xref: /linux/arch/s390/include/asm/pgtable.h (revision 728b0e21b473ad8097185fb85ce2b9ab1ddf4ef7)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  *  S390 version
4  *    Copyright IBM Corp. 1999, 2000
5  *    Author(s): Hartmut Penner (hp@de.ibm.com)
6  *               Ulrich Weigand (weigand@de.ibm.com)
7  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
8  *
9  *  Derived from "include/asm-i386/pgtable.h"
10  */
11 
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
14 
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/cpufeature.h>
18 #include <linux/page-flags.h>
19 #include <linux/radix-tree.h>
20 #include <linux/atomic.h>
21 #include <asm/ctlreg.h>
22 #include <asm/bug.h>
23 #include <asm/page.h>
24 #include <asm/uv.h>
25 
26 extern pgd_t swapper_pg_dir[];
27 extern pgd_t invalid_pg_dir[];
28 extern void paging_init(void);
29 extern struct ctlreg s390_invalid_asce;
30 
31 enum {
32 	PG_DIRECT_MAP_4K = 0,
33 	PG_DIRECT_MAP_1M,
34 	PG_DIRECT_MAP_2G,
35 	PG_DIRECT_MAP_MAX
36 };
37 
38 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
39 
40 static inline void update_page_count(int level, long count)
41 {
42 	if (IS_ENABLED(CONFIG_PROC_FS))
43 		atomic_long_add(count, &direct_pages_count[level]);
44 }
45 
46 /*
47  * The S390 doesn't have any external MMU info: the kernel page
48  * tables contain all the necessary information.
49  */
50 #define update_mmu_cache(vma, address, ptep)     do { } while (0)
51 #define update_mmu_cache_range(vmf, vma, addr, ptep, nr) do { } while (0)
52 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
53 
54 /*
55  * ZERO_PAGE is a global shared page that is always zero; used
56  * for zero-mapped memory areas etc..
57  */
58 
59 extern unsigned long empty_zero_page;
60 extern unsigned long zero_page_mask;
61 
62 #define ZERO_PAGE(vaddr) \
63 	(virt_to_page((void *)(empty_zero_page + \
64 	 (((unsigned long)(vaddr)) &zero_page_mask))))
65 #define __HAVE_COLOR_ZERO_PAGE
66 
67 /* TODO: s390 cannot support io_remap_pfn_range... */
68 
69 #define pte_ERROR(e) \
70 	pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
71 #define pmd_ERROR(e) \
72 	pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
73 #define pud_ERROR(e) \
74 	pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
75 #define p4d_ERROR(e) \
76 	pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e))
77 #define pgd_ERROR(e) \
78 	pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
79 
80 /*
81  * The vmalloc and module area will always be on the topmost area of the
82  * kernel mapping. 512GB are reserved for vmalloc by default.
83  * At the top of the vmalloc area a 2GB area is reserved where modules
84  * will reside. That makes sure that inter module branches always
85  * happen without trampolines and in addition the placement within a
86  * 2GB frame is branch prediction unit friendly.
87  */
88 extern unsigned long VMALLOC_START;
89 extern unsigned long VMALLOC_END;
90 #define VMALLOC_DEFAULT_SIZE	((512UL << 30) - MODULES_LEN)
91 extern struct page *vmemmap;
92 extern unsigned long vmemmap_size;
93 
94 extern unsigned long MODULES_VADDR;
95 extern unsigned long MODULES_END;
96 #define MODULES_VADDR	MODULES_VADDR
97 #define MODULES_END	MODULES_END
98 #define MODULES_LEN	(1UL << 31)
99 
100 static inline int is_module_addr(void *addr)
101 {
102 	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
103 	if (addr < (void *)MODULES_VADDR)
104 		return 0;
105 	if (addr > (void *)MODULES_END)
106 		return 0;
107 	return 1;
108 }
109 
110 #ifdef CONFIG_KMSAN
111 #define KMSAN_VMALLOC_SIZE (VMALLOC_END - VMALLOC_START)
112 #define KMSAN_VMALLOC_SHADOW_START VMALLOC_END
113 #define KMSAN_VMALLOC_SHADOW_END (KMSAN_VMALLOC_SHADOW_START + KMSAN_VMALLOC_SIZE)
114 #define KMSAN_VMALLOC_ORIGIN_START KMSAN_VMALLOC_SHADOW_END
115 #define KMSAN_VMALLOC_ORIGIN_END (KMSAN_VMALLOC_ORIGIN_START + KMSAN_VMALLOC_SIZE)
116 #define KMSAN_MODULES_SHADOW_START KMSAN_VMALLOC_ORIGIN_END
117 #define KMSAN_MODULES_SHADOW_END (KMSAN_MODULES_SHADOW_START + MODULES_LEN)
118 #define KMSAN_MODULES_ORIGIN_START KMSAN_MODULES_SHADOW_END
119 #define KMSAN_MODULES_ORIGIN_END (KMSAN_MODULES_ORIGIN_START + MODULES_LEN)
120 #endif
121 
122 #ifdef CONFIG_RANDOMIZE_BASE
123 #define KASLR_LEN	(1UL << 31)
124 #else
125 #define KASLR_LEN	0UL
126 #endif
127 
128 void setup_protection_map(void);
129 
130 /*
131  * A 64 bit pagetable entry of S390 has following format:
132  * |			 PFRA			      |0IPC|  OS  |
133  * 0000000000111111111122222222223333333333444444444455555555556666
134  * 0123456789012345678901234567890123456789012345678901234567890123
135  *
136  * I Page-Invalid Bit:    Page is not available for address-translation
137  * P Page-Protection Bit: Store access not possible for page
138  * C Change-bit override: HW is not required to set change bit
139  *
140  * A 64 bit segmenttable entry of S390 has following format:
141  * |        P-table origin                              |      TT
142  * 0000000000111111111122222222223333333333444444444455555555556666
143  * 0123456789012345678901234567890123456789012345678901234567890123
144  *
145  * I Segment-Invalid Bit:    Segment is not available for address-translation
146  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
147  * P Page-Protection Bit: Store access not possible for page
148  * TT Type 00
149  *
150  * A 64 bit region table entry of S390 has following format:
151  * |        S-table origin                             |   TF  TTTL
152  * 0000000000111111111122222222223333333333444444444455555555556666
153  * 0123456789012345678901234567890123456789012345678901234567890123
154  *
155  * I Segment-Invalid Bit:    Segment is not available for address-translation
156  * TT Type 01
157  * TF
158  * TL Table length
159  *
160  * The 64 bit regiontable origin of S390 has following format:
161  * |      region table origon                          |       DTTL
162  * 0000000000111111111122222222223333333333444444444455555555556666
163  * 0123456789012345678901234567890123456789012345678901234567890123
164  *
165  * X Space-Switch event:
166  * G Segment-Invalid Bit:
167  * P Private-Space Bit:
168  * S Storage-Alteration:
169  * R Real space
170  * TL Table-Length:
171  *
172  * A storage key has the following format:
173  * | ACC |F|R|C|0|
174  *  0   3 4 5 6 7
175  * ACC: access key
176  * F  : fetch protection bit
177  * R  : referenced bit
178  * C  : changed bit
179  */
180 
181 /* Hardware bits in the page table entry */
182 #define _PAGE_NOEXEC	0x100		/* HW no-execute bit  */
183 #define _PAGE_PROTECT	0x200		/* HW read-only bit  */
184 #define _PAGE_INVALID	0x400		/* HW invalid bit    */
185 #define _PAGE_LARGE	0x800		/* Bit to mark a large pte */
186 
187 /* Software bits in the page table entry */
188 #define _PAGE_PRESENT	0x001		/* SW pte present bit */
189 #define _PAGE_YOUNG	0x004		/* SW pte young bit */
190 #define _PAGE_DIRTY	0x008		/* SW pte dirty bit */
191 #define _PAGE_READ	0x010		/* SW pte read bit */
192 #define _PAGE_WRITE	0x020		/* SW pte write bit */
193 #define _PAGE_SPECIAL	0x040		/* SW associated with special page */
194 #define _PAGE_UNUSED	0x080		/* SW bit for pgste usage state */
195 
196 #ifdef CONFIG_MEM_SOFT_DIRTY
197 #define _PAGE_SOFT_DIRTY 0x002		/* SW pte soft dirty bit */
198 #else
199 #define _PAGE_SOFT_DIRTY 0x000
200 #endif
201 
202 #define _PAGE_SW_BITS	0xffUL		/* All SW bits */
203 
204 #define _PAGE_SWP_EXCLUSIVE _PAGE_LARGE	/* SW pte exclusive swap bit */
205 
206 /* Set of bits not changed in pte_modify */
207 #define _PAGE_CHG_MASK		(PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
208 				 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
209 
210 /*
211  * Mask of bits that must not be changed with RDP. Allow only _PAGE_PROTECT
212  * HW bit and all SW bits.
213  */
214 #define _PAGE_RDP_MASK		~(_PAGE_PROTECT | _PAGE_SW_BITS)
215 
216 /*
217  * handle_pte_fault uses pte_present and pte_none to find out the pte type
218  * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
219  * distinguish present from not-present ptes. It is changed only with the page
220  * table lock held.
221  *
222  * The following table gives the different possible bit combinations for
223  * the pte hardware and software bits in the last 12 bits of a pte
224  * (. unassigned bit, x don't care, t swap type):
225  *
226  *				842100000000
227  *				000084210000
228  *				000000008421
229  *				.IR.uswrdy.p
230  * empty			.10.00000000
231  * swap				.11..ttttt.0
232  * prot-none, clean, old	.11.xx0000.1
233  * prot-none, clean, young	.11.xx0001.1
234  * prot-none, dirty, old	.11.xx0010.1
235  * prot-none, dirty, young	.11.xx0011.1
236  * read-only, clean, old	.11.xx0100.1
237  * read-only, clean, young	.01.xx0101.1
238  * read-only, dirty, old	.11.xx0110.1
239  * read-only, dirty, young	.01.xx0111.1
240  * read-write, clean, old	.11.xx1100.1
241  * read-write, clean, young	.01.xx1101.1
242  * read-write, dirty, old	.10.xx1110.1
243  * read-write, dirty, young	.00.xx1111.1
244  * HW-bits: R read-only, I invalid
245  * SW-bits: p present, y young, d dirty, r read, w write, s special,
246  *	    u unused, l large
247  *
248  * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
249  * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
250  * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
251  */
252 
253 /* Bits in the segment/region table address-space-control-element */
254 #define _ASCE_ORIGIN		~0xfffUL/* region/segment table origin	    */
255 #define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
256 #define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
257 #define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
258 #define _ASCE_REAL_SPACE	0x20	/* real space control		    */
259 #define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
260 #define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
261 #define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
262 #define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
263 #define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
264 #define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
265 
266 /* Bits in the region table entry */
267 #define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
268 #define _REGION_ENTRY_PROTECT	0x200	/* region protection bit	    */
269 #define _REGION_ENTRY_NOEXEC	0x100	/* region no-execute bit	    */
270 #define _REGION_ENTRY_OFFSET	0xc0	/* region table offset		    */
271 #define _REGION_ENTRY_INVALID	0x20	/* invalid region table entry	    */
272 #define _REGION_ENTRY_TYPE_MASK	0x0c	/* region table type mask	    */
273 #define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
274 #define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
275 #define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
276 #define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
277 
278 #define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
279 #define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
280 #define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
281 #define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
282 #define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH | \
283 				 _REGION3_ENTRY_PRESENT)
284 #define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
285 
286 #define _REGION3_ENTRY_HARDWARE_BITS		0xfffffffffffff6ffUL
287 #define _REGION3_ENTRY_HARDWARE_BITS_LARGE	0xffffffff8001073cUL
288 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address	     */
289 #define _REGION3_ENTRY_DIRTY	0x2000	/* SW region dirty bit */
290 #define _REGION3_ENTRY_YOUNG	0x1000	/* SW region young bit */
291 #define _REGION3_ENTRY_COMM	0x0010	/* Common-Region, marks swap entry */
292 #define _REGION3_ENTRY_LARGE	0x0400	/* RTTE-format control, large page  */
293 #define _REGION3_ENTRY_WRITE	0x8000	/* SW region write bit */
294 #define _REGION3_ENTRY_READ	0x4000	/* SW region read bit */
295 
296 #ifdef CONFIG_MEM_SOFT_DIRTY
297 #define _REGION3_ENTRY_SOFT_DIRTY 0x0002 /* SW region soft dirty bit */
298 #else
299 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
300 #endif
301 
302 #define _REGION_ENTRY_BITS	 0xfffffffffffff22fUL
303 
304 /*
305  * SW region present bit. For non-leaf region-third-table entries, bits 62-63
306  * indicate the TABLE LENGTH and both must be set to 1. But such entries
307  * would always be considered as present, so it is safe to use bit 63 as
308  * PRESENT bit for PUD.
309  */
310 #define _REGION3_ENTRY_PRESENT	0x0001
311 
312 /* Bits in the segment table entry */
313 #define _SEGMENT_ENTRY_BITS			0xfffffffffffffe3fUL
314 #define _SEGMENT_ENTRY_HARDWARE_BITS		0xfffffffffffffe3cUL
315 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE	0xfffffffffff1073cUL
316 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address	    */
317 #define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* page table origin		    */
318 #define _SEGMENT_ENTRY_PROTECT	0x200	/* segment protection bit	    */
319 #define _SEGMENT_ENTRY_NOEXEC	0x100	/* segment no-execute bit	    */
320 #define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
321 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c	/* segment table type mask	    */
322 
323 #define _SEGMENT_ENTRY		(_SEGMENT_ENTRY_PRESENT)
324 #define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
325 
326 #define _SEGMENT_ENTRY_DIRTY	0x2000	/* SW segment dirty bit */
327 #define _SEGMENT_ENTRY_YOUNG	0x1000	/* SW segment young bit */
328 
329 #define _SEGMENT_ENTRY_COMM	0x0010	/* Common-Segment, marks swap entry */
330 #define _SEGMENT_ENTRY_LARGE	0x0400	/* STE-format control, large page */
331 #define _SEGMENT_ENTRY_WRITE	0x8000	/* SW segment write bit */
332 #define _SEGMENT_ENTRY_READ	0x4000	/* SW segment read bit */
333 
334 #ifdef CONFIG_MEM_SOFT_DIRTY
335 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0002 /* SW segment soft dirty bit */
336 #else
337 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
338 #endif
339 
340 #define _SEGMENT_ENTRY_PRESENT	0x0001	/* SW segment present bit */
341 
342 /* Common bits in region and segment table entries, for swap entries */
343 #define _RST_ENTRY_COMM		0x0010	/* Common-Region/Segment, marks swap entry */
344 #define _RST_ENTRY_INVALID	0x0020	/* invalid region/segment table entry */
345 
346 #define _CRST_ENTRIES	2048	/* number of region/segment table entries */
347 #define _PAGE_ENTRIES	256	/* number of page table entries	*/
348 
349 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
350 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
351 
352 #define _REGION1_SHIFT	53
353 #define _REGION2_SHIFT	42
354 #define _REGION3_SHIFT	31
355 #define _SEGMENT_SHIFT	20
356 
357 #define _REGION1_INDEX	(0x7ffUL << _REGION1_SHIFT)
358 #define _REGION2_INDEX	(0x7ffUL << _REGION2_SHIFT)
359 #define _REGION3_INDEX	(0x7ffUL << _REGION3_SHIFT)
360 #define _SEGMENT_INDEX	(0x7ffUL << _SEGMENT_SHIFT)
361 #define _PAGE_INDEX	(0xffUL  << PAGE_SHIFT)
362 
363 #define _REGION1_SIZE	(1UL << _REGION1_SHIFT)
364 #define _REGION2_SIZE	(1UL << _REGION2_SHIFT)
365 #define _REGION3_SIZE	(1UL << _REGION3_SHIFT)
366 #define _SEGMENT_SIZE	(1UL << _SEGMENT_SHIFT)
367 
368 #define _REGION1_MASK	(~(_REGION1_SIZE - 1))
369 #define _REGION2_MASK	(~(_REGION2_SIZE - 1))
370 #define _REGION3_MASK	(~(_REGION3_SIZE - 1))
371 #define _SEGMENT_MASK	(~(_SEGMENT_SIZE - 1))
372 
373 #define PMD_SHIFT	_SEGMENT_SHIFT
374 #define PUD_SHIFT	_REGION3_SHIFT
375 #define P4D_SHIFT	_REGION2_SHIFT
376 #define PGDIR_SHIFT	_REGION1_SHIFT
377 
378 #define PMD_SIZE	_SEGMENT_SIZE
379 #define PUD_SIZE	_REGION3_SIZE
380 #define P4D_SIZE	_REGION2_SIZE
381 #define PGDIR_SIZE	_REGION1_SIZE
382 
383 #define PMD_MASK	_SEGMENT_MASK
384 #define PUD_MASK	_REGION3_MASK
385 #define P4D_MASK	_REGION2_MASK
386 #define PGDIR_MASK	_REGION1_MASK
387 
388 #define PTRS_PER_PTE	_PAGE_ENTRIES
389 #define PTRS_PER_PMD	_CRST_ENTRIES
390 #define PTRS_PER_PUD	_CRST_ENTRIES
391 #define PTRS_PER_P4D	_CRST_ENTRIES
392 #define PTRS_PER_PGD	_CRST_ENTRIES
393 
394 /*
395  * Segment table and region3 table entry encoding
396  * (R = read-only, I = invalid, y = young bit):
397  *				dy..R...I...wr
398  * prot-none, clean, old	00..1...1...00
399  * prot-none, clean, young	01..1...1...00
400  * prot-none, dirty, old	10..1...1...00
401  * prot-none, dirty, young	11..1...1...00
402  * read-only, clean, old	00..1...1...01
403  * read-only, clean, young	01..1...0...01
404  * read-only, dirty, old	10..1...1...01
405  * read-only, dirty, young	11..1...0...01
406  * read-write, clean, old	00..1...1...11
407  * read-write, clean, young	01..1...0...11
408  * read-write, dirty, old	10..0...1...11
409  * read-write, dirty, young	11..0...0...11
410  * The segment table origin is used to distinguish empty (origin==0) from
411  * read-write, old segment table entries (origin!=0)
412  * HW-bits: R read-only, I invalid
413  * SW-bits: y young, d dirty, r read, w write
414  */
415 
416 /*
417  * A user page table pointer has the space-switch-event bit, the
418  * private-space-control bit and the storage-alteration-event-control
419  * bit set. A kernel page table pointer doesn't need them.
420  */
421 #define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
422 				 _ASCE_ALT_EVENT)
423 
424 /*
425  * Page protection definitions.
426  */
427 #define __PAGE_NONE		(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
428 #define __PAGE_RO		(_PAGE_PRESENT | _PAGE_READ | \
429 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
430 #define __PAGE_RX		(_PAGE_PRESENT | _PAGE_READ | \
431 				 _PAGE_INVALID | _PAGE_PROTECT)
432 #define __PAGE_RW		(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
433 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
434 #define __PAGE_RWX		(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
435 				 _PAGE_INVALID | _PAGE_PROTECT)
436 #define __PAGE_SHARED		(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
437 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
438 #define __PAGE_KERNEL		(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
439 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
440 #define __PAGE_KERNEL_RO	(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
441 				 _PAGE_PROTECT | _PAGE_NOEXEC)
442 
443 extern unsigned long page_noexec_mask;
444 
445 #define __pgprot_page_mask(x)	__pgprot((x) & page_noexec_mask)
446 
447 #define PAGE_NONE		__pgprot_page_mask(__PAGE_NONE)
448 #define PAGE_RO			__pgprot_page_mask(__PAGE_RO)
449 #define PAGE_RX			__pgprot_page_mask(__PAGE_RX)
450 #define PAGE_RW			__pgprot_page_mask(__PAGE_RW)
451 #define PAGE_RWX		__pgprot_page_mask(__PAGE_RWX)
452 #define PAGE_SHARED		__pgprot_page_mask(__PAGE_SHARED)
453 #define PAGE_KERNEL		__pgprot_page_mask(__PAGE_KERNEL)
454 #define PAGE_KERNEL_RO		__pgprot_page_mask(__PAGE_KERNEL_RO)
455 
456 /*
457  * Segment entry (large page) protection definitions.
458  */
459 #define __SEGMENT_NONE		(_SEGMENT_ENTRY_PRESENT | \
460 				 _SEGMENT_ENTRY_INVALID | \
461 				 _SEGMENT_ENTRY_PROTECT)
462 #define __SEGMENT_RO		(_SEGMENT_ENTRY_PRESENT | \
463 				 _SEGMENT_ENTRY_PROTECT | \
464 				 _SEGMENT_ENTRY_READ | \
465 				 _SEGMENT_ENTRY_NOEXEC)
466 #define __SEGMENT_RX		(_SEGMENT_ENTRY_PRESENT | \
467 				 _SEGMENT_ENTRY_PROTECT | \
468 				 _SEGMENT_ENTRY_READ)
469 #define __SEGMENT_RW		(_SEGMENT_ENTRY_PRESENT | \
470 				 _SEGMENT_ENTRY_READ | \
471 				 _SEGMENT_ENTRY_WRITE | \
472 				 _SEGMENT_ENTRY_NOEXEC)
473 #define __SEGMENT_RWX		(_SEGMENT_ENTRY_PRESENT | \
474 				 _SEGMENT_ENTRY_READ | \
475 				 _SEGMENT_ENTRY_WRITE)
476 #define __SEGMENT_KERNEL	(_SEGMENT_ENTRY |	\
477 				 _SEGMENT_ENTRY_LARGE |	\
478 				 _SEGMENT_ENTRY_READ |	\
479 				 _SEGMENT_ENTRY_WRITE | \
480 				 _SEGMENT_ENTRY_YOUNG | \
481 				 _SEGMENT_ENTRY_DIRTY | \
482 				 _SEGMENT_ENTRY_NOEXEC)
483 #define __SEGMENT_KERNEL_RO	(_SEGMENT_ENTRY |	\
484 				 _SEGMENT_ENTRY_LARGE |	\
485 				 _SEGMENT_ENTRY_READ |	\
486 				 _SEGMENT_ENTRY_YOUNG |	\
487 				 _SEGMENT_ENTRY_PROTECT | \
488 				 _SEGMENT_ENTRY_NOEXEC)
489 
490 extern unsigned long segment_noexec_mask;
491 
492 #define __pgprot_segment_mask(x) __pgprot((x) & segment_noexec_mask)
493 
494 #define SEGMENT_NONE		__pgprot_segment_mask(__SEGMENT_NONE)
495 #define SEGMENT_RO		__pgprot_segment_mask(__SEGMENT_RO)
496 #define SEGMENT_RX		__pgprot_segment_mask(__SEGMENT_RX)
497 #define SEGMENT_RW		__pgprot_segment_mask(__SEGMENT_RW)
498 #define SEGMENT_RWX		__pgprot_segment_mask(__SEGMENT_RWX)
499 #define SEGMENT_KERNEL		__pgprot_segment_mask(__SEGMENT_KERNEL)
500 #define SEGMENT_KERNEL_RO	__pgprot_segment_mask(__SEGMENT_KERNEL_RO)
501 
502 /*
503  * Region3 entry (large page) protection definitions.
504  */
505 
506 #define __REGION3_KERNEL	(_REGION_ENTRY_TYPE_R3 | \
507 				 _REGION3_ENTRY_PRESENT | \
508 				 _REGION3_ENTRY_LARGE | \
509 				 _REGION3_ENTRY_READ | \
510 				 _REGION3_ENTRY_WRITE | \
511 				 _REGION3_ENTRY_YOUNG | \
512 				 _REGION3_ENTRY_DIRTY | \
513 				 _REGION_ENTRY_NOEXEC)
514 #define __REGION3_KERNEL_RO	(_REGION_ENTRY_TYPE_R3 | \
515 				 _REGION3_ENTRY_PRESENT | \
516 				 _REGION3_ENTRY_LARGE | \
517 				 _REGION3_ENTRY_READ | \
518 				 _REGION3_ENTRY_YOUNG | \
519 				 _REGION_ENTRY_PROTECT | \
520 				 _REGION_ENTRY_NOEXEC)
521 
522 extern unsigned long region_noexec_mask;
523 
524 #define __pgprot_region_mask(x)	__pgprot((x) & region_noexec_mask)
525 
526 #define REGION3_KERNEL		__pgprot_region_mask(__REGION3_KERNEL)
527 #define REGION3_KERNEL_RO	__pgprot_region_mask(__REGION3_KERNEL_RO)
528 
529 static inline bool mm_p4d_folded(struct mm_struct *mm)
530 {
531 	return mm->context.asce_limit <= _REGION1_SIZE;
532 }
533 #define mm_p4d_folded(mm) mm_p4d_folded(mm)
534 
535 static inline bool mm_pud_folded(struct mm_struct *mm)
536 {
537 	return mm->context.asce_limit <= _REGION2_SIZE;
538 }
539 #define mm_pud_folded(mm) mm_pud_folded(mm)
540 
541 static inline bool mm_pmd_folded(struct mm_struct *mm)
542 {
543 	return mm->context.asce_limit <= _REGION3_SIZE;
544 }
545 #define mm_pmd_folded(mm) mm_pmd_folded(mm)
546 
547 static inline int mm_is_protected(struct mm_struct *mm)
548 {
549 #if IS_ENABLED(CONFIG_KVM)
550 	if (unlikely(atomic_read(&mm->context.protected_count)))
551 		return 1;
552 #endif
553 	return 0;
554 }
555 
556 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
557 {
558 	return __pte(pte_val(pte) & ~pgprot_val(prot));
559 }
560 
561 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
562 {
563 	return __pte(pte_val(pte) | pgprot_val(prot));
564 }
565 
566 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
567 {
568 	return __pmd(pmd_val(pmd) & ~pgprot_val(prot));
569 }
570 
571 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
572 {
573 	return __pmd(pmd_val(pmd) | pgprot_val(prot));
574 }
575 
576 static inline pud_t clear_pud_bit(pud_t pud, pgprot_t prot)
577 {
578 	return __pud(pud_val(pud) & ~pgprot_val(prot));
579 }
580 
581 static inline pud_t set_pud_bit(pud_t pud, pgprot_t prot)
582 {
583 	return __pud(pud_val(pud) | pgprot_val(prot));
584 }
585 
586 /*
587  * As soon as the guest uses storage keys or enables PV, we deduplicate all
588  * mapped shared zeropages and prevent new shared zeropages from getting
589  * mapped.
590  */
591 #define mm_forbids_zeropage mm_forbids_zeropage
592 static inline int mm_forbids_zeropage(struct mm_struct *mm)
593 {
594 #if IS_ENABLED(CONFIG_KVM)
595 	if (!mm->context.allow_cow_sharing)
596 		return 1;
597 #endif
598 	return 0;
599 }
600 
601 /**
602  * cspg() - Compare and Swap and Purge (CSPG)
603  * @ptr: Pointer to the value to be exchanged
604  * @old: The expected old value
605  * @new: The new value
606  *
607  * Return: True if compare and swap was successful, otherwise false.
608  */
609 static inline bool cspg(unsigned long *ptr, unsigned long old, unsigned long new)
610 {
611 	union register_pair r1 = { .even = old, .odd = new, };
612 	unsigned long address = (unsigned long)ptr | 1;
613 
614 	asm volatile(
615 		"	cspg	%[r1],%[address]"
616 		: [r1] "+&d" (r1.pair), "+m" (*ptr)
617 		: [address] "d" (address)
618 		: "cc");
619 	return old == r1.even;
620 }
621 
622 #define CRDTE_DTT_PAGE		0x00UL
623 #define CRDTE_DTT_SEGMENT	0x10UL
624 #define CRDTE_DTT_REGION3	0x14UL
625 #define CRDTE_DTT_REGION2	0x18UL
626 #define CRDTE_DTT_REGION1	0x1cUL
627 
628 /**
629  * crdte() - Compare and Replace DAT Table Entry
630  * @old:     The expected old value
631  * @new:     The new value
632  * @table:   Pointer to the value to be exchanged
633  * @dtt:     Table type of the table to be exchanged
634  * @address: The address mapped by the entry to be replaced
635  * @asce:    The ASCE of this entry
636  *
637  * Return: True if compare and replace was successful, otherwise false.
638  */
639 static inline bool crdte(unsigned long old, unsigned long new,
640 			 unsigned long *table, unsigned long dtt,
641 			 unsigned long address, unsigned long asce)
642 {
643 	union register_pair r1 = { .even = old, .odd = new, };
644 	union register_pair r2 = { .even = __pa(table) | dtt, .odd = address, };
645 
646 	asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0"
647 		     : [r1] "+&d" (r1.pair)
648 		     : [r2] "d" (r2.pair), [asce] "a" (asce)
649 		     : "memory", "cc");
650 	return old == r1.even;
651 }
652 
653 /*
654  * pgd/p4d/pud/pmd/pte query functions
655  */
656 static inline int pgd_folded(pgd_t pgd)
657 {
658 	return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
659 }
660 
661 static inline int pgd_present(pgd_t pgd)
662 {
663 	if (pgd_folded(pgd))
664 		return 1;
665 	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
666 }
667 
668 static inline int pgd_none(pgd_t pgd)
669 {
670 	if (pgd_folded(pgd))
671 		return 0;
672 	return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
673 }
674 
675 static inline int pgd_bad(pgd_t pgd)
676 {
677 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
678 		return 0;
679 	return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
680 }
681 
682 static inline unsigned long pgd_pfn(pgd_t pgd)
683 {
684 	unsigned long origin_mask;
685 
686 	origin_mask = _REGION_ENTRY_ORIGIN;
687 	return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
688 }
689 
690 static inline int p4d_folded(p4d_t p4d)
691 {
692 	return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
693 }
694 
695 static inline int p4d_present(p4d_t p4d)
696 {
697 	if (p4d_folded(p4d))
698 		return 1;
699 	return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
700 }
701 
702 static inline int p4d_none(p4d_t p4d)
703 {
704 	if (p4d_folded(p4d))
705 		return 0;
706 	return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
707 }
708 
709 static inline unsigned long p4d_pfn(p4d_t p4d)
710 {
711 	unsigned long origin_mask;
712 
713 	origin_mask = _REGION_ENTRY_ORIGIN;
714 	return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
715 }
716 
717 static inline int pud_folded(pud_t pud)
718 {
719 	return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
720 }
721 
722 static inline int pud_present(pud_t pud)
723 {
724 	if (pud_folded(pud))
725 		return 1;
726 	return (pud_val(pud) & _REGION3_ENTRY_PRESENT) != 0;
727 }
728 
729 static inline int pud_none(pud_t pud)
730 {
731 	if (pud_folded(pud))
732 		return 0;
733 	return pud_val(pud) == _REGION3_ENTRY_EMPTY;
734 }
735 
736 #define pud_leaf pud_leaf
737 static inline bool pud_leaf(pud_t pud)
738 {
739 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
740 		return 0;
741 	return (pud_present(pud) && (pud_val(pud) & _REGION3_ENTRY_LARGE) != 0);
742 }
743 
744 static inline int pmd_present(pmd_t pmd)
745 {
746 	return (pmd_val(pmd) & _SEGMENT_ENTRY_PRESENT) != 0;
747 }
748 
749 #define pmd_leaf pmd_leaf
750 static inline bool pmd_leaf(pmd_t pmd)
751 {
752 	return (pmd_present(pmd) && (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0);
753 }
754 
755 static inline int pmd_bad(pmd_t pmd)
756 {
757 	if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_leaf(pmd))
758 		return 1;
759 	return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
760 }
761 
762 static inline int pud_bad(pud_t pud)
763 {
764 	unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
765 
766 	if (type > _REGION_ENTRY_TYPE_R3 || pud_leaf(pud))
767 		return 1;
768 	if (type < _REGION_ENTRY_TYPE_R3)
769 		return 0;
770 	return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
771 }
772 
773 static inline int p4d_bad(p4d_t p4d)
774 {
775 	unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
776 
777 	if (type > _REGION_ENTRY_TYPE_R2)
778 		return 1;
779 	if (type < _REGION_ENTRY_TYPE_R2)
780 		return 0;
781 	return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
782 }
783 
784 static inline int pmd_none(pmd_t pmd)
785 {
786 	return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
787 }
788 
789 #define pmd_write pmd_write
790 static inline int pmd_write(pmd_t pmd)
791 {
792 	return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
793 }
794 
795 #define pud_write pud_write
796 static inline int pud_write(pud_t pud)
797 {
798 	return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
799 }
800 
801 #define pmd_dirty pmd_dirty
802 static inline int pmd_dirty(pmd_t pmd)
803 {
804 	return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
805 }
806 
807 #define pmd_young pmd_young
808 static inline int pmd_young(pmd_t pmd)
809 {
810 	return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
811 }
812 
813 static inline int pte_present(pte_t pte)
814 {
815 	/* Bit pattern: (pte & 0x001) == 0x001 */
816 	return (pte_val(pte) & _PAGE_PRESENT) != 0;
817 }
818 
819 static inline int pte_none(pte_t pte)
820 {
821 	/* Bit pattern: pte == 0x400 */
822 	return pte_val(pte) == _PAGE_INVALID;
823 }
824 
825 static inline int pte_swap(pte_t pte)
826 {
827 	/* Bit pattern: (pte & 0x201) == 0x200 */
828 	return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
829 		== _PAGE_PROTECT;
830 }
831 
832 static inline int pte_special(pte_t pte)
833 {
834 	return (pte_val(pte) & _PAGE_SPECIAL);
835 }
836 
837 #define __HAVE_ARCH_PTE_SAME
838 static inline int pte_same(pte_t a, pte_t b)
839 {
840 	return pte_val(a) == pte_val(b);
841 }
842 
843 #ifdef CONFIG_NUMA_BALANCING
844 static inline int pte_protnone(pte_t pte)
845 {
846 	return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
847 }
848 
849 static inline int pmd_protnone(pmd_t pmd)
850 {
851 	/* pmd_leaf(pmd) implies pmd_present(pmd) */
852 	return pmd_leaf(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
853 }
854 #endif
855 
856 static inline bool pte_swp_exclusive(pte_t pte)
857 {
858 	return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
859 }
860 
861 static inline pte_t pte_swp_mkexclusive(pte_t pte)
862 {
863 	return set_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
864 }
865 
866 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
867 {
868 	return clear_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
869 }
870 
871 static inline int pte_soft_dirty(pte_t pte)
872 {
873 	return pte_val(pte) & _PAGE_SOFT_DIRTY;
874 }
875 #define pte_swp_soft_dirty pte_soft_dirty
876 
877 static inline pte_t pte_mksoft_dirty(pte_t pte)
878 {
879 	return set_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
880 }
881 #define pte_swp_mksoft_dirty pte_mksoft_dirty
882 
883 static inline pte_t pte_clear_soft_dirty(pte_t pte)
884 {
885 	return clear_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
886 }
887 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
888 
889 static inline int pmd_soft_dirty(pmd_t pmd)
890 {
891 	return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
892 }
893 
894 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
895 {
896 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
897 }
898 
899 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
900 {
901 	return clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
902 }
903 
904 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
905 #define pmd_swp_soft_dirty(pmd)		pmd_soft_dirty(pmd)
906 #define pmd_swp_mksoft_dirty(pmd)	pmd_mksoft_dirty(pmd)
907 #define pmd_swp_clear_soft_dirty(pmd)	pmd_clear_soft_dirty(pmd)
908 #endif
909 
910 /*
911  * query functions pte_write/pte_dirty/pte_young only work if
912  * pte_present() is true. Undefined behaviour if not..
913  */
914 static inline int pte_write(pte_t pte)
915 {
916 	return (pte_val(pte) & _PAGE_WRITE) != 0;
917 }
918 
919 static inline int pte_dirty(pte_t pte)
920 {
921 	return (pte_val(pte) & _PAGE_DIRTY) != 0;
922 }
923 
924 static inline int pte_young(pte_t pte)
925 {
926 	return (pte_val(pte) & _PAGE_YOUNG) != 0;
927 }
928 
929 #define __HAVE_ARCH_PTE_UNUSED
930 static inline int pte_unused(pte_t pte)
931 {
932 	return pte_val(pte) & _PAGE_UNUSED;
933 }
934 
935 /*
936  * Extract the pgprot value from the given pte while at the same time making it
937  * usable for kernel address space mappings where fault driven dirty and
938  * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID
939  * must not be set.
940  */
941 #define pte_pgprot pte_pgprot
942 static inline pgprot_t pte_pgprot(pte_t pte)
943 {
944 	unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK;
945 
946 	if (pte_write(pte))
947 		pte_flags |= pgprot_val(PAGE_KERNEL);
948 	else
949 		pte_flags |= pgprot_val(PAGE_KERNEL_RO);
950 	pte_flags |= pte_val(pte) & mio_wb_bit_mask;
951 
952 	return __pgprot(pte_flags);
953 }
954 
955 /*
956  * pgd/pmd/pte modification functions
957  */
958 
959 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
960 {
961 	WRITE_ONCE(*pgdp, pgd);
962 }
963 
964 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
965 {
966 	WRITE_ONCE(*p4dp, p4d);
967 }
968 
969 static inline void set_pud(pud_t *pudp, pud_t pud)
970 {
971 	WRITE_ONCE(*pudp, pud);
972 }
973 
974 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
975 {
976 	WRITE_ONCE(*pmdp, pmd);
977 }
978 
979 static inline void set_pte(pte_t *ptep, pte_t pte)
980 {
981 	WRITE_ONCE(*ptep, pte);
982 }
983 
984 static inline void pgd_clear(pgd_t *pgd)
985 {
986 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
987 		set_pgd(pgd, __pgd(_REGION1_ENTRY_EMPTY));
988 }
989 
990 static inline void p4d_clear(p4d_t *p4d)
991 {
992 	if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
993 		set_p4d(p4d, __p4d(_REGION2_ENTRY_EMPTY));
994 }
995 
996 static inline void pud_clear(pud_t *pud)
997 {
998 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
999 		set_pud(pud, __pud(_REGION3_ENTRY_EMPTY));
1000 }
1001 
1002 static inline void pmd_clear(pmd_t *pmdp)
1003 {
1004 	set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1005 }
1006 
1007 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
1008 {
1009 	set_pte(ptep, __pte(_PAGE_INVALID));
1010 }
1011 
1012 /*
1013  * The following pte modification functions only work if
1014  * pte_present() is true. Undefined behaviour if not..
1015  */
1016 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1017 {
1018 	pte = clear_pte_bit(pte, __pgprot(~_PAGE_CHG_MASK));
1019 	pte = set_pte_bit(pte, newprot);
1020 	/*
1021 	 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
1022 	 * has the invalid bit set, clear it again for readable, young pages
1023 	 */
1024 	if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
1025 		pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
1026 	/*
1027 	 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
1028 	 * protection bit set, clear it again for writable, dirty pages
1029 	 */
1030 	if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
1031 		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1032 	return pte;
1033 }
1034 
1035 static inline pte_t pte_wrprotect(pte_t pte)
1036 {
1037 	pte = clear_pte_bit(pte, __pgprot(_PAGE_WRITE));
1038 	return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1039 }
1040 
1041 static inline pte_t pte_mkwrite_novma(pte_t pte)
1042 {
1043 	pte = set_pte_bit(pte, __pgprot(_PAGE_WRITE));
1044 	if (pte_val(pte) & _PAGE_DIRTY)
1045 		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1046 	return pte;
1047 }
1048 
1049 static inline pte_t pte_mkclean(pte_t pte)
1050 {
1051 	pte = clear_pte_bit(pte, __pgprot(_PAGE_DIRTY));
1052 	return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1053 }
1054 
1055 static inline pte_t pte_mkdirty(pte_t pte)
1056 {
1057 	pte = set_pte_bit(pte, __pgprot(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
1058 	if (pte_val(pte) & _PAGE_WRITE)
1059 		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1060 	return pte;
1061 }
1062 
1063 static inline pte_t pte_mkold(pte_t pte)
1064 {
1065 	pte = clear_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1066 	return set_pte_bit(pte, __pgprot(_PAGE_INVALID));
1067 }
1068 
1069 static inline pte_t pte_mkyoung(pte_t pte)
1070 {
1071 	pte = set_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1072 	if (pte_val(pte) & _PAGE_READ)
1073 		pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
1074 	return pte;
1075 }
1076 
1077 static inline pte_t pte_mkspecial(pte_t pte)
1078 {
1079 	return set_pte_bit(pte, __pgprot(_PAGE_SPECIAL));
1080 }
1081 
1082 #ifdef CONFIG_HUGETLB_PAGE
1083 static inline pte_t pte_mkhuge(pte_t pte)
1084 {
1085 	return set_pte_bit(pte, __pgprot(_PAGE_LARGE));
1086 }
1087 #endif
1088 
1089 static inline unsigned long sske_frame(unsigned long addr, unsigned char skey)
1090 {
1091 	asm volatile("sske %[skey],%[addr],1"
1092 		     : [addr] "+a" (addr) : [skey] "d" (skey));
1093 	return addr;
1094 }
1095 
1096 #define IPTE_GLOBAL	0
1097 #define	IPTE_LOCAL	1
1098 
1099 #define IPTE_NODAT	0x400
1100 #define IPTE_GUEST_ASCE	0x800
1101 
1102 static __always_inline void __ptep_rdp(unsigned long addr, pte_t *ptep, int local)
1103 {
1104 	unsigned long pto;
1105 
1106 	pto = __pa(ptep) & ~(PTRS_PER_PTE * sizeof(pte_t) - 1);
1107 	asm volatile(".insn	rrf,0xb98b0000,%[r1],%[r2],%%r0,%[m4]"
1108 		     : "+m" (*ptep)
1109 		     : [r1] "a" (pto), [r2] "a" (addr & PAGE_MASK),
1110 		       [m4] "i" (local));
1111 }
1112 
1113 static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1114 					unsigned long opt, unsigned long asce,
1115 					int local)
1116 {
1117 	unsigned long pto = __pa(ptep);
1118 
1119 	if (__builtin_constant_p(opt) && opt == 0) {
1120 		/* Invalidation + TLB flush for the pte */
1121 		asm volatile(
1122 			"	ipte	%[r1],%[r2],0,%[m4]"
1123 			: "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1124 			  [m4] "i" (local));
1125 		return;
1126 	}
1127 
1128 	/* Invalidate ptes with options + TLB flush of the ptes */
1129 	opt = opt | (asce & _ASCE_ORIGIN);
1130 	asm volatile(
1131 		"	ipte	%[r1],%[r2],%[r3],%[m4]"
1132 		: [r2] "+a" (address), [r3] "+a" (opt)
1133 		: [r1] "a" (pto), [m4] "i" (local) : "memory");
1134 }
1135 
1136 static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1137 					      pte_t *ptep, int local)
1138 {
1139 	unsigned long pto = __pa(ptep);
1140 
1141 	/* Invalidate a range of ptes + TLB flush of the ptes */
1142 	do {
1143 		asm volatile(
1144 			"	ipte %[r1],%[r2],%[r3],%[m4]"
1145 			: [r2] "+a" (address), [r3] "+a" (nr)
1146 			: [r1] "a" (pto), [m4] "i" (local) : "memory");
1147 	} while (nr != 255);
1148 }
1149 
1150 /*
1151  * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1152  * both clear the TLB for the unmapped pte. The reason is that
1153  * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1154  * to modify an active pte. The sequence is
1155  *   1) ptep_get_and_clear
1156  *   2) set_pte_at
1157  *   3) flush_tlb_range
1158  * On s390 the tlb needs to get flushed with the modification of the pte
1159  * if the pte is active. The only way how this can be implemented is to
1160  * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1161  * is a nop.
1162  */
1163 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1164 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1165 
1166 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1167 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1168 					    unsigned long addr, pte_t *ptep)
1169 {
1170 	pte_t pte = *ptep;
1171 
1172 	pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1173 	return pte_young(pte);
1174 }
1175 
1176 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1177 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1178 					 unsigned long address, pte_t *ptep)
1179 {
1180 	return ptep_test_and_clear_young(vma, address, ptep);
1181 }
1182 
1183 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1184 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1185 				       unsigned long addr, pte_t *ptep)
1186 {
1187 	pte_t res;
1188 
1189 	res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1190 	/* At this point the reference through the mapping is still present */
1191 	if (mm_is_protected(mm) && pte_present(res))
1192 		WARN_ON_ONCE(uv_convert_from_secure_pte(res));
1193 	return res;
1194 }
1195 
1196 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1197 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1198 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1199 			     pte_t *, pte_t, pte_t);
1200 
1201 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1202 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1203 				     unsigned long addr, pte_t *ptep)
1204 {
1205 	pte_t res;
1206 
1207 	res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1208 	/* At this point the reference through the mapping is still present */
1209 	if (mm_is_protected(vma->vm_mm) && pte_present(res))
1210 		WARN_ON_ONCE(uv_convert_from_secure_pte(res));
1211 	return res;
1212 }
1213 
1214 /*
1215  * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1216  * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1217  * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1218  * cannot be accessed while the batched unmap is running. In this case
1219  * full==1 and a simple pte_clear is enough. See tlb.h.
1220  */
1221 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1222 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1223 					    unsigned long addr,
1224 					    pte_t *ptep, int full)
1225 {
1226 	pte_t res;
1227 
1228 	if (full) {
1229 		res = *ptep;
1230 		set_pte(ptep, __pte(_PAGE_INVALID));
1231 	} else {
1232 		res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1233 	}
1234 	/* Nothing to do */
1235 	if (!mm_is_protected(mm) || !pte_present(res))
1236 		return res;
1237 	/*
1238 	 * At this point the reference through the mapping is still present.
1239 	 * The notifier should have destroyed all protected vCPUs at this
1240 	 * point, so the destroy should be successful.
1241 	 */
1242 	if (full && !uv_destroy_pte(res))
1243 		return res;
1244 	/*
1245 	 * If something went wrong and the page could not be destroyed, or
1246 	 * if this is not a mm teardown, the slower export is used as
1247 	 * fallback instead. If even that fails, print a warning and leak
1248 	 * the page, to avoid crashing the whole system.
1249 	 */
1250 	WARN_ON_ONCE(uv_convert_from_secure_pte(res));
1251 	return res;
1252 }
1253 
1254 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1255 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1256 				      unsigned long addr, pte_t *ptep)
1257 {
1258 	pte_t pte = *ptep;
1259 
1260 	if (pte_write(pte))
1261 		ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1262 }
1263 
1264 /*
1265  * Check if PTEs only differ in _PAGE_PROTECT HW bit, but also allow SW PTE
1266  * bits in the comparison. Those might change e.g. because of dirty and young
1267  * tracking.
1268  */
1269 static inline int pte_allow_rdp(pte_t old, pte_t new)
1270 {
1271 	/*
1272 	 * Only allow changes from RO to RW
1273 	 */
1274 	if (!(pte_val(old) & _PAGE_PROTECT) || pte_val(new) & _PAGE_PROTECT)
1275 		return 0;
1276 
1277 	return (pte_val(old) & _PAGE_RDP_MASK) == (pte_val(new) & _PAGE_RDP_MASK);
1278 }
1279 
1280 static inline void flush_tlb_fix_spurious_fault(struct vm_area_struct *vma,
1281 						unsigned long address,
1282 						pte_t *ptep)
1283 {
1284 	/*
1285 	 * RDP might not have propagated the PTE protection reset to all CPUs,
1286 	 * so there could be spurious TLB protection faults.
1287 	 * NOTE: This will also be called when a racing pagetable update on
1288 	 * another thread already installed the correct PTE. Both cases cannot
1289 	 * really be distinguished.
1290 	 * Therefore, only do the local TLB flush when RDP can be used, and the
1291 	 * PTE does not have _PAGE_PROTECT set, to avoid unnecessary overhead.
1292 	 * A local RDP can be used to do the flush.
1293 	 */
1294 	if (cpu_has_rdp() && !(pte_val(*ptep) & _PAGE_PROTECT))
1295 		__ptep_rdp(address, ptep, 1);
1296 }
1297 #define flush_tlb_fix_spurious_fault flush_tlb_fix_spurious_fault
1298 
1299 void ptep_reset_dat_prot(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
1300 			 pte_t new);
1301 
1302 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1303 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1304 					unsigned long addr, pte_t *ptep,
1305 					pte_t entry, int dirty)
1306 {
1307 	if (pte_same(*ptep, entry))
1308 		return 0;
1309 	if (cpu_has_rdp() && pte_allow_rdp(*ptep, entry))
1310 		ptep_reset_dat_prot(vma->vm_mm, addr, ptep, entry);
1311 	else
1312 		ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1313 	return 1;
1314 }
1315 
1316 #define pgprot_writecombine	pgprot_writecombine
1317 pgprot_t pgprot_writecombine(pgprot_t prot);
1318 
1319 #define PFN_PTE_SHIFT		PAGE_SHIFT
1320 
1321 /*
1322  * Set multiple PTEs to consecutive pages with a single call.  All PTEs
1323  * are within the same folio, PMD and VMA.
1324  */
1325 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1326 			      pte_t *ptep, pte_t entry, unsigned int nr)
1327 {
1328 	if (pte_present(entry))
1329 		entry = clear_pte_bit(entry, __pgprot(_PAGE_UNUSED));
1330 	for (;;) {
1331 		set_pte(ptep, entry);
1332 		if (--nr == 0)
1333 			break;
1334 		ptep++;
1335 		entry = __pte(pte_val(entry) + PAGE_SIZE);
1336 	}
1337 }
1338 #define set_ptes set_ptes
1339 
1340 /*
1341  * Conversion functions: convert a page and protection to a page entry,
1342  * and a page entry and page directory to the page they refer to.
1343  */
1344 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1345 {
1346 	pte_t __pte;
1347 
1348 	__pte = __pte(physpage | pgprot_val(pgprot));
1349 	return pte_mkyoung(__pte);
1350 }
1351 
1352 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1353 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1354 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1355 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1356 
1357 #define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN))
1358 #define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN))
1359 
1360 static inline unsigned long pmd_deref(pmd_t pmd)
1361 {
1362 	unsigned long origin_mask;
1363 
1364 	origin_mask = _SEGMENT_ENTRY_ORIGIN;
1365 	if (pmd_leaf(pmd))
1366 		origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1367 	return (unsigned long)__va(pmd_val(pmd) & origin_mask);
1368 }
1369 
1370 static inline unsigned long pmd_pfn(pmd_t pmd)
1371 {
1372 	return __pa(pmd_deref(pmd)) >> PAGE_SHIFT;
1373 }
1374 
1375 static inline unsigned long pud_deref(pud_t pud)
1376 {
1377 	unsigned long origin_mask;
1378 
1379 	origin_mask = _REGION_ENTRY_ORIGIN;
1380 	if (pud_leaf(pud))
1381 		origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1382 	return (unsigned long)__va(pud_val(pud) & origin_mask);
1383 }
1384 
1385 #define pud_pfn pud_pfn
1386 static inline unsigned long pud_pfn(pud_t pud)
1387 {
1388 	return __pa(pud_deref(pud)) >> PAGE_SHIFT;
1389 }
1390 
1391 /*
1392  * The pgd_offset function *always* adds the index for the top-level
1393  * region/segment table. This is done to get a sequence like the
1394  * following to work:
1395  *	pgdp = pgd_offset(current->mm, addr);
1396  *	pgd = READ_ONCE(*pgdp);
1397  *	p4dp = p4d_offset(&pgd, addr);
1398  *	...
1399  * The subsequent p4d_offset, pud_offset and pmd_offset functions
1400  * only add an index if they dereferenced the pointer.
1401  */
1402 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1403 {
1404 	unsigned long rste;
1405 	unsigned int shift;
1406 
1407 	/* Get the first entry of the top level table */
1408 	rste = pgd_val(*pgd);
1409 	/* Pick up the shift from the table type of the first entry */
1410 	shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1411 	return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1412 }
1413 
1414 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1415 
1416 static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1417 {
1418 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1419 		return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1420 	return (p4d_t *) pgdp;
1421 }
1422 #define p4d_offset_lockless p4d_offset_lockless
1423 
1424 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1425 {
1426 	return p4d_offset_lockless(pgdp, *pgdp, address);
1427 }
1428 
1429 static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1430 {
1431 	if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1432 		return (pud_t *) p4d_deref(p4d) + pud_index(address);
1433 	return (pud_t *) p4dp;
1434 }
1435 #define pud_offset_lockless pud_offset_lockless
1436 
1437 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1438 {
1439 	return pud_offset_lockless(p4dp, *p4dp, address);
1440 }
1441 #define pud_offset pud_offset
1442 
1443 static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1444 {
1445 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1446 		return (pmd_t *) pud_deref(pud) + pmd_index(address);
1447 	return (pmd_t *) pudp;
1448 }
1449 #define pmd_offset_lockless pmd_offset_lockless
1450 
1451 static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1452 {
1453 	return pmd_offset_lockless(pudp, *pudp, address);
1454 }
1455 #define pmd_offset pmd_offset
1456 
1457 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1458 {
1459 	return (unsigned long) pmd_deref(pmd);
1460 }
1461 
1462 static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1463 {
1464 	return end <= current->mm->context.asce_limit;
1465 }
1466 #define gup_fast_permitted gup_fast_permitted
1467 
1468 #define pfn_pte(pfn, pgprot)	mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot))
1469 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1470 #define pte_page(x) pfn_to_page(pte_pfn(x))
1471 
1472 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1473 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1474 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1475 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1476 
1477 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1478 {
1479 	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1480 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1481 }
1482 
1483 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
1484 {
1485 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1486 	if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1487 		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1488 	return pmd;
1489 }
1490 
1491 static inline pmd_t pmd_mkclean(pmd_t pmd)
1492 {
1493 	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY));
1494 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1495 }
1496 
1497 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1498 {
1499 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY));
1500 	if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1501 		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1502 	return pmd;
1503 }
1504 
1505 static inline pud_t pud_wrprotect(pud_t pud)
1506 {
1507 	pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1508 	return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1509 }
1510 
1511 static inline pud_t pud_mkwrite(pud_t pud)
1512 {
1513 	pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1514 	if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1515 		pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1516 	return pud;
1517 }
1518 
1519 static inline pud_t pud_mkclean(pud_t pud)
1520 {
1521 	pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY));
1522 	return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1523 }
1524 
1525 static inline pud_t pud_mkdirty(pud_t pud)
1526 {
1527 	pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY));
1528 	if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1529 		pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1530 	return pud;
1531 }
1532 
1533 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1534 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1535 {
1536 	/*
1537 	 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1538 	 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1539 	 */
1540 	if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1541 		return pgprot_val(SEGMENT_NONE);
1542 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1543 		return pgprot_val(SEGMENT_RO);
1544 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1545 		return pgprot_val(SEGMENT_RX);
1546 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1547 		return pgprot_val(SEGMENT_RW);
1548 	return pgprot_val(SEGMENT_RWX);
1549 }
1550 
1551 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1552 {
1553 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1554 	if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1555 		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1556 	return pmd;
1557 }
1558 
1559 static inline pmd_t pmd_mkold(pmd_t pmd)
1560 {
1561 	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1562 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1563 }
1564 
1565 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1566 {
1567 	unsigned long mask;
1568 
1569 	mask  = _SEGMENT_ENTRY_ORIGIN_LARGE;
1570 	mask |= _SEGMENT_ENTRY_DIRTY;
1571 	mask |= _SEGMENT_ENTRY_YOUNG;
1572 	mask |=	_SEGMENT_ENTRY_LARGE;
1573 	mask |= _SEGMENT_ENTRY_SOFT_DIRTY;
1574 	pmd = __pmd(pmd_val(pmd) & mask);
1575 	pmd = set_pmd_bit(pmd, __pgprot(massage_pgprot_pmd(newprot)));
1576 	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1577 		pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1578 	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1579 		pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1580 	return pmd;
1581 }
1582 
1583 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1584 {
1585 	return __pmd(physpage + massage_pgprot_pmd(pgprot));
1586 }
1587 
1588 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1589 
1590 static inline void __pmdp_cspg(pmd_t *pmdp)
1591 {
1592 	cspg((unsigned long *)pmdp, pmd_val(*pmdp),
1593 	     pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1594 }
1595 
1596 #define IDTE_GLOBAL	0
1597 #define IDTE_LOCAL	1
1598 
1599 #define IDTE_PTOA	0x0800
1600 #define IDTE_NODAT	0x1000
1601 #define IDTE_GUEST_ASCE	0x2000
1602 
1603 static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1604 					unsigned long opt, unsigned long asce,
1605 					int local)
1606 {
1607 	unsigned long sto;
1608 
1609 	sto = __pa(pmdp) - pmd_index(addr) * sizeof(pmd_t);
1610 	if (__builtin_constant_p(opt) && opt == 0) {
1611 		/* flush without guest asce */
1612 		asm volatile(
1613 			"	idte	%[r1],0,%[r2],%[m4]"
1614 			: "+m" (*pmdp)
1615 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1616 			  [m4] "i" (local)
1617 			: "cc" );
1618 	} else {
1619 		/* flush with guest asce */
1620 		asm volatile(
1621 			"	idte	%[r1],%[r3],%[r2],%[m4]"
1622 			: "+m" (*pmdp)
1623 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1624 			  [r3] "a" (asce), [m4] "i" (local)
1625 			: "cc" );
1626 	}
1627 }
1628 
1629 static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1630 					unsigned long opt, unsigned long asce,
1631 					int local)
1632 {
1633 	unsigned long r3o;
1634 
1635 	r3o = __pa(pudp) - pud_index(addr) * sizeof(pud_t);
1636 	r3o |= _ASCE_TYPE_REGION3;
1637 	if (__builtin_constant_p(opt) && opt == 0) {
1638 		/* flush without guest asce */
1639 		asm volatile(
1640 			"	idte	%[r1],0,%[r2],%[m4]"
1641 			: "+m" (*pudp)
1642 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1643 			  [m4] "i" (local)
1644 			: "cc");
1645 	} else {
1646 		/* flush with guest asce */
1647 		asm volatile(
1648 			"	idte	%[r1],%[r3],%[r2],%[m4]"
1649 			: "+m" (*pudp)
1650 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1651 			  [r3] "a" (asce), [m4] "i" (local)
1652 			: "cc" );
1653 	}
1654 }
1655 
1656 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1657 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1658 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1659 
1660 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1661 
1662 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1663 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1664 				pgtable_t pgtable);
1665 
1666 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1667 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1668 
1669 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1670 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1671 					unsigned long addr, pmd_t *pmdp,
1672 					pmd_t entry, int dirty)
1673 {
1674 	VM_BUG_ON(addr & ~HPAGE_MASK);
1675 
1676 	entry = pmd_mkyoung(entry);
1677 	if (dirty)
1678 		entry = pmd_mkdirty(entry);
1679 	if (pmd_val(*pmdp) == pmd_val(entry))
1680 		return 0;
1681 	pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1682 	return 1;
1683 }
1684 
1685 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1686 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1687 					    unsigned long addr, pmd_t *pmdp)
1688 {
1689 	pmd_t pmd = *pmdp;
1690 
1691 	pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1692 	return pmd_young(pmd);
1693 }
1694 
1695 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1696 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1697 					 unsigned long addr, pmd_t *pmdp)
1698 {
1699 	VM_BUG_ON(addr & ~HPAGE_MASK);
1700 	return pmdp_test_and_clear_young(vma, addr, pmdp);
1701 }
1702 
1703 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1704 			      pmd_t *pmdp, pmd_t entry)
1705 {
1706 	set_pmd(pmdp, entry);
1707 }
1708 
1709 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1710 {
1711 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_LARGE));
1712 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1713 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1714 }
1715 
1716 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1717 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1718 					    unsigned long addr, pmd_t *pmdp)
1719 {
1720 	return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1721 }
1722 
1723 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1724 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1725 						 unsigned long addr,
1726 						 pmd_t *pmdp, int full)
1727 {
1728 	if (full) {
1729 		pmd_t pmd = *pmdp;
1730 		set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1731 		return pmd;
1732 	}
1733 	return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1734 }
1735 
1736 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1737 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1738 					  unsigned long addr, pmd_t *pmdp)
1739 {
1740 	return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1741 }
1742 
1743 #define __HAVE_ARCH_PMDP_INVALIDATE
1744 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1745 				   unsigned long addr, pmd_t *pmdp)
1746 {
1747 	pmd_t pmd;
1748 
1749 	VM_WARN_ON_ONCE(!pmd_present(*pmdp));
1750 	pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1751 	return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1752 }
1753 
1754 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1755 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1756 				      unsigned long addr, pmd_t *pmdp)
1757 {
1758 	pmd_t pmd = *pmdp;
1759 
1760 	if (pmd_write(pmd))
1761 		pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1762 }
1763 
1764 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1765 					unsigned long address,
1766 					pmd_t *pmdp)
1767 {
1768 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1769 }
1770 #define pmdp_collapse_flush pmdp_collapse_flush
1771 
1772 #define pfn_pmd(pfn, pgprot)	mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot))
1773 
1774 static inline int pmd_trans_huge(pmd_t pmd)
1775 {
1776 	return pmd_leaf(pmd);
1777 }
1778 
1779 #define has_transparent_hugepage has_transparent_hugepage
1780 static inline int has_transparent_hugepage(void)
1781 {
1782 	return cpu_has_edat1() ? 1 : 0;
1783 }
1784 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1785 
1786 /*
1787  * 64 bit swap entry format:
1788  * A page-table entry has some bits we have to treat in a special way.
1789  * Bits 54 and 63 are used to indicate the page type. Bit 53 marks the pte
1790  * as invalid.
1791  * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1792  * |			  offset			|E11XX|type |S0|
1793  * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1794  * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1795  *
1796  * Bits 0-51 store the offset.
1797  * Bit 52 (E) is used to remember PG_anon_exclusive.
1798  * Bits 57-61 store the type.
1799  * Bit 62 (S) is used for softdirty tracking.
1800  * Bits 55 and 56 (X) are unused.
1801  */
1802 
1803 #define __SWP_OFFSET_MASK	((1UL << 52) - 1)
1804 #define __SWP_OFFSET_SHIFT	12
1805 #define __SWP_TYPE_MASK		((1UL << 5) - 1)
1806 #define __SWP_TYPE_SHIFT	2
1807 
1808 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1809 {
1810 	unsigned long pteval;
1811 
1812 	pteval = _PAGE_INVALID | _PAGE_PROTECT;
1813 	pteval |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1814 	pteval |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1815 	return __pte(pteval);
1816 }
1817 
1818 static inline unsigned long __swp_type(swp_entry_t entry)
1819 {
1820 	return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1821 }
1822 
1823 static inline unsigned long __swp_offset(swp_entry_t entry)
1824 {
1825 	return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1826 }
1827 
1828 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1829 {
1830 	return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1831 }
1832 
1833 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1834 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1835 
1836 /*
1837  * 64 bit swap entry format for REGION3 and SEGMENT table entries (RSTE)
1838  * Bits 59 and 63 are used to indicate the swap entry. Bit 58 marks the rste
1839  * as invalid.
1840  * A swap entry is indicated by bit pattern (rste & 0x011) == 0x010
1841  * |			  offset			|Xtype |11TT|S0|
1842  * |0000000000111111111122222222223333333333444444444455|555555|5566|66|
1843  * |0123456789012345678901234567890123456789012345678901|234567|8901|23|
1844  *
1845  * Bits 0-51 store the offset.
1846  * Bits 53-57 store the type.
1847  * Bit 62 (S) is used for softdirty tracking.
1848  * Bits 60-61 (TT) indicate the table type: 0x01 for REGION3 and 0x00 for SEGMENT.
1849  * Bit 52 (X) is unused.
1850  */
1851 
1852 #define __SWP_OFFSET_MASK_RSTE	((1UL << 52) - 1)
1853 #define __SWP_OFFSET_SHIFT_RSTE	12
1854 #define __SWP_TYPE_MASK_RSTE		((1UL << 5) - 1)
1855 #define __SWP_TYPE_SHIFT_RSTE	6
1856 
1857 /*
1858  * TT bits set to 0x00 == SEGMENT. For REGION3 entries, caller must add R3
1859  * bits 0x01. See also __set_huge_pte_at().
1860  */
1861 static inline unsigned long mk_swap_rste(unsigned long type, unsigned long offset)
1862 {
1863 	unsigned long rste;
1864 
1865 	rste = _RST_ENTRY_INVALID | _RST_ENTRY_COMM;
1866 	rste |= (offset & __SWP_OFFSET_MASK_RSTE) << __SWP_OFFSET_SHIFT_RSTE;
1867 	rste |= (type & __SWP_TYPE_MASK_RSTE) << __SWP_TYPE_SHIFT_RSTE;
1868 	return rste;
1869 }
1870 
1871 static inline unsigned long __swp_type_rste(swp_entry_t entry)
1872 {
1873 	return (entry.val >> __SWP_TYPE_SHIFT_RSTE) & __SWP_TYPE_MASK_RSTE;
1874 }
1875 
1876 static inline unsigned long __swp_offset_rste(swp_entry_t entry)
1877 {
1878 	return (entry.val >> __SWP_OFFSET_SHIFT_RSTE) & __SWP_OFFSET_MASK_RSTE;
1879 }
1880 
1881 #define __rste_to_swp_entry(rste)	((swp_entry_t) { rste })
1882 
1883 /*
1884  * s390 has different layout for PTE and region / segment table entries (RSTE).
1885  * This is also true for swap entries, and their swap type and offset encoding.
1886  * For hugetlbfs PTE_MARKER support, s390 has internal __swp_type_rste() and
1887  * __swp_offset_rste() helpers to correctly handle RSTE swap entries.
1888  *
1889  * But common swap code does not know about this difference, and only uses
1890  * __swp_type(), __swp_offset() and __swp_entry() helpers for conversion between
1891  * arch-dependent and arch-independent representation of swp_entry_t for all
1892  * pagetable levels. On s390, those helpers only work for PTE swap entries.
1893  *
1894  * Therefore, implement __pmd_to_swp_entry() to build a fake PTE swap entry
1895  * and return the arch-dependent representation of that. Correspondingly,
1896  * implement __swp_entry_to_pmd() to convert that into a proper PMD swap
1897  * entry again. With this, the arch-dependent swp_entry_t representation will
1898  * always look like a PTE swap entry in common code.
1899  *
1900  * This is somewhat similar to fake PTEs in hugetlbfs code for s390, but only
1901  * requires conversion of the swap type and offset, and not all the possible
1902  * PTE bits.
1903  */
1904 static inline swp_entry_t __pmd_to_swp_entry(pmd_t pmd)
1905 {
1906 	swp_entry_t arch_entry;
1907 	pte_t pte;
1908 
1909 	arch_entry = __rste_to_swp_entry(pmd_val(pmd));
1910 	pte = mk_swap_pte(__swp_type_rste(arch_entry), __swp_offset_rste(arch_entry));
1911 	return __pte_to_swp_entry(pte);
1912 }
1913 
1914 static inline pmd_t __swp_entry_to_pmd(swp_entry_t arch_entry)
1915 {
1916 	pmd_t pmd;
1917 
1918 	pmd = __pmd(mk_swap_rste(__swp_type(arch_entry), __swp_offset(arch_entry)));
1919 	return pmd;
1920 }
1921 
1922 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1923 extern void vmem_remove_mapping(unsigned long start, unsigned long size);
1924 extern int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc);
1925 extern int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot);
1926 extern void vmem_unmap_4k_page(unsigned long addr);
1927 extern pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc);
1928 
1929 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1930 #define HAVE_ARCH_UNMAPPED_AREA
1931 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1932 
1933 #define pmd_pgtable(pmd) \
1934 	((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE))
1935 
1936 #endif /* _S390_PAGE_H */
1937