4191 		return -EFAULT;
4192 
4193 	if (flags) {
4194 		/*
4195 		 * Only flag supported is LSM_FLAG_SINGLE
4196 		 */
4197 		if (flags != LSM_FLAG_SINGLE || !uctx)
4198 			return -EINVAL;
4199 		if (copy_from_user(&lctx, uctx, sizeof(lctx)))
4200 			return -EFAULT;
4201 		/*
4202 		 * If the LSM ID isn't specified it is an error.
4203 		 */
4204 		if (lctx.id == LSM_ID_UNDEF)
4205 			return -EINVAL;
4206 		single = true;
4207 	}
4208 
4209 	/*
4210 	 * In the usual case gather all the data from the LSMs.
4211 	 * In the single case only get the data from the LSM specified.
4212 	 */
4213 	lsm_for_each_hook(scall, getselfattr) {
4214 		if (single && lctx.id != scall->hl->lsmid->id)
4215 			continue;
4216 		entrysize = left;
4217 		if (base)
4218 			uctx = (struct lsm_ctx __user *)(base + total);
4219 		rc = scall->hl->hook.getselfattr(attr, uctx, &entrysize, flags);
4220 		if (rc == -EOPNOTSUPP)
4221 			continue;
4222 		if (rc == -E2BIG) {
4223 			rc = 0;
4224 			left = 0;
4225 			toobig = true;
4226 		} else if (rc < 0)
4227 			return rc;
4228 		else
4229 			left -= entrysize;
4230 
4231 		total += entrysize;
4232 		count += rc;
4233 		if (single)
4234 			break;
4235 	}
4236 	if (put_user(total, size))
4237 		return -EFAULT;
4238 	if (toobig)
4239 		return -E2BIG;
4240 	if (count == 0)
4241 		return LSM_RET_DEFAULT(getselfattr);
4242 	return count;
4243 }
4244 
4245 /*
4246  * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4247  */
4248 
4249 /**
4250  * security_setselfattr - Set an LSM attribute on the current process.
4251  * @attr: which attribute to set
4252  * @uctx: the user-space source for the information
4253  * @size: the size of the data
4254  * @flags: reserved for future use, must be 0
4255  *
4256  * Set an LSM attribute for the current process. The LSM, attribute
4257  * and new value are included in @uctx.
4258  *
4259  * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT
4260  * if the user buffer is inaccessible, E2BIG if size is too big, or an
4261  * LSM specific failure.
4262  */
security_setselfattr(unsigned int attr,struct lsm_ctx __user * uctx,u32 size,u32 flags)4263 int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4264 			 u32 size, u32 flags)
4265 {
4266 	struct lsm_static_call *scall;
4267 	struct lsm_ctx *lctx;
4268 	int rc = LSM_RET_DEFAULT(setselfattr);
4269 	u64 required_len;
4270 
4271 	if (flags)
4272 		return -EINVAL;
4273 	if (size < sizeof(*lctx))
4274 		return -EINVAL;
4275 	if (size > PAGE_SIZE)
4276 		return -E2BIG;
4277 
4278 	lctx = memdup_user(uctx, size);
4279 	if (IS_ERR(lctx))
4280 		return PTR_ERR(lctx);
4281 
4282 	if (size < lctx->len ||
4283 	    check_add_overflow(sizeof(*lctx), lctx->ctx_len, &required_len) ||
4284 	    lctx->len < required_len) {
4285 		rc = -EINVAL;
4286 		goto free_out;
4287 	}
4288 
4289 	lsm_for_each_hook(scall, setselfattr)
4290 		if ((scall->hl->lsmid->id) == lctx->id) {
4291 			rc = scall->hl->hook.setselfattr(attr, lctx, size, flags);
4292 			break;
4293 		}
4294 
4295 free_out:
4296 	kfree(lctx);
4297 	return rc;
4298 }
4299 
4300 /**
4301  * security_getprocattr() - Read an attribute for a task
4302  * @p: the task
4303  * @lsmid: LSM identification
4304  * @name: attribute name
4305  * @value: attribute value
4306  *
4307  * Read attribute @name for task @p and store it into @value if allowed.
4308  *
4309  * Return: Returns the length of @value on success, a negative value otherwise.
4310  */
security_getprocattr(struct task_struct * p,int lsmid,const char * name,char ** value)4311 int security_getprocattr(struct task_struct *p, int lsmid, const char *name,
4312 			 char **value)
4313 {
4314 	struct lsm_static_call *scall;
4315 
4316 	lsm_for_each_hook(scall, getprocattr) {
4317 		if (lsmid != 0 && lsmid != scall->hl->lsmid->id)
4318 			continue;
4319 		return scall->hl->hook.getprocattr(p, name, value);
4320 	}
4321 	return LSM_RET_DEFAULT(getprocattr);
4322 }
4323 
4324 /**
4325  * security_setprocattr() - Set an attribute for a task
4326  * @lsmid: LSM identification
4327  * @name: attribute name
4328  * @value: attribute value
4329  * @size: attribute value size
4330  *
4331  * Write (set) the current task's attribute @name to @value, size @size if
4332  * allowed.
4333  *
4334  * Return: Returns bytes written on success, a negative value otherwise.
4335  */
security_setprocattr(int lsmid,const char * name,void * value,size_t size)4336 int security_setprocattr(int lsmid, const char *name, void *value, size_t size)
4337 {
4338 	struct lsm_static_call *scall;
4339 
4340 	lsm_for_each_hook(scall, setprocattr) {
4341 		if (lsmid != 0 && lsmid != scall->hl->lsmid->id)
4342 			continue;
4343 		return scall->hl->hook.setprocattr(name, value, size);
4344 	}
4345 	return LSM_RET_DEFAULT(setprocattr);
4346 }
4347 
4348 /**
4349  * security_ismaclabel() - Check if the named attribute is a MAC label
4350  * @name: full extended attribute name
4351  *
4352  * Check if the extended attribute specified by @name represents a MAC label.
4353  *
4354  * Return: Returns 1 if name is a MAC attribute otherwise returns 0.
4355  */
security_ismaclabel(const char * name)4356 int security_ismaclabel(const char *name)
4357 {
4358 	return call_int_hook(ismaclabel, name);
4359 }
4360 EXPORT_SYMBOL(security_ismaclabel);
4361 
4362 /**
4363  * security_secid_to_secctx() - Convert a secid to a secctx
4364  * @secid: secid
4365  * @cp: the LSM context
4366  *
4367  * Convert secid to security context.  If @cp is NULL the length of the
4368  * result will be returned, but no data will be returned.  This
4369  * does mean that the length could change between calls to check the length and
4370  * the next call which actually allocates and returns the data.
4371  *
4372  * Return: Return length of data on success, error on failure.
4373  */
security_secid_to_secctx(u32 secid,struct lsm_context * cp)4374 int security_secid_to_secctx(u32 secid, struct lsm_context *cp)
4375 {
4376 	return call_int_hook(secid_to_secctx, secid, cp);
4377 }
4378 EXPORT_SYMBOL(security_secid_to_secctx);
4379 
4380 /**
4381  * security_lsmprop_to_secctx() - Convert a lsm_prop to a secctx
4382  * @prop: lsm specific information
4383  * @cp: the LSM context
4384  * @lsmid: which security module to report
4385  *
4386  * Convert a @prop entry to security context.  If @cp is NULL the
4387  * length of the result will be returned. This does mean that the
4388  * length could change between calls to check the length and the
4389  * next call which actually allocates and returns the @cp.
4390  *
4391  * @lsmid identifies which LSM should supply the context.
4392  * A value of LSM_ID_UNDEF indicates that the first LSM suppling
4393  * the hook should be used. This is used in cases where the
4394  * ID of the supplying LSM is unambiguous.
4395  *
4396  * Return: Return length of data on success, error on failure.
4397  */
security_lsmprop_to_secctx(struct lsm_prop * prop,struct lsm_context * cp,int lsmid)4398 int security_lsmprop_to_secctx(struct lsm_prop *prop, struct lsm_context *cp,
4399 			       int lsmid)
4400 {
4401 	struct lsm_static_call *scall;
4402 
4403 	lsm_for_each_hook(scall, lsmprop_to_secctx) {
4404 		if (lsmid != LSM_ID_UNDEF && lsmid != scall->hl->lsmid->id)
4405 			continue;
4406 		return scall->hl->hook.lsmprop_to_secctx(prop, cp);
4407 	}
4408 	return LSM_RET_DEFAULT(lsmprop_to_secctx);
4409 }
4410 EXPORT_SYMBOL(security_lsmprop_to_secctx);
4411 
4412 /**
4413  * security_secctx_to_secid() - Convert a secctx to a secid
4414  * @secdata: secctx
4415  * @seclen: length of secctx
4416  * @secid: secid
4417  *
4418  * Convert security context to secid.
4419  *
4420  * Return: Returns 0 on success, error on failure.
4421  */
security_secctx_to_secid(const char * secdata,u32 seclen,u32 * secid)4422 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
4423 {
4424 	*secid = 0;
4425 	return call_int_hook(secctx_to_secid, secdata, seclen, secid);
4426 }
4427 EXPORT_SYMBOL(security_secctx_to_secid);
4428 
4429 /**
4430  * security_release_secctx() - Free a secctx buffer
4431  * @cp: the security context
4432  *
4433  * Release the security context.
4434  */
security_release_secctx(struct lsm_context * cp)4435 void security_release_secctx(struct lsm_context *cp)
4436 {
4437 	call_void_hook(release_secctx, cp);
4438 	memset(cp, 0, sizeof(*cp));
4439 }
4440 EXPORT_SYMBOL(security_release_secctx);
4441 
4442 /**
4443  * security_inode_invalidate_secctx() - Invalidate an inode's security label
4444  * @inode: inode
4445  *
4446  * Notify the security module that it must revalidate the security context of
4447  * an inode.
4448  */
security_inode_invalidate_secctx(struct inode * inode)4449 void security_inode_invalidate_secctx(struct inode *inode)
4450 {
4451 	call_void_hook(inode_invalidate_secctx, inode);
4452 }
4453 EXPORT_SYMBOL(security_inode_invalidate_secctx);
4454 
4455 /**
4456  * security_inode_notifysecctx() - Notify the LSM of an inode's security label
4457  * @inode: inode
4458  * @ctx: secctx
4459  * @ctxlen: length of secctx
4460  *
4461  * Notify the security module of what the security context of an inode should
4462  * be.  Initializes the incore security context managed by the security module
4463  * for this inode.  Example usage: NFS client invokes this hook to initialize
4464  * the security context in its incore inode to the value provided by the server
4465  * for the file when the server returned the file's attributes to the client.
4466  * Must be called with inode->i_mutex locked.
4467  *
4468  * Return: Returns 0 on success, error on failure.
4469  */
security_inode_notifysecctx(struct inode * inode,void * ctx,u32 ctxlen)4470 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
4471 {
4472 	return call_int_hook(inode_notifysecctx, inode, ctx, ctxlen);
4473 }
4474 EXPORT_SYMBOL(security_inode_notifysecctx);
4475 
4476 /**
4477  * security_inode_setsecctx() - Change the security label of an inode
4478  * @dentry: inode
4479  * @ctx: secctx
4480  * @ctxlen: length of secctx
4481  *
4482  * Change the security context of an inode.  Updates the incore security
4483  * context managed by the security module and invokes the fs code as needed
4484  * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the
4485  * context.  Example usage: NFS server invokes this hook to change the security
4486  * context in its incore inode and on the backing filesystem to a value
4487  * provided by the client on a SETATTR operation.  Must be called with
4488  * inode->i_mutex locked.
4489  *
4490  * Return: Returns 0 on success, error on failure.
4491  */
security_inode_setsecctx(struct dentry * dentry,void * ctx,u32 ctxlen)4492 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
4493 {
4494 	return call_int_hook(inode_setsecctx, dentry, ctx, ctxlen);
4495 }
4496 EXPORT_SYMBOL(security_inode_setsecctx);
4497 
4498 /**
4499  * security_inode_getsecctx() - Get the security label of an inode
4500  * @inode: inode
4501  * @cp: security context
4502  *
4503  * On success, returns 0 and fills out @cp with the security context
4504  * for the given @inode.
4505  *
4506  * Return: Returns 0 on success, error on failure.
4507  */
security_inode_getsecctx(struct inode * inode,struct lsm_context * cp)4508 int security_inode_getsecctx(struct inode *inode, struct lsm_context *cp)
4509 {
4510 	memset(cp, 0, sizeof(*cp));
4511 	return call_int_hook(inode_getsecctx, inode, cp);
4512 }
4513 EXPORT_SYMBOL(security_inode_getsecctx);
4514 
4515 #ifdef CONFIG_WATCH_QUEUE
4516 /**
4517  * security_post_notification() - Check if a watch notification can be posted
4518  * @w_cred: credentials of the task that set the watch
4519  * @cred: credentials of the task which triggered the watch
4520  * @n: the notification
4521  *
4522  * Check to see if a watch notification can be posted to a particular queue.
4523  *
4524  * Return: Returns 0 if permission is granted.
4525  */
security_post_notification(const struct cred * w_cred,const struct cred * cred,struct watch_notification * n)4526 int security_post_notification(const struct cred *w_cred,
4527 			       const struct cred *cred,
4528 			       struct watch_notification *n)
4529 {
4530 	return call_int_hook(post_notification, w_cred, cred, n);
4531 }
4532 #endif /* CONFIG_WATCH_QUEUE */
4533 
4534 #ifdef CONFIG_KEY_NOTIFICATIONS
4535 /**
4536  * security_watch_key() - Check if a task is allowed to watch for key events
4537  * @key: the key to watch
4538  *
4539  * Check to see if a process is allowed to watch for event notifications from
4540  * a key or keyring.
4541  *
4542  * Return: Returns 0 if permission is granted.
4543  */
security_watch_key(struct key * key)4544 int security_watch_key(struct key *key)
4545 {
4546 	return call_int_hook(watch_key, key);
4547 }
4548 #endif /* CONFIG_KEY_NOTIFICATIONS */
4549 
4550 #ifdef CONFIG_SECURITY_NETWORK
4551 /**
4552  * security_netlink_send() - Save info and check if netlink sending is allowed
4553  * @sk: sending socket
4554  * @skb: netlink message
4555  *
4556  * Save security information for a netlink message so that permission checking
4557  * can be performed when the message is processed.  The security information
4558  * can be saved using the eff_cap field of the netlink_skb_parms structure.
4559  * Also may be used to provide fine grained control over message transmission.
4560  *
4561  * Return: Returns 0 if the information was successfully saved and message is
4562  *         allowed to be transmitted.
4563  */
security_netlink_send(struct sock * sk,struct sk_buff * skb)4564 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
4565 {
4566 	return call_int_hook(netlink_send, sk, skb);
4567 }
4568 
4569 /**
4570  * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed
4571  * @sock: originating sock
4572  * @other: peer sock
4573  * @newsk: new sock
4574  *
4575  * Check permissions before establishing a Unix domain stream connection
4576  * between @sock and @other.
4577  *
4578  * The @unix_stream_connect and @unix_may_send hooks were necessary because
4579  * Linux provides an alternative to the conventional file name space for Unix
4580  * domain sockets.  Whereas binding and connecting to sockets in the file name
4581  * space is mediated by the typical file permissions (and caught by the mknod
4582  * and permission hooks in inode_security_ops), binding and connecting to
4583  * sockets in the abstract name space is completely unmediated.  Sufficient
4584  * control of Unix domain sockets in the abstract name space isn't possible
4585  * using only the socket layer hooks, since we need to know the actual target
4586  * socket, which is not looked up until we are inside the af_unix code.
4587  *
4588  * Return: Returns 0 if permission is granted.
4589  */
security_unix_stream_connect(struct sock * sock,struct sock * other,struct sock * newsk)4590 int security_unix_stream_connect(struct sock *sock, struct sock *other,
4591 				 struct sock *newsk)
4592 {
4593 	return call_int_hook(unix_stream_connect, sock, other, newsk);
4594 }
4595 EXPORT_SYMBOL(security_unix_stream_connect);
4596 
4597 /**
4598  * security_unix_may_send() - Check if AF_UNIX socket can send datagrams
4599  * @sock: originating sock
4600  * @other: peer sock
4601  *
4602  * Check permissions before connecting or sending datagrams from @sock to
4603  * @other.
4604  *
4605  * The @unix_stream_connect and @unix_may_send hooks were necessary because
4606  * Linux provides an alternative to the conventional file name space for Unix
4607  * domain sockets.  Whereas binding and connecting to sockets in the file name
4608  * space is mediated by the typical file permissions (and caught by the mknod
4609  * and permission hooks in inode_security_ops), binding and connecting to
4610  * sockets in the abstract name space is completely unmediated.  Sufficient
4611  * control of Unix domain sockets in the abstract name space isn't possible
4612  * using only the socket layer hooks, since we need to know the actual target
4613  * socket, which is not looked up until we are inside the af_unix code.
4614  *
4615  * Return: Returns 0 if permission is granted.
4616  */
security_unix_may_send(struct socket * sock,struct socket * other)4617 int security_unix_may_send(struct socket *sock,  struct socket *other)
4618 {
4619 	return call_int_hook(unix_may_send, sock, other);
4620 }
4621 EXPORT_SYMBOL(security_unix_may_send);
4622 
4623 /**
4624  * security_socket_create() - Check if creating a new socket is allowed
4625  * @family: protocol family
4626  * @type: communications type
4627  * @protocol: requested protocol
4628  * @kern: set to 1 if a kernel socket is requested
4629  *
4630  * Check permissions prior to creating a new socket.
4631  *
4632  * Return: Returns 0 if permission is granted.
4633  */
security_socket_create(int family,int type,int protocol,int kern)4634 int security_socket_create(int family, int type, int protocol, int kern)
4635 {
4636 	return call_int_hook(socket_create, family, type, protocol, kern);
4637 }
4638 
4639 /**
4640  * security_socket_post_create() - Initialize a newly created socket
4641  * @sock: socket
4642  * @family: protocol family
4643  * @type: communications type
4644  * @protocol: requested protocol
4645  * @kern: set to 1 if a kernel socket is requested
4646  *
4647  * This hook allows a module to update or allocate a per-socket security
4648  * structure. Note that the security field was not added directly to the socket
4649  * structure, but rather, the socket security information is stored in the
4650  * associated inode.  Typically, the inode alloc_security hook will allocate
4651  * and attach security information to SOCK_INODE(sock)->i_security.  This hook
4652  * may be used to update the SOCK_INODE(sock)->i_security field with additional
4653  * information that wasn't available when the inode was allocated.
4654  *
4655  * Return: Returns 0 if permission is granted.
4656  */
security_socket_post_create(struct socket * sock,int family,int type,int protocol,int kern)4657 int security_socket_post_create(struct socket *sock, int family,
4658 				int type, int protocol, int kern)
4659 {
4660 	return call_int_hook(socket_post_create, sock, family, type,
4661 			     protocol, kern);
4662 }
4663 
4664 /**
4665  * security_socket_socketpair() - Check if creating a socketpair is allowed
4666  * @socka: first socket
4667  * @sockb: second socket
4668  *
4669  * Check permissions before creating a fresh pair of sockets.
4670  *
4671  * Return: Returns 0 if permission is granted and the connection was
4672  *         established.
4673  */
security_socket_socketpair(struct socket * socka,struct socket * sockb)4674 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
4675 {
4676 	return call_int_hook(socket_socketpair, socka, sockb);
4677 }
4678 EXPORT_SYMBOL(security_socket_socketpair);
4679 
4680 /**
4681  * security_socket_bind() - Check if a socket bind operation is allowed
4682  * @sock: socket
4683  * @address: requested bind address
4684  * @addrlen: length of address
4685  *
4686  * Check permission before socket protocol layer bind operation is performed
4687  * and the socket @sock is bound to the address specified in the @address
4688  * parameter.
4689  *
4690  * Return: Returns 0 if permission is granted.
4691  */
security_socket_bind(struct socket * sock,struct sockaddr * address,int addrlen)4692 int security_socket_bind(struct socket *sock,
4693 			 struct sockaddr *address, int addrlen)
4694 {
4695 	return call_int_hook(socket_bind, sock, address, addrlen);
4696 }
4697 
4698 /**
4699  * security_socket_connect() - Check if a socket connect operation is allowed
4700  * @sock: socket
4701  * @address: address of remote connection point
4702  * @addrlen: length of address
4703  *
4704  * Check permission before socket protocol layer connect operation attempts to
4705  * connect socket @sock to a remote address, @address.
4706  *
4707  * Return: Returns 0 if permission is granted.
4708  */
security_socket_connect(struct socket * sock,struct sockaddr * address,int addrlen)4709 int security_socket_connect(struct socket *sock,
4710 			    struct sockaddr *address, int addrlen)
4711 {
4712 	return call_int_hook(socket_connect, sock, address, addrlen);
4713 }
4714 
4715 /**
4716  * security_socket_listen() - Check if a socket is allowed to listen
4717  * @sock: socket
4718  * @backlog: connection queue size
4719  *
4720  * Check permission before socket protocol layer listen operation.
4721  *
4722  * Return: Returns 0 if permission is granted.
4723  */
security_socket_listen(struct socket * sock,int backlog)4724 int security_socket_listen(struct socket *sock, int backlog)
4725 {
4726 	return call_int_hook(socket_listen, sock, backlog);
4727 }
4728 
4729 /**
4730  * security_socket_accept() - Check if a socket is allowed to accept connections
4731  * @sock: listening socket
4732  * @newsock: newly creation connection socket
4733  *
4734  * Check permission before accepting a new connection.  Note that the new
4735  * socket, @newsock, has been created and some information copied to it, but
4736  * the accept operation has not actually been performed.
4737  *
4738  * Return: Returns 0 if permission is granted.
4739  */
security_socket_accept(struct socket * sock,struct socket * newsock)4740 int security_socket_accept(struct socket *sock, struct socket *newsock)
4741 {
4742 	return call_int_hook(socket_accept, sock, newsock);
4743 }
4744 
4745 /**
4746  * security_socket_sendmsg() - Check if sending a message is allowed
4747  * @sock: sending socket
4748  * @msg: message to send
4749  * @size: size of message
4750  *
4751  * Check permission before transmitting a message to another socket.
4752  *
4753  * Return: Returns 0 if permission is granted.
4754  */
security_socket_sendmsg(struct socket * sock,struct msghdr * msg,int size)4755 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
4756 {
4757 	return call_int_hook(socket_sendmsg, sock, msg, size);
4758 }
4759 
4760 /**
4761  * security_socket_recvmsg() - Check if receiving a message is allowed
4762  * @sock: receiving socket
4763  * @msg: message to receive
4764  * @size: size of message
4765  * @flags: operational flags
4766  *
4767  * Check permission before receiving a message from a socket.
4768  *
4769  * Return: Returns 0 if permission is granted.
4770  */
security_socket_recvmsg(struct socket * sock,struct msghdr * msg,int size,int flags)4771 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4772 			    int size, int flags)
4773 {
4774 	return call_int_hook(socket_recvmsg, sock, msg, size, flags);
4775 }
4776 
4777 /**
4778  * security_socket_getsockname() - Check if reading the socket addr is allowed
4779  * @sock: socket
4780  *
4781  * Check permission before reading the local address (name) of the socket
4782  * object.
4783  *
4784  * Return: Returns 0 if permission is granted.
4785  */
security_socket_getsockname(struct socket * sock)4786 int security_socket_getsockname(struct socket *sock)
4787 {
4788 	return call_int_hook(socket_getsockname, sock);
4789 }
4790 
4791 /**
4792  * security_socket_getpeername() - Check if reading the peer's addr is allowed
4793  * @sock: socket
4794  *
4795  * Check permission before the remote address (name) of a socket object.
4796  *
4797  * Return: Returns 0 if permission is granted.
4798  */
security_socket_getpeername(struct socket * sock)4799 int security_socket_getpeername(struct socket *sock)
4800 {
4801 	return call_int_hook(socket_getpeername, sock);
4802 }
4803 
4804 /**
4805  * security_socket_getsockopt() - Check if reading a socket option is allowed
4806  * @sock: socket
4807  * @level: option's protocol level
4808  * @optname: option name
4809  *
4810  * Check permissions before retrieving the options associated with socket
4811  * @sock.
4812  *
4813  * Return: Returns 0 if permission is granted.
4814  */
security_socket_getsockopt(struct socket * sock,int level,int optname)4815 int security_socket_getsockopt(struct socket *sock, int level, int optname)
4816 {
4817 	return call_int_hook(socket_getsockopt, sock, level, optname);
4818 }
4819 
4820 /**
4821  * security_socket_setsockopt() - Check if setting a socket option is allowed
4822  * @sock: socket
4823  * @level: option's protocol level
4824  * @optname: option name
4825  *
4826  * Check permissions before setting the options associated with socket @sock.
4827  *
4828  * Return: Returns 0 if permission is granted.
4829  */
security_socket_setsockopt(struct socket * sock,int level,int optname)4830 int security_socket_setsockopt(struct socket *sock, int level, int optname)
4831 {
4832 	return call_int_hook(socket_setsockopt, sock, level, optname);
4833 }
4834 
4835 /**
4836  * security_socket_shutdown() - Checks if shutting down the socket is allowed
4837  * @sock: socket
4838  * @how: flag indicating how sends and receives are handled
4839  *
4840  * Checks permission before all or part of a connection on the socket @sock is
4841  * shut down.
4842  *
4843  * Return: Returns 0 if permission is granted.
4844  */
security_socket_shutdown(struct socket * sock,int how)4845 int security_socket_shutdown(struct socket *sock, int how)
4846 {
4847 	return call_int_hook(socket_shutdown, sock, how);
4848 }
4849 
4850 /**
4851  * security_sock_rcv_skb() - Check if an incoming network packet is allowed
4852  * @sk: destination sock
4853  * @skb: incoming packet
4854  *
4855  * Check permissions on incoming network packets.  This hook is distinct from
4856  * Netfilter's IP input hooks since it is the first time that the incoming
4857  * sk_buff @skb has been associated with a particular socket, @sk.  Must not
4858  * sleep inside this hook because some callers hold spinlocks.
4859  *
4860  * Return: Returns 0 if permission is granted.
4861  */
security_sock_rcv_skb(struct sock * sk,struct sk_buff * skb)4862 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4863 {
4864 	return call_int_hook(socket_sock_rcv_skb, sk, skb);
4865 }
4866 EXPORT_SYMBOL(security_sock_rcv_skb);
4867 
4868 /**
4869  * security_socket_getpeersec_stream() - Get the remote peer label
4870  * @sock: socket
4871  * @optval: destination buffer
4872  * @optlen: size of peer label copied into the buffer
4873  * @len: maximum size of the destination buffer
4874  *
4875  * This hook allows the security module to provide peer socket security state
4876  * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC.
4877  * For tcp sockets this can be meaningful if the socket is associated with an
4878  * ipsec SA.
4879  *
4880  * Return: Returns 0 if all is well, otherwise, typical getsockopt return
4881  *         values.
4882  */
security_socket_getpeersec_stream(struct socket * sock,sockptr_t optval,sockptr_t optlen,unsigned int len)4883 int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
4884 				      sockptr_t optlen, unsigned int len)
4885 {
4886 	return call_int_hook(socket_getpeersec_stream, sock, optval, optlen,
4887 			     len);
4888 }
4889 
4890 /**
4891  * security_socket_getpeersec_dgram() - Get the remote peer label
4892  * @sock: socket
4893  * @skb: datagram packet
4894  * @secid: remote peer label secid
4895  *
4896  * This hook allows the security module to provide peer socket security state
4897  * for udp sockets on a per-packet basis to userspace via getsockopt
4898  * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC
4899  * option via getsockopt. It can then retrieve the security state returned by
4900  * this hook for a packet via the SCM_SECURITY ancillary message type.
4901  *
4902  * Return: Returns 0 on success, error on failure.
4903  */
security_socket_getpeersec_dgram(struct socket * sock,struct sk_buff * skb,u32 * secid)4904 int security_socket_getpeersec_dgram(struct socket *sock,
4905 				     struct sk_buff *skb, u32 *secid)
4906 {
4907 	return call_int_hook(socket_getpeersec_dgram, sock, skb, secid);
4908 }
4909 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
4910 
4911 /**
4912  * lsm_sock_alloc - allocate a composite sock blob
4913  * @sock: the sock that needs a blob
4914  * @gfp: allocation mode
4915  *
4916  * Allocate the sock blob for all the modules
4917  *
4918  * Returns 0, or -ENOMEM if memory can't be allocated.
4919  */
lsm_sock_alloc(struct sock * sock,gfp_t gfp)4920 static int lsm_sock_alloc(struct sock *sock, gfp_t gfp)
4921 {
4922 	return lsm_blob_alloc(&sock->sk_security, blob_sizes.lbs_sock, gfp);
4923 }
4924 
4925 /**
4926  * security_sk_alloc() - Allocate and initialize a sock's LSM blob
4927  * @sk: sock
4928  * @family: protocol family
4929  * @priority: gfp flags
4930  *
4931  * Allocate and attach a security structure to the sk->sk_security field, which
4932  * is used to copy security attributes between local stream sockets.
4933  *
4934  * Return: Returns 0 on success, error on failure.
4935  */
security_sk_alloc(struct sock * sk,int family,gfp_t priority)4936 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
4937 {
4938 	int rc = lsm_sock_alloc(sk, priority);
4939 
4940 	if (unlikely(rc))
4941 		return rc;
4942 	rc = call_int_hook(sk_alloc_security, sk, family, priority);
4943 	if (unlikely(rc))
4944 		security_sk_free(sk);
4945 	return rc;
4946 }
4947 
4948 /**
4949  * security_sk_free() - Free the sock's LSM blob
4950  * @sk: sock
4951  *
4952  * Deallocate security structure.
4953  */
security_sk_free(struct sock * sk)4954 void security_sk_free(struct sock *sk)
4955 {
4956 	call_void_hook(sk_free_security, sk);
4957 	kfree(sk->sk_security);
4958 	sk->sk_security = NULL;
4959 }
4960 
4961 /**
4962  * security_sk_clone() - Clone a sock's LSM state
4963  * @sk: original sock
4964  * @newsk: target sock
4965  *
4966  * Clone/copy security structure.
4967  */
security_sk_clone(const struct sock * sk,struct sock * newsk)4968 void security_sk_clone(const struct sock *sk, struct sock *newsk)
4969 {
4970 	call_void_hook(sk_clone_security, sk, newsk);
4971 }
4972 EXPORT_SYMBOL(security_sk_clone);
4973 
4974 /**
4975  * security_sk_classify_flow() - Set a flow's secid based on socket
4976  * @sk: original socket
4977  * @flic: target flow
4978  *
4979  * Set the target flow's secid to socket's secid.
4980  */
security_sk_classify_flow(const struct sock * sk,struct flowi_common * flic)4981 void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic)
4982 {
4983 	call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
4984 }
4985 EXPORT_SYMBOL(security_sk_classify_flow);
4986 
4987 /**
4988  * security_req_classify_flow() - Set a flow's secid based on request_sock
4989  * @req: request_sock
4990  * @flic: target flow
4991  *
4992  * Sets @flic's secid to @req's secid.
4993  */
security_req_classify_flow(const struct request_sock * req,struct flowi_common * flic)4994 void security_req_classify_flow(const struct request_sock *req,
4995 				struct flowi_common *flic)
4996 {
4997 	call_void_hook(req_classify_flow, req, flic);
4998 }
4999 EXPORT_SYMBOL(security_req_classify_flow);
5000 
5001 /**
5002  * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket
5003  * @sk: sock being grafted
5004  * @parent: target parent socket
5005  *
5006  * Sets @parent's inode secid to @sk's secid and update @sk with any necessary
5007  * LSM state from @parent.
5008  */
security_sock_graft(struct sock * sk,struct socket * parent)5009 void security_sock_graft(struct sock *sk, struct socket *parent)
5010 {
5011 	call_void_hook(sock_graft, sk, parent);
5012 }
5013 EXPORT_SYMBOL(security_sock_graft);
5014 
5015 /**
5016  * security_inet_conn_request() - Set request_sock state using incoming connect
5017  * @sk: parent listening sock
5018  * @skb: incoming connection
5019  * @req: new request_sock
5020  *
5021  * Initialize the @req LSM state based on @sk and the incoming connect in @skb.
5022  *
5023  * Return: Returns 0 if permission is granted.
5024  */
security_inet_conn_request(const struct sock * sk,struct sk_buff * skb,struct request_sock * req)5025 int security_inet_conn_request(const struct sock *sk,
5026 			       struct sk_buff *skb, struct request_sock *req)
5027 {
5028 	return call_int_hook(inet_conn_request, sk, skb, req);
5029 }
5030 EXPORT_SYMBOL(security_inet_conn_request);
5031 
5032 /**
5033  * security_inet_csk_clone() - Set new sock LSM state based on request_sock
5034  * @newsk: new sock
5035  * @req: connection request_sock
5036  *
5037  * Set that LSM state of @sock using the LSM state from @req.
5038  */
security_inet_csk_clone(struct sock * newsk,const struct request_sock * req)5039 void security_inet_csk_clone(struct sock *newsk,
5040 			     const struct request_sock *req)
5041 {
5042 	call_void_hook(inet_csk_clone, newsk, req);
5043 }
5044 
5045 /**
5046  * security_inet_conn_established() - Update sock's LSM state with connection
5047  * @sk: sock
5048  * @skb: connection packet
5049  *
5050  * Update @sock's LSM state to represent a new connection from @skb.
5051  */
security_inet_conn_established(struct sock * sk,struct sk_buff * skb)5052 void security_inet_conn_established(struct sock *sk,
5053 				    struct sk_buff *skb)
5054 {
5055 	call_void_hook(inet_conn_established, sk, skb);
5056 }
5057 EXPORT_SYMBOL(security_inet_conn_established);
5058 
5059 /**
5060  * security_secmark_relabel_packet() - Check if setting a secmark is allowed
5061  * @secid: new secmark value
5062  *
5063  * Check if the process should be allowed to relabel packets to @secid.
5064  *
5065  * Return: Returns 0 if permission is granted.
5066  */
security_secmark_relabel_packet(u32 secid)5067 int security_secmark_relabel_packet(u32 secid)
5068 {
5069 	return call_int_hook(secmark_relabel_packet, secid);
5070 }
5071 EXPORT_SYMBOL(security_secmark_relabel_packet);
5072 
5073 /**
5074  * security_secmark_refcount_inc() - Increment the secmark labeling rule count
5075  *
5076  * Tells the LSM to increment the number of secmark labeling rules loaded.
5077  */
security_secmark_refcount_inc(void)5078 void security_secmark_refcount_inc(void)
5079 {
5080 	call_void_hook(secmark_refcount_inc);
5081 }
5082 EXPORT_SYMBOL(security_secmark_refcount_inc);
5083 
5084 /**
5085  * security_secmark_refcount_dec() - Decrement the secmark labeling rule count
5086  *
5087  * Tells the LSM to decrement the number of secmark labeling rules loaded.
5088  */
security_secmark_refcount_dec(void)5089 void security_secmark_refcount_dec(void)
5090 {
5091 	call_void_hook(secmark_refcount_dec);
5092 }
5093 EXPORT_SYMBOL(security_secmark_refcount_dec);
5094 
5095 /**
5096  * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device
5097  * @security: pointer to the LSM blob
5098  *
5099  * This hook allows a module to allocate a security structure for a TUN	device,
5100  * returning the pointer in @security.
5101  *
5102  * Return: Returns a zero on success, negative values on failure.
5103  */
security_tun_dev_alloc_security(void ** security)5104 int security_tun_dev_alloc_security(void **security)
5105 {
5106 	int rc;
5107 
5108 	rc = lsm_blob_alloc(security, blob_sizes.lbs_tun_dev, GFP_KERNEL);
5109 	if (rc)
5110 		return rc;
5111 
5112 	rc = call_int_hook(tun_dev_alloc_security, *security);
5113 	if (rc) {
5114 		kfree(*security);
5115 		*security = NULL;
5116 	}
5117 	return rc;
5118 }
5119 EXPORT_SYMBOL(security_tun_dev_alloc_security);
5120 
5121 /**
5122  * security_tun_dev_free_security() - Free a TUN device LSM blob
5123  * @security: LSM blob
5124  *
5125  * This hook allows a module to free the security structure for a TUN device.
5126  */
security_tun_dev_free_security(void * security)5127 void security_tun_dev_free_security(void *security)
5128 {
5129 	kfree(security);
5130 }
5131 EXPORT_SYMBOL(security_tun_dev_free_security);
5132 
5133 /**
5134  * security_tun_dev_create() - Check if creating a TUN device is allowed
5135  *
5136  * Check permissions prior to creating a new TUN device.
5137  *
5138  * Return: Returns 0 if permission is granted.
5139  */
security_tun_dev_create(void)5140 int security_tun_dev_create(void)
5141 {
5142 	return call_int_hook(tun_dev_create);
5143 }
5144 EXPORT_SYMBOL(security_tun_dev_create);
5145 
5146 /**
5147  * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed
5148  * @security: TUN device LSM blob
5149  *
5150  * Check permissions prior to attaching to a TUN device queue.
5151  *
5152  * Return: Returns 0 if permission is granted.
5153  */
security_tun_dev_attach_queue(void * security)5154 int security_tun_dev_attach_queue(void *security)
5155 {
5156 	return call_int_hook(tun_dev_attach_queue, security);
5157 }
5158 EXPORT_SYMBOL(security_tun_dev_attach_queue);
5159 
5160 /**
5161  * security_tun_dev_attach() - Update TUN device LSM state on attach
5162  * @sk: associated sock
5163  * @security: TUN device LSM blob
5164  *
5165  * This hook can be used by the module to update any security state associated
5166  * with the TUN device's sock structure.
5167  *
5168  * Return: Returns 0 if permission is granted.
5169  */
security_tun_dev_attach(struct sock * sk,void * security)5170 int security_tun_dev_attach(struct sock *sk, void *security)
5171 {
5172 	return call_int_hook(tun_dev_attach, sk, security);
5173 }
5174 EXPORT_SYMBOL(security_tun_dev_attach);
5175 
5176 /**
5177  * security_tun_dev_open() - Update TUN device LSM state on open
5178  * @security: TUN device LSM blob
5179  *
5180  * This hook can be used by the module to update any security state associated
5181  * with the TUN device's security structure.
5182  *
5183  * Return: Returns 0 if permission is granted.
5184  */
security_tun_dev_open(void * security)5185 int security_tun_dev_open(void *security)
5186 {
5187 	return call_int_hook(tun_dev_open, security);
5188 }
5189 EXPORT_SYMBOL(security_tun_dev_open);
5190 
5191 /**
5192  * security_sctp_assoc_request() - Update the LSM on a SCTP association req
5193  * @asoc: SCTP association
5194  * @skb: packet requesting the association
5195  *
5196  * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM.
5197  *
5198  * Return: Returns 0 on success, error on failure.
5199  */
security_sctp_assoc_request(struct sctp_association * asoc,struct sk_buff * skb)5200 int security_sctp_assoc_request(struct sctp_association *asoc,
5201 				struct sk_buff *skb)
5202 {
5203 	return call_int_hook(sctp_assoc_request, asoc, skb);
5204 }
5205 EXPORT_SYMBOL(security_sctp_assoc_request);
5206 
5207 /**
5208  * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option
5209  * @sk: socket
5210  * @optname: SCTP option to validate
5211  * @address: list of IP addresses to validate
5212  * @addrlen: length of the address list
5213  *
5214  * Validiate permissions required for each address associated with sock	@sk.
5215  * Depending on @optname, the addresses will be treated as either a connect or
5216  * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using
5217  * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6).
5218  *
5219  * Return: Returns 0 on success, error on failure.
5220  */
security_sctp_bind_connect(struct sock * sk,int optname,struct sockaddr * address,int addrlen)5221 int security_sctp_bind_connect(struct sock *sk, int optname,
5222 			       struct sockaddr *address, int addrlen)
5223 {
5224 	return call_int_hook(sctp_bind_connect, sk, optname, address, addrlen);
5225 }
5226 EXPORT_SYMBOL(security_sctp_bind_connect);
5227 
5228 /**
5229  * security_sctp_sk_clone() - Clone a SCTP sock's LSM state
5230  * @asoc: SCTP association
5231  * @sk: original sock
5232  * @newsk: target sock
5233  *
5234  * Called whenever a new socket is created by accept(2) (i.e. a TCP style
5235  * socket) or when a socket is 'peeled off' e.g userspace calls
5236  * sctp_peeloff(3).
5237  */
security_sctp_sk_clone(struct sctp_association * asoc,struct sock * sk,struct sock * newsk)5238 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5239 			    struct sock *newsk)
5240 {
5241 	call_void_hook(sctp_sk_clone, asoc, sk, newsk);
5242 }
5243 EXPORT_SYMBOL(security_sctp_sk_clone);
5244 
5245 /**
5246  * security_sctp_assoc_established() - Update LSM state when assoc established
5247  * @asoc: SCTP association
5248  * @skb: packet establishing the association
5249  *
5250  * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the
5251  * security module.
5252  *
5253  * Return: Returns 0 if permission is granted.
5254  */
security_sctp_assoc_established(struct sctp_association * asoc,struct sk_buff * skb)5255 int security_sctp_assoc_established(struct sctp_association *asoc,
5256 				    struct sk_buff *skb)
5257 {
5258 	return call_int_hook(sctp_assoc_established, asoc, skb);
5259 }
5260 EXPORT_SYMBOL(security_sctp_assoc_established);
5261 
5262 /**
5263  * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket
5264  * @sk: the owning MPTCP socket
5265  * @ssk: the new subflow
5266  *
5267  * Update the labeling for the given MPTCP subflow, to match the one of the
5268  * owning MPTCP socket. This hook has to be called after the socket creation and
5269  * initialization via the security_socket_create() and
5270  * security_socket_post_create() LSM hooks.
5271  *
5272  * Return: Returns 0 on success or a negative error code on failure.
5273  */
security_mptcp_add_subflow(struct sock * sk,struct sock * ssk)5274 int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5275 {
5276 	return call_int_hook(mptcp_add_subflow, sk, ssk);
5277 }
5278 
5279 #endif	/* CONFIG_SECURITY_NETWORK */
5280 
5281 #ifdef CONFIG_SECURITY_INFINIBAND
5282 /**
5283  * security_ib_pkey_access() - Check if access to an IB pkey is allowed
5284  * @sec: LSM blob
5285  * @subnet_prefix: subnet prefix of the port
5286  * @pkey: IB pkey
5287  *
5288  * Check permission to access a pkey when modifying a QP.
5289  *
5290  * Return: Returns 0 if permission is granted.
5291  */
security_ib_pkey_access(void * sec,u64 subnet_prefix,u16 pkey)5292 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
5293 {
5294 	return call_int_hook(ib_pkey_access, sec, subnet_prefix, pkey);
5295 }
5296 EXPORT_SYMBOL(security_ib_pkey_access);
5297 
5298 /**
5299  * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed
5300  * @sec: LSM blob
5301  * @dev_name: IB device name
5302  * @port_num: port number
5303  *
5304  * Check permissions to send and receive SMPs on a end port.
5305  *
5306  * Return: Returns 0 if permission is granted.
5307  */
security_ib_endport_manage_subnet(void * sec,const char * dev_name,u8 port_num)5308 int security_ib_endport_manage_subnet(void *sec,
5309 				      const char *dev_name, u8 port_num)
5310 {
5311 	return call_int_hook(ib_endport_manage_subnet, sec, dev_name, port_num);
5312 }
5313 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
5314 
5315 /**
5316  * security_ib_alloc_security() - Allocate an Infiniband LSM blob
5317  * @sec: LSM blob
5318  *
5319  * Allocate a security structure for Infiniband objects.
5320  *
5321  * Return: Returns 0 on success, non-zero on failure.
5322  */
security_ib_alloc_security(void ** sec)5323 int security_ib_alloc_security(void **sec)
5324 {
5325 	int rc;
5326 
5327 	rc = lsm_blob_alloc(sec, blob_sizes.lbs_ib, GFP_KERNEL);
5328 	if (rc)
5329 		return rc;
5330 
5331 	rc = call_int_hook(ib_alloc_security, *sec);
5332 	if (rc) {
5333 		kfree(*sec);
5334 		*sec = NULL;
5335 	}
5336 	return rc;
5337 }
5338 EXPORT_SYMBOL(security_ib_alloc_security);
5339 
5340 /**
5341  * security_ib_free_security() - Free an Infiniband LSM blob
5342  * @sec: LSM blob
5343  *
5344  * Deallocate an Infiniband security structure.
5345  */
security_ib_free_security(void * sec)5346 void security_ib_free_security(void *sec)
5347 {
5348 	kfree(sec);
5349 }
5350 EXPORT_SYMBOL(security_ib_free_security);
5351 #endif	/* CONFIG_SECURITY_INFINIBAND */
5352 
5353 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5354 /**
5355  * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob
5356  * @ctxp: xfrm security context being added to the SPD
5357  * @sec_ctx: security label provided by userspace
5358  * @gfp: gfp flags
5359  *
5360  * Allocate a security structure to the xp->security field; the security field
5361  * is initialized to NULL when the xfrm_policy is allocated.
5362  *
5363  * Return:  Return 0 if operation was successful.
5364  */
security_xfrm_policy_alloc(struct xfrm_sec_ctx ** ctxp,struct xfrm_user_sec_ctx * sec_ctx,gfp_t gfp)5365 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
5366 			       struct xfrm_user_sec_ctx *sec_ctx,
5367 			       gfp_t gfp)
5368 {
5369 	return call_int_hook(xfrm_policy_alloc_security, ctxp, sec_ctx, gfp);
5370 }
5371 EXPORT_SYMBOL(security_xfrm_policy_alloc);
5372 
5373 /**
5374  * security_xfrm_policy_clone() - Clone xfrm policy LSM state
5375  * @old_ctx: xfrm security context
5376  * @new_ctxp: target xfrm security context
5377  *
5378  * Allocate a security structure in new_ctxp that contains the information from
5379  * the old_ctx structure.
5380  *
5381  * Return: Return 0 if operation was successful.
5382  */
security_xfrm_policy_clone(struct xfrm_sec_ctx * old_ctx,struct xfrm_sec_ctx ** new_ctxp)5383 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
5384 			       struct xfrm_sec_ctx **new_ctxp)
5385 {
5386 	return call_int_hook(xfrm_policy_clone_security, old_ctx, new_ctxp);
5387 }
5388 
5389 /**
5390  * security_xfrm_policy_free() - Free a xfrm security context
5391  * @ctx: xfrm security context
5392  *
5393  * Free LSM resources associated with @ctx.
5394  */
security_xfrm_policy_free(struct xfrm_sec_ctx * ctx)5395 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
5396 {
5397 	call_void_hook(xfrm_policy_free_security, ctx);
5398 }
5399 EXPORT_SYMBOL(security_xfrm_policy_free);
5400 
5401 /**
5402  * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed
5403  * @ctx: xfrm security context
5404  *
5405  * Authorize deletion of a SPD entry.
5406  *
5407  * Return: Returns 0 if permission is granted.
5408  */
security_xfrm_policy_delete(struct xfrm_sec_ctx * ctx)5409 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
5410 {
5411 	return call_int_hook(xfrm_policy_delete_security, ctx);
5412 }
5413 
5414 /**
5415  * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob
5416  * @x: xfrm state being added to the SAD
5417  * @sec_ctx: security label provided by userspace
5418  *
5419  * Allocate a security structure to the @x->security field; the security field
5420  * is initialized to NULL when the xfrm_state is allocated. Set the context to
5421  * correspond to @sec_ctx.
5422  *
5423  * Return: Return 0 if operation was successful.
5424  */
security_xfrm_state_alloc(struct xfrm_state * x,struct xfrm_user_sec_ctx * sec_ctx)5425 int security_xfrm_state_alloc(struct xfrm_state *x,
5426 			      struct xfrm_user_sec_ctx *sec_ctx)
5427 {
5428 	return call_int_hook(xfrm_state_alloc, x, sec_ctx);
5429 }
5430 EXPORT_SYMBOL(security_xfrm_state_alloc);
5431 
5432 /**
5433  * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob
5434  * @x: xfrm state being added to the SAD
5435  * @polsec: associated policy's security context
5436  * @secid: secid from the flow
5437  *
5438  * Allocate a security structure to the x->security field; the security field
5439  * is initialized to NULL when the xfrm_state is allocated.  Set the context to
5440  * correspond to secid.
5441  *
5442  * Return: Returns 0 if operation was successful.
5443  */
security_xfrm_state_alloc_acquire(struct xfrm_state * x,struct xfrm_sec_ctx * polsec,u32 secid)5444 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
5445 				      struct xfrm_sec_ctx *polsec, u32 secid)
5446 {
5447 	return call_int_hook(xfrm_state_alloc_acquire, x, polsec, secid);
5448 }
5449 
5450 /**
5451  * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed
5452  * @x: xfrm state
5453  *
5454  * Authorize deletion of x->security.
5455  *
5456  * Return: Returns 0 if permission is granted.
5457  */
security_xfrm_state_delete(struct xfrm_state * x)5458 int security_xfrm_state_delete(struct xfrm_state *x)
5459 {
5460 	return call_int_hook(xfrm_state_delete_security, x);
5461 }
5462 EXPORT_SYMBOL(security_xfrm_state_delete);
5463 
5464 /**
5465  * security_xfrm_state_free() - Free a xfrm state
5466  * @x: xfrm state
5467  *
5468  * Deallocate x->security.
5469  */
security_xfrm_state_free(struct xfrm_state * x)5470 void security_xfrm_state_free(struct xfrm_state *x)
5471 {
5472 	call_void_hook(xfrm_state_free_security, x);
5473 }
5474 
5475 /**
5476  * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed
5477  * @ctx: target xfrm security context
5478  * @fl_secid: flow secid used to authorize access
5479  *
5480  * Check permission when a flow selects a xfrm_policy for processing XFRMs on a
5481  * packet.  The hook is called when selecting either a per-socket policy or a
5482  * generic xfrm policy.
5483  *
5484  * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on
5485  *         other errors.
5486  */
security_xfrm_policy_lookup(struct xfrm_sec_ctx * ctx,u32 fl_secid)5487 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
5488 {
5489 	return call_int_hook(xfrm_policy_lookup, ctx, fl_secid);
5490 }
5491 
5492 /**
5493  * security_xfrm_state_pol_flow_match() - Check for a xfrm match
5494  * @x: xfrm state to match
5495  * @xp: xfrm policy to check for a match
5496  * @flic: flow to check for a match.
5497  *
5498  * Check @xp and @flic for a match with @x.
5499  *
5500  * Return: Returns 1 if there is a match.
5501  */
security_xfrm_state_pol_flow_match(struct xfrm_state * x,struct xfrm_policy * xp,const struct flowi_common * flic)5502 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
5503 				       struct xfrm_policy *xp,
5504 				       const struct flowi_common *flic)
5505 {
5506 	struct lsm_static_call *scall;
5507 	int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
5508 
5509 	/*
5510 	 * Since this function is expected to return 0 or 1, the judgment
5511 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
5512 	 * we can use the first LSM's judgment because currently only SELinux
5513 	 * supplies this call.
5514 	 *
5515 	 * For speed optimization, we explicitly break the loop rather than
5516 	 * using the macro
5517 	 */
5518 	lsm_for_each_hook(scall, xfrm_state_pol_flow_match) {
5519 		rc = scall->hl->hook.xfrm_state_pol_flow_match(x, xp, flic);
5520 		break;
5521 	}
5522 	return rc;
5523 }
5524 
5525 /**
5526  * security_xfrm_decode_session() - Determine the xfrm secid for a packet
5527  * @skb: xfrm packet
5528  * @secid: secid
5529  *
5530  * Decode the packet in @skb and return the security label in @secid.
5531  *
5532  * Return: Return 0 if all xfrms used have the same secid.
5533  */
security_xfrm_decode_session(struct sk_buff * skb,u32 * secid)5534 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
5535 {
5536 	return call_int_hook(xfrm_decode_session, skb, secid, 1);
5537 }
5538 
security_skb_classify_flow(struct sk_buff * skb,struct flowi_common * flic)5539 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
5540 {
5541 	int rc = call_int_hook(xfrm_decode_session, skb, &flic->flowic_secid,
5542 			       0);
5543 
5544 	BUG_ON(rc);
5545 }
5546 EXPORT_SYMBOL(security_skb_classify_flow);
5547 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
5548 
5549 #ifdef CONFIG_KEYS
5550 /**
5551  * security_key_alloc() - Allocate and initialize a kernel key LSM blob
5552  * @key: key
5553  * @cred: credentials
5554  * @flags: allocation flags
5555  *
5556  * Permit allocation of a key and assign security data. Note that key does not
5557  * have a serial number assigned at this point.
5558  *
5559  * Return: Return 0 if permission is granted, -ve error otherwise.
5560  */
security_key_alloc(struct key * key,const struct cred * cred,unsigned long flags)5561 int security_key_alloc(struct key *key, const struct cred *cred,
5562 		       unsigned long flags)
5563 {
5564 	int rc = lsm_key_alloc(key);
5565 
5566 	if (unlikely(rc))
5567 		return rc;
5568 	rc = call_int_hook(key_alloc, key, cred, flags);
5569 	if (unlikely(rc))
5570 		security_key_free(key);
5571 	return rc;
5572 }
5573 
5574 /**
5575  * security_key_free() - Free a kernel key LSM blob
5576  * @key: key
5577  *
5578  * Notification of destruction; free security data.
5579  */
security_key_free(struct key * key)5580 void security_key_free(struct key *key)
5581 {
5582 	kfree(key->security);
5583 	key->security = NULL;
5584 }
5585 
5586 /**
5587  * security_key_permission() - Check if a kernel key operation is allowed
5588  * @key_ref: key reference
5589  * @cred: credentials of actor requesting access
5590  * @need_perm: requested permissions
5591  *
5592  * See whether a specific operational right is granted to a process on a key.
5593  *
5594  * Return: Return 0 if permission is granted, -ve error otherwise.
5595  */
security_key_permission(key_ref_t key_ref,const struct cred * cred,enum key_need_perm need_perm)5596 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
5597 			    enum key_need_perm need_perm)
5598 {
5599 	return call_int_hook(key_permission, key_ref, cred, need_perm);
5600 }
5601 
5602 /**
5603  * security_key_getsecurity() - Get the key's security label
5604  * @key: key
5605  * @buffer: security label buffer
5606  *
5607  * Get a textual representation of the security context attached to a key for
5608  * the purposes of honouring KEYCTL_GETSECURITY.  This function allocates the
5609  * storage for the NUL-terminated string and the caller should free it.
5610  *
5611  * Return: Returns the length of @buffer (including terminating NUL) or -ve if
5612  *         an error occurs.  May also return 0 (and a NULL buffer pointer) if
5613  *         there is no security label assigned to the key.
5614  */
security_key_getsecurity(struct key * key,char ** buffer)5615 int security_key_getsecurity(struct key *key, char **buffer)
5616 {
5617 	*buffer = NULL;
5618 	return call_int_hook(key_getsecurity, key, buffer);
5619 }
5620 
5621 /**
5622  * security_key_post_create_or_update() - Notification of key create or update
5623  * @keyring: keyring to which the key is linked to
5624  * @key: created or updated key
5625  * @payload: data used to instantiate or update the key
5626  * @payload_len: length of payload
5627  * @flags: key flags
5628  * @create: flag indicating whether the key was created or updated
5629  *
5630  * Notify the caller of a key creation or update.
5631  */
security_key_post_create_or_update(struct key * keyring,struct key * key,const void * payload,size_t payload_len,unsigned long flags,bool create)5632 void security_key_post_create_or_update(struct key *keyring, struct key *key,
5633 					const void *payload, size_t payload_len,
5634 					unsigned long flags, bool create)
5635 {
5636 	call_void_hook(key_post_create_or_update, keyring, key, payload,
5637 		       payload_len, flags, create);
5638 }
5639 #endif	/* CONFIG_KEYS */
5640 
5641 #ifdef CONFIG_AUDIT
5642 /**
5643  * security_audit_rule_init() - Allocate and init an LSM audit rule struct
5644  * @field: audit action
5645  * @op: rule operator
5646  * @rulestr: rule context
5647  * @lsmrule: receive buffer for audit rule struct
5648  * @gfp: GFP flag used for kmalloc
5649  *
5650  * Allocate and initialize an LSM audit rule structure.
5651  *
5652  * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of
5653  *         an invalid rule.
5654  */
security_audit_rule_init(u32 field,u32 op,char * rulestr,void ** lsmrule,gfp_t gfp)5655 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule,
5656 			     gfp_t gfp)
5657 {
5658 	return call_int_hook(audit_rule_init, field, op, rulestr, lsmrule, gfp);
5659 }
5660 
5661 /**
5662  * security_audit_rule_known() - Check if an audit rule contains LSM fields
5663  * @krule: audit rule
5664  *
5665  * Specifies whether given @krule contains any fields related to the current
5666  * LSM.
5667  *
5668  * Return: Returns 1 in case of relation found, 0 otherwise.
5669  */
security_audit_rule_known(struct audit_krule * krule)5670 int security_audit_rule_known(struct audit_krule *krule)
5671 {
5672 	return call_int_hook(audit_rule_known, krule);
5673 }
5674 
5675 /**
5676  * security_audit_rule_free() - Free an LSM audit rule struct
5677  * @lsmrule: audit rule struct
5678  *
5679  * Deallocate the LSM audit rule structure previously allocated by
5680  * audit_rule_init().
5681  */
security_audit_rule_free(void * lsmrule)5682 void security_audit_rule_free(void *lsmrule)
5683 {
5684 	call_void_hook(audit_rule_free, lsmrule);
5685 }
5686 
5687 /**
5688  * security_audit_rule_match() - Check if a label matches an audit rule
5689  * @prop: security label
5690  * @field: LSM audit field
5691  * @op: matching operator
5692  * @lsmrule: audit rule
5693  *
5694  * Determine if given @secid matches a rule previously approved by
5695  * security_audit_rule_known().
5696  *
5697  * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on
5698  *         failure.
5699  */
security_audit_rule_match(struct lsm_prop * prop,u32 field,u32 op,void * lsmrule)5700 int security_audit_rule_match(struct lsm_prop *prop, u32 field, u32 op,
5701 			      void *lsmrule)
5702 {
5703 	return call_int_hook(audit_rule_match, prop, field, op, lsmrule);
5704 }
5705 #endif /* CONFIG_AUDIT */
5706 
5707 #ifdef CONFIG_BPF_SYSCALL
5708 /**
5709  * security_bpf() - Check if the bpf syscall operation is allowed
5710  * @cmd: command
5711  * @attr: bpf attribute
5712  * @size: size
5713  * @kernel: whether or not call originated from kernel
5714  *
5715  * Do a initial check for all bpf syscalls after the attribute is copied into
5716  * the kernel. The actual security module can implement their own rules to
5717  * check the specific cmd they need.
5718  *
5719  * Return: Returns 0 if permission is granted.
5720  */
security_bpf(int cmd,union bpf_attr * attr,unsigned int size,bool kernel)5721 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size, bool kernel)
5722 {
5723 	return call_int_hook(bpf, cmd, attr, size, kernel);
5724 }
5725 
5726 /**
5727  * security_bpf_map() - Check if access to a bpf map is allowed
5728  * @map: bpf map
5729  * @fmode: mode
5730  *
5731  * Do a check when the kernel generates and returns a file descriptor for eBPF
5732  * maps.
5733  *
5734  * Return: Returns 0 if permission is granted.
5735  */
security_bpf_map(struct bpf_map * map,fmode_t fmode)5736 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
5737 {
5738 	return call_int_hook(bpf_map, map, fmode);
5739 }
5740 
5741 /**
5742  * security_bpf_prog() - Check if access to a bpf program is allowed
5743  * @prog: bpf program
5744  *
5745  * Do a check when the kernel generates and returns a file descriptor for eBPF
5746  * programs.
5747  *
5748  * Return: Returns 0 if permission is granted.
5749  */
security_bpf_prog(struct bpf_prog * prog)5750 int security_bpf_prog(struct bpf_prog *prog)
5751 {
5752 	return call_int_hook(bpf_prog, prog);
5753 }
5754 
5755 /**
5756  * security_bpf_map_create() - Check if BPF map creation is allowed
5757  * @map: BPF map object
5758  * @attr: BPF syscall attributes used to create BPF map
5759  * @token: BPF token used to grant user access
5760  * @kernel: whether or not call originated from kernel
5761  *
5762  * Do a check when the kernel creates a new BPF map. This is also the
5763  * point where LSM blob is allocated for LSMs that need them.
5764  *
5765  * Return: Returns 0 on success, error on failure.
5766  */
security_bpf_map_create(struct bpf_map * map,union bpf_attr * attr,struct bpf_token * token,bool kernel)5767 int security_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
5768 			    struct bpf_token *token, bool kernel)
5769 {
5770 	int rc;
5771 
5772 	rc = lsm_bpf_map_alloc(map);
5773 	if (unlikely(rc))
5774 		return rc;
5775 
5776 	rc = call_int_hook(bpf_map_create, map, attr, token, kernel);
5777 	if (unlikely(rc))
5778 		security_bpf_map_free(map);
5779 	return rc;
5780 }
5781 
5782 /**
5783  * security_bpf_prog_load() - Check if loading of BPF program is allowed
5784  * @prog: BPF program object
5785  * @attr: BPF syscall attributes used to create BPF program
5786  * @token: BPF token used to grant user access to BPF subsystem
5787  * @kernel: whether or not call originated from kernel
5788  *
5789  * Perform an access control check when the kernel loads a BPF program and
5790  * allocates associated BPF program object. This hook is also responsible for
5791  * allocating any required LSM state for the BPF program.
5792  *
5793  * Return: Returns 0 on success, error on failure.
5794  */
security_bpf_prog_load(struct bpf_prog * prog,union bpf_attr * attr,struct bpf_token * token,bool kernel)5795 int security_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
5796 			   struct bpf_token *token, bool kernel)
5797 {
5798 	int rc;
5799 
5800 	rc = lsm_bpf_prog_alloc(prog);
5801 	if (unlikely(rc))
5802 		return rc;
5803 
5804 	rc = call_int_hook(bpf_prog_load, prog, attr, token, kernel);
5805 	if (unlikely(rc))
5806 		security_bpf_prog_free(prog);
5807 	return rc;
5808 }
5809 
5810 /**
5811  * security_bpf_token_create() - Check if creating of BPF token is allowed
5812  * @token: BPF token object
5813  * @attr: BPF syscall attributes used to create BPF token
5814  * @path: path pointing to BPF FS mount point from which BPF token is created
5815  *
5816  * Do a check when the kernel instantiates a new BPF token object from BPF FS
5817  * instance. This is also the point where LSM blob can be allocated for LSMs.
5818  *
5819  * Return: Returns 0 on success, error on failure.
5820  */
security_bpf_token_create(struct bpf_token * token,union bpf_attr * attr,const struct path * path)5821 int security_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
5822 			      const struct path *path)
5823 {
5824 	int rc;
5825 
5826 	rc = lsm_bpf_token_alloc(token);
5827 	if (unlikely(rc))
5828 		return rc;
5829 
5830 	rc = call_int_hook(bpf_token_create, token, attr, path);
5831 	if (unlikely(rc))
5832 		security_bpf_token_free(token);
5833 	return rc;
5834 }
5835 
5836 /**
5837  * security_bpf_token_cmd() - Check if BPF token is allowed to delegate
5838  * requested BPF syscall command
5839  * @token: BPF token object
5840  * @cmd: BPF syscall command requested to be delegated by BPF token
5841  *
5842  * Do a check when the kernel decides whether provided BPF token should allow
5843  * delegation of requested BPF syscall command.
5844  *
5845  * Return: Returns 0 on success, error on failure.
5846  */
security_bpf_token_cmd(const struct bpf_token * token,enum bpf_cmd cmd)5847 int security_bpf_token_cmd(const struct bpf_token *token, enum bpf_cmd cmd)
5848 {
5849 	return call_int_hook(bpf_token_cmd, token, cmd);
5850 }
5851 
5852 /**
5853  * security_bpf_token_capable() - Check if BPF token is allowed to delegate
5854  * requested BPF-related capability
5855  * @token: BPF token object
5856  * @cap: capabilities requested to be delegated by BPF token
5857  *
5858  * Do a check when the kernel decides whether provided BPF token should allow
5859  * delegation of requested BPF-related capabilities.
5860  *
5861  * Return: Returns 0 on success, error on failure.
5862  */
security_bpf_token_capable(const struct bpf_token * token,int cap)5863 int security_bpf_token_capable(const struct bpf_token *token, int cap)
5864 {
5865 	return call_int_hook(bpf_token_capable, token, cap);
5866 }
5867 
5868 /**
5869  * security_bpf_map_free() - Free a bpf map's LSM blob
5870  * @map: bpf map
5871  *
5872  * Clean up the security information stored inside bpf map.
5873  */
security_bpf_map_free(struct bpf_map * map)5874 void security_bpf_map_free(struct bpf_map *map)
5875 {
5876 	call_void_hook(bpf_map_free, map);
5877 	kfree(map->security);
5878 	map->security = NULL;
5879 }
5880 
5881 /**
5882  * security_bpf_prog_free() - Free a BPF program's LSM blob
5883  * @prog: BPF program struct
5884  *
5885  * Clean up the security information stored inside BPF program.
5886  */
security_bpf_prog_free(struct bpf_prog * prog)5887 void security_bpf_prog_free(struct bpf_prog *prog)
5888 {
5889 	call_void_hook(bpf_prog_free, prog);
5890 	kfree(prog->aux->security);
5891 	prog->aux->security = NULL;
5892 }
5893 
5894 /**
5895  * security_bpf_token_free() - Free a BPF token's LSM blob
5896  * @token: BPF token struct
5897  *
5898  * Clean up the security information stored inside BPF token.
5899  */
security_bpf_token_free(struct bpf_token * token)5900 void security_bpf_token_free(struct bpf_token *token)
5901 {
5902 	call_void_hook(bpf_token_free, token);
5903 	kfree(token->security);
5904 	token->security = NULL;
5905 }
5906 #endif /* CONFIG_BPF_SYSCALL */
5907 
5908 /**
5909  * security_locked_down() - Check if a kernel feature is allowed
5910  * @what: requested kernel feature
5911  *
5912  * Determine whether a kernel feature that potentially enables arbitrary code
5913  * execution in kernel space should be permitted.
5914  *
5915  * Return: Returns 0 if permission is granted.
5916  */
security_locked_down(enum lockdown_reason what)5917 int security_locked_down(enum lockdown_reason what)
5918 {
5919 	return call_int_hook(locked_down, what);
5920 }
5921 EXPORT_SYMBOL(security_locked_down);
5922 
5923 /**
5924  * security_bdev_alloc() - Allocate a block device LSM blob
5925  * @bdev: block device
5926  *
5927  * Allocate and attach a security structure to @bdev->bd_security.  The
5928  * security field is initialized to NULL when the bdev structure is
5929  * allocated.
5930  *
5931  * Return: Return 0 if operation was successful.
5932  */
security_bdev_alloc(struct block_device * bdev)5933 int security_bdev_alloc(struct block_device *bdev)
5934 {
5935 	int rc = 0;
5936 
5937 	rc = lsm_bdev_alloc(bdev);
5938 	if (unlikely(rc))
5939 		return rc;
5940 
5941 	rc = call_int_hook(bdev_alloc_security, bdev);
5942 	if (unlikely(rc))
5943 		security_bdev_free(bdev);
5944 
5945 	return rc;
5946 }
5947 EXPORT_SYMBOL(security_bdev_alloc);
5948 
5949 /**
5950  * security_bdev_free() - Free a block device's LSM blob
5951  * @bdev: block device
5952  *
5953  * Deallocate the bdev security structure and set @bdev->bd_security to NULL.
5954  */
security_bdev_free(struct block_device * bdev)5955 void security_bdev_free(struct block_device *bdev)
5956 {
5957 	if (!bdev->bd_security)
5958 		return;
5959 
5960 	call_void_hook(bdev_free_security, bdev);
5961 
5962 	kfree(bdev->bd_security);
5963 	bdev->bd_security = NULL;
5964 }
5965 EXPORT_SYMBOL(security_bdev_free);
5966 
5967 /**
5968  * security_bdev_setintegrity() - Set the device's integrity data
5969  * @bdev: block device
5970  * @type: type of integrity, e.g. hash digest, signature, etc
5971  * @value: the integrity value
5972  * @size: size of the integrity value
5973  *
5974  * Register a verified integrity measurement of a bdev with LSMs.
5975  * LSMs should free the previously saved data if @value is NULL.
5976  * Please note that the new hook should be invoked every time the security
5977  * information is updated to keep these data current. For example, in dm-verity,
5978  * if the mapping table is reloaded and configured to use a different dm-verity
5979  * target with a new roothash and signing information, the previously stored
5980  * data in the LSM blob will become obsolete. It is crucial to re-invoke the
5981  * hook to refresh these data and ensure they are up to date. This necessity
5982  * arises from the design of device-mapper, where a device-mapper device is
5983  * first created, and then targets are subsequently loaded into it. These
5984  * targets can be modified multiple times during the device's lifetime.
5985  * Therefore, while the LSM blob is allocated during the creation of the block
5986  * device, its actual contents are not initialized at this stage and can change
5987  * substantially over time. This includes alterations from data that the LSMs
5988  * 'trusts' to those they do not, making it essential to handle these changes
5989  * correctly. Failure to address this dynamic aspect could potentially allow
5990  * for bypassing LSM checks.
5991  *
5992  * Return: Returns 0 on success, negative values on failure.
5993  */
security_bdev_setintegrity(struct block_device * bdev,enum lsm_integrity_type type,const void * value,size_t size)5994 int security_bdev_setintegrity(struct block_device *bdev,
5995 			       enum lsm_integrity_type type, const void *value,
5996 			       size_t size)
5997 {
5998 	return call_int_hook(bdev_setintegrity, bdev, type, value, size);
5999 }
6000 EXPORT_SYMBOL(security_bdev_setintegrity);
6001 
6002 #ifdef CONFIG_PERF_EVENTS
6003 /**
6004  * security_perf_event_open() - Check if a perf event open is allowed
6005  * @type: type of event
6006  *
6007  * Check whether the @type of perf_event_open syscall is allowed.
6008  *
6009  * Return: Returns 0 if permission is granted.
6010  */
security_perf_event_open(int type)6011 int security_perf_event_open(int type)
6012 {
6013 	return call_int_hook(perf_event_open, type);
6014 }
6015 
6016 /**
6017  * security_perf_event_alloc() - Allocate a perf event LSM blob
6018  * @event: perf event
6019  *
6020  * Allocate and save perf_event security info.
6021  *
6022  * Return: Returns 0 on success, error on failure.
6023  */
security_perf_event_alloc(struct perf_event * event)6024 int security_perf_event_alloc(struct perf_event *event)
6025 {
6026 	int rc;
6027 
6028 	rc = lsm_blob_alloc(&event->security, blob_sizes.lbs_perf_event,
6029 			    GFP_KERNEL);
6030 	if (rc)
6031 		return rc;
6032 
6033 	rc = call_int_hook(perf_event_alloc, event);
6034 	if (rc) {
6035 		kfree(event->security);
6036 		event->security = NULL;
6037 	}
6038 	return rc;
6039 }
6040 
6041 /**
6042  * security_perf_event_free() - Free a perf event LSM blob
6043  * @event: perf event
6044  *
6045  * Release (free) perf_event security info.
6046  */
security_perf_event_free(struct perf_event * event)6047 void security_perf_event_free(struct perf_event *event)
6048 {
6049 	kfree(event->security);
6050 	event->security = NULL;
6051 }
6052 
6053 /**
6054  * security_perf_event_read() - Check if reading a perf event label is allowed
6055  * @event: perf event
6056  *
6057  * Read perf_event security info if allowed.
6058  *
6059  * Return: Returns 0 if permission is granted.
6060  */
security_perf_event_read(struct perf_event * event)6061 int security_perf_event_read(struct perf_event *event)
6062 {
6063 	return call_int_hook(perf_event_read, event);
6064 }
6065 
6066 /**
6067  * security_perf_event_write() - Check if writing a perf event label is allowed
6068  * @event: perf event
6069  *
6070  * Write perf_event security info if allowed.
6071  *
6072  * Return: Returns 0 if permission is granted.
6073  */
security_perf_event_write(struct perf_event * event)6074 int security_perf_event_write(struct perf_event *event)
6075 {
6076 	return call_int_hook(perf_event_write, event);
6077 }
6078 #endif /* CONFIG_PERF_EVENTS */
6079 
6080 #ifdef CONFIG_IO_URING
6081 /**
6082  * security_uring_override_creds() - Check if overriding creds is allowed
6083  * @new: new credentials
6084  *
6085  * Check if the current task, executing an io_uring operation, is allowed to
6086  * override it's credentials with @new.
6087  *
6088  * Return: Returns 0 if permission is granted.
6089  */
security_uring_override_creds(const struct cred * new)6090 int security_uring_override_creds(const struct cred *new)
6091 {
6092 	return call_int_hook(uring_override_creds, new);
6093 }
6094 
6095 /**
6096  * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed
6097  *
6098  * Check whether the current task is allowed to spawn a io_uring polling thread
6099  * (IORING_SETUP_SQPOLL).
6100  *
6101  * Return: Returns 0 if permission is granted.
6102  */
security_uring_sqpoll(void)6103 int security_uring_sqpoll(void)
6104 {
6105 	return call_int_hook(uring_sqpoll);
6106 }
6107 
6108 /**
6109  * security_uring_cmd() - Check if a io_uring passthrough command is allowed
6110  * @ioucmd: command
6111  *
6112  * Check whether the file_operations uring_cmd is allowed to run.
6113  *
6114  * Return: Returns 0 if permission is granted.
6115  */
security_uring_cmd(struct io_uring_cmd * ioucmd)6116 int security_uring_cmd(struct io_uring_cmd *ioucmd)
6117 {
6118 	return call_int_hook(uring_cmd, ioucmd);
6119 }
6120 
6121 /**
6122  * security_uring_allowed() - Check if io_uring_setup() is allowed
6123  *
6124  * Check whether the current task is allowed to call io_uring_setup().
6125  *
6126  * Return: Returns 0 if permission is granted.
6127  */
security_uring_allowed(void)6128 int security_uring_allowed(void)
6129 {
6130 	return call_int_hook(uring_allowed);
6131 }
6132 #endif /* CONFIG_IO_URING */
6133 
6134 /**
6135  * security_initramfs_populated() - Notify LSMs that initramfs has been loaded
6136  *
6137  * Tells the LSMs the initramfs has been unpacked into the rootfs.
6138  */
security_initramfs_populated(void)6139 void security_initramfs_populated(void)
6140 {
6141 	call_void_hook(initramfs_populated);
6142 }
6143