1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
4
5 #include <asm-generic/pgtable-nop4d.h>
6
7 #ifndef __ASSEMBLY__
8 #include <linux/mmdebug.h>
9 #include <linux/bug.h>
10 #include <linux/sizes.h>
11 #endif
12
13 /*
14 * Common bits between hash and Radix page table
15 */
16
17 #define _PAGE_EXEC 0x00001 /* execute permission */
18 #define _PAGE_WRITE 0x00002 /* write access allowed */
19 #define _PAGE_READ 0x00004 /* read access allowed */
20 #define _PAGE_PRIVILEGED 0x00008 /* kernel access only */
21 #define _PAGE_SAO 0x00010 /* Strong access order */
22 #define _PAGE_NON_IDEMPOTENT 0x00020 /* non idempotent memory */
23 #define _PAGE_TOLERANT 0x00030 /* tolerant memory, cache inhibited */
24 #define _PAGE_DIRTY 0x00080 /* C: page changed */
25 #define _PAGE_ACCESSED 0x00100 /* R: page referenced */
26 /*
27 * Software bits
28 */
29 #define _RPAGE_SW0 0x2000000000000000UL
30 #define _RPAGE_SW1 0x00800
31 #define _RPAGE_SW2 0x00400
32 #define _RPAGE_SW3 0x00200
33 #define _RPAGE_RSV1 0x00040UL
34
35 #define _RPAGE_PKEY_BIT4 0x1000000000000000UL
36 #define _RPAGE_PKEY_BIT3 0x0800000000000000UL
37 #define _RPAGE_PKEY_BIT2 0x0400000000000000UL
38 #define _RPAGE_PKEY_BIT1 0x0200000000000000UL
39 #define _RPAGE_PKEY_BIT0 0x0100000000000000UL
40
41 #define _PAGE_PTE 0x4000000000000000UL /* distinguishes PTEs from pointers */
42 #define _PAGE_PRESENT 0x8000000000000000UL /* pte contains a translation */
43 /*
44 * We need to mark a pmd pte invalid while splitting. We can do that by clearing
45 * the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to
46 * differentiate between two use a SW field when invalidating.
47 *
48 * We do that temporary invalidate for regular pte entry in ptep_set_access_flags
49 *
50 * This is used only when _PAGE_PRESENT is cleared.
51 */
52 #define _PAGE_INVALID _RPAGE_SW0
53
54 /*
55 * Top and bottom bits of RPN which can be used by hash
56 * translation mode, because we expect them to be zero
57 * otherwise.
58 */
59 #define _RPAGE_RPN0 0x01000
60 #define _RPAGE_RPN1 0x02000
61 #define _RPAGE_RPN43 0x0080000000000000UL
62 #define _RPAGE_RPN42 0x0040000000000000UL
63 #define _RPAGE_RPN41 0x0020000000000000UL
64
65 /* Max physical address bit as per radix table */
66 #define _RPAGE_PA_MAX 56
67
68 /*
69 * Max physical address bit we will use for now.
70 *
71 * This is mostly a hardware limitation and for now Power9 has
72 * a 51 bit limit.
73 *
74 * This is different from the number of physical bit required to address
75 * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
76 * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
77 * number of sections we can support (SECTIONS_SHIFT).
78 *
79 * This is different from Radix page table limitation above and
80 * should always be less than that. The limit is done such that
81 * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
82 * for hash linux page table specific bits.
83 *
84 * In order to be compatible with future hardware generations we keep
85 * some offsets and limit this for now to 53
86 */
87 #define _PAGE_PA_MAX 53
88
89 #define _PAGE_SOFT_DIRTY _RPAGE_SW3 /* software: software dirty tracking */
90 #define _PAGE_SPECIAL _RPAGE_SW2 /* software: special page */
91 #define _PAGE_DEVMAP _RPAGE_SW1 /* software: ZONE_DEVICE page */
92
93 /*
94 * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
95 * Instead of fixing all of them, add an alternate define which
96 * maps CI pte mapping.
97 */
98 #define _PAGE_NO_CACHE _PAGE_TOLERANT
99 /*
100 * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
101 * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
102 * and every thing below PAGE_SHIFT;
103 */
104 #define PTE_RPN_MASK (((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
105 #define PTE_RPN_SHIFT PAGE_SHIFT
106 /*
107 * set of bits not changed in pmd_modify. Even though we have hash specific bits
108 * in here, on radix we expect them to be zero.
109 */
110 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
111 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
112 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
113 /*
114 * user access blocked by key
115 */
116 #define _PAGE_KERNEL_RW (_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
117 #define _PAGE_KERNEL_RO (_PAGE_PRIVILEGED | _PAGE_READ)
118 #define _PAGE_KERNEL_ROX (_PAGE_PRIVILEGED | _PAGE_READ | _PAGE_EXEC)
119 #define _PAGE_KERNEL_RWX (_PAGE_PRIVILEGED | _PAGE_DIRTY | _PAGE_RW | _PAGE_EXEC)
120 /*
121 * _PAGE_CHG_MASK masks of bits that are to be preserved across
122 * pgprot changes
123 */
124 #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
125 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE | \
126 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
127
128 /*
129 * We define 2 sets of base prot bits, one for basic pages (ie,
130 * cacheable kernel and user pages) and one for non cacheable
131 * pages. We always set _PAGE_COHERENT when SMP is enabled or
132 * the processor might need it for DMA coherency.
133 */
134 #define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED)
135 #define _PAGE_BASE (_PAGE_BASE_NC)
136
137 #include <asm/pgtable-masks.h>
138
139 /* Permission masks used for kernel mappings */
140 #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
141 #define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_TOLERANT)
142 #define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NON_IDEMPOTENT)
143 #define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
144 #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
145 #define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
146
147 #ifndef __ASSEMBLY__
148 /*
149 * page table defines
150 */
151 extern unsigned long __pte_index_size;
152 extern unsigned long __pmd_index_size;
153 extern unsigned long __pud_index_size;
154 extern unsigned long __pgd_index_size;
155 extern unsigned long __pud_cache_index;
156 #define PTE_INDEX_SIZE __pte_index_size
157 #define PMD_INDEX_SIZE __pmd_index_size
158 #define PUD_INDEX_SIZE __pud_index_size
159 #define PGD_INDEX_SIZE __pgd_index_size
160 /* pmd table use page table fragments */
161 #define PMD_CACHE_INDEX 0
162 #define PUD_CACHE_INDEX __pud_cache_index
163 /*
164 * Because of use of pte fragments and THP, size of page table
165 * are not always derived out of index size above.
166 */
167 extern unsigned long __pte_table_size;
168 extern unsigned long __pmd_table_size;
169 extern unsigned long __pud_table_size;
170 extern unsigned long __pgd_table_size;
171 #define PTE_TABLE_SIZE __pte_table_size
172 #define PMD_TABLE_SIZE __pmd_table_size
173 #define PUD_TABLE_SIZE __pud_table_size
174 #define PGD_TABLE_SIZE __pgd_table_size
175
176 extern unsigned long __pmd_val_bits;
177 extern unsigned long __pud_val_bits;
178 extern unsigned long __pgd_val_bits;
179 #define PMD_VAL_BITS __pmd_val_bits
180 #define PUD_VAL_BITS __pud_val_bits
181 #define PGD_VAL_BITS __pgd_val_bits
182
183 extern unsigned long __pte_frag_nr;
184 #define PTE_FRAG_NR __pte_frag_nr
185 extern unsigned long __pte_frag_size_shift;
186 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
187 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
188
189 extern unsigned long __pmd_frag_nr;
190 #define PMD_FRAG_NR __pmd_frag_nr
191 extern unsigned long __pmd_frag_size_shift;
192 #define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
193 #define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)
194
195 #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
196 #define PTRS_PER_PMD (1 << PMD_INDEX_SIZE)
197 #define PTRS_PER_PUD (1 << PUD_INDEX_SIZE)
198 #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
199
200 #define MAX_PTRS_PER_PTE ((H_PTRS_PER_PTE > R_PTRS_PER_PTE) ? H_PTRS_PER_PTE : R_PTRS_PER_PTE)
201 #define MAX_PTRS_PER_PMD ((H_PTRS_PER_PMD > R_PTRS_PER_PMD) ? H_PTRS_PER_PMD : R_PTRS_PER_PMD)
202 #define MAX_PTRS_PER_PUD ((H_PTRS_PER_PUD > R_PTRS_PER_PUD) ? H_PTRS_PER_PUD : R_PTRS_PER_PUD)
203 #define MAX_PTRS_PER_PGD (1 << (H_PGD_INDEX_SIZE > RADIX_PGD_INDEX_SIZE ? \
204 H_PGD_INDEX_SIZE : RADIX_PGD_INDEX_SIZE))
205
206 /* PMD_SHIFT determines what a second-level page table entry can map */
207 #define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
208 #define PMD_SIZE (1UL << PMD_SHIFT)
209 #define PMD_MASK (~(PMD_SIZE-1))
210
211 /* PUD_SHIFT determines what a third-level page table entry can map */
212 #define PUD_SHIFT (PMD_SHIFT + PMD_INDEX_SIZE)
213 #define PUD_SIZE (1UL << PUD_SHIFT)
214 #define PUD_MASK (~(PUD_SIZE-1))
215
216 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
217 #define PGDIR_SHIFT (PUD_SHIFT + PUD_INDEX_SIZE)
218 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
219 #define PGDIR_MASK (~(PGDIR_SIZE-1))
220
221 /* Bits to mask out from a PMD to get to the PTE page */
222 #define PMD_MASKED_BITS 0xc0000000000000ffUL
223 /* Bits to mask out from a PUD to get to the PMD page */
224 #define PUD_MASKED_BITS 0xc0000000000000ffUL
225 /* Bits to mask out from a PGD to get to the PUD page */
226 #define P4D_MASKED_BITS 0xc0000000000000ffUL
227
228 /*
229 * Used as an indicator for rcu callback functions
230 */
231 enum pgtable_index {
232 PTE_INDEX = 0,
233 PMD_INDEX,
234 PUD_INDEX,
235 PGD_INDEX,
236 /*
237 * Below are used with 4k page size and hugetlb
238 */
239 HTLB_16M_INDEX,
240 HTLB_16G_INDEX,
241 };
242
243 extern unsigned long __vmalloc_start;
244 extern unsigned long __vmalloc_end;
245 #define VMALLOC_START __vmalloc_start
246 #define VMALLOC_END __vmalloc_end
247
ioremap_max_order(void)248 static inline unsigned int ioremap_max_order(void)
249 {
250 if (radix_enabled())
251 return PUD_SHIFT;
252 return 7 + PAGE_SHIFT; /* default from linux/vmalloc.h */
253 }
254 #define IOREMAP_MAX_ORDER ioremap_max_order()
255
256 extern unsigned long __kernel_virt_start;
257 extern unsigned long __kernel_io_start;
258 extern unsigned long __kernel_io_end;
259 #define KERN_VIRT_START __kernel_virt_start
260 #define KERN_IO_START __kernel_io_start
261 #define KERN_IO_END __kernel_io_end
262
263 extern struct page *vmemmap;
264 extern unsigned long pci_io_base;
265
266 #define pmd_leaf pmd_leaf
pmd_leaf(pmd_t pmd)267 static inline bool pmd_leaf(pmd_t pmd)
268 {
269 return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
270 }
271
272 #define pud_leaf pud_leaf
pud_leaf(pud_t pud)273 static inline bool pud_leaf(pud_t pud)
274 {
275 return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PTE));
276 }
277
278 #define pmd_leaf_size pmd_leaf_size
pmd_leaf_size(pmd_t pmd)279 static inline unsigned long pmd_leaf_size(pmd_t pmd)
280 {
281 if (IS_ENABLED(CONFIG_PPC_4K_PAGES) && !radix_enabled())
282 return SZ_16M;
283 else
284 return PMD_SIZE;
285 }
286
287 #define pud_leaf_size pud_leaf_size
pud_leaf_size(pud_t pud)288 static inline unsigned long pud_leaf_size(pud_t pud)
289 {
290 if (IS_ENABLED(CONFIG_PPC_4K_PAGES) && !radix_enabled())
291 return SZ_16G;
292 else
293 return PUD_SIZE;
294 }
295 #endif /* __ASSEMBLY__ */
296
297 #include <asm/book3s/64/hash.h>
298 #include <asm/book3s/64/radix.h>
299
300 #if H_MAX_PHYSMEM_BITS > R_MAX_PHYSMEM_BITS
301 #define MAX_PHYSMEM_BITS H_MAX_PHYSMEM_BITS
302 #else
303 #define MAX_PHYSMEM_BITS R_MAX_PHYSMEM_BITS
304 #endif
305
306 /* hash 4k can't share hugetlb and also doesn't support THP */
307 #ifdef CONFIG_PPC_64K_PAGES
308 #include <asm/book3s/64/pgtable-64k.h>
309 #endif
310
311 #include <asm/barrier.h>
312 /*
313 * IO space itself carved into the PIO region (ISA and PHB IO space) and
314 * the ioremap space
315 *
316 * ISA_IO_BASE = KERN_IO_START, 64K reserved area
317 * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
318 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
319 */
320 #define FULL_IO_SIZE 0x80000000ul
321 #define ISA_IO_BASE (KERN_IO_START)
322 #define ISA_IO_END (KERN_IO_START + 0x10000ul)
323 #define PHB_IO_BASE (ISA_IO_END)
324 #define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE)
325 #define IOREMAP_BASE (PHB_IO_END)
326 #define IOREMAP_START (ioremap_bot)
327 #define IOREMAP_END (KERN_IO_END - FIXADDR_SIZE)
328 #define FIXADDR_SIZE SZ_32M
329 #define FIXADDR_TOP (IOREMAP_END + FIXADDR_SIZE)
330
331 #ifndef __ASSEMBLY__
332
pte_update(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned long clr,unsigned long set,int huge)333 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
334 pte_t *ptep, unsigned long clr,
335 unsigned long set, int huge)
336 {
337 if (radix_enabled())
338 return radix__pte_update(mm, addr, ptep, clr, set, huge);
339 return hash__pte_update(mm, addr, ptep, clr, set, huge);
340 }
341 /*
342 * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
343 * We currently remove entries from the hashtable regardless of whether
344 * the entry was young or dirty.
345 *
346 * We should be more intelligent about this but for the moment we override
347 * these functions and force a tlb flush unconditionally
348 * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
349 * function for both hash and radix.
350 */
__ptep_test_and_clear_young(struct mm_struct * mm,unsigned long addr,pte_t * ptep)351 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
352 unsigned long addr, pte_t *ptep)
353 {
354 unsigned long old;
355
356 if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
357 return 0;
358 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
359 return (old & _PAGE_ACCESSED) != 0;
360 }
361
362 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
363 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
364 ({ \
365 __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
366 })
367
368 /*
369 * On Book3S CPUs, clearing the accessed bit without a TLB flush
370 * doesn't cause data corruption. [ It could cause incorrect
371 * page aging and the (mistaken) reclaim of hot pages, but the
372 * chance of that should be relatively low. ]
373 *
374 * So as a performance optimization don't flush the TLB when
375 * clearing the accessed bit, it will eventually be flushed by
376 * a context switch or a VM operation anyway. [ In the rare
377 * event of it not getting flushed for a long time the delay
378 * shouldn't really matter because there's no real memory
379 * pressure for swapout to react to. ]
380 *
381 * Note: this optimisation also exists in pte_needs_flush() and
382 * huge_pmd_needs_flush().
383 */
384 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
385 #define ptep_clear_flush_young ptep_test_and_clear_young
386
387 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
388 #define pmdp_clear_flush_young pmdp_test_and_clear_young
389
pte_write(pte_t pte)390 static inline int pte_write(pte_t pte)
391 {
392 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
393 }
394
pte_read(pte_t pte)395 static inline int pte_read(pte_t pte)
396 {
397 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
398 }
399
400 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)401 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
402 pte_t *ptep)
403 {
404 if (pte_write(*ptep))
405 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
406 }
407
408 #define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT
huge_ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)409 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
410 unsigned long addr, pte_t *ptep)
411 {
412 if (pte_write(*ptep))
413 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
414 }
415
416 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)417 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
418 unsigned long addr, pte_t *ptep)
419 {
420 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
421 return __pte(old);
422 }
423
424 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)425 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
426 unsigned long addr,
427 pte_t *ptep, int full)
428 {
429 if (full && radix_enabled()) {
430 /*
431 * We know that this is a full mm pte clear and
432 * hence can be sure there is no parallel set_pte.
433 */
434 return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
435 }
436 return ptep_get_and_clear(mm, addr, ptep);
437 }
438
439
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)440 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
441 pte_t * ptep)
442 {
443 pte_update(mm, addr, ptep, ~0UL, 0, 0);
444 }
445
pte_dirty(pte_t pte)446 static inline int pte_dirty(pte_t pte)
447 {
448 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
449 }
450
pte_young(pte_t pte)451 static inline int pte_young(pte_t pte)
452 {
453 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
454 }
455
pte_special(pte_t pte)456 static inline int pte_special(pte_t pte)
457 {
458 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
459 }
460
pte_exec(pte_t pte)461 static inline bool pte_exec(pte_t pte)
462 {
463 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_EXEC));
464 }
465
466
467 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
pte_soft_dirty(pte_t pte)468 static inline bool pte_soft_dirty(pte_t pte)
469 {
470 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
471 }
472
pte_mksoft_dirty(pte_t pte)473 static inline pte_t pte_mksoft_dirty(pte_t pte)
474 {
475 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SOFT_DIRTY));
476 }
477
pte_clear_soft_dirty(pte_t pte)478 static inline pte_t pte_clear_soft_dirty(pte_t pte)
479 {
480 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SOFT_DIRTY));
481 }
482 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
483
484 #ifdef CONFIG_NUMA_BALANCING
pte_protnone(pte_t pte)485 static inline int pte_protnone(pte_t pte)
486 {
487 return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
488 cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
489 }
490 #endif /* CONFIG_NUMA_BALANCING */
491
pte_hw_valid(pte_t pte)492 static inline bool pte_hw_valid(pte_t pte)
493 {
494 return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE)) ==
495 cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
496 }
497
pte_present(pte_t pte)498 static inline int pte_present(pte_t pte)
499 {
500 /*
501 * A pte is considerent present if _PAGE_PRESENT is set.
502 * We also need to consider the pte present which is marked
503 * invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID
504 * if we find _PAGE_PRESENT cleared.
505 */
506
507 if (pte_hw_valid(pte))
508 return true;
509 return (pte_raw(pte) & cpu_to_be64(_PAGE_INVALID | _PAGE_PTE)) ==
510 cpu_to_be64(_PAGE_INVALID | _PAGE_PTE);
511 }
512
513 #ifdef CONFIG_PPC_MEM_KEYS
514 extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
515 #else
arch_pte_access_permitted(u64 pte,bool write,bool execute)516 static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
517 {
518 return true;
519 }
520 #endif /* CONFIG_PPC_MEM_KEYS */
521
pte_user(pte_t pte)522 static inline bool pte_user(pte_t pte)
523 {
524 return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
525 }
526
527 #define pte_access_permitted pte_access_permitted
pte_access_permitted(pte_t pte,bool write)528 static inline bool pte_access_permitted(pte_t pte, bool write)
529 {
530 /*
531 * _PAGE_READ is needed for any access and will be cleared for
532 * PROT_NONE. Execute-only mapping via PROT_EXEC also returns false.
533 */
534 if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
535 return false;
536
537 if (write && !pte_write(pte))
538 return false;
539
540 return arch_pte_access_permitted(pte_val(pte), write, 0);
541 }
542
543 /*
544 * Conversion functions: convert a page and protection to a page entry,
545 * and a page entry and page directory to the page they refer to.
546 *
547 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
548 * long for now.
549 */
pfn_pte(unsigned long pfn,pgprot_t pgprot)550 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
551 {
552 VM_BUG_ON(pfn >> (64 - PAGE_SHIFT));
553 VM_BUG_ON((pfn << PAGE_SHIFT) & ~PTE_RPN_MASK);
554
555 return __pte(((pte_basic_t)pfn << PAGE_SHIFT) | pgprot_val(pgprot) | _PAGE_PTE);
556 }
557
558 /* Generic modifiers for PTE bits */
pte_wrprotect(pte_t pte)559 static inline pte_t pte_wrprotect(pte_t pte)
560 {
561 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
562 }
563
pte_exprotect(pte_t pte)564 static inline pte_t pte_exprotect(pte_t pte)
565 {
566 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_EXEC));
567 }
568
pte_mkclean(pte_t pte)569 static inline pte_t pte_mkclean(pte_t pte)
570 {
571 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_DIRTY));
572 }
573
pte_mkold(pte_t pte)574 static inline pte_t pte_mkold(pte_t pte)
575 {
576 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_ACCESSED));
577 }
578
pte_mkexec(pte_t pte)579 static inline pte_t pte_mkexec(pte_t pte)
580 {
581 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_EXEC));
582 }
583
pte_mkwrite_novma(pte_t pte)584 static inline pte_t pte_mkwrite_novma(pte_t pte)
585 {
586 /*
587 * write implies read, hence set both
588 */
589 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_RW));
590 }
591
pte_mkdirty(pte_t pte)592 static inline pte_t pte_mkdirty(pte_t pte)
593 {
594 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
595 }
596
pte_mkyoung(pte_t pte)597 static inline pte_t pte_mkyoung(pte_t pte)
598 {
599 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_ACCESSED));
600 }
601
pte_mkspecial(pte_t pte)602 static inline pte_t pte_mkspecial(pte_t pte)
603 {
604 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL));
605 }
606
pte_mkhuge(pte_t pte)607 static inline pte_t pte_mkhuge(pte_t pte)
608 {
609 return pte;
610 }
611
pte_mkdevmap(pte_t pte)612 static inline pte_t pte_mkdevmap(pte_t pte)
613 {
614 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL | _PAGE_DEVMAP));
615 }
616
617 /*
618 * This is potentially called with a pmd as the argument, in which case it's not
619 * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
620 * That's because the bit we use for _PAGE_DEVMAP is not reserved for software
621 * use in page directory entries (ie. non-ptes).
622 */
pte_devmap(pte_t pte)623 static inline int pte_devmap(pte_t pte)
624 {
625 __be64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);
626
627 return (pte_raw(pte) & mask) == mask;
628 }
629
pte_modify(pte_t pte,pgprot_t newprot)630 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
631 {
632 /* FIXME!! check whether this need to be a conditional */
633 return __pte_raw((pte_raw(pte) & cpu_to_be64(_PAGE_CHG_MASK)) |
634 cpu_to_be64(pgprot_val(newprot)));
635 }
636
637 /* Encode and de-code a swap entry */
638 #define MAX_SWAPFILES_CHECK() do { \
639 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
640 /* \
641 * Don't have overlapping bits with _PAGE_HPTEFLAGS \
642 * We filter HPTEFLAGS on set_pte. \
643 */ \
644 BUILD_BUG_ON(_PAGE_HPTEFLAGS & SWP_TYPE_MASK); \
645 BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY); \
646 BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_EXCLUSIVE); \
647 } while (0)
648
649 #define SWP_TYPE_BITS 5
650 #define SWP_TYPE_MASK ((1UL << SWP_TYPE_BITS) - 1)
651 #define __swp_type(x) ((x).val & SWP_TYPE_MASK)
652 #define __swp_offset(x) (((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
653 #define __swp_entry(type, offset) ((swp_entry_t) { \
654 (type) | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
655 /*
656 * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
657 * swap type and offset we get from swap and convert that to pte to find a
658 * matching pte in linux page table.
659 * Clear bits not found in swap entries here.
660 */
661 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
662 #define __swp_entry_to_pte(x) __pte((x).val | _PAGE_PTE)
663 #define __pmd_to_swp_entry(pmd) (__pte_to_swp_entry(pmd_pte(pmd)))
664 #define __swp_entry_to_pmd(x) (pte_pmd(__swp_entry_to_pte(x)))
665
666 #ifdef CONFIG_MEM_SOFT_DIRTY
667 #define _PAGE_SWP_SOFT_DIRTY _PAGE_SOFT_DIRTY
668 #else
669 #define _PAGE_SWP_SOFT_DIRTY 0UL
670 #endif /* CONFIG_MEM_SOFT_DIRTY */
671
672 #define _PAGE_SWP_EXCLUSIVE _PAGE_NON_IDEMPOTENT
673
674 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
pte_swp_mksoft_dirty(pte_t pte)675 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
676 {
677 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
678 }
679
pte_swp_soft_dirty(pte_t pte)680 static inline bool pte_swp_soft_dirty(pte_t pte)
681 {
682 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
683 }
684
pte_swp_clear_soft_dirty(pte_t pte)685 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
686 {
687 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_SOFT_DIRTY));
688 }
689 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
690
pte_swp_mkexclusive(pte_t pte)691 static inline pte_t pte_swp_mkexclusive(pte_t pte)
692 {
693 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_EXCLUSIVE));
694 }
695
pte_swp_exclusive(pte_t pte)696 static inline int pte_swp_exclusive(pte_t pte)
697 {
698 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_EXCLUSIVE));
699 }
700
pte_swp_clear_exclusive(pte_t pte)701 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
702 {
703 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_EXCLUSIVE));
704 }
705
check_pte_access(unsigned long access,unsigned long ptev)706 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
707 {
708 /*
709 * This check for _PAGE_RWX and _PAGE_PRESENT bits
710 */
711 if (access & ~ptev)
712 return false;
713 /*
714 * This check for access to privilege space
715 */
716 if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
717 return false;
718
719 return true;
720 }
721 /*
722 * Generic functions with hash/radix callbacks
723 */
724
__ptep_set_access_flags(struct vm_area_struct * vma,pte_t * ptep,pte_t entry,unsigned long address,int psize)725 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
726 pte_t *ptep, pte_t entry,
727 unsigned long address,
728 int psize)
729 {
730 if (radix_enabled())
731 return radix__ptep_set_access_flags(vma, ptep, entry,
732 address, psize);
733 return hash__ptep_set_access_flags(ptep, entry);
734 }
735
736 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)737 static inline int pte_same(pte_t pte_a, pte_t pte_b)
738 {
739 if (radix_enabled())
740 return radix__pte_same(pte_a, pte_b);
741 return hash__pte_same(pte_a, pte_b);
742 }
743
pte_none(pte_t pte)744 static inline int pte_none(pte_t pte)
745 {
746 if (radix_enabled())
747 return radix__pte_none(pte);
748 return hash__pte_none(pte);
749 }
750
__set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte,int percpu)751 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
752 pte_t *ptep, pte_t pte, int percpu)
753 {
754
755 VM_WARN_ON(!(pte_raw(pte) & cpu_to_be64(_PAGE_PTE)));
756 /*
757 * Keep the _PAGE_PTE added till we are sure we handle _PAGE_PTE
758 * in all the callers.
759 */
760 pte = __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PTE));
761
762 if (radix_enabled())
763 return radix__set_pte_at(mm, addr, ptep, pte, percpu);
764 return hash__set_pte_at(mm, addr, ptep, pte, percpu);
765 }
766
767 #define _PAGE_CACHE_CTL (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
768
769 #define pgprot_noncached pgprot_noncached
pgprot_noncached(pgprot_t prot)770 static inline pgprot_t pgprot_noncached(pgprot_t prot)
771 {
772 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
773 _PAGE_NON_IDEMPOTENT);
774 }
775
776 #define pgprot_noncached_wc pgprot_noncached_wc
pgprot_noncached_wc(pgprot_t prot)777 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
778 {
779 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
780 _PAGE_TOLERANT);
781 }
782
783 #define pgprot_cached pgprot_cached
pgprot_cached(pgprot_t prot)784 static inline pgprot_t pgprot_cached(pgprot_t prot)
785 {
786 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
787 }
788
789 #define pgprot_writecombine pgprot_writecombine
pgprot_writecombine(pgprot_t prot)790 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
791 {
792 return pgprot_noncached_wc(prot);
793 }
794 /*
795 * check a pte mapping have cache inhibited property
796 */
pte_ci(pte_t pte)797 static inline bool pte_ci(pte_t pte)
798 {
799 __be64 pte_v = pte_raw(pte);
800
801 if (((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_TOLERANT)) ||
802 ((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_NON_IDEMPOTENT)))
803 return true;
804 return false;
805 }
806
pmd_clear(pmd_t * pmdp)807 static inline void pmd_clear(pmd_t *pmdp)
808 {
809 if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
810 /*
811 * Don't use this if we can possibly have a hash page table
812 * entry mapping this.
813 */
814 WARN_ON((pmd_val(*pmdp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
815 }
816 *pmdp = __pmd(0);
817 }
818
pmd_none(pmd_t pmd)819 static inline int pmd_none(pmd_t pmd)
820 {
821 return !pmd_raw(pmd);
822 }
823
pmd_present(pmd_t pmd)824 static inline int pmd_present(pmd_t pmd)
825 {
826 /*
827 * A pmd is considerent present if _PAGE_PRESENT is set.
828 * We also need to consider the pmd present which is marked
829 * invalid during a split. Hence we look for _PAGE_INVALID
830 * if we find _PAGE_PRESENT cleared.
831 */
832 if (pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID))
833 return true;
834
835 return false;
836 }
837
pmd_is_serializing(pmd_t pmd)838 static inline int pmd_is_serializing(pmd_t pmd)
839 {
840 /*
841 * If the pmd is undergoing a split, the _PAGE_PRESENT bit is clear
842 * and _PAGE_INVALID is set (see pmd_present, pmdp_invalidate).
843 *
844 * This condition may also occur when flushing a pmd while flushing
845 * it (see ptep_modify_prot_start), so callers must ensure this
846 * case is fine as well.
847 */
848 if ((pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)) ==
849 cpu_to_be64(_PAGE_INVALID))
850 return true;
851
852 return false;
853 }
854
pmd_bad(pmd_t pmd)855 static inline int pmd_bad(pmd_t pmd)
856 {
857 if (radix_enabled())
858 return radix__pmd_bad(pmd);
859 return hash__pmd_bad(pmd);
860 }
861
pud_clear(pud_t * pudp)862 static inline void pud_clear(pud_t *pudp)
863 {
864 if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
865 /*
866 * Don't use this if we can possibly have a hash page table
867 * entry mapping this.
868 */
869 WARN_ON((pud_val(*pudp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
870 }
871 *pudp = __pud(0);
872 }
873
pud_none(pud_t pud)874 static inline int pud_none(pud_t pud)
875 {
876 return !pud_raw(pud);
877 }
878
pud_present(pud_t pud)879 static inline int pud_present(pud_t pud)
880 {
881 return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PRESENT));
882 }
883
884 extern struct page *pud_page(pud_t pud);
885 extern struct page *pmd_page(pmd_t pmd);
pud_pte(pud_t pud)886 static inline pte_t pud_pte(pud_t pud)
887 {
888 return __pte_raw(pud_raw(pud));
889 }
890
pte_pud(pte_t pte)891 static inline pud_t pte_pud(pte_t pte)
892 {
893 return __pud_raw(pte_raw(pte));
894 }
895
pudp_ptep(pud_t * pud)896 static inline pte_t *pudp_ptep(pud_t *pud)
897 {
898 return (pte_t *)pud;
899 }
900
901 #define pud_pfn(pud) pte_pfn(pud_pte(pud))
902 #define pud_dirty(pud) pte_dirty(pud_pte(pud))
903 #define pud_young(pud) pte_young(pud_pte(pud))
904 #define pud_mkold(pud) pte_pud(pte_mkold(pud_pte(pud)))
905 #define pud_wrprotect(pud) pte_pud(pte_wrprotect(pud_pte(pud)))
906 #define pud_mkdirty(pud) pte_pud(pte_mkdirty(pud_pte(pud)))
907 #define pud_mkclean(pud) pte_pud(pte_mkclean(pud_pte(pud)))
908 #define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud)))
909 #define pud_mkwrite(pud) pte_pud(pte_mkwrite_novma(pud_pte(pud)))
910 #define pud_write(pud) pte_write(pud_pte(pud))
911
912 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
913 #define pud_soft_dirty(pmd) pte_soft_dirty(pud_pte(pud))
914 #define pud_mksoft_dirty(pmd) pte_pud(pte_mksoft_dirty(pud_pte(pud)))
915 #define pud_clear_soft_dirty(pmd) pte_pud(pte_clear_soft_dirty(pud_pte(pud)))
916 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
917
pud_bad(pud_t pud)918 static inline int pud_bad(pud_t pud)
919 {
920 if (radix_enabled())
921 return radix__pud_bad(pud);
922 return hash__pud_bad(pud);
923 }
924
925 #define pud_access_permitted pud_access_permitted
pud_access_permitted(pud_t pud,bool write)926 static inline bool pud_access_permitted(pud_t pud, bool write)
927 {
928 return pte_access_permitted(pud_pte(pud), write);
929 }
930
931 #define __p4d_raw(x) ((p4d_t) { __pgd_raw(x) })
p4d_raw(p4d_t x)932 static inline __be64 p4d_raw(p4d_t x)
933 {
934 return pgd_raw(x.pgd);
935 }
936
937 #define p4d_write(p4d) pte_write(p4d_pte(p4d))
938
p4d_clear(p4d_t * p4dp)939 static inline void p4d_clear(p4d_t *p4dp)
940 {
941 *p4dp = __p4d(0);
942 }
943
p4d_none(p4d_t p4d)944 static inline int p4d_none(p4d_t p4d)
945 {
946 return !p4d_raw(p4d);
947 }
948
p4d_present(p4d_t p4d)949 static inline int p4d_present(p4d_t p4d)
950 {
951 return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PRESENT));
952 }
953
p4d_pte(p4d_t p4d)954 static inline pte_t p4d_pte(p4d_t p4d)
955 {
956 return __pte_raw(p4d_raw(p4d));
957 }
958
pte_p4d(pte_t pte)959 static inline p4d_t pte_p4d(pte_t pte)
960 {
961 return __p4d_raw(pte_raw(pte));
962 }
963
p4d_bad(p4d_t p4d)964 static inline int p4d_bad(p4d_t p4d)
965 {
966 if (radix_enabled())
967 return radix__p4d_bad(p4d);
968 return hash__p4d_bad(p4d);
969 }
970
971 #define p4d_access_permitted p4d_access_permitted
p4d_access_permitted(p4d_t p4d,bool write)972 static inline bool p4d_access_permitted(p4d_t p4d, bool write)
973 {
974 return pte_access_permitted(p4d_pte(p4d), write);
975 }
976
977 extern struct page *p4d_page(p4d_t p4d);
978
979 /* Pointers in the page table tree are physical addresses */
980 #define __pgtable_ptr_val(ptr) __pa(ptr)
981
p4d_pgtable(p4d_t p4d)982 static inline pud_t *p4d_pgtable(p4d_t p4d)
983 {
984 return (pud_t *)__va(p4d_val(p4d) & ~P4D_MASKED_BITS);
985 }
986
pud_pgtable(pud_t pud)987 static inline pmd_t *pud_pgtable(pud_t pud)
988 {
989 return (pmd_t *)__va(pud_val(pud) & ~PUD_MASKED_BITS);
990 }
991
992 #define pmd_ERROR(e) \
993 pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
994 #define pud_ERROR(e) \
995 pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
996 #define pgd_ERROR(e) \
997 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
998
map_kernel_page(unsigned long ea,unsigned long pa,pgprot_t prot)999 static inline int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
1000 {
1001 if (radix_enabled()) {
1002 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
1003 unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
1004 WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
1005 #endif
1006 return radix__map_kernel_page(ea, pa, prot, PAGE_SIZE);
1007 }
1008 return hash__map_kernel_page(ea, pa, prot);
1009 }
1010
1011 void unmap_kernel_page(unsigned long va);
1012
vmemmap_create_mapping(unsigned long start,unsigned long page_size,unsigned long phys)1013 static inline int __meminit vmemmap_create_mapping(unsigned long start,
1014 unsigned long page_size,
1015 unsigned long phys)
1016 {
1017 if (radix_enabled())
1018 return radix__vmemmap_create_mapping(start, page_size, phys);
1019 return hash__vmemmap_create_mapping(start, page_size, phys);
1020 }
1021
1022 #ifdef CONFIG_MEMORY_HOTPLUG
vmemmap_remove_mapping(unsigned long start,unsigned long page_size)1023 static inline void vmemmap_remove_mapping(unsigned long start,
1024 unsigned long page_size)
1025 {
1026 if (radix_enabled())
1027 return radix__vmemmap_remove_mapping(start, page_size);
1028 return hash__vmemmap_remove_mapping(start, page_size);
1029 }
1030 #endif
1031
pmd_pte(pmd_t pmd)1032 static inline pte_t pmd_pte(pmd_t pmd)
1033 {
1034 return __pte_raw(pmd_raw(pmd));
1035 }
1036
pte_pmd(pte_t pte)1037 static inline pmd_t pte_pmd(pte_t pte)
1038 {
1039 return __pmd_raw(pte_raw(pte));
1040 }
1041
pmdp_ptep(pmd_t * pmd)1042 static inline pte_t *pmdp_ptep(pmd_t *pmd)
1043 {
1044 return (pte_t *)pmd;
1045 }
1046 #define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd))
1047 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
1048 #define pmd_young(pmd) pte_young(pmd_pte(pmd))
1049 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
1050 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1051 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1052 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
1053 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1054 #define pmd_mkwrite_novma(pmd) pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)))
1055
1056 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1057 #define pmd_soft_dirty(pmd) pte_soft_dirty(pmd_pte(pmd))
1058 #define pmd_mksoft_dirty(pmd) pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1059 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1060
1061 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1062 #define pmd_swp_mksoft_dirty(pmd) pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd)))
1063 #define pmd_swp_soft_dirty(pmd) pte_swp_soft_dirty(pmd_pte(pmd))
1064 #define pmd_swp_clear_soft_dirty(pmd) pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd)))
1065 #endif
1066 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1067
1068 #ifdef CONFIG_NUMA_BALANCING
pmd_protnone(pmd_t pmd)1069 static inline int pmd_protnone(pmd_t pmd)
1070 {
1071 return pte_protnone(pmd_pte(pmd));
1072 }
1073 #endif /* CONFIG_NUMA_BALANCING */
1074
1075 #define pmd_write(pmd) pte_write(pmd_pte(pmd))
1076
1077 #define pmd_access_permitted pmd_access_permitted
pmd_access_permitted(pmd_t pmd,bool write)1078 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1079 {
1080 /*
1081 * pmdp_invalidate sets this combination (which is not caught by
1082 * !pte_present() check in pte_access_permitted), to prevent
1083 * lock-free lookups, as part of the serialize_against_pte_lookup()
1084 * synchronisation.
1085 *
1086 * This also catches the case where the PTE's hardware PRESENT bit is
1087 * cleared while TLB is flushed, which is suboptimal but should not
1088 * be frequent.
1089 */
1090 if (pmd_is_serializing(pmd))
1091 return false;
1092
1093 return pte_access_permitted(pmd_pte(pmd), write);
1094 }
1095
1096 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1097 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1098 extern pud_t pfn_pud(unsigned long pfn, pgprot_t pgprot);
1099 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
1100 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1101 extern pud_t pud_modify(pud_t pud, pgprot_t newprot);
1102 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1103 pmd_t *pmdp, pmd_t pmd);
1104 extern void set_pud_at(struct mm_struct *mm, unsigned long addr,
1105 pud_t *pudp, pud_t pud);
1106
update_mmu_cache_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd)1107 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1108 unsigned long addr, pmd_t *pmd)
1109 {
1110 }
1111
update_mmu_cache_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud)1112 static inline void update_mmu_cache_pud(struct vm_area_struct *vma,
1113 unsigned long addr, pud_t *pud)
1114 {
1115 }
1116
1117 extern int hash__has_transparent_hugepage(void);
has_transparent_hugepage(void)1118 static inline int has_transparent_hugepage(void)
1119 {
1120 if (radix_enabled())
1121 return radix__has_transparent_hugepage();
1122 return hash__has_transparent_hugepage();
1123 }
1124 #define has_transparent_hugepage has_transparent_hugepage
1125
has_transparent_pud_hugepage(void)1126 static inline int has_transparent_pud_hugepage(void)
1127 {
1128 if (radix_enabled())
1129 return radix__has_transparent_pud_hugepage();
1130 return 0;
1131 }
1132 #define has_transparent_pud_hugepage has_transparent_pud_hugepage
1133
1134 static inline unsigned long
pmd_hugepage_update(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,unsigned long clr,unsigned long set)1135 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1136 unsigned long clr, unsigned long set)
1137 {
1138 if (radix_enabled())
1139 return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1140 return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1141 }
1142
1143 static inline unsigned long
pud_hugepage_update(struct mm_struct * mm,unsigned long addr,pud_t * pudp,unsigned long clr,unsigned long set)1144 pud_hugepage_update(struct mm_struct *mm, unsigned long addr, pud_t *pudp,
1145 unsigned long clr, unsigned long set)
1146 {
1147 if (radix_enabled())
1148 return radix__pud_hugepage_update(mm, addr, pudp, clr, set);
1149 BUG();
1150 return pud_val(*pudp);
1151 }
1152
1153 /*
1154 * For radix we should always find H_PAGE_HASHPTE zero. Hence
1155 * the below will work for radix too
1156 */
__pmdp_test_and_clear_young(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1157 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1158 unsigned long addr, pmd_t *pmdp)
1159 {
1160 unsigned long old;
1161
1162 if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1163 return 0;
1164 old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1165 return ((old & _PAGE_ACCESSED) != 0);
1166 }
1167
__pudp_test_and_clear_young(struct mm_struct * mm,unsigned long addr,pud_t * pudp)1168 static inline int __pudp_test_and_clear_young(struct mm_struct *mm,
1169 unsigned long addr, pud_t *pudp)
1170 {
1171 unsigned long old;
1172
1173 if ((pud_raw(*pudp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1174 return 0;
1175 old = pud_hugepage_update(mm, addr, pudp, _PAGE_ACCESSED, 0);
1176 return ((old & _PAGE_ACCESSED) != 0);
1177 }
1178
1179 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1180 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1181 pmd_t *pmdp)
1182 {
1183 if (pmd_write(*pmdp))
1184 pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1185 }
1186
1187 #define __HAVE_ARCH_PUDP_SET_WRPROTECT
pudp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pud_t * pudp)1188 static inline void pudp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1189 pud_t *pudp)
1190 {
1191 if (pud_write(*pudp))
1192 pud_hugepage_update(mm, addr, pudp, _PAGE_WRITE, 0);
1193 }
1194
1195 /*
1196 * Only returns true for a THP. False for pmd migration entry.
1197 * We also need to return true when we come across a pte that
1198 * in between a thp split. While splitting THP, we mark the pmd
1199 * invalid (pmdp_invalidate()) before we set it with pte page
1200 * address. A pmd_trans_huge() check against a pmd entry during that time
1201 * should return true.
1202 * We should not call this on a hugetlb entry. We should check for HugeTLB
1203 * entry using vma->vm_flags
1204 * The page table walk rule is explained in Documentation/mm/transhuge.rst
1205 */
pmd_trans_huge(pmd_t pmd)1206 static inline int pmd_trans_huge(pmd_t pmd)
1207 {
1208 if (!pmd_present(pmd))
1209 return false;
1210
1211 if (radix_enabled())
1212 return radix__pmd_trans_huge(pmd);
1213 return hash__pmd_trans_huge(pmd);
1214 }
1215
pud_trans_huge(pud_t pud)1216 static inline int pud_trans_huge(pud_t pud)
1217 {
1218 if (!pud_present(pud))
1219 return false;
1220
1221 if (radix_enabled())
1222 return radix__pud_trans_huge(pud);
1223 return 0;
1224 }
1225
1226
1227 #define __HAVE_ARCH_PMD_SAME
pmd_same(pmd_t pmd_a,pmd_t pmd_b)1228 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1229 {
1230 if (radix_enabled())
1231 return radix__pmd_same(pmd_a, pmd_b);
1232 return hash__pmd_same(pmd_a, pmd_b);
1233 }
1234
1235 #define pud_same pud_same
pud_same(pud_t pud_a,pud_t pud_b)1236 static inline int pud_same(pud_t pud_a, pud_t pud_b)
1237 {
1238 if (radix_enabled())
1239 return radix__pud_same(pud_a, pud_b);
1240 return hash__pud_same(pud_a, pud_b);
1241 }
1242
1243
__pmd_mkhuge(pmd_t pmd)1244 static inline pmd_t __pmd_mkhuge(pmd_t pmd)
1245 {
1246 if (radix_enabled())
1247 return radix__pmd_mkhuge(pmd);
1248 return hash__pmd_mkhuge(pmd);
1249 }
1250
__pud_mkhuge(pud_t pud)1251 static inline pud_t __pud_mkhuge(pud_t pud)
1252 {
1253 if (radix_enabled())
1254 return radix__pud_mkhuge(pud);
1255 BUG();
1256 return pud;
1257 }
1258
1259 /*
1260 * pfn_pmd return a pmd_t that can be used as pmd pte entry.
1261 */
pmd_mkhuge(pmd_t pmd)1262 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1263 {
1264 #ifdef CONFIG_DEBUG_VM
1265 if (radix_enabled())
1266 WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE)) == 0);
1267 else
1268 WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE)) !=
1269 cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE));
1270 #endif
1271 return pmd;
1272 }
1273
pud_mkhuge(pud_t pud)1274 static inline pud_t pud_mkhuge(pud_t pud)
1275 {
1276 #ifdef CONFIG_DEBUG_VM
1277 if (radix_enabled())
1278 WARN_ON((pud_raw(pud) & cpu_to_be64(_PAGE_PTE)) == 0);
1279 else
1280 WARN_ON(1);
1281 #endif
1282 return pud;
1283 }
1284
1285
1286 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1287 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1288 unsigned long address, pmd_t *pmdp,
1289 pmd_t entry, int dirty);
1290 #define __HAVE_ARCH_PUDP_SET_ACCESS_FLAGS
1291 extern int pudp_set_access_flags(struct vm_area_struct *vma,
1292 unsigned long address, pud_t *pudp,
1293 pud_t entry, int dirty);
1294
1295 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1296 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1297 unsigned long address, pmd_t *pmdp);
1298 #define __HAVE_ARCH_PUDP_TEST_AND_CLEAR_YOUNG
1299 extern int pudp_test_and_clear_young(struct vm_area_struct *vma,
1300 unsigned long address, pud_t *pudp);
1301
1302
1303 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1304 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1305 unsigned long addr, pmd_t *pmdp)
1306 {
1307 if (radix_enabled())
1308 return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1309 return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1310 }
1311
1312 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
pudp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pud_t * pudp)1313 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
1314 unsigned long addr, pud_t *pudp)
1315 {
1316 if (radix_enabled())
1317 return radix__pudp_huge_get_and_clear(mm, addr, pudp);
1318 BUG();
1319 return *pudp;
1320 }
1321
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1322 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1323 unsigned long address, pmd_t *pmdp)
1324 {
1325 if (radix_enabled())
1326 return radix__pmdp_collapse_flush(vma, address, pmdp);
1327 return hash__pmdp_collapse_flush(vma, address, pmdp);
1328 }
1329 #define pmdp_collapse_flush pmdp_collapse_flush
1330
1331 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1332 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1333 unsigned long addr,
1334 pmd_t *pmdp, int full);
1335
1336 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
1337 pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
1338 unsigned long addr,
1339 pud_t *pudp, int full);
1340
1341 #define __HAVE_ARCH_PGTABLE_DEPOSIT
pgtable_trans_huge_deposit(struct mm_struct * mm,pmd_t * pmdp,pgtable_t pgtable)1342 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1343 pmd_t *pmdp, pgtable_t pgtable)
1344 {
1345 if (radix_enabled())
1346 return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1347 return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1348 }
1349
1350 #define __HAVE_ARCH_PGTABLE_WITHDRAW
pgtable_trans_huge_withdraw(struct mm_struct * mm,pmd_t * pmdp)1351 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1352 pmd_t *pmdp)
1353 {
1354 if (radix_enabled())
1355 return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1356 return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1357 }
1358
1359 #define __HAVE_ARCH_PMDP_INVALIDATE
1360 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1361 pmd_t *pmdp);
1362 extern pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address,
1363 pud_t *pudp);
1364
1365 #define pmd_move_must_withdraw pmd_move_must_withdraw
1366 struct spinlock;
1367 extern int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1368 struct spinlock *old_pmd_ptl,
1369 struct vm_area_struct *vma);
1370 /*
1371 * Hash translation mode use the deposited table to store hash pte
1372 * slot information.
1373 */
1374 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
arch_needs_pgtable_deposit(void)1375 static inline bool arch_needs_pgtable_deposit(void)
1376 {
1377 if (radix_enabled())
1378 return false;
1379 return true;
1380 }
1381 extern void serialize_against_pte_lookup(struct mm_struct *mm);
1382
1383
pmd_mkdevmap(pmd_t pmd)1384 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
1385 {
1386 if (radix_enabled())
1387 return radix__pmd_mkdevmap(pmd);
1388 return hash__pmd_mkdevmap(pmd);
1389 }
1390
pud_mkdevmap(pud_t pud)1391 static inline pud_t pud_mkdevmap(pud_t pud)
1392 {
1393 if (radix_enabled())
1394 return radix__pud_mkdevmap(pud);
1395 BUG();
1396 return pud;
1397 }
1398
pmd_devmap(pmd_t pmd)1399 static inline int pmd_devmap(pmd_t pmd)
1400 {
1401 return pte_devmap(pmd_pte(pmd));
1402 }
1403
pud_devmap(pud_t pud)1404 static inline int pud_devmap(pud_t pud)
1405 {
1406 return pte_devmap(pud_pte(pud));
1407 }
1408
pgd_devmap(pgd_t pgd)1409 static inline int pgd_devmap(pgd_t pgd)
1410 {
1411 return 0;
1412 }
1413 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1414
1415 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1416 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1417 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1418 pte_t *, pte_t, pte_t);
1419
1420 /*
1421 * Returns true for a R -> RW upgrade of pte
1422 */
is_pte_rw_upgrade(unsigned long old_val,unsigned long new_val)1423 static inline bool is_pte_rw_upgrade(unsigned long old_val, unsigned long new_val)
1424 {
1425 if (!(old_val & _PAGE_READ))
1426 return false;
1427
1428 if ((!(old_val & _PAGE_WRITE)) && (new_val & _PAGE_WRITE))
1429 return true;
1430
1431 return false;
1432 }
1433
1434 #endif /* __ASSEMBLY__ */
1435 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1436