xref: /linux/io_uring/io_uring.c (revision eff5f16bfd87ae48c56751741af41a825d5d4618)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50 
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/mm.h>
55 #include <linux/mman.h>
56 #include <linux/percpu.h>
57 #include <linux/slab.h>
58 #include <linux/bvec.h>
59 #include <linux/net.h>
60 #include <net/sock.h>
61 #include <linux/anon_inodes.h>
62 #include <linux/sched/mm.h>
63 #include <linux/uaccess.h>
64 #include <linux/nospec.h>
65 #include <linux/fsnotify.h>
66 #include <linux/fadvise.h>
67 #include <linux/task_work.h>
68 #include <linux/io_uring.h>
69 #include <linux/io_uring/cmd.h>
70 #include <linux/audit.h>
71 #include <linux/security.h>
72 #include <linux/jump_label.h>
73 #include <asm/shmparam.h>
74 
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/io_uring.h>
77 
78 #include <uapi/linux/io_uring.h>
79 
80 #include "io-wq.h"
81 
82 #include "io_uring.h"
83 #include "opdef.h"
84 #include "refs.h"
85 #include "tctx.h"
86 #include "register.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94 #include "waitid.h"
95 #include "futex.h"
96 #include "napi.h"
97 #include "uring_cmd.h"
98 #include "msg_ring.h"
99 #include "memmap.h"
100 #include "zcrx.h"
101 
102 #include "timeout.h"
103 #include "poll.h"
104 #include "rw.h"
105 #include "alloc_cache.h"
106 #include "eventfd.h"
107 
108 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
109 			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
110 
111 #define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
112 			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
113 
114 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
115 
116 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
117 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
118 				REQ_F_ASYNC_DATA)
119 
120 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | IO_REQ_LINK_FLAGS | \
121 				 REQ_F_REISSUE | IO_REQ_CLEAN_FLAGS)
122 
123 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
124 
125 #define IO_COMPL_BATCH			32
126 #define IO_REQ_ALLOC_BATCH		8
127 #define IO_LOCAL_TW_DEFAULT_MAX		20
128 
129 struct io_defer_entry {
130 	struct list_head	list;
131 	struct io_kiocb		*req;
132 	u32			seq;
133 };
134 
135 /* requests with any of those set should undergo io_disarm_next() */
136 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
137 
138 /*
139  * No waiters. It's larger than any valid value of the tw counter
140  * so that tests against ->cq_wait_nr would fail and skip wake_up().
141  */
142 #define IO_CQ_WAKE_INIT		(-1U)
143 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
144 #define IO_CQ_WAKE_FORCE	(IO_CQ_WAKE_INIT >> 1)
145 
146 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
147 					 struct io_uring_task *tctx,
148 					 bool cancel_all,
149 					 bool is_sqpoll_thread);
150 
151 static void io_queue_sqe(struct io_kiocb *req);
152 
153 static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray);
154 
155 struct kmem_cache *req_cachep;
156 static struct workqueue_struct *iou_wq __ro_after_init;
157 
158 static int __read_mostly sysctl_io_uring_disabled;
159 static int __read_mostly sysctl_io_uring_group = -1;
160 
161 #ifdef CONFIG_SYSCTL
162 static const struct ctl_table kernel_io_uring_disabled_table[] = {
163 	{
164 		.procname	= "io_uring_disabled",
165 		.data		= &sysctl_io_uring_disabled,
166 		.maxlen		= sizeof(sysctl_io_uring_disabled),
167 		.mode		= 0644,
168 		.proc_handler	= proc_dointvec_minmax,
169 		.extra1		= SYSCTL_ZERO,
170 		.extra2		= SYSCTL_TWO,
171 	},
172 	{
173 		.procname	= "io_uring_group",
174 		.data		= &sysctl_io_uring_group,
175 		.maxlen		= sizeof(gid_t),
176 		.mode		= 0644,
177 		.proc_handler	= proc_dointvec,
178 	},
179 };
180 #endif
181 
182 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
183 {
184 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
185 }
186 
187 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
188 {
189 	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
190 }
191 
192 static bool io_match_linked(struct io_kiocb *head)
193 {
194 	struct io_kiocb *req;
195 
196 	io_for_each_link(req, head) {
197 		if (req->flags & REQ_F_INFLIGHT)
198 			return true;
199 	}
200 	return false;
201 }
202 
203 /*
204  * As io_match_task() but protected against racing with linked timeouts.
205  * User must not hold timeout_lock.
206  */
207 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx,
208 			bool cancel_all)
209 {
210 	bool matched;
211 
212 	if (tctx && head->tctx != tctx)
213 		return false;
214 	if (cancel_all)
215 		return true;
216 
217 	if (head->flags & REQ_F_LINK_TIMEOUT) {
218 		struct io_ring_ctx *ctx = head->ctx;
219 
220 		/* protect against races with linked timeouts */
221 		raw_spin_lock_irq(&ctx->timeout_lock);
222 		matched = io_match_linked(head);
223 		raw_spin_unlock_irq(&ctx->timeout_lock);
224 	} else {
225 		matched = io_match_linked(head);
226 	}
227 	return matched;
228 }
229 
230 static inline void req_fail_link_node(struct io_kiocb *req, int res)
231 {
232 	req_set_fail(req);
233 	io_req_set_res(req, res, 0);
234 }
235 
236 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
237 {
238 	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
239 }
240 
241 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
242 {
243 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
244 
245 	complete(&ctx->ref_comp);
246 }
247 
248 static __cold void io_fallback_req_func(struct work_struct *work)
249 {
250 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
251 						fallback_work.work);
252 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
253 	struct io_kiocb *req, *tmp;
254 	struct io_tw_state ts = {};
255 
256 	percpu_ref_get(&ctx->refs);
257 	mutex_lock(&ctx->uring_lock);
258 	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
259 		req->io_task_work.func(req, ts);
260 	io_submit_flush_completions(ctx);
261 	mutex_unlock(&ctx->uring_lock);
262 	percpu_ref_put(&ctx->refs);
263 }
264 
265 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
266 {
267 	unsigned int hash_buckets;
268 	int i;
269 
270 	do {
271 		hash_buckets = 1U << bits;
272 		table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]),
273 						GFP_KERNEL_ACCOUNT);
274 		if (table->hbs)
275 			break;
276 		if (bits == 1)
277 			return -ENOMEM;
278 		bits--;
279 	} while (1);
280 
281 	table->hash_bits = bits;
282 	for (i = 0; i < hash_buckets; i++)
283 		INIT_HLIST_HEAD(&table->hbs[i].list);
284 	return 0;
285 }
286 
287 static void io_free_alloc_caches(struct io_ring_ctx *ctx)
288 {
289 	io_alloc_cache_free(&ctx->apoll_cache, kfree);
290 	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
291 	io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
292 	io_alloc_cache_free(&ctx->cmd_cache, io_cmd_cache_free);
293 	io_alloc_cache_free(&ctx->msg_cache, kfree);
294 	io_futex_cache_free(ctx);
295 	io_rsrc_cache_free(ctx);
296 }
297 
298 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
299 {
300 	struct io_ring_ctx *ctx;
301 	int hash_bits;
302 	bool ret;
303 
304 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
305 	if (!ctx)
306 		return NULL;
307 
308 	xa_init(&ctx->io_bl_xa);
309 
310 	/*
311 	 * Use 5 bits less than the max cq entries, that should give us around
312 	 * 32 entries per hash list if totally full and uniformly spread, but
313 	 * don't keep too many buckets to not overconsume memory.
314 	 */
315 	hash_bits = ilog2(p->cq_entries) - 5;
316 	hash_bits = clamp(hash_bits, 1, 8);
317 	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
318 		goto err;
319 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
320 			    0, GFP_KERNEL))
321 		goto err;
322 
323 	ctx->flags = p->flags;
324 	ctx->hybrid_poll_time = LLONG_MAX;
325 	atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
326 	init_waitqueue_head(&ctx->sqo_sq_wait);
327 	INIT_LIST_HEAD(&ctx->sqd_list);
328 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
329 	ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX,
330 			    sizeof(struct async_poll), 0);
331 	ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
332 			    sizeof(struct io_async_msghdr),
333 			    offsetof(struct io_async_msghdr, clear));
334 	ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX,
335 			    sizeof(struct io_async_rw),
336 			    offsetof(struct io_async_rw, clear));
337 	ret |= io_alloc_cache_init(&ctx->cmd_cache, IO_ALLOC_CACHE_MAX,
338 			    sizeof(struct io_async_cmd),
339 			    sizeof(struct io_async_cmd));
340 	spin_lock_init(&ctx->msg_lock);
341 	ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX,
342 			    sizeof(struct io_kiocb), 0);
343 	ret |= io_futex_cache_init(ctx);
344 	ret |= io_rsrc_cache_init(ctx);
345 	if (ret)
346 		goto free_ref;
347 	init_completion(&ctx->ref_comp);
348 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
349 	mutex_init(&ctx->uring_lock);
350 	init_waitqueue_head(&ctx->cq_wait);
351 	init_waitqueue_head(&ctx->poll_wq);
352 	spin_lock_init(&ctx->completion_lock);
353 	raw_spin_lock_init(&ctx->timeout_lock);
354 	INIT_WQ_LIST(&ctx->iopoll_list);
355 	INIT_LIST_HEAD(&ctx->defer_list);
356 	INIT_LIST_HEAD(&ctx->timeout_list);
357 	INIT_LIST_HEAD(&ctx->ltimeout_list);
358 	init_llist_head(&ctx->work_llist);
359 	INIT_LIST_HEAD(&ctx->tctx_list);
360 	ctx->submit_state.free_list.next = NULL;
361 	INIT_HLIST_HEAD(&ctx->waitid_list);
362 #ifdef CONFIG_FUTEX
363 	INIT_HLIST_HEAD(&ctx->futex_list);
364 #endif
365 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
366 	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
367 	INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
368 	io_napi_init(ctx);
369 	mutex_init(&ctx->mmap_lock);
370 
371 	return ctx;
372 
373 free_ref:
374 	percpu_ref_exit(&ctx->refs);
375 err:
376 	io_free_alloc_caches(ctx);
377 	kvfree(ctx->cancel_table.hbs);
378 	xa_destroy(&ctx->io_bl_xa);
379 	kfree(ctx);
380 	return NULL;
381 }
382 
383 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
384 {
385 	struct io_rings *r = ctx->rings;
386 
387 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
388 	ctx->cq_extra--;
389 }
390 
391 static bool req_need_defer(struct io_kiocb *req, u32 seq)
392 {
393 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
394 		struct io_ring_ctx *ctx = req->ctx;
395 
396 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
397 	}
398 
399 	return false;
400 }
401 
402 static void io_clean_op(struct io_kiocb *req)
403 {
404 	if (unlikely(req->flags & REQ_F_BUFFER_SELECTED))
405 		io_kbuf_drop_legacy(req);
406 
407 	if (req->flags & REQ_F_NEED_CLEANUP) {
408 		const struct io_cold_def *def = &io_cold_defs[req->opcode];
409 
410 		if (def->cleanup)
411 			def->cleanup(req);
412 	}
413 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
414 		kfree(req->apoll->double_poll);
415 		kfree(req->apoll);
416 		req->apoll = NULL;
417 	}
418 	if (req->flags & REQ_F_INFLIGHT)
419 		atomic_dec(&req->tctx->inflight_tracked);
420 	if (req->flags & REQ_F_CREDS)
421 		put_cred(req->creds);
422 	if (req->flags & REQ_F_ASYNC_DATA) {
423 		kfree(req->async_data);
424 		req->async_data = NULL;
425 	}
426 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
427 }
428 
429 static inline void io_req_track_inflight(struct io_kiocb *req)
430 {
431 	if (!(req->flags & REQ_F_INFLIGHT)) {
432 		req->flags |= REQ_F_INFLIGHT;
433 		atomic_inc(&req->tctx->inflight_tracked);
434 	}
435 }
436 
437 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
438 {
439 	if (WARN_ON_ONCE(!req->link))
440 		return NULL;
441 
442 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
443 	req->flags |= REQ_F_LINK_TIMEOUT;
444 
445 	/* linked timeouts should have two refs once prep'ed */
446 	io_req_set_refcount(req);
447 	__io_req_set_refcount(req->link, 2);
448 	return req->link;
449 }
450 
451 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
452 {
453 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
454 		return NULL;
455 	return __io_prep_linked_timeout(req);
456 }
457 
458 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
459 {
460 	io_queue_linked_timeout(__io_prep_linked_timeout(req));
461 }
462 
463 static inline void io_arm_ltimeout(struct io_kiocb *req)
464 {
465 	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
466 		__io_arm_ltimeout(req);
467 }
468 
469 static void io_prep_async_work(struct io_kiocb *req)
470 {
471 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
472 	struct io_ring_ctx *ctx = req->ctx;
473 
474 	if (!(req->flags & REQ_F_CREDS)) {
475 		req->flags |= REQ_F_CREDS;
476 		req->creds = get_current_cred();
477 	}
478 
479 	req->work.list.next = NULL;
480 	atomic_set(&req->work.flags, 0);
481 	if (req->flags & REQ_F_FORCE_ASYNC)
482 		atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags);
483 
484 	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
485 		req->flags |= io_file_get_flags(req->file);
486 
487 	if (req->file && (req->flags & REQ_F_ISREG)) {
488 		bool should_hash = def->hash_reg_file;
489 
490 		/* don't serialize this request if the fs doesn't need it */
491 		if (should_hash && (req->file->f_flags & O_DIRECT) &&
492 		    (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE))
493 			should_hash = false;
494 		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
495 			io_wq_hash_work(&req->work, file_inode(req->file));
496 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
497 		if (def->unbound_nonreg_file)
498 			atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags);
499 	}
500 }
501 
502 static void io_prep_async_link(struct io_kiocb *req)
503 {
504 	struct io_kiocb *cur;
505 
506 	if (req->flags & REQ_F_LINK_TIMEOUT) {
507 		struct io_ring_ctx *ctx = req->ctx;
508 
509 		raw_spin_lock_irq(&ctx->timeout_lock);
510 		io_for_each_link(cur, req)
511 			io_prep_async_work(cur);
512 		raw_spin_unlock_irq(&ctx->timeout_lock);
513 	} else {
514 		io_for_each_link(cur, req)
515 			io_prep_async_work(cur);
516 	}
517 }
518 
519 static void io_queue_iowq(struct io_kiocb *req)
520 {
521 	struct io_kiocb *link = io_prep_linked_timeout(req);
522 	struct io_uring_task *tctx = req->tctx;
523 
524 	BUG_ON(!tctx);
525 
526 	if ((current->flags & PF_KTHREAD) || !tctx->io_wq) {
527 		io_req_task_queue_fail(req, -ECANCELED);
528 		return;
529 	}
530 
531 	/* init ->work of the whole link before punting */
532 	io_prep_async_link(req);
533 
534 	/*
535 	 * Not expected to happen, but if we do have a bug where this _can_
536 	 * happen, catch it here and ensure the request is marked as
537 	 * canceled. That will make io-wq go through the usual work cancel
538 	 * procedure rather than attempt to run this request (or create a new
539 	 * worker for it).
540 	 */
541 	if (WARN_ON_ONCE(!same_thread_group(tctx->task, current)))
542 		atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags);
543 
544 	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
545 	io_wq_enqueue(tctx->io_wq, &req->work);
546 	if (link)
547 		io_queue_linked_timeout(link);
548 }
549 
550 static void io_req_queue_iowq_tw(struct io_kiocb *req, io_tw_token_t tw)
551 {
552 	io_queue_iowq(req);
553 }
554 
555 void io_req_queue_iowq(struct io_kiocb *req)
556 {
557 	req->io_task_work.func = io_req_queue_iowq_tw;
558 	io_req_task_work_add(req);
559 }
560 
561 static __cold noinline void io_queue_deferred(struct io_ring_ctx *ctx)
562 {
563 	spin_lock(&ctx->completion_lock);
564 	while (!list_empty(&ctx->defer_list)) {
565 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
566 						struct io_defer_entry, list);
567 
568 		if (req_need_defer(de->req, de->seq))
569 			break;
570 		list_del_init(&de->list);
571 		io_req_task_queue(de->req);
572 		kfree(de);
573 	}
574 	spin_unlock(&ctx->completion_lock);
575 }
576 
577 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
578 {
579 	if (ctx->poll_activated)
580 		io_poll_wq_wake(ctx);
581 	if (ctx->off_timeout_used)
582 		io_flush_timeouts(ctx);
583 	if (ctx->drain_active)
584 		io_queue_deferred(ctx);
585 	if (ctx->has_evfd)
586 		io_eventfd_flush_signal(ctx);
587 }
588 
589 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
590 {
591 	if (!ctx->lockless_cq)
592 		spin_lock(&ctx->completion_lock);
593 }
594 
595 static inline void io_cq_lock(struct io_ring_ctx *ctx)
596 	__acquires(ctx->completion_lock)
597 {
598 	spin_lock(&ctx->completion_lock);
599 }
600 
601 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
602 {
603 	io_commit_cqring(ctx);
604 	if (!ctx->task_complete) {
605 		if (!ctx->lockless_cq)
606 			spin_unlock(&ctx->completion_lock);
607 		/* IOPOLL rings only need to wake up if it's also SQPOLL */
608 		if (!ctx->syscall_iopoll)
609 			io_cqring_wake(ctx);
610 	}
611 	io_commit_cqring_flush(ctx);
612 }
613 
614 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
615 	__releases(ctx->completion_lock)
616 {
617 	io_commit_cqring(ctx);
618 	spin_unlock(&ctx->completion_lock);
619 	io_cqring_wake(ctx);
620 	io_commit_cqring_flush(ctx);
621 }
622 
623 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying)
624 {
625 	size_t cqe_size = sizeof(struct io_uring_cqe);
626 
627 	lockdep_assert_held(&ctx->uring_lock);
628 
629 	/* don't abort if we're dying, entries must get freed */
630 	if (!dying && __io_cqring_events(ctx) == ctx->cq_entries)
631 		return;
632 
633 	if (ctx->flags & IORING_SETUP_CQE32)
634 		cqe_size <<= 1;
635 
636 	io_cq_lock(ctx);
637 	while (!list_empty(&ctx->cq_overflow_list)) {
638 		struct io_uring_cqe *cqe;
639 		struct io_overflow_cqe *ocqe;
640 
641 		ocqe = list_first_entry(&ctx->cq_overflow_list,
642 					struct io_overflow_cqe, list);
643 
644 		if (!dying) {
645 			if (!io_get_cqe_overflow(ctx, &cqe, true))
646 				break;
647 			memcpy(cqe, &ocqe->cqe, cqe_size);
648 		}
649 		list_del(&ocqe->list);
650 		kfree(ocqe);
651 
652 		/*
653 		 * For silly syzbot cases that deliberately overflow by huge
654 		 * amounts, check if we need to resched and drop and
655 		 * reacquire the locks if so. Nothing real would ever hit this.
656 		 * Ideally we'd have a non-posting unlock for this, but hard
657 		 * to care for a non-real case.
658 		 */
659 		if (need_resched()) {
660 			io_cq_unlock_post(ctx);
661 			mutex_unlock(&ctx->uring_lock);
662 			cond_resched();
663 			mutex_lock(&ctx->uring_lock);
664 			io_cq_lock(ctx);
665 		}
666 	}
667 
668 	if (list_empty(&ctx->cq_overflow_list)) {
669 		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
670 		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
671 	}
672 	io_cq_unlock_post(ctx);
673 }
674 
675 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
676 {
677 	if (ctx->rings)
678 		__io_cqring_overflow_flush(ctx, true);
679 }
680 
681 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
682 {
683 	mutex_lock(&ctx->uring_lock);
684 	__io_cqring_overflow_flush(ctx, false);
685 	mutex_unlock(&ctx->uring_lock);
686 }
687 
688 /* must to be called somewhat shortly after putting a request */
689 static inline void io_put_task(struct io_kiocb *req)
690 {
691 	struct io_uring_task *tctx = req->tctx;
692 
693 	if (likely(tctx->task == current)) {
694 		tctx->cached_refs++;
695 	} else {
696 		percpu_counter_sub(&tctx->inflight, 1);
697 		if (unlikely(atomic_read(&tctx->in_cancel)))
698 			wake_up(&tctx->wait);
699 		put_task_struct(tctx->task);
700 	}
701 }
702 
703 void io_task_refs_refill(struct io_uring_task *tctx)
704 {
705 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
706 
707 	percpu_counter_add(&tctx->inflight, refill);
708 	refcount_add(refill, &current->usage);
709 	tctx->cached_refs += refill;
710 }
711 
712 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
713 {
714 	struct io_uring_task *tctx = task->io_uring;
715 	unsigned int refs = tctx->cached_refs;
716 
717 	if (refs) {
718 		tctx->cached_refs = 0;
719 		percpu_counter_sub(&tctx->inflight, refs);
720 		put_task_struct_many(task, refs);
721 	}
722 }
723 
724 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
725 				     s32 res, u32 cflags, u64 extra1, u64 extra2)
726 {
727 	struct io_overflow_cqe *ocqe;
728 	size_t ocq_size = sizeof(struct io_overflow_cqe);
729 	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
730 
731 	lockdep_assert_held(&ctx->completion_lock);
732 
733 	if (is_cqe32)
734 		ocq_size += sizeof(struct io_uring_cqe);
735 
736 	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
737 	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
738 	if (!ocqe) {
739 		/*
740 		 * If we're in ring overflow flush mode, or in task cancel mode,
741 		 * or cannot allocate an overflow entry, then we need to drop it
742 		 * on the floor.
743 		 */
744 		io_account_cq_overflow(ctx);
745 		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
746 		return false;
747 	}
748 	if (list_empty(&ctx->cq_overflow_list)) {
749 		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
750 		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
751 
752 	}
753 	ocqe->cqe.user_data = user_data;
754 	ocqe->cqe.res = res;
755 	ocqe->cqe.flags = cflags;
756 	if (is_cqe32) {
757 		ocqe->cqe.big_cqe[0] = extra1;
758 		ocqe->cqe.big_cqe[1] = extra2;
759 	}
760 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
761 	return true;
762 }
763 
764 static void io_req_cqe_overflow(struct io_kiocb *req)
765 {
766 	io_cqring_event_overflow(req->ctx, req->cqe.user_data,
767 				req->cqe.res, req->cqe.flags,
768 				req->big_cqe.extra1, req->big_cqe.extra2);
769 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
770 }
771 
772 /*
773  * writes to the cq entry need to come after reading head; the
774  * control dependency is enough as we're using WRITE_ONCE to
775  * fill the cq entry
776  */
777 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
778 {
779 	struct io_rings *rings = ctx->rings;
780 	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
781 	unsigned int free, queued, len;
782 
783 	/*
784 	 * Posting into the CQ when there are pending overflowed CQEs may break
785 	 * ordering guarantees, which will affect links, F_MORE users and more.
786 	 * Force overflow the completion.
787 	 */
788 	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
789 		return false;
790 
791 	/* userspace may cheat modifying the tail, be safe and do min */
792 	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
793 	free = ctx->cq_entries - queued;
794 	/* we need a contiguous range, limit based on the current array offset */
795 	len = min(free, ctx->cq_entries - off);
796 	if (!len)
797 		return false;
798 
799 	if (ctx->flags & IORING_SETUP_CQE32) {
800 		off <<= 1;
801 		len <<= 1;
802 	}
803 
804 	ctx->cqe_cached = &rings->cqes[off];
805 	ctx->cqe_sentinel = ctx->cqe_cached + len;
806 	return true;
807 }
808 
809 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
810 			      u32 cflags)
811 {
812 	struct io_uring_cqe *cqe;
813 
814 	ctx->cq_extra++;
815 
816 	/*
817 	 * If we can't get a cq entry, userspace overflowed the
818 	 * submission (by quite a lot). Increment the overflow count in
819 	 * the ring.
820 	 */
821 	if (likely(io_get_cqe(ctx, &cqe))) {
822 		WRITE_ONCE(cqe->user_data, user_data);
823 		WRITE_ONCE(cqe->res, res);
824 		WRITE_ONCE(cqe->flags, cflags);
825 
826 		if (ctx->flags & IORING_SETUP_CQE32) {
827 			WRITE_ONCE(cqe->big_cqe[0], 0);
828 			WRITE_ONCE(cqe->big_cqe[1], 0);
829 		}
830 
831 		trace_io_uring_complete(ctx, NULL, cqe);
832 		return true;
833 	}
834 	return false;
835 }
836 
837 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
838 {
839 	bool filled;
840 
841 	io_cq_lock(ctx);
842 	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
843 	if (!filled)
844 		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
845 	io_cq_unlock_post(ctx);
846 	return filled;
847 }
848 
849 /*
850  * Must be called from inline task_work so we now a flush will happen later,
851  * and obviously with ctx->uring_lock held (tw always has that).
852  */
853 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
854 {
855 	if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) {
856 		spin_lock(&ctx->completion_lock);
857 		io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
858 		spin_unlock(&ctx->completion_lock);
859 	}
860 	ctx->submit_state.cq_flush = true;
861 }
862 
863 /*
864  * A helper for multishot requests posting additional CQEs.
865  * Should only be used from a task_work including IO_URING_F_MULTISHOT.
866  */
867 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags)
868 {
869 	struct io_ring_ctx *ctx = req->ctx;
870 	bool posted;
871 
872 	lockdep_assert(!io_wq_current_is_worker());
873 	lockdep_assert_held(&ctx->uring_lock);
874 
875 	__io_cq_lock(ctx);
876 	posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
877 	ctx->submit_state.cq_flush = true;
878 	__io_cq_unlock_post(ctx);
879 	return posted;
880 }
881 
882 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
883 {
884 	struct io_ring_ctx *ctx = req->ctx;
885 	bool completed = true;
886 
887 	/*
888 	 * All execution paths but io-wq use the deferred completions by
889 	 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
890 	 */
891 	if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ)))
892 		return;
893 
894 	/*
895 	 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
896 	 * the submitter task context, IOPOLL protects with uring_lock.
897 	 */
898 	if (ctx->lockless_cq || (req->flags & REQ_F_REISSUE)) {
899 defer_complete:
900 		req->io_task_work.func = io_req_task_complete;
901 		io_req_task_work_add(req);
902 		return;
903 	}
904 
905 	io_cq_lock(ctx);
906 	if (!(req->flags & REQ_F_CQE_SKIP))
907 		completed = io_fill_cqe_req(ctx, req);
908 	io_cq_unlock_post(ctx);
909 
910 	if (!completed)
911 		goto defer_complete;
912 
913 	/*
914 	 * We don't free the request here because we know it's called from
915 	 * io-wq only, which holds a reference, so it cannot be the last put.
916 	 */
917 	req_ref_put(req);
918 }
919 
920 void io_req_defer_failed(struct io_kiocb *req, s32 res)
921 	__must_hold(&ctx->uring_lock)
922 {
923 	const struct io_cold_def *def = &io_cold_defs[req->opcode];
924 
925 	lockdep_assert_held(&req->ctx->uring_lock);
926 
927 	req_set_fail(req);
928 	io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED));
929 	if (def->fail)
930 		def->fail(req);
931 	io_req_complete_defer(req);
932 }
933 
934 /*
935  * Don't initialise the fields below on every allocation, but do that in
936  * advance and keep them valid across allocations.
937  */
938 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
939 {
940 	req->ctx = ctx;
941 	req->buf_node = NULL;
942 	req->file_node = NULL;
943 	req->link = NULL;
944 	req->async_data = NULL;
945 	/* not necessary, but safer to zero */
946 	memset(&req->cqe, 0, sizeof(req->cqe));
947 	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
948 }
949 
950 /*
951  * A request might get retired back into the request caches even before opcode
952  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
953  * Because of that, io_alloc_req() should be called only under ->uring_lock
954  * and with extra caution to not get a request that is still worked on.
955  */
956 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
957 	__must_hold(&ctx->uring_lock)
958 {
959 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
960 	void *reqs[IO_REQ_ALLOC_BATCH];
961 	int ret;
962 
963 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
964 
965 	/*
966 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
967 	 * retry single alloc to be on the safe side.
968 	 */
969 	if (unlikely(ret <= 0)) {
970 		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
971 		if (!reqs[0])
972 			return false;
973 		ret = 1;
974 	}
975 
976 	percpu_ref_get_many(&ctx->refs, ret);
977 	while (ret--) {
978 		struct io_kiocb *req = reqs[ret];
979 
980 		io_preinit_req(req, ctx);
981 		io_req_add_to_cache(req, ctx);
982 	}
983 	return true;
984 }
985 
986 __cold void io_free_req(struct io_kiocb *req)
987 {
988 	/* refs were already put, restore them for io_req_task_complete() */
989 	req->flags &= ~REQ_F_REFCOUNT;
990 	/* we only want to free it, don't post CQEs */
991 	req->flags |= REQ_F_CQE_SKIP;
992 	req->io_task_work.func = io_req_task_complete;
993 	io_req_task_work_add(req);
994 }
995 
996 static void __io_req_find_next_prep(struct io_kiocb *req)
997 {
998 	struct io_ring_ctx *ctx = req->ctx;
999 
1000 	spin_lock(&ctx->completion_lock);
1001 	io_disarm_next(req);
1002 	spin_unlock(&ctx->completion_lock);
1003 }
1004 
1005 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1006 {
1007 	struct io_kiocb *nxt;
1008 
1009 	/*
1010 	 * If LINK is set, we have dependent requests in this chain. If we
1011 	 * didn't fail this request, queue the first one up, moving any other
1012 	 * dependencies to the next request. In case of failure, fail the rest
1013 	 * of the chain.
1014 	 */
1015 	if (unlikely(req->flags & IO_DISARM_MASK))
1016 		__io_req_find_next_prep(req);
1017 	nxt = req->link;
1018 	req->link = NULL;
1019 	return nxt;
1020 }
1021 
1022 static void ctx_flush_and_put(struct io_ring_ctx *ctx, io_tw_token_t tw)
1023 {
1024 	if (!ctx)
1025 		return;
1026 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1027 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1028 
1029 	io_submit_flush_completions(ctx);
1030 	mutex_unlock(&ctx->uring_lock);
1031 	percpu_ref_put(&ctx->refs);
1032 }
1033 
1034 /*
1035  * Run queued task_work, returning the number of entries processed in *count.
1036  * If more entries than max_entries are available, stop processing once this
1037  * is reached and return the rest of the list.
1038  */
1039 struct llist_node *io_handle_tw_list(struct llist_node *node,
1040 				     unsigned int *count,
1041 				     unsigned int max_entries)
1042 {
1043 	struct io_ring_ctx *ctx = NULL;
1044 	struct io_tw_state ts = { };
1045 
1046 	do {
1047 		struct llist_node *next = node->next;
1048 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1049 						    io_task_work.node);
1050 
1051 		if (req->ctx != ctx) {
1052 			ctx_flush_and_put(ctx, ts);
1053 			ctx = req->ctx;
1054 			mutex_lock(&ctx->uring_lock);
1055 			percpu_ref_get(&ctx->refs);
1056 		}
1057 		INDIRECT_CALL_2(req->io_task_work.func,
1058 				io_poll_task_func, io_req_rw_complete,
1059 				req, ts);
1060 		node = next;
1061 		(*count)++;
1062 		if (unlikely(need_resched())) {
1063 			ctx_flush_and_put(ctx, ts);
1064 			ctx = NULL;
1065 			cond_resched();
1066 		}
1067 	} while (node && *count < max_entries);
1068 
1069 	ctx_flush_and_put(ctx, ts);
1070 	return node;
1071 }
1072 
1073 static __cold void __io_fallback_tw(struct llist_node *node, bool sync)
1074 {
1075 	struct io_ring_ctx *last_ctx = NULL;
1076 	struct io_kiocb *req;
1077 
1078 	while (node) {
1079 		req = container_of(node, struct io_kiocb, io_task_work.node);
1080 		node = node->next;
1081 		if (sync && last_ctx != req->ctx) {
1082 			if (last_ctx) {
1083 				flush_delayed_work(&last_ctx->fallback_work);
1084 				percpu_ref_put(&last_ctx->refs);
1085 			}
1086 			last_ctx = req->ctx;
1087 			percpu_ref_get(&last_ctx->refs);
1088 		}
1089 		if (llist_add(&req->io_task_work.node,
1090 			      &req->ctx->fallback_llist))
1091 			schedule_delayed_work(&req->ctx->fallback_work, 1);
1092 	}
1093 
1094 	if (last_ctx) {
1095 		flush_delayed_work(&last_ctx->fallback_work);
1096 		percpu_ref_put(&last_ctx->refs);
1097 	}
1098 }
1099 
1100 static void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1101 {
1102 	struct llist_node *node = llist_del_all(&tctx->task_list);
1103 
1104 	__io_fallback_tw(node, sync);
1105 }
1106 
1107 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx,
1108 				      unsigned int max_entries,
1109 				      unsigned int *count)
1110 {
1111 	struct llist_node *node;
1112 
1113 	if (unlikely(current->flags & PF_EXITING)) {
1114 		io_fallback_tw(tctx, true);
1115 		return NULL;
1116 	}
1117 
1118 	node = llist_del_all(&tctx->task_list);
1119 	if (node) {
1120 		node = llist_reverse_order(node);
1121 		node = io_handle_tw_list(node, count, max_entries);
1122 	}
1123 
1124 	/* relaxed read is enough as only the task itself sets ->in_cancel */
1125 	if (unlikely(atomic_read(&tctx->in_cancel)))
1126 		io_uring_drop_tctx_refs(current);
1127 
1128 	trace_io_uring_task_work_run(tctx, *count);
1129 	return node;
1130 }
1131 
1132 void tctx_task_work(struct callback_head *cb)
1133 {
1134 	struct io_uring_task *tctx;
1135 	struct llist_node *ret;
1136 	unsigned int count = 0;
1137 
1138 	tctx = container_of(cb, struct io_uring_task, task_work);
1139 	ret = tctx_task_work_run(tctx, UINT_MAX, &count);
1140 	/* can't happen */
1141 	WARN_ON_ONCE(ret);
1142 }
1143 
1144 static inline void io_req_local_work_add(struct io_kiocb *req,
1145 					 struct io_ring_ctx *ctx,
1146 					 unsigned flags)
1147 {
1148 	unsigned nr_wait, nr_tw, nr_tw_prev;
1149 	struct llist_node *head;
1150 
1151 	/* See comment above IO_CQ_WAKE_INIT */
1152 	BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES);
1153 
1154 	/*
1155 	 * We don't know how many reuqests is there in the link and whether
1156 	 * they can even be queued lazily, fall back to non-lazy.
1157 	 */
1158 	if (req->flags & IO_REQ_LINK_FLAGS)
1159 		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1160 
1161 	guard(rcu)();
1162 
1163 	head = READ_ONCE(ctx->work_llist.first);
1164 	do {
1165 		nr_tw_prev = 0;
1166 		if (head) {
1167 			struct io_kiocb *first_req = container_of(head,
1168 							struct io_kiocb,
1169 							io_task_work.node);
1170 			/*
1171 			 * Might be executed at any moment, rely on
1172 			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1173 			 */
1174 			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1175 		}
1176 
1177 		/*
1178 		 * Theoretically, it can overflow, but that's fine as one of
1179 		 * previous adds should've tried to wake the task.
1180 		 */
1181 		nr_tw = nr_tw_prev + 1;
1182 		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1183 			nr_tw = IO_CQ_WAKE_FORCE;
1184 
1185 		req->nr_tw = nr_tw;
1186 		req->io_task_work.node.next = head;
1187 	} while (!try_cmpxchg(&ctx->work_llist.first, &head,
1188 			      &req->io_task_work.node));
1189 
1190 	/*
1191 	 * cmpxchg implies a full barrier, which pairs with the barrier
1192 	 * in set_current_state() on the io_cqring_wait() side. It's used
1193 	 * to ensure that either we see updated ->cq_wait_nr, or waiters
1194 	 * going to sleep will observe the work added to the list, which
1195 	 * is similar to the wait/wawke task state sync.
1196 	 */
1197 
1198 	if (!head) {
1199 		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1200 			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1201 		if (ctx->has_evfd)
1202 			io_eventfd_signal(ctx);
1203 	}
1204 
1205 	nr_wait = atomic_read(&ctx->cq_wait_nr);
1206 	/* not enough or no one is waiting */
1207 	if (nr_tw < nr_wait)
1208 		return;
1209 	/* the previous add has already woken it up */
1210 	if (nr_tw_prev >= nr_wait)
1211 		return;
1212 	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1213 }
1214 
1215 static void io_req_normal_work_add(struct io_kiocb *req)
1216 {
1217 	struct io_uring_task *tctx = req->tctx;
1218 	struct io_ring_ctx *ctx = req->ctx;
1219 
1220 	/* task_work already pending, we're done */
1221 	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1222 		return;
1223 
1224 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1225 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1226 
1227 	/* SQPOLL doesn't need the task_work added, it'll run it itself */
1228 	if (ctx->flags & IORING_SETUP_SQPOLL) {
1229 		__set_notify_signal(tctx->task);
1230 		return;
1231 	}
1232 
1233 	if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method)))
1234 		return;
1235 
1236 	io_fallback_tw(tctx, false);
1237 }
1238 
1239 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1240 {
1241 	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1242 		io_req_local_work_add(req, req->ctx, flags);
1243 	else
1244 		io_req_normal_work_add(req);
1245 }
1246 
1247 void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx,
1248 				 unsigned flags)
1249 {
1250 	if (WARN_ON_ONCE(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)))
1251 		return;
1252 	io_req_local_work_add(req, ctx, flags);
1253 }
1254 
1255 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1256 {
1257 	struct llist_node *node = llist_del_all(&ctx->work_llist);
1258 
1259 	__io_fallback_tw(node, false);
1260 	node = llist_del_all(&ctx->retry_llist);
1261 	__io_fallback_tw(node, false);
1262 }
1263 
1264 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1265 				       int min_events)
1266 {
1267 	if (!io_local_work_pending(ctx))
1268 		return false;
1269 	if (events < min_events)
1270 		return true;
1271 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1272 		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1273 	return false;
1274 }
1275 
1276 static int __io_run_local_work_loop(struct llist_node **node,
1277 				    io_tw_token_t tw,
1278 				    int events)
1279 {
1280 	int ret = 0;
1281 
1282 	while (*node) {
1283 		struct llist_node *next = (*node)->next;
1284 		struct io_kiocb *req = container_of(*node, struct io_kiocb,
1285 						    io_task_work.node);
1286 		INDIRECT_CALL_2(req->io_task_work.func,
1287 				io_poll_task_func, io_req_rw_complete,
1288 				req, tw);
1289 		*node = next;
1290 		if (++ret >= events)
1291 			break;
1292 	}
1293 
1294 	return ret;
1295 }
1296 
1297 static int __io_run_local_work(struct io_ring_ctx *ctx, io_tw_token_t tw,
1298 			       int min_events, int max_events)
1299 {
1300 	struct llist_node *node;
1301 	unsigned int loops = 0;
1302 	int ret = 0;
1303 
1304 	if (WARN_ON_ONCE(ctx->submitter_task != current))
1305 		return -EEXIST;
1306 	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1307 		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1308 again:
1309 	min_events -= ret;
1310 	ret = __io_run_local_work_loop(&ctx->retry_llist.first, tw, max_events);
1311 	if (ctx->retry_llist.first)
1312 		goto retry_done;
1313 
1314 	/*
1315 	 * llists are in reverse order, flip it back the right way before
1316 	 * running the pending items.
1317 	 */
1318 	node = llist_reverse_order(llist_del_all(&ctx->work_llist));
1319 	ret += __io_run_local_work_loop(&node, tw, max_events - ret);
1320 	ctx->retry_llist.first = node;
1321 	loops++;
1322 
1323 	if (io_run_local_work_continue(ctx, ret, min_events))
1324 		goto again;
1325 retry_done:
1326 	io_submit_flush_completions(ctx);
1327 	if (io_run_local_work_continue(ctx, ret, min_events))
1328 		goto again;
1329 
1330 	trace_io_uring_local_work_run(ctx, ret, loops);
1331 	return ret;
1332 }
1333 
1334 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1335 					   int min_events)
1336 {
1337 	struct io_tw_state ts = {};
1338 
1339 	if (!io_local_work_pending(ctx))
1340 		return 0;
1341 	return __io_run_local_work(ctx, ts, min_events,
1342 					max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
1343 }
1344 
1345 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events,
1346 			     int max_events)
1347 {
1348 	struct io_tw_state ts = {};
1349 	int ret;
1350 
1351 	mutex_lock(&ctx->uring_lock);
1352 	ret = __io_run_local_work(ctx, ts, min_events, max_events);
1353 	mutex_unlock(&ctx->uring_lock);
1354 	return ret;
1355 }
1356 
1357 static void io_req_task_cancel(struct io_kiocb *req, io_tw_token_t tw)
1358 {
1359 	io_tw_lock(req->ctx, tw);
1360 	io_req_defer_failed(req, req->cqe.res);
1361 }
1362 
1363 void io_req_task_submit(struct io_kiocb *req, io_tw_token_t tw)
1364 {
1365 	io_tw_lock(req->ctx, tw);
1366 	if (unlikely(io_should_terminate_tw()))
1367 		io_req_defer_failed(req, -EFAULT);
1368 	else if (req->flags & REQ_F_FORCE_ASYNC)
1369 		io_queue_iowq(req);
1370 	else
1371 		io_queue_sqe(req);
1372 }
1373 
1374 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1375 {
1376 	io_req_set_res(req, ret, 0);
1377 	req->io_task_work.func = io_req_task_cancel;
1378 	io_req_task_work_add(req);
1379 }
1380 
1381 void io_req_task_queue(struct io_kiocb *req)
1382 {
1383 	req->io_task_work.func = io_req_task_submit;
1384 	io_req_task_work_add(req);
1385 }
1386 
1387 void io_queue_next(struct io_kiocb *req)
1388 {
1389 	struct io_kiocb *nxt = io_req_find_next(req);
1390 
1391 	if (nxt)
1392 		io_req_task_queue(nxt);
1393 }
1394 
1395 static void io_free_batch_list(struct io_ring_ctx *ctx,
1396 			       struct io_wq_work_node *node)
1397 	__must_hold(&ctx->uring_lock)
1398 {
1399 	do {
1400 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1401 						    comp_list);
1402 
1403 		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1404 			if (req->flags & REQ_F_REISSUE) {
1405 				node = req->comp_list.next;
1406 				req->flags &= ~REQ_F_REISSUE;
1407 				io_queue_iowq(req);
1408 				continue;
1409 			}
1410 			if (req->flags & REQ_F_REFCOUNT) {
1411 				node = req->comp_list.next;
1412 				if (!req_ref_put_and_test(req))
1413 					continue;
1414 			}
1415 			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1416 				struct async_poll *apoll = req->apoll;
1417 
1418 				if (apoll->double_poll)
1419 					kfree(apoll->double_poll);
1420 				io_cache_free(&ctx->apoll_cache, apoll);
1421 				req->flags &= ~REQ_F_POLLED;
1422 			}
1423 			if (req->flags & IO_REQ_LINK_FLAGS)
1424 				io_queue_next(req);
1425 			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1426 				io_clean_op(req);
1427 		}
1428 		io_put_file(req);
1429 		io_req_put_rsrc_nodes(req);
1430 		io_put_task(req);
1431 
1432 		node = req->comp_list.next;
1433 		io_req_add_to_cache(req, ctx);
1434 	} while (node);
1435 }
1436 
1437 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1438 	__must_hold(&ctx->uring_lock)
1439 {
1440 	struct io_submit_state *state = &ctx->submit_state;
1441 	struct io_wq_work_node *node;
1442 
1443 	__io_cq_lock(ctx);
1444 	__wq_list_for_each(node, &state->compl_reqs) {
1445 		struct io_kiocb *req = container_of(node, struct io_kiocb,
1446 					    comp_list);
1447 
1448 		/*
1449 		 * Requests marked with REQUEUE should not post a CQE, they
1450 		 * will go through the io-wq retry machinery and post one
1451 		 * later.
1452 		 */
1453 		if (!(req->flags & (REQ_F_CQE_SKIP | REQ_F_REISSUE)) &&
1454 		    unlikely(!io_fill_cqe_req(ctx, req))) {
1455 			if (ctx->lockless_cq) {
1456 				spin_lock(&ctx->completion_lock);
1457 				io_req_cqe_overflow(req);
1458 				spin_unlock(&ctx->completion_lock);
1459 			} else {
1460 				io_req_cqe_overflow(req);
1461 			}
1462 		}
1463 	}
1464 	__io_cq_unlock_post(ctx);
1465 
1466 	if (!wq_list_empty(&state->compl_reqs)) {
1467 		io_free_batch_list(ctx, state->compl_reqs.first);
1468 		INIT_WQ_LIST(&state->compl_reqs);
1469 	}
1470 	ctx->submit_state.cq_flush = false;
1471 }
1472 
1473 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1474 {
1475 	/* See comment at the top of this file */
1476 	smp_rmb();
1477 	return __io_cqring_events(ctx);
1478 }
1479 
1480 /*
1481  * We can't just wait for polled events to come to us, we have to actively
1482  * find and complete them.
1483  */
1484 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1485 {
1486 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1487 		return;
1488 
1489 	mutex_lock(&ctx->uring_lock);
1490 	while (!wq_list_empty(&ctx->iopoll_list)) {
1491 		/* let it sleep and repeat later if can't complete a request */
1492 		if (io_do_iopoll(ctx, true) == 0)
1493 			break;
1494 		/*
1495 		 * Ensure we allow local-to-the-cpu processing to take place,
1496 		 * in this case we need to ensure that we reap all events.
1497 		 * Also let task_work, etc. to progress by releasing the mutex
1498 		 */
1499 		if (need_resched()) {
1500 			mutex_unlock(&ctx->uring_lock);
1501 			cond_resched();
1502 			mutex_lock(&ctx->uring_lock);
1503 		}
1504 	}
1505 	mutex_unlock(&ctx->uring_lock);
1506 }
1507 
1508 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned int min_events)
1509 {
1510 	unsigned int nr_events = 0;
1511 	unsigned long check_cq;
1512 
1513 	min_events = min(min_events, ctx->cq_entries);
1514 
1515 	lockdep_assert_held(&ctx->uring_lock);
1516 
1517 	if (!io_allowed_run_tw(ctx))
1518 		return -EEXIST;
1519 
1520 	check_cq = READ_ONCE(ctx->check_cq);
1521 	if (unlikely(check_cq)) {
1522 		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1523 			__io_cqring_overflow_flush(ctx, false);
1524 		/*
1525 		 * Similarly do not spin if we have not informed the user of any
1526 		 * dropped CQE.
1527 		 */
1528 		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1529 			return -EBADR;
1530 	}
1531 	/*
1532 	 * Don't enter poll loop if we already have events pending.
1533 	 * If we do, we can potentially be spinning for commands that
1534 	 * already triggered a CQE (eg in error).
1535 	 */
1536 	if (io_cqring_events(ctx))
1537 		return 0;
1538 
1539 	do {
1540 		int ret = 0;
1541 
1542 		/*
1543 		 * If a submit got punted to a workqueue, we can have the
1544 		 * application entering polling for a command before it gets
1545 		 * issued. That app will hold the uring_lock for the duration
1546 		 * of the poll right here, so we need to take a breather every
1547 		 * now and then to ensure that the issue has a chance to add
1548 		 * the poll to the issued list. Otherwise we can spin here
1549 		 * forever, while the workqueue is stuck trying to acquire the
1550 		 * very same mutex.
1551 		 */
1552 		if (wq_list_empty(&ctx->iopoll_list) ||
1553 		    io_task_work_pending(ctx)) {
1554 			u32 tail = ctx->cached_cq_tail;
1555 
1556 			(void) io_run_local_work_locked(ctx, min_events);
1557 
1558 			if (task_work_pending(current) ||
1559 			    wq_list_empty(&ctx->iopoll_list)) {
1560 				mutex_unlock(&ctx->uring_lock);
1561 				io_run_task_work();
1562 				mutex_lock(&ctx->uring_lock);
1563 			}
1564 			/* some requests don't go through iopoll_list */
1565 			if (tail != ctx->cached_cq_tail ||
1566 			    wq_list_empty(&ctx->iopoll_list))
1567 				break;
1568 		}
1569 		ret = io_do_iopoll(ctx, !min_events);
1570 		if (unlikely(ret < 0))
1571 			return ret;
1572 
1573 		if (task_sigpending(current))
1574 			return -EINTR;
1575 		if (need_resched())
1576 			break;
1577 
1578 		nr_events += ret;
1579 	} while (nr_events < min_events);
1580 
1581 	return 0;
1582 }
1583 
1584 void io_req_task_complete(struct io_kiocb *req, io_tw_token_t tw)
1585 {
1586 	io_req_complete_defer(req);
1587 }
1588 
1589 /*
1590  * After the iocb has been issued, it's safe to be found on the poll list.
1591  * Adding the kiocb to the list AFTER submission ensures that we don't
1592  * find it from a io_do_iopoll() thread before the issuer is done
1593  * accessing the kiocb cookie.
1594  */
1595 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1596 {
1597 	struct io_ring_ctx *ctx = req->ctx;
1598 	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1599 
1600 	/* workqueue context doesn't hold uring_lock, grab it now */
1601 	if (unlikely(needs_lock))
1602 		mutex_lock(&ctx->uring_lock);
1603 
1604 	/*
1605 	 * Track whether we have multiple files in our lists. This will impact
1606 	 * how we do polling eventually, not spinning if we're on potentially
1607 	 * different devices.
1608 	 */
1609 	if (wq_list_empty(&ctx->iopoll_list)) {
1610 		ctx->poll_multi_queue = false;
1611 	} else if (!ctx->poll_multi_queue) {
1612 		struct io_kiocb *list_req;
1613 
1614 		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1615 					comp_list);
1616 		if (list_req->file != req->file)
1617 			ctx->poll_multi_queue = true;
1618 	}
1619 
1620 	/*
1621 	 * For fast devices, IO may have already completed. If it has, add
1622 	 * it to the front so we find it first.
1623 	 */
1624 	if (READ_ONCE(req->iopoll_completed))
1625 		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1626 	else
1627 		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1628 
1629 	if (unlikely(needs_lock)) {
1630 		/*
1631 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1632 		 * in sq thread task context or in io worker task context. If
1633 		 * current task context is sq thread, we don't need to check
1634 		 * whether should wake up sq thread.
1635 		 */
1636 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1637 		    wq_has_sleeper(&ctx->sq_data->wait))
1638 			wake_up(&ctx->sq_data->wait);
1639 
1640 		mutex_unlock(&ctx->uring_lock);
1641 	}
1642 }
1643 
1644 io_req_flags_t io_file_get_flags(struct file *file)
1645 {
1646 	io_req_flags_t res = 0;
1647 
1648 	if (S_ISREG(file_inode(file)->i_mode))
1649 		res |= REQ_F_ISREG;
1650 	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1651 		res |= REQ_F_SUPPORT_NOWAIT;
1652 	return res;
1653 }
1654 
1655 static u32 io_get_sequence(struct io_kiocb *req)
1656 {
1657 	u32 seq = req->ctx->cached_sq_head;
1658 	struct io_kiocb *cur;
1659 
1660 	/* need original cached_sq_head, but it was increased for each req */
1661 	io_for_each_link(cur, req)
1662 		seq--;
1663 	return seq;
1664 }
1665 
1666 static __cold void io_drain_req(struct io_kiocb *req)
1667 	__must_hold(&ctx->uring_lock)
1668 {
1669 	struct io_ring_ctx *ctx = req->ctx;
1670 	struct io_defer_entry *de;
1671 	int ret;
1672 	u32 seq = io_get_sequence(req);
1673 
1674 	/* Still need defer if there is pending req in defer list. */
1675 	spin_lock(&ctx->completion_lock);
1676 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1677 		spin_unlock(&ctx->completion_lock);
1678 queue:
1679 		ctx->drain_active = false;
1680 		io_req_task_queue(req);
1681 		return;
1682 	}
1683 	spin_unlock(&ctx->completion_lock);
1684 
1685 	io_prep_async_link(req);
1686 	de = kmalloc(sizeof(*de), GFP_KERNEL);
1687 	if (!de) {
1688 		ret = -ENOMEM;
1689 		io_req_defer_failed(req, ret);
1690 		return;
1691 	}
1692 
1693 	spin_lock(&ctx->completion_lock);
1694 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1695 		spin_unlock(&ctx->completion_lock);
1696 		kfree(de);
1697 		goto queue;
1698 	}
1699 
1700 	trace_io_uring_defer(req);
1701 	de->req = req;
1702 	de->seq = seq;
1703 	list_add_tail(&de->list, &ctx->defer_list);
1704 	spin_unlock(&ctx->completion_lock);
1705 }
1706 
1707 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1708 			   unsigned int issue_flags)
1709 {
1710 	if (req->file || !def->needs_file)
1711 		return true;
1712 
1713 	if (req->flags & REQ_F_FIXED_FILE)
1714 		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1715 	else
1716 		req->file = io_file_get_normal(req, req->cqe.fd);
1717 
1718 	return !!req->file;
1719 }
1720 
1721 static inline int __io_issue_sqe(struct io_kiocb *req,
1722 				 unsigned int issue_flags,
1723 				 const struct io_issue_def *def)
1724 {
1725 	const struct cred *creds = NULL;
1726 	int ret;
1727 
1728 	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1729 		creds = override_creds(req->creds);
1730 
1731 	if (!def->audit_skip)
1732 		audit_uring_entry(req->opcode);
1733 
1734 	ret = def->issue(req, issue_flags);
1735 
1736 	if (!def->audit_skip)
1737 		audit_uring_exit(!ret, ret);
1738 
1739 	if (creds)
1740 		revert_creds(creds);
1741 
1742 	return ret;
1743 }
1744 
1745 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1746 {
1747 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1748 	int ret;
1749 
1750 	if (unlikely(!io_assign_file(req, def, issue_flags)))
1751 		return -EBADF;
1752 
1753 	ret = __io_issue_sqe(req, issue_flags, def);
1754 
1755 	if (ret == IOU_OK) {
1756 		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1757 			io_req_complete_defer(req);
1758 		else
1759 			io_req_complete_post(req, issue_flags);
1760 
1761 		return 0;
1762 	}
1763 
1764 	if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1765 		ret = 0;
1766 		io_arm_ltimeout(req);
1767 
1768 		/* If the op doesn't have a file, we're not polling for it */
1769 		if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1770 			io_iopoll_req_issued(req, issue_flags);
1771 	}
1772 	return ret;
1773 }
1774 
1775 int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw)
1776 {
1777 	const unsigned int issue_flags = IO_URING_F_NONBLOCK |
1778 					 IO_URING_F_MULTISHOT |
1779 					 IO_URING_F_COMPLETE_DEFER;
1780 	int ret;
1781 
1782 	io_tw_lock(req->ctx, tw);
1783 
1784 	WARN_ON_ONCE(!req->file);
1785 	if (WARN_ON_ONCE(req->ctx->flags & IORING_SETUP_IOPOLL))
1786 		return -EFAULT;
1787 
1788 	ret = __io_issue_sqe(req, issue_flags, &io_issue_defs[req->opcode]);
1789 
1790 	WARN_ON_ONCE(ret == IOU_ISSUE_SKIP_COMPLETE);
1791 	return ret;
1792 }
1793 
1794 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1795 {
1796 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1797 	struct io_kiocb *nxt = NULL;
1798 
1799 	if (req_ref_put_and_test(req)) {
1800 		if (req->flags & IO_REQ_LINK_FLAGS)
1801 			nxt = io_req_find_next(req);
1802 		io_free_req(req);
1803 	}
1804 	return nxt ? &nxt->work : NULL;
1805 }
1806 
1807 void io_wq_submit_work(struct io_wq_work *work)
1808 {
1809 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1810 	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1811 	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1812 	bool needs_poll = false;
1813 	int ret = 0, err = -ECANCELED;
1814 
1815 	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1816 	if (!(req->flags & REQ_F_REFCOUNT))
1817 		__io_req_set_refcount(req, 2);
1818 	else
1819 		req_ref_get(req);
1820 
1821 	io_arm_ltimeout(req);
1822 
1823 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1824 	if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) {
1825 fail:
1826 		io_req_task_queue_fail(req, err);
1827 		return;
1828 	}
1829 	if (!io_assign_file(req, def, issue_flags)) {
1830 		err = -EBADF;
1831 		atomic_or(IO_WQ_WORK_CANCEL, &work->flags);
1832 		goto fail;
1833 	}
1834 
1835 	/*
1836 	 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1837 	 * submitter task context. Final request completions are handed to the
1838 	 * right context, however this is not the case of auxiliary CQEs,
1839 	 * which is the main mean of operation for multishot requests.
1840 	 * Don't allow any multishot execution from io-wq. It's more restrictive
1841 	 * than necessary and also cleaner.
1842 	 */
1843 	if (req->flags & (REQ_F_MULTISHOT|REQ_F_APOLL_MULTISHOT)) {
1844 		err = -EBADFD;
1845 		if (!io_file_can_poll(req))
1846 			goto fail;
1847 		if (req->file->f_flags & O_NONBLOCK ||
1848 		    req->file->f_mode & FMODE_NOWAIT) {
1849 			err = -ECANCELED;
1850 			if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK)
1851 				goto fail;
1852 			return;
1853 		} else {
1854 			req->flags &= ~(REQ_F_APOLL_MULTISHOT|REQ_F_MULTISHOT);
1855 		}
1856 	}
1857 
1858 	if (req->flags & REQ_F_FORCE_ASYNC) {
1859 		bool opcode_poll = def->pollin || def->pollout;
1860 
1861 		if (opcode_poll && io_file_can_poll(req)) {
1862 			needs_poll = true;
1863 			issue_flags |= IO_URING_F_NONBLOCK;
1864 		}
1865 	}
1866 
1867 	do {
1868 		ret = io_issue_sqe(req, issue_flags);
1869 		if (ret != -EAGAIN)
1870 			break;
1871 
1872 		/*
1873 		 * If REQ_F_NOWAIT is set, then don't wait or retry with
1874 		 * poll. -EAGAIN is final for that case.
1875 		 */
1876 		if (req->flags & REQ_F_NOWAIT)
1877 			break;
1878 
1879 		/*
1880 		 * We can get EAGAIN for iopolled IO even though we're
1881 		 * forcing a sync submission from here, since we can't
1882 		 * wait for request slots on the block side.
1883 		 */
1884 		if (!needs_poll) {
1885 			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1886 				break;
1887 			if (io_wq_worker_stopped())
1888 				break;
1889 			cond_resched();
1890 			continue;
1891 		}
1892 
1893 		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1894 			return;
1895 		/* aborted or ready, in either case retry blocking */
1896 		needs_poll = false;
1897 		issue_flags &= ~IO_URING_F_NONBLOCK;
1898 	} while (1);
1899 
1900 	/* avoid locking problems by failing it from a clean context */
1901 	if (ret)
1902 		io_req_task_queue_fail(req, ret);
1903 }
1904 
1905 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1906 				      unsigned int issue_flags)
1907 {
1908 	struct io_ring_ctx *ctx = req->ctx;
1909 	struct io_rsrc_node *node;
1910 	struct file *file = NULL;
1911 
1912 	io_ring_submit_lock(ctx, issue_flags);
1913 	node = io_rsrc_node_lookup(&ctx->file_table.data, fd);
1914 	if (node) {
1915 		io_req_assign_rsrc_node(&req->file_node, node);
1916 		req->flags |= io_slot_flags(node);
1917 		file = io_slot_file(node);
1918 	}
1919 	io_ring_submit_unlock(ctx, issue_flags);
1920 	return file;
1921 }
1922 
1923 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1924 {
1925 	struct file *file = fget(fd);
1926 
1927 	trace_io_uring_file_get(req, fd);
1928 
1929 	/* we don't allow fixed io_uring files */
1930 	if (file && io_is_uring_fops(file))
1931 		io_req_track_inflight(req);
1932 	return file;
1933 }
1934 
1935 static void io_queue_async(struct io_kiocb *req, int ret)
1936 	__must_hold(&req->ctx->uring_lock)
1937 {
1938 	struct io_kiocb *linked_timeout;
1939 
1940 	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1941 		io_req_defer_failed(req, ret);
1942 		return;
1943 	}
1944 
1945 	linked_timeout = io_prep_linked_timeout(req);
1946 
1947 	switch (io_arm_poll_handler(req, 0)) {
1948 	case IO_APOLL_READY:
1949 		io_kbuf_recycle(req, 0);
1950 		io_req_task_queue(req);
1951 		break;
1952 	case IO_APOLL_ABORTED:
1953 		io_kbuf_recycle(req, 0);
1954 		io_queue_iowq(req);
1955 		break;
1956 	case IO_APOLL_OK:
1957 		break;
1958 	}
1959 
1960 	if (linked_timeout)
1961 		io_queue_linked_timeout(linked_timeout);
1962 }
1963 
1964 static inline void io_queue_sqe(struct io_kiocb *req)
1965 	__must_hold(&req->ctx->uring_lock)
1966 {
1967 	int ret;
1968 
1969 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
1970 
1971 	/*
1972 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
1973 	 * doesn't support non-blocking read/write attempts
1974 	 */
1975 	if (unlikely(ret))
1976 		io_queue_async(req, ret);
1977 }
1978 
1979 static void io_queue_sqe_fallback(struct io_kiocb *req)
1980 	__must_hold(&req->ctx->uring_lock)
1981 {
1982 	if (unlikely(req->flags & REQ_F_FAIL)) {
1983 		/*
1984 		 * We don't submit, fail them all, for that replace hardlinks
1985 		 * with normal links. Extra REQ_F_LINK is tolerated.
1986 		 */
1987 		req->flags &= ~REQ_F_HARDLINK;
1988 		req->flags |= REQ_F_LINK;
1989 		io_req_defer_failed(req, req->cqe.res);
1990 	} else {
1991 		if (unlikely(req->ctx->drain_active))
1992 			io_drain_req(req);
1993 		else
1994 			io_queue_iowq(req);
1995 	}
1996 }
1997 
1998 /*
1999  * Check SQE restrictions (opcode and flags).
2000  *
2001  * Returns 'true' if SQE is allowed, 'false' otherwise.
2002  */
2003 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2004 					struct io_kiocb *req,
2005 					unsigned int sqe_flags)
2006 {
2007 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2008 		return false;
2009 
2010 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2011 	    ctx->restrictions.sqe_flags_required)
2012 		return false;
2013 
2014 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2015 			  ctx->restrictions.sqe_flags_required))
2016 		return false;
2017 
2018 	return true;
2019 }
2020 
2021 static void io_init_drain(struct io_ring_ctx *ctx)
2022 {
2023 	struct io_kiocb *head = ctx->submit_state.link.head;
2024 
2025 	ctx->drain_active = true;
2026 	if (head) {
2027 		/*
2028 		 * If we need to drain a request in the middle of a link, drain
2029 		 * the head request and the next request/link after the current
2030 		 * link. Considering sequential execution of links,
2031 		 * REQ_F_IO_DRAIN will be maintained for every request of our
2032 		 * link.
2033 		 */
2034 		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2035 		ctx->drain_next = true;
2036 	}
2037 }
2038 
2039 static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2040 {
2041 	/* ensure per-opcode data is cleared if we fail before prep */
2042 	memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2043 	return err;
2044 }
2045 
2046 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2047 		       const struct io_uring_sqe *sqe)
2048 	__must_hold(&ctx->uring_lock)
2049 {
2050 	const struct io_issue_def *def;
2051 	unsigned int sqe_flags;
2052 	int personality;
2053 	u8 opcode;
2054 
2055 	/* req is partially pre-initialised, see io_preinit_req() */
2056 	req->opcode = opcode = READ_ONCE(sqe->opcode);
2057 	/* same numerical values with corresponding REQ_F_*, safe to copy */
2058 	sqe_flags = READ_ONCE(sqe->flags);
2059 	req->flags = (__force io_req_flags_t) sqe_flags;
2060 	req->cqe.user_data = READ_ONCE(sqe->user_data);
2061 	req->file = NULL;
2062 	req->tctx = current->io_uring;
2063 	req->cancel_seq_set = false;
2064 
2065 	if (unlikely(opcode >= IORING_OP_LAST)) {
2066 		req->opcode = 0;
2067 		return io_init_fail_req(req, -EINVAL);
2068 	}
2069 	opcode = array_index_nospec(opcode, IORING_OP_LAST);
2070 
2071 	def = &io_issue_defs[opcode];
2072 	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2073 		/* enforce forwards compatibility on users */
2074 		if (sqe_flags & ~SQE_VALID_FLAGS)
2075 			return io_init_fail_req(req, -EINVAL);
2076 		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2077 			if (!def->buffer_select)
2078 				return io_init_fail_req(req, -EOPNOTSUPP);
2079 			req->buf_index = READ_ONCE(sqe->buf_group);
2080 		}
2081 		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2082 			ctx->drain_disabled = true;
2083 		if (sqe_flags & IOSQE_IO_DRAIN) {
2084 			if (ctx->drain_disabled)
2085 				return io_init_fail_req(req, -EOPNOTSUPP);
2086 			io_init_drain(ctx);
2087 		}
2088 	}
2089 	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2090 		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2091 			return io_init_fail_req(req, -EACCES);
2092 		/* knock it to the slow queue path, will be drained there */
2093 		if (ctx->drain_active)
2094 			req->flags |= REQ_F_FORCE_ASYNC;
2095 		/* if there is no link, we're at "next" request and need to drain */
2096 		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2097 			ctx->drain_next = false;
2098 			ctx->drain_active = true;
2099 			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2100 		}
2101 	}
2102 
2103 	if (!def->ioprio && sqe->ioprio)
2104 		return io_init_fail_req(req, -EINVAL);
2105 	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2106 		return io_init_fail_req(req, -EINVAL);
2107 
2108 	if (def->needs_file) {
2109 		struct io_submit_state *state = &ctx->submit_state;
2110 
2111 		req->cqe.fd = READ_ONCE(sqe->fd);
2112 
2113 		/*
2114 		 * Plug now if we have more than 2 IO left after this, and the
2115 		 * target is potentially a read/write to block based storage.
2116 		 */
2117 		if (state->need_plug && def->plug) {
2118 			state->plug_started = true;
2119 			state->need_plug = false;
2120 			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2121 		}
2122 	}
2123 
2124 	personality = READ_ONCE(sqe->personality);
2125 	if (personality) {
2126 		int ret;
2127 
2128 		req->creds = xa_load(&ctx->personalities, personality);
2129 		if (!req->creds)
2130 			return io_init_fail_req(req, -EINVAL);
2131 		get_cred(req->creds);
2132 		ret = security_uring_override_creds(req->creds);
2133 		if (ret) {
2134 			put_cred(req->creds);
2135 			return io_init_fail_req(req, ret);
2136 		}
2137 		req->flags |= REQ_F_CREDS;
2138 	}
2139 
2140 	return def->prep(req, sqe);
2141 }
2142 
2143 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2144 				      struct io_kiocb *req, int ret)
2145 {
2146 	struct io_ring_ctx *ctx = req->ctx;
2147 	struct io_submit_link *link = &ctx->submit_state.link;
2148 	struct io_kiocb *head = link->head;
2149 
2150 	trace_io_uring_req_failed(sqe, req, ret);
2151 
2152 	/*
2153 	 * Avoid breaking links in the middle as it renders links with SQPOLL
2154 	 * unusable. Instead of failing eagerly, continue assembling the link if
2155 	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2156 	 * should find the flag and handle the rest.
2157 	 */
2158 	req_fail_link_node(req, ret);
2159 	if (head && !(head->flags & REQ_F_FAIL))
2160 		req_fail_link_node(head, -ECANCELED);
2161 
2162 	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2163 		if (head) {
2164 			link->last->link = req;
2165 			link->head = NULL;
2166 			req = head;
2167 		}
2168 		io_queue_sqe_fallback(req);
2169 		return ret;
2170 	}
2171 
2172 	if (head)
2173 		link->last->link = req;
2174 	else
2175 		link->head = req;
2176 	link->last = req;
2177 	return 0;
2178 }
2179 
2180 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2181 			 const struct io_uring_sqe *sqe)
2182 	__must_hold(&ctx->uring_lock)
2183 {
2184 	struct io_submit_link *link = &ctx->submit_state.link;
2185 	int ret;
2186 
2187 	ret = io_init_req(ctx, req, sqe);
2188 	if (unlikely(ret))
2189 		return io_submit_fail_init(sqe, req, ret);
2190 
2191 	trace_io_uring_submit_req(req);
2192 
2193 	/*
2194 	 * If we already have a head request, queue this one for async
2195 	 * submittal once the head completes. If we don't have a head but
2196 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2197 	 * submitted sync once the chain is complete. If none of those
2198 	 * conditions are true (normal request), then just queue it.
2199 	 */
2200 	if (unlikely(link->head)) {
2201 		trace_io_uring_link(req, link->last);
2202 		link->last->link = req;
2203 		link->last = req;
2204 
2205 		if (req->flags & IO_REQ_LINK_FLAGS)
2206 			return 0;
2207 		/* last request of the link, flush it */
2208 		req = link->head;
2209 		link->head = NULL;
2210 		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2211 			goto fallback;
2212 
2213 	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2214 					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2215 		if (req->flags & IO_REQ_LINK_FLAGS) {
2216 			link->head = req;
2217 			link->last = req;
2218 		} else {
2219 fallback:
2220 			io_queue_sqe_fallback(req);
2221 		}
2222 		return 0;
2223 	}
2224 
2225 	io_queue_sqe(req);
2226 	return 0;
2227 }
2228 
2229 /*
2230  * Batched submission is done, ensure local IO is flushed out.
2231  */
2232 static void io_submit_state_end(struct io_ring_ctx *ctx)
2233 {
2234 	struct io_submit_state *state = &ctx->submit_state;
2235 
2236 	if (unlikely(state->link.head))
2237 		io_queue_sqe_fallback(state->link.head);
2238 	/* flush only after queuing links as they can generate completions */
2239 	io_submit_flush_completions(ctx);
2240 	if (state->plug_started)
2241 		blk_finish_plug(&state->plug);
2242 }
2243 
2244 /*
2245  * Start submission side cache.
2246  */
2247 static void io_submit_state_start(struct io_submit_state *state,
2248 				  unsigned int max_ios)
2249 {
2250 	state->plug_started = false;
2251 	state->need_plug = max_ios > 2;
2252 	state->submit_nr = max_ios;
2253 	/* set only head, no need to init link_last in advance */
2254 	state->link.head = NULL;
2255 }
2256 
2257 static void io_commit_sqring(struct io_ring_ctx *ctx)
2258 {
2259 	struct io_rings *rings = ctx->rings;
2260 
2261 	/*
2262 	 * Ensure any loads from the SQEs are done at this point,
2263 	 * since once we write the new head, the application could
2264 	 * write new data to them.
2265 	 */
2266 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2267 }
2268 
2269 /*
2270  * Fetch an sqe, if one is available. Note this returns a pointer to memory
2271  * that is mapped by userspace. This means that care needs to be taken to
2272  * ensure that reads are stable, as we cannot rely on userspace always
2273  * being a good citizen. If members of the sqe are validated and then later
2274  * used, it's important that those reads are done through READ_ONCE() to
2275  * prevent a re-load down the line.
2276  */
2277 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2278 {
2279 	unsigned mask = ctx->sq_entries - 1;
2280 	unsigned head = ctx->cached_sq_head++ & mask;
2281 
2282 	if (static_branch_unlikely(&io_key_has_sqarray) &&
2283 	    (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) {
2284 		head = READ_ONCE(ctx->sq_array[head]);
2285 		if (unlikely(head >= ctx->sq_entries)) {
2286 			/* drop invalid entries */
2287 			spin_lock(&ctx->completion_lock);
2288 			ctx->cq_extra--;
2289 			spin_unlock(&ctx->completion_lock);
2290 			WRITE_ONCE(ctx->rings->sq_dropped,
2291 				   READ_ONCE(ctx->rings->sq_dropped) + 1);
2292 			return false;
2293 		}
2294 		head = array_index_nospec(head, ctx->sq_entries);
2295 	}
2296 
2297 	/*
2298 	 * The cached sq head (or cq tail) serves two purposes:
2299 	 *
2300 	 * 1) allows us to batch the cost of updating the user visible
2301 	 *    head updates.
2302 	 * 2) allows the kernel side to track the head on its own, even
2303 	 *    though the application is the one updating it.
2304 	 */
2305 
2306 	/* double index for 128-byte SQEs, twice as long */
2307 	if (ctx->flags & IORING_SETUP_SQE128)
2308 		head <<= 1;
2309 	*sqe = &ctx->sq_sqes[head];
2310 	return true;
2311 }
2312 
2313 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2314 	__must_hold(&ctx->uring_lock)
2315 {
2316 	unsigned int entries = io_sqring_entries(ctx);
2317 	unsigned int left;
2318 	int ret;
2319 
2320 	if (unlikely(!entries))
2321 		return 0;
2322 	/* make sure SQ entry isn't read before tail */
2323 	ret = left = min(nr, entries);
2324 	io_get_task_refs(left);
2325 	io_submit_state_start(&ctx->submit_state, left);
2326 
2327 	do {
2328 		const struct io_uring_sqe *sqe;
2329 		struct io_kiocb *req;
2330 
2331 		if (unlikely(!io_alloc_req(ctx, &req)))
2332 			break;
2333 		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2334 			io_req_add_to_cache(req, ctx);
2335 			break;
2336 		}
2337 
2338 		/*
2339 		 * Continue submitting even for sqe failure if the
2340 		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2341 		 */
2342 		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2343 		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2344 			left--;
2345 			break;
2346 		}
2347 	} while (--left);
2348 
2349 	if (unlikely(left)) {
2350 		ret -= left;
2351 		/* try again if it submitted nothing and can't allocate a req */
2352 		if (!ret && io_req_cache_empty(ctx))
2353 			ret = -EAGAIN;
2354 		current->io_uring->cached_refs += left;
2355 	}
2356 
2357 	io_submit_state_end(ctx);
2358 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2359 	io_commit_sqring(ctx);
2360 	return ret;
2361 }
2362 
2363 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2364 			    int wake_flags, void *key)
2365 {
2366 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2367 
2368 	/*
2369 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2370 	 * the task, and the next invocation will do it.
2371 	 */
2372 	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2373 		return autoremove_wake_function(curr, mode, wake_flags, key);
2374 	return -1;
2375 }
2376 
2377 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2378 {
2379 	if (io_local_work_pending(ctx)) {
2380 		__set_current_state(TASK_RUNNING);
2381 		if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0)
2382 			return 0;
2383 	}
2384 	if (io_run_task_work() > 0)
2385 		return 0;
2386 	if (task_sigpending(current))
2387 		return -EINTR;
2388 	return 0;
2389 }
2390 
2391 static bool current_pending_io(void)
2392 {
2393 	struct io_uring_task *tctx = current->io_uring;
2394 
2395 	if (!tctx)
2396 		return false;
2397 	return percpu_counter_read_positive(&tctx->inflight);
2398 }
2399 
2400 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer)
2401 {
2402 	struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2403 
2404 	WRITE_ONCE(iowq->hit_timeout, 1);
2405 	iowq->min_timeout = 0;
2406 	wake_up_process(iowq->wq.private);
2407 	return HRTIMER_NORESTART;
2408 }
2409 
2410 /*
2411  * Doing min_timeout portion. If we saw any timeouts, events, or have work,
2412  * wake up. If not, and we have a normal timeout, switch to that and keep
2413  * sleeping.
2414  */
2415 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer)
2416 {
2417 	struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2418 	struct io_ring_ctx *ctx = iowq->ctx;
2419 
2420 	/* no general timeout, or shorter (or equal), we are done */
2421 	if (iowq->timeout == KTIME_MAX ||
2422 	    ktime_compare(iowq->min_timeout, iowq->timeout) >= 0)
2423 		goto out_wake;
2424 	/* work we may need to run, wake function will see if we need to wake */
2425 	if (io_has_work(ctx))
2426 		goto out_wake;
2427 	/* got events since we started waiting, min timeout is done */
2428 	if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail))
2429 		goto out_wake;
2430 	/* if we have any events and min timeout expired, we're done */
2431 	if (io_cqring_events(ctx))
2432 		goto out_wake;
2433 
2434 	/*
2435 	 * If using deferred task_work running and application is waiting on
2436 	 * more than one request, ensure we reset it now where we are switching
2437 	 * to normal sleeps. Any request completion post min_wait should wake
2438 	 * the task and return.
2439 	 */
2440 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2441 		atomic_set(&ctx->cq_wait_nr, 1);
2442 		smp_mb();
2443 		if (!llist_empty(&ctx->work_llist))
2444 			goto out_wake;
2445 	}
2446 
2447 	hrtimer_update_function(&iowq->t, io_cqring_timer_wakeup);
2448 	hrtimer_set_expires(timer, iowq->timeout);
2449 	return HRTIMER_RESTART;
2450 out_wake:
2451 	return io_cqring_timer_wakeup(timer);
2452 }
2453 
2454 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq,
2455 				      clockid_t clock_id, ktime_t start_time)
2456 {
2457 	ktime_t timeout;
2458 
2459 	if (iowq->min_timeout) {
2460 		timeout = ktime_add_ns(iowq->min_timeout, start_time);
2461 		hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id,
2462 				       HRTIMER_MODE_ABS);
2463 	} else {
2464 		timeout = iowq->timeout;
2465 		hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id,
2466 				       HRTIMER_MODE_ABS);
2467 	}
2468 
2469 	hrtimer_set_expires_range_ns(&iowq->t, timeout, 0);
2470 	hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS);
2471 
2472 	if (!READ_ONCE(iowq->hit_timeout))
2473 		schedule();
2474 
2475 	hrtimer_cancel(&iowq->t);
2476 	destroy_hrtimer_on_stack(&iowq->t);
2477 	__set_current_state(TASK_RUNNING);
2478 
2479 	return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0;
2480 }
2481 
2482 struct ext_arg {
2483 	size_t argsz;
2484 	struct timespec64 ts;
2485 	const sigset_t __user *sig;
2486 	ktime_t min_time;
2487 	bool ts_set;
2488 	bool iowait;
2489 };
2490 
2491 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2492 				     struct io_wait_queue *iowq,
2493 				     struct ext_arg *ext_arg,
2494 				     ktime_t start_time)
2495 {
2496 	int ret = 0;
2497 
2498 	/*
2499 	 * Mark us as being in io_wait if we have pending requests, so cpufreq
2500 	 * can take into account that the task is waiting for IO - turns out
2501 	 * to be important for low QD IO.
2502 	 */
2503 	if (ext_arg->iowait && current_pending_io())
2504 		current->in_iowait = 1;
2505 	if (iowq->timeout != KTIME_MAX || iowq->min_timeout)
2506 		ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time);
2507 	else
2508 		schedule();
2509 	current->in_iowait = 0;
2510 	return ret;
2511 }
2512 
2513 /* If this returns > 0, the caller should retry */
2514 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2515 					  struct io_wait_queue *iowq,
2516 					  struct ext_arg *ext_arg,
2517 					  ktime_t start_time)
2518 {
2519 	if (unlikely(READ_ONCE(ctx->check_cq)))
2520 		return 1;
2521 	if (unlikely(io_local_work_pending(ctx)))
2522 		return 1;
2523 	if (unlikely(task_work_pending(current)))
2524 		return 1;
2525 	if (unlikely(task_sigpending(current)))
2526 		return -EINTR;
2527 	if (unlikely(io_should_wake(iowq)))
2528 		return 0;
2529 
2530 	return __io_cqring_wait_schedule(ctx, iowq, ext_arg, start_time);
2531 }
2532 
2533 /*
2534  * Wait until events become available, if we don't already have some. The
2535  * application must reap them itself, as they reside on the shared cq ring.
2536  */
2537 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags,
2538 			  struct ext_arg *ext_arg)
2539 {
2540 	struct io_wait_queue iowq;
2541 	struct io_rings *rings = ctx->rings;
2542 	ktime_t start_time;
2543 	int ret;
2544 
2545 	min_events = min_t(int, min_events, ctx->cq_entries);
2546 
2547 	if (!io_allowed_run_tw(ctx))
2548 		return -EEXIST;
2549 	if (io_local_work_pending(ctx))
2550 		io_run_local_work(ctx, min_events,
2551 				  max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
2552 	io_run_task_work();
2553 
2554 	if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)))
2555 		io_cqring_do_overflow_flush(ctx);
2556 	if (__io_cqring_events_user(ctx) >= min_events)
2557 		return 0;
2558 
2559 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2560 	iowq.wq.private = current;
2561 	INIT_LIST_HEAD(&iowq.wq.entry);
2562 	iowq.ctx = ctx;
2563 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2564 	iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail);
2565 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2566 	iowq.hit_timeout = 0;
2567 	iowq.min_timeout = ext_arg->min_time;
2568 	iowq.timeout = KTIME_MAX;
2569 	start_time = io_get_time(ctx);
2570 
2571 	if (ext_arg->ts_set) {
2572 		iowq.timeout = timespec64_to_ktime(ext_arg->ts);
2573 		if (!(flags & IORING_ENTER_ABS_TIMER))
2574 			iowq.timeout = ktime_add(iowq.timeout, start_time);
2575 	}
2576 
2577 	if (ext_arg->sig) {
2578 #ifdef CONFIG_COMPAT
2579 		if (in_compat_syscall())
2580 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig,
2581 						      ext_arg->argsz);
2582 		else
2583 #endif
2584 			ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz);
2585 
2586 		if (ret)
2587 			return ret;
2588 	}
2589 
2590 	io_napi_busy_loop(ctx, &iowq);
2591 
2592 	trace_io_uring_cqring_wait(ctx, min_events);
2593 	do {
2594 		unsigned long check_cq;
2595 		int nr_wait;
2596 
2597 		/* if min timeout has been hit, don't reset wait count */
2598 		if (!iowq.hit_timeout)
2599 			nr_wait = (int) iowq.cq_tail -
2600 					READ_ONCE(ctx->rings->cq.tail);
2601 		else
2602 			nr_wait = 1;
2603 
2604 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2605 			atomic_set(&ctx->cq_wait_nr, nr_wait);
2606 			set_current_state(TASK_INTERRUPTIBLE);
2607 		} else {
2608 			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2609 							TASK_INTERRUPTIBLE);
2610 		}
2611 
2612 		ret = io_cqring_wait_schedule(ctx, &iowq, ext_arg, start_time);
2613 		__set_current_state(TASK_RUNNING);
2614 		atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
2615 
2616 		/*
2617 		 * Run task_work after scheduling and before io_should_wake().
2618 		 * If we got woken because of task_work being processed, run it
2619 		 * now rather than let the caller do another wait loop.
2620 		 */
2621 		if (io_local_work_pending(ctx))
2622 			io_run_local_work(ctx, nr_wait, nr_wait);
2623 		io_run_task_work();
2624 
2625 		/*
2626 		 * Non-local task_work will be run on exit to userspace, but
2627 		 * if we're using DEFER_TASKRUN, then we could have waited
2628 		 * with a timeout for a number of requests. If the timeout
2629 		 * hits, we could have some requests ready to process. Ensure
2630 		 * this break is _after_ we have run task_work, to avoid
2631 		 * deferring running potentially pending requests until the
2632 		 * next time we wait for events.
2633 		 */
2634 		if (ret < 0)
2635 			break;
2636 
2637 		check_cq = READ_ONCE(ctx->check_cq);
2638 		if (unlikely(check_cq)) {
2639 			/* let the caller flush overflows, retry */
2640 			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2641 				io_cqring_do_overflow_flush(ctx);
2642 			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2643 				ret = -EBADR;
2644 				break;
2645 			}
2646 		}
2647 
2648 		if (io_should_wake(&iowq)) {
2649 			ret = 0;
2650 			break;
2651 		}
2652 		cond_resched();
2653 	} while (1);
2654 
2655 	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2656 		finish_wait(&ctx->cq_wait, &iowq.wq);
2657 	restore_saved_sigmask_unless(ret == -EINTR);
2658 
2659 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2660 }
2661 
2662 static void io_rings_free(struct io_ring_ctx *ctx)
2663 {
2664 	io_free_region(ctx, &ctx->sq_region);
2665 	io_free_region(ctx, &ctx->ring_region);
2666 	ctx->rings = NULL;
2667 	ctx->sq_sqes = NULL;
2668 }
2669 
2670 unsigned long rings_size(unsigned int flags, unsigned int sq_entries,
2671 			 unsigned int cq_entries, size_t *sq_offset)
2672 {
2673 	struct io_rings *rings;
2674 	size_t off, sq_array_size;
2675 
2676 	off = struct_size(rings, cqes, cq_entries);
2677 	if (off == SIZE_MAX)
2678 		return SIZE_MAX;
2679 	if (flags & IORING_SETUP_CQE32) {
2680 		if (check_shl_overflow(off, 1, &off))
2681 			return SIZE_MAX;
2682 	}
2683 
2684 #ifdef CONFIG_SMP
2685 	off = ALIGN(off, SMP_CACHE_BYTES);
2686 	if (off == 0)
2687 		return SIZE_MAX;
2688 #endif
2689 
2690 	if (flags & IORING_SETUP_NO_SQARRAY) {
2691 		*sq_offset = SIZE_MAX;
2692 		return off;
2693 	}
2694 
2695 	*sq_offset = off;
2696 
2697 	sq_array_size = array_size(sizeof(u32), sq_entries);
2698 	if (sq_array_size == SIZE_MAX)
2699 		return SIZE_MAX;
2700 
2701 	if (check_add_overflow(off, sq_array_size, &off))
2702 		return SIZE_MAX;
2703 
2704 	return off;
2705 }
2706 
2707 static void io_req_caches_free(struct io_ring_ctx *ctx)
2708 {
2709 	struct io_kiocb *req;
2710 	int nr = 0;
2711 
2712 	mutex_lock(&ctx->uring_lock);
2713 
2714 	while (!io_req_cache_empty(ctx)) {
2715 		req = io_extract_req(ctx);
2716 		kmem_cache_free(req_cachep, req);
2717 		nr++;
2718 	}
2719 	if (nr)
2720 		percpu_ref_put_many(&ctx->refs, nr);
2721 	mutex_unlock(&ctx->uring_lock);
2722 }
2723 
2724 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2725 {
2726 	io_sq_thread_finish(ctx);
2727 
2728 	mutex_lock(&ctx->uring_lock);
2729 	io_sqe_buffers_unregister(ctx);
2730 	io_sqe_files_unregister(ctx);
2731 	io_unregister_zcrx_ifqs(ctx);
2732 	io_cqring_overflow_kill(ctx);
2733 	io_eventfd_unregister(ctx);
2734 	io_free_alloc_caches(ctx);
2735 	io_destroy_buffers(ctx);
2736 	io_free_region(ctx, &ctx->param_region);
2737 	mutex_unlock(&ctx->uring_lock);
2738 	if (ctx->sq_creds)
2739 		put_cred(ctx->sq_creds);
2740 	if (ctx->submitter_task)
2741 		put_task_struct(ctx->submitter_task);
2742 
2743 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2744 
2745 	if (ctx->mm_account) {
2746 		mmdrop(ctx->mm_account);
2747 		ctx->mm_account = NULL;
2748 	}
2749 	io_rings_free(ctx);
2750 
2751 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
2752 		static_branch_dec(&io_key_has_sqarray);
2753 
2754 	percpu_ref_exit(&ctx->refs);
2755 	free_uid(ctx->user);
2756 	io_req_caches_free(ctx);
2757 	if (ctx->hash_map)
2758 		io_wq_put_hash(ctx->hash_map);
2759 	io_napi_free(ctx);
2760 	kvfree(ctx->cancel_table.hbs);
2761 	xa_destroy(&ctx->io_bl_xa);
2762 	kfree(ctx);
2763 }
2764 
2765 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2766 {
2767 	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2768 					       poll_wq_task_work);
2769 
2770 	mutex_lock(&ctx->uring_lock);
2771 	ctx->poll_activated = true;
2772 	mutex_unlock(&ctx->uring_lock);
2773 
2774 	/*
2775 	 * Wake ups for some events between start of polling and activation
2776 	 * might've been lost due to loose synchronisation.
2777 	 */
2778 	wake_up_all(&ctx->poll_wq);
2779 	percpu_ref_put(&ctx->refs);
2780 }
2781 
2782 __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2783 {
2784 	spin_lock(&ctx->completion_lock);
2785 	/* already activated or in progress */
2786 	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2787 		goto out;
2788 	if (WARN_ON_ONCE(!ctx->task_complete))
2789 		goto out;
2790 	if (!ctx->submitter_task)
2791 		goto out;
2792 	/*
2793 	 * with ->submitter_task only the submitter task completes requests, we
2794 	 * only need to sync with it, which is done by injecting a tw
2795 	 */
2796 	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2797 	percpu_ref_get(&ctx->refs);
2798 	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2799 		percpu_ref_put(&ctx->refs);
2800 out:
2801 	spin_unlock(&ctx->completion_lock);
2802 }
2803 
2804 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2805 {
2806 	struct io_ring_ctx *ctx = file->private_data;
2807 	__poll_t mask = 0;
2808 
2809 	if (unlikely(!ctx->poll_activated))
2810 		io_activate_pollwq(ctx);
2811 	/*
2812 	 * provides mb() which pairs with barrier from wq_has_sleeper
2813 	 * call in io_commit_cqring
2814 	 */
2815 	poll_wait(file, &ctx->poll_wq, wait);
2816 
2817 	if (!io_sqring_full(ctx))
2818 		mask |= EPOLLOUT | EPOLLWRNORM;
2819 
2820 	/*
2821 	 * Don't flush cqring overflow list here, just do a simple check.
2822 	 * Otherwise there could possible be ABBA deadlock:
2823 	 *      CPU0                    CPU1
2824 	 *      ----                    ----
2825 	 * lock(&ctx->uring_lock);
2826 	 *                              lock(&ep->mtx);
2827 	 *                              lock(&ctx->uring_lock);
2828 	 * lock(&ep->mtx);
2829 	 *
2830 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2831 	 * pushes them to do the flush.
2832 	 */
2833 
2834 	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2835 		mask |= EPOLLIN | EPOLLRDNORM;
2836 
2837 	return mask;
2838 }
2839 
2840 struct io_tctx_exit {
2841 	struct callback_head		task_work;
2842 	struct completion		completion;
2843 	struct io_ring_ctx		*ctx;
2844 };
2845 
2846 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2847 {
2848 	struct io_uring_task *tctx = current->io_uring;
2849 	struct io_tctx_exit *work;
2850 
2851 	work = container_of(cb, struct io_tctx_exit, task_work);
2852 	/*
2853 	 * When @in_cancel, we're in cancellation and it's racy to remove the
2854 	 * node. It'll be removed by the end of cancellation, just ignore it.
2855 	 * tctx can be NULL if the queueing of this task_work raced with
2856 	 * work cancelation off the exec path.
2857 	 */
2858 	if (tctx && !atomic_read(&tctx->in_cancel))
2859 		io_uring_del_tctx_node((unsigned long)work->ctx);
2860 	complete(&work->completion);
2861 }
2862 
2863 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2864 {
2865 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2866 
2867 	return req->ctx == data;
2868 }
2869 
2870 static __cold void io_ring_exit_work(struct work_struct *work)
2871 {
2872 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2873 	unsigned long timeout = jiffies + HZ * 60 * 5;
2874 	unsigned long interval = HZ / 20;
2875 	struct io_tctx_exit exit;
2876 	struct io_tctx_node *node;
2877 	int ret;
2878 
2879 	/*
2880 	 * If we're doing polled IO and end up having requests being
2881 	 * submitted async (out-of-line), then completions can come in while
2882 	 * we're waiting for refs to drop. We need to reap these manually,
2883 	 * as nobody else will be looking for them.
2884 	 */
2885 	do {
2886 		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2887 			mutex_lock(&ctx->uring_lock);
2888 			io_cqring_overflow_kill(ctx);
2889 			mutex_unlock(&ctx->uring_lock);
2890 		}
2891 		if (ctx->ifq) {
2892 			mutex_lock(&ctx->uring_lock);
2893 			io_shutdown_zcrx_ifqs(ctx);
2894 			mutex_unlock(&ctx->uring_lock);
2895 		}
2896 
2897 		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2898 			io_move_task_work_from_local(ctx);
2899 
2900 		/* The SQPOLL thread never reaches this path */
2901 		while (io_uring_try_cancel_requests(ctx, NULL, true, false))
2902 			cond_resched();
2903 
2904 		if (ctx->sq_data) {
2905 			struct io_sq_data *sqd = ctx->sq_data;
2906 			struct task_struct *tsk;
2907 
2908 			io_sq_thread_park(sqd);
2909 			tsk = sqd->thread;
2910 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2911 				io_wq_cancel_cb(tsk->io_uring->io_wq,
2912 						io_cancel_ctx_cb, ctx, true);
2913 			io_sq_thread_unpark(sqd);
2914 		}
2915 
2916 		io_req_caches_free(ctx);
2917 
2918 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2919 			/* there is little hope left, don't run it too often */
2920 			interval = HZ * 60;
2921 		}
2922 		/*
2923 		 * This is really an uninterruptible wait, as it has to be
2924 		 * complete. But it's also run from a kworker, which doesn't
2925 		 * take signals, so it's fine to make it interruptible. This
2926 		 * avoids scenarios where we knowingly can wait much longer
2927 		 * on completions, for example if someone does a SIGSTOP on
2928 		 * a task that needs to finish task_work to make this loop
2929 		 * complete. That's a synthetic situation that should not
2930 		 * cause a stuck task backtrace, and hence a potential panic
2931 		 * on stuck tasks if that is enabled.
2932 		 */
2933 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
2934 
2935 	init_completion(&exit.completion);
2936 	init_task_work(&exit.task_work, io_tctx_exit_cb);
2937 	exit.ctx = ctx;
2938 
2939 	mutex_lock(&ctx->uring_lock);
2940 	while (!list_empty(&ctx->tctx_list)) {
2941 		WARN_ON_ONCE(time_after(jiffies, timeout));
2942 
2943 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2944 					ctx_node);
2945 		/* don't spin on a single task if cancellation failed */
2946 		list_rotate_left(&ctx->tctx_list);
2947 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2948 		if (WARN_ON_ONCE(ret))
2949 			continue;
2950 
2951 		mutex_unlock(&ctx->uring_lock);
2952 		/*
2953 		 * See comment above for
2954 		 * wait_for_completion_interruptible_timeout() on why this
2955 		 * wait is marked as interruptible.
2956 		 */
2957 		wait_for_completion_interruptible(&exit.completion);
2958 		mutex_lock(&ctx->uring_lock);
2959 	}
2960 	mutex_unlock(&ctx->uring_lock);
2961 	spin_lock(&ctx->completion_lock);
2962 	spin_unlock(&ctx->completion_lock);
2963 
2964 	/* pairs with RCU read section in io_req_local_work_add() */
2965 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2966 		synchronize_rcu();
2967 
2968 	io_ring_ctx_free(ctx);
2969 }
2970 
2971 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2972 {
2973 	unsigned long index;
2974 	struct creds *creds;
2975 
2976 	mutex_lock(&ctx->uring_lock);
2977 	percpu_ref_kill(&ctx->refs);
2978 	xa_for_each(&ctx->personalities, index, creds)
2979 		io_unregister_personality(ctx, index);
2980 	mutex_unlock(&ctx->uring_lock);
2981 
2982 	flush_delayed_work(&ctx->fallback_work);
2983 
2984 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2985 	/*
2986 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
2987 	 * if we're exiting a ton of rings at the same time. It just adds
2988 	 * noise and overhead, there's no discernable change in runtime
2989 	 * over using system_wq.
2990 	 */
2991 	queue_work(iou_wq, &ctx->exit_work);
2992 }
2993 
2994 static int io_uring_release(struct inode *inode, struct file *file)
2995 {
2996 	struct io_ring_ctx *ctx = file->private_data;
2997 
2998 	file->private_data = NULL;
2999 	io_ring_ctx_wait_and_kill(ctx);
3000 	return 0;
3001 }
3002 
3003 struct io_task_cancel {
3004 	struct io_uring_task *tctx;
3005 	bool all;
3006 };
3007 
3008 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3009 {
3010 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3011 	struct io_task_cancel *cancel = data;
3012 
3013 	return io_match_task_safe(req, cancel->tctx, cancel->all);
3014 }
3015 
3016 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3017 					 struct io_uring_task *tctx,
3018 					 bool cancel_all)
3019 {
3020 	struct io_defer_entry *de;
3021 	LIST_HEAD(list);
3022 
3023 	spin_lock(&ctx->completion_lock);
3024 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3025 		if (io_match_task_safe(de->req, tctx, cancel_all)) {
3026 			list_cut_position(&list, &ctx->defer_list, &de->list);
3027 			break;
3028 		}
3029 	}
3030 	spin_unlock(&ctx->completion_lock);
3031 	if (list_empty(&list))
3032 		return false;
3033 
3034 	while (!list_empty(&list)) {
3035 		de = list_first_entry(&list, struct io_defer_entry, list);
3036 		list_del_init(&de->list);
3037 		io_req_task_queue_fail(de->req, -ECANCELED);
3038 		kfree(de);
3039 	}
3040 	return true;
3041 }
3042 
3043 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3044 {
3045 	struct io_tctx_node *node;
3046 	enum io_wq_cancel cret;
3047 	bool ret = false;
3048 
3049 	mutex_lock(&ctx->uring_lock);
3050 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3051 		struct io_uring_task *tctx = node->task->io_uring;
3052 
3053 		/*
3054 		 * io_wq will stay alive while we hold uring_lock, because it's
3055 		 * killed after ctx nodes, which requires to take the lock.
3056 		 */
3057 		if (!tctx || !tctx->io_wq)
3058 			continue;
3059 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3060 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3061 	}
3062 	mutex_unlock(&ctx->uring_lock);
3063 
3064 	return ret;
3065 }
3066 
3067 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3068 						struct io_uring_task *tctx,
3069 						bool cancel_all,
3070 						bool is_sqpoll_thread)
3071 {
3072 	struct io_task_cancel cancel = { .tctx = tctx, .all = cancel_all, };
3073 	enum io_wq_cancel cret;
3074 	bool ret = false;
3075 
3076 	/* set it so io_req_local_work_add() would wake us up */
3077 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3078 		atomic_set(&ctx->cq_wait_nr, 1);
3079 		smp_mb();
3080 	}
3081 
3082 	/* failed during ring init, it couldn't have issued any requests */
3083 	if (!ctx->rings)
3084 		return false;
3085 
3086 	if (!tctx) {
3087 		ret |= io_uring_try_cancel_iowq(ctx);
3088 	} else if (tctx->io_wq) {
3089 		/*
3090 		 * Cancels requests of all rings, not only @ctx, but
3091 		 * it's fine as the task is in exit/exec.
3092 		 */
3093 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3094 				       &cancel, true);
3095 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3096 	}
3097 
3098 	/* SQPOLL thread does its own polling */
3099 	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3100 	    is_sqpoll_thread) {
3101 		while (!wq_list_empty(&ctx->iopoll_list)) {
3102 			io_iopoll_try_reap_events(ctx);
3103 			ret = true;
3104 			cond_resched();
3105 		}
3106 	}
3107 
3108 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3109 	    io_allowed_defer_tw_run(ctx))
3110 		ret |= io_run_local_work(ctx, INT_MAX, INT_MAX) > 0;
3111 	ret |= io_cancel_defer_files(ctx, tctx, cancel_all);
3112 	mutex_lock(&ctx->uring_lock);
3113 	ret |= io_poll_remove_all(ctx, tctx, cancel_all);
3114 	ret |= io_waitid_remove_all(ctx, tctx, cancel_all);
3115 	ret |= io_futex_remove_all(ctx, tctx, cancel_all);
3116 	ret |= io_uring_try_cancel_uring_cmd(ctx, tctx, cancel_all);
3117 	mutex_unlock(&ctx->uring_lock);
3118 	ret |= io_kill_timeouts(ctx, tctx, cancel_all);
3119 	if (tctx)
3120 		ret |= io_run_task_work() > 0;
3121 	else
3122 		ret |= flush_delayed_work(&ctx->fallback_work);
3123 	return ret;
3124 }
3125 
3126 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3127 {
3128 	if (tracked)
3129 		return atomic_read(&tctx->inflight_tracked);
3130 	return percpu_counter_sum(&tctx->inflight);
3131 }
3132 
3133 /*
3134  * Find any io_uring ctx that this task has registered or done IO on, and cancel
3135  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3136  */
3137 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3138 {
3139 	struct io_uring_task *tctx = current->io_uring;
3140 	struct io_ring_ctx *ctx;
3141 	struct io_tctx_node *node;
3142 	unsigned long index;
3143 	s64 inflight;
3144 	DEFINE_WAIT(wait);
3145 
3146 	WARN_ON_ONCE(sqd && sqd->thread != current);
3147 
3148 	if (!current->io_uring)
3149 		return;
3150 	if (tctx->io_wq)
3151 		io_wq_exit_start(tctx->io_wq);
3152 
3153 	atomic_inc(&tctx->in_cancel);
3154 	do {
3155 		bool loop = false;
3156 
3157 		io_uring_drop_tctx_refs(current);
3158 		if (!tctx_inflight(tctx, !cancel_all))
3159 			break;
3160 
3161 		/* read completions before cancelations */
3162 		inflight = tctx_inflight(tctx, false);
3163 		if (!inflight)
3164 			break;
3165 
3166 		if (!sqd) {
3167 			xa_for_each(&tctx->xa, index, node) {
3168 				/* sqpoll task will cancel all its requests */
3169 				if (node->ctx->sq_data)
3170 					continue;
3171 				loop |= io_uring_try_cancel_requests(node->ctx,
3172 							current->io_uring,
3173 							cancel_all,
3174 							false);
3175 			}
3176 		} else {
3177 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3178 				loop |= io_uring_try_cancel_requests(ctx,
3179 								     current->io_uring,
3180 								     cancel_all,
3181 								     true);
3182 		}
3183 
3184 		if (loop) {
3185 			cond_resched();
3186 			continue;
3187 		}
3188 
3189 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3190 		io_run_task_work();
3191 		io_uring_drop_tctx_refs(current);
3192 		xa_for_each(&tctx->xa, index, node) {
3193 			if (io_local_work_pending(node->ctx)) {
3194 				WARN_ON_ONCE(node->ctx->submitter_task &&
3195 					     node->ctx->submitter_task != current);
3196 				goto end_wait;
3197 			}
3198 		}
3199 		/*
3200 		 * If we've seen completions, retry without waiting. This
3201 		 * avoids a race where a completion comes in before we did
3202 		 * prepare_to_wait().
3203 		 */
3204 		if (inflight == tctx_inflight(tctx, !cancel_all))
3205 			schedule();
3206 end_wait:
3207 		finish_wait(&tctx->wait, &wait);
3208 	} while (1);
3209 
3210 	io_uring_clean_tctx(tctx);
3211 	if (cancel_all) {
3212 		/*
3213 		 * We shouldn't run task_works after cancel, so just leave
3214 		 * ->in_cancel set for normal exit.
3215 		 */
3216 		atomic_dec(&tctx->in_cancel);
3217 		/* for exec all current's requests should be gone, kill tctx */
3218 		__io_uring_free(current);
3219 	}
3220 }
3221 
3222 void __io_uring_cancel(bool cancel_all)
3223 {
3224 	io_uring_unreg_ringfd();
3225 	io_uring_cancel_generic(cancel_all, NULL);
3226 }
3227 
3228 static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx,
3229 			const struct io_uring_getevents_arg __user *uarg)
3230 {
3231 	unsigned long size = sizeof(struct io_uring_reg_wait);
3232 	unsigned long offset = (uintptr_t)uarg;
3233 	unsigned long end;
3234 
3235 	if (unlikely(offset % sizeof(long)))
3236 		return ERR_PTR(-EFAULT);
3237 
3238 	/* also protects from NULL ->cq_wait_arg as the size would be 0 */
3239 	if (unlikely(check_add_overflow(offset, size, &end) ||
3240 		     end > ctx->cq_wait_size))
3241 		return ERR_PTR(-EFAULT);
3242 
3243 	offset = array_index_nospec(offset, ctx->cq_wait_size - size);
3244 	return ctx->cq_wait_arg + offset;
3245 }
3246 
3247 static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3248 			       const void __user *argp, size_t argsz)
3249 {
3250 	struct io_uring_getevents_arg arg;
3251 
3252 	if (!(flags & IORING_ENTER_EXT_ARG))
3253 		return 0;
3254 	if (flags & IORING_ENTER_EXT_ARG_REG)
3255 		return -EINVAL;
3256 	if (argsz != sizeof(arg))
3257 		return -EINVAL;
3258 	if (copy_from_user(&arg, argp, sizeof(arg)))
3259 		return -EFAULT;
3260 	return 0;
3261 }
3262 
3263 static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3264 			  const void __user *argp, struct ext_arg *ext_arg)
3265 {
3266 	const struct io_uring_getevents_arg __user *uarg = argp;
3267 	struct io_uring_getevents_arg arg;
3268 
3269 	ext_arg->iowait = !(flags & IORING_ENTER_NO_IOWAIT);
3270 
3271 	/*
3272 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3273 	 * is just a pointer to the sigset_t.
3274 	 */
3275 	if (!(flags & IORING_ENTER_EXT_ARG)) {
3276 		ext_arg->sig = (const sigset_t __user *) argp;
3277 		return 0;
3278 	}
3279 
3280 	if (flags & IORING_ENTER_EXT_ARG_REG) {
3281 		struct io_uring_reg_wait *w;
3282 
3283 		if (ext_arg->argsz != sizeof(struct io_uring_reg_wait))
3284 			return -EINVAL;
3285 		w = io_get_ext_arg_reg(ctx, argp);
3286 		if (IS_ERR(w))
3287 			return PTR_ERR(w);
3288 
3289 		if (w->flags & ~IORING_REG_WAIT_TS)
3290 			return -EINVAL;
3291 		ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC;
3292 		ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask));
3293 		ext_arg->argsz = READ_ONCE(w->sigmask_sz);
3294 		if (w->flags & IORING_REG_WAIT_TS) {
3295 			ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec);
3296 			ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec);
3297 			ext_arg->ts_set = true;
3298 		}
3299 		return 0;
3300 	}
3301 
3302 	/*
3303 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3304 	 * timespec and sigset_t pointers if good.
3305 	 */
3306 	if (ext_arg->argsz != sizeof(arg))
3307 		return -EINVAL;
3308 #ifdef CONFIG_64BIT
3309 	if (!user_access_begin(uarg, sizeof(*uarg)))
3310 		return -EFAULT;
3311 	unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end);
3312 	unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end);
3313 	unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end);
3314 	unsafe_get_user(arg.ts, &uarg->ts, uaccess_end);
3315 	user_access_end();
3316 #else
3317 	if (copy_from_user(&arg, uarg, sizeof(arg)))
3318 		return -EFAULT;
3319 #endif
3320 	ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC;
3321 	ext_arg->sig = u64_to_user_ptr(arg.sigmask);
3322 	ext_arg->argsz = arg.sigmask_sz;
3323 	if (arg.ts) {
3324 		if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts)))
3325 			return -EFAULT;
3326 		ext_arg->ts_set = true;
3327 	}
3328 	return 0;
3329 #ifdef CONFIG_64BIT
3330 uaccess_end:
3331 	user_access_end();
3332 	return -EFAULT;
3333 #endif
3334 }
3335 
3336 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3337 		u32, min_complete, u32, flags, const void __user *, argp,
3338 		size_t, argsz)
3339 {
3340 	struct io_ring_ctx *ctx;
3341 	struct file *file;
3342 	long ret;
3343 
3344 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3345 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3346 			       IORING_ENTER_REGISTERED_RING |
3347 			       IORING_ENTER_ABS_TIMER |
3348 			       IORING_ENTER_EXT_ARG_REG |
3349 			       IORING_ENTER_NO_IOWAIT)))
3350 		return -EINVAL;
3351 
3352 	/*
3353 	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3354 	 * need only dereference our task private array to find it.
3355 	 */
3356 	if (flags & IORING_ENTER_REGISTERED_RING) {
3357 		struct io_uring_task *tctx = current->io_uring;
3358 
3359 		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3360 			return -EINVAL;
3361 		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3362 		file = tctx->registered_rings[fd];
3363 		if (unlikely(!file))
3364 			return -EBADF;
3365 	} else {
3366 		file = fget(fd);
3367 		if (unlikely(!file))
3368 			return -EBADF;
3369 		ret = -EOPNOTSUPP;
3370 		if (unlikely(!io_is_uring_fops(file)))
3371 			goto out;
3372 	}
3373 
3374 	ctx = file->private_data;
3375 	ret = -EBADFD;
3376 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3377 		goto out;
3378 
3379 	/*
3380 	 * For SQ polling, the thread will do all submissions and completions.
3381 	 * Just return the requested submit count, and wake the thread if
3382 	 * we were asked to.
3383 	 */
3384 	ret = 0;
3385 	if (ctx->flags & IORING_SETUP_SQPOLL) {
3386 		if (unlikely(ctx->sq_data->thread == NULL)) {
3387 			ret = -EOWNERDEAD;
3388 			goto out;
3389 		}
3390 		if (flags & IORING_ENTER_SQ_WAKEUP)
3391 			wake_up(&ctx->sq_data->wait);
3392 		if (flags & IORING_ENTER_SQ_WAIT)
3393 			io_sqpoll_wait_sq(ctx);
3394 
3395 		ret = to_submit;
3396 	} else if (to_submit) {
3397 		ret = io_uring_add_tctx_node(ctx);
3398 		if (unlikely(ret))
3399 			goto out;
3400 
3401 		mutex_lock(&ctx->uring_lock);
3402 		ret = io_submit_sqes(ctx, to_submit);
3403 		if (ret != to_submit) {
3404 			mutex_unlock(&ctx->uring_lock);
3405 			goto out;
3406 		}
3407 		if (flags & IORING_ENTER_GETEVENTS) {
3408 			if (ctx->syscall_iopoll)
3409 				goto iopoll_locked;
3410 			/*
3411 			 * Ignore errors, we'll soon call io_cqring_wait() and
3412 			 * it should handle ownership problems if any.
3413 			 */
3414 			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3415 				(void)io_run_local_work_locked(ctx, min_complete);
3416 		}
3417 		mutex_unlock(&ctx->uring_lock);
3418 	}
3419 
3420 	if (flags & IORING_ENTER_GETEVENTS) {
3421 		int ret2;
3422 
3423 		if (ctx->syscall_iopoll) {
3424 			/*
3425 			 * We disallow the app entering submit/complete with
3426 			 * polling, but we still need to lock the ring to
3427 			 * prevent racing with polled issue that got punted to
3428 			 * a workqueue.
3429 			 */
3430 			mutex_lock(&ctx->uring_lock);
3431 iopoll_locked:
3432 			ret2 = io_validate_ext_arg(ctx, flags, argp, argsz);
3433 			if (likely(!ret2))
3434 				ret2 = io_iopoll_check(ctx, min_complete);
3435 			mutex_unlock(&ctx->uring_lock);
3436 		} else {
3437 			struct ext_arg ext_arg = { .argsz = argsz };
3438 
3439 			ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg);
3440 			if (likely(!ret2))
3441 				ret2 = io_cqring_wait(ctx, min_complete, flags,
3442 						      &ext_arg);
3443 		}
3444 
3445 		if (!ret) {
3446 			ret = ret2;
3447 
3448 			/*
3449 			 * EBADR indicates that one or more CQE were dropped.
3450 			 * Once the user has been informed we can clear the bit
3451 			 * as they are obviously ok with those drops.
3452 			 */
3453 			if (unlikely(ret2 == -EBADR))
3454 				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3455 					  &ctx->check_cq);
3456 		}
3457 	}
3458 out:
3459 	if (!(flags & IORING_ENTER_REGISTERED_RING))
3460 		fput(file);
3461 	return ret;
3462 }
3463 
3464 static const struct file_operations io_uring_fops = {
3465 	.release	= io_uring_release,
3466 	.mmap		= io_uring_mmap,
3467 	.get_unmapped_area = io_uring_get_unmapped_area,
3468 #ifndef CONFIG_MMU
3469 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3470 #endif
3471 	.poll		= io_uring_poll,
3472 #ifdef CONFIG_PROC_FS
3473 	.show_fdinfo	= io_uring_show_fdinfo,
3474 #endif
3475 };
3476 
3477 bool io_is_uring_fops(struct file *file)
3478 {
3479 	return file->f_op == &io_uring_fops;
3480 }
3481 
3482 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3483 					 struct io_uring_params *p)
3484 {
3485 	struct io_uring_region_desc rd;
3486 	struct io_rings *rings;
3487 	size_t size, sq_array_offset;
3488 	int ret;
3489 
3490 	/* make sure these are sane, as we already accounted them */
3491 	ctx->sq_entries = p->sq_entries;
3492 	ctx->cq_entries = p->cq_entries;
3493 
3494 	size = rings_size(ctx->flags, p->sq_entries, p->cq_entries,
3495 			  &sq_array_offset);
3496 	if (size == SIZE_MAX)
3497 		return -EOVERFLOW;
3498 
3499 	memset(&rd, 0, sizeof(rd));
3500 	rd.size = PAGE_ALIGN(size);
3501 	if (ctx->flags & IORING_SETUP_NO_MMAP) {
3502 		rd.user_addr = p->cq_off.user_addr;
3503 		rd.flags |= IORING_MEM_REGION_TYPE_USER;
3504 	}
3505 	ret = io_create_region(ctx, &ctx->ring_region, &rd, IORING_OFF_CQ_RING);
3506 	if (ret)
3507 		return ret;
3508 	ctx->rings = rings = io_region_get_ptr(&ctx->ring_region);
3509 
3510 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3511 		ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3512 	rings->sq_ring_mask = p->sq_entries - 1;
3513 	rings->cq_ring_mask = p->cq_entries - 1;
3514 	rings->sq_ring_entries = p->sq_entries;
3515 	rings->cq_ring_entries = p->cq_entries;
3516 
3517 	if (p->flags & IORING_SETUP_SQE128)
3518 		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3519 	else
3520 		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3521 	if (size == SIZE_MAX) {
3522 		io_rings_free(ctx);
3523 		return -EOVERFLOW;
3524 	}
3525 
3526 	memset(&rd, 0, sizeof(rd));
3527 	rd.size = PAGE_ALIGN(size);
3528 	if (ctx->flags & IORING_SETUP_NO_MMAP) {
3529 		rd.user_addr = p->sq_off.user_addr;
3530 		rd.flags |= IORING_MEM_REGION_TYPE_USER;
3531 	}
3532 	ret = io_create_region(ctx, &ctx->sq_region, &rd, IORING_OFF_SQES);
3533 	if (ret) {
3534 		io_rings_free(ctx);
3535 		return ret;
3536 	}
3537 	ctx->sq_sqes = io_region_get_ptr(&ctx->sq_region);
3538 	return 0;
3539 }
3540 
3541 static int io_uring_install_fd(struct file *file)
3542 {
3543 	int fd;
3544 
3545 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3546 	if (fd < 0)
3547 		return fd;
3548 	fd_install(fd, file);
3549 	return fd;
3550 }
3551 
3552 /*
3553  * Allocate an anonymous fd, this is what constitutes the application
3554  * visible backing of an io_uring instance. The application mmaps this
3555  * fd to gain access to the SQ/CQ ring details.
3556  */
3557 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3558 {
3559 	/* Create a new inode so that the LSM can block the creation.  */
3560 	return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
3561 					 O_RDWR | O_CLOEXEC, NULL);
3562 }
3563 
3564 static int io_uring_sanitise_params(struct io_uring_params *p)
3565 {
3566 	unsigned flags = p->flags;
3567 
3568 	/* There is no way to mmap rings without a real fd */
3569 	if ((flags & IORING_SETUP_REGISTERED_FD_ONLY) &&
3570 	    !(flags & IORING_SETUP_NO_MMAP))
3571 		return -EINVAL;
3572 
3573 	if (flags & IORING_SETUP_SQPOLL) {
3574 		/* IPI related flags don't make sense with SQPOLL */
3575 		if (flags & (IORING_SETUP_COOP_TASKRUN |
3576 			     IORING_SETUP_TASKRUN_FLAG |
3577 			     IORING_SETUP_DEFER_TASKRUN))
3578 			return -EINVAL;
3579 	}
3580 
3581 	if (flags & IORING_SETUP_TASKRUN_FLAG) {
3582 		if (!(flags & (IORING_SETUP_COOP_TASKRUN |
3583 			       IORING_SETUP_DEFER_TASKRUN)))
3584 			return -EINVAL;
3585 	}
3586 
3587 	/* HYBRID_IOPOLL only valid with IOPOLL */
3588 	if ((flags & IORING_SETUP_HYBRID_IOPOLL) && !(flags & IORING_SETUP_IOPOLL))
3589 		return -EINVAL;
3590 
3591 	/*
3592 	 * For DEFER_TASKRUN we require the completion task to be the same as
3593 	 * the submission task. This implies that there is only one submitter.
3594 	 */
3595 	if ((flags & IORING_SETUP_DEFER_TASKRUN) &&
3596 	    !(flags & IORING_SETUP_SINGLE_ISSUER))
3597 		return -EINVAL;
3598 
3599 	return 0;
3600 }
3601 
3602 int io_uring_fill_params(unsigned entries, struct io_uring_params *p)
3603 {
3604 	if (!entries)
3605 		return -EINVAL;
3606 	if (entries > IORING_MAX_ENTRIES) {
3607 		if (!(p->flags & IORING_SETUP_CLAMP))
3608 			return -EINVAL;
3609 		entries = IORING_MAX_ENTRIES;
3610 	}
3611 
3612 	/*
3613 	 * Use twice as many entries for the CQ ring. It's possible for the
3614 	 * application to drive a higher depth than the size of the SQ ring,
3615 	 * since the sqes are only used at submission time. This allows for
3616 	 * some flexibility in overcommitting a bit. If the application has
3617 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3618 	 * of CQ ring entries manually.
3619 	 */
3620 	p->sq_entries = roundup_pow_of_two(entries);
3621 	if (p->flags & IORING_SETUP_CQSIZE) {
3622 		/*
3623 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3624 		 * to a power-of-two, if it isn't already. We do NOT impose
3625 		 * any cq vs sq ring sizing.
3626 		 */
3627 		if (!p->cq_entries)
3628 			return -EINVAL;
3629 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3630 			if (!(p->flags & IORING_SETUP_CLAMP))
3631 				return -EINVAL;
3632 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3633 		}
3634 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3635 		if (p->cq_entries < p->sq_entries)
3636 			return -EINVAL;
3637 	} else {
3638 		p->cq_entries = 2 * p->sq_entries;
3639 	}
3640 
3641 	p->sq_off.head = offsetof(struct io_rings, sq.head);
3642 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3643 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3644 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3645 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3646 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3647 	p->sq_off.resv1 = 0;
3648 	if (!(p->flags & IORING_SETUP_NO_MMAP))
3649 		p->sq_off.user_addr = 0;
3650 
3651 	p->cq_off.head = offsetof(struct io_rings, cq.head);
3652 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3653 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3654 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3655 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3656 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3657 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3658 	p->cq_off.resv1 = 0;
3659 	if (!(p->flags & IORING_SETUP_NO_MMAP))
3660 		p->cq_off.user_addr = 0;
3661 
3662 	return 0;
3663 }
3664 
3665 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3666 				  struct io_uring_params __user *params)
3667 {
3668 	struct io_ring_ctx *ctx;
3669 	struct io_uring_task *tctx;
3670 	struct file *file;
3671 	int ret;
3672 
3673 	ret = io_uring_sanitise_params(p);
3674 	if (ret)
3675 		return ret;
3676 
3677 	ret = io_uring_fill_params(entries, p);
3678 	if (unlikely(ret))
3679 		return ret;
3680 
3681 	ctx = io_ring_ctx_alloc(p);
3682 	if (!ctx)
3683 		return -ENOMEM;
3684 
3685 	ctx->clockid = CLOCK_MONOTONIC;
3686 	ctx->clock_offset = 0;
3687 
3688 	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3689 		static_branch_inc(&io_key_has_sqarray);
3690 
3691 	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3692 	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3693 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3694 		ctx->task_complete = true;
3695 
3696 	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3697 		ctx->lockless_cq = true;
3698 
3699 	/*
3700 	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3701 	 * purposes, see io_activate_pollwq()
3702 	 */
3703 	if (!ctx->task_complete)
3704 		ctx->poll_activated = true;
3705 
3706 	/*
3707 	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3708 	 * space applications don't need to do io completion events
3709 	 * polling again, they can rely on io_sq_thread to do polling
3710 	 * work, which can reduce cpu usage and uring_lock contention.
3711 	 */
3712 	if (ctx->flags & IORING_SETUP_IOPOLL &&
3713 	    !(ctx->flags & IORING_SETUP_SQPOLL))
3714 		ctx->syscall_iopoll = 1;
3715 
3716 	ctx->compat = in_compat_syscall();
3717 	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3718 		ctx->user = get_uid(current_user());
3719 
3720 	/*
3721 	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3722 	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3723 	 */
3724 	if (ctx->flags & (IORING_SETUP_SQPOLL|IORING_SETUP_COOP_TASKRUN))
3725 		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3726 	else
3727 		ctx->notify_method = TWA_SIGNAL;
3728 
3729 	/*
3730 	 * This is just grabbed for accounting purposes. When a process exits,
3731 	 * the mm is exited and dropped before the files, hence we need to hang
3732 	 * on to this mm purely for the purposes of being able to unaccount
3733 	 * memory (locked/pinned vm). It's not used for anything else.
3734 	 */
3735 	mmgrab(current->mm);
3736 	ctx->mm_account = current->mm;
3737 
3738 	ret = io_allocate_scq_urings(ctx, p);
3739 	if (ret)
3740 		goto err;
3741 
3742 	if (!(p->flags & IORING_SETUP_NO_SQARRAY))
3743 		p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3744 
3745 	ret = io_sq_offload_create(ctx, p);
3746 	if (ret)
3747 		goto err;
3748 
3749 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3750 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3751 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3752 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3753 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3754 			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3755 			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING |
3756 			IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT |
3757 			IORING_FEAT_RW_ATTR | IORING_FEAT_NO_IOWAIT;
3758 
3759 	if (copy_to_user(params, p, sizeof(*p))) {
3760 		ret = -EFAULT;
3761 		goto err;
3762 	}
3763 
3764 	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3765 	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
3766 		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3767 
3768 	file = io_uring_get_file(ctx);
3769 	if (IS_ERR(file)) {
3770 		ret = PTR_ERR(file);
3771 		goto err;
3772 	}
3773 
3774 	ret = __io_uring_add_tctx_node(ctx);
3775 	if (ret)
3776 		goto err_fput;
3777 	tctx = current->io_uring;
3778 
3779 	/*
3780 	 * Install ring fd as the very last thing, so we don't risk someone
3781 	 * having closed it before we finish setup
3782 	 */
3783 	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3784 		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3785 	else
3786 		ret = io_uring_install_fd(file);
3787 	if (ret < 0)
3788 		goto err_fput;
3789 
3790 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3791 	return ret;
3792 err:
3793 	io_ring_ctx_wait_and_kill(ctx);
3794 	return ret;
3795 err_fput:
3796 	fput(file);
3797 	return ret;
3798 }
3799 
3800 /*
3801  * Sets up an aio uring context, and returns the fd. Applications asks for a
3802  * ring size, we return the actual sq/cq ring sizes (among other things) in the
3803  * params structure passed in.
3804  */
3805 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3806 {
3807 	struct io_uring_params p;
3808 	int i;
3809 
3810 	if (copy_from_user(&p, params, sizeof(p)))
3811 		return -EFAULT;
3812 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3813 		if (p.resv[i])
3814 			return -EINVAL;
3815 	}
3816 
3817 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3818 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3819 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3820 			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3821 			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3822 			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3823 			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
3824 			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
3825 			IORING_SETUP_NO_SQARRAY | IORING_SETUP_HYBRID_IOPOLL))
3826 		return -EINVAL;
3827 
3828 	return io_uring_create(entries, &p, params);
3829 }
3830 
3831 static inline int io_uring_allowed(void)
3832 {
3833 	int disabled = READ_ONCE(sysctl_io_uring_disabled);
3834 	kgid_t io_uring_group;
3835 
3836 	if (disabled == 2)
3837 		return -EPERM;
3838 
3839 	if (disabled == 0 || capable(CAP_SYS_ADMIN))
3840 		goto allowed_lsm;
3841 
3842 	io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
3843 	if (!gid_valid(io_uring_group))
3844 		return -EPERM;
3845 
3846 	if (!in_group_p(io_uring_group))
3847 		return -EPERM;
3848 
3849 allowed_lsm:
3850 	return security_uring_allowed();
3851 }
3852 
3853 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3854 		struct io_uring_params __user *, params)
3855 {
3856 	int ret;
3857 
3858 	ret = io_uring_allowed();
3859 	if (ret)
3860 		return ret;
3861 
3862 	return io_uring_setup(entries, params);
3863 }
3864 
3865 static int __init io_uring_init(void)
3866 {
3867 	struct kmem_cache_args kmem_args = {
3868 		.useroffset = offsetof(struct io_kiocb, cmd.data),
3869 		.usersize = sizeof_field(struct io_kiocb, cmd.data),
3870 		.freeptr_offset = offsetof(struct io_kiocb, work),
3871 		.use_freeptr_offset = true,
3872 	};
3873 
3874 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3875 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3876 	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3877 } while (0)
3878 
3879 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3880 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3881 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3882 	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3883 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
3884 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
3885 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
3886 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
3887 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
3888 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
3889 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
3890 	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
3891 	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
3892 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
3893 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
3894 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
3895 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
3896 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
3897 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
3898 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
3899 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
3900 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
3901 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
3902 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
3903 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
3904 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
3905 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
3906 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
3907 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
3908 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
3909 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
3910 	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
3911 	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
3912 	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
3913 	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
3914 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
3915 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
3916 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
3917 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
3918 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
3919 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
3920 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
3921 	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
3922 	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
3923 	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
3924 	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
3925 	BUILD_BUG_SQE_ELEM(48, __u64, attr_ptr);
3926 	BUILD_BUG_SQE_ELEM(56, __u64, attr_type_mask);
3927 	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
3928 
3929 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
3930 		     sizeof(struct io_uring_rsrc_update));
3931 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
3932 		     sizeof(struct io_uring_rsrc_update2));
3933 
3934 	/* ->buf_index is u16 */
3935 	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
3936 	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
3937 		     offsetof(struct io_uring_buf_ring, tail));
3938 
3939 	/* should fit into one byte */
3940 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
3941 	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
3942 	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
3943 
3944 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags));
3945 
3946 	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
3947 
3948 	/* top 8bits are for internal use */
3949 	BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
3950 
3951 	io_uring_optable_init();
3952 
3953 	/* imu->dir is u8 */
3954 	BUILD_BUG_ON((IO_IMU_DEST | IO_IMU_SOURCE) > U8_MAX);
3955 
3956 	/*
3957 	 * Allow user copy in the per-command field, which starts after the
3958 	 * file in io_kiocb and until the opcode field. The openat2 handling
3959 	 * requires copying in user memory into the io_kiocb object in that
3960 	 * range, and HARDENED_USERCOPY will complain if we haven't
3961 	 * correctly annotated this range.
3962 	 */
3963 	req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args,
3964 				SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT |
3965 				SLAB_TYPESAFE_BY_RCU);
3966 
3967 	iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
3968 	BUG_ON(!iou_wq);
3969 
3970 #ifdef CONFIG_SYSCTL
3971 	register_sysctl_init("kernel", kernel_io_uring_disabled_table);
3972 #endif
3973 
3974 	return 0;
3975 };
3976 __initcall(io_uring_init);
3977