xref: /linux/drivers/gpu/drm/display/drm_dp_helper.c (revision 5e7715478c273e5b17b08942182bc0350b7ef3a6)
1 /*
2  * Copyright © 2009 Keith Packard
3  *
4  * Permission to use, copy, modify, distribute, and sell this software and its
5  * documentation for any purpose is hereby granted without fee, provided that
6  * the above copyright notice appear in all copies and that both that copyright
7  * notice and this permission notice appear in supporting documentation, and
8  * that the name of the copyright holders not be used in advertising or
9  * publicity pertaining to distribution of the software without specific,
10  * written prior permission.  The copyright holders make no representations
11  * about the suitability of this software for any purpose.  It is provided "as
12  * is" without express or implied warranty.
13  *
14  * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
15  * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
16  * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
17  * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
18  * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
19  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
20  * OF THIS SOFTWARE.
21  */
22 
23 #include <linux/backlight.h>
24 #include <linux/delay.h>
25 #include <linux/dynamic_debug.h>
26 #include <linux/errno.h>
27 #include <linux/i2c.h>
28 #include <linux/init.h>
29 #include <linux/iopoll.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/sched.h>
33 #include <linux/seq_file.h>
34 #include <linux/string_helpers.h>
35 
36 #include <drm/display/drm_dp_helper.h>
37 #include <drm/display/drm_dp_mst_helper.h>
38 #include <drm/drm_edid.h>
39 #include <drm/drm_fixed.h>
40 #include <drm/drm_print.h>
41 #include <drm/drm_vblank.h>
42 #include <drm/drm_panel.h>
43 
44 #include "drm_dp_helper_internal.h"
45 
46 DECLARE_DYNDBG_CLASSMAP(drm_debug_classes, DD_CLASS_TYPE_DISJOINT_BITS, 0,
47 			"DRM_UT_CORE",
48 			"DRM_UT_DRIVER",
49 			"DRM_UT_KMS",
50 			"DRM_UT_PRIME",
51 			"DRM_UT_ATOMIC",
52 			"DRM_UT_VBL",
53 			"DRM_UT_STATE",
54 			"DRM_UT_LEASE",
55 			"DRM_UT_DP",
56 			"DRM_UT_DRMRES");
57 
58 struct dp_aux_backlight {
59 	struct backlight_device *base;
60 	struct drm_dp_aux *aux;
61 	struct drm_edp_backlight_info info;
62 	bool enabled;
63 };
64 
65 /**
66  * DOC: dp helpers
67  *
68  * These functions contain some common logic and helpers at various abstraction
69  * levels to deal with Display Port sink devices and related things like DP aux
70  * channel transfers, EDID reading over DP aux channels, decoding certain DPCD
71  * blocks, ...
72  */
73 
74 /* Helpers for DP link training */
75 static u8 dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE], int r)
76 {
77 	return link_status[r - DP_LANE0_1_STATUS];
78 }
79 
80 static u8 dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],
81 			     int lane)
82 {
83 	int i = DP_LANE0_1_STATUS + (lane >> 1);
84 	int s = (lane & 1) * 4;
85 	u8 l = dp_link_status(link_status, i);
86 
87 	return (l >> s) & 0xf;
88 }
89 
90 bool drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
91 			  int lane_count)
92 {
93 	u8 lane_align;
94 	u8 lane_status;
95 	int lane;
96 
97 	lane_align = dp_link_status(link_status,
98 				    DP_LANE_ALIGN_STATUS_UPDATED);
99 	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
100 		return false;
101 	for (lane = 0; lane < lane_count; lane++) {
102 		lane_status = dp_get_lane_status(link_status, lane);
103 		if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS)
104 			return false;
105 	}
106 	return true;
107 }
108 EXPORT_SYMBOL(drm_dp_channel_eq_ok);
109 
110 bool drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
111 			      int lane_count)
112 {
113 	int lane;
114 	u8 lane_status;
115 
116 	for (lane = 0; lane < lane_count; lane++) {
117 		lane_status = dp_get_lane_status(link_status, lane);
118 		if ((lane_status & DP_LANE_CR_DONE) == 0)
119 			return false;
120 	}
121 	return true;
122 }
123 EXPORT_SYMBOL(drm_dp_clock_recovery_ok);
124 
125 u8 drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],
126 				     int lane)
127 {
128 	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
129 	int s = ((lane & 1) ?
130 		 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
131 		 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
132 	u8 l = dp_link_status(link_status, i);
133 
134 	return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
135 }
136 EXPORT_SYMBOL(drm_dp_get_adjust_request_voltage);
137 
138 u8 drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],
139 					  int lane)
140 {
141 	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
142 	int s = ((lane & 1) ?
143 		 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
144 		 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
145 	u8 l = dp_link_status(link_status, i);
146 
147 	return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
148 }
149 EXPORT_SYMBOL(drm_dp_get_adjust_request_pre_emphasis);
150 
151 /* DP 2.0 128b/132b */
152 u8 drm_dp_get_adjust_tx_ffe_preset(const u8 link_status[DP_LINK_STATUS_SIZE],
153 				   int lane)
154 {
155 	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
156 	int s = ((lane & 1) ?
157 		 DP_ADJUST_TX_FFE_PRESET_LANE1_SHIFT :
158 		 DP_ADJUST_TX_FFE_PRESET_LANE0_SHIFT);
159 	u8 l = dp_link_status(link_status, i);
160 
161 	return (l >> s) & 0xf;
162 }
163 EXPORT_SYMBOL(drm_dp_get_adjust_tx_ffe_preset);
164 
165 /* DP 2.0 errata for 128b/132b */
166 bool drm_dp_128b132b_lane_channel_eq_done(const u8 link_status[DP_LINK_STATUS_SIZE],
167 					  int lane_count)
168 {
169 	u8 lane_align, lane_status;
170 	int lane;
171 
172 	lane_align = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
173 	if (!(lane_align & DP_INTERLANE_ALIGN_DONE))
174 		return false;
175 
176 	for (lane = 0; lane < lane_count; lane++) {
177 		lane_status = dp_get_lane_status(link_status, lane);
178 		if (!(lane_status & DP_LANE_CHANNEL_EQ_DONE))
179 			return false;
180 	}
181 	return true;
182 }
183 EXPORT_SYMBOL(drm_dp_128b132b_lane_channel_eq_done);
184 
185 /* DP 2.0 errata for 128b/132b */
186 bool drm_dp_128b132b_lane_symbol_locked(const u8 link_status[DP_LINK_STATUS_SIZE],
187 					int lane_count)
188 {
189 	u8 lane_status;
190 	int lane;
191 
192 	for (lane = 0; lane < lane_count; lane++) {
193 		lane_status = dp_get_lane_status(link_status, lane);
194 		if (!(lane_status & DP_LANE_SYMBOL_LOCKED))
195 			return false;
196 	}
197 	return true;
198 }
199 EXPORT_SYMBOL(drm_dp_128b132b_lane_symbol_locked);
200 
201 /* DP 2.0 errata for 128b/132b */
202 bool drm_dp_128b132b_eq_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
203 {
204 	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
205 
206 	return status & DP_128B132B_DPRX_EQ_INTERLANE_ALIGN_DONE;
207 }
208 EXPORT_SYMBOL(drm_dp_128b132b_eq_interlane_align_done);
209 
210 /* DP 2.0 errata for 128b/132b */
211 bool drm_dp_128b132b_cds_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
212 {
213 	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
214 
215 	return status & DP_128B132B_DPRX_CDS_INTERLANE_ALIGN_DONE;
216 }
217 EXPORT_SYMBOL(drm_dp_128b132b_cds_interlane_align_done);
218 
219 /* DP 2.0 errata for 128b/132b */
220 bool drm_dp_128b132b_link_training_failed(const u8 link_status[DP_LINK_STATUS_SIZE])
221 {
222 	u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
223 
224 	return status & DP_128B132B_LT_FAILED;
225 }
226 EXPORT_SYMBOL(drm_dp_128b132b_link_training_failed);
227 
228 static int __8b10b_clock_recovery_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
229 {
230 	if (rd_interval > 4)
231 		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
232 			    aux->name, rd_interval);
233 
234 	if (rd_interval == 0)
235 		return 100;
236 
237 	return rd_interval * 4 * USEC_PER_MSEC;
238 }
239 
240 static int __8b10b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
241 {
242 	if (rd_interval > 4)
243 		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
244 			    aux->name, rd_interval);
245 
246 	if (rd_interval == 0)
247 		return 400;
248 
249 	return rd_interval * 4 * USEC_PER_MSEC;
250 }
251 
252 static int __128b132b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
253 {
254 	switch (rd_interval) {
255 	default:
256 		drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x\n",
257 			    aux->name, rd_interval);
258 		fallthrough;
259 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_400_US:
260 		return 400;
261 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_4_MS:
262 		return 4000;
263 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_8_MS:
264 		return 8000;
265 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_12_MS:
266 		return 12000;
267 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_16_MS:
268 		return 16000;
269 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_32_MS:
270 		return 32000;
271 	case DP_128B132B_TRAINING_AUX_RD_INTERVAL_64_MS:
272 		return 64000;
273 	}
274 }
275 
276 /*
277  * The link training delays are different for:
278  *
279  *  - Clock recovery vs. channel equalization
280  *  - DPRX vs. LTTPR
281  *  - 128b/132b vs. 8b/10b
282  *  - DPCD rev 1.3 vs. later
283  *
284  * Get the correct delay in us, reading DPCD if necessary.
285  */
286 static int __read_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
287 			enum drm_dp_phy dp_phy, bool uhbr, bool cr)
288 {
289 	int (*parse)(const struct drm_dp_aux *aux, u8 rd_interval);
290 	unsigned int offset;
291 	u8 rd_interval, mask;
292 
293 	if (dp_phy == DP_PHY_DPRX) {
294 		if (uhbr) {
295 			if (cr)
296 				return 100;
297 
298 			offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL;
299 			mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
300 			parse = __128b132b_channel_eq_delay_us;
301 		} else {
302 			if (cr && dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
303 				return 100;
304 
305 			offset = DP_TRAINING_AUX_RD_INTERVAL;
306 			mask = DP_TRAINING_AUX_RD_MASK;
307 			if (cr)
308 				parse = __8b10b_clock_recovery_delay_us;
309 			else
310 				parse = __8b10b_channel_eq_delay_us;
311 		}
312 	} else {
313 		if (uhbr) {
314 			offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
315 			mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
316 			parse = __128b132b_channel_eq_delay_us;
317 		} else {
318 			if (cr)
319 				return 100;
320 
321 			offset = DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
322 			mask = DP_TRAINING_AUX_RD_MASK;
323 			parse = __8b10b_channel_eq_delay_us;
324 		}
325 	}
326 
327 	if (offset < DP_RECEIVER_CAP_SIZE) {
328 		rd_interval = dpcd[offset];
329 	} else {
330 		if (drm_dp_dpcd_readb(aux, offset, &rd_interval) != 1) {
331 			drm_dbg_kms(aux->drm_dev, "%s: failed rd interval read\n",
332 				    aux->name);
333 			/* arbitrary default delay */
334 			return 400;
335 		}
336 	}
337 
338 	return parse(aux, rd_interval & mask);
339 }
340 
341 int drm_dp_read_clock_recovery_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
342 				     enum drm_dp_phy dp_phy, bool uhbr)
343 {
344 	return __read_delay(aux, dpcd, dp_phy, uhbr, true);
345 }
346 EXPORT_SYMBOL(drm_dp_read_clock_recovery_delay);
347 
348 int drm_dp_read_channel_eq_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
349 				 enum drm_dp_phy dp_phy, bool uhbr)
350 {
351 	return __read_delay(aux, dpcd, dp_phy, uhbr, false);
352 }
353 EXPORT_SYMBOL(drm_dp_read_channel_eq_delay);
354 
355 /* Per DP 2.0 Errata */
356 int drm_dp_128b132b_read_aux_rd_interval(struct drm_dp_aux *aux)
357 {
358 	int unit;
359 	u8 val;
360 
361 	if (drm_dp_dpcd_readb(aux, DP_128B132B_TRAINING_AUX_RD_INTERVAL, &val) != 1) {
362 		drm_err(aux->drm_dev, "%s: failed rd interval read\n",
363 			aux->name);
364 		/* default to max */
365 		val = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
366 	}
367 
368 	unit = (val & DP_128B132B_TRAINING_AUX_RD_INTERVAL_1MS_UNIT) ? 1 : 2;
369 	val &= DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
370 
371 	return (val + 1) * unit * 1000;
372 }
373 EXPORT_SYMBOL(drm_dp_128b132b_read_aux_rd_interval);
374 
375 void drm_dp_link_train_clock_recovery_delay(const struct drm_dp_aux *aux,
376 					    const u8 dpcd[DP_RECEIVER_CAP_SIZE])
377 {
378 	u8 rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
379 		DP_TRAINING_AUX_RD_MASK;
380 	int delay_us;
381 
382 	if (dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
383 		delay_us = 100;
384 	else
385 		delay_us = __8b10b_clock_recovery_delay_us(aux, rd_interval);
386 
387 	usleep_range(delay_us, delay_us * 2);
388 }
389 EXPORT_SYMBOL(drm_dp_link_train_clock_recovery_delay);
390 
391 static void __drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
392 						 u8 rd_interval)
393 {
394 	int delay_us = __8b10b_channel_eq_delay_us(aux, rd_interval);
395 
396 	usleep_range(delay_us, delay_us * 2);
397 }
398 
399 void drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
400 					const u8 dpcd[DP_RECEIVER_CAP_SIZE])
401 {
402 	__drm_dp_link_train_channel_eq_delay(aux,
403 					     dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
404 					     DP_TRAINING_AUX_RD_MASK);
405 }
406 EXPORT_SYMBOL(drm_dp_link_train_channel_eq_delay);
407 
408 /**
409  * drm_dp_phy_name() - Get the name of the given DP PHY
410  * @dp_phy: The DP PHY identifier
411  *
412  * Given the @dp_phy, get a user friendly name of the DP PHY, either "DPRX" or
413  * "LTTPR <N>", or "<INVALID DP PHY>" on errors. The returned string is always
414  * non-NULL and valid.
415  *
416  * Returns: Name of the DP PHY.
417  */
418 const char *drm_dp_phy_name(enum drm_dp_phy dp_phy)
419 {
420 	static const char * const phy_names[] = {
421 		[DP_PHY_DPRX] = "DPRX",
422 		[DP_PHY_LTTPR1] = "LTTPR 1",
423 		[DP_PHY_LTTPR2] = "LTTPR 2",
424 		[DP_PHY_LTTPR3] = "LTTPR 3",
425 		[DP_PHY_LTTPR4] = "LTTPR 4",
426 		[DP_PHY_LTTPR5] = "LTTPR 5",
427 		[DP_PHY_LTTPR6] = "LTTPR 6",
428 		[DP_PHY_LTTPR7] = "LTTPR 7",
429 		[DP_PHY_LTTPR8] = "LTTPR 8",
430 	};
431 
432 	if (dp_phy < 0 || dp_phy >= ARRAY_SIZE(phy_names) ||
433 	    WARN_ON(!phy_names[dp_phy]))
434 		return "<INVALID DP PHY>";
435 
436 	return phy_names[dp_phy];
437 }
438 EXPORT_SYMBOL(drm_dp_phy_name);
439 
440 void drm_dp_lttpr_link_train_clock_recovery_delay(void)
441 {
442 	usleep_range(100, 200);
443 }
444 EXPORT_SYMBOL(drm_dp_lttpr_link_train_clock_recovery_delay);
445 
446 static u8 dp_lttpr_phy_cap(const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE], int r)
447 {
448 	return phy_cap[r - DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1];
449 }
450 
451 void drm_dp_lttpr_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
452 					      const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE])
453 {
454 	u8 interval = dp_lttpr_phy_cap(phy_cap,
455 				       DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1) &
456 		      DP_TRAINING_AUX_RD_MASK;
457 
458 	__drm_dp_link_train_channel_eq_delay(aux, interval);
459 }
460 EXPORT_SYMBOL(drm_dp_lttpr_link_train_channel_eq_delay);
461 
462 /**
463  * drm_dp_lttpr_wake_timeout_setup() - Grant extended time for sink to wake up
464  * @aux: The DP AUX channel to use
465  * @transparent_mode: This is true if lttpr is in transparent mode
466  *
467  * This function checks if the sink needs any extended wake time, if it does
468  * it grants this request. Post this setup the source device can keep trying
469  * the Aux transaction till the granted wake timeout.
470  * If this function is not called all Aux transactions are expected to take
471  * a default of 1ms before they throw an error.
472  */
473 void drm_dp_lttpr_wake_timeout_setup(struct drm_dp_aux *aux, bool transparent_mode)
474 {
475 	u8 val = 1;
476 	int ret;
477 
478 	if (transparent_mode) {
479 		static const u8 timeout_mapping[] = {
480 			[DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_1_MS] = 1,
481 			[DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_20_MS] = 20,
482 			[DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_40_MS] = 40,
483 			[DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_60_MS] = 60,
484 			[DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_80_MS] = 80,
485 			[DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_100_MS] = 100,
486 		};
487 
488 		ret = drm_dp_dpcd_readb(aux, DP_EXTENDED_DPRX_SLEEP_WAKE_TIMEOUT_REQUEST, &val);
489 		if (ret != 1) {
490 			drm_dbg_kms(aux->drm_dev,
491 				    "Failed to read Extended sleep wake timeout request\n");
492 			return;
493 		}
494 
495 		val = (val < sizeof(timeout_mapping) && timeout_mapping[val]) ?
496 			timeout_mapping[val] : 1;
497 
498 		if (val > 1)
499 			drm_dp_dpcd_writeb(aux,
500 					   DP_EXTENDED_DPRX_SLEEP_WAKE_TIMEOUT_GRANT,
501 					   DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_GRANTED);
502 	} else {
503 		ret = drm_dp_dpcd_readb(aux, DP_PHY_REPEATER_EXTENDED_WAIT_TIMEOUT, &val);
504 		if (ret != 1) {
505 			drm_dbg_kms(aux->drm_dev,
506 				    "Failed to read Extended sleep wake timeout request\n");
507 			return;
508 		}
509 
510 		val = (val & DP_EXTENDED_WAKE_TIMEOUT_REQUEST_MASK) ?
511 			(val & DP_EXTENDED_WAKE_TIMEOUT_REQUEST_MASK) * 10 : 1;
512 
513 		if (val > 1)
514 			drm_dp_dpcd_writeb(aux, DP_PHY_REPEATER_EXTENDED_WAIT_TIMEOUT,
515 					   DP_EXTENDED_WAKE_TIMEOUT_GRANT);
516 	}
517 }
518 EXPORT_SYMBOL(drm_dp_lttpr_wake_timeout_setup);
519 
520 u8 drm_dp_link_rate_to_bw_code(int link_rate)
521 {
522 	switch (link_rate) {
523 	case 1000000:
524 		return DP_LINK_BW_10;
525 	case 1350000:
526 		return DP_LINK_BW_13_5;
527 	case 2000000:
528 		return DP_LINK_BW_20;
529 	default:
530 		/* Spec says link_bw = link_rate / 0.27Gbps */
531 		return link_rate / 27000;
532 	}
533 }
534 EXPORT_SYMBOL(drm_dp_link_rate_to_bw_code);
535 
536 int drm_dp_bw_code_to_link_rate(u8 link_bw)
537 {
538 	switch (link_bw) {
539 	case DP_LINK_BW_10:
540 		return 1000000;
541 	case DP_LINK_BW_13_5:
542 		return 1350000;
543 	case DP_LINK_BW_20:
544 		return 2000000;
545 	default:
546 		/* Spec says link_rate = link_bw * 0.27Gbps */
547 		return link_bw * 27000;
548 	}
549 }
550 EXPORT_SYMBOL(drm_dp_bw_code_to_link_rate);
551 
552 #define AUX_RETRY_INTERVAL 500 /* us */
553 
554 static inline void
555 drm_dp_dump_access(const struct drm_dp_aux *aux,
556 		   u8 request, uint offset, void *buffer, int ret)
557 {
558 	const char *arrow = request == DP_AUX_NATIVE_READ ? "->" : "<-";
559 
560 	if (ret > 0)
561 		drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d) %*ph\n",
562 			   aux->name, offset, arrow, ret, min(ret, 20), buffer);
563 	else
564 		drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d)\n",
565 			   aux->name, offset, arrow, ret);
566 }
567 
568 /**
569  * DOC: dp helpers
570  *
571  * The DisplayPort AUX channel is an abstraction to allow generic, driver-
572  * independent access to AUX functionality. Drivers can take advantage of
573  * this by filling in the fields of the drm_dp_aux structure.
574  *
575  * Transactions are described using a hardware-independent drm_dp_aux_msg
576  * structure, which is passed into a driver's .transfer() implementation.
577  * Both native and I2C-over-AUX transactions are supported.
578  */
579 
580 static int drm_dp_dpcd_access(struct drm_dp_aux *aux, u8 request,
581 			      unsigned int offset, void *buffer, size_t size)
582 {
583 	struct drm_dp_aux_msg msg;
584 	unsigned int retry, native_reply;
585 	int err = 0, ret = 0;
586 
587 	memset(&msg, 0, sizeof(msg));
588 	msg.address = offset;
589 	msg.request = request;
590 	msg.buffer = buffer;
591 	msg.size = size;
592 
593 	mutex_lock(&aux->hw_mutex);
594 
595 	/*
596 	 * If the device attached to the aux bus is powered down then there's
597 	 * no reason to attempt a transfer. Error out immediately.
598 	 */
599 	if (aux->powered_down) {
600 		ret = -EBUSY;
601 		goto unlock;
602 	}
603 
604 	/*
605 	 * The specification doesn't give any recommendation on how often to
606 	 * retry native transactions. We used to retry 7 times like for
607 	 * aux i2c transactions but real world devices this wasn't
608 	 * sufficient, bump to 32 which makes Dell 4k monitors happier.
609 	 */
610 	for (retry = 0; retry < 32; retry++) {
611 		if (ret != 0 && ret != -ETIMEDOUT) {
612 			usleep_range(AUX_RETRY_INTERVAL,
613 				     AUX_RETRY_INTERVAL + 100);
614 		}
615 
616 		ret = aux->transfer(aux, &msg);
617 		if (ret >= 0) {
618 			native_reply = msg.reply & DP_AUX_NATIVE_REPLY_MASK;
619 			if (native_reply == DP_AUX_NATIVE_REPLY_ACK) {
620 				if (ret == size)
621 					goto unlock;
622 
623 				ret = -EPROTO;
624 			} else
625 				ret = -EIO;
626 		}
627 
628 		/*
629 		 * We want the error we return to be the error we received on
630 		 * the first transaction, since we may get a different error the
631 		 * next time we retry
632 		 */
633 		if (!err)
634 			err = ret;
635 	}
636 
637 	drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up. First error: %d\n",
638 		    aux->name, err);
639 	ret = err;
640 
641 unlock:
642 	mutex_unlock(&aux->hw_mutex);
643 	return ret;
644 }
645 
646 /**
647  * drm_dp_dpcd_probe() - probe a given DPCD address with a 1-byte read access
648  * @aux: DisplayPort AUX channel (SST)
649  * @offset: address of the register to probe
650  *
651  * Probe the provided DPCD address by reading 1 byte from it. The function can
652  * be used to trigger some side-effect the read access has, like waking up the
653  * sink, without the need for the read-out value.
654  *
655  * Returns 0 if the read access suceeded, or a negative error code on failure.
656  */
657 int drm_dp_dpcd_probe(struct drm_dp_aux *aux, unsigned int offset)
658 {
659 	u8 buffer;
660 	int ret;
661 
662 	ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, 1);
663 	WARN_ON(ret == 0);
664 
665 	drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, ret);
666 
667 	return ret < 0 ? ret : 0;
668 }
669 EXPORT_SYMBOL(drm_dp_dpcd_probe);
670 
671 /**
672  * drm_dp_dpcd_set_powered() - Set whether the DP device is powered
673  * @aux: DisplayPort AUX channel; for convenience it's OK to pass NULL here
674  *       and the function will be a no-op.
675  * @powered: true if powered; false if not
676  *
677  * If the endpoint device on the DP AUX bus is known to be powered down
678  * then this function can be called to make future transfers fail immediately
679  * instead of needing to time out.
680  *
681  * If this function is never called then a device defaults to being powered.
682  */
683 void drm_dp_dpcd_set_powered(struct drm_dp_aux *aux, bool powered)
684 {
685 	if (!aux)
686 		return;
687 
688 	mutex_lock(&aux->hw_mutex);
689 	aux->powered_down = !powered;
690 	mutex_unlock(&aux->hw_mutex);
691 }
692 EXPORT_SYMBOL(drm_dp_dpcd_set_powered);
693 
694 /**
695  * drm_dp_dpcd_read() - read a series of bytes from the DPCD
696  * @aux: DisplayPort AUX channel (SST or MST)
697  * @offset: address of the (first) register to read
698  * @buffer: buffer to store the register values
699  * @size: number of bytes in @buffer
700  *
701  * Returns the number of bytes transferred on success, or a negative error
702  * code on failure. -EIO is returned if the request was NAKed by the sink or
703  * if the retry count was exceeded. If not all bytes were transferred, this
704  * function returns -EPROTO. Errors from the underlying AUX channel transfer
705  * function, with the exception of -EBUSY (which causes the transaction to
706  * be retried), are propagated to the caller.
707  */
708 ssize_t drm_dp_dpcd_read(struct drm_dp_aux *aux, unsigned int offset,
709 			 void *buffer, size_t size)
710 {
711 	int ret;
712 
713 	/*
714 	 * HP ZR24w corrupts the first DPCD access after entering power save
715 	 * mode. Eg. on a read, the entire buffer will be filled with the same
716 	 * byte. Do a throw away read to avoid corrupting anything we care
717 	 * about. Afterwards things will work correctly until the monitor
718 	 * gets woken up and subsequently re-enters power save mode.
719 	 *
720 	 * The user pressing any button on the monitor is enough to wake it
721 	 * up, so there is no particularly good place to do the workaround.
722 	 * We just have to do it before any DPCD access and hope that the
723 	 * monitor doesn't power down exactly after the throw away read.
724 	 */
725 	if (!aux->is_remote) {
726 		ret = drm_dp_dpcd_probe(aux, DP_DPCD_REV);
727 		if (ret < 0)
728 			return ret;
729 	}
730 
731 	if (aux->is_remote)
732 		ret = drm_dp_mst_dpcd_read(aux, offset, buffer, size);
733 	else
734 		ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset,
735 					 buffer, size);
736 
737 	drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, buffer, ret);
738 	return ret;
739 }
740 EXPORT_SYMBOL(drm_dp_dpcd_read);
741 
742 /**
743  * drm_dp_dpcd_write() - write a series of bytes to the DPCD
744  * @aux: DisplayPort AUX channel (SST or MST)
745  * @offset: address of the (first) register to write
746  * @buffer: buffer containing the values to write
747  * @size: number of bytes in @buffer
748  *
749  * Returns the number of bytes transferred on success, or a negative error
750  * code on failure. -EIO is returned if the request was NAKed by the sink or
751  * if the retry count was exceeded. If not all bytes were transferred, this
752  * function returns -EPROTO. Errors from the underlying AUX channel transfer
753  * function, with the exception of -EBUSY (which causes the transaction to
754  * be retried), are propagated to the caller.
755  */
756 ssize_t drm_dp_dpcd_write(struct drm_dp_aux *aux, unsigned int offset,
757 			  void *buffer, size_t size)
758 {
759 	int ret;
760 
761 	if (aux->is_remote)
762 		ret = drm_dp_mst_dpcd_write(aux, offset, buffer, size);
763 	else
764 		ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_WRITE, offset,
765 					 buffer, size);
766 
767 	drm_dp_dump_access(aux, DP_AUX_NATIVE_WRITE, offset, buffer, ret);
768 	return ret;
769 }
770 EXPORT_SYMBOL(drm_dp_dpcd_write);
771 
772 /**
773  * drm_dp_dpcd_read_link_status() - read DPCD link status (bytes 0x202-0x207)
774  * @aux: DisplayPort AUX channel
775  * @status: buffer to store the link status in (must be at least 6 bytes)
776  *
777  * Returns the number of bytes transferred on success or a negative error
778  * code on failure.
779  */
780 int drm_dp_dpcd_read_link_status(struct drm_dp_aux *aux,
781 				 u8 status[DP_LINK_STATUS_SIZE])
782 {
783 	return drm_dp_dpcd_read(aux, DP_LANE0_1_STATUS, status,
784 				DP_LINK_STATUS_SIZE);
785 }
786 EXPORT_SYMBOL(drm_dp_dpcd_read_link_status);
787 
788 /**
789  * drm_dp_dpcd_read_phy_link_status - get the link status information for a DP PHY
790  * @aux: DisplayPort AUX channel
791  * @dp_phy: the DP PHY to get the link status for
792  * @link_status: buffer to return the status in
793  *
794  * Fetch the AUX DPCD registers for the DPRX or an LTTPR PHY link status. The
795  * layout of the returned @link_status matches the DPCD register layout of the
796  * DPRX PHY link status.
797  *
798  * Returns 0 if the information was read successfully or a negative error code
799  * on failure.
800  */
801 int drm_dp_dpcd_read_phy_link_status(struct drm_dp_aux *aux,
802 				     enum drm_dp_phy dp_phy,
803 				     u8 link_status[DP_LINK_STATUS_SIZE])
804 {
805 	int ret;
806 
807 	if (dp_phy == DP_PHY_DPRX) {
808 		ret = drm_dp_dpcd_read(aux,
809 				       DP_LANE0_1_STATUS,
810 				       link_status,
811 				       DP_LINK_STATUS_SIZE);
812 
813 		if (ret < 0)
814 			return ret;
815 
816 		WARN_ON(ret != DP_LINK_STATUS_SIZE);
817 
818 		return 0;
819 	}
820 
821 	ret = drm_dp_dpcd_read(aux,
822 			       DP_LANE0_1_STATUS_PHY_REPEATER(dp_phy),
823 			       link_status,
824 			       DP_LINK_STATUS_SIZE - 1);
825 
826 	if (ret < 0)
827 		return ret;
828 
829 	WARN_ON(ret != DP_LINK_STATUS_SIZE - 1);
830 
831 	/* Convert the LTTPR to the sink PHY link status layout */
832 	memmove(&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS + 1],
833 		&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS],
834 		DP_LINK_STATUS_SIZE - (DP_SINK_STATUS - DP_LANE0_1_STATUS) - 1);
835 	link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS] = 0;
836 
837 	return 0;
838 }
839 EXPORT_SYMBOL(drm_dp_dpcd_read_phy_link_status);
840 
841 static int read_payload_update_status(struct drm_dp_aux *aux)
842 {
843 	int ret;
844 	u8 status;
845 
846 	ret = drm_dp_dpcd_readb(aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status);
847 	if (ret < 0)
848 		return ret;
849 
850 	return status;
851 }
852 
853 /**
854  * drm_dp_dpcd_write_payload() - Write Virtual Channel information to payload table
855  * @aux: DisplayPort AUX channel
856  * @vcpid: Virtual Channel Payload ID
857  * @start_time_slot: Starting time slot
858  * @time_slot_count: Time slot count
859  *
860  * Write the Virtual Channel payload allocation table, checking the payload
861  * update status and retrying as necessary.
862  *
863  * Returns:
864  * 0 on success, negative error otherwise
865  */
866 int drm_dp_dpcd_write_payload(struct drm_dp_aux *aux,
867 			      int vcpid, u8 start_time_slot, u8 time_slot_count)
868 {
869 	u8 payload_alloc[3], status;
870 	int ret;
871 	int retries = 0;
872 
873 	drm_dp_dpcd_writeb(aux, DP_PAYLOAD_TABLE_UPDATE_STATUS,
874 			   DP_PAYLOAD_TABLE_UPDATED);
875 
876 	payload_alloc[0] = vcpid;
877 	payload_alloc[1] = start_time_slot;
878 	payload_alloc[2] = time_slot_count;
879 
880 	ret = drm_dp_dpcd_write(aux, DP_PAYLOAD_ALLOCATE_SET, payload_alloc, 3);
881 	if (ret != 3) {
882 		drm_dbg_kms(aux->drm_dev, "failed to write payload allocation %d\n", ret);
883 		goto fail;
884 	}
885 
886 retry:
887 	ret = drm_dp_dpcd_readb(aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status);
888 	if (ret < 0) {
889 		drm_dbg_kms(aux->drm_dev, "failed to read payload table status %d\n", ret);
890 		goto fail;
891 	}
892 
893 	if (!(status & DP_PAYLOAD_TABLE_UPDATED)) {
894 		retries++;
895 		if (retries < 20) {
896 			usleep_range(10000, 20000);
897 			goto retry;
898 		}
899 		drm_dbg_kms(aux->drm_dev, "status not set after read payload table status %d\n",
900 			    status);
901 		ret = -EINVAL;
902 		goto fail;
903 	}
904 	ret = 0;
905 fail:
906 	return ret;
907 }
908 EXPORT_SYMBOL(drm_dp_dpcd_write_payload);
909 
910 /**
911  * drm_dp_dpcd_clear_payload() - Clear the entire VC Payload ID table
912  * @aux: DisplayPort AUX channel
913  *
914  * Clear the entire VC Payload ID table.
915  *
916  * Returns: 0 on success, negative error code on errors.
917  */
918 int drm_dp_dpcd_clear_payload(struct drm_dp_aux *aux)
919 {
920 	return drm_dp_dpcd_write_payload(aux, 0, 0, 0x3f);
921 }
922 EXPORT_SYMBOL(drm_dp_dpcd_clear_payload);
923 
924 /**
925  * drm_dp_dpcd_poll_act_handled() - Poll for ACT handled status
926  * @aux: DisplayPort AUX channel
927  * @timeout_ms: Timeout in ms
928  *
929  * Try waiting for the sink to finish updating its payload table by polling for
930  * the ACT handled bit of DP_PAYLOAD_TABLE_UPDATE_STATUS for up to @timeout_ms
931  * milliseconds, defaulting to 3000 ms if 0.
932  *
933  * Returns:
934  * 0 if the ACT was handled in time, negative error code on failure.
935  */
936 int drm_dp_dpcd_poll_act_handled(struct drm_dp_aux *aux, int timeout_ms)
937 {
938 	int ret, status;
939 
940 	/* default to 3 seconds, this is arbitrary */
941 	timeout_ms = timeout_ms ?: 3000;
942 
943 	ret = readx_poll_timeout(read_payload_update_status, aux, status,
944 				 status & DP_PAYLOAD_ACT_HANDLED || status < 0,
945 				 200, timeout_ms * USEC_PER_MSEC);
946 	if (ret < 0 && status >= 0) {
947 		drm_err(aux->drm_dev, "Failed to get ACT after %d ms, last status: %02x\n",
948 			timeout_ms, status);
949 		return -EINVAL;
950 	} else if (status < 0) {
951 		/*
952 		 * Failure here isn't unexpected - the hub may have
953 		 * just been unplugged
954 		 */
955 		drm_dbg_kms(aux->drm_dev, "Failed to read payload table status: %d\n", status);
956 		return status;
957 	}
958 
959 	return 0;
960 }
961 EXPORT_SYMBOL(drm_dp_dpcd_poll_act_handled);
962 
963 static bool is_edid_digital_input_dp(const struct drm_edid *drm_edid)
964 {
965 	/* FIXME: get rid of drm_edid_raw() */
966 	const struct edid *edid = drm_edid_raw(drm_edid);
967 
968 	return edid && edid->revision >= 4 &&
969 		edid->input & DRM_EDID_INPUT_DIGITAL &&
970 		(edid->input & DRM_EDID_DIGITAL_TYPE_MASK) == DRM_EDID_DIGITAL_TYPE_DP;
971 }
972 
973 /**
974  * drm_dp_downstream_is_type() - is the downstream facing port of certain type?
975  * @dpcd: DisplayPort configuration data
976  * @port_cap: port capabilities
977  * @type: port type to be checked. Can be:
978  * 	  %DP_DS_PORT_TYPE_DP, %DP_DS_PORT_TYPE_VGA, %DP_DS_PORT_TYPE_DVI,
979  * 	  %DP_DS_PORT_TYPE_HDMI, %DP_DS_PORT_TYPE_NON_EDID,
980  *	  %DP_DS_PORT_TYPE_DP_DUALMODE or %DP_DS_PORT_TYPE_WIRELESS.
981  *
982  * Caveat: Only works with DPCD 1.1+ port caps.
983  *
984  * Returns: whether the downstream facing port matches the type.
985  */
986 bool drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
987 			       const u8 port_cap[4], u8 type)
988 {
989 	return drm_dp_is_branch(dpcd) &&
990 		dpcd[DP_DPCD_REV] >= 0x11 &&
991 		(port_cap[0] & DP_DS_PORT_TYPE_MASK) == type;
992 }
993 EXPORT_SYMBOL(drm_dp_downstream_is_type);
994 
995 /**
996  * drm_dp_downstream_is_tmds() - is the downstream facing port TMDS?
997  * @dpcd: DisplayPort configuration data
998  * @port_cap: port capabilities
999  * @drm_edid: EDID
1000  *
1001  * Returns: whether the downstream facing port is TMDS (HDMI/DVI).
1002  */
1003 bool drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1004 			       const u8 port_cap[4],
1005 			       const struct drm_edid *drm_edid)
1006 {
1007 	if (dpcd[DP_DPCD_REV] < 0x11) {
1008 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1009 		case DP_DWN_STRM_PORT_TYPE_TMDS:
1010 			return true;
1011 		default:
1012 			return false;
1013 		}
1014 	}
1015 
1016 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1017 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1018 		if (is_edid_digital_input_dp(drm_edid))
1019 			return false;
1020 		fallthrough;
1021 	case DP_DS_PORT_TYPE_DVI:
1022 	case DP_DS_PORT_TYPE_HDMI:
1023 		return true;
1024 	default:
1025 		return false;
1026 	}
1027 }
1028 EXPORT_SYMBOL(drm_dp_downstream_is_tmds);
1029 
1030 /**
1031  * drm_dp_send_real_edid_checksum() - send back real edid checksum value
1032  * @aux: DisplayPort AUX channel
1033  * @real_edid_checksum: real edid checksum for the last block
1034  *
1035  * Returns:
1036  * True on success
1037  */
1038 bool drm_dp_send_real_edid_checksum(struct drm_dp_aux *aux,
1039 				    u8 real_edid_checksum)
1040 {
1041 	u8 link_edid_read = 0, auto_test_req = 0, test_resp = 0;
1042 
1043 	if (drm_dp_dpcd_read(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
1044 			     &auto_test_req, 1) < 1) {
1045 		drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
1046 			aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
1047 		return false;
1048 	}
1049 	auto_test_req &= DP_AUTOMATED_TEST_REQUEST;
1050 
1051 	if (drm_dp_dpcd_read(aux, DP_TEST_REQUEST, &link_edid_read, 1) < 1) {
1052 		drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
1053 			aux->name, DP_TEST_REQUEST);
1054 		return false;
1055 	}
1056 	link_edid_read &= DP_TEST_LINK_EDID_READ;
1057 
1058 	if (!auto_test_req || !link_edid_read) {
1059 		drm_dbg_kms(aux->drm_dev, "%s: Source DUT does not support TEST_EDID_READ\n",
1060 			    aux->name);
1061 		return false;
1062 	}
1063 
1064 	if (drm_dp_dpcd_write(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
1065 			      &auto_test_req, 1) < 1) {
1066 		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
1067 			aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
1068 		return false;
1069 	}
1070 
1071 	/* send back checksum for the last edid extension block data */
1072 	if (drm_dp_dpcd_write(aux, DP_TEST_EDID_CHECKSUM,
1073 			      &real_edid_checksum, 1) < 1) {
1074 		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
1075 			aux->name, DP_TEST_EDID_CHECKSUM);
1076 		return false;
1077 	}
1078 
1079 	test_resp |= DP_TEST_EDID_CHECKSUM_WRITE;
1080 	if (drm_dp_dpcd_write(aux, DP_TEST_RESPONSE, &test_resp, 1) < 1) {
1081 		drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
1082 			aux->name, DP_TEST_RESPONSE);
1083 		return false;
1084 	}
1085 
1086 	return true;
1087 }
1088 EXPORT_SYMBOL(drm_dp_send_real_edid_checksum);
1089 
1090 static u8 drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE])
1091 {
1092 	u8 port_count = dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_PORT_COUNT_MASK;
1093 
1094 	if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE && port_count > 4)
1095 		port_count = 4;
1096 
1097 	return port_count;
1098 }
1099 
1100 static int drm_dp_read_extended_dpcd_caps(struct drm_dp_aux *aux,
1101 					  u8 dpcd[DP_RECEIVER_CAP_SIZE])
1102 {
1103 	u8 dpcd_ext[DP_RECEIVER_CAP_SIZE];
1104 	int ret;
1105 
1106 	/*
1107 	 * Prior to DP1.3 the bit represented by
1108 	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
1109 	 * If it is set DP_DPCD_REV at 0000h could be at a value less than
1110 	 * the true capability of the panel. The only way to check is to
1111 	 * then compare 0000h and 2200h.
1112 	 */
1113 	if (!(dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
1114 	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
1115 		return 0;
1116 
1117 	ret = drm_dp_dpcd_read(aux, DP_DP13_DPCD_REV, &dpcd_ext,
1118 			       sizeof(dpcd_ext));
1119 	if (ret < 0)
1120 		return ret;
1121 	if (ret != sizeof(dpcd_ext))
1122 		return -EIO;
1123 
1124 	if (dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
1125 		drm_dbg_kms(aux->drm_dev,
1126 			    "%s: Extended DPCD rev less than base DPCD rev (%d > %d)\n",
1127 			    aux->name, dpcd[DP_DPCD_REV], dpcd_ext[DP_DPCD_REV]);
1128 		return 0;
1129 	}
1130 
1131 	if (!memcmp(dpcd, dpcd_ext, sizeof(dpcd_ext)))
1132 		return 0;
1133 
1134 	drm_dbg_kms(aux->drm_dev, "%s: Base DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
1135 
1136 	memcpy(dpcd, dpcd_ext, sizeof(dpcd_ext));
1137 
1138 	return 0;
1139 }
1140 
1141 /**
1142  * drm_dp_read_dpcd_caps() - read DPCD caps and extended DPCD caps if
1143  * available
1144  * @aux: DisplayPort AUX channel
1145  * @dpcd: Buffer to store the resulting DPCD in
1146  *
1147  * Attempts to read the base DPCD caps for @aux. Additionally, this function
1148  * checks for and reads the extended DPRX caps (%DP_DP13_DPCD_REV) if
1149  * present.
1150  *
1151  * Returns: %0 if the DPCD was read successfully, negative error code
1152  * otherwise.
1153  */
1154 int drm_dp_read_dpcd_caps(struct drm_dp_aux *aux,
1155 			  u8 dpcd[DP_RECEIVER_CAP_SIZE])
1156 {
1157 	int ret;
1158 
1159 	ret = drm_dp_dpcd_read(aux, DP_DPCD_REV, dpcd, DP_RECEIVER_CAP_SIZE);
1160 	if (ret < 0)
1161 		return ret;
1162 	if (ret != DP_RECEIVER_CAP_SIZE || dpcd[DP_DPCD_REV] == 0)
1163 		return -EIO;
1164 
1165 	ret = drm_dp_read_extended_dpcd_caps(aux, dpcd);
1166 	if (ret < 0)
1167 		return ret;
1168 
1169 	drm_dbg_kms(aux->drm_dev, "%s: DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
1170 
1171 	return ret;
1172 }
1173 EXPORT_SYMBOL(drm_dp_read_dpcd_caps);
1174 
1175 /**
1176  * drm_dp_read_downstream_info() - read DPCD downstream port info if available
1177  * @aux: DisplayPort AUX channel
1178  * @dpcd: A cached copy of the port's DPCD
1179  * @downstream_ports: buffer to store the downstream port info in
1180  *
1181  * See also:
1182  * drm_dp_downstream_max_clock()
1183  * drm_dp_downstream_max_bpc()
1184  *
1185  * Returns: 0 if either the downstream port info was read successfully or
1186  * there was no downstream info to read, or a negative error code otherwise.
1187  */
1188 int drm_dp_read_downstream_info(struct drm_dp_aux *aux,
1189 				const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1190 				u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS])
1191 {
1192 	int ret;
1193 	u8 len;
1194 
1195 	memset(downstream_ports, 0, DP_MAX_DOWNSTREAM_PORTS);
1196 
1197 	/* No downstream info to read */
1198 	if (!drm_dp_is_branch(dpcd) || dpcd[DP_DPCD_REV] == DP_DPCD_REV_10)
1199 		return 0;
1200 
1201 	/* Some branches advertise having 0 downstream ports, despite also advertising they have a
1202 	 * downstream port present. The DP spec isn't clear on if this is allowed or not, but since
1203 	 * some branches do it we need to handle it regardless.
1204 	 */
1205 	len = drm_dp_downstream_port_count(dpcd);
1206 	if (!len)
1207 		return 0;
1208 
1209 	if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE)
1210 		len *= 4;
1211 
1212 	ret = drm_dp_dpcd_read(aux, DP_DOWNSTREAM_PORT_0, downstream_ports, len);
1213 	if (ret < 0)
1214 		return ret;
1215 	if (ret != len)
1216 		return -EIO;
1217 
1218 	drm_dbg_kms(aux->drm_dev, "%s: DPCD DFP: %*ph\n", aux->name, len, downstream_ports);
1219 
1220 	return 0;
1221 }
1222 EXPORT_SYMBOL(drm_dp_read_downstream_info);
1223 
1224 /**
1225  * drm_dp_downstream_max_dotclock() - extract downstream facing port max dot clock
1226  * @dpcd: DisplayPort configuration data
1227  * @port_cap: port capabilities
1228  *
1229  * Returns: Downstream facing port max dot clock in kHz on success,
1230  * or 0 if max clock not defined
1231  */
1232 int drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1233 				   const u8 port_cap[4])
1234 {
1235 	if (!drm_dp_is_branch(dpcd))
1236 		return 0;
1237 
1238 	if (dpcd[DP_DPCD_REV] < 0x11)
1239 		return 0;
1240 
1241 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1242 	case DP_DS_PORT_TYPE_VGA:
1243 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1244 			return 0;
1245 		return port_cap[1] * 8000;
1246 	default:
1247 		return 0;
1248 	}
1249 }
1250 EXPORT_SYMBOL(drm_dp_downstream_max_dotclock);
1251 
1252 /**
1253  * drm_dp_downstream_max_tmds_clock() - extract downstream facing port max TMDS clock
1254  * @dpcd: DisplayPort configuration data
1255  * @port_cap: port capabilities
1256  * @drm_edid: EDID
1257  *
1258  * Returns: HDMI/DVI downstream facing port max TMDS clock in kHz on success,
1259  * or 0 if max TMDS clock not defined
1260  */
1261 int drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1262 				     const u8 port_cap[4],
1263 				     const struct drm_edid *drm_edid)
1264 {
1265 	if (!drm_dp_is_branch(dpcd))
1266 		return 0;
1267 
1268 	if (dpcd[DP_DPCD_REV] < 0x11) {
1269 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1270 		case DP_DWN_STRM_PORT_TYPE_TMDS:
1271 			return 165000;
1272 		default:
1273 			return 0;
1274 		}
1275 	}
1276 
1277 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1278 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1279 		if (is_edid_digital_input_dp(drm_edid))
1280 			return 0;
1281 		/*
1282 		 * It's left up to the driver to check the
1283 		 * DP dual mode adapter's max TMDS clock.
1284 		 *
1285 		 * Unfortunately it looks like branch devices
1286 		 * may not fordward that the DP dual mode i2c
1287 		 * access so we just usually get i2c nak :(
1288 		 */
1289 		fallthrough;
1290 	case DP_DS_PORT_TYPE_HDMI:
1291 		 /*
1292 		  * We should perhaps assume 165 MHz when detailed cap
1293 		  * info is not available. But looks like many typical
1294 		  * branch devices fall into that category and so we'd
1295 		  * probably end up with users complaining that they can't
1296 		  * get high resolution modes with their favorite dongle.
1297 		  *
1298 		  * So let's limit to 300 MHz instead since DPCD 1.4
1299 		  * HDMI 2.0 DFPs are required to have the detailed cap
1300 		  * info. So it's more likely we're dealing with a HDMI 1.4
1301 		  * compatible* device here.
1302 		  */
1303 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1304 			return 300000;
1305 		return port_cap[1] * 2500;
1306 	case DP_DS_PORT_TYPE_DVI:
1307 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1308 			return 165000;
1309 		/* FIXME what to do about DVI dual link? */
1310 		return port_cap[1] * 2500;
1311 	default:
1312 		return 0;
1313 	}
1314 }
1315 EXPORT_SYMBOL(drm_dp_downstream_max_tmds_clock);
1316 
1317 /**
1318  * drm_dp_downstream_min_tmds_clock() - extract downstream facing port min TMDS clock
1319  * @dpcd: DisplayPort configuration data
1320  * @port_cap: port capabilities
1321  * @drm_edid: EDID
1322  *
1323  * Returns: HDMI/DVI downstream facing port min TMDS clock in kHz on success,
1324  * or 0 if max TMDS clock not defined
1325  */
1326 int drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1327 				     const u8 port_cap[4],
1328 				     const struct drm_edid *drm_edid)
1329 {
1330 	if (!drm_dp_is_branch(dpcd))
1331 		return 0;
1332 
1333 	if (dpcd[DP_DPCD_REV] < 0x11) {
1334 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1335 		case DP_DWN_STRM_PORT_TYPE_TMDS:
1336 			return 25000;
1337 		default:
1338 			return 0;
1339 		}
1340 	}
1341 
1342 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1343 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1344 		if (is_edid_digital_input_dp(drm_edid))
1345 			return 0;
1346 		fallthrough;
1347 	case DP_DS_PORT_TYPE_DVI:
1348 	case DP_DS_PORT_TYPE_HDMI:
1349 		/*
1350 		 * Unclear whether the protocol converter could
1351 		 * utilize pixel replication. Assume it won't.
1352 		 */
1353 		return 25000;
1354 	default:
1355 		return 0;
1356 	}
1357 }
1358 EXPORT_SYMBOL(drm_dp_downstream_min_tmds_clock);
1359 
1360 /**
1361  * drm_dp_downstream_max_bpc() - extract downstream facing port max
1362  *                               bits per component
1363  * @dpcd: DisplayPort configuration data
1364  * @port_cap: downstream facing port capabilities
1365  * @drm_edid: EDID
1366  *
1367  * Returns: Max bpc on success or 0 if max bpc not defined
1368  */
1369 int drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1370 			      const u8 port_cap[4],
1371 			      const struct drm_edid *drm_edid)
1372 {
1373 	if (!drm_dp_is_branch(dpcd))
1374 		return 0;
1375 
1376 	if (dpcd[DP_DPCD_REV] < 0x11) {
1377 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1378 		case DP_DWN_STRM_PORT_TYPE_DP:
1379 			return 0;
1380 		default:
1381 			return 8;
1382 		}
1383 	}
1384 
1385 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1386 	case DP_DS_PORT_TYPE_DP:
1387 		return 0;
1388 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1389 		if (is_edid_digital_input_dp(drm_edid))
1390 			return 0;
1391 		fallthrough;
1392 	case DP_DS_PORT_TYPE_HDMI:
1393 	case DP_DS_PORT_TYPE_DVI:
1394 	case DP_DS_PORT_TYPE_VGA:
1395 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1396 			return 8;
1397 
1398 		switch (port_cap[2] & DP_DS_MAX_BPC_MASK) {
1399 		case DP_DS_8BPC:
1400 			return 8;
1401 		case DP_DS_10BPC:
1402 			return 10;
1403 		case DP_DS_12BPC:
1404 			return 12;
1405 		case DP_DS_16BPC:
1406 			return 16;
1407 		default:
1408 			return 8;
1409 		}
1410 		break;
1411 	default:
1412 		return 8;
1413 	}
1414 }
1415 EXPORT_SYMBOL(drm_dp_downstream_max_bpc);
1416 
1417 /**
1418  * drm_dp_downstream_420_passthrough() - determine downstream facing port
1419  *                                       YCbCr 4:2:0 pass-through capability
1420  * @dpcd: DisplayPort configuration data
1421  * @port_cap: downstream facing port capabilities
1422  *
1423  * Returns: whether the downstream facing port can pass through YCbCr 4:2:0
1424  */
1425 bool drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1426 				       const u8 port_cap[4])
1427 {
1428 	if (!drm_dp_is_branch(dpcd))
1429 		return false;
1430 
1431 	if (dpcd[DP_DPCD_REV] < 0x13)
1432 		return false;
1433 
1434 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1435 	case DP_DS_PORT_TYPE_DP:
1436 		return true;
1437 	case DP_DS_PORT_TYPE_HDMI:
1438 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1439 			return false;
1440 
1441 		return port_cap[3] & DP_DS_HDMI_YCBCR420_PASS_THROUGH;
1442 	default:
1443 		return false;
1444 	}
1445 }
1446 EXPORT_SYMBOL(drm_dp_downstream_420_passthrough);
1447 
1448 /**
1449  * drm_dp_downstream_444_to_420_conversion() - determine downstream facing port
1450  *                                             YCbCr 4:4:4->4:2:0 conversion capability
1451  * @dpcd: DisplayPort configuration data
1452  * @port_cap: downstream facing port capabilities
1453  *
1454  * Returns: whether the downstream facing port can convert YCbCr 4:4:4 to 4:2:0
1455  */
1456 bool drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1457 					     const u8 port_cap[4])
1458 {
1459 	if (!drm_dp_is_branch(dpcd))
1460 		return false;
1461 
1462 	if (dpcd[DP_DPCD_REV] < 0x13)
1463 		return false;
1464 
1465 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1466 	case DP_DS_PORT_TYPE_HDMI:
1467 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1468 			return false;
1469 
1470 		return port_cap[3] & DP_DS_HDMI_YCBCR444_TO_420_CONV;
1471 	default:
1472 		return false;
1473 	}
1474 }
1475 EXPORT_SYMBOL(drm_dp_downstream_444_to_420_conversion);
1476 
1477 /**
1478  * drm_dp_downstream_rgb_to_ycbcr_conversion() - determine downstream facing port
1479  *                                               RGB->YCbCr conversion capability
1480  * @dpcd: DisplayPort configuration data
1481  * @port_cap: downstream facing port capabilities
1482  * @color_spc: Colorspace for which conversion cap is sought
1483  *
1484  * Returns: whether the downstream facing port can convert RGB->YCbCr for a given
1485  * colorspace.
1486  */
1487 bool drm_dp_downstream_rgb_to_ycbcr_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1488 					       const u8 port_cap[4],
1489 					       u8 color_spc)
1490 {
1491 	if (!drm_dp_is_branch(dpcd))
1492 		return false;
1493 
1494 	if (dpcd[DP_DPCD_REV] < 0x13)
1495 		return false;
1496 
1497 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1498 	case DP_DS_PORT_TYPE_HDMI:
1499 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1500 			return false;
1501 
1502 		return port_cap[3] & color_spc;
1503 	default:
1504 		return false;
1505 	}
1506 }
1507 EXPORT_SYMBOL(drm_dp_downstream_rgb_to_ycbcr_conversion);
1508 
1509 /**
1510  * drm_dp_downstream_mode() - return a mode for downstream facing port
1511  * @dev: DRM device
1512  * @dpcd: DisplayPort configuration data
1513  * @port_cap: port capabilities
1514  *
1515  * Provides a suitable mode for downstream facing ports without EDID.
1516  *
1517  * Returns: A new drm_display_mode on success or NULL on failure
1518  */
1519 struct drm_display_mode *
1520 drm_dp_downstream_mode(struct drm_device *dev,
1521 		       const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1522 		       const u8 port_cap[4])
1523 
1524 {
1525 	u8 vic;
1526 
1527 	if (!drm_dp_is_branch(dpcd))
1528 		return NULL;
1529 
1530 	if (dpcd[DP_DPCD_REV] < 0x11)
1531 		return NULL;
1532 
1533 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1534 	case DP_DS_PORT_TYPE_NON_EDID:
1535 		switch (port_cap[0] & DP_DS_NON_EDID_MASK) {
1536 		case DP_DS_NON_EDID_720x480i_60:
1537 			vic = 6;
1538 			break;
1539 		case DP_DS_NON_EDID_720x480i_50:
1540 			vic = 21;
1541 			break;
1542 		case DP_DS_NON_EDID_1920x1080i_60:
1543 			vic = 5;
1544 			break;
1545 		case DP_DS_NON_EDID_1920x1080i_50:
1546 			vic = 20;
1547 			break;
1548 		case DP_DS_NON_EDID_1280x720_60:
1549 			vic = 4;
1550 			break;
1551 		case DP_DS_NON_EDID_1280x720_50:
1552 			vic = 19;
1553 			break;
1554 		default:
1555 			return NULL;
1556 		}
1557 		return drm_display_mode_from_cea_vic(dev, vic);
1558 	default:
1559 		return NULL;
1560 	}
1561 }
1562 EXPORT_SYMBOL(drm_dp_downstream_mode);
1563 
1564 /**
1565  * drm_dp_downstream_id() - identify branch device
1566  * @aux: DisplayPort AUX channel
1567  * @id: DisplayPort branch device id
1568  *
1569  * Returns branch device id on success or NULL on failure
1570  */
1571 int drm_dp_downstream_id(struct drm_dp_aux *aux, char id[6])
1572 {
1573 	return drm_dp_dpcd_read(aux, DP_BRANCH_ID, id, 6);
1574 }
1575 EXPORT_SYMBOL(drm_dp_downstream_id);
1576 
1577 /**
1578  * drm_dp_downstream_debug() - debug DP branch devices
1579  * @m: pointer for debugfs file
1580  * @dpcd: DisplayPort configuration data
1581  * @port_cap: port capabilities
1582  * @drm_edid: EDID
1583  * @aux: DisplayPort AUX channel
1584  *
1585  */
1586 void drm_dp_downstream_debug(struct seq_file *m,
1587 			     const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1588 			     const u8 port_cap[4],
1589 			     const struct drm_edid *drm_edid,
1590 			     struct drm_dp_aux *aux)
1591 {
1592 	bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1593 				 DP_DETAILED_CAP_INFO_AVAILABLE;
1594 	int clk;
1595 	int bpc;
1596 	char id[7];
1597 	int len;
1598 	uint8_t rev[2];
1599 	int type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1600 	bool branch_device = drm_dp_is_branch(dpcd);
1601 
1602 	seq_printf(m, "\tDP branch device present: %s\n",
1603 		   str_yes_no(branch_device));
1604 
1605 	if (!branch_device)
1606 		return;
1607 
1608 	switch (type) {
1609 	case DP_DS_PORT_TYPE_DP:
1610 		seq_puts(m, "\t\tType: DisplayPort\n");
1611 		break;
1612 	case DP_DS_PORT_TYPE_VGA:
1613 		seq_puts(m, "\t\tType: VGA\n");
1614 		break;
1615 	case DP_DS_PORT_TYPE_DVI:
1616 		seq_puts(m, "\t\tType: DVI\n");
1617 		break;
1618 	case DP_DS_PORT_TYPE_HDMI:
1619 		seq_puts(m, "\t\tType: HDMI\n");
1620 		break;
1621 	case DP_DS_PORT_TYPE_NON_EDID:
1622 		seq_puts(m, "\t\tType: others without EDID support\n");
1623 		break;
1624 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1625 		seq_puts(m, "\t\tType: DP++\n");
1626 		break;
1627 	case DP_DS_PORT_TYPE_WIRELESS:
1628 		seq_puts(m, "\t\tType: Wireless\n");
1629 		break;
1630 	default:
1631 		seq_puts(m, "\t\tType: N/A\n");
1632 	}
1633 
1634 	memset(id, 0, sizeof(id));
1635 	drm_dp_downstream_id(aux, id);
1636 	seq_printf(m, "\t\tID: %s\n", id);
1637 
1638 	len = drm_dp_dpcd_read(aux, DP_BRANCH_HW_REV, &rev[0], 1);
1639 	if (len > 0)
1640 		seq_printf(m, "\t\tHW: %d.%d\n",
1641 			   (rev[0] & 0xf0) >> 4, rev[0] & 0xf);
1642 
1643 	len = drm_dp_dpcd_read(aux, DP_BRANCH_SW_REV, rev, 2);
1644 	if (len > 0)
1645 		seq_printf(m, "\t\tSW: %d.%d\n", rev[0], rev[1]);
1646 
1647 	if (detailed_cap_info) {
1648 		clk = drm_dp_downstream_max_dotclock(dpcd, port_cap);
1649 		if (clk > 0)
1650 			seq_printf(m, "\t\tMax dot clock: %d kHz\n", clk);
1651 
1652 		clk = drm_dp_downstream_max_tmds_clock(dpcd, port_cap, drm_edid);
1653 		if (clk > 0)
1654 			seq_printf(m, "\t\tMax TMDS clock: %d kHz\n", clk);
1655 
1656 		clk = drm_dp_downstream_min_tmds_clock(dpcd, port_cap, drm_edid);
1657 		if (clk > 0)
1658 			seq_printf(m, "\t\tMin TMDS clock: %d kHz\n", clk);
1659 
1660 		bpc = drm_dp_downstream_max_bpc(dpcd, port_cap, drm_edid);
1661 
1662 		if (bpc > 0)
1663 			seq_printf(m, "\t\tMax bpc: %d\n", bpc);
1664 	}
1665 }
1666 EXPORT_SYMBOL(drm_dp_downstream_debug);
1667 
1668 /**
1669  * drm_dp_subconnector_type() - get DP branch device type
1670  * @dpcd: DisplayPort configuration data
1671  * @port_cap: port capabilities
1672  */
1673 enum drm_mode_subconnector
1674 drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1675 			 const u8 port_cap[4])
1676 {
1677 	int type;
1678 	if (!drm_dp_is_branch(dpcd))
1679 		return DRM_MODE_SUBCONNECTOR_Native;
1680 	/* DP 1.0 approach */
1681 	if (dpcd[DP_DPCD_REV] == DP_DPCD_REV_10) {
1682 		type = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1683 		       DP_DWN_STRM_PORT_TYPE_MASK;
1684 
1685 		switch (type) {
1686 		case DP_DWN_STRM_PORT_TYPE_TMDS:
1687 			/* Can be HDMI or DVI-D, DVI-D is a safer option */
1688 			return DRM_MODE_SUBCONNECTOR_DVID;
1689 		case DP_DWN_STRM_PORT_TYPE_ANALOG:
1690 			/* Can be VGA or DVI-A, VGA is more popular */
1691 			return DRM_MODE_SUBCONNECTOR_VGA;
1692 		case DP_DWN_STRM_PORT_TYPE_DP:
1693 			return DRM_MODE_SUBCONNECTOR_DisplayPort;
1694 		case DP_DWN_STRM_PORT_TYPE_OTHER:
1695 		default:
1696 			return DRM_MODE_SUBCONNECTOR_Unknown;
1697 		}
1698 	}
1699 	type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1700 
1701 	switch (type) {
1702 	case DP_DS_PORT_TYPE_DP:
1703 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1704 		return DRM_MODE_SUBCONNECTOR_DisplayPort;
1705 	case DP_DS_PORT_TYPE_VGA:
1706 		return DRM_MODE_SUBCONNECTOR_VGA;
1707 	case DP_DS_PORT_TYPE_DVI:
1708 		return DRM_MODE_SUBCONNECTOR_DVID;
1709 	case DP_DS_PORT_TYPE_HDMI:
1710 		return DRM_MODE_SUBCONNECTOR_HDMIA;
1711 	case DP_DS_PORT_TYPE_WIRELESS:
1712 		return DRM_MODE_SUBCONNECTOR_Wireless;
1713 	case DP_DS_PORT_TYPE_NON_EDID:
1714 	default:
1715 		return DRM_MODE_SUBCONNECTOR_Unknown;
1716 	}
1717 }
1718 EXPORT_SYMBOL(drm_dp_subconnector_type);
1719 
1720 /**
1721  * drm_dp_set_subconnector_property - set subconnector for DP connector
1722  * @connector: connector to set property on
1723  * @status: connector status
1724  * @dpcd: DisplayPort configuration data
1725  * @port_cap: port capabilities
1726  *
1727  * Called by a driver on every detect event.
1728  */
1729 void drm_dp_set_subconnector_property(struct drm_connector *connector,
1730 				      enum drm_connector_status status,
1731 				      const u8 *dpcd,
1732 				      const u8 port_cap[4])
1733 {
1734 	enum drm_mode_subconnector subconnector = DRM_MODE_SUBCONNECTOR_Unknown;
1735 
1736 	if (status == connector_status_connected)
1737 		subconnector = drm_dp_subconnector_type(dpcd, port_cap);
1738 	drm_object_property_set_value(&connector->base,
1739 			connector->dev->mode_config.dp_subconnector_property,
1740 			subconnector);
1741 }
1742 EXPORT_SYMBOL(drm_dp_set_subconnector_property);
1743 
1744 /**
1745  * drm_dp_read_sink_count_cap() - Check whether a given connector has a valid sink
1746  * count
1747  * @connector: The DRM connector to check
1748  * @dpcd: A cached copy of the connector's DPCD RX capabilities
1749  * @desc: A cached copy of the connector's DP descriptor
1750  *
1751  * See also: drm_dp_read_sink_count()
1752  *
1753  * Returns: %True if the (e)DP connector has a valid sink count that should
1754  * be probed, %false otherwise.
1755  */
1756 bool drm_dp_read_sink_count_cap(struct drm_connector *connector,
1757 				const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1758 				const struct drm_dp_desc *desc)
1759 {
1760 	/* Some eDP panels don't set a valid value for the sink count */
1761 	return connector->connector_type != DRM_MODE_CONNECTOR_eDP &&
1762 		dpcd[DP_DPCD_REV] >= DP_DPCD_REV_11 &&
1763 		dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
1764 		!drm_dp_has_quirk(desc, DP_DPCD_QUIRK_NO_SINK_COUNT);
1765 }
1766 EXPORT_SYMBOL(drm_dp_read_sink_count_cap);
1767 
1768 /**
1769  * drm_dp_read_sink_count() - Retrieve the sink count for a given sink
1770  * @aux: The DP AUX channel to use
1771  *
1772  * See also: drm_dp_read_sink_count_cap()
1773  *
1774  * Returns: The current sink count reported by @aux, or a negative error code
1775  * otherwise.
1776  */
1777 int drm_dp_read_sink_count(struct drm_dp_aux *aux)
1778 {
1779 	u8 count;
1780 	int ret;
1781 
1782 	ret = drm_dp_dpcd_readb(aux, DP_SINK_COUNT, &count);
1783 	if (ret < 0)
1784 		return ret;
1785 	if (ret != 1)
1786 		return -EIO;
1787 
1788 	return DP_GET_SINK_COUNT(count);
1789 }
1790 EXPORT_SYMBOL(drm_dp_read_sink_count);
1791 
1792 /*
1793  * I2C-over-AUX implementation
1794  */
1795 
1796 static u32 drm_dp_i2c_functionality(struct i2c_adapter *adapter)
1797 {
1798 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
1799 	       I2C_FUNC_SMBUS_READ_BLOCK_DATA |
1800 	       I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
1801 	       I2C_FUNC_10BIT_ADDR;
1802 }
1803 
1804 static void drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg *msg)
1805 {
1806 	/*
1807 	 * In case of i2c defer or short i2c ack reply to a write,
1808 	 * we need to switch to WRITE_STATUS_UPDATE to drain the
1809 	 * rest of the message
1810 	 */
1811 	if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE) {
1812 		msg->request &= DP_AUX_I2C_MOT;
1813 		msg->request |= DP_AUX_I2C_WRITE_STATUS_UPDATE;
1814 	}
1815 }
1816 
1817 #define AUX_PRECHARGE_LEN 10 /* 10 to 16 */
1818 #define AUX_SYNC_LEN (16 + 4) /* preamble + AUX_SYNC_END */
1819 #define AUX_STOP_LEN 4
1820 #define AUX_CMD_LEN 4
1821 #define AUX_ADDRESS_LEN 20
1822 #define AUX_REPLY_PAD_LEN 4
1823 #define AUX_LENGTH_LEN 8
1824 
1825 /*
1826  * Calculate the duration of the AUX request/reply in usec. Gives the
1827  * "best" case estimate, ie. successful while as short as possible.
1828  */
1829 static int drm_dp_aux_req_duration(const struct drm_dp_aux_msg *msg)
1830 {
1831 	int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1832 		AUX_CMD_LEN + AUX_ADDRESS_LEN + AUX_LENGTH_LEN;
1833 
1834 	if ((msg->request & DP_AUX_I2C_READ) == 0)
1835 		len += msg->size * 8;
1836 
1837 	return len;
1838 }
1839 
1840 static int drm_dp_aux_reply_duration(const struct drm_dp_aux_msg *msg)
1841 {
1842 	int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1843 		AUX_CMD_LEN + AUX_REPLY_PAD_LEN;
1844 
1845 	/*
1846 	 * For read we expect what was asked. For writes there will
1847 	 * be 0 or 1 data bytes. Assume 0 for the "best" case.
1848 	 */
1849 	if (msg->request & DP_AUX_I2C_READ)
1850 		len += msg->size * 8;
1851 
1852 	return len;
1853 }
1854 
1855 #define I2C_START_LEN 1
1856 #define I2C_STOP_LEN 1
1857 #define I2C_ADDR_LEN 9 /* ADDRESS + R/W + ACK/NACK */
1858 #define I2C_DATA_LEN 9 /* DATA + ACK/NACK */
1859 
1860 /*
1861  * Calculate the length of the i2c transfer in usec, assuming
1862  * the i2c bus speed is as specified. Gives the "worst"
1863  * case estimate, ie. successful while as long as possible.
1864  * Doesn't account the "MOT" bit, and instead assumes each
1865  * message includes a START, ADDRESS and STOP. Neither does it
1866  * account for additional random variables such as clock stretching.
1867  */
1868 static int drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg *msg,
1869 				   int i2c_speed_khz)
1870 {
1871 	/* AUX bitrate is 1MHz, i2c bitrate as specified */
1872 	return DIV_ROUND_UP((I2C_START_LEN + I2C_ADDR_LEN +
1873 			     msg->size * I2C_DATA_LEN +
1874 			     I2C_STOP_LEN) * 1000, i2c_speed_khz);
1875 }
1876 
1877 /*
1878  * Determine how many retries should be attempted to successfully transfer
1879  * the specified message, based on the estimated durations of the
1880  * i2c and AUX transfers.
1881  */
1882 static int drm_dp_i2c_retry_count(const struct drm_dp_aux_msg *msg,
1883 			      int i2c_speed_khz)
1884 {
1885 	int aux_time_us = drm_dp_aux_req_duration(msg) +
1886 		drm_dp_aux_reply_duration(msg);
1887 	int i2c_time_us = drm_dp_i2c_msg_duration(msg, i2c_speed_khz);
1888 
1889 	return DIV_ROUND_UP(i2c_time_us, aux_time_us + AUX_RETRY_INTERVAL);
1890 }
1891 
1892 /*
1893  * FIXME currently assumes 10 kHz as some real world devices seem
1894  * to require it. We should query/set the speed via DPCD if supported.
1895  */
1896 static int dp_aux_i2c_speed_khz __read_mostly = 10;
1897 module_param_unsafe(dp_aux_i2c_speed_khz, int, 0644);
1898 MODULE_PARM_DESC(dp_aux_i2c_speed_khz,
1899 		 "Assumed speed of the i2c bus in kHz, (1-400, default 10)");
1900 
1901 /*
1902  * Transfer a single I2C-over-AUX message and handle various error conditions,
1903  * retrying the transaction as appropriate.  It is assumed that the
1904  * &drm_dp_aux.transfer function does not modify anything in the msg other than the
1905  * reply field.
1906  *
1907  * Returns bytes transferred on success, or a negative error code on failure.
1908  */
1909 static int drm_dp_i2c_do_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1910 {
1911 	unsigned int retry, defer_i2c;
1912 	int ret;
1913 	/*
1914 	 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device
1915 	 * is required to retry at least seven times upon receiving AUX_DEFER
1916 	 * before giving up the AUX transaction.
1917 	 *
1918 	 * We also try to account for the i2c bus speed.
1919 	 */
1920 	int max_retries = max(7, drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz));
1921 
1922 	for (retry = 0, defer_i2c = 0; retry < (max_retries + defer_i2c); retry++) {
1923 		ret = aux->transfer(aux, msg);
1924 		if (ret < 0) {
1925 			if (ret == -EBUSY)
1926 				continue;
1927 
1928 			/*
1929 			 * While timeouts can be errors, they're usually normal
1930 			 * behavior (for instance, when a driver tries to
1931 			 * communicate with a non-existent DisplayPort device).
1932 			 * Avoid spamming the kernel log with timeout errors.
1933 			 */
1934 			if (ret == -ETIMEDOUT)
1935 				drm_dbg_kms_ratelimited(aux->drm_dev, "%s: transaction timed out\n",
1936 							aux->name);
1937 			else
1938 				drm_dbg_kms(aux->drm_dev, "%s: transaction failed: %d\n",
1939 					    aux->name, ret);
1940 			return ret;
1941 		}
1942 
1943 
1944 		switch (msg->reply & DP_AUX_NATIVE_REPLY_MASK) {
1945 		case DP_AUX_NATIVE_REPLY_ACK:
1946 			/*
1947 			 * For I2C-over-AUX transactions this isn't enough, we
1948 			 * need to check for the I2C ACK reply.
1949 			 */
1950 			break;
1951 
1952 		case DP_AUX_NATIVE_REPLY_NACK:
1953 			drm_dbg_kms(aux->drm_dev, "%s: native nack (result=%d, size=%zu)\n",
1954 				    aux->name, ret, msg->size);
1955 			return -EREMOTEIO;
1956 
1957 		case DP_AUX_NATIVE_REPLY_DEFER:
1958 			drm_dbg_kms(aux->drm_dev, "%s: native defer\n", aux->name);
1959 			/*
1960 			 * We could check for I2C bit rate capabilities and if
1961 			 * available adjust this interval. We could also be
1962 			 * more careful with DP-to-legacy adapters where a
1963 			 * long legacy cable may force very low I2C bit rates.
1964 			 *
1965 			 * For now just defer for long enough to hopefully be
1966 			 * safe for all use-cases.
1967 			 */
1968 			usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1969 			continue;
1970 
1971 		default:
1972 			drm_err(aux->drm_dev, "%s: invalid native reply %#04x\n",
1973 				aux->name, msg->reply);
1974 			return -EREMOTEIO;
1975 		}
1976 
1977 		switch (msg->reply & DP_AUX_I2C_REPLY_MASK) {
1978 		case DP_AUX_I2C_REPLY_ACK:
1979 			/*
1980 			 * Both native ACK and I2C ACK replies received. We
1981 			 * can assume the transfer was successful.
1982 			 */
1983 			if (ret != msg->size)
1984 				drm_dp_i2c_msg_write_status_update(msg);
1985 			return ret;
1986 
1987 		case DP_AUX_I2C_REPLY_NACK:
1988 			drm_dbg_kms(aux->drm_dev, "%s: I2C nack (result=%d, size=%zu)\n",
1989 				    aux->name, ret, msg->size);
1990 			aux->i2c_nack_count++;
1991 			return -EREMOTEIO;
1992 
1993 		case DP_AUX_I2C_REPLY_DEFER:
1994 			drm_dbg_kms(aux->drm_dev, "%s: I2C defer\n", aux->name);
1995 			/* DP Compliance Test 4.2.2.5 Requirement:
1996 			 * Must have at least 7 retries for I2C defers on the
1997 			 * transaction to pass this test
1998 			 */
1999 			aux->i2c_defer_count++;
2000 			if (defer_i2c < 7)
2001 				defer_i2c++;
2002 			usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
2003 			drm_dp_i2c_msg_write_status_update(msg);
2004 
2005 			continue;
2006 
2007 		default:
2008 			drm_err(aux->drm_dev, "%s: invalid I2C reply %#04x\n",
2009 				aux->name, msg->reply);
2010 			return -EREMOTEIO;
2011 		}
2012 	}
2013 
2014 	drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up\n", aux->name);
2015 	return -EREMOTEIO;
2016 }
2017 
2018 static void drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg *msg,
2019 				       const struct i2c_msg *i2c_msg)
2020 {
2021 	msg->request = (i2c_msg->flags & I2C_M_RD) ?
2022 		DP_AUX_I2C_READ : DP_AUX_I2C_WRITE;
2023 	if (!(i2c_msg->flags & I2C_M_STOP))
2024 		msg->request |= DP_AUX_I2C_MOT;
2025 }
2026 
2027 /*
2028  * Keep retrying drm_dp_i2c_do_msg until all data has been transferred.
2029  *
2030  * Returns an error code on failure, or a recommended transfer size on success.
2031  */
2032 static int drm_dp_i2c_drain_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *orig_msg)
2033 {
2034 	int err, ret = orig_msg->size;
2035 	struct drm_dp_aux_msg msg = *orig_msg;
2036 
2037 	while (msg.size > 0) {
2038 		err = drm_dp_i2c_do_msg(aux, &msg);
2039 		if (err <= 0)
2040 			return err == 0 ? -EPROTO : err;
2041 
2042 		if (err < msg.size && err < ret) {
2043 			drm_dbg_kms(aux->drm_dev,
2044 				    "%s: Partial I2C reply: requested %zu bytes got %d bytes\n",
2045 				    aux->name, msg.size, err);
2046 			ret = err;
2047 		}
2048 
2049 		msg.size -= err;
2050 		msg.buffer += err;
2051 	}
2052 
2053 	return ret;
2054 }
2055 
2056 /*
2057  * Bizlink designed DP->DVI-D Dual Link adapters require the I2C over AUX
2058  * packets to be as large as possible. If not, the I2C transactions never
2059  * succeed. Hence the default is maximum.
2060  */
2061 static int dp_aux_i2c_transfer_size __read_mostly = DP_AUX_MAX_PAYLOAD_BYTES;
2062 module_param_unsafe(dp_aux_i2c_transfer_size, int, 0644);
2063 MODULE_PARM_DESC(dp_aux_i2c_transfer_size,
2064 		 "Number of bytes to transfer in a single I2C over DP AUX CH message, (1-16, default 16)");
2065 
2066 static int drm_dp_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs,
2067 			   int num)
2068 {
2069 	struct drm_dp_aux *aux = adapter->algo_data;
2070 	unsigned int i, j;
2071 	unsigned transfer_size;
2072 	struct drm_dp_aux_msg msg;
2073 	int err = 0;
2074 
2075 	if (aux->powered_down)
2076 		return -EBUSY;
2077 
2078 	dp_aux_i2c_transfer_size = clamp(dp_aux_i2c_transfer_size, 1, DP_AUX_MAX_PAYLOAD_BYTES);
2079 
2080 	memset(&msg, 0, sizeof(msg));
2081 
2082 	for (i = 0; i < num; i++) {
2083 		msg.address = msgs[i].addr;
2084 		drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
2085 		/* Send a bare address packet to start the transaction.
2086 		 * Zero sized messages specify an address only (bare
2087 		 * address) transaction.
2088 		 */
2089 		msg.buffer = NULL;
2090 		msg.size = 0;
2091 		err = drm_dp_i2c_do_msg(aux, &msg);
2092 
2093 		/*
2094 		 * Reset msg.request in case in case it got
2095 		 * changed into a WRITE_STATUS_UPDATE.
2096 		 */
2097 		drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
2098 
2099 		if (err < 0)
2100 			break;
2101 		/* We want each transaction to be as large as possible, but
2102 		 * we'll go to smaller sizes if the hardware gives us a
2103 		 * short reply.
2104 		 */
2105 		transfer_size = dp_aux_i2c_transfer_size;
2106 		for (j = 0; j < msgs[i].len; j += msg.size) {
2107 			msg.buffer = msgs[i].buf + j;
2108 			msg.size = min(transfer_size, msgs[i].len - j);
2109 
2110 			err = drm_dp_i2c_drain_msg(aux, &msg);
2111 
2112 			/*
2113 			 * Reset msg.request in case in case it got
2114 			 * changed into a WRITE_STATUS_UPDATE.
2115 			 */
2116 			drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
2117 
2118 			if (err < 0)
2119 				break;
2120 			transfer_size = err;
2121 		}
2122 		if (err < 0)
2123 			break;
2124 	}
2125 	if (err >= 0)
2126 		err = num;
2127 	/* Send a bare address packet to close out the transaction.
2128 	 * Zero sized messages specify an address only (bare
2129 	 * address) transaction.
2130 	 */
2131 	msg.request &= ~DP_AUX_I2C_MOT;
2132 	msg.buffer = NULL;
2133 	msg.size = 0;
2134 	(void)drm_dp_i2c_do_msg(aux, &msg);
2135 
2136 	return err;
2137 }
2138 
2139 static const struct i2c_algorithm drm_dp_i2c_algo = {
2140 	.functionality = drm_dp_i2c_functionality,
2141 	.master_xfer = drm_dp_i2c_xfer,
2142 };
2143 
2144 static struct drm_dp_aux *i2c_to_aux(struct i2c_adapter *i2c)
2145 {
2146 	return container_of(i2c, struct drm_dp_aux, ddc);
2147 }
2148 
2149 static void lock_bus(struct i2c_adapter *i2c, unsigned int flags)
2150 {
2151 	mutex_lock(&i2c_to_aux(i2c)->hw_mutex);
2152 }
2153 
2154 static int trylock_bus(struct i2c_adapter *i2c, unsigned int flags)
2155 {
2156 	return mutex_trylock(&i2c_to_aux(i2c)->hw_mutex);
2157 }
2158 
2159 static void unlock_bus(struct i2c_adapter *i2c, unsigned int flags)
2160 {
2161 	mutex_unlock(&i2c_to_aux(i2c)->hw_mutex);
2162 }
2163 
2164 static const struct i2c_lock_operations drm_dp_i2c_lock_ops = {
2165 	.lock_bus = lock_bus,
2166 	.trylock_bus = trylock_bus,
2167 	.unlock_bus = unlock_bus,
2168 };
2169 
2170 static int drm_dp_aux_get_crc(struct drm_dp_aux *aux, u8 *crc)
2171 {
2172 	u8 buf, count;
2173 	int ret;
2174 
2175 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2176 	if (ret < 0)
2177 		return ret;
2178 
2179 	WARN_ON(!(buf & DP_TEST_SINK_START));
2180 
2181 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK_MISC, &buf);
2182 	if (ret < 0)
2183 		return ret;
2184 
2185 	count = buf & DP_TEST_COUNT_MASK;
2186 	if (count == aux->crc_count)
2187 		return -EAGAIN; /* No CRC yet */
2188 
2189 	aux->crc_count = count;
2190 
2191 	/*
2192 	 * At DP_TEST_CRC_R_CR, there's 6 bytes containing CRC data, 2 bytes
2193 	 * per component (RGB or CrYCb).
2194 	 */
2195 	ret = drm_dp_dpcd_read(aux, DP_TEST_CRC_R_CR, crc, 6);
2196 	if (ret < 0)
2197 		return ret;
2198 
2199 	return 0;
2200 }
2201 
2202 static void drm_dp_aux_crc_work(struct work_struct *work)
2203 {
2204 	struct drm_dp_aux *aux = container_of(work, struct drm_dp_aux,
2205 					      crc_work);
2206 	struct drm_crtc *crtc;
2207 	u8 crc_bytes[6];
2208 	uint32_t crcs[3];
2209 	int ret;
2210 
2211 	if (WARN_ON(!aux->crtc))
2212 		return;
2213 
2214 	crtc = aux->crtc;
2215 	while (crtc->crc.opened) {
2216 		drm_crtc_wait_one_vblank(crtc);
2217 		if (!crtc->crc.opened)
2218 			break;
2219 
2220 		ret = drm_dp_aux_get_crc(aux, crc_bytes);
2221 		if (ret == -EAGAIN) {
2222 			usleep_range(1000, 2000);
2223 			ret = drm_dp_aux_get_crc(aux, crc_bytes);
2224 		}
2225 
2226 		if (ret == -EAGAIN) {
2227 			drm_dbg_kms(aux->drm_dev, "%s: Get CRC failed after retrying: %d\n",
2228 				    aux->name, ret);
2229 			continue;
2230 		} else if (ret) {
2231 			drm_dbg_kms(aux->drm_dev, "%s: Failed to get a CRC: %d\n", aux->name, ret);
2232 			continue;
2233 		}
2234 
2235 		crcs[0] = crc_bytes[0] | crc_bytes[1] << 8;
2236 		crcs[1] = crc_bytes[2] | crc_bytes[3] << 8;
2237 		crcs[2] = crc_bytes[4] | crc_bytes[5] << 8;
2238 		drm_crtc_add_crc_entry(crtc, false, 0, crcs);
2239 	}
2240 }
2241 
2242 /**
2243  * drm_dp_remote_aux_init() - minimally initialise a remote aux channel
2244  * @aux: DisplayPort AUX channel
2245  *
2246  * Used for remote aux channel in general. Merely initialize the crc work
2247  * struct.
2248  */
2249 void drm_dp_remote_aux_init(struct drm_dp_aux *aux)
2250 {
2251 	INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2252 }
2253 EXPORT_SYMBOL(drm_dp_remote_aux_init);
2254 
2255 /**
2256  * drm_dp_aux_init() - minimally initialise an aux channel
2257  * @aux: DisplayPort AUX channel
2258  *
2259  * If you need to use the drm_dp_aux's i2c adapter prior to registering it with
2260  * the outside world, call drm_dp_aux_init() first. For drivers which are
2261  * grandparents to their AUX adapters (e.g. the AUX adapter is parented by a
2262  * &drm_connector), you must still call drm_dp_aux_register() once the connector
2263  * has been registered to allow userspace access to the auxiliary DP channel.
2264  * Likewise, for such drivers you should also assign &drm_dp_aux.drm_dev as
2265  * early as possible so that the &drm_device that corresponds to the AUX adapter
2266  * may be mentioned in debugging output from the DRM DP helpers.
2267  *
2268  * For devices which use a separate platform device for their AUX adapters, this
2269  * may be called as early as required by the driver.
2270  *
2271  */
2272 void drm_dp_aux_init(struct drm_dp_aux *aux)
2273 {
2274 	mutex_init(&aux->hw_mutex);
2275 	mutex_init(&aux->cec.lock);
2276 	INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2277 
2278 	aux->ddc.algo = &drm_dp_i2c_algo;
2279 	aux->ddc.algo_data = aux;
2280 	aux->ddc.retries = 3;
2281 
2282 	aux->ddc.lock_ops = &drm_dp_i2c_lock_ops;
2283 }
2284 EXPORT_SYMBOL(drm_dp_aux_init);
2285 
2286 /**
2287  * drm_dp_aux_register() - initialise and register aux channel
2288  * @aux: DisplayPort AUX channel
2289  *
2290  * Automatically calls drm_dp_aux_init() if this hasn't been done yet. This
2291  * should only be called once the parent of @aux, &drm_dp_aux.dev, is
2292  * initialized. For devices which are grandparents of their AUX channels,
2293  * &drm_dp_aux.dev will typically be the &drm_connector &device which
2294  * corresponds to @aux. For these devices, it's advised to call
2295  * drm_dp_aux_register() in &drm_connector_funcs.late_register, and likewise to
2296  * call drm_dp_aux_unregister() in &drm_connector_funcs.early_unregister.
2297  * Functions which don't follow this will likely Oops when
2298  * %CONFIG_DRM_DISPLAY_DP_AUX_CHARDEV is enabled.
2299  *
2300  * For devices where the AUX channel is a device that exists independently of
2301  * the &drm_device that uses it, such as SoCs and bridge devices, it is
2302  * recommended to call drm_dp_aux_register() after a &drm_device has been
2303  * assigned to &drm_dp_aux.drm_dev, and likewise to call
2304  * drm_dp_aux_unregister() once the &drm_device should no longer be associated
2305  * with the AUX channel (e.g. on bridge detach).
2306  *
2307  * Drivers which need to use the aux channel before either of the two points
2308  * mentioned above need to call drm_dp_aux_init() in order to use the AUX
2309  * channel before registration.
2310  *
2311  * Returns 0 on success or a negative error code on failure.
2312  */
2313 int drm_dp_aux_register(struct drm_dp_aux *aux)
2314 {
2315 	int ret;
2316 
2317 	WARN_ON_ONCE(!aux->drm_dev);
2318 
2319 	if (!aux->ddc.algo)
2320 		drm_dp_aux_init(aux);
2321 
2322 	aux->ddc.owner = THIS_MODULE;
2323 	aux->ddc.dev.parent = aux->dev;
2324 
2325 	strscpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev),
2326 		sizeof(aux->ddc.name));
2327 
2328 	ret = drm_dp_aux_register_devnode(aux);
2329 	if (ret)
2330 		return ret;
2331 
2332 	ret = i2c_add_adapter(&aux->ddc);
2333 	if (ret) {
2334 		drm_dp_aux_unregister_devnode(aux);
2335 		return ret;
2336 	}
2337 
2338 	return 0;
2339 }
2340 EXPORT_SYMBOL(drm_dp_aux_register);
2341 
2342 /**
2343  * drm_dp_aux_unregister() - unregister an AUX adapter
2344  * @aux: DisplayPort AUX channel
2345  */
2346 void drm_dp_aux_unregister(struct drm_dp_aux *aux)
2347 {
2348 	drm_dp_aux_unregister_devnode(aux);
2349 	i2c_del_adapter(&aux->ddc);
2350 }
2351 EXPORT_SYMBOL(drm_dp_aux_unregister);
2352 
2353 #define PSR_SETUP_TIME(x) [DP_PSR_SETUP_TIME_ ## x >> DP_PSR_SETUP_TIME_SHIFT] = (x)
2354 
2355 /**
2356  * drm_dp_psr_setup_time() - PSR setup in time usec
2357  * @psr_cap: PSR capabilities from DPCD
2358  *
2359  * Returns:
2360  * PSR setup time for the panel in microseconds,  negative
2361  * error code on failure.
2362  */
2363 int drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])
2364 {
2365 	static const u16 psr_setup_time_us[] = {
2366 		PSR_SETUP_TIME(330),
2367 		PSR_SETUP_TIME(275),
2368 		PSR_SETUP_TIME(220),
2369 		PSR_SETUP_TIME(165),
2370 		PSR_SETUP_TIME(110),
2371 		PSR_SETUP_TIME(55),
2372 		PSR_SETUP_TIME(0),
2373 	};
2374 	int i;
2375 
2376 	i = (psr_cap[1] & DP_PSR_SETUP_TIME_MASK) >> DP_PSR_SETUP_TIME_SHIFT;
2377 	if (i >= ARRAY_SIZE(psr_setup_time_us))
2378 		return -EINVAL;
2379 
2380 	return psr_setup_time_us[i];
2381 }
2382 EXPORT_SYMBOL(drm_dp_psr_setup_time);
2383 
2384 #undef PSR_SETUP_TIME
2385 
2386 /**
2387  * drm_dp_start_crc() - start capture of frame CRCs
2388  * @aux: DisplayPort AUX channel
2389  * @crtc: CRTC displaying the frames whose CRCs are to be captured
2390  *
2391  * Returns 0 on success or a negative error code on failure.
2392  */
2393 int drm_dp_start_crc(struct drm_dp_aux *aux, struct drm_crtc *crtc)
2394 {
2395 	u8 buf;
2396 	int ret;
2397 
2398 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2399 	if (ret < 0)
2400 		return ret;
2401 
2402 	ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf | DP_TEST_SINK_START);
2403 	if (ret < 0)
2404 		return ret;
2405 
2406 	aux->crc_count = 0;
2407 	aux->crtc = crtc;
2408 	schedule_work(&aux->crc_work);
2409 
2410 	return 0;
2411 }
2412 EXPORT_SYMBOL(drm_dp_start_crc);
2413 
2414 /**
2415  * drm_dp_stop_crc() - stop capture of frame CRCs
2416  * @aux: DisplayPort AUX channel
2417  *
2418  * Returns 0 on success or a negative error code on failure.
2419  */
2420 int drm_dp_stop_crc(struct drm_dp_aux *aux)
2421 {
2422 	u8 buf;
2423 	int ret;
2424 
2425 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2426 	if (ret < 0)
2427 		return ret;
2428 
2429 	ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf & ~DP_TEST_SINK_START);
2430 	if (ret < 0)
2431 		return ret;
2432 
2433 	flush_work(&aux->crc_work);
2434 	aux->crtc = NULL;
2435 
2436 	return 0;
2437 }
2438 EXPORT_SYMBOL(drm_dp_stop_crc);
2439 
2440 struct dpcd_quirk {
2441 	u8 oui[3];
2442 	u8 device_id[6];
2443 	bool is_branch;
2444 	u32 quirks;
2445 };
2446 
2447 #define OUI(first, second, third) { (first), (second), (third) }
2448 #define DEVICE_ID(first, second, third, fourth, fifth, sixth) \
2449 	{ (first), (second), (third), (fourth), (fifth), (sixth) }
2450 
2451 #define DEVICE_ID_ANY	DEVICE_ID(0, 0, 0, 0, 0, 0)
2452 
2453 static const struct dpcd_quirk dpcd_quirk_list[] = {
2454 	/* Analogix 7737 needs reduced M and N at HBR2 link rates */
2455 	{ OUI(0x00, 0x22, 0xb9), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2456 	/* LG LP140WF6-SPM1 eDP panel */
2457 	{ OUI(0x00, 0x22, 0xb9), DEVICE_ID('s', 'i', 'v', 'a', 'r', 'T'), false, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2458 	/* Apple panels need some additional handling to support PSR */
2459 	{ OUI(0x00, 0x10, 0xfa), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_NO_PSR) },
2460 	/* CH7511 seems to leave SINK_COUNT zeroed */
2461 	{ OUI(0x00, 0x00, 0x00), DEVICE_ID('C', 'H', '7', '5', '1', '1'), false, BIT(DP_DPCD_QUIRK_NO_SINK_COUNT) },
2462 	/* Synaptics DP1.4 MST hubs can support DSC without virtual DPCD */
2463 	{ OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) },
2464 	/* Synaptics DP1.4 MST hubs require DSC for some modes on which it applies HBLANK expansion. */
2465 	{ OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_HBLANK_EXPANSION_REQUIRES_DSC) },
2466 	/* MediaTek panels (at least in U3224KBA) require DSC for modes with a short HBLANK on UHBR links. */
2467 	{ OUI(0x00, 0x0C, 0xE7), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_HBLANK_EXPANSION_REQUIRES_DSC) },
2468 	/* Apple MacBookPro 2017 15 inch eDP Retina panel reports too low DP_MAX_LINK_RATE */
2469 	{ OUI(0x00, 0x10, 0xfa), DEVICE_ID(101, 68, 21, 101, 98, 97), false, BIT(DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS) },
2470 };
2471 
2472 #undef OUI
2473 
2474 /*
2475  * Get a bit mask of DPCD quirks for the sink/branch device identified by
2476  * ident. The quirk data is shared but it's up to the drivers to act on the
2477  * data.
2478  *
2479  * For now, only the OUI (first three bytes) is used, but this may be extended
2480  * to device identification string and hardware/firmware revisions later.
2481  */
2482 static u32
2483 drm_dp_get_quirks(const struct drm_dp_dpcd_ident *ident, bool is_branch)
2484 {
2485 	const struct dpcd_quirk *quirk;
2486 	u32 quirks = 0;
2487 	int i;
2488 	u8 any_device[] = DEVICE_ID_ANY;
2489 
2490 	for (i = 0; i < ARRAY_SIZE(dpcd_quirk_list); i++) {
2491 		quirk = &dpcd_quirk_list[i];
2492 
2493 		if (quirk->is_branch != is_branch)
2494 			continue;
2495 
2496 		if (memcmp(quirk->oui, ident->oui, sizeof(ident->oui)) != 0)
2497 			continue;
2498 
2499 		if (memcmp(quirk->device_id, any_device, sizeof(any_device)) != 0 &&
2500 		    memcmp(quirk->device_id, ident->device_id, sizeof(ident->device_id)) != 0)
2501 			continue;
2502 
2503 		quirks |= quirk->quirks;
2504 	}
2505 
2506 	return quirks;
2507 }
2508 
2509 #undef DEVICE_ID_ANY
2510 #undef DEVICE_ID
2511 
2512 static int drm_dp_read_ident(struct drm_dp_aux *aux, unsigned int offset,
2513 			     struct drm_dp_dpcd_ident *ident)
2514 {
2515 	int ret;
2516 
2517 	ret = drm_dp_dpcd_read(aux, offset, ident, sizeof(*ident));
2518 
2519 	return ret < 0 ? ret : 0;
2520 }
2521 
2522 static void drm_dp_dump_desc(struct drm_dp_aux *aux,
2523 			     const char *device_name, const struct drm_dp_desc *desc)
2524 {
2525 	const struct drm_dp_dpcd_ident *ident = &desc->ident;
2526 
2527 	drm_dbg_kms(aux->drm_dev,
2528 		    "%s: %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n",
2529 		    aux->name, device_name,
2530 		    (int)sizeof(ident->oui), ident->oui,
2531 		    (int)strnlen(ident->device_id, sizeof(ident->device_id)), ident->device_id,
2532 		    ident->hw_rev >> 4, ident->hw_rev & 0xf,
2533 		    ident->sw_major_rev, ident->sw_minor_rev,
2534 		    desc->quirks);
2535 }
2536 
2537 /**
2538  * drm_dp_read_desc - read sink/branch descriptor from DPCD
2539  * @aux: DisplayPort AUX channel
2540  * @desc: Device descriptor to fill from DPCD
2541  * @is_branch: true for branch devices, false for sink devices
2542  *
2543  * Read DPCD 0x400 (sink) or 0x500 (branch) into @desc. Also debug log the
2544  * identification.
2545  *
2546  * Returns 0 on success or a negative error code on failure.
2547  */
2548 int drm_dp_read_desc(struct drm_dp_aux *aux, struct drm_dp_desc *desc,
2549 		     bool is_branch)
2550 {
2551 	struct drm_dp_dpcd_ident *ident = &desc->ident;
2552 	unsigned int offset = is_branch ? DP_BRANCH_OUI : DP_SINK_OUI;
2553 	int ret;
2554 
2555 	ret = drm_dp_read_ident(aux, offset, ident);
2556 	if (ret < 0)
2557 		return ret;
2558 
2559 	desc->quirks = drm_dp_get_quirks(ident, is_branch);
2560 
2561 	drm_dp_dump_desc(aux, is_branch ? "DP branch" : "DP sink", desc);
2562 
2563 	return 0;
2564 }
2565 EXPORT_SYMBOL(drm_dp_read_desc);
2566 
2567 /**
2568  * drm_dp_dump_lttpr_desc - read and dump the DPCD descriptor for an LTTPR PHY
2569  * @aux: DisplayPort AUX channel
2570  * @dp_phy: LTTPR PHY instance
2571  *
2572  * Read the DPCD LTTPR PHY descriptor for @dp_phy and print a debug message
2573  * with its details to dmesg.
2574  *
2575  * Returns 0 on success or a negative error code on failure.
2576  */
2577 int drm_dp_dump_lttpr_desc(struct drm_dp_aux *aux, enum drm_dp_phy dp_phy)
2578 {
2579 	struct drm_dp_desc desc = {};
2580 	int ret;
2581 
2582 	if (drm_WARN_ON(aux->drm_dev, dp_phy < DP_PHY_LTTPR1 || dp_phy > DP_MAX_LTTPR_COUNT))
2583 		return -EINVAL;
2584 
2585 	ret = drm_dp_read_ident(aux, DP_OUI_PHY_REPEATER(dp_phy), &desc.ident);
2586 	if (ret < 0)
2587 		return ret;
2588 
2589 	drm_dp_dump_desc(aux, drm_dp_phy_name(dp_phy), &desc);
2590 
2591 	return 0;
2592 }
2593 EXPORT_SYMBOL(drm_dp_dump_lttpr_desc);
2594 
2595 /**
2596  * drm_dp_dsc_sink_bpp_incr() - Get bits per pixel increment
2597  * @dsc_dpcd: DSC capabilities from DPCD
2598  *
2599  * Returns the bpp precision supported by the DP sink.
2600  */
2601 u8 drm_dp_dsc_sink_bpp_incr(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2602 {
2603 	u8 bpp_increment_dpcd = dsc_dpcd[DP_DSC_BITS_PER_PIXEL_INC - DP_DSC_SUPPORT];
2604 
2605 	switch (bpp_increment_dpcd & DP_DSC_BITS_PER_PIXEL_MASK) {
2606 	case DP_DSC_BITS_PER_PIXEL_1_16:
2607 		return 16;
2608 	case DP_DSC_BITS_PER_PIXEL_1_8:
2609 		return 8;
2610 	case DP_DSC_BITS_PER_PIXEL_1_4:
2611 		return 4;
2612 	case DP_DSC_BITS_PER_PIXEL_1_2:
2613 		return 2;
2614 	case DP_DSC_BITS_PER_PIXEL_1_1:
2615 		return 1;
2616 	}
2617 
2618 	return 0;
2619 }
2620 EXPORT_SYMBOL(drm_dp_dsc_sink_bpp_incr);
2621 
2622 /**
2623  * drm_dp_dsc_sink_max_slice_count() - Get the max slice count
2624  * supported by the DSC sink.
2625  * @dsc_dpcd: DSC capabilities from DPCD
2626  * @is_edp: true if its eDP, false for DP
2627  *
2628  * Read the slice capabilities DPCD register from DSC sink to get
2629  * the maximum slice count supported. This is used to populate
2630  * the DSC parameters in the &struct drm_dsc_config by the driver.
2631  * Driver creates an infoframe using these parameters to populate
2632  * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2633  * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2634  *
2635  * Returns:
2636  * Maximum slice count supported by DSC sink or 0 its invalid
2637  */
2638 u8 drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2639 				   bool is_edp)
2640 {
2641 	u8 slice_cap1 = dsc_dpcd[DP_DSC_SLICE_CAP_1 - DP_DSC_SUPPORT];
2642 
2643 	if (is_edp) {
2644 		/* For eDP, register DSC_SLICE_CAPABILITIES_1 gives slice count */
2645 		if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2646 			return 4;
2647 		if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2648 			return 2;
2649 		if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2650 			return 1;
2651 	} else {
2652 		/* For DP, use values from DSC_SLICE_CAP_1 and DSC_SLICE_CAP2 */
2653 		u8 slice_cap2 = dsc_dpcd[DP_DSC_SLICE_CAP_2 - DP_DSC_SUPPORT];
2654 
2655 		if (slice_cap2 & DP_DSC_24_PER_DP_DSC_SINK)
2656 			return 24;
2657 		if (slice_cap2 & DP_DSC_20_PER_DP_DSC_SINK)
2658 			return 20;
2659 		if (slice_cap2 & DP_DSC_16_PER_DP_DSC_SINK)
2660 			return 16;
2661 		if (slice_cap1 & DP_DSC_12_PER_DP_DSC_SINK)
2662 			return 12;
2663 		if (slice_cap1 & DP_DSC_10_PER_DP_DSC_SINK)
2664 			return 10;
2665 		if (slice_cap1 & DP_DSC_8_PER_DP_DSC_SINK)
2666 			return 8;
2667 		if (slice_cap1 & DP_DSC_6_PER_DP_DSC_SINK)
2668 			return 6;
2669 		if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2670 			return 4;
2671 		if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2672 			return 2;
2673 		if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2674 			return 1;
2675 	}
2676 
2677 	return 0;
2678 }
2679 EXPORT_SYMBOL(drm_dp_dsc_sink_max_slice_count);
2680 
2681 /**
2682  * drm_dp_dsc_sink_line_buf_depth() - Get the line buffer depth in bits
2683  * @dsc_dpcd: DSC capabilities from DPCD
2684  *
2685  * Read the DSC DPCD register to parse the line buffer depth in bits which is
2686  * number of bits of precision within the decoder line buffer supported by
2687  * the DSC sink. This is used to populate the DSC parameters in the
2688  * &struct drm_dsc_config by the driver.
2689  * Driver creates an infoframe using these parameters to populate
2690  * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2691  * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2692  *
2693  * Returns:
2694  * Line buffer depth supported by DSC panel or 0 its invalid
2695  */
2696 u8 drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2697 {
2698 	u8 line_buf_depth = dsc_dpcd[DP_DSC_LINE_BUF_BIT_DEPTH - DP_DSC_SUPPORT];
2699 
2700 	switch (line_buf_depth & DP_DSC_LINE_BUF_BIT_DEPTH_MASK) {
2701 	case DP_DSC_LINE_BUF_BIT_DEPTH_9:
2702 		return 9;
2703 	case DP_DSC_LINE_BUF_BIT_DEPTH_10:
2704 		return 10;
2705 	case DP_DSC_LINE_BUF_BIT_DEPTH_11:
2706 		return 11;
2707 	case DP_DSC_LINE_BUF_BIT_DEPTH_12:
2708 		return 12;
2709 	case DP_DSC_LINE_BUF_BIT_DEPTH_13:
2710 		return 13;
2711 	case DP_DSC_LINE_BUF_BIT_DEPTH_14:
2712 		return 14;
2713 	case DP_DSC_LINE_BUF_BIT_DEPTH_15:
2714 		return 15;
2715 	case DP_DSC_LINE_BUF_BIT_DEPTH_16:
2716 		return 16;
2717 	case DP_DSC_LINE_BUF_BIT_DEPTH_8:
2718 		return 8;
2719 	}
2720 
2721 	return 0;
2722 }
2723 EXPORT_SYMBOL(drm_dp_dsc_sink_line_buf_depth);
2724 
2725 /**
2726  * drm_dp_dsc_sink_supported_input_bpcs() - Get all the input bits per component
2727  * values supported by the DSC sink.
2728  * @dsc_dpcd: DSC capabilities from DPCD
2729  * @dsc_bpc: An array to be filled by this helper with supported
2730  *           input bpcs.
2731  *
2732  * Read the DSC DPCD from the sink device to parse the supported bits per
2733  * component values. This is used to populate the DSC parameters
2734  * in the &struct drm_dsc_config by the driver.
2735  * Driver creates an infoframe using these parameters to populate
2736  * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2737  * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2738  *
2739  * Returns:
2740  * Number of input BPC values parsed from the DPCD
2741  */
2742 int drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2743 					 u8 dsc_bpc[3])
2744 {
2745 	int num_bpc = 0;
2746 	u8 color_depth = dsc_dpcd[DP_DSC_DEC_COLOR_DEPTH_CAP - DP_DSC_SUPPORT];
2747 
2748 	if (!drm_dp_sink_supports_dsc(dsc_dpcd))
2749 		return 0;
2750 
2751 	if (color_depth & DP_DSC_12_BPC)
2752 		dsc_bpc[num_bpc++] = 12;
2753 	if (color_depth & DP_DSC_10_BPC)
2754 		dsc_bpc[num_bpc++] = 10;
2755 
2756 	/* A DP DSC Sink device shall support 8 bpc. */
2757 	dsc_bpc[num_bpc++] = 8;
2758 
2759 	return num_bpc;
2760 }
2761 EXPORT_SYMBOL(drm_dp_dsc_sink_supported_input_bpcs);
2762 
2763 static int drm_dp_read_lttpr_regs(struct drm_dp_aux *aux,
2764 				  const u8 dpcd[DP_RECEIVER_CAP_SIZE], int address,
2765 				  u8 *buf, int buf_size)
2766 {
2767 	/*
2768 	 * At least the DELL P2715Q monitor with a DPCD_REV < 0x14 returns
2769 	 * corrupted values when reading from the 0xF0000- range with a block
2770 	 * size bigger than 1.
2771 	 */
2772 	int block_size = dpcd[DP_DPCD_REV] < 0x14 ? 1 : buf_size;
2773 	int offset;
2774 	int ret;
2775 
2776 	for (offset = 0; offset < buf_size; offset += block_size) {
2777 		ret = drm_dp_dpcd_read(aux,
2778 				       address + offset,
2779 				       &buf[offset], block_size);
2780 		if (ret < 0)
2781 			return ret;
2782 
2783 		WARN_ON(ret != block_size);
2784 	}
2785 
2786 	return 0;
2787 }
2788 
2789 /**
2790  * drm_dp_read_lttpr_common_caps - read the LTTPR common capabilities
2791  * @aux: DisplayPort AUX channel
2792  * @dpcd: DisplayPort configuration data
2793  * @caps: buffer to return the capability info in
2794  *
2795  * Read capabilities common to all LTTPRs.
2796  *
2797  * Returns 0 on success or a negative error code on failure.
2798  */
2799 int drm_dp_read_lttpr_common_caps(struct drm_dp_aux *aux,
2800 				  const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2801 				  u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2802 {
2803 	return drm_dp_read_lttpr_regs(aux, dpcd,
2804 				      DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV,
2805 				      caps, DP_LTTPR_COMMON_CAP_SIZE);
2806 }
2807 EXPORT_SYMBOL(drm_dp_read_lttpr_common_caps);
2808 
2809 /**
2810  * drm_dp_read_lttpr_phy_caps - read the capabilities for a given LTTPR PHY
2811  * @aux: DisplayPort AUX channel
2812  * @dpcd: DisplayPort configuration data
2813  * @dp_phy: LTTPR PHY to read the capabilities for
2814  * @caps: buffer to return the capability info in
2815  *
2816  * Read the capabilities for the given LTTPR PHY.
2817  *
2818  * Returns 0 on success or a negative error code on failure.
2819  */
2820 int drm_dp_read_lttpr_phy_caps(struct drm_dp_aux *aux,
2821 			       const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2822 			       enum drm_dp_phy dp_phy,
2823 			       u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2824 {
2825 	return drm_dp_read_lttpr_regs(aux, dpcd,
2826 				      DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy),
2827 				      caps, DP_LTTPR_PHY_CAP_SIZE);
2828 }
2829 EXPORT_SYMBOL(drm_dp_read_lttpr_phy_caps);
2830 
2831 static u8 dp_lttpr_common_cap(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE], int r)
2832 {
2833 	return caps[r - DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV];
2834 }
2835 
2836 /**
2837  * drm_dp_lttpr_count - get the number of detected LTTPRs
2838  * @caps: LTTPR common capabilities
2839  *
2840  * Get the number of detected LTTPRs from the LTTPR common capabilities info.
2841  *
2842  * Returns:
2843  *   -ERANGE if more than supported number (8) of LTTPRs are detected
2844  *   -EINVAL if the DP_PHY_REPEATER_CNT register contains an invalid value
2845  *   otherwise the number of detected LTTPRs
2846  */
2847 int drm_dp_lttpr_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2848 {
2849 	u8 count = dp_lttpr_common_cap(caps, DP_PHY_REPEATER_CNT);
2850 
2851 	switch (hweight8(count)) {
2852 	case 0:
2853 		return 0;
2854 	case 1:
2855 		return 8 - ilog2(count);
2856 	case 8:
2857 		return -ERANGE;
2858 	default:
2859 		return -EINVAL;
2860 	}
2861 }
2862 EXPORT_SYMBOL(drm_dp_lttpr_count);
2863 
2864 /**
2865  * drm_dp_lttpr_max_link_rate - get the maximum link rate supported by all LTTPRs
2866  * @caps: LTTPR common capabilities
2867  *
2868  * Returns the maximum link rate supported by all detected LTTPRs.
2869  */
2870 int drm_dp_lttpr_max_link_rate(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2871 {
2872 	u8 rate = dp_lttpr_common_cap(caps, DP_MAX_LINK_RATE_PHY_REPEATER);
2873 
2874 	return drm_dp_bw_code_to_link_rate(rate);
2875 }
2876 EXPORT_SYMBOL(drm_dp_lttpr_max_link_rate);
2877 
2878 /**
2879  * drm_dp_lttpr_set_transparent_mode() - set the LTTPR in transparent mode
2880  * @aux: DisplayPort AUX channel
2881  * @enable: Enable or disable transparent mode
2882  *
2883  * Returns: 0 on success or a negative error code on failure.
2884  */
2885 int drm_dp_lttpr_set_transparent_mode(struct drm_dp_aux *aux, bool enable)
2886 {
2887 	u8 val = enable ? DP_PHY_REPEATER_MODE_TRANSPARENT :
2888 			  DP_PHY_REPEATER_MODE_NON_TRANSPARENT;
2889 	int ret = drm_dp_dpcd_writeb(aux, DP_PHY_REPEATER_MODE, val);
2890 
2891 	if (ret < 0)
2892 		return ret;
2893 
2894 	return (ret == 1) ? 0 : -EIO;
2895 }
2896 EXPORT_SYMBOL(drm_dp_lttpr_set_transparent_mode);
2897 
2898 /**
2899  * drm_dp_lttpr_init() - init LTTPR transparency mode according to DP standard
2900  * @aux: DisplayPort AUX channel
2901  * @lttpr_count: Number of LTTPRs. Between 0 and 8, according to DP standard.
2902  *               Negative error code for any non-valid number.
2903  *               See drm_dp_lttpr_count().
2904  *
2905  * Returns: 0 on success or a negative error code on failure.
2906  */
2907 int drm_dp_lttpr_init(struct drm_dp_aux *aux, int lttpr_count)
2908 {
2909 	int ret;
2910 
2911 	if (!lttpr_count)
2912 		return 0;
2913 
2914 	/*
2915 	 * See DP Standard v2.0 3.6.6.1 about the explicit disabling of
2916 	 * non-transparent mode and the disable->enable non-transparent mode
2917 	 * sequence.
2918 	 */
2919 	ret = drm_dp_lttpr_set_transparent_mode(aux, true);
2920 	if (ret)
2921 		return ret;
2922 
2923 	if (lttpr_count < 0)
2924 		return -ENODEV;
2925 
2926 	if (drm_dp_lttpr_set_transparent_mode(aux, false)) {
2927 		/*
2928 		 * Roll-back to transparent mode if setting non-transparent
2929 		 * mode has failed
2930 		 */
2931 		drm_dp_lttpr_set_transparent_mode(aux, true);
2932 		return -EINVAL;
2933 	}
2934 
2935 	return 0;
2936 }
2937 EXPORT_SYMBOL(drm_dp_lttpr_init);
2938 
2939 /**
2940  * drm_dp_lttpr_max_lane_count - get the maximum lane count supported by all LTTPRs
2941  * @caps: LTTPR common capabilities
2942  *
2943  * Returns the maximum lane count supported by all detected LTTPRs.
2944  */
2945 int drm_dp_lttpr_max_lane_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2946 {
2947 	u8 max_lanes = dp_lttpr_common_cap(caps, DP_MAX_LANE_COUNT_PHY_REPEATER);
2948 
2949 	return max_lanes & DP_MAX_LANE_COUNT_MASK;
2950 }
2951 EXPORT_SYMBOL(drm_dp_lttpr_max_lane_count);
2952 
2953 /**
2954  * drm_dp_lttpr_voltage_swing_level_3_supported - check for LTTPR vswing3 support
2955  * @caps: LTTPR PHY capabilities
2956  *
2957  * Returns true if the @caps for an LTTPR TX PHY indicate support for
2958  * voltage swing level 3.
2959  */
2960 bool
2961 drm_dp_lttpr_voltage_swing_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2962 {
2963 	u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2964 
2965 	return txcap & DP_VOLTAGE_SWING_LEVEL_3_SUPPORTED;
2966 }
2967 EXPORT_SYMBOL(drm_dp_lttpr_voltage_swing_level_3_supported);
2968 
2969 /**
2970  * drm_dp_lttpr_pre_emphasis_level_3_supported - check for LTTPR preemph3 support
2971  * @caps: LTTPR PHY capabilities
2972  *
2973  * Returns true if the @caps for an LTTPR TX PHY indicate support for
2974  * pre-emphasis level 3.
2975  */
2976 bool
2977 drm_dp_lttpr_pre_emphasis_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2978 {
2979 	u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2980 
2981 	return txcap & DP_PRE_EMPHASIS_LEVEL_3_SUPPORTED;
2982 }
2983 EXPORT_SYMBOL(drm_dp_lttpr_pre_emphasis_level_3_supported);
2984 
2985 /**
2986  * drm_dp_get_phy_test_pattern() - get the requested pattern from the sink.
2987  * @aux: DisplayPort AUX channel
2988  * @data: DP phy compliance test parameters.
2989  *
2990  * Returns 0 on success or a negative error code on failure.
2991  */
2992 int drm_dp_get_phy_test_pattern(struct drm_dp_aux *aux,
2993 				struct drm_dp_phy_test_params *data)
2994 {
2995 	int err;
2996 	u8 rate, lanes;
2997 
2998 	err = drm_dp_dpcd_readb(aux, DP_TEST_LINK_RATE, &rate);
2999 	if (err < 0)
3000 		return err;
3001 	data->link_rate = drm_dp_bw_code_to_link_rate(rate);
3002 
3003 	err = drm_dp_dpcd_readb(aux, DP_TEST_LANE_COUNT, &lanes);
3004 	if (err < 0)
3005 		return err;
3006 	data->num_lanes = lanes & DP_MAX_LANE_COUNT_MASK;
3007 
3008 	if (lanes & DP_ENHANCED_FRAME_CAP)
3009 		data->enhanced_frame_cap = true;
3010 
3011 	err = drm_dp_dpcd_readb(aux, DP_PHY_TEST_PATTERN, &data->phy_pattern);
3012 	if (err < 0)
3013 		return err;
3014 
3015 	switch (data->phy_pattern) {
3016 	case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
3017 		err = drm_dp_dpcd_read(aux, DP_TEST_80BIT_CUSTOM_PATTERN_7_0,
3018 				       &data->custom80, sizeof(data->custom80));
3019 		if (err < 0)
3020 			return err;
3021 
3022 		break;
3023 	case DP_PHY_TEST_PATTERN_CP2520:
3024 		err = drm_dp_dpcd_read(aux, DP_TEST_HBR2_SCRAMBLER_RESET,
3025 				       &data->hbr2_reset,
3026 				       sizeof(data->hbr2_reset));
3027 		if (err < 0)
3028 			return err;
3029 	}
3030 
3031 	return 0;
3032 }
3033 EXPORT_SYMBOL(drm_dp_get_phy_test_pattern);
3034 
3035 /**
3036  * drm_dp_set_phy_test_pattern() - set the pattern to the sink.
3037  * @aux: DisplayPort AUX channel
3038  * @data: DP phy compliance test parameters.
3039  * @dp_rev: DP revision to use for compliance testing
3040  *
3041  * Returns 0 on success or a negative error code on failure.
3042  */
3043 int drm_dp_set_phy_test_pattern(struct drm_dp_aux *aux,
3044 				struct drm_dp_phy_test_params *data, u8 dp_rev)
3045 {
3046 	int err, i;
3047 	u8 test_pattern;
3048 
3049 	test_pattern = data->phy_pattern;
3050 	if (dp_rev < 0x12) {
3051 		test_pattern = (test_pattern << 2) &
3052 			       DP_LINK_QUAL_PATTERN_11_MASK;
3053 		err = drm_dp_dpcd_writeb(aux, DP_TRAINING_PATTERN_SET,
3054 					 test_pattern);
3055 		if (err < 0)
3056 			return err;
3057 	} else {
3058 		for (i = 0; i < data->num_lanes; i++) {
3059 			err = drm_dp_dpcd_writeb(aux,
3060 						 DP_LINK_QUAL_LANE0_SET + i,
3061 						 test_pattern);
3062 			if (err < 0)
3063 				return err;
3064 		}
3065 	}
3066 
3067 	return 0;
3068 }
3069 EXPORT_SYMBOL(drm_dp_set_phy_test_pattern);
3070 
3071 static const char *dp_pixelformat_get_name(enum dp_pixelformat pixelformat)
3072 {
3073 	if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
3074 		return "Invalid";
3075 
3076 	switch (pixelformat) {
3077 	case DP_PIXELFORMAT_RGB:
3078 		return "RGB";
3079 	case DP_PIXELFORMAT_YUV444:
3080 		return "YUV444";
3081 	case DP_PIXELFORMAT_YUV422:
3082 		return "YUV422";
3083 	case DP_PIXELFORMAT_YUV420:
3084 		return "YUV420";
3085 	case DP_PIXELFORMAT_Y_ONLY:
3086 		return "Y_ONLY";
3087 	case DP_PIXELFORMAT_RAW:
3088 		return "RAW";
3089 	default:
3090 		return "Reserved";
3091 	}
3092 }
3093 
3094 static const char *dp_colorimetry_get_name(enum dp_pixelformat pixelformat,
3095 					   enum dp_colorimetry colorimetry)
3096 {
3097 	if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
3098 		return "Invalid";
3099 
3100 	switch (colorimetry) {
3101 	case DP_COLORIMETRY_DEFAULT:
3102 		switch (pixelformat) {
3103 		case DP_PIXELFORMAT_RGB:
3104 			return "sRGB";
3105 		case DP_PIXELFORMAT_YUV444:
3106 		case DP_PIXELFORMAT_YUV422:
3107 		case DP_PIXELFORMAT_YUV420:
3108 			return "BT.601";
3109 		case DP_PIXELFORMAT_Y_ONLY:
3110 			return "DICOM PS3.14";
3111 		case DP_PIXELFORMAT_RAW:
3112 			return "Custom Color Profile";
3113 		default:
3114 			return "Reserved";
3115 		}
3116 	case DP_COLORIMETRY_RGB_WIDE_FIXED: /* and DP_COLORIMETRY_BT709_YCC */
3117 		switch (pixelformat) {
3118 		case DP_PIXELFORMAT_RGB:
3119 			return "Wide Fixed";
3120 		case DP_PIXELFORMAT_YUV444:
3121 		case DP_PIXELFORMAT_YUV422:
3122 		case DP_PIXELFORMAT_YUV420:
3123 			return "BT.709";
3124 		default:
3125 			return "Reserved";
3126 		}
3127 	case DP_COLORIMETRY_RGB_WIDE_FLOAT: /* and DP_COLORIMETRY_XVYCC_601 */
3128 		switch (pixelformat) {
3129 		case DP_PIXELFORMAT_RGB:
3130 			return "Wide Float";
3131 		case DP_PIXELFORMAT_YUV444:
3132 		case DP_PIXELFORMAT_YUV422:
3133 		case DP_PIXELFORMAT_YUV420:
3134 			return "xvYCC 601";
3135 		default:
3136 			return "Reserved";
3137 		}
3138 	case DP_COLORIMETRY_OPRGB: /* and DP_COLORIMETRY_XVYCC_709 */
3139 		switch (pixelformat) {
3140 		case DP_PIXELFORMAT_RGB:
3141 			return "OpRGB";
3142 		case DP_PIXELFORMAT_YUV444:
3143 		case DP_PIXELFORMAT_YUV422:
3144 		case DP_PIXELFORMAT_YUV420:
3145 			return "xvYCC 709";
3146 		default:
3147 			return "Reserved";
3148 		}
3149 	case DP_COLORIMETRY_DCI_P3_RGB: /* and DP_COLORIMETRY_SYCC_601 */
3150 		switch (pixelformat) {
3151 		case DP_PIXELFORMAT_RGB:
3152 			return "DCI-P3";
3153 		case DP_PIXELFORMAT_YUV444:
3154 		case DP_PIXELFORMAT_YUV422:
3155 		case DP_PIXELFORMAT_YUV420:
3156 			return "sYCC 601";
3157 		default:
3158 			return "Reserved";
3159 		}
3160 	case DP_COLORIMETRY_RGB_CUSTOM: /* and DP_COLORIMETRY_OPYCC_601 */
3161 		switch (pixelformat) {
3162 		case DP_PIXELFORMAT_RGB:
3163 			return "Custom Profile";
3164 		case DP_PIXELFORMAT_YUV444:
3165 		case DP_PIXELFORMAT_YUV422:
3166 		case DP_PIXELFORMAT_YUV420:
3167 			return "OpYCC 601";
3168 		default:
3169 			return "Reserved";
3170 		}
3171 	case DP_COLORIMETRY_BT2020_RGB: /* and DP_COLORIMETRY_BT2020_CYCC */
3172 		switch (pixelformat) {
3173 		case DP_PIXELFORMAT_RGB:
3174 			return "BT.2020 RGB";
3175 		case DP_PIXELFORMAT_YUV444:
3176 		case DP_PIXELFORMAT_YUV422:
3177 		case DP_PIXELFORMAT_YUV420:
3178 			return "BT.2020 CYCC";
3179 		default:
3180 			return "Reserved";
3181 		}
3182 	case DP_COLORIMETRY_BT2020_YCC:
3183 		switch (pixelformat) {
3184 		case DP_PIXELFORMAT_YUV444:
3185 		case DP_PIXELFORMAT_YUV422:
3186 		case DP_PIXELFORMAT_YUV420:
3187 			return "BT.2020 YCC";
3188 		default:
3189 			return "Reserved";
3190 		}
3191 	default:
3192 		return "Invalid";
3193 	}
3194 }
3195 
3196 static const char *dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range)
3197 {
3198 	switch (dynamic_range) {
3199 	case DP_DYNAMIC_RANGE_VESA:
3200 		return "VESA range";
3201 	case DP_DYNAMIC_RANGE_CTA:
3202 		return "CTA range";
3203 	default:
3204 		return "Invalid";
3205 	}
3206 }
3207 
3208 static const char *dp_content_type_get_name(enum dp_content_type content_type)
3209 {
3210 	switch (content_type) {
3211 	case DP_CONTENT_TYPE_NOT_DEFINED:
3212 		return "Not defined";
3213 	case DP_CONTENT_TYPE_GRAPHICS:
3214 		return "Graphics";
3215 	case DP_CONTENT_TYPE_PHOTO:
3216 		return "Photo";
3217 	case DP_CONTENT_TYPE_VIDEO:
3218 		return "Video";
3219 	case DP_CONTENT_TYPE_GAME:
3220 		return "Game";
3221 	default:
3222 		return "Reserved";
3223 	}
3224 }
3225 
3226 void drm_dp_vsc_sdp_log(struct drm_printer *p, const struct drm_dp_vsc_sdp *vsc)
3227 {
3228 	drm_printf(p, "DP SDP: VSC, revision %u, length %u\n",
3229 		   vsc->revision, vsc->length);
3230 	drm_printf(p, "    pixelformat: %s\n",
3231 		   dp_pixelformat_get_name(vsc->pixelformat));
3232 	drm_printf(p, "    colorimetry: %s\n",
3233 		   dp_colorimetry_get_name(vsc->pixelformat, vsc->colorimetry));
3234 	drm_printf(p, "    bpc: %u\n", vsc->bpc);
3235 	drm_printf(p, "    dynamic range: %s\n",
3236 		   dp_dynamic_range_get_name(vsc->dynamic_range));
3237 	drm_printf(p, "    content type: %s\n",
3238 		   dp_content_type_get_name(vsc->content_type));
3239 }
3240 EXPORT_SYMBOL(drm_dp_vsc_sdp_log);
3241 
3242 void drm_dp_as_sdp_log(struct drm_printer *p, const struct drm_dp_as_sdp *as_sdp)
3243 {
3244 	drm_printf(p, "DP SDP: AS_SDP, revision %u, length %u\n",
3245 		   as_sdp->revision, as_sdp->length);
3246 	drm_printf(p, "    vtotal: %d\n", as_sdp->vtotal);
3247 	drm_printf(p, "    target_rr: %d\n", as_sdp->target_rr);
3248 	drm_printf(p, "    duration_incr_ms: %d\n", as_sdp->duration_incr_ms);
3249 	drm_printf(p, "    duration_decr_ms: %d\n", as_sdp->duration_decr_ms);
3250 	drm_printf(p, "    operation_mode: %d\n", as_sdp->mode);
3251 }
3252 EXPORT_SYMBOL(drm_dp_as_sdp_log);
3253 
3254 /**
3255  * drm_dp_as_sdp_supported() - check if adaptive sync sdp is supported
3256  * @aux: DisplayPort AUX channel
3257  * @dpcd: DisplayPort configuration data
3258  *
3259  * Returns true if adaptive sync sdp is supported, else returns false
3260  */
3261 bool drm_dp_as_sdp_supported(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE])
3262 {
3263 	u8 rx_feature;
3264 
3265 	if (dpcd[DP_DPCD_REV] < DP_DPCD_REV_13)
3266 		return false;
3267 
3268 	if (drm_dp_dpcd_readb(aux, DP_DPRX_FEATURE_ENUMERATION_LIST_CONT_1,
3269 			      &rx_feature) != 1) {
3270 		drm_dbg_dp(aux->drm_dev,
3271 			   "Failed to read DP_DPRX_FEATURE_ENUMERATION_LIST_CONT_1\n");
3272 		return false;
3273 	}
3274 
3275 	return (rx_feature & DP_ADAPTIVE_SYNC_SDP_SUPPORTED);
3276 }
3277 EXPORT_SYMBOL(drm_dp_as_sdp_supported);
3278 
3279 /**
3280  * drm_dp_vsc_sdp_supported() - check if vsc sdp is supported
3281  * @aux: DisplayPort AUX channel
3282  * @dpcd: DisplayPort configuration data
3283  *
3284  * Returns true if vsc sdp is supported, else returns false
3285  */
3286 bool drm_dp_vsc_sdp_supported(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE])
3287 {
3288 	u8 rx_feature;
3289 
3290 	if (dpcd[DP_DPCD_REV] < DP_DPCD_REV_13)
3291 		return false;
3292 
3293 	if (drm_dp_dpcd_readb(aux, DP_DPRX_FEATURE_ENUMERATION_LIST, &rx_feature) != 1) {
3294 		drm_dbg_dp(aux->drm_dev, "failed to read DP_DPRX_FEATURE_ENUMERATION_LIST\n");
3295 		return false;
3296 	}
3297 
3298 	return (rx_feature & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED);
3299 }
3300 EXPORT_SYMBOL(drm_dp_vsc_sdp_supported);
3301 
3302 /**
3303  * drm_dp_vsc_sdp_pack() - pack a given vsc sdp into generic dp_sdp
3304  * @vsc: vsc sdp initialized according to its purpose as defined in
3305  *       table 2-118 - table 2-120 in DP 1.4a specification
3306  * @sdp: valid handle to the generic dp_sdp which will be packed
3307  *
3308  * Returns length of sdp on success and error code on failure
3309  */
3310 ssize_t drm_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc,
3311 			    struct dp_sdp *sdp)
3312 {
3313 	size_t length = sizeof(struct dp_sdp);
3314 
3315 	memset(sdp, 0, sizeof(struct dp_sdp));
3316 
3317 	/*
3318 	 * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119
3319 	 * VSC SDP Header Bytes
3320 	 */
3321 	sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */
3322 	sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */
3323 	sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */
3324 	sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */
3325 
3326 	if (vsc->revision == 0x6) {
3327 		sdp->db[0] = 1;
3328 		sdp->db[3] = 1;
3329 	}
3330 
3331 	/*
3332 	 * Revision 0x5 and revision 0x7 supports Pixel Encoding/Colorimetry
3333 	 * Format as per DP 1.4a spec and DP 2.0 respectively.
3334 	 */
3335 	if (!(vsc->revision == 0x5 || vsc->revision == 0x7))
3336 		goto out;
3337 
3338 	/* VSC SDP Payload for DB16 through DB18 */
3339 	/* Pixel Encoding and Colorimetry Formats  */
3340 	sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */
3341 	sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */
3342 
3343 	switch (vsc->bpc) {
3344 	case 6:
3345 		/* 6bpc: 0x0 */
3346 		break;
3347 	case 8:
3348 		sdp->db[17] = 0x1; /* DB17[3:0] */
3349 		break;
3350 	case 10:
3351 		sdp->db[17] = 0x2;
3352 		break;
3353 	case 12:
3354 		sdp->db[17] = 0x3;
3355 		break;
3356 	case 16:
3357 		sdp->db[17] = 0x4;
3358 		break;
3359 	default:
3360 		WARN(1, "Missing case %d\n", vsc->bpc);
3361 		return -EINVAL;
3362 	}
3363 
3364 	/* Dynamic Range and Component Bit Depth */
3365 	if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA)
3366 		sdp->db[17] |= 0x80;  /* DB17[7] */
3367 
3368 	/* Content Type */
3369 	sdp->db[18] = vsc->content_type & 0x7;
3370 
3371 out:
3372 	return length;
3373 }
3374 EXPORT_SYMBOL(drm_dp_vsc_sdp_pack);
3375 
3376 /**
3377  * drm_dp_get_pcon_max_frl_bw() - maximum frl supported by PCON
3378  * @dpcd: DisplayPort configuration data
3379  * @port_cap: port capabilities
3380  *
3381  * Returns maximum frl bandwidth supported by PCON in GBPS,
3382  * returns 0 if not supported.
3383  */
3384 int drm_dp_get_pcon_max_frl_bw(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
3385 			       const u8 port_cap[4])
3386 {
3387 	int bw;
3388 	u8 buf;
3389 
3390 	buf = port_cap[2];
3391 	bw = buf & DP_PCON_MAX_FRL_BW;
3392 
3393 	switch (bw) {
3394 	case DP_PCON_MAX_9GBPS:
3395 		return 9;
3396 	case DP_PCON_MAX_18GBPS:
3397 		return 18;
3398 	case DP_PCON_MAX_24GBPS:
3399 		return 24;
3400 	case DP_PCON_MAX_32GBPS:
3401 		return 32;
3402 	case DP_PCON_MAX_40GBPS:
3403 		return 40;
3404 	case DP_PCON_MAX_48GBPS:
3405 		return 48;
3406 	case DP_PCON_MAX_0GBPS:
3407 	default:
3408 		return 0;
3409 	}
3410 
3411 	return 0;
3412 }
3413 EXPORT_SYMBOL(drm_dp_get_pcon_max_frl_bw);
3414 
3415 /**
3416  * drm_dp_pcon_frl_prepare() - Prepare PCON for FRL.
3417  * @aux: DisplayPort AUX channel
3418  * @enable_frl_ready_hpd: Configure DP_PCON_ENABLE_HPD_READY.
3419  *
3420  * Returns 0 if success, else returns negative error code.
3421  */
3422 int drm_dp_pcon_frl_prepare(struct drm_dp_aux *aux, bool enable_frl_ready_hpd)
3423 {
3424 	int ret;
3425 	u8 buf = DP_PCON_ENABLE_SOURCE_CTL_MODE |
3426 		 DP_PCON_ENABLE_LINK_FRL_MODE;
3427 
3428 	if (enable_frl_ready_hpd)
3429 		buf |= DP_PCON_ENABLE_HPD_READY;
3430 
3431 	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3432 
3433 	return ret;
3434 }
3435 EXPORT_SYMBOL(drm_dp_pcon_frl_prepare);
3436 
3437 /**
3438  * drm_dp_pcon_is_frl_ready() - Is PCON ready for FRL
3439  * @aux: DisplayPort AUX channel
3440  *
3441  * Returns true if success, else returns false.
3442  */
3443 bool drm_dp_pcon_is_frl_ready(struct drm_dp_aux *aux)
3444 {
3445 	int ret;
3446 	u8 buf;
3447 
3448 	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
3449 	if (ret < 0)
3450 		return false;
3451 
3452 	if (buf & DP_PCON_FRL_READY)
3453 		return true;
3454 
3455 	return false;
3456 }
3457 EXPORT_SYMBOL(drm_dp_pcon_is_frl_ready);
3458 
3459 /**
3460  * drm_dp_pcon_frl_configure_1() - Set HDMI LINK Configuration-Step1
3461  * @aux: DisplayPort AUX channel
3462  * @max_frl_gbps: maximum frl bw to be configured between PCON and HDMI sink
3463  * @frl_mode: FRL Training mode, it can be either Concurrent or Sequential.
3464  * In Concurrent Mode, the FRL link bring up can be done along with
3465  * DP Link training. In Sequential mode, the FRL link bring up is done prior to
3466  * the DP Link training.
3467  *
3468  * Returns 0 if success, else returns negative error code.
3469  */
3470 
3471 int drm_dp_pcon_frl_configure_1(struct drm_dp_aux *aux, int max_frl_gbps,
3472 				u8 frl_mode)
3473 {
3474 	int ret;
3475 	u8 buf;
3476 
3477 	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3478 	if (ret < 0)
3479 		return ret;
3480 
3481 	if (frl_mode == DP_PCON_ENABLE_CONCURRENT_LINK)
3482 		buf |= DP_PCON_ENABLE_CONCURRENT_LINK;
3483 	else
3484 		buf &= ~DP_PCON_ENABLE_CONCURRENT_LINK;
3485 
3486 	switch (max_frl_gbps) {
3487 	case 9:
3488 		buf |=  DP_PCON_ENABLE_MAX_BW_9GBPS;
3489 		break;
3490 	case 18:
3491 		buf |=  DP_PCON_ENABLE_MAX_BW_18GBPS;
3492 		break;
3493 	case 24:
3494 		buf |=  DP_PCON_ENABLE_MAX_BW_24GBPS;
3495 		break;
3496 	case 32:
3497 		buf |=  DP_PCON_ENABLE_MAX_BW_32GBPS;
3498 		break;
3499 	case 40:
3500 		buf |=  DP_PCON_ENABLE_MAX_BW_40GBPS;
3501 		break;
3502 	case 48:
3503 		buf |=  DP_PCON_ENABLE_MAX_BW_48GBPS;
3504 		break;
3505 	case 0:
3506 		buf |=  DP_PCON_ENABLE_MAX_BW_0GBPS;
3507 		break;
3508 	default:
3509 		return -EINVAL;
3510 	}
3511 
3512 	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3513 	if (ret < 0)
3514 		return ret;
3515 
3516 	return 0;
3517 }
3518 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_1);
3519 
3520 /**
3521  * drm_dp_pcon_frl_configure_2() - Set HDMI Link configuration Step-2
3522  * @aux: DisplayPort AUX channel
3523  * @max_frl_mask : Max FRL BW to be tried by the PCON with HDMI Sink
3524  * @frl_type : FRL training type, can be Extended, or Normal.
3525  * In Normal FRL training, the PCON tries each frl bw from the max_frl_mask
3526  * starting from min, and stops when link training is successful. In Extended
3527  * FRL training, all frl bw selected in the mask are trained by the PCON.
3528  *
3529  * Returns 0 if success, else returns negative error code.
3530  */
3531 int drm_dp_pcon_frl_configure_2(struct drm_dp_aux *aux, int max_frl_mask,
3532 				u8 frl_type)
3533 {
3534 	int ret;
3535 	u8 buf = max_frl_mask;
3536 
3537 	if (frl_type == DP_PCON_FRL_LINK_TRAIN_EXTENDED)
3538 		buf |= DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3539 	else
3540 		buf &= ~DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3541 
3542 	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_2, buf);
3543 	if (ret < 0)
3544 		return ret;
3545 
3546 	return 0;
3547 }
3548 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_2);
3549 
3550 /**
3551  * drm_dp_pcon_reset_frl_config() - Re-Set HDMI Link configuration.
3552  * @aux: DisplayPort AUX channel
3553  *
3554  * Returns 0 if success, else returns negative error code.
3555  */
3556 int drm_dp_pcon_reset_frl_config(struct drm_dp_aux *aux)
3557 {
3558 	int ret;
3559 
3560 	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, 0x0);
3561 	if (ret < 0)
3562 		return ret;
3563 
3564 	return 0;
3565 }
3566 EXPORT_SYMBOL(drm_dp_pcon_reset_frl_config);
3567 
3568 /**
3569  * drm_dp_pcon_frl_enable() - Enable HDMI link through FRL
3570  * @aux: DisplayPort AUX channel
3571  *
3572  * Returns 0 if success, else returns negative error code.
3573  */
3574 int drm_dp_pcon_frl_enable(struct drm_dp_aux *aux)
3575 {
3576 	int ret;
3577 	u8 buf = 0;
3578 
3579 	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3580 	if (ret < 0)
3581 		return ret;
3582 	if (!(buf & DP_PCON_ENABLE_SOURCE_CTL_MODE)) {
3583 		drm_dbg_kms(aux->drm_dev, "%s: PCON in Autonomous mode, can't enable FRL\n",
3584 			    aux->name);
3585 		return -EINVAL;
3586 	}
3587 	buf |= DP_PCON_ENABLE_HDMI_LINK;
3588 	ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3589 	if (ret < 0)
3590 		return ret;
3591 
3592 	return 0;
3593 }
3594 EXPORT_SYMBOL(drm_dp_pcon_frl_enable);
3595 
3596 /**
3597  * drm_dp_pcon_hdmi_link_active() - check if the PCON HDMI LINK status is active.
3598  * @aux: DisplayPort AUX channel
3599  *
3600  * Returns true if link is active else returns false.
3601  */
3602 bool drm_dp_pcon_hdmi_link_active(struct drm_dp_aux *aux)
3603 {
3604 	u8 buf;
3605 	int ret;
3606 
3607 	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
3608 	if (ret < 0)
3609 		return false;
3610 
3611 	return buf & DP_PCON_HDMI_TX_LINK_ACTIVE;
3612 }
3613 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_active);
3614 
3615 /**
3616  * drm_dp_pcon_hdmi_link_mode() - get the PCON HDMI LINK MODE
3617  * @aux: DisplayPort AUX channel
3618  * @frl_trained_mask: pointer to store bitmask of the trained bw configuration.
3619  * Valid only if the MODE returned is FRL. For Normal Link training mode
3620  * only 1 of the bits will be set, but in case of Extended mode, more than
3621  * one bits can be set.
3622  *
3623  * Returns the link mode : TMDS or FRL on success, else returns negative error
3624  * code.
3625  */
3626 int drm_dp_pcon_hdmi_link_mode(struct drm_dp_aux *aux, u8 *frl_trained_mask)
3627 {
3628 	u8 buf;
3629 	int mode;
3630 	int ret;
3631 
3632 	ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_POST_FRL_STATUS, &buf);
3633 	if (ret < 0)
3634 		return ret;
3635 
3636 	mode = buf & DP_PCON_HDMI_LINK_MODE;
3637 
3638 	if (frl_trained_mask && DP_PCON_HDMI_MODE_FRL == mode)
3639 		*frl_trained_mask = (buf & DP_PCON_HDMI_FRL_TRAINED_BW) >> 1;
3640 
3641 	return mode;
3642 }
3643 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_mode);
3644 
3645 /**
3646  * drm_dp_pcon_hdmi_frl_link_error_count() - print the error count per lane
3647  * during link failure between PCON and HDMI sink
3648  * @aux: DisplayPort AUX channel
3649  * @connector: DRM connector
3650  * code.
3651  **/
3652 
3653 void drm_dp_pcon_hdmi_frl_link_error_count(struct drm_dp_aux *aux,
3654 					   struct drm_connector *connector)
3655 {
3656 	u8 buf, error_count;
3657 	int i, num_error;
3658 	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3659 
3660 	for (i = 0; i < hdmi->max_lanes; i++) {
3661 		if (drm_dp_dpcd_readb(aux, DP_PCON_HDMI_ERROR_STATUS_LN0 + i, &buf) < 0)
3662 			return;
3663 
3664 		error_count = buf & DP_PCON_HDMI_ERROR_COUNT_MASK;
3665 		switch (error_count) {
3666 		case DP_PCON_HDMI_ERROR_COUNT_HUNDRED_PLUS:
3667 			num_error = 100;
3668 			break;
3669 		case DP_PCON_HDMI_ERROR_COUNT_TEN_PLUS:
3670 			num_error = 10;
3671 			break;
3672 		case DP_PCON_HDMI_ERROR_COUNT_THREE_PLUS:
3673 			num_error = 3;
3674 			break;
3675 		default:
3676 			num_error = 0;
3677 		}
3678 
3679 		drm_err(aux->drm_dev, "%s: More than %d errors since the last read for lane %d",
3680 			aux->name, num_error, i);
3681 	}
3682 }
3683 EXPORT_SYMBOL(drm_dp_pcon_hdmi_frl_link_error_count);
3684 
3685 /*
3686  * drm_dp_pcon_enc_is_dsc_1_2 - Does PCON Encoder supports DSC 1.2
3687  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3688  *
3689  * Returns true is PCON encoder is DSC 1.2 else returns false.
3690  */
3691 bool drm_dp_pcon_enc_is_dsc_1_2(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3692 {
3693 	u8 buf;
3694 	u8 major_v, minor_v;
3695 
3696 	buf = pcon_dsc_dpcd[DP_PCON_DSC_VERSION - DP_PCON_DSC_ENCODER];
3697 	major_v = (buf & DP_PCON_DSC_MAJOR_MASK) >> DP_PCON_DSC_MAJOR_SHIFT;
3698 	minor_v = (buf & DP_PCON_DSC_MINOR_MASK) >> DP_PCON_DSC_MINOR_SHIFT;
3699 
3700 	if (major_v == 1 && minor_v == 2)
3701 		return true;
3702 
3703 	return false;
3704 }
3705 EXPORT_SYMBOL(drm_dp_pcon_enc_is_dsc_1_2);
3706 
3707 /*
3708  * drm_dp_pcon_dsc_max_slices - Get max slices supported by PCON DSC Encoder
3709  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3710  *
3711  * Returns maximum no. of slices supported by the PCON DSC Encoder.
3712  */
3713 int drm_dp_pcon_dsc_max_slices(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3714 {
3715 	u8 slice_cap1, slice_cap2;
3716 
3717 	slice_cap1 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_1 - DP_PCON_DSC_ENCODER];
3718 	slice_cap2 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_2 - DP_PCON_DSC_ENCODER];
3719 
3720 	if (slice_cap2 & DP_PCON_DSC_24_PER_DSC_ENC)
3721 		return 24;
3722 	if (slice_cap2 & DP_PCON_DSC_20_PER_DSC_ENC)
3723 		return 20;
3724 	if (slice_cap2 & DP_PCON_DSC_16_PER_DSC_ENC)
3725 		return 16;
3726 	if (slice_cap1 & DP_PCON_DSC_12_PER_DSC_ENC)
3727 		return 12;
3728 	if (slice_cap1 & DP_PCON_DSC_10_PER_DSC_ENC)
3729 		return 10;
3730 	if (slice_cap1 & DP_PCON_DSC_8_PER_DSC_ENC)
3731 		return 8;
3732 	if (slice_cap1 & DP_PCON_DSC_6_PER_DSC_ENC)
3733 		return 6;
3734 	if (slice_cap1 & DP_PCON_DSC_4_PER_DSC_ENC)
3735 		return 4;
3736 	if (slice_cap1 & DP_PCON_DSC_2_PER_DSC_ENC)
3737 		return 2;
3738 	if (slice_cap1 & DP_PCON_DSC_1_PER_DSC_ENC)
3739 		return 1;
3740 
3741 	return 0;
3742 }
3743 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slices);
3744 
3745 /*
3746  * drm_dp_pcon_dsc_max_slice_width() - Get max slice width for Pcon DSC encoder
3747  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3748  *
3749  * Returns maximum width of the slices in pixel width i.e. no. of pixels x 320.
3750  */
3751 int drm_dp_pcon_dsc_max_slice_width(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3752 {
3753 	u8 buf;
3754 
3755 	buf = pcon_dsc_dpcd[DP_PCON_DSC_MAX_SLICE_WIDTH - DP_PCON_DSC_ENCODER];
3756 
3757 	return buf * DP_DSC_SLICE_WIDTH_MULTIPLIER;
3758 }
3759 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slice_width);
3760 
3761 /*
3762  * drm_dp_pcon_dsc_bpp_incr() - Get bits per pixel increment for PCON DSC encoder
3763  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3764  *
3765  * Returns the bpp precision supported by the PCON encoder.
3766  */
3767 int drm_dp_pcon_dsc_bpp_incr(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3768 {
3769 	u8 buf;
3770 
3771 	buf = pcon_dsc_dpcd[DP_PCON_DSC_BPP_INCR - DP_PCON_DSC_ENCODER];
3772 
3773 	switch (buf & DP_PCON_DSC_BPP_INCR_MASK) {
3774 	case DP_PCON_DSC_ONE_16TH_BPP:
3775 		return 16;
3776 	case DP_PCON_DSC_ONE_8TH_BPP:
3777 		return 8;
3778 	case DP_PCON_DSC_ONE_4TH_BPP:
3779 		return 4;
3780 	case DP_PCON_DSC_ONE_HALF_BPP:
3781 		return 2;
3782 	case DP_PCON_DSC_ONE_BPP:
3783 		return 1;
3784 	}
3785 
3786 	return 0;
3787 }
3788 EXPORT_SYMBOL(drm_dp_pcon_dsc_bpp_incr);
3789 
3790 static
3791 int drm_dp_pcon_configure_dsc_enc(struct drm_dp_aux *aux, u8 pps_buf_config)
3792 {
3793 	u8 buf;
3794 	int ret;
3795 
3796 	ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3797 	if (ret < 0)
3798 		return ret;
3799 
3800 	buf |= DP_PCON_ENABLE_DSC_ENCODER;
3801 
3802 	if (pps_buf_config <= DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER) {
3803 		buf &= ~DP_PCON_ENCODER_PPS_OVERRIDE_MASK;
3804 		buf |= pps_buf_config << 2;
3805 	}
3806 
3807 	ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3808 	if (ret < 0)
3809 		return ret;
3810 
3811 	return 0;
3812 }
3813 
3814 /**
3815  * drm_dp_pcon_pps_default() - Let PCON fill the default pps parameters
3816  * for DSC1.2 between PCON & HDMI2.1 sink
3817  * @aux: DisplayPort AUX channel
3818  *
3819  * Returns 0 on success, else returns negative error code.
3820  */
3821 int drm_dp_pcon_pps_default(struct drm_dp_aux *aux)
3822 {
3823 	int ret;
3824 
3825 	ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_DISABLED);
3826 	if (ret < 0)
3827 		return ret;
3828 
3829 	return 0;
3830 }
3831 EXPORT_SYMBOL(drm_dp_pcon_pps_default);
3832 
3833 /**
3834  * drm_dp_pcon_pps_override_buf() - Configure PPS encoder override buffer for
3835  * HDMI sink
3836  * @aux: DisplayPort AUX channel
3837  * @pps_buf: 128 bytes to be written into PPS buffer for HDMI sink by PCON.
3838  *
3839  * Returns 0 on success, else returns negative error code.
3840  */
3841 int drm_dp_pcon_pps_override_buf(struct drm_dp_aux *aux, u8 pps_buf[128])
3842 {
3843 	int ret;
3844 
3845 	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVERRIDE_BASE, &pps_buf, 128);
3846 	if (ret < 0)
3847 		return ret;
3848 
3849 	ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3850 	if (ret < 0)
3851 		return ret;
3852 
3853 	return 0;
3854 }
3855 EXPORT_SYMBOL(drm_dp_pcon_pps_override_buf);
3856 
3857 /*
3858  * drm_dp_pcon_pps_override_param() - Write PPS parameters to DSC encoder
3859  * override registers
3860  * @aux: DisplayPort AUX channel
3861  * @pps_param: 3 Parameters (2 Bytes each) : Slice Width, Slice Height,
3862  * bits_per_pixel.
3863  *
3864  * Returns 0 on success, else returns negative error code.
3865  */
3866 int drm_dp_pcon_pps_override_param(struct drm_dp_aux *aux, u8 pps_param[6])
3867 {
3868 	int ret;
3869 
3870 	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_HEIGHT, &pps_param[0], 2);
3871 	if (ret < 0)
3872 		return ret;
3873 	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_WIDTH, &pps_param[2], 2);
3874 	if (ret < 0)
3875 		return ret;
3876 	ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_BPP, &pps_param[4], 2);
3877 	if (ret < 0)
3878 		return ret;
3879 
3880 	ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3881 	if (ret < 0)
3882 		return ret;
3883 
3884 	return 0;
3885 }
3886 EXPORT_SYMBOL(drm_dp_pcon_pps_override_param);
3887 
3888 /*
3889  * drm_dp_pcon_convert_rgb_to_ycbcr() - Configure the PCon to convert RGB to Ycbcr
3890  * @aux: displayPort AUX channel
3891  * @color_spc: Color-space/s for which conversion is to be enabled, 0 for disable.
3892  *
3893  * Returns 0 on success, else returns negative error code.
3894  */
3895 int drm_dp_pcon_convert_rgb_to_ycbcr(struct drm_dp_aux *aux, u8 color_spc)
3896 {
3897 	int ret;
3898 	u8 buf;
3899 
3900 	ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3901 	if (ret < 0)
3902 		return ret;
3903 
3904 	if (color_spc & DP_CONVERSION_RGB_YCBCR_MASK)
3905 		buf |= (color_spc & DP_CONVERSION_RGB_YCBCR_MASK);
3906 	else
3907 		buf &= ~DP_CONVERSION_RGB_YCBCR_MASK;
3908 
3909 	ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3910 	if (ret < 0)
3911 		return ret;
3912 
3913 	return 0;
3914 }
3915 EXPORT_SYMBOL(drm_dp_pcon_convert_rgb_to_ycbcr);
3916 
3917 /**
3918  * drm_edp_backlight_set_level() - Set the backlight level of an eDP panel via AUX
3919  * @aux: The DP AUX channel to use
3920  * @bl: Backlight capability info from drm_edp_backlight_init()
3921  * @level: The brightness level to set
3922  *
3923  * Sets the brightness level of an eDP panel's backlight. Note that the panel's backlight must
3924  * already have been enabled by the driver by calling drm_edp_backlight_enable().
3925  *
3926  * Returns: %0 on success, negative error code on failure
3927  */
3928 int drm_edp_backlight_set_level(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3929 				u16 level)
3930 {
3931 	int ret;
3932 	u8 buf[2] = { 0 };
3933 
3934 	/* The panel uses the PWM for controlling brightness levels */
3935 	if (!bl->aux_set)
3936 		return 0;
3937 
3938 	if (bl->lsb_reg_used) {
3939 		buf[0] = (level & 0xff00) >> 8;
3940 		buf[1] = (level & 0x00ff);
3941 	} else {
3942 		buf[0] = level;
3943 	}
3944 
3945 	ret = drm_dp_dpcd_write(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, sizeof(buf));
3946 	if (ret != sizeof(buf)) {
3947 		drm_err(aux->drm_dev,
3948 			"%s: Failed to write aux backlight level: %d\n",
3949 			aux->name, ret);
3950 		return ret < 0 ? ret : -EIO;
3951 	}
3952 
3953 	return 0;
3954 }
3955 EXPORT_SYMBOL(drm_edp_backlight_set_level);
3956 
3957 static int
3958 drm_edp_backlight_set_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3959 			     bool enable)
3960 {
3961 	int ret;
3962 	u8 buf;
3963 
3964 	/* This panel uses the EDP_BL_PWR GPIO for enablement */
3965 	if (!bl->aux_enable)
3966 		return 0;
3967 
3968 	ret = drm_dp_dpcd_readb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, &buf);
3969 	if (ret != 1) {
3970 		drm_err(aux->drm_dev, "%s: Failed to read eDP display control register: %d\n",
3971 			aux->name, ret);
3972 		return ret < 0 ? ret : -EIO;
3973 	}
3974 	if (enable)
3975 		buf |= DP_EDP_BACKLIGHT_ENABLE;
3976 	else
3977 		buf &= ~DP_EDP_BACKLIGHT_ENABLE;
3978 
3979 	ret = drm_dp_dpcd_writeb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, buf);
3980 	if (ret != 1) {
3981 		drm_err(aux->drm_dev, "%s: Failed to write eDP display control register: %d\n",
3982 			aux->name, ret);
3983 		return ret < 0 ? ret : -EIO;
3984 	}
3985 
3986 	return 0;
3987 }
3988 
3989 /**
3990  * drm_edp_backlight_enable() - Enable an eDP panel's backlight using DPCD
3991  * @aux: The DP AUX channel to use
3992  * @bl: Backlight capability info from drm_edp_backlight_init()
3993  * @level: The initial backlight level to set via AUX, if there is one
3994  *
3995  * This function handles enabling DPCD backlight controls on a panel over DPCD, while additionally
3996  * restoring any important backlight state such as the given backlight level, the brightness byte
3997  * count, backlight frequency, etc.
3998  *
3999  * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
4000  * that the driver handle enabling/disabling the panel through implementation-specific means using
4001  * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
4002  * this function becomes a no-op, and the driver is expected to handle powering the panel on using
4003  * the EDP_BL_PWR GPIO.
4004  *
4005  * Returns: %0 on success, negative error code on failure.
4006  */
4007 int drm_edp_backlight_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
4008 			     const u16 level)
4009 {
4010 	int ret;
4011 	u8 dpcd_buf;
4012 
4013 	if (bl->aux_set)
4014 		dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD;
4015 	else
4016 		dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_PWM;
4017 
4018 	if (bl->pwmgen_bit_count) {
4019 		ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, bl->pwmgen_bit_count);
4020 		if (ret != 1)
4021 			drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
4022 				    aux->name, ret);
4023 	}
4024 
4025 	if (bl->pwm_freq_pre_divider) {
4026 		ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_FREQ_SET, bl->pwm_freq_pre_divider);
4027 		if (ret != 1)
4028 			drm_dbg_kms(aux->drm_dev,
4029 				    "%s: Failed to write aux backlight frequency: %d\n",
4030 				    aux->name, ret);
4031 		else
4032 			dpcd_buf |= DP_EDP_BACKLIGHT_FREQ_AUX_SET_ENABLE;
4033 	}
4034 
4035 	ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, dpcd_buf);
4036 	if (ret != 1) {
4037 		drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux backlight mode: %d\n",
4038 			    aux->name, ret);
4039 		return ret < 0 ? ret : -EIO;
4040 	}
4041 
4042 	ret = drm_edp_backlight_set_level(aux, bl, level);
4043 	if (ret < 0)
4044 		return ret;
4045 	ret = drm_edp_backlight_set_enable(aux, bl, true);
4046 	if (ret < 0)
4047 		return ret;
4048 
4049 	return 0;
4050 }
4051 EXPORT_SYMBOL(drm_edp_backlight_enable);
4052 
4053 /**
4054  * drm_edp_backlight_disable() - Disable an eDP backlight using DPCD, if supported
4055  * @aux: The DP AUX channel to use
4056  * @bl: Backlight capability info from drm_edp_backlight_init()
4057  *
4058  * This function handles disabling DPCD backlight controls on a panel over AUX.
4059  *
4060  * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
4061  * that the driver handle enabling/disabling the panel through implementation-specific means using
4062  * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
4063  * this function becomes a no-op, and the driver is expected to handle powering the panel off using
4064  * the EDP_BL_PWR GPIO.
4065  *
4066  * Returns: %0 on success or no-op, negative error code on failure.
4067  */
4068 int drm_edp_backlight_disable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl)
4069 {
4070 	int ret;
4071 
4072 	ret = drm_edp_backlight_set_enable(aux, bl, false);
4073 	if (ret < 0)
4074 		return ret;
4075 
4076 	return 0;
4077 }
4078 EXPORT_SYMBOL(drm_edp_backlight_disable);
4079 
4080 static inline int
4081 drm_edp_backlight_probe_max(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
4082 			    u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE])
4083 {
4084 	int fxp, fxp_min, fxp_max, fxp_actual, f = 1;
4085 	int ret;
4086 	u8 pn, pn_min, pn_max;
4087 
4088 	if (!bl->aux_set)
4089 		return 0;
4090 
4091 	ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT, &pn);
4092 	if (ret != 1) {
4093 		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap: %d\n",
4094 			    aux->name, ret);
4095 		return -ENODEV;
4096 	}
4097 
4098 	pn &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
4099 	bl->max = (1 << pn) - 1;
4100 	if (!driver_pwm_freq_hz)
4101 		return 0;
4102 
4103 	/*
4104 	 * Set PWM Frequency divider to match desired frequency provided by the driver.
4105 	 * The PWM Frequency is calculated as 27Mhz / (F x P).
4106 	 * - Where F = PWM Frequency Pre-Divider value programmed by field 7:0 of the
4107 	 *             EDP_BACKLIGHT_FREQ_SET register (DPCD Address 00728h)
4108 	 * - Where P = 2^Pn, where Pn is the value programmed by field 4:0 of the
4109 	 *             EDP_PWMGEN_BIT_COUNT register (DPCD Address 00724h)
4110 	 */
4111 
4112 	/* Find desired value of (F x P)
4113 	 * Note that, if F x P is out of supported range, the maximum value or minimum value will
4114 	 * applied automatically. So no need to check that.
4115 	 */
4116 	fxp = DIV_ROUND_CLOSEST(1000 * DP_EDP_BACKLIGHT_FREQ_BASE_KHZ, driver_pwm_freq_hz);
4117 
4118 	/* Use highest possible value of Pn for more granularity of brightness adjustment while
4119 	 * satisfying the conditions below.
4120 	 * - Pn is in the range of Pn_min and Pn_max
4121 	 * - F is in the range of 1 and 255
4122 	 * - FxP is within 25% of desired value.
4123 	 *   Note: 25% is arbitrary value and may need some tweak.
4124 	 */
4125 	ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MIN, &pn_min);
4126 	if (ret != 1) {
4127 		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap min: %d\n",
4128 			    aux->name, ret);
4129 		return 0;
4130 	}
4131 	ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MAX, &pn_max);
4132 	if (ret != 1) {
4133 		drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap max: %d\n",
4134 			    aux->name, ret);
4135 		return 0;
4136 	}
4137 	pn_min &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
4138 	pn_max &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
4139 
4140 	/* Ensure frequency is within 25% of desired value */
4141 	fxp_min = DIV_ROUND_CLOSEST(fxp * 3, 4);
4142 	fxp_max = DIV_ROUND_CLOSEST(fxp * 5, 4);
4143 	if (fxp_min < (1 << pn_min) || (255 << pn_max) < fxp_max) {
4144 		drm_dbg_kms(aux->drm_dev,
4145 			    "%s: Driver defined backlight frequency (%d) out of range\n",
4146 			    aux->name, driver_pwm_freq_hz);
4147 		return 0;
4148 	}
4149 
4150 	for (pn = pn_max; pn >= pn_min; pn--) {
4151 		f = clamp(DIV_ROUND_CLOSEST(fxp, 1 << pn), 1, 255);
4152 		fxp_actual = f << pn;
4153 		if (fxp_min <= fxp_actual && fxp_actual <= fxp_max)
4154 			break;
4155 	}
4156 
4157 	ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, pn);
4158 	if (ret != 1) {
4159 		drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
4160 			    aux->name, ret);
4161 		return 0;
4162 	}
4163 	bl->pwmgen_bit_count = pn;
4164 	bl->max = (1 << pn) - 1;
4165 
4166 	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_FREQ_AUX_SET_CAP) {
4167 		bl->pwm_freq_pre_divider = f;
4168 		drm_dbg_kms(aux->drm_dev, "%s: Using backlight frequency from driver (%dHz)\n",
4169 			    aux->name, driver_pwm_freq_hz);
4170 	}
4171 
4172 	return 0;
4173 }
4174 
4175 static inline int
4176 drm_edp_backlight_probe_state(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
4177 			      u8 *current_mode)
4178 {
4179 	int ret;
4180 	u8 buf[2];
4181 	u8 mode_reg;
4182 
4183 	ret = drm_dp_dpcd_readb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, &mode_reg);
4184 	if (ret != 1) {
4185 		drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight mode: %d\n",
4186 			    aux->name, ret);
4187 		return ret < 0 ? ret : -EIO;
4188 	}
4189 
4190 	*current_mode = (mode_reg & DP_EDP_BACKLIGHT_CONTROL_MODE_MASK);
4191 	if (!bl->aux_set)
4192 		return 0;
4193 
4194 	if (*current_mode == DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD) {
4195 		int size = 1 + bl->lsb_reg_used;
4196 
4197 		ret = drm_dp_dpcd_read(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, size);
4198 		if (ret != size) {
4199 			drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight level: %d\n",
4200 				    aux->name, ret);
4201 			return ret < 0 ? ret : -EIO;
4202 		}
4203 
4204 		if (bl->lsb_reg_used)
4205 			return (buf[0] << 8) | buf[1];
4206 		else
4207 			return buf[0];
4208 	}
4209 
4210 	/*
4211 	 * If we're not in DPCD control mode yet, the programmed brightness value is meaningless and
4212 	 * the driver should assume max brightness
4213 	 */
4214 	return bl->max;
4215 }
4216 
4217 /**
4218  * drm_edp_backlight_init() - Probe a display panel's TCON using the standard VESA eDP backlight
4219  * interface.
4220  * @aux: The DP aux device to use for probing
4221  * @bl: The &drm_edp_backlight_info struct to fill out with information on the backlight
4222  * @driver_pwm_freq_hz: Optional PWM frequency from the driver in hz
4223  * @edp_dpcd: A cached copy of the eDP DPCD
4224  * @current_level: Where to store the probed brightness level, if any
4225  * @current_mode: Where to store the currently set backlight control mode
4226  *
4227  * Initializes a &drm_edp_backlight_info struct by probing @aux for it's backlight capabilities,
4228  * along with also probing the current and maximum supported brightness levels.
4229  *
4230  * If @driver_pwm_freq_hz is non-zero, this will be used as the backlight frequency. Otherwise, the
4231  * default frequency from the panel is used.
4232  *
4233  * Returns: %0 on success, negative error code on failure.
4234  */
4235 int
4236 drm_edp_backlight_init(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
4237 		       u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE],
4238 		       u16 *current_level, u8 *current_mode)
4239 {
4240 	int ret;
4241 
4242 	if (edp_dpcd[1] & DP_EDP_BACKLIGHT_AUX_ENABLE_CAP)
4243 		bl->aux_enable = true;
4244 	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_AUX_SET_CAP)
4245 		bl->aux_set = true;
4246 	if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_BYTE_COUNT)
4247 		bl->lsb_reg_used = true;
4248 
4249 	/* Sanity check caps */
4250 	if (!bl->aux_set && !(edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_PWM_PIN_CAP)) {
4251 		drm_dbg_kms(aux->drm_dev,
4252 			    "%s: Panel supports neither AUX or PWM brightness control? Aborting\n",
4253 			    aux->name);
4254 		return -EINVAL;
4255 	}
4256 
4257 	ret = drm_edp_backlight_probe_max(aux, bl, driver_pwm_freq_hz, edp_dpcd);
4258 	if (ret < 0)
4259 		return ret;
4260 
4261 	ret = drm_edp_backlight_probe_state(aux, bl, current_mode);
4262 	if (ret < 0)
4263 		return ret;
4264 	*current_level = ret;
4265 
4266 	drm_dbg_kms(aux->drm_dev,
4267 		    "%s: Found backlight: aux_set=%d aux_enable=%d mode=%d\n",
4268 		    aux->name, bl->aux_set, bl->aux_enable, *current_mode);
4269 	if (bl->aux_set) {
4270 		drm_dbg_kms(aux->drm_dev,
4271 			    "%s: Backlight caps: level=%d/%d pwm_freq_pre_divider=%d lsb_reg_used=%d\n",
4272 			    aux->name, *current_level, bl->max, bl->pwm_freq_pre_divider,
4273 			    bl->lsb_reg_used);
4274 	}
4275 
4276 	return 0;
4277 }
4278 EXPORT_SYMBOL(drm_edp_backlight_init);
4279 
4280 #if IS_BUILTIN(CONFIG_BACKLIGHT_CLASS_DEVICE) || \
4281 	(IS_MODULE(CONFIG_DRM_KMS_HELPER) && IS_MODULE(CONFIG_BACKLIGHT_CLASS_DEVICE))
4282 
4283 static int dp_aux_backlight_update_status(struct backlight_device *bd)
4284 {
4285 	struct dp_aux_backlight *bl = bl_get_data(bd);
4286 	u16 brightness = backlight_get_brightness(bd);
4287 	int ret = 0;
4288 
4289 	if (!backlight_is_blank(bd)) {
4290 		if (!bl->enabled) {
4291 			drm_edp_backlight_enable(bl->aux, &bl->info, brightness);
4292 			bl->enabled = true;
4293 			return 0;
4294 		}
4295 		ret = drm_edp_backlight_set_level(bl->aux, &bl->info, brightness);
4296 	} else {
4297 		if (bl->enabled) {
4298 			drm_edp_backlight_disable(bl->aux, &bl->info);
4299 			bl->enabled = false;
4300 		}
4301 	}
4302 
4303 	return ret;
4304 }
4305 
4306 static const struct backlight_ops dp_aux_bl_ops = {
4307 	.update_status = dp_aux_backlight_update_status,
4308 };
4309 
4310 /**
4311  * drm_panel_dp_aux_backlight - create and use DP AUX backlight
4312  * @panel: DRM panel
4313  * @aux: The DP AUX channel to use
4314  *
4315  * Use this function to create and handle backlight if your panel
4316  * supports backlight control over DP AUX channel using DPCD
4317  * registers as per VESA's standard backlight control interface.
4318  *
4319  * When the panel is enabled backlight will be enabled after a
4320  * successful call to &drm_panel_funcs.enable()
4321  *
4322  * When the panel is disabled backlight will be disabled before the
4323  * call to &drm_panel_funcs.disable().
4324  *
4325  * A typical implementation for a panel driver supporting backlight
4326  * control over DP AUX will call this function at probe time.
4327  * Backlight will then be handled transparently without requiring
4328  * any intervention from the driver.
4329  *
4330  * drm_panel_dp_aux_backlight() must be called after the call to drm_panel_init().
4331  *
4332  * Return: 0 on success or a negative error code on failure.
4333  */
4334 int drm_panel_dp_aux_backlight(struct drm_panel *panel, struct drm_dp_aux *aux)
4335 {
4336 	struct dp_aux_backlight *bl;
4337 	struct backlight_properties props = { 0 };
4338 	u16 current_level;
4339 	u8 current_mode;
4340 	u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE];
4341 	int ret;
4342 
4343 	if (!panel || !panel->dev || !aux)
4344 		return -EINVAL;
4345 
4346 	ret = drm_dp_dpcd_read(aux, DP_EDP_DPCD_REV, edp_dpcd,
4347 			       EDP_DISPLAY_CTL_CAP_SIZE);
4348 	if (ret < 0)
4349 		return ret;
4350 
4351 	if (!drm_edp_backlight_supported(edp_dpcd)) {
4352 		DRM_DEV_INFO(panel->dev, "DP AUX backlight is not supported\n");
4353 		return 0;
4354 	}
4355 
4356 	bl = devm_kzalloc(panel->dev, sizeof(*bl), GFP_KERNEL);
4357 	if (!bl)
4358 		return -ENOMEM;
4359 
4360 	bl->aux = aux;
4361 
4362 	ret = drm_edp_backlight_init(aux, &bl->info, 0, edp_dpcd,
4363 				     &current_level, &current_mode);
4364 	if (ret < 0)
4365 		return ret;
4366 
4367 	props.type = BACKLIGHT_RAW;
4368 	props.brightness = current_level;
4369 	props.max_brightness = bl->info.max;
4370 
4371 	bl->base = devm_backlight_device_register(panel->dev, "dp_aux_backlight",
4372 						  panel->dev, bl,
4373 						  &dp_aux_bl_ops, &props);
4374 	if (IS_ERR(bl->base))
4375 		return PTR_ERR(bl->base);
4376 
4377 	backlight_disable(bl->base);
4378 
4379 	panel->backlight = bl->base;
4380 
4381 	return 0;
4382 }
4383 EXPORT_SYMBOL(drm_panel_dp_aux_backlight);
4384 
4385 #endif
4386 
4387 /* See DP Standard v2.1 2.6.4.4.1.1, 2.8.4.4, 2.8.7 */
4388 static int drm_dp_link_symbol_cycles(int lane_count, int pixels, int bpp_x16,
4389 				     int symbol_size, bool is_mst)
4390 {
4391 	int cycles = DIV_ROUND_UP(pixels * bpp_x16, 16 * symbol_size * lane_count);
4392 	int align = is_mst ? 4 / lane_count : 1;
4393 
4394 	return ALIGN(cycles, align);
4395 }
4396 
4397 static int drm_dp_link_dsc_symbol_cycles(int lane_count, int pixels, int slice_count,
4398 					 int bpp_x16, int symbol_size, bool is_mst)
4399 {
4400 	int slice_pixels = DIV_ROUND_UP(pixels, slice_count);
4401 	int slice_data_cycles = drm_dp_link_symbol_cycles(lane_count, slice_pixels,
4402 							  bpp_x16, symbol_size, is_mst);
4403 	int slice_eoc_cycles = is_mst ? 4 / lane_count : 1;
4404 
4405 	return slice_count * (slice_data_cycles + slice_eoc_cycles);
4406 }
4407 
4408 /**
4409  * drm_dp_bw_overhead - Calculate the BW overhead of a DP link stream
4410  * @lane_count: DP link lane count
4411  * @hactive: pixel count of the active period in one scanline of the stream
4412  * @dsc_slice_count: DSC slice count if @flags/DRM_DP_LINK_BW_OVERHEAD_DSC is set
4413  * @bpp_x16: bits per pixel in .4 binary fixed point
4414  * @flags: DRM_DP_OVERHEAD_x flags
4415  *
4416  * Calculate the BW allocation overhead of a DP link stream, depending
4417  * on the link's
4418  * - @lane_count
4419  * - SST/MST mode (@flags / %DRM_DP_OVERHEAD_MST)
4420  * - symbol size (@flags / %DRM_DP_OVERHEAD_UHBR)
4421  * - FEC mode (@flags / %DRM_DP_OVERHEAD_FEC)
4422  * - SSC/REF_CLK mode (@flags / %DRM_DP_OVERHEAD_SSC_REF_CLK)
4423  * as well as the stream's
4424  * - @hactive timing
4425  * - @bpp_x16 color depth
4426  * - compression mode (@flags / %DRM_DP_OVERHEAD_DSC).
4427  * Note that this overhead doesn't account for the 8b/10b, 128b/132b
4428  * channel coding efficiency, for that see
4429  * @drm_dp_link_bw_channel_coding_efficiency().
4430  *
4431  * Returns the overhead as 100% + overhead% in 1ppm units.
4432  */
4433 int drm_dp_bw_overhead(int lane_count, int hactive,
4434 		       int dsc_slice_count,
4435 		       int bpp_x16, unsigned long flags)
4436 {
4437 	int symbol_size = flags & DRM_DP_BW_OVERHEAD_UHBR ? 32 : 8;
4438 	bool is_mst = flags & DRM_DP_BW_OVERHEAD_MST;
4439 	u32 overhead = 1000000;
4440 	int symbol_cycles;
4441 
4442 	if (lane_count == 0 || hactive == 0 || bpp_x16 == 0) {
4443 		DRM_DEBUG_KMS("Invalid BW overhead params: lane_count %d, hactive %d, bpp_x16 " FXP_Q4_FMT "\n",
4444 			      lane_count, hactive,
4445 			      FXP_Q4_ARGS(bpp_x16));
4446 		return 0;
4447 	}
4448 
4449 	/*
4450 	 * DP Standard v2.1 2.6.4.1
4451 	 * SSC downspread and ref clock variation margin:
4452 	 *   5300ppm + 300ppm ~ 0.6%
4453 	 */
4454 	if (flags & DRM_DP_BW_OVERHEAD_SSC_REF_CLK)
4455 		overhead += 6000;
4456 
4457 	/*
4458 	 * DP Standard v2.1 2.6.4.1.1, 3.5.1.5.4:
4459 	 * FEC symbol insertions for 8b/10b channel coding:
4460 	 * After each 250 data symbols on 2-4 lanes:
4461 	 *   250 LL + 5 FEC_PARITY_PH + 1 CD_ADJ   (256 byte FEC block)
4462 	 * After each 2 x 250 data symbols on 1 lane:
4463 	 *   2 * 250 LL + 11 FEC_PARITY_PH + 1 CD_ADJ (512 byte FEC block)
4464 	 * After 256 (2-4 lanes) or 128 (1 lane) FEC blocks:
4465 	 *   256 * 256 bytes + 1 FEC_PM
4466 	 * or
4467 	 *   128 * 512 bytes + 1 FEC_PM
4468 	 * (256 * 6 + 1) / (256 * 250) = 2.4015625 %
4469 	 */
4470 	if (flags & DRM_DP_BW_OVERHEAD_FEC)
4471 		overhead += 24016;
4472 
4473 	/*
4474 	 * DP Standard v2.1 2.7.9, 5.9.7
4475 	 * The FEC overhead for UHBR is accounted for in its 96.71% channel
4476 	 * coding efficiency.
4477 	 */
4478 	WARN_ON((flags & DRM_DP_BW_OVERHEAD_UHBR) &&
4479 		(flags & DRM_DP_BW_OVERHEAD_FEC));
4480 
4481 	if (flags & DRM_DP_BW_OVERHEAD_DSC)
4482 		symbol_cycles = drm_dp_link_dsc_symbol_cycles(lane_count, hactive,
4483 							      dsc_slice_count,
4484 							      bpp_x16, symbol_size,
4485 							      is_mst);
4486 	else
4487 		symbol_cycles = drm_dp_link_symbol_cycles(lane_count, hactive,
4488 							  bpp_x16, symbol_size,
4489 							  is_mst);
4490 
4491 	return DIV_ROUND_UP_ULL(mul_u32_u32(symbol_cycles * symbol_size * lane_count,
4492 					    overhead * 16),
4493 				hactive * bpp_x16);
4494 }
4495 EXPORT_SYMBOL(drm_dp_bw_overhead);
4496 
4497 /**
4498  * drm_dp_bw_channel_coding_efficiency - Get a DP link's channel coding efficiency
4499  * @is_uhbr: Whether the link has a 128b/132b channel coding
4500  *
4501  * Return the channel coding efficiency of the given DP link type, which is
4502  * either 8b/10b or 128b/132b (aka UHBR). The corresponding overhead includes
4503  * the 8b -> 10b, 128b -> 132b pixel data to link symbol conversion overhead
4504  * and for 128b/132b any link or PHY level control symbol insertion overhead
4505  * (LLCP, FEC, PHY sync, see DP Standard v2.1 3.5.2.18). For 8b/10b the
4506  * corresponding FEC overhead is BW allocation specific, included in the value
4507  * returned by drm_dp_bw_overhead().
4508  *
4509  * Returns the efficiency in the 100%/coding-overhead% ratio in
4510  * 1ppm units.
4511  */
4512 int drm_dp_bw_channel_coding_efficiency(bool is_uhbr)
4513 {
4514 	if (is_uhbr)
4515 		return 967100;
4516 	else
4517 		/*
4518 		 * Note that on 8b/10b MST the efficiency is only
4519 		 * 78.75% due to the 1 out of 64 MTPH packet overhead,
4520 		 * not accounted for here.
4521 		 */
4522 		return 800000;
4523 }
4524 EXPORT_SYMBOL(drm_dp_bw_channel_coding_efficiency);
4525 
4526 /**
4527  * drm_dp_max_dprx_data_rate - Get the max data bandwidth of a DPRX sink
4528  * @max_link_rate: max DPRX link rate in 10kbps units
4529  * @max_lanes: max DPRX lane count
4530  *
4531  * Given a link rate and lanes, get the data bandwidth.
4532  *
4533  * Data bandwidth is the actual payload rate, which depends on the data
4534  * bandwidth efficiency and the link rate.
4535  *
4536  * Note that protocol layers above the DPRX link level considered here can
4537  * further limit the maximum data rate. Such layers are the MST topology (with
4538  * limits on the link between the source and first branch device as well as on
4539  * the whole MST path until the DPRX link) and (Thunderbolt) DP tunnels -
4540  * which in turn can encapsulate an MST link with its own limit - with each
4541  * SST or MST encapsulated tunnel sharing the BW of a tunnel group.
4542  *
4543  * Returns the maximum data rate in kBps units.
4544  */
4545 int drm_dp_max_dprx_data_rate(int max_link_rate, int max_lanes)
4546 {
4547 	int ch_coding_efficiency =
4548 		drm_dp_bw_channel_coding_efficiency(drm_dp_is_uhbr_rate(max_link_rate));
4549 
4550 	return DIV_ROUND_DOWN_ULL(mul_u32_u32(max_link_rate * 10 * max_lanes,
4551 					      ch_coding_efficiency),
4552 				  1000000 * 8);
4553 }
4554 EXPORT_SYMBOL(drm_dp_max_dprx_data_rate);
4555