1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Shared application/kernel submission and completion ring pairs, for 4 * supporting fast/efficient IO. 5 * 6 * A note on the read/write ordering memory barriers that are matched between 7 * the application and kernel side. 8 * 9 * After the application reads the CQ ring tail, it must use an 10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses 11 * before writing the tail (using smp_load_acquire to read the tail will 12 * do). It also needs a smp_mb() before updating CQ head (ordering the 13 * entry load(s) with the head store), pairing with an implicit barrier 14 * through a control-dependency in io_get_cqe (smp_store_release to 15 * store head will do). Failure to do so could lead to reading invalid 16 * CQ entries. 17 * 18 * Likewise, the application must use an appropriate smp_wmb() before 19 * writing the SQ tail (ordering SQ entry stores with the tail store), 20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release 21 * to store the tail will do). And it needs a barrier ordering the SQ 22 * head load before writing new SQ entries (smp_load_acquire to read 23 * head will do). 24 * 25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application 26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* 27 * updating the SQ tail; a full memory barrier smp_mb() is needed 28 * between. 29 * 30 * Also see the examples in the liburing library: 31 * 32 * git://git.kernel.dk/liburing 33 * 34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens 35 * from data shared between the kernel and application. This is done both 36 * for ordering purposes, but also to ensure that once a value is loaded from 37 * data that the application could potentially modify, it remains stable. 38 * 39 * Copyright (C) 2018-2019 Jens Axboe 40 * Copyright (c) 2018-2019 Christoph Hellwig 41 */ 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/errno.h> 45 #include <linux/syscalls.h> 46 #include <net/compat.h> 47 #include <linux/refcount.h> 48 #include <linux/uio.h> 49 #include <linux/bits.h> 50 51 #include <linux/sched/signal.h> 52 #include <linux/fs.h> 53 #include <linux/file.h> 54 #include <linux/mm.h> 55 #include <linux/mman.h> 56 #include <linux/percpu.h> 57 #include <linux/slab.h> 58 #include <linux/bvec.h> 59 #include <linux/net.h> 60 #include <net/sock.h> 61 #include <linux/anon_inodes.h> 62 #include <linux/sched/mm.h> 63 #include <linux/uaccess.h> 64 #include <linux/nospec.h> 65 #include <linux/fsnotify.h> 66 #include <linux/fadvise.h> 67 #include <linux/task_work.h> 68 #include <linux/io_uring.h> 69 #include <linux/io_uring/cmd.h> 70 #include <linux/audit.h> 71 #include <linux/security.h> 72 #include <linux/jump_label.h> 73 #include <asm/shmparam.h> 74 75 #define CREATE_TRACE_POINTS 76 #include <trace/events/io_uring.h> 77 78 #include <uapi/linux/io_uring.h> 79 80 #include "io-wq.h" 81 82 #include "io_uring.h" 83 #include "opdef.h" 84 #include "refs.h" 85 #include "tctx.h" 86 #include "register.h" 87 #include "sqpoll.h" 88 #include "fdinfo.h" 89 #include "kbuf.h" 90 #include "rsrc.h" 91 #include "cancel.h" 92 #include "net.h" 93 #include "notif.h" 94 #include "waitid.h" 95 #include "futex.h" 96 #include "napi.h" 97 #include "uring_cmd.h" 98 #include "msg_ring.h" 99 #include "memmap.h" 100 #include "zcrx.h" 101 102 #include "timeout.h" 103 #include "poll.h" 104 #include "rw.h" 105 #include "alloc_cache.h" 106 #include "eventfd.h" 107 108 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ 109 IOSQE_IO_HARDLINK | IOSQE_ASYNC) 110 111 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \ 112 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS) 113 114 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) 115 116 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ 117 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \ 118 REQ_F_ASYNC_DATA) 119 120 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | IO_REQ_LINK_FLAGS | \ 121 REQ_F_REISSUE | IO_REQ_CLEAN_FLAGS) 122 123 #define IO_TCTX_REFS_CACHE_NR (1U << 10) 124 125 #define IO_COMPL_BATCH 32 126 #define IO_REQ_ALLOC_BATCH 8 127 #define IO_LOCAL_TW_DEFAULT_MAX 20 128 129 struct io_defer_entry { 130 struct list_head list; 131 struct io_kiocb *req; 132 u32 seq; 133 }; 134 135 /* requests with any of those set should undergo io_disarm_next() */ 136 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) 137 138 /* 139 * No waiters. It's larger than any valid value of the tw counter 140 * so that tests against ->cq_wait_nr would fail and skip wake_up(). 141 */ 142 #define IO_CQ_WAKE_INIT (-1U) 143 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */ 144 #define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1) 145 146 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 147 struct io_uring_task *tctx, 148 bool cancel_all, 149 bool is_sqpoll_thread); 150 151 static void io_queue_sqe(struct io_kiocb *req); 152 153 static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray); 154 155 struct kmem_cache *req_cachep; 156 static struct workqueue_struct *iou_wq __ro_after_init; 157 158 static int __read_mostly sysctl_io_uring_disabled; 159 static int __read_mostly sysctl_io_uring_group = -1; 160 161 #ifdef CONFIG_SYSCTL 162 static const struct ctl_table kernel_io_uring_disabled_table[] = { 163 { 164 .procname = "io_uring_disabled", 165 .data = &sysctl_io_uring_disabled, 166 .maxlen = sizeof(sysctl_io_uring_disabled), 167 .mode = 0644, 168 .proc_handler = proc_dointvec_minmax, 169 .extra1 = SYSCTL_ZERO, 170 .extra2 = SYSCTL_TWO, 171 }, 172 { 173 .procname = "io_uring_group", 174 .data = &sysctl_io_uring_group, 175 .maxlen = sizeof(gid_t), 176 .mode = 0644, 177 .proc_handler = proc_dointvec, 178 }, 179 }; 180 #endif 181 182 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) 183 { 184 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); 185 } 186 187 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) 188 { 189 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); 190 } 191 192 static bool io_match_linked(struct io_kiocb *head) 193 { 194 struct io_kiocb *req; 195 196 io_for_each_link(req, head) { 197 if (req->flags & REQ_F_INFLIGHT) 198 return true; 199 } 200 return false; 201 } 202 203 /* 204 * As io_match_task() but protected against racing with linked timeouts. 205 * User must not hold timeout_lock. 206 */ 207 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx, 208 bool cancel_all) 209 { 210 bool matched; 211 212 if (tctx && head->tctx != tctx) 213 return false; 214 if (cancel_all) 215 return true; 216 217 if (head->flags & REQ_F_LINK_TIMEOUT) { 218 struct io_ring_ctx *ctx = head->ctx; 219 220 /* protect against races with linked timeouts */ 221 raw_spin_lock_irq(&ctx->timeout_lock); 222 matched = io_match_linked(head); 223 raw_spin_unlock_irq(&ctx->timeout_lock); 224 } else { 225 matched = io_match_linked(head); 226 } 227 return matched; 228 } 229 230 static inline void req_fail_link_node(struct io_kiocb *req, int res) 231 { 232 req_set_fail(req); 233 io_req_set_res(req, res, 0); 234 } 235 236 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) 237 { 238 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); 239 } 240 241 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) 242 { 243 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); 244 245 complete(&ctx->ref_comp); 246 } 247 248 static __cold void io_fallback_req_func(struct work_struct *work) 249 { 250 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, 251 fallback_work.work); 252 struct llist_node *node = llist_del_all(&ctx->fallback_llist); 253 struct io_kiocb *req, *tmp; 254 struct io_tw_state ts = {}; 255 256 percpu_ref_get(&ctx->refs); 257 mutex_lock(&ctx->uring_lock); 258 llist_for_each_entry_safe(req, tmp, node, io_task_work.node) 259 req->io_task_work.func(req, ts); 260 io_submit_flush_completions(ctx); 261 mutex_unlock(&ctx->uring_lock); 262 percpu_ref_put(&ctx->refs); 263 } 264 265 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) 266 { 267 unsigned int hash_buckets; 268 int i; 269 270 do { 271 hash_buckets = 1U << bits; 272 table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]), 273 GFP_KERNEL_ACCOUNT); 274 if (table->hbs) 275 break; 276 if (bits == 1) 277 return -ENOMEM; 278 bits--; 279 } while (1); 280 281 table->hash_bits = bits; 282 for (i = 0; i < hash_buckets; i++) 283 INIT_HLIST_HEAD(&table->hbs[i].list); 284 return 0; 285 } 286 287 static void io_free_alloc_caches(struct io_ring_ctx *ctx) 288 { 289 io_alloc_cache_free(&ctx->apoll_cache, kfree); 290 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); 291 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free); 292 io_alloc_cache_free(&ctx->cmd_cache, io_cmd_cache_free); 293 io_alloc_cache_free(&ctx->msg_cache, kfree); 294 io_futex_cache_free(ctx); 295 io_rsrc_cache_free(ctx); 296 } 297 298 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) 299 { 300 struct io_ring_ctx *ctx; 301 int hash_bits; 302 bool ret; 303 304 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 305 if (!ctx) 306 return NULL; 307 308 xa_init(&ctx->io_bl_xa); 309 310 /* 311 * Use 5 bits less than the max cq entries, that should give us around 312 * 32 entries per hash list if totally full and uniformly spread, but 313 * don't keep too many buckets to not overconsume memory. 314 */ 315 hash_bits = ilog2(p->cq_entries) - 5; 316 hash_bits = clamp(hash_bits, 1, 8); 317 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) 318 goto err; 319 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 320 0, GFP_KERNEL)) 321 goto err; 322 323 ctx->flags = p->flags; 324 ctx->hybrid_poll_time = LLONG_MAX; 325 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 326 init_waitqueue_head(&ctx->sqo_sq_wait); 327 INIT_LIST_HEAD(&ctx->sqd_list); 328 INIT_LIST_HEAD(&ctx->cq_overflow_list); 329 ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX, 330 sizeof(struct async_poll), 0); 331 ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, 332 sizeof(struct io_async_msghdr), 333 offsetof(struct io_async_msghdr, clear)); 334 ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX, 335 sizeof(struct io_async_rw), 336 offsetof(struct io_async_rw, clear)); 337 ret |= io_alloc_cache_init(&ctx->cmd_cache, IO_ALLOC_CACHE_MAX, 338 sizeof(struct io_async_cmd), 339 sizeof(struct io_async_cmd)); 340 spin_lock_init(&ctx->msg_lock); 341 ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX, 342 sizeof(struct io_kiocb), 0); 343 ret |= io_futex_cache_init(ctx); 344 ret |= io_rsrc_cache_init(ctx); 345 if (ret) 346 goto free_ref; 347 init_completion(&ctx->ref_comp); 348 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); 349 mutex_init(&ctx->uring_lock); 350 init_waitqueue_head(&ctx->cq_wait); 351 init_waitqueue_head(&ctx->poll_wq); 352 spin_lock_init(&ctx->completion_lock); 353 raw_spin_lock_init(&ctx->timeout_lock); 354 INIT_WQ_LIST(&ctx->iopoll_list); 355 INIT_LIST_HEAD(&ctx->defer_list); 356 INIT_LIST_HEAD(&ctx->timeout_list); 357 INIT_LIST_HEAD(&ctx->ltimeout_list); 358 init_llist_head(&ctx->work_llist); 359 INIT_LIST_HEAD(&ctx->tctx_list); 360 ctx->submit_state.free_list.next = NULL; 361 INIT_HLIST_HEAD(&ctx->waitid_list); 362 #ifdef CONFIG_FUTEX 363 INIT_HLIST_HEAD(&ctx->futex_list); 364 #endif 365 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); 366 INIT_WQ_LIST(&ctx->submit_state.compl_reqs); 367 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd); 368 io_napi_init(ctx); 369 mutex_init(&ctx->mmap_lock); 370 371 return ctx; 372 373 free_ref: 374 percpu_ref_exit(&ctx->refs); 375 err: 376 io_free_alloc_caches(ctx); 377 kvfree(ctx->cancel_table.hbs); 378 xa_destroy(&ctx->io_bl_xa); 379 kfree(ctx); 380 return NULL; 381 } 382 383 static void io_account_cq_overflow(struct io_ring_ctx *ctx) 384 { 385 struct io_rings *r = ctx->rings; 386 387 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); 388 ctx->cq_extra--; 389 } 390 391 static bool req_need_defer(struct io_kiocb *req, u32 seq) 392 { 393 if (unlikely(req->flags & REQ_F_IO_DRAIN)) { 394 struct io_ring_ctx *ctx = req->ctx; 395 396 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail; 397 } 398 399 return false; 400 } 401 402 static void io_clean_op(struct io_kiocb *req) 403 { 404 if (unlikely(req->flags & REQ_F_BUFFER_SELECTED)) 405 io_kbuf_drop_legacy(req); 406 407 if (req->flags & REQ_F_NEED_CLEANUP) { 408 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 409 410 if (def->cleanup) 411 def->cleanup(req); 412 } 413 if ((req->flags & REQ_F_POLLED) && req->apoll) { 414 kfree(req->apoll->double_poll); 415 kfree(req->apoll); 416 req->apoll = NULL; 417 } 418 if (req->flags & REQ_F_INFLIGHT) 419 atomic_dec(&req->tctx->inflight_tracked); 420 if (req->flags & REQ_F_CREDS) 421 put_cred(req->creds); 422 if (req->flags & REQ_F_ASYNC_DATA) { 423 kfree(req->async_data); 424 req->async_data = NULL; 425 } 426 req->flags &= ~IO_REQ_CLEAN_FLAGS; 427 } 428 429 static inline void io_req_track_inflight(struct io_kiocb *req) 430 { 431 if (!(req->flags & REQ_F_INFLIGHT)) { 432 req->flags |= REQ_F_INFLIGHT; 433 atomic_inc(&req->tctx->inflight_tracked); 434 } 435 } 436 437 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) 438 { 439 if (WARN_ON_ONCE(!req->link)) 440 return NULL; 441 442 req->flags &= ~REQ_F_ARM_LTIMEOUT; 443 req->flags |= REQ_F_LINK_TIMEOUT; 444 445 /* linked timeouts should have two refs once prep'ed */ 446 io_req_set_refcount(req); 447 __io_req_set_refcount(req->link, 2); 448 return req->link; 449 } 450 451 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req) 452 { 453 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT))) 454 return NULL; 455 return __io_prep_linked_timeout(req); 456 } 457 458 static noinline void __io_arm_ltimeout(struct io_kiocb *req) 459 { 460 io_queue_linked_timeout(__io_prep_linked_timeout(req)); 461 } 462 463 static inline void io_arm_ltimeout(struct io_kiocb *req) 464 { 465 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT)) 466 __io_arm_ltimeout(req); 467 } 468 469 static void io_prep_async_work(struct io_kiocb *req) 470 { 471 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 472 struct io_ring_ctx *ctx = req->ctx; 473 474 if (!(req->flags & REQ_F_CREDS)) { 475 req->flags |= REQ_F_CREDS; 476 req->creds = get_current_cred(); 477 } 478 479 req->work.list.next = NULL; 480 atomic_set(&req->work.flags, 0); 481 if (req->flags & REQ_F_FORCE_ASYNC) 482 atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags); 483 484 if (req->file && !(req->flags & REQ_F_FIXED_FILE)) 485 req->flags |= io_file_get_flags(req->file); 486 487 if (req->file && (req->flags & REQ_F_ISREG)) { 488 bool should_hash = def->hash_reg_file; 489 490 /* don't serialize this request if the fs doesn't need it */ 491 if (should_hash && (req->file->f_flags & O_DIRECT) && 492 (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE)) 493 should_hash = false; 494 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) 495 io_wq_hash_work(&req->work, file_inode(req->file)); 496 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { 497 if (def->unbound_nonreg_file) 498 atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags); 499 } 500 } 501 502 static void io_prep_async_link(struct io_kiocb *req) 503 { 504 struct io_kiocb *cur; 505 506 if (req->flags & REQ_F_LINK_TIMEOUT) { 507 struct io_ring_ctx *ctx = req->ctx; 508 509 raw_spin_lock_irq(&ctx->timeout_lock); 510 io_for_each_link(cur, req) 511 io_prep_async_work(cur); 512 raw_spin_unlock_irq(&ctx->timeout_lock); 513 } else { 514 io_for_each_link(cur, req) 515 io_prep_async_work(cur); 516 } 517 } 518 519 static void io_queue_iowq(struct io_kiocb *req) 520 { 521 struct io_kiocb *link = io_prep_linked_timeout(req); 522 struct io_uring_task *tctx = req->tctx; 523 524 BUG_ON(!tctx); 525 526 if ((current->flags & PF_KTHREAD) || !tctx->io_wq) { 527 io_req_task_queue_fail(req, -ECANCELED); 528 return; 529 } 530 531 /* init ->work of the whole link before punting */ 532 io_prep_async_link(req); 533 534 /* 535 * Not expected to happen, but if we do have a bug where this _can_ 536 * happen, catch it here and ensure the request is marked as 537 * canceled. That will make io-wq go through the usual work cancel 538 * procedure rather than attempt to run this request (or create a new 539 * worker for it). 540 */ 541 if (WARN_ON_ONCE(!same_thread_group(tctx->task, current))) 542 atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags); 543 544 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); 545 io_wq_enqueue(tctx->io_wq, &req->work); 546 if (link) 547 io_queue_linked_timeout(link); 548 } 549 550 static void io_req_queue_iowq_tw(struct io_kiocb *req, io_tw_token_t tw) 551 { 552 io_queue_iowq(req); 553 } 554 555 void io_req_queue_iowq(struct io_kiocb *req) 556 { 557 req->io_task_work.func = io_req_queue_iowq_tw; 558 io_req_task_work_add(req); 559 } 560 561 static __cold noinline void io_queue_deferred(struct io_ring_ctx *ctx) 562 { 563 spin_lock(&ctx->completion_lock); 564 while (!list_empty(&ctx->defer_list)) { 565 struct io_defer_entry *de = list_first_entry(&ctx->defer_list, 566 struct io_defer_entry, list); 567 568 if (req_need_defer(de->req, de->seq)) 569 break; 570 list_del_init(&de->list); 571 io_req_task_queue(de->req); 572 kfree(de); 573 } 574 spin_unlock(&ctx->completion_lock); 575 } 576 577 void __io_commit_cqring_flush(struct io_ring_ctx *ctx) 578 { 579 if (ctx->poll_activated) 580 io_poll_wq_wake(ctx); 581 if (ctx->off_timeout_used) 582 io_flush_timeouts(ctx); 583 if (ctx->drain_active) 584 io_queue_deferred(ctx); 585 if (ctx->has_evfd) 586 io_eventfd_flush_signal(ctx); 587 } 588 589 static inline void __io_cq_lock(struct io_ring_ctx *ctx) 590 { 591 if (!ctx->lockless_cq) 592 spin_lock(&ctx->completion_lock); 593 } 594 595 static inline void io_cq_lock(struct io_ring_ctx *ctx) 596 __acquires(ctx->completion_lock) 597 { 598 spin_lock(&ctx->completion_lock); 599 } 600 601 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) 602 { 603 io_commit_cqring(ctx); 604 if (!ctx->task_complete) { 605 if (!ctx->lockless_cq) 606 spin_unlock(&ctx->completion_lock); 607 /* IOPOLL rings only need to wake up if it's also SQPOLL */ 608 if (!ctx->syscall_iopoll) 609 io_cqring_wake(ctx); 610 } 611 io_commit_cqring_flush(ctx); 612 } 613 614 static void io_cq_unlock_post(struct io_ring_ctx *ctx) 615 __releases(ctx->completion_lock) 616 { 617 io_commit_cqring(ctx); 618 spin_unlock(&ctx->completion_lock); 619 io_cqring_wake(ctx); 620 io_commit_cqring_flush(ctx); 621 } 622 623 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying) 624 { 625 size_t cqe_size = sizeof(struct io_uring_cqe); 626 627 lockdep_assert_held(&ctx->uring_lock); 628 629 /* don't abort if we're dying, entries must get freed */ 630 if (!dying && __io_cqring_events(ctx) == ctx->cq_entries) 631 return; 632 633 if (ctx->flags & IORING_SETUP_CQE32) 634 cqe_size <<= 1; 635 636 io_cq_lock(ctx); 637 while (!list_empty(&ctx->cq_overflow_list)) { 638 struct io_uring_cqe *cqe; 639 struct io_overflow_cqe *ocqe; 640 641 ocqe = list_first_entry(&ctx->cq_overflow_list, 642 struct io_overflow_cqe, list); 643 644 if (!dying) { 645 if (!io_get_cqe_overflow(ctx, &cqe, true)) 646 break; 647 memcpy(cqe, &ocqe->cqe, cqe_size); 648 } 649 list_del(&ocqe->list); 650 kfree(ocqe); 651 652 /* 653 * For silly syzbot cases that deliberately overflow by huge 654 * amounts, check if we need to resched and drop and 655 * reacquire the locks if so. Nothing real would ever hit this. 656 * Ideally we'd have a non-posting unlock for this, but hard 657 * to care for a non-real case. 658 */ 659 if (need_resched()) { 660 io_cq_unlock_post(ctx); 661 mutex_unlock(&ctx->uring_lock); 662 cond_resched(); 663 mutex_lock(&ctx->uring_lock); 664 io_cq_lock(ctx); 665 } 666 } 667 668 if (list_empty(&ctx->cq_overflow_list)) { 669 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 670 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 671 } 672 io_cq_unlock_post(ctx); 673 } 674 675 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) 676 { 677 if (ctx->rings) 678 __io_cqring_overflow_flush(ctx, true); 679 } 680 681 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) 682 { 683 mutex_lock(&ctx->uring_lock); 684 __io_cqring_overflow_flush(ctx, false); 685 mutex_unlock(&ctx->uring_lock); 686 } 687 688 /* must to be called somewhat shortly after putting a request */ 689 static inline void io_put_task(struct io_kiocb *req) 690 { 691 struct io_uring_task *tctx = req->tctx; 692 693 if (likely(tctx->task == current)) { 694 tctx->cached_refs++; 695 } else { 696 percpu_counter_sub(&tctx->inflight, 1); 697 if (unlikely(atomic_read(&tctx->in_cancel))) 698 wake_up(&tctx->wait); 699 put_task_struct(tctx->task); 700 } 701 } 702 703 void io_task_refs_refill(struct io_uring_task *tctx) 704 { 705 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; 706 707 percpu_counter_add(&tctx->inflight, refill); 708 refcount_add(refill, ¤t->usage); 709 tctx->cached_refs += refill; 710 } 711 712 static __cold void io_uring_drop_tctx_refs(struct task_struct *task) 713 { 714 struct io_uring_task *tctx = task->io_uring; 715 unsigned int refs = tctx->cached_refs; 716 717 if (refs) { 718 tctx->cached_refs = 0; 719 percpu_counter_sub(&tctx->inflight, refs); 720 put_task_struct_many(task, refs); 721 } 722 } 723 724 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, 725 s32 res, u32 cflags, u64 extra1, u64 extra2) 726 { 727 struct io_overflow_cqe *ocqe; 728 size_t ocq_size = sizeof(struct io_overflow_cqe); 729 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32); 730 731 lockdep_assert_held(&ctx->completion_lock); 732 733 if (is_cqe32) 734 ocq_size += sizeof(struct io_uring_cqe); 735 736 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT); 737 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe); 738 if (!ocqe) { 739 /* 740 * If we're in ring overflow flush mode, or in task cancel mode, 741 * or cannot allocate an overflow entry, then we need to drop it 742 * on the floor. 743 */ 744 io_account_cq_overflow(ctx); 745 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); 746 return false; 747 } 748 if (list_empty(&ctx->cq_overflow_list)) { 749 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); 750 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); 751 752 } 753 ocqe->cqe.user_data = user_data; 754 ocqe->cqe.res = res; 755 ocqe->cqe.flags = cflags; 756 if (is_cqe32) { 757 ocqe->cqe.big_cqe[0] = extra1; 758 ocqe->cqe.big_cqe[1] = extra2; 759 } 760 list_add_tail(&ocqe->list, &ctx->cq_overflow_list); 761 return true; 762 } 763 764 static void io_req_cqe_overflow(struct io_kiocb *req) 765 { 766 io_cqring_event_overflow(req->ctx, req->cqe.user_data, 767 req->cqe.res, req->cqe.flags, 768 req->big_cqe.extra1, req->big_cqe.extra2); 769 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 770 } 771 772 /* 773 * writes to the cq entry need to come after reading head; the 774 * control dependency is enough as we're using WRITE_ONCE to 775 * fill the cq entry 776 */ 777 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow) 778 { 779 struct io_rings *rings = ctx->rings; 780 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); 781 unsigned int free, queued, len; 782 783 /* 784 * Posting into the CQ when there are pending overflowed CQEs may break 785 * ordering guarantees, which will affect links, F_MORE users and more. 786 * Force overflow the completion. 787 */ 788 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) 789 return false; 790 791 /* userspace may cheat modifying the tail, be safe and do min */ 792 queued = min(__io_cqring_events(ctx), ctx->cq_entries); 793 free = ctx->cq_entries - queued; 794 /* we need a contiguous range, limit based on the current array offset */ 795 len = min(free, ctx->cq_entries - off); 796 if (!len) 797 return false; 798 799 if (ctx->flags & IORING_SETUP_CQE32) { 800 off <<= 1; 801 len <<= 1; 802 } 803 804 ctx->cqe_cached = &rings->cqes[off]; 805 ctx->cqe_sentinel = ctx->cqe_cached + len; 806 return true; 807 } 808 809 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, 810 u32 cflags) 811 { 812 struct io_uring_cqe *cqe; 813 814 ctx->cq_extra++; 815 816 /* 817 * If we can't get a cq entry, userspace overflowed the 818 * submission (by quite a lot). Increment the overflow count in 819 * the ring. 820 */ 821 if (likely(io_get_cqe(ctx, &cqe))) { 822 WRITE_ONCE(cqe->user_data, user_data); 823 WRITE_ONCE(cqe->res, res); 824 WRITE_ONCE(cqe->flags, cflags); 825 826 if (ctx->flags & IORING_SETUP_CQE32) { 827 WRITE_ONCE(cqe->big_cqe[0], 0); 828 WRITE_ONCE(cqe->big_cqe[1], 0); 829 } 830 831 trace_io_uring_complete(ctx, NULL, cqe); 832 return true; 833 } 834 return false; 835 } 836 837 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 838 { 839 bool filled; 840 841 io_cq_lock(ctx); 842 filled = io_fill_cqe_aux(ctx, user_data, res, cflags); 843 if (!filled) 844 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 845 io_cq_unlock_post(ctx); 846 return filled; 847 } 848 849 /* 850 * Must be called from inline task_work so we now a flush will happen later, 851 * and obviously with ctx->uring_lock held (tw always has that). 852 */ 853 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) 854 { 855 if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) { 856 spin_lock(&ctx->completion_lock); 857 io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0); 858 spin_unlock(&ctx->completion_lock); 859 } 860 ctx->submit_state.cq_flush = true; 861 } 862 863 /* 864 * A helper for multishot requests posting additional CQEs. 865 * Should only be used from a task_work including IO_URING_F_MULTISHOT. 866 */ 867 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags) 868 { 869 struct io_ring_ctx *ctx = req->ctx; 870 bool posted; 871 872 lockdep_assert(!io_wq_current_is_worker()); 873 lockdep_assert_held(&ctx->uring_lock); 874 875 __io_cq_lock(ctx); 876 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags); 877 ctx->submit_state.cq_flush = true; 878 __io_cq_unlock_post(ctx); 879 return posted; 880 } 881 882 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) 883 { 884 struct io_ring_ctx *ctx = req->ctx; 885 bool completed = true; 886 887 /* 888 * All execution paths but io-wq use the deferred completions by 889 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here. 890 */ 891 if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ))) 892 return; 893 894 /* 895 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires 896 * the submitter task context, IOPOLL protects with uring_lock. 897 */ 898 if (ctx->lockless_cq || (req->flags & REQ_F_REISSUE)) { 899 defer_complete: 900 req->io_task_work.func = io_req_task_complete; 901 io_req_task_work_add(req); 902 return; 903 } 904 905 io_cq_lock(ctx); 906 if (!(req->flags & REQ_F_CQE_SKIP)) 907 completed = io_fill_cqe_req(ctx, req); 908 io_cq_unlock_post(ctx); 909 910 if (!completed) 911 goto defer_complete; 912 913 /* 914 * We don't free the request here because we know it's called from 915 * io-wq only, which holds a reference, so it cannot be the last put. 916 */ 917 req_ref_put(req); 918 } 919 920 void io_req_defer_failed(struct io_kiocb *req, s32 res) 921 __must_hold(&ctx->uring_lock) 922 { 923 const struct io_cold_def *def = &io_cold_defs[req->opcode]; 924 925 lockdep_assert_held(&req->ctx->uring_lock); 926 927 req_set_fail(req); 928 io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED)); 929 if (def->fail) 930 def->fail(req); 931 io_req_complete_defer(req); 932 } 933 934 /* 935 * Don't initialise the fields below on every allocation, but do that in 936 * advance and keep them valid across allocations. 937 */ 938 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx) 939 { 940 req->ctx = ctx; 941 req->buf_node = NULL; 942 req->file_node = NULL; 943 req->link = NULL; 944 req->async_data = NULL; 945 /* not necessary, but safer to zero */ 946 memset(&req->cqe, 0, sizeof(req->cqe)); 947 memset(&req->big_cqe, 0, sizeof(req->big_cqe)); 948 } 949 950 /* 951 * A request might get retired back into the request caches even before opcode 952 * handlers and io_issue_sqe() are done with it, e.g. inline completion path. 953 * Because of that, io_alloc_req() should be called only under ->uring_lock 954 * and with extra caution to not get a request that is still worked on. 955 */ 956 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) 957 __must_hold(&ctx->uring_lock) 958 { 959 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 960 void *reqs[IO_REQ_ALLOC_BATCH]; 961 int ret; 962 963 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); 964 965 /* 966 * Bulk alloc is all-or-nothing. If we fail to get a batch, 967 * retry single alloc to be on the safe side. 968 */ 969 if (unlikely(ret <= 0)) { 970 reqs[0] = kmem_cache_alloc(req_cachep, gfp); 971 if (!reqs[0]) 972 return false; 973 ret = 1; 974 } 975 976 percpu_ref_get_many(&ctx->refs, ret); 977 while (ret--) { 978 struct io_kiocb *req = reqs[ret]; 979 980 io_preinit_req(req, ctx); 981 io_req_add_to_cache(req, ctx); 982 } 983 return true; 984 } 985 986 __cold void io_free_req(struct io_kiocb *req) 987 { 988 /* refs were already put, restore them for io_req_task_complete() */ 989 req->flags &= ~REQ_F_REFCOUNT; 990 /* we only want to free it, don't post CQEs */ 991 req->flags |= REQ_F_CQE_SKIP; 992 req->io_task_work.func = io_req_task_complete; 993 io_req_task_work_add(req); 994 } 995 996 static void __io_req_find_next_prep(struct io_kiocb *req) 997 { 998 struct io_ring_ctx *ctx = req->ctx; 999 1000 spin_lock(&ctx->completion_lock); 1001 io_disarm_next(req); 1002 spin_unlock(&ctx->completion_lock); 1003 } 1004 1005 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) 1006 { 1007 struct io_kiocb *nxt; 1008 1009 /* 1010 * If LINK is set, we have dependent requests in this chain. If we 1011 * didn't fail this request, queue the first one up, moving any other 1012 * dependencies to the next request. In case of failure, fail the rest 1013 * of the chain. 1014 */ 1015 if (unlikely(req->flags & IO_DISARM_MASK)) 1016 __io_req_find_next_prep(req); 1017 nxt = req->link; 1018 req->link = NULL; 1019 return nxt; 1020 } 1021 1022 static void ctx_flush_and_put(struct io_ring_ctx *ctx, io_tw_token_t tw) 1023 { 1024 if (!ctx) 1025 return; 1026 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1027 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1028 1029 io_submit_flush_completions(ctx); 1030 mutex_unlock(&ctx->uring_lock); 1031 percpu_ref_put(&ctx->refs); 1032 } 1033 1034 /* 1035 * Run queued task_work, returning the number of entries processed in *count. 1036 * If more entries than max_entries are available, stop processing once this 1037 * is reached and return the rest of the list. 1038 */ 1039 struct llist_node *io_handle_tw_list(struct llist_node *node, 1040 unsigned int *count, 1041 unsigned int max_entries) 1042 { 1043 struct io_ring_ctx *ctx = NULL; 1044 struct io_tw_state ts = { }; 1045 1046 do { 1047 struct llist_node *next = node->next; 1048 struct io_kiocb *req = container_of(node, struct io_kiocb, 1049 io_task_work.node); 1050 1051 if (req->ctx != ctx) { 1052 ctx_flush_and_put(ctx, ts); 1053 ctx = req->ctx; 1054 mutex_lock(&ctx->uring_lock); 1055 percpu_ref_get(&ctx->refs); 1056 } 1057 INDIRECT_CALL_2(req->io_task_work.func, 1058 io_poll_task_func, io_req_rw_complete, 1059 req, ts); 1060 node = next; 1061 (*count)++; 1062 if (unlikely(need_resched())) { 1063 ctx_flush_and_put(ctx, ts); 1064 ctx = NULL; 1065 cond_resched(); 1066 } 1067 } while (node && *count < max_entries); 1068 1069 ctx_flush_and_put(ctx, ts); 1070 return node; 1071 } 1072 1073 static __cold void __io_fallback_tw(struct llist_node *node, bool sync) 1074 { 1075 struct io_ring_ctx *last_ctx = NULL; 1076 struct io_kiocb *req; 1077 1078 while (node) { 1079 req = container_of(node, struct io_kiocb, io_task_work.node); 1080 node = node->next; 1081 if (sync && last_ctx != req->ctx) { 1082 if (last_ctx) { 1083 flush_delayed_work(&last_ctx->fallback_work); 1084 percpu_ref_put(&last_ctx->refs); 1085 } 1086 last_ctx = req->ctx; 1087 percpu_ref_get(&last_ctx->refs); 1088 } 1089 if (llist_add(&req->io_task_work.node, 1090 &req->ctx->fallback_llist)) 1091 schedule_delayed_work(&req->ctx->fallback_work, 1); 1092 } 1093 1094 if (last_ctx) { 1095 flush_delayed_work(&last_ctx->fallback_work); 1096 percpu_ref_put(&last_ctx->refs); 1097 } 1098 } 1099 1100 static void io_fallback_tw(struct io_uring_task *tctx, bool sync) 1101 { 1102 struct llist_node *node = llist_del_all(&tctx->task_list); 1103 1104 __io_fallback_tw(node, sync); 1105 } 1106 1107 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, 1108 unsigned int max_entries, 1109 unsigned int *count) 1110 { 1111 struct llist_node *node; 1112 1113 if (unlikely(current->flags & PF_EXITING)) { 1114 io_fallback_tw(tctx, true); 1115 return NULL; 1116 } 1117 1118 node = llist_del_all(&tctx->task_list); 1119 if (node) { 1120 node = llist_reverse_order(node); 1121 node = io_handle_tw_list(node, count, max_entries); 1122 } 1123 1124 /* relaxed read is enough as only the task itself sets ->in_cancel */ 1125 if (unlikely(atomic_read(&tctx->in_cancel))) 1126 io_uring_drop_tctx_refs(current); 1127 1128 trace_io_uring_task_work_run(tctx, *count); 1129 return node; 1130 } 1131 1132 void tctx_task_work(struct callback_head *cb) 1133 { 1134 struct io_uring_task *tctx; 1135 struct llist_node *ret; 1136 unsigned int count = 0; 1137 1138 tctx = container_of(cb, struct io_uring_task, task_work); 1139 ret = tctx_task_work_run(tctx, UINT_MAX, &count); 1140 /* can't happen */ 1141 WARN_ON_ONCE(ret); 1142 } 1143 1144 static inline void io_req_local_work_add(struct io_kiocb *req, 1145 struct io_ring_ctx *ctx, 1146 unsigned flags) 1147 { 1148 unsigned nr_wait, nr_tw, nr_tw_prev; 1149 struct llist_node *head; 1150 1151 /* See comment above IO_CQ_WAKE_INIT */ 1152 BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES); 1153 1154 /* 1155 * We don't know how many reuqests is there in the link and whether 1156 * they can even be queued lazily, fall back to non-lazy. 1157 */ 1158 if (req->flags & IO_REQ_LINK_FLAGS) 1159 flags &= ~IOU_F_TWQ_LAZY_WAKE; 1160 1161 guard(rcu)(); 1162 1163 head = READ_ONCE(ctx->work_llist.first); 1164 do { 1165 nr_tw_prev = 0; 1166 if (head) { 1167 struct io_kiocb *first_req = container_of(head, 1168 struct io_kiocb, 1169 io_task_work.node); 1170 /* 1171 * Might be executed at any moment, rely on 1172 * SLAB_TYPESAFE_BY_RCU to keep it alive. 1173 */ 1174 nr_tw_prev = READ_ONCE(first_req->nr_tw); 1175 } 1176 1177 /* 1178 * Theoretically, it can overflow, but that's fine as one of 1179 * previous adds should've tried to wake the task. 1180 */ 1181 nr_tw = nr_tw_prev + 1; 1182 if (!(flags & IOU_F_TWQ_LAZY_WAKE)) 1183 nr_tw = IO_CQ_WAKE_FORCE; 1184 1185 req->nr_tw = nr_tw; 1186 req->io_task_work.node.next = head; 1187 } while (!try_cmpxchg(&ctx->work_llist.first, &head, 1188 &req->io_task_work.node)); 1189 1190 /* 1191 * cmpxchg implies a full barrier, which pairs with the barrier 1192 * in set_current_state() on the io_cqring_wait() side. It's used 1193 * to ensure that either we see updated ->cq_wait_nr, or waiters 1194 * going to sleep will observe the work added to the list, which 1195 * is similar to the wait/wawke task state sync. 1196 */ 1197 1198 if (!head) { 1199 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1200 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1201 if (ctx->has_evfd) 1202 io_eventfd_signal(ctx); 1203 } 1204 1205 nr_wait = atomic_read(&ctx->cq_wait_nr); 1206 /* not enough or no one is waiting */ 1207 if (nr_tw < nr_wait) 1208 return; 1209 /* the previous add has already woken it up */ 1210 if (nr_tw_prev >= nr_wait) 1211 return; 1212 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); 1213 } 1214 1215 static void io_req_normal_work_add(struct io_kiocb *req) 1216 { 1217 struct io_uring_task *tctx = req->tctx; 1218 struct io_ring_ctx *ctx = req->ctx; 1219 1220 /* task_work already pending, we're done */ 1221 if (!llist_add(&req->io_task_work.node, &tctx->task_list)) 1222 return; 1223 1224 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1225 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1226 1227 /* SQPOLL doesn't need the task_work added, it'll run it itself */ 1228 if (ctx->flags & IORING_SETUP_SQPOLL) { 1229 __set_notify_signal(tctx->task); 1230 return; 1231 } 1232 1233 if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method))) 1234 return; 1235 1236 io_fallback_tw(tctx, false); 1237 } 1238 1239 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) 1240 { 1241 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) 1242 io_req_local_work_add(req, req->ctx, flags); 1243 else 1244 io_req_normal_work_add(req); 1245 } 1246 1247 void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx, 1248 unsigned flags) 1249 { 1250 if (WARN_ON_ONCE(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))) 1251 return; 1252 io_req_local_work_add(req, ctx, flags); 1253 } 1254 1255 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) 1256 { 1257 struct llist_node *node = llist_del_all(&ctx->work_llist); 1258 1259 __io_fallback_tw(node, false); 1260 node = llist_del_all(&ctx->retry_llist); 1261 __io_fallback_tw(node, false); 1262 } 1263 1264 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events, 1265 int min_events) 1266 { 1267 if (!io_local_work_pending(ctx)) 1268 return false; 1269 if (events < min_events) 1270 return true; 1271 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1272 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1273 return false; 1274 } 1275 1276 static int __io_run_local_work_loop(struct llist_node **node, 1277 io_tw_token_t tw, 1278 int events) 1279 { 1280 int ret = 0; 1281 1282 while (*node) { 1283 struct llist_node *next = (*node)->next; 1284 struct io_kiocb *req = container_of(*node, struct io_kiocb, 1285 io_task_work.node); 1286 INDIRECT_CALL_2(req->io_task_work.func, 1287 io_poll_task_func, io_req_rw_complete, 1288 req, tw); 1289 *node = next; 1290 if (++ret >= events) 1291 break; 1292 } 1293 1294 return ret; 1295 } 1296 1297 static int __io_run_local_work(struct io_ring_ctx *ctx, io_tw_token_t tw, 1298 int min_events, int max_events) 1299 { 1300 struct llist_node *node; 1301 unsigned int loops = 0; 1302 int ret = 0; 1303 1304 if (WARN_ON_ONCE(ctx->submitter_task != current)) 1305 return -EEXIST; 1306 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) 1307 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); 1308 again: 1309 min_events -= ret; 1310 ret = __io_run_local_work_loop(&ctx->retry_llist.first, tw, max_events); 1311 if (ctx->retry_llist.first) 1312 goto retry_done; 1313 1314 /* 1315 * llists are in reverse order, flip it back the right way before 1316 * running the pending items. 1317 */ 1318 node = llist_reverse_order(llist_del_all(&ctx->work_llist)); 1319 ret += __io_run_local_work_loop(&node, tw, max_events - ret); 1320 ctx->retry_llist.first = node; 1321 loops++; 1322 1323 if (io_run_local_work_continue(ctx, ret, min_events)) 1324 goto again; 1325 retry_done: 1326 io_submit_flush_completions(ctx); 1327 if (io_run_local_work_continue(ctx, ret, min_events)) 1328 goto again; 1329 1330 trace_io_uring_local_work_run(ctx, ret, loops); 1331 return ret; 1332 } 1333 1334 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx, 1335 int min_events) 1336 { 1337 struct io_tw_state ts = {}; 1338 1339 if (!io_local_work_pending(ctx)) 1340 return 0; 1341 return __io_run_local_work(ctx, ts, min_events, 1342 max(IO_LOCAL_TW_DEFAULT_MAX, min_events)); 1343 } 1344 1345 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events, 1346 int max_events) 1347 { 1348 struct io_tw_state ts = {}; 1349 int ret; 1350 1351 mutex_lock(&ctx->uring_lock); 1352 ret = __io_run_local_work(ctx, ts, min_events, max_events); 1353 mutex_unlock(&ctx->uring_lock); 1354 return ret; 1355 } 1356 1357 static void io_req_task_cancel(struct io_kiocb *req, io_tw_token_t tw) 1358 { 1359 io_tw_lock(req->ctx, tw); 1360 io_req_defer_failed(req, req->cqe.res); 1361 } 1362 1363 void io_req_task_submit(struct io_kiocb *req, io_tw_token_t tw) 1364 { 1365 io_tw_lock(req->ctx, tw); 1366 if (unlikely(io_should_terminate_tw())) 1367 io_req_defer_failed(req, -EFAULT); 1368 else if (req->flags & REQ_F_FORCE_ASYNC) 1369 io_queue_iowq(req); 1370 else 1371 io_queue_sqe(req); 1372 } 1373 1374 void io_req_task_queue_fail(struct io_kiocb *req, int ret) 1375 { 1376 io_req_set_res(req, ret, 0); 1377 req->io_task_work.func = io_req_task_cancel; 1378 io_req_task_work_add(req); 1379 } 1380 1381 void io_req_task_queue(struct io_kiocb *req) 1382 { 1383 req->io_task_work.func = io_req_task_submit; 1384 io_req_task_work_add(req); 1385 } 1386 1387 void io_queue_next(struct io_kiocb *req) 1388 { 1389 struct io_kiocb *nxt = io_req_find_next(req); 1390 1391 if (nxt) 1392 io_req_task_queue(nxt); 1393 } 1394 1395 static void io_free_batch_list(struct io_ring_ctx *ctx, 1396 struct io_wq_work_node *node) 1397 __must_hold(&ctx->uring_lock) 1398 { 1399 do { 1400 struct io_kiocb *req = container_of(node, struct io_kiocb, 1401 comp_list); 1402 1403 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { 1404 if (req->flags & REQ_F_REISSUE) { 1405 node = req->comp_list.next; 1406 req->flags &= ~REQ_F_REISSUE; 1407 io_queue_iowq(req); 1408 continue; 1409 } 1410 if (req->flags & REQ_F_REFCOUNT) { 1411 node = req->comp_list.next; 1412 if (!req_ref_put_and_test(req)) 1413 continue; 1414 } 1415 if ((req->flags & REQ_F_POLLED) && req->apoll) { 1416 struct async_poll *apoll = req->apoll; 1417 1418 if (apoll->double_poll) 1419 kfree(apoll->double_poll); 1420 io_cache_free(&ctx->apoll_cache, apoll); 1421 req->flags &= ~REQ_F_POLLED; 1422 } 1423 if (req->flags & IO_REQ_LINK_FLAGS) 1424 io_queue_next(req); 1425 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) 1426 io_clean_op(req); 1427 } 1428 io_put_file(req); 1429 io_req_put_rsrc_nodes(req); 1430 io_put_task(req); 1431 1432 node = req->comp_list.next; 1433 io_req_add_to_cache(req, ctx); 1434 } while (node); 1435 } 1436 1437 void __io_submit_flush_completions(struct io_ring_ctx *ctx) 1438 __must_hold(&ctx->uring_lock) 1439 { 1440 struct io_submit_state *state = &ctx->submit_state; 1441 struct io_wq_work_node *node; 1442 1443 __io_cq_lock(ctx); 1444 __wq_list_for_each(node, &state->compl_reqs) { 1445 struct io_kiocb *req = container_of(node, struct io_kiocb, 1446 comp_list); 1447 1448 /* 1449 * Requests marked with REQUEUE should not post a CQE, they 1450 * will go through the io-wq retry machinery and post one 1451 * later. 1452 */ 1453 if (!(req->flags & (REQ_F_CQE_SKIP | REQ_F_REISSUE)) && 1454 unlikely(!io_fill_cqe_req(ctx, req))) { 1455 if (ctx->lockless_cq) { 1456 spin_lock(&ctx->completion_lock); 1457 io_req_cqe_overflow(req); 1458 spin_unlock(&ctx->completion_lock); 1459 } else { 1460 io_req_cqe_overflow(req); 1461 } 1462 } 1463 } 1464 __io_cq_unlock_post(ctx); 1465 1466 if (!wq_list_empty(&state->compl_reqs)) { 1467 io_free_batch_list(ctx, state->compl_reqs.first); 1468 INIT_WQ_LIST(&state->compl_reqs); 1469 } 1470 ctx->submit_state.cq_flush = false; 1471 } 1472 1473 static unsigned io_cqring_events(struct io_ring_ctx *ctx) 1474 { 1475 /* See comment at the top of this file */ 1476 smp_rmb(); 1477 return __io_cqring_events(ctx); 1478 } 1479 1480 /* 1481 * We can't just wait for polled events to come to us, we have to actively 1482 * find and complete them. 1483 */ 1484 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) 1485 { 1486 if (!(ctx->flags & IORING_SETUP_IOPOLL)) 1487 return; 1488 1489 mutex_lock(&ctx->uring_lock); 1490 while (!wq_list_empty(&ctx->iopoll_list)) { 1491 /* let it sleep and repeat later if can't complete a request */ 1492 if (io_do_iopoll(ctx, true) == 0) 1493 break; 1494 /* 1495 * Ensure we allow local-to-the-cpu processing to take place, 1496 * in this case we need to ensure that we reap all events. 1497 * Also let task_work, etc. to progress by releasing the mutex 1498 */ 1499 if (need_resched()) { 1500 mutex_unlock(&ctx->uring_lock); 1501 cond_resched(); 1502 mutex_lock(&ctx->uring_lock); 1503 } 1504 } 1505 mutex_unlock(&ctx->uring_lock); 1506 } 1507 1508 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned int min_events) 1509 { 1510 unsigned int nr_events = 0; 1511 unsigned long check_cq; 1512 1513 min_events = min(min_events, ctx->cq_entries); 1514 1515 lockdep_assert_held(&ctx->uring_lock); 1516 1517 if (!io_allowed_run_tw(ctx)) 1518 return -EEXIST; 1519 1520 check_cq = READ_ONCE(ctx->check_cq); 1521 if (unlikely(check_cq)) { 1522 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 1523 __io_cqring_overflow_flush(ctx, false); 1524 /* 1525 * Similarly do not spin if we have not informed the user of any 1526 * dropped CQE. 1527 */ 1528 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) 1529 return -EBADR; 1530 } 1531 /* 1532 * Don't enter poll loop if we already have events pending. 1533 * If we do, we can potentially be spinning for commands that 1534 * already triggered a CQE (eg in error). 1535 */ 1536 if (io_cqring_events(ctx)) 1537 return 0; 1538 1539 do { 1540 int ret = 0; 1541 1542 /* 1543 * If a submit got punted to a workqueue, we can have the 1544 * application entering polling for a command before it gets 1545 * issued. That app will hold the uring_lock for the duration 1546 * of the poll right here, so we need to take a breather every 1547 * now and then to ensure that the issue has a chance to add 1548 * the poll to the issued list. Otherwise we can spin here 1549 * forever, while the workqueue is stuck trying to acquire the 1550 * very same mutex. 1551 */ 1552 if (wq_list_empty(&ctx->iopoll_list) || 1553 io_task_work_pending(ctx)) { 1554 u32 tail = ctx->cached_cq_tail; 1555 1556 (void) io_run_local_work_locked(ctx, min_events); 1557 1558 if (task_work_pending(current) || 1559 wq_list_empty(&ctx->iopoll_list)) { 1560 mutex_unlock(&ctx->uring_lock); 1561 io_run_task_work(); 1562 mutex_lock(&ctx->uring_lock); 1563 } 1564 /* some requests don't go through iopoll_list */ 1565 if (tail != ctx->cached_cq_tail || 1566 wq_list_empty(&ctx->iopoll_list)) 1567 break; 1568 } 1569 ret = io_do_iopoll(ctx, !min_events); 1570 if (unlikely(ret < 0)) 1571 return ret; 1572 1573 if (task_sigpending(current)) 1574 return -EINTR; 1575 if (need_resched()) 1576 break; 1577 1578 nr_events += ret; 1579 } while (nr_events < min_events); 1580 1581 return 0; 1582 } 1583 1584 void io_req_task_complete(struct io_kiocb *req, io_tw_token_t tw) 1585 { 1586 io_req_complete_defer(req); 1587 } 1588 1589 /* 1590 * After the iocb has been issued, it's safe to be found on the poll list. 1591 * Adding the kiocb to the list AFTER submission ensures that we don't 1592 * find it from a io_do_iopoll() thread before the issuer is done 1593 * accessing the kiocb cookie. 1594 */ 1595 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) 1596 { 1597 struct io_ring_ctx *ctx = req->ctx; 1598 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; 1599 1600 /* workqueue context doesn't hold uring_lock, grab it now */ 1601 if (unlikely(needs_lock)) 1602 mutex_lock(&ctx->uring_lock); 1603 1604 /* 1605 * Track whether we have multiple files in our lists. This will impact 1606 * how we do polling eventually, not spinning if we're on potentially 1607 * different devices. 1608 */ 1609 if (wq_list_empty(&ctx->iopoll_list)) { 1610 ctx->poll_multi_queue = false; 1611 } else if (!ctx->poll_multi_queue) { 1612 struct io_kiocb *list_req; 1613 1614 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, 1615 comp_list); 1616 if (list_req->file != req->file) 1617 ctx->poll_multi_queue = true; 1618 } 1619 1620 /* 1621 * For fast devices, IO may have already completed. If it has, add 1622 * it to the front so we find it first. 1623 */ 1624 if (READ_ONCE(req->iopoll_completed)) 1625 wq_list_add_head(&req->comp_list, &ctx->iopoll_list); 1626 else 1627 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); 1628 1629 if (unlikely(needs_lock)) { 1630 /* 1631 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle 1632 * in sq thread task context or in io worker task context. If 1633 * current task context is sq thread, we don't need to check 1634 * whether should wake up sq thread. 1635 */ 1636 if ((ctx->flags & IORING_SETUP_SQPOLL) && 1637 wq_has_sleeper(&ctx->sq_data->wait)) 1638 wake_up(&ctx->sq_data->wait); 1639 1640 mutex_unlock(&ctx->uring_lock); 1641 } 1642 } 1643 1644 io_req_flags_t io_file_get_flags(struct file *file) 1645 { 1646 io_req_flags_t res = 0; 1647 1648 if (S_ISREG(file_inode(file)->i_mode)) 1649 res |= REQ_F_ISREG; 1650 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) 1651 res |= REQ_F_SUPPORT_NOWAIT; 1652 return res; 1653 } 1654 1655 static u32 io_get_sequence(struct io_kiocb *req) 1656 { 1657 u32 seq = req->ctx->cached_sq_head; 1658 struct io_kiocb *cur; 1659 1660 /* need original cached_sq_head, but it was increased for each req */ 1661 io_for_each_link(cur, req) 1662 seq--; 1663 return seq; 1664 } 1665 1666 static __cold void io_drain_req(struct io_kiocb *req) 1667 __must_hold(&ctx->uring_lock) 1668 { 1669 struct io_ring_ctx *ctx = req->ctx; 1670 struct io_defer_entry *de; 1671 int ret; 1672 u32 seq = io_get_sequence(req); 1673 1674 /* Still need defer if there is pending req in defer list. */ 1675 spin_lock(&ctx->completion_lock); 1676 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) { 1677 spin_unlock(&ctx->completion_lock); 1678 queue: 1679 ctx->drain_active = false; 1680 io_req_task_queue(req); 1681 return; 1682 } 1683 spin_unlock(&ctx->completion_lock); 1684 1685 io_prep_async_link(req); 1686 de = kmalloc(sizeof(*de), GFP_KERNEL); 1687 if (!de) { 1688 ret = -ENOMEM; 1689 io_req_defer_failed(req, ret); 1690 return; 1691 } 1692 1693 spin_lock(&ctx->completion_lock); 1694 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) { 1695 spin_unlock(&ctx->completion_lock); 1696 kfree(de); 1697 goto queue; 1698 } 1699 1700 trace_io_uring_defer(req); 1701 de->req = req; 1702 de->seq = seq; 1703 list_add_tail(&de->list, &ctx->defer_list); 1704 spin_unlock(&ctx->completion_lock); 1705 } 1706 1707 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, 1708 unsigned int issue_flags) 1709 { 1710 if (req->file || !def->needs_file) 1711 return true; 1712 1713 if (req->flags & REQ_F_FIXED_FILE) 1714 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); 1715 else 1716 req->file = io_file_get_normal(req, req->cqe.fd); 1717 1718 return !!req->file; 1719 } 1720 1721 static inline int __io_issue_sqe(struct io_kiocb *req, 1722 unsigned int issue_flags, 1723 const struct io_issue_def *def) 1724 { 1725 const struct cred *creds = NULL; 1726 int ret; 1727 1728 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred())) 1729 creds = override_creds(req->creds); 1730 1731 if (!def->audit_skip) 1732 audit_uring_entry(req->opcode); 1733 1734 ret = def->issue(req, issue_flags); 1735 1736 if (!def->audit_skip) 1737 audit_uring_exit(!ret, ret); 1738 1739 if (creds) 1740 revert_creds(creds); 1741 1742 return ret; 1743 } 1744 1745 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) 1746 { 1747 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1748 int ret; 1749 1750 if (unlikely(!io_assign_file(req, def, issue_flags))) 1751 return -EBADF; 1752 1753 ret = __io_issue_sqe(req, issue_flags, def); 1754 1755 if (ret == IOU_OK) { 1756 if (issue_flags & IO_URING_F_COMPLETE_DEFER) 1757 io_req_complete_defer(req); 1758 else 1759 io_req_complete_post(req, issue_flags); 1760 1761 return 0; 1762 } 1763 1764 if (ret == IOU_ISSUE_SKIP_COMPLETE) { 1765 ret = 0; 1766 io_arm_ltimeout(req); 1767 1768 /* If the op doesn't have a file, we're not polling for it */ 1769 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) 1770 io_iopoll_req_issued(req, issue_flags); 1771 } 1772 return ret; 1773 } 1774 1775 int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw) 1776 { 1777 const unsigned int issue_flags = IO_URING_F_NONBLOCK | 1778 IO_URING_F_MULTISHOT | 1779 IO_URING_F_COMPLETE_DEFER; 1780 int ret; 1781 1782 io_tw_lock(req->ctx, tw); 1783 1784 WARN_ON_ONCE(!req->file); 1785 if (WARN_ON_ONCE(req->ctx->flags & IORING_SETUP_IOPOLL)) 1786 return -EFAULT; 1787 1788 ret = __io_issue_sqe(req, issue_flags, &io_issue_defs[req->opcode]); 1789 1790 WARN_ON_ONCE(ret == IOU_ISSUE_SKIP_COMPLETE); 1791 return ret; 1792 } 1793 1794 struct io_wq_work *io_wq_free_work(struct io_wq_work *work) 1795 { 1796 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1797 struct io_kiocb *nxt = NULL; 1798 1799 if (req_ref_put_and_test(req)) { 1800 if (req->flags & IO_REQ_LINK_FLAGS) 1801 nxt = io_req_find_next(req); 1802 io_free_req(req); 1803 } 1804 return nxt ? &nxt->work : NULL; 1805 } 1806 1807 void io_wq_submit_work(struct io_wq_work *work) 1808 { 1809 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 1810 const struct io_issue_def *def = &io_issue_defs[req->opcode]; 1811 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; 1812 bool needs_poll = false; 1813 int ret = 0, err = -ECANCELED; 1814 1815 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */ 1816 if (!(req->flags & REQ_F_REFCOUNT)) 1817 __io_req_set_refcount(req, 2); 1818 else 1819 req_ref_get(req); 1820 1821 io_arm_ltimeout(req); 1822 1823 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ 1824 if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) { 1825 fail: 1826 io_req_task_queue_fail(req, err); 1827 return; 1828 } 1829 if (!io_assign_file(req, def, issue_flags)) { 1830 err = -EBADF; 1831 atomic_or(IO_WQ_WORK_CANCEL, &work->flags); 1832 goto fail; 1833 } 1834 1835 /* 1836 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the 1837 * submitter task context. Final request completions are handed to the 1838 * right context, however this is not the case of auxiliary CQEs, 1839 * which is the main mean of operation for multishot requests. 1840 * Don't allow any multishot execution from io-wq. It's more restrictive 1841 * than necessary and also cleaner. 1842 */ 1843 if (req->flags & (REQ_F_MULTISHOT|REQ_F_APOLL_MULTISHOT)) { 1844 err = -EBADFD; 1845 if (!io_file_can_poll(req)) 1846 goto fail; 1847 if (req->file->f_flags & O_NONBLOCK || 1848 req->file->f_mode & FMODE_NOWAIT) { 1849 err = -ECANCELED; 1850 if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK) 1851 goto fail; 1852 return; 1853 } else { 1854 req->flags &= ~(REQ_F_APOLL_MULTISHOT|REQ_F_MULTISHOT); 1855 } 1856 } 1857 1858 if (req->flags & REQ_F_FORCE_ASYNC) { 1859 bool opcode_poll = def->pollin || def->pollout; 1860 1861 if (opcode_poll && io_file_can_poll(req)) { 1862 needs_poll = true; 1863 issue_flags |= IO_URING_F_NONBLOCK; 1864 } 1865 } 1866 1867 do { 1868 ret = io_issue_sqe(req, issue_flags); 1869 if (ret != -EAGAIN) 1870 break; 1871 1872 /* 1873 * If REQ_F_NOWAIT is set, then don't wait or retry with 1874 * poll. -EAGAIN is final for that case. 1875 */ 1876 if (req->flags & REQ_F_NOWAIT) 1877 break; 1878 1879 /* 1880 * We can get EAGAIN for iopolled IO even though we're 1881 * forcing a sync submission from here, since we can't 1882 * wait for request slots on the block side. 1883 */ 1884 if (!needs_poll) { 1885 if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) 1886 break; 1887 if (io_wq_worker_stopped()) 1888 break; 1889 cond_resched(); 1890 continue; 1891 } 1892 1893 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) 1894 return; 1895 /* aborted or ready, in either case retry blocking */ 1896 needs_poll = false; 1897 issue_flags &= ~IO_URING_F_NONBLOCK; 1898 } while (1); 1899 1900 /* avoid locking problems by failing it from a clean context */ 1901 if (ret) 1902 io_req_task_queue_fail(req, ret); 1903 } 1904 1905 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, 1906 unsigned int issue_flags) 1907 { 1908 struct io_ring_ctx *ctx = req->ctx; 1909 struct io_rsrc_node *node; 1910 struct file *file = NULL; 1911 1912 io_ring_submit_lock(ctx, issue_flags); 1913 node = io_rsrc_node_lookup(&ctx->file_table.data, fd); 1914 if (node) { 1915 io_req_assign_rsrc_node(&req->file_node, node); 1916 req->flags |= io_slot_flags(node); 1917 file = io_slot_file(node); 1918 } 1919 io_ring_submit_unlock(ctx, issue_flags); 1920 return file; 1921 } 1922 1923 struct file *io_file_get_normal(struct io_kiocb *req, int fd) 1924 { 1925 struct file *file = fget(fd); 1926 1927 trace_io_uring_file_get(req, fd); 1928 1929 /* we don't allow fixed io_uring files */ 1930 if (file && io_is_uring_fops(file)) 1931 io_req_track_inflight(req); 1932 return file; 1933 } 1934 1935 static void io_queue_async(struct io_kiocb *req, int ret) 1936 __must_hold(&req->ctx->uring_lock) 1937 { 1938 struct io_kiocb *linked_timeout; 1939 1940 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { 1941 io_req_defer_failed(req, ret); 1942 return; 1943 } 1944 1945 linked_timeout = io_prep_linked_timeout(req); 1946 1947 switch (io_arm_poll_handler(req, 0)) { 1948 case IO_APOLL_READY: 1949 io_kbuf_recycle(req, 0); 1950 io_req_task_queue(req); 1951 break; 1952 case IO_APOLL_ABORTED: 1953 io_kbuf_recycle(req, 0); 1954 io_queue_iowq(req); 1955 break; 1956 case IO_APOLL_OK: 1957 break; 1958 } 1959 1960 if (linked_timeout) 1961 io_queue_linked_timeout(linked_timeout); 1962 } 1963 1964 static inline void io_queue_sqe(struct io_kiocb *req) 1965 __must_hold(&req->ctx->uring_lock) 1966 { 1967 int ret; 1968 1969 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER); 1970 1971 /* 1972 * We async punt it if the file wasn't marked NOWAIT, or if the file 1973 * doesn't support non-blocking read/write attempts 1974 */ 1975 if (unlikely(ret)) 1976 io_queue_async(req, ret); 1977 } 1978 1979 static void io_queue_sqe_fallback(struct io_kiocb *req) 1980 __must_hold(&req->ctx->uring_lock) 1981 { 1982 if (unlikely(req->flags & REQ_F_FAIL)) { 1983 /* 1984 * We don't submit, fail them all, for that replace hardlinks 1985 * with normal links. Extra REQ_F_LINK is tolerated. 1986 */ 1987 req->flags &= ~REQ_F_HARDLINK; 1988 req->flags |= REQ_F_LINK; 1989 io_req_defer_failed(req, req->cqe.res); 1990 } else { 1991 if (unlikely(req->ctx->drain_active)) 1992 io_drain_req(req); 1993 else 1994 io_queue_iowq(req); 1995 } 1996 } 1997 1998 /* 1999 * Check SQE restrictions (opcode and flags). 2000 * 2001 * Returns 'true' if SQE is allowed, 'false' otherwise. 2002 */ 2003 static inline bool io_check_restriction(struct io_ring_ctx *ctx, 2004 struct io_kiocb *req, 2005 unsigned int sqe_flags) 2006 { 2007 if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) 2008 return false; 2009 2010 if ((sqe_flags & ctx->restrictions.sqe_flags_required) != 2011 ctx->restrictions.sqe_flags_required) 2012 return false; 2013 2014 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | 2015 ctx->restrictions.sqe_flags_required)) 2016 return false; 2017 2018 return true; 2019 } 2020 2021 static void io_init_drain(struct io_ring_ctx *ctx) 2022 { 2023 struct io_kiocb *head = ctx->submit_state.link.head; 2024 2025 ctx->drain_active = true; 2026 if (head) { 2027 /* 2028 * If we need to drain a request in the middle of a link, drain 2029 * the head request and the next request/link after the current 2030 * link. Considering sequential execution of links, 2031 * REQ_F_IO_DRAIN will be maintained for every request of our 2032 * link. 2033 */ 2034 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2035 ctx->drain_next = true; 2036 } 2037 } 2038 2039 static __cold int io_init_fail_req(struct io_kiocb *req, int err) 2040 { 2041 /* ensure per-opcode data is cleared if we fail before prep */ 2042 memset(&req->cmd.data, 0, sizeof(req->cmd.data)); 2043 return err; 2044 } 2045 2046 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, 2047 const struct io_uring_sqe *sqe) 2048 __must_hold(&ctx->uring_lock) 2049 { 2050 const struct io_issue_def *def; 2051 unsigned int sqe_flags; 2052 int personality; 2053 u8 opcode; 2054 2055 /* req is partially pre-initialised, see io_preinit_req() */ 2056 req->opcode = opcode = READ_ONCE(sqe->opcode); 2057 /* same numerical values with corresponding REQ_F_*, safe to copy */ 2058 sqe_flags = READ_ONCE(sqe->flags); 2059 req->flags = (__force io_req_flags_t) sqe_flags; 2060 req->cqe.user_data = READ_ONCE(sqe->user_data); 2061 req->file = NULL; 2062 req->tctx = current->io_uring; 2063 req->cancel_seq_set = false; 2064 2065 if (unlikely(opcode >= IORING_OP_LAST)) { 2066 req->opcode = 0; 2067 return io_init_fail_req(req, -EINVAL); 2068 } 2069 opcode = array_index_nospec(opcode, IORING_OP_LAST); 2070 2071 def = &io_issue_defs[opcode]; 2072 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { 2073 /* enforce forwards compatibility on users */ 2074 if (sqe_flags & ~SQE_VALID_FLAGS) 2075 return io_init_fail_req(req, -EINVAL); 2076 if (sqe_flags & IOSQE_BUFFER_SELECT) { 2077 if (!def->buffer_select) 2078 return io_init_fail_req(req, -EOPNOTSUPP); 2079 req->buf_index = READ_ONCE(sqe->buf_group); 2080 } 2081 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) 2082 ctx->drain_disabled = true; 2083 if (sqe_flags & IOSQE_IO_DRAIN) { 2084 if (ctx->drain_disabled) 2085 return io_init_fail_req(req, -EOPNOTSUPP); 2086 io_init_drain(ctx); 2087 } 2088 } 2089 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { 2090 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) 2091 return io_init_fail_req(req, -EACCES); 2092 /* knock it to the slow queue path, will be drained there */ 2093 if (ctx->drain_active) 2094 req->flags |= REQ_F_FORCE_ASYNC; 2095 /* if there is no link, we're at "next" request and need to drain */ 2096 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { 2097 ctx->drain_next = false; 2098 ctx->drain_active = true; 2099 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; 2100 } 2101 } 2102 2103 if (!def->ioprio && sqe->ioprio) 2104 return io_init_fail_req(req, -EINVAL); 2105 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) 2106 return io_init_fail_req(req, -EINVAL); 2107 2108 if (def->needs_file) { 2109 struct io_submit_state *state = &ctx->submit_state; 2110 2111 req->cqe.fd = READ_ONCE(sqe->fd); 2112 2113 /* 2114 * Plug now if we have more than 2 IO left after this, and the 2115 * target is potentially a read/write to block based storage. 2116 */ 2117 if (state->need_plug && def->plug) { 2118 state->plug_started = true; 2119 state->need_plug = false; 2120 blk_start_plug_nr_ios(&state->plug, state->submit_nr); 2121 } 2122 } 2123 2124 personality = READ_ONCE(sqe->personality); 2125 if (personality) { 2126 int ret; 2127 2128 req->creds = xa_load(&ctx->personalities, personality); 2129 if (!req->creds) 2130 return io_init_fail_req(req, -EINVAL); 2131 get_cred(req->creds); 2132 ret = security_uring_override_creds(req->creds); 2133 if (ret) { 2134 put_cred(req->creds); 2135 return io_init_fail_req(req, ret); 2136 } 2137 req->flags |= REQ_F_CREDS; 2138 } 2139 2140 return def->prep(req, sqe); 2141 } 2142 2143 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, 2144 struct io_kiocb *req, int ret) 2145 { 2146 struct io_ring_ctx *ctx = req->ctx; 2147 struct io_submit_link *link = &ctx->submit_state.link; 2148 struct io_kiocb *head = link->head; 2149 2150 trace_io_uring_req_failed(sqe, req, ret); 2151 2152 /* 2153 * Avoid breaking links in the middle as it renders links with SQPOLL 2154 * unusable. Instead of failing eagerly, continue assembling the link if 2155 * applicable and mark the head with REQ_F_FAIL. The link flushing code 2156 * should find the flag and handle the rest. 2157 */ 2158 req_fail_link_node(req, ret); 2159 if (head && !(head->flags & REQ_F_FAIL)) 2160 req_fail_link_node(head, -ECANCELED); 2161 2162 if (!(req->flags & IO_REQ_LINK_FLAGS)) { 2163 if (head) { 2164 link->last->link = req; 2165 link->head = NULL; 2166 req = head; 2167 } 2168 io_queue_sqe_fallback(req); 2169 return ret; 2170 } 2171 2172 if (head) 2173 link->last->link = req; 2174 else 2175 link->head = req; 2176 link->last = req; 2177 return 0; 2178 } 2179 2180 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, 2181 const struct io_uring_sqe *sqe) 2182 __must_hold(&ctx->uring_lock) 2183 { 2184 struct io_submit_link *link = &ctx->submit_state.link; 2185 int ret; 2186 2187 ret = io_init_req(ctx, req, sqe); 2188 if (unlikely(ret)) 2189 return io_submit_fail_init(sqe, req, ret); 2190 2191 trace_io_uring_submit_req(req); 2192 2193 /* 2194 * If we already have a head request, queue this one for async 2195 * submittal once the head completes. If we don't have a head but 2196 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be 2197 * submitted sync once the chain is complete. If none of those 2198 * conditions are true (normal request), then just queue it. 2199 */ 2200 if (unlikely(link->head)) { 2201 trace_io_uring_link(req, link->last); 2202 link->last->link = req; 2203 link->last = req; 2204 2205 if (req->flags & IO_REQ_LINK_FLAGS) 2206 return 0; 2207 /* last request of the link, flush it */ 2208 req = link->head; 2209 link->head = NULL; 2210 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) 2211 goto fallback; 2212 2213 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | 2214 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { 2215 if (req->flags & IO_REQ_LINK_FLAGS) { 2216 link->head = req; 2217 link->last = req; 2218 } else { 2219 fallback: 2220 io_queue_sqe_fallback(req); 2221 } 2222 return 0; 2223 } 2224 2225 io_queue_sqe(req); 2226 return 0; 2227 } 2228 2229 /* 2230 * Batched submission is done, ensure local IO is flushed out. 2231 */ 2232 static void io_submit_state_end(struct io_ring_ctx *ctx) 2233 { 2234 struct io_submit_state *state = &ctx->submit_state; 2235 2236 if (unlikely(state->link.head)) 2237 io_queue_sqe_fallback(state->link.head); 2238 /* flush only after queuing links as they can generate completions */ 2239 io_submit_flush_completions(ctx); 2240 if (state->plug_started) 2241 blk_finish_plug(&state->plug); 2242 } 2243 2244 /* 2245 * Start submission side cache. 2246 */ 2247 static void io_submit_state_start(struct io_submit_state *state, 2248 unsigned int max_ios) 2249 { 2250 state->plug_started = false; 2251 state->need_plug = max_ios > 2; 2252 state->submit_nr = max_ios; 2253 /* set only head, no need to init link_last in advance */ 2254 state->link.head = NULL; 2255 } 2256 2257 static void io_commit_sqring(struct io_ring_ctx *ctx) 2258 { 2259 struct io_rings *rings = ctx->rings; 2260 2261 /* 2262 * Ensure any loads from the SQEs are done at this point, 2263 * since once we write the new head, the application could 2264 * write new data to them. 2265 */ 2266 smp_store_release(&rings->sq.head, ctx->cached_sq_head); 2267 } 2268 2269 /* 2270 * Fetch an sqe, if one is available. Note this returns a pointer to memory 2271 * that is mapped by userspace. This means that care needs to be taken to 2272 * ensure that reads are stable, as we cannot rely on userspace always 2273 * being a good citizen. If members of the sqe are validated and then later 2274 * used, it's important that those reads are done through READ_ONCE() to 2275 * prevent a re-load down the line. 2276 */ 2277 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) 2278 { 2279 unsigned mask = ctx->sq_entries - 1; 2280 unsigned head = ctx->cached_sq_head++ & mask; 2281 2282 if (static_branch_unlikely(&io_key_has_sqarray) && 2283 (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) { 2284 head = READ_ONCE(ctx->sq_array[head]); 2285 if (unlikely(head >= ctx->sq_entries)) { 2286 /* drop invalid entries */ 2287 spin_lock(&ctx->completion_lock); 2288 ctx->cq_extra--; 2289 spin_unlock(&ctx->completion_lock); 2290 WRITE_ONCE(ctx->rings->sq_dropped, 2291 READ_ONCE(ctx->rings->sq_dropped) + 1); 2292 return false; 2293 } 2294 head = array_index_nospec(head, ctx->sq_entries); 2295 } 2296 2297 /* 2298 * The cached sq head (or cq tail) serves two purposes: 2299 * 2300 * 1) allows us to batch the cost of updating the user visible 2301 * head updates. 2302 * 2) allows the kernel side to track the head on its own, even 2303 * though the application is the one updating it. 2304 */ 2305 2306 /* double index for 128-byte SQEs, twice as long */ 2307 if (ctx->flags & IORING_SETUP_SQE128) 2308 head <<= 1; 2309 *sqe = &ctx->sq_sqes[head]; 2310 return true; 2311 } 2312 2313 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) 2314 __must_hold(&ctx->uring_lock) 2315 { 2316 unsigned int entries = io_sqring_entries(ctx); 2317 unsigned int left; 2318 int ret; 2319 2320 if (unlikely(!entries)) 2321 return 0; 2322 /* make sure SQ entry isn't read before tail */ 2323 ret = left = min(nr, entries); 2324 io_get_task_refs(left); 2325 io_submit_state_start(&ctx->submit_state, left); 2326 2327 do { 2328 const struct io_uring_sqe *sqe; 2329 struct io_kiocb *req; 2330 2331 if (unlikely(!io_alloc_req(ctx, &req))) 2332 break; 2333 if (unlikely(!io_get_sqe(ctx, &sqe))) { 2334 io_req_add_to_cache(req, ctx); 2335 break; 2336 } 2337 2338 /* 2339 * Continue submitting even for sqe failure if the 2340 * ring was setup with IORING_SETUP_SUBMIT_ALL 2341 */ 2342 if (unlikely(io_submit_sqe(ctx, req, sqe)) && 2343 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { 2344 left--; 2345 break; 2346 } 2347 } while (--left); 2348 2349 if (unlikely(left)) { 2350 ret -= left; 2351 /* try again if it submitted nothing and can't allocate a req */ 2352 if (!ret && io_req_cache_empty(ctx)) 2353 ret = -EAGAIN; 2354 current->io_uring->cached_refs += left; 2355 } 2356 2357 io_submit_state_end(ctx); 2358 /* Commit SQ ring head once we've consumed and submitted all SQEs */ 2359 io_commit_sqring(ctx); 2360 return ret; 2361 } 2362 2363 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, 2364 int wake_flags, void *key) 2365 { 2366 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); 2367 2368 /* 2369 * Cannot safely flush overflowed CQEs from here, ensure we wake up 2370 * the task, and the next invocation will do it. 2371 */ 2372 if (io_should_wake(iowq) || io_has_work(iowq->ctx)) 2373 return autoremove_wake_function(curr, mode, wake_flags, key); 2374 return -1; 2375 } 2376 2377 int io_run_task_work_sig(struct io_ring_ctx *ctx) 2378 { 2379 if (io_local_work_pending(ctx)) { 2380 __set_current_state(TASK_RUNNING); 2381 if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0) 2382 return 0; 2383 } 2384 if (io_run_task_work() > 0) 2385 return 0; 2386 if (task_sigpending(current)) 2387 return -EINTR; 2388 return 0; 2389 } 2390 2391 static bool current_pending_io(void) 2392 { 2393 struct io_uring_task *tctx = current->io_uring; 2394 2395 if (!tctx) 2396 return false; 2397 return percpu_counter_read_positive(&tctx->inflight); 2398 } 2399 2400 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer) 2401 { 2402 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t); 2403 2404 WRITE_ONCE(iowq->hit_timeout, 1); 2405 iowq->min_timeout = 0; 2406 wake_up_process(iowq->wq.private); 2407 return HRTIMER_NORESTART; 2408 } 2409 2410 /* 2411 * Doing min_timeout portion. If we saw any timeouts, events, or have work, 2412 * wake up. If not, and we have a normal timeout, switch to that and keep 2413 * sleeping. 2414 */ 2415 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer) 2416 { 2417 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t); 2418 struct io_ring_ctx *ctx = iowq->ctx; 2419 2420 /* no general timeout, or shorter (or equal), we are done */ 2421 if (iowq->timeout == KTIME_MAX || 2422 ktime_compare(iowq->min_timeout, iowq->timeout) >= 0) 2423 goto out_wake; 2424 /* work we may need to run, wake function will see if we need to wake */ 2425 if (io_has_work(ctx)) 2426 goto out_wake; 2427 /* got events since we started waiting, min timeout is done */ 2428 if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail)) 2429 goto out_wake; 2430 /* if we have any events and min timeout expired, we're done */ 2431 if (io_cqring_events(ctx)) 2432 goto out_wake; 2433 2434 /* 2435 * If using deferred task_work running and application is waiting on 2436 * more than one request, ensure we reset it now where we are switching 2437 * to normal sleeps. Any request completion post min_wait should wake 2438 * the task and return. 2439 */ 2440 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2441 atomic_set(&ctx->cq_wait_nr, 1); 2442 smp_mb(); 2443 if (!llist_empty(&ctx->work_llist)) 2444 goto out_wake; 2445 } 2446 2447 hrtimer_update_function(&iowq->t, io_cqring_timer_wakeup); 2448 hrtimer_set_expires(timer, iowq->timeout); 2449 return HRTIMER_RESTART; 2450 out_wake: 2451 return io_cqring_timer_wakeup(timer); 2452 } 2453 2454 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq, 2455 clockid_t clock_id, ktime_t start_time) 2456 { 2457 ktime_t timeout; 2458 2459 if (iowq->min_timeout) { 2460 timeout = ktime_add_ns(iowq->min_timeout, start_time); 2461 hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id, 2462 HRTIMER_MODE_ABS); 2463 } else { 2464 timeout = iowq->timeout; 2465 hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id, 2466 HRTIMER_MODE_ABS); 2467 } 2468 2469 hrtimer_set_expires_range_ns(&iowq->t, timeout, 0); 2470 hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS); 2471 2472 if (!READ_ONCE(iowq->hit_timeout)) 2473 schedule(); 2474 2475 hrtimer_cancel(&iowq->t); 2476 destroy_hrtimer_on_stack(&iowq->t); 2477 __set_current_state(TASK_RUNNING); 2478 2479 return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0; 2480 } 2481 2482 struct ext_arg { 2483 size_t argsz; 2484 struct timespec64 ts; 2485 const sigset_t __user *sig; 2486 ktime_t min_time; 2487 bool ts_set; 2488 bool iowait; 2489 }; 2490 2491 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2492 struct io_wait_queue *iowq, 2493 struct ext_arg *ext_arg, 2494 ktime_t start_time) 2495 { 2496 int ret = 0; 2497 2498 /* 2499 * Mark us as being in io_wait if we have pending requests, so cpufreq 2500 * can take into account that the task is waiting for IO - turns out 2501 * to be important for low QD IO. 2502 */ 2503 if (ext_arg->iowait && current_pending_io()) 2504 current->in_iowait = 1; 2505 if (iowq->timeout != KTIME_MAX || iowq->min_timeout) 2506 ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time); 2507 else 2508 schedule(); 2509 current->in_iowait = 0; 2510 return ret; 2511 } 2512 2513 /* If this returns > 0, the caller should retry */ 2514 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, 2515 struct io_wait_queue *iowq, 2516 struct ext_arg *ext_arg, 2517 ktime_t start_time) 2518 { 2519 if (unlikely(READ_ONCE(ctx->check_cq))) 2520 return 1; 2521 if (unlikely(io_local_work_pending(ctx))) 2522 return 1; 2523 if (unlikely(task_work_pending(current))) 2524 return 1; 2525 if (unlikely(task_sigpending(current))) 2526 return -EINTR; 2527 if (unlikely(io_should_wake(iowq))) 2528 return 0; 2529 2530 return __io_cqring_wait_schedule(ctx, iowq, ext_arg, start_time); 2531 } 2532 2533 /* 2534 * Wait until events become available, if we don't already have some. The 2535 * application must reap them itself, as they reside on the shared cq ring. 2536 */ 2537 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags, 2538 struct ext_arg *ext_arg) 2539 { 2540 struct io_wait_queue iowq; 2541 struct io_rings *rings = ctx->rings; 2542 ktime_t start_time; 2543 int ret; 2544 2545 min_events = min_t(int, min_events, ctx->cq_entries); 2546 2547 if (!io_allowed_run_tw(ctx)) 2548 return -EEXIST; 2549 if (io_local_work_pending(ctx)) 2550 io_run_local_work(ctx, min_events, 2551 max(IO_LOCAL_TW_DEFAULT_MAX, min_events)); 2552 io_run_task_work(); 2553 2554 if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))) 2555 io_cqring_do_overflow_flush(ctx); 2556 if (__io_cqring_events_user(ctx) >= min_events) 2557 return 0; 2558 2559 init_waitqueue_func_entry(&iowq.wq, io_wake_function); 2560 iowq.wq.private = current; 2561 INIT_LIST_HEAD(&iowq.wq.entry); 2562 iowq.ctx = ctx; 2563 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; 2564 iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail); 2565 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); 2566 iowq.hit_timeout = 0; 2567 iowq.min_timeout = ext_arg->min_time; 2568 iowq.timeout = KTIME_MAX; 2569 start_time = io_get_time(ctx); 2570 2571 if (ext_arg->ts_set) { 2572 iowq.timeout = timespec64_to_ktime(ext_arg->ts); 2573 if (!(flags & IORING_ENTER_ABS_TIMER)) 2574 iowq.timeout = ktime_add(iowq.timeout, start_time); 2575 } 2576 2577 if (ext_arg->sig) { 2578 #ifdef CONFIG_COMPAT 2579 if (in_compat_syscall()) 2580 ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig, 2581 ext_arg->argsz); 2582 else 2583 #endif 2584 ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz); 2585 2586 if (ret) 2587 return ret; 2588 } 2589 2590 io_napi_busy_loop(ctx, &iowq); 2591 2592 trace_io_uring_cqring_wait(ctx, min_events); 2593 do { 2594 unsigned long check_cq; 2595 int nr_wait; 2596 2597 /* if min timeout has been hit, don't reset wait count */ 2598 if (!iowq.hit_timeout) 2599 nr_wait = (int) iowq.cq_tail - 2600 READ_ONCE(ctx->rings->cq.tail); 2601 else 2602 nr_wait = 1; 2603 2604 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 2605 atomic_set(&ctx->cq_wait_nr, nr_wait); 2606 set_current_state(TASK_INTERRUPTIBLE); 2607 } else { 2608 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, 2609 TASK_INTERRUPTIBLE); 2610 } 2611 2612 ret = io_cqring_wait_schedule(ctx, &iowq, ext_arg, start_time); 2613 __set_current_state(TASK_RUNNING); 2614 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); 2615 2616 /* 2617 * Run task_work after scheduling and before io_should_wake(). 2618 * If we got woken because of task_work being processed, run it 2619 * now rather than let the caller do another wait loop. 2620 */ 2621 if (io_local_work_pending(ctx)) 2622 io_run_local_work(ctx, nr_wait, nr_wait); 2623 io_run_task_work(); 2624 2625 /* 2626 * Non-local task_work will be run on exit to userspace, but 2627 * if we're using DEFER_TASKRUN, then we could have waited 2628 * with a timeout for a number of requests. If the timeout 2629 * hits, we could have some requests ready to process. Ensure 2630 * this break is _after_ we have run task_work, to avoid 2631 * deferring running potentially pending requests until the 2632 * next time we wait for events. 2633 */ 2634 if (ret < 0) 2635 break; 2636 2637 check_cq = READ_ONCE(ctx->check_cq); 2638 if (unlikely(check_cq)) { 2639 /* let the caller flush overflows, retry */ 2640 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) 2641 io_cqring_do_overflow_flush(ctx); 2642 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { 2643 ret = -EBADR; 2644 break; 2645 } 2646 } 2647 2648 if (io_should_wake(&iowq)) { 2649 ret = 0; 2650 break; 2651 } 2652 cond_resched(); 2653 } while (1); 2654 2655 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) 2656 finish_wait(&ctx->cq_wait, &iowq.wq); 2657 restore_saved_sigmask_unless(ret == -EINTR); 2658 2659 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; 2660 } 2661 2662 static void io_rings_free(struct io_ring_ctx *ctx) 2663 { 2664 io_free_region(ctx, &ctx->sq_region); 2665 io_free_region(ctx, &ctx->ring_region); 2666 ctx->rings = NULL; 2667 ctx->sq_sqes = NULL; 2668 } 2669 2670 unsigned long rings_size(unsigned int flags, unsigned int sq_entries, 2671 unsigned int cq_entries, size_t *sq_offset) 2672 { 2673 struct io_rings *rings; 2674 size_t off, sq_array_size; 2675 2676 off = struct_size(rings, cqes, cq_entries); 2677 if (off == SIZE_MAX) 2678 return SIZE_MAX; 2679 if (flags & IORING_SETUP_CQE32) { 2680 if (check_shl_overflow(off, 1, &off)) 2681 return SIZE_MAX; 2682 } 2683 2684 #ifdef CONFIG_SMP 2685 off = ALIGN(off, SMP_CACHE_BYTES); 2686 if (off == 0) 2687 return SIZE_MAX; 2688 #endif 2689 2690 if (flags & IORING_SETUP_NO_SQARRAY) { 2691 *sq_offset = SIZE_MAX; 2692 return off; 2693 } 2694 2695 *sq_offset = off; 2696 2697 sq_array_size = array_size(sizeof(u32), sq_entries); 2698 if (sq_array_size == SIZE_MAX) 2699 return SIZE_MAX; 2700 2701 if (check_add_overflow(off, sq_array_size, &off)) 2702 return SIZE_MAX; 2703 2704 return off; 2705 } 2706 2707 static void io_req_caches_free(struct io_ring_ctx *ctx) 2708 { 2709 struct io_kiocb *req; 2710 int nr = 0; 2711 2712 mutex_lock(&ctx->uring_lock); 2713 2714 while (!io_req_cache_empty(ctx)) { 2715 req = io_extract_req(ctx); 2716 kmem_cache_free(req_cachep, req); 2717 nr++; 2718 } 2719 if (nr) 2720 percpu_ref_put_many(&ctx->refs, nr); 2721 mutex_unlock(&ctx->uring_lock); 2722 } 2723 2724 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) 2725 { 2726 io_sq_thread_finish(ctx); 2727 2728 mutex_lock(&ctx->uring_lock); 2729 io_sqe_buffers_unregister(ctx); 2730 io_sqe_files_unregister(ctx); 2731 io_unregister_zcrx_ifqs(ctx); 2732 io_cqring_overflow_kill(ctx); 2733 io_eventfd_unregister(ctx); 2734 io_free_alloc_caches(ctx); 2735 io_destroy_buffers(ctx); 2736 io_free_region(ctx, &ctx->param_region); 2737 mutex_unlock(&ctx->uring_lock); 2738 if (ctx->sq_creds) 2739 put_cred(ctx->sq_creds); 2740 if (ctx->submitter_task) 2741 put_task_struct(ctx->submitter_task); 2742 2743 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); 2744 2745 if (ctx->mm_account) { 2746 mmdrop(ctx->mm_account); 2747 ctx->mm_account = NULL; 2748 } 2749 io_rings_free(ctx); 2750 2751 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 2752 static_branch_dec(&io_key_has_sqarray); 2753 2754 percpu_ref_exit(&ctx->refs); 2755 free_uid(ctx->user); 2756 io_req_caches_free(ctx); 2757 if (ctx->hash_map) 2758 io_wq_put_hash(ctx->hash_map); 2759 io_napi_free(ctx); 2760 kvfree(ctx->cancel_table.hbs); 2761 xa_destroy(&ctx->io_bl_xa); 2762 kfree(ctx); 2763 } 2764 2765 static __cold void io_activate_pollwq_cb(struct callback_head *cb) 2766 { 2767 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, 2768 poll_wq_task_work); 2769 2770 mutex_lock(&ctx->uring_lock); 2771 ctx->poll_activated = true; 2772 mutex_unlock(&ctx->uring_lock); 2773 2774 /* 2775 * Wake ups for some events between start of polling and activation 2776 * might've been lost due to loose synchronisation. 2777 */ 2778 wake_up_all(&ctx->poll_wq); 2779 percpu_ref_put(&ctx->refs); 2780 } 2781 2782 __cold void io_activate_pollwq(struct io_ring_ctx *ctx) 2783 { 2784 spin_lock(&ctx->completion_lock); 2785 /* already activated or in progress */ 2786 if (ctx->poll_activated || ctx->poll_wq_task_work.func) 2787 goto out; 2788 if (WARN_ON_ONCE(!ctx->task_complete)) 2789 goto out; 2790 if (!ctx->submitter_task) 2791 goto out; 2792 /* 2793 * with ->submitter_task only the submitter task completes requests, we 2794 * only need to sync with it, which is done by injecting a tw 2795 */ 2796 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); 2797 percpu_ref_get(&ctx->refs); 2798 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) 2799 percpu_ref_put(&ctx->refs); 2800 out: 2801 spin_unlock(&ctx->completion_lock); 2802 } 2803 2804 static __poll_t io_uring_poll(struct file *file, poll_table *wait) 2805 { 2806 struct io_ring_ctx *ctx = file->private_data; 2807 __poll_t mask = 0; 2808 2809 if (unlikely(!ctx->poll_activated)) 2810 io_activate_pollwq(ctx); 2811 /* 2812 * provides mb() which pairs with barrier from wq_has_sleeper 2813 * call in io_commit_cqring 2814 */ 2815 poll_wait(file, &ctx->poll_wq, wait); 2816 2817 if (!io_sqring_full(ctx)) 2818 mask |= EPOLLOUT | EPOLLWRNORM; 2819 2820 /* 2821 * Don't flush cqring overflow list here, just do a simple check. 2822 * Otherwise there could possible be ABBA deadlock: 2823 * CPU0 CPU1 2824 * ---- ---- 2825 * lock(&ctx->uring_lock); 2826 * lock(&ep->mtx); 2827 * lock(&ctx->uring_lock); 2828 * lock(&ep->mtx); 2829 * 2830 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this 2831 * pushes them to do the flush. 2832 */ 2833 2834 if (__io_cqring_events_user(ctx) || io_has_work(ctx)) 2835 mask |= EPOLLIN | EPOLLRDNORM; 2836 2837 return mask; 2838 } 2839 2840 struct io_tctx_exit { 2841 struct callback_head task_work; 2842 struct completion completion; 2843 struct io_ring_ctx *ctx; 2844 }; 2845 2846 static __cold void io_tctx_exit_cb(struct callback_head *cb) 2847 { 2848 struct io_uring_task *tctx = current->io_uring; 2849 struct io_tctx_exit *work; 2850 2851 work = container_of(cb, struct io_tctx_exit, task_work); 2852 /* 2853 * When @in_cancel, we're in cancellation and it's racy to remove the 2854 * node. It'll be removed by the end of cancellation, just ignore it. 2855 * tctx can be NULL if the queueing of this task_work raced with 2856 * work cancelation off the exec path. 2857 */ 2858 if (tctx && !atomic_read(&tctx->in_cancel)) 2859 io_uring_del_tctx_node((unsigned long)work->ctx); 2860 complete(&work->completion); 2861 } 2862 2863 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data) 2864 { 2865 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 2866 2867 return req->ctx == data; 2868 } 2869 2870 static __cold void io_ring_exit_work(struct work_struct *work) 2871 { 2872 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); 2873 unsigned long timeout = jiffies + HZ * 60 * 5; 2874 unsigned long interval = HZ / 20; 2875 struct io_tctx_exit exit; 2876 struct io_tctx_node *node; 2877 int ret; 2878 2879 /* 2880 * If we're doing polled IO and end up having requests being 2881 * submitted async (out-of-line), then completions can come in while 2882 * we're waiting for refs to drop. We need to reap these manually, 2883 * as nobody else will be looking for them. 2884 */ 2885 do { 2886 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { 2887 mutex_lock(&ctx->uring_lock); 2888 io_cqring_overflow_kill(ctx); 2889 mutex_unlock(&ctx->uring_lock); 2890 } 2891 if (ctx->ifq) { 2892 mutex_lock(&ctx->uring_lock); 2893 io_shutdown_zcrx_ifqs(ctx); 2894 mutex_unlock(&ctx->uring_lock); 2895 } 2896 2897 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2898 io_move_task_work_from_local(ctx); 2899 2900 /* The SQPOLL thread never reaches this path */ 2901 while (io_uring_try_cancel_requests(ctx, NULL, true, false)) 2902 cond_resched(); 2903 2904 if (ctx->sq_data) { 2905 struct io_sq_data *sqd = ctx->sq_data; 2906 struct task_struct *tsk; 2907 2908 io_sq_thread_park(sqd); 2909 tsk = sqd->thread; 2910 if (tsk && tsk->io_uring && tsk->io_uring->io_wq) 2911 io_wq_cancel_cb(tsk->io_uring->io_wq, 2912 io_cancel_ctx_cb, ctx, true); 2913 io_sq_thread_unpark(sqd); 2914 } 2915 2916 io_req_caches_free(ctx); 2917 2918 if (WARN_ON_ONCE(time_after(jiffies, timeout))) { 2919 /* there is little hope left, don't run it too often */ 2920 interval = HZ * 60; 2921 } 2922 /* 2923 * This is really an uninterruptible wait, as it has to be 2924 * complete. But it's also run from a kworker, which doesn't 2925 * take signals, so it's fine to make it interruptible. This 2926 * avoids scenarios where we knowingly can wait much longer 2927 * on completions, for example if someone does a SIGSTOP on 2928 * a task that needs to finish task_work to make this loop 2929 * complete. That's a synthetic situation that should not 2930 * cause a stuck task backtrace, and hence a potential panic 2931 * on stuck tasks if that is enabled. 2932 */ 2933 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); 2934 2935 init_completion(&exit.completion); 2936 init_task_work(&exit.task_work, io_tctx_exit_cb); 2937 exit.ctx = ctx; 2938 2939 mutex_lock(&ctx->uring_lock); 2940 while (!list_empty(&ctx->tctx_list)) { 2941 WARN_ON_ONCE(time_after(jiffies, timeout)); 2942 2943 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, 2944 ctx_node); 2945 /* don't spin on a single task if cancellation failed */ 2946 list_rotate_left(&ctx->tctx_list); 2947 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); 2948 if (WARN_ON_ONCE(ret)) 2949 continue; 2950 2951 mutex_unlock(&ctx->uring_lock); 2952 /* 2953 * See comment above for 2954 * wait_for_completion_interruptible_timeout() on why this 2955 * wait is marked as interruptible. 2956 */ 2957 wait_for_completion_interruptible(&exit.completion); 2958 mutex_lock(&ctx->uring_lock); 2959 } 2960 mutex_unlock(&ctx->uring_lock); 2961 spin_lock(&ctx->completion_lock); 2962 spin_unlock(&ctx->completion_lock); 2963 2964 /* pairs with RCU read section in io_req_local_work_add() */ 2965 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 2966 synchronize_rcu(); 2967 2968 io_ring_ctx_free(ctx); 2969 } 2970 2971 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) 2972 { 2973 unsigned long index; 2974 struct creds *creds; 2975 2976 mutex_lock(&ctx->uring_lock); 2977 percpu_ref_kill(&ctx->refs); 2978 xa_for_each(&ctx->personalities, index, creds) 2979 io_unregister_personality(ctx, index); 2980 mutex_unlock(&ctx->uring_lock); 2981 2982 flush_delayed_work(&ctx->fallback_work); 2983 2984 INIT_WORK(&ctx->exit_work, io_ring_exit_work); 2985 /* 2986 * Use system_unbound_wq to avoid spawning tons of event kworkers 2987 * if we're exiting a ton of rings at the same time. It just adds 2988 * noise and overhead, there's no discernable change in runtime 2989 * over using system_wq. 2990 */ 2991 queue_work(iou_wq, &ctx->exit_work); 2992 } 2993 2994 static int io_uring_release(struct inode *inode, struct file *file) 2995 { 2996 struct io_ring_ctx *ctx = file->private_data; 2997 2998 file->private_data = NULL; 2999 io_ring_ctx_wait_and_kill(ctx); 3000 return 0; 3001 } 3002 3003 struct io_task_cancel { 3004 struct io_uring_task *tctx; 3005 bool all; 3006 }; 3007 3008 static bool io_cancel_task_cb(struct io_wq_work *work, void *data) 3009 { 3010 struct io_kiocb *req = container_of(work, struct io_kiocb, work); 3011 struct io_task_cancel *cancel = data; 3012 3013 return io_match_task_safe(req, cancel->tctx, cancel->all); 3014 } 3015 3016 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx, 3017 struct io_uring_task *tctx, 3018 bool cancel_all) 3019 { 3020 struct io_defer_entry *de; 3021 LIST_HEAD(list); 3022 3023 spin_lock(&ctx->completion_lock); 3024 list_for_each_entry_reverse(de, &ctx->defer_list, list) { 3025 if (io_match_task_safe(de->req, tctx, cancel_all)) { 3026 list_cut_position(&list, &ctx->defer_list, &de->list); 3027 break; 3028 } 3029 } 3030 spin_unlock(&ctx->completion_lock); 3031 if (list_empty(&list)) 3032 return false; 3033 3034 while (!list_empty(&list)) { 3035 de = list_first_entry(&list, struct io_defer_entry, list); 3036 list_del_init(&de->list); 3037 io_req_task_queue_fail(de->req, -ECANCELED); 3038 kfree(de); 3039 } 3040 return true; 3041 } 3042 3043 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx) 3044 { 3045 struct io_tctx_node *node; 3046 enum io_wq_cancel cret; 3047 bool ret = false; 3048 3049 mutex_lock(&ctx->uring_lock); 3050 list_for_each_entry(node, &ctx->tctx_list, ctx_node) { 3051 struct io_uring_task *tctx = node->task->io_uring; 3052 3053 /* 3054 * io_wq will stay alive while we hold uring_lock, because it's 3055 * killed after ctx nodes, which requires to take the lock. 3056 */ 3057 if (!tctx || !tctx->io_wq) 3058 continue; 3059 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true); 3060 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3061 } 3062 mutex_unlock(&ctx->uring_lock); 3063 3064 return ret; 3065 } 3066 3067 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx, 3068 struct io_uring_task *tctx, 3069 bool cancel_all, 3070 bool is_sqpoll_thread) 3071 { 3072 struct io_task_cancel cancel = { .tctx = tctx, .all = cancel_all, }; 3073 enum io_wq_cancel cret; 3074 bool ret = false; 3075 3076 /* set it so io_req_local_work_add() would wake us up */ 3077 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { 3078 atomic_set(&ctx->cq_wait_nr, 1); 3079 smp_mb(); 3080 } 3081 3082 /* failed during ring init, it couldn't have issued any requests */ 3083 if (!ctx->rings) 3084 return false; 3085 3086 if (!tctx) { 3087 ret |= io_uring_try_cancel_iowq(ctx); 3088 } else if (tctx->io_wq) { 3089 /* 3090 * Cancels requests of all rings, not only @ctx, but 3091 * it's fine as the task is in exit/exec. 3092 */ 3093 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb, 3094 &cancel, true); 3095 ret |= (cret != IO_WQ_CANCEL_NOTFOUND); 3096 } 3097 3098 /* SQPOLL thread does its own polling */ 3099 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) || 3100 is_sqpoll_thread) { 3101 while (!wq_list_empty(&ctx->iopoll_list)) { 3102 io_iopoll_try_reap_events(ctx); 3103 ret = true; 3104 cond_resched(); 3105 } 3106 } 3107 3108 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3109 io_allowed_defer_tw_run(ctx)) 3110 ret |= io_run_local_work(ctx, INT_MAX, INT_MAX) > 0; 3111 ret |= io_cancel_defer_files(ctx, tctx, cancel_all); 3112 mutex_lock(&ctx->uring_lock); 3113 ret |= io_poll_remove_all(ctx, tctx, cancel_all); 3114 ret |= io_waitid_remove_all(ctx, tctx, cancel_all); 3115 ret |= io_futex_remove_all(ctx, tctx, cancel_all); 3116 ret |= io_uring_try_cancel_uring_cmd(ctx, tctx, cancel_all); 3117 mutex_unlock(&ctx->uring_lock); 3118 ret |= io_kill_timeouts(ctx, tctx, cancel_all); 3119 if (tctx) 3120 ret |= io_run_task_work() > 0; 3121 else 3122 ret |= flush_delayed_work(&ctx->fallback_work); 3123 return ret; 3124 } 3125 3126 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked) 3127 { 3128 if (tracked) 3129 return atomic_read(&tctx->inflight_tracked); 3130 return percpu_counter_sum(&tctx->inflight); 3131 } 3132 3133 /* 3134 * Find any io_uring ctx that this task has registered or done IO on, and cancel 3135 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation. 3136 */ 3137 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd) 3138 { 3139 struct io_uring_task *tctx = current->io_uring; 3140 struct io_ring_ctx *ctx; 3141 struct io_tctx_node *node; 3142 unsigned long index; 3143 s64 inflight; 3144 DEFINE_WAIT(wait); 3145 3146 WARN_ON_ONCE(sqd && sqd->thread != current); 3147 3148 if (!current->io_uring) 3149 return; 3150 if (tctx->io_wq) 3151 io_wq_exit_start(tctx->io_wq); 3152 3153 atomic_inc(&tctx->in_cancel); 3154 do { 3155 bool loop = false; 3156 3157 io_uring_drop_tctx_refs(current); 3158 if (!tctx_inflight(tctx, !cancel_all)) 3159 break; 3160 3161 /* read completions before cancelations */ 3162 inflight = tctx_inflight(tctx, false); 3163 if (!inflight) 3164 break; 3165 3166 if (!sqd) { 3167 xa_for_each(&tctx->xa, index, node) { 3168 /* sqpoll task will cancel all its requests */ 3169 if (node->ctx->sq_data) 3170 continue; 3171 loop |= io_uring_try_cancel_requests(node->ctx, 3172 current->io_uring, 3173 cancel_all, 3174 false); 3175 } 3176 } else { 3177 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) 3178 loop |= io_uring_try_cancel_requests(ctx, 3179 current->io_uring, 3180 cancel_all, 3181 true); 3182 } 3183 3184 if (loop) { 3185 cond_resched(); 3186 continue; 3187 } 3188 3189 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE); 3190 io_run_task_work(); 3191 io_uring_drop_tctx_refs(current); 3192 xa_for_each(&tctx->xa, index, node) { 3193 if (io_local_work_pending(node->ctx)) { 3194 WARN_ON_ONCE(node->ctx->submitter_task && 3195 node->ctx->submitter_task != current); 3196 goto end_wait; 3197 } 3198 } 3199 /* 3200 * If we've seen completions, retry without waiting. This 3201 * avoids a race where a completion comes in before we did 3202 * prepare_to_wait(). 3203 */ 3204 if (inflight == tctx_inflight(tctx, !cancel_all)) 3205 schedule(); 3206 end_wait: 3207 finish_wait(&tctx->wait, &wait); 3208 } while (1); 3209 3210 io_uring_clean_tctx(tctx); 3211 if (cancel_all) { 3212 /* 3213 * We shouldn't run task_works after cancel, so just leave 3214 * ->in_cancel set for normal exit. 3215 */ 3216 atomic_dec(&tctx->in_cancel); 3217 /* for exec all current's requests should be gone, kill tctx */ 3218 __io_uring_free(current); 3219 } 3220 } 3221 3222 void __io_uring_cancel(bool cancel_all) 3223 { 3224 io_uring_unreg_ringfd(); 3225 io_uring_cancel_generic(cancel_all, NULL); 3226 } 3227 3228 static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx, 3229 const struct io_uring_getevents_arg __user *uarg) 3230 { 3231 unsigned long size = sizeof(struct io_uring_reg_wait); 3232 unsigned long offset = (uintptr_t)uarg; 3233 unsigned long end; 3234 3235 if (unlikely(offset % sizeof(long))) 3236 return ERR_PTR(-EFAULT); 3237 3238 /* also protects from NULL ->cq_wait_arg as the size would be 0 */ 3239 if (unlikely(check_add_overflow(offset, size, &end) || 3240 end > ctx->cq_wait_size)) 3241 return ERR_PTR(-EFAULT); 3242 3243 offset = array_index_nospec(offset, ctx->cq_wait_size - size); 3244 return ctx->cq_wait_arg + offset; 3245 } 3246 3247 static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags, 3248 const void __user *argp, size_t argsz) 3249 { 3250 struct io_uring_getevents_arg arg; 3251 3252 if (!(flags & IORING_ENTER_EXT_ARG)) 3253 return 0; 3254 if (flags & IORING_ENTER_EXT_ARG_REG) 3255 return -EINVAL; 3256 if (argsz != sizeof(arg)) 3257 return -EINVAL; 3258 if (copy_from_user(&arg, argp, sizeof(arg))) 3259 return -EFAULT; 3260 return 0; 3261 } 3262 3263 static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags, 3264 const void __user *argp, struct ext_arg *ext_arg) 3265 { 3266 const struct io_uring_getevents_arg __user *uarg = argp; 3267 struct io_uring_getevents_arg arg; 3268 3269 ext_arg->iowait = !(flags & IORING_ENTER_NO_IOWAIT); 3270 3271 /* 3272 * If EXT_ARG isn't set, then we have no timespec and the argp pointer 3273 * is just a pointer to the sigset_t. 3274 */ 3275 if (!(flags & IORING_ENTER_EXT_ARG)) { 3276 ext_arg->sig = (const sigset_t __user *) argp; 3277 return 0; 3278 } 3279 3280 if (flags & IORING_ENTER_EXT_ARG_REG) { 3281 struct io_uring_reg_wait *w; 3282 3283 if (ext_arg->argsz != sizeof(struct io_uring_reg_wait)) 3284 return -EINVAL; 3285 w = io_get_ext_arg_reg(ctx, argp); 3286 if (IS_ERR(w)) 3287 return PTR_ERR(w); 3288 3289 if (w->flags & ~IORING_REG_WAIT_TS) 3290 return -EINVAL; 3291 ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC; 3292 ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask)); 3293 ext_arg->argsz = READ_ONCE(w->sigmask_sz); 3294 if (w->flags & IORING_REG_WAIT_TS) { 3295 ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec); 3296 ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec); 3297 ext_arg->ts_set = true; 3298 } 3299 return 0; 3300 } 3301 3302 /* 3303 * EXT_ARG is set - ensure we agree on the size of it and copy in our 3304 * timespec and sigset_t pointers if good. 3305 */ 3306 if (ext_arg->argsz != sizeof(arg)) 3307 return -EINVAL; 3308 #ifdef CONFIG_64BIT 3309 if (!user_access_begin(uarg, sizeof(*uarg))) 3310 return -EFAULT; 3311 unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end); 3312 unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end); 3313 unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end); 3314 unsafe_get_user(arg.ts, &uarg->ts, uaccess_end); 3315 user_access_end(); 3316 #else 3317 if (copy_from_user(&arg, uarg, sizeof(arg))) 3318 return -EFAULT; 3319 #endif 3320 ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC; 3321 ext_arg->sig = u64_to_user_ptr(arg.sigmask); 3322 ext_arg->argsz = arg.sigmask_sz; 3323 if (arg.ts) { 3324 if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts))) 3325 return -EFAULT; 3326 ext_arg->ts_set = true; 3327 } 3328 return 0; 3329 #ifdef CONFIG_64BIT 3330 uaccess_end: 3331 user_access_end(); 3332 return -EFAULT; 3333 #endif 3334 } 3335 3336 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, 3337 u32, min_complete, u32, flags, const void __user *, argp, 3338 size_t, argsz) 3339 { 3340 struct io_ring_ctx *ctx; 3341 struct file *file; 3342 long ret; 3343 3344 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP | 3345 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG | 3346 IORING_ENTER_REGISTERED_RING | 3347 IORING_ENTER_ABS_TIMER | 3348 IORING_ENTER_EXT_ARG_REG | 3349 IORING_ENTER_NO_IOWAIT))) 3350 return -EINVAL; 3351 3352 /* 3353 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we 3354 * need only dereference our task private array to find it. 3355 */ 3356 if (flags & IORING_ENTER_REGISTERED_RING) { 3357 struct io_uring_task *tctx = current->io_uring; 3358 3359 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) 3360 return -EINVAL; 3361 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); 3362 file = tctx->registered_rings[fd]; 3363 if (unlikely(!file)) 3364 return -EBADF; 3365 } else { 3366 file = fget(fd); 3367 if (unlikely(!file)) 3368 return -EBADF; 3369 ret = -EOPNOTSUPP; 3370 if (unlikely(!io_is_uring_fops(file))) 3371 goto out; 3372 } 3373 3374 ctx = file->private_data; 3375 ret = -EBADFD; 3376 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) 3377 goto out; 3378 3379 /* 3380 * For SQ polling, the thread will do all submissions and completions. 3381 * Just return the requested submit count, and wake the thread if 3382 * we were asked to. 3383 */ 3384 ret = 0; 3385 if (ctx->flags & IORING_SETUP_SQPOLL) { 3386 if (unlikely(ctx->sq_data->thread == NULL)) { 3387 ret = -EOWNERDEAD; 3388 goto out; 3389 } 3390 if (flags & IORING_ENTER_SQ_WAKEUP) 3391 wake_up(&ctx->sq_data->wait); 3392 if (flags & IORING_ENTER_SQ_WAIT) 3393 io_sqpoll_wait_sq(ctx); 3394 3395 ret = to_submit; 3396 } else if (to_submit) { 3397 ret = io_uring_add_tctx_node(ctx); 3398 if (unlikely(ret)) 3399 goto out; 3400 3401 mutex_lock(&ctx->uring_lock); 3402 ret = io_submit_sqes(ctx, to_submit); 3403 if (ret != to_submit) { 3404 mutex_unlock(&ctx->uring_lock); 3405 goto out; 3406 } 3407 if (flags & IORING_ENTER_GETEVENTS) { 3408 if (ctx->syscall_iopoll) 3409 goto iopoll_locked; 3410 /* 3411 * Ignore errors, we'll soon call io_cqring_wait() and 3412 * it should handle ownership problems if any. 3413 */ 3414 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) 3415 (void)io_run_local_work_locked(ctx, min_complete); 3416 } 3417 mutex_unlock(&ctx->uring_lock); 3418 } 3419 3420 if (flags & IORING_ENTER_GETEVENTS) { 3421 int ret2; 3422 3423 if (ctx->syscall_iopoll) { 3424 /* 3425 * We disallow the app entering submit/complete with 3426 * polling, but we still need to lock the ring to 3427 * prevent racing with polled issue that got punted to 3428 * a workqueue. 3429 */ 3430 mutex_lock(&ctx->uring_lock); 3431 iopoll_locked: 3432 ret2 = io_validate_ext_arg(ctx, flags, argp, argsz); 3433 if (likely(!ret2)) 3434 ret2 = io_iopoll_check(ctx, min_complete); 3435 mutex_unlock(&ctx->uring_lock); 3436 } else { 3437 struct ext_arg ext_arg = { .argsz = argsz }; 3438 3439 ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg); 3440 if (likely(!ret2)) 3441 ret2 = io_cqring_wait(ctx, min_complete, flags, 3442 &ext_arg); 3443 } 3444 3445 if (!ret) { 3446 ret = ret2; 3447 3448 /* 3449 * EBADR indicates that one or more CQE were dropped. 3450 * Once the user has been informed we can clear the bit 3451 * as they are obviously ok with those drops. 3452 */ 3453 if (unlikely(ret2 == -EBADR)) 3454 clear_bit(IO_CHECK_CQ_DROPPED_BIT, 3455 &ctx->check_cq); 3456 } 3457 } 3458 out: 3459 if (!(flags & IORING_ENTER_REGISTERED_RING)) 3460 fput(file); 3461 return ret; 3462 } 3463 3464 static const struct file_operations io_uring_fops = { 3465 .release = io_uring_release, 3466 .mmap = io_uring_mmap, 3467 .get_unmapped_area = io_uring_get_unmapped_area, 3468 #ifndef CONFIG_MMU 3469 .mmap_capabilities = io_uring_nommu_mmap_capabilities, 3470 #endif 3471 .poll = io_uring_poll, 3472 #ifdef CONFIG_PROC_FS 3473 .show_fdinfo = io_uring_show_fdinfo, 3474 #endif 3475 }; 3476 3477 bool io_is_uring_fops(struct file *file) 3478 { 3479 return file->f_op == &io_uring_fops; 3480 } 3481 3482 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, 3483 struct io_uring_params *p) 3484 { 3485 struct io_uring_region_desc rd; 3486 struct io_rings *rings; 3487 size_t size, sq_array_offset; 3488 int ret; 3489 3490 /* make sure these are sane, as we already accounted them */ 3491 ctx->sq_entries = p->sq_entries; 3492 ctx->cq_entries = p->cq_entries; 3493 3494 size = rings_size(ctx->flags, p->sq_entries, p->cq_entries, 3495 &sq_array_offset); 3496 if (size == SIZE_MAX) 3497 return -EOVERFLOW; 3498 3499 memset(&rd, 0, sizeof(rd)); 3500 rd.size = PAGE_ALIGN(size); 3501 if (ctx->flags & IORING_SETUP_NO_MMAP) { 3502 rd.user_addr = p->cq_off.user_addr; 3503 rd.flags |= IORING_MEM_REGION_TYPE_USER; 3504 } 3505 ret = io_create_region(ctx, &ctx->ring_region, &rd, IORING_OFF_CQ_RING); 3506 if (ret) 3507 return ret; 3508 ctx->rings = rings = io_region_get_ptr(&ctx->ring_region); 3509 3510 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3511 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset); 3512 rings->sq_ring_mask = p->sq_entries - 1; 3513 rings->cq_ring_mask = p->cq_entries - 1; 3514 rings->sq_ring_entries = p->sq_entries; 3515 rings->cq_ring_entries = p->cq_entries; 3516 3517 if (p->flags & IORING_SETUP_SQE128) 3518 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries); 3519 else 3520 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries); 3521 if (size == SIZE_MAX) { 3522 io_rings_free(ctx); 3523 return -EOVERFLOW; 3524 } 3525 3526 memset(&rd, 0, sizeof(rd)); 3527 rd.size = PAGE_ALIGN(size); 3528 if (ctx->flags & IORING_SETUP_NO_MMAP) { 3529 rd.user_addr = p->sq_off.user_addr; 3530 rd.flags |= IORING_MEM_REGION_TYPE_USER; 3531 } 3532 ret = io_create_region(ctx, &ctx->sq_region, &rd, IORING_OFF_SQES); 3533 if (ret) { 3534 io_rings_free(ctx); 3535 return ret; 3536 } 3537 ctx->sq_sqes = io_region_get_ptr(&ctx->sq_region); 3538 return 0; 3539 } 3540 3541 static int io_uring_install_fd(struct file *file) 3542 { 3543 int fd; 3544 3545 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 3546 if (fd < 0) 3547 return fd; 3548 fd_install(fd, file); 3549 return fd; 3550 } 3551 3552 /* 3553 * Allocate an anonymous fd, this is what constitutes the application 3554 * visible backing of an io_uring instance. The application mmaps this 3555 * fd to gain access to the SQ/CQ ring details. 3556 */ 3557 static struct file *io_uring_get_file(struct io_ring_ctx *ctx) 3558 { 3559 /* Create a new inode so that the LSM can block the creation. */ 3560 return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx, 3561 O_RDWR | O_CLOEXEC, NULL); 3562 } 3563 3564 static int io_uring_sanitise_params(struct io_uring_params *p) 3565 { 3566 unsigned flags = p->flags; 3567 3568 /* There is no way to mmap rings without a real fd */ 3569 if ((flags & IORING_SETUP_REGISTERED_FD_ONLY) && 3570 !(flags & IORING_SETUP_NO_MMAP)) 3571 return -EINVAL; 3572 3573 if (flags & IORING_SETUP_SQPOLL) { 3574 /* IPI related flags don't make sense with SQPOLL */ 3575 if (flags & (IORING_SETUP_COOP_TASKRUN | 3576 IORING_SETUP_TASKRUN_FLAG | 3577 IORING_SETUP_DEFER_TASKRUN)) 3578 return -EINVAL; 3579 } 3580 3581 if (flags & IORING_SETUP_TASKRUN_FLAG) { 3582 if (!(flags & (IORING_SETUP_COOP_TASKRUN | 3583 IORING_SETUP_DEFER_TASKRUN))) 3584 return -EINVAL; 3585 } 3586 3587 /* HYBRID_IOPOLL only valid with IOPOLL */ 3588 if ((flags & IORING_SETUP_HYBRID_IOPOLL) && !(flags & IORING_SETUP_IOPOLL)) 3589 return -EINVAL; 3590 3591 /* 3592 * For DEFER_TASKRUN we require the completion task to be the same as 3593 * the submission task. This implies that there is only one submitter. 3594 */ 3595 if ((flags & IORING_SETUP_DEFER_TASKRUN) && 3596 !(flags & IORING_SETUP_SINGLE_ISSUER)) 3597 return -EINVAL; 3598 3599 return 0; 3600 } 3601 3602 int io_uring_fill_params(unsigned entries, struct io_uring_params *p) 3603 { 3604 if (!entries) 3605 return -EINVAL; 3606 if (entries > IORING_MAX_ENTRIES) { 3607 if (!(p->flags & IORING_SETUP_CLAMP)) 3608 return -EINVAL; 3609 entries = IORING_MAX_ENTRIES; 3610 } 3611 3612 /* 3613 * Use twice as many entries for the CQ ring. It's possible for the 3614 * application to drive a higher depth than the size of the SQ ring, 3615 * since the sqes are only used at submission time. This allows for 3616 * some flexibility in overcommitting a bit. If the application has 3617 * set IORING_SETUP_CQSIZE, it will have passed in the desired number 3618 * of CQ ring entries manually. 3619 */ 3620 p->sq_entries = roundup_pow_of_two(entries); 3621 if (p->flags & IORING_SETUP_CQSIZE) { 3622 /* 3623 * If IORING_SETUP_CQSIZE is set, we do the same roundup 3624 * to a power-of-two, if it isn't already. We do NOT impose 3625 * any cq vs sq ring sizing. 3626 */ 3627 if (!p->cq_entries) 3628 return -EINVAL; 3629 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { 3630 if (!(p->flags & IORING_SETUP_CLAMP)) 3631 return -EINVAL; 3632 p->cq_entries = IORING_MAX_CQ_ENTRIES; 3633 } 3634 p->cq_entries = roundup_pow_of_two(p->cq_entries); 3635 if (p->cq_entries < p->sq_entries) 3636 return -EINVAL; 3637 } else { 3638 p->cq_entries = 2 * p->sq_entries; 3639 } 3640 3641 p->sq_off.head = offsetof(struct io_rings, sq.head); 3642 p->sq_off.tail = offsetof(struct io_rings, sq.tail); 3643 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); 3644 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); 3645 p->sq_off.flags = offsetof(struct io_rings, sq_flags); 3646 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); 3647 p->sq_off.resv1 = 0; 3648 if (!(p->flags & IORING_SETUP_NO_MMAP)) 3649 p->sq_off.user_addr = 0; 3650 3651 p->cq_off.head = offsetof(struct io_rings, cq.head); 3652 p->cq_off.tail = offsetof(struct io_rings, cq.tail); 3653 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); 3654 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); 3655 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); 3656 p->cq_off.cqes = offsetof(struct io_rings, cqes); 3657 p->cq_off.flags = offsetof(struct io_rings, cq_flags); 3658 p->cq_off.resv1 = 0; 3659 if (!(p->flags & IORING_SETUP_NO_MMAP)) 3660 p->cq_off.user_addr = 0; 3661 3662 return 0; 3663 } 3664 3665 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p, 3666 struct io_uring_params __user *params) 3667 { 3668 struct io_ring_ctx *ctx; 3669 struct io_uring_task *tctx; 3670 struct file *file; 3671 int ret; 3672 3673 ret = io_uring_sanitise_params(p); 3674 if (ret) 3675 return ret; 3676 3677 ret = io_uring_fill_params(entries, p); 3678 if (unlikely(ret)) 3679 return ret; 3680 3681 ctx = io_ring_ctx_alloc(p); 3682 if (!ctx) 3683 return -ENOMEM; 3684 3685 ctx->clockid = CLOCK_MONOTONIC; 3686 ctx->clock_offset = 0; 3687 3688 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) 3689 static_branch_inc(&io_key_has_sqarray); 3690 3691 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && 3692 !(ctx->flags & IORING_SETUP_IOPOLL) && 3693 !(ctx->flags & IORING_SETUP_SQPOLL)) 3694 ctx->task_complete = true; 3695 3696 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) 3697 ctx->lockless_cq = true; 3698 3699 /* 3700 * lazy poll_wq activation relies on ->task_complete for synchronisation 3701 * purposes, see io_activate_pollwq() 3702 */ 3703 if (!ctx->task_complete) 3704 ctx->poll_activated = true; 3705 3706 /* 3707 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user 3708 * space applications don't need to do io completion events 3709 * polling again, they can rely on io_sq_thread to do polling 3710 * work, which can reduce cpu usage and uring_lock contention. 3711 */ 3712 if (ctx->flags & IORING_SETUP_IOPOLL && 3713 !(ctx->flags & IORING_SETUP_SQPOLL)) 3714 ctx->syscall_iopoll = 1; 3715 3716 ctx->compat = in_compat_syscall(); 3717 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) 3718 ctx->user = get_uid(current_user()); 3719 3720 /* 3721 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if 3722 * COOP_TASKRUN is set, then IPIs are never needed by the app. 3723 */ 3724 if (ctx->flags & (IORING_SETUP_SQPOLL|IORING_SETUP_COOP_TASKRUN)) 3725 ctx->notify_method = TWA_SIGNAL_NO_IPI; 3726 else 3727 ctx->notify_method = TWA_SIGNAL; 3728 3729 /* 3730 * This is just grabbed for accounting purposes. When a process exits, 3731 * the mm is exited and dropped before the files, hence we need to hang 3732 * on to this mm purely for the purposes of being able to unaccount 3733 * memory (locked/pinned vm). It's not used for anything else. 3734 */ 3735 mmgrab(current->mm); 3736 ctx->mm_account = current->mm; 3737 3738 ret = io_allocate_scq_urings(ctx, p); 3739 if (ret) 3740 goto err; 3741 3742 if (!(p->flags & IORING_SETUP_NO_SQARRAY)) 3743 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings; 3744 3745 ret = io_sq_offload_create(ctx, p); 3746 if (ret) 3747 goto err; 3748 3749 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP | 3750 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS | 3751 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL | 3752 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED | 3753 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS | 3754 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP | 3755 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING | 3756 IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT | 3757 IORING_FEAT_RW_ATTR | IORING_FEAT_NO_IOWAIT; 3758 3759 if (copy_to_user(params, p, sizeof(*p))) { 3760 ret = -EFAULT; 3761 goto err; 3762 } 3763 3764 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER 3765 && !(ctx->flags & IORING_SETUP_R_DISABLED)) 3766 WRITE_ONCE(ctx->submitter_task, get_task_struct(current)); 3767 3768 file = io_uring_get_file(ctx); 3769 if (IS_ERR(file)) { 3770 ret = PTR_ERR(file); 3771 goto err; 3772 } 3773 3774 ret = __io_uring_add_tctx_node(ctx); 3775 if (ret) 3776 goto err_fput; 3777 tctx = current->io_uring; 3778 3779 /* 3780 * Install ring fd as the very last thing, so we don't risk someone 3781 * having closed it before we finish setup 3782 */ 3783 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) 3784 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); 3785 else 3786 ret = io_uring_install_fd(file); 3787 if (ret < 0) 3788 goto err_fput; 3789 3790 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); 3791 return ret; 3792 err: 3793 io_ring_ctx_wait_and_kill(ctx); 3794 return ret; 3795 err_fput: 3796 fput(file); 3797 return ret; 3798 } 3799 3800 /* 3801 * Sets up an aio uring context, and returns the fd. Applications asks for a 3802 * ring size, we return the actual sq/cq ring sizes (among other things) in the 3803 * params structure passed in. 3804 */ 3805 static long io_uring_setup(u32 entries, struct io_uring_params __user *params) 3806 { 3807 struct io_uring_params p; 3808 int i; 3809 3810 if (copy_from_user(&p, params, sizeof(p))) 3811 return -EFAULT; 3812 for (i = 0; i < ARRAY_SIZE(p.resv); i++) { 3813 if (p.resv[i]) 3814 return -EINVAL; 3815 } 3816 3817 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL | 3818 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE | 3819 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ | 3820 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL | 3821 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG | 3822 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 | 3823 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN | 3824 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY | 3825 IORING_SETUP_NO_SQARRAY | IORING_SETUP_HYBRID_IOPOLL)) 3826 return -EINVAL; 3827 3828 return io_uring_create(entries, &p, params); 3829 } 3830 3831 static inline int io_uring_allowed(void) 3832 { 3833 int disabled = READ_ONCE(sysctl_io_uring_disabled); 3834 kgid_t io_uring_group; 3835 3836 if (disabled == 2) 3837 return -EPERM; 3838 3839 if (disabled == 0 || capable(CAP_SYS_ADMIN)) 3840 goto allowed_lsm; 3841 3842 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group); 3843 if (!gid_valid(io_uring_group)) 3844 return -EPERM; 3845 3846 if (!in_group_p(io_uring_group)) 3847 return -EPERM; 3848 3849 allowed_lsm: 3850 return security_uring_allowed(); 3851 } 3852 3853 SYSCALL_DEFINE2(io_uring_setup, u32, entries, 3854 struct io_uring_params __user *, params) 3855 { 3856 int ret; 3857 3858 ret = io_uring_allowed(); 3859 if (ret) 3860 return ret; 3861 3862 return io_uring_setup(entries, params); 3863 } 3864 3865 static int __init io_uring_init(void) 3866 { 3867 struct kmem_cache_args kmem_args = { 3868 .useroffset = offsetof(struct io_kiocb, cmd.data), 3869 .usersize = sizeof_field(struct io_kiocb, cmd.data), 3870 .freeptr_offset = offsetof(struct io_kiocb, work), 3871 .use_freeptr_offset = true, 3872 }; 3873 3874 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ 3875 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ 3876 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ 3877 } while (0) 3878 3879 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ 3880 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) 3881 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ 3882 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) 3883 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); 3884 BUILD_BUG_SQE_ELEM(0, __u8, opcode); 3885 BUILD_BUG_SQE_ELEM(1, __u8, flags); 3886 BUILD_BUG_SQE_ELEM(2, __u16, ioprio); 3887 BUILD_BUG_SQE_ELEM(4, __s32, fd); 3888 BUILD_BUG_SQE_ELEM(8, __u64, off); 3889 BUILD_BUG_SQE_ELEM(8, __u64, addr2); 3890 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); 3891 BUILD_BUG_SQE_ELEM(12, __u32, __pad1); 3892 BUILD_BUG_SQE_ELEM(16, __u64, addr); 3893 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); 3894 BUILD_BUG_SQE_ELEM(24, __u32, len); 3895 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); 3896 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); 3897 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); 3898 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); 3899 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); 3900 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); 3901 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); 3902 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); 3903 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); 3904 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); 3905 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); 3906 BUILD_BUG_SQE_ELEM(28, __u32, open_flags); 3907 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); 3908 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); 3909 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); 3910 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); 3911 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); 3912 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); 3913 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); 3914 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); 3915 BUILD_BUG_SQE_ELEM(32, __u64, user_data); 3916 BUILD_BUG_SQE_ELEM(40, __u16, buf_index); 3917 BUILD_BUG_SQE_ELEM(40, __u16, buf_group); 3918 BUILD_BUG_SQE_ELEM(42, __u16, personality); 3919 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); 3920 BUILD_BUG_SQE_ELEM(44, __u32, file_index); 3921 BUILD_BUG_SQE_ELEM(44, __u16, addr_len); 3922 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); 3923 BUILD_BUG_SQE_ELEM(48, __u64, addr3); 3924 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); 3925 BUILD_BUG_SQE_ELEM(48, __u64, attr_ptr); 3926 BUILD_BUG_SQE_ELEM(56, __u64, attr_type_mask); 3927 BUILD_BUG_SQE_ELEM(56, __u64, __pad2); 3928 3929 BUILD_BUG_ON(sizeof(struct io_uring_files_update) != 3930 sizeof(struct io_uring_rsrc_update)); 3931 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > 3932 sizeof(struct io_uring_rsrc_update2)); 3933 3934 /* ->buf_index is u16 */ 3935 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); 3936 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != 3937 offsetof(struct io_uring_buf_ring, tail)); 3938 3939 /* should fit into one byte */ 3940 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); 3941 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); 3942 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); 3943 3944 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags)); 3945 3946 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); 3947 3948 /* top 8bits are for internal use */ 3949 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0); 3950 3951 io_uring_optable_init(); 3952 3953 /* imu->dir is u8 */ 3954 BUILD_BUG_ON((IO_IMU_DEST | IO_IMU_SOURCE) > U8_MAX); 3955 3956 /* 3957 * Allow user copy in the per-command field, which starts after the 3958 * file in io_kiocb and until the opcode field. The openat2 handling 3959 * requires copying in user memory into the io_kiocb object in that 3960 * range, and HARDENED_USERCOPY will complain if we haven't 3961 * correctly annotated this range. 3962 */ 3963 req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args, 3964 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT | 3965 SLAB_TYPESAFE_BY_RCU); 3966 3967 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64); 3968 BUG_ON(!iou_wq); 3969 3970 #ifdef CONFIG_SYSCTL 3971 register_sysctl_init("kernel", kernel_io_uring_disabled_table); 3972 #endif 3973 3974 return 0; 3975 }; 3976 __initcall(io_uring_init); 3977