xref: /linux/drivers/net/ethernet/intel/iavf/iavf_txrx.h (revision 8be4d31cb8aaeea27bde4b7ddb26e28a89062ebf)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #ifndef _IAVF_TXRX_H_
5 #define _IAVF_TXRX_H_
6 
7 #include <linux/net/intel/libie/pctype.h>
8 
9 /* Interrupt Throttling and Rate Limiting Goodies */
10 #define IAVF_DEFAULT_IRQ_WORK      256
11 
12 /* The datasheet for the X710 and XL710 indicate that the maximum value for
13  * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec
14  * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing
15  * the register value which is divided by 2 lets use the actual values and
16  * avoid an excessive amount of translation.
17  */
18 #define IAVF_ITR_DYNAMIC	0x8000	/* use top bit as a flag */
19 #define IAVF_ITR_MASK		0x1FFE	/* mask for ITR register value */
20 #define IAVF_ITR_100K		    10	/* all values below must be even */
21 #define IAVF_ITR_50K		    20
22 #define IAVF_ITR_20K		    50
23 #define IAVF_ITR_18K		    60
24 #define IAVF_ITR_8K		   122
25 #define IAVF_MAX_ITR		  8160	/* maximum value as per datasheet */
26 #define ITR_TO_REG(setting) ((setting) & ~IAVF_ITR_DYNAMIC)
27 #define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~IAVF_ITR_MASK)
28 #define ITR_IS_DYNAMIC(setting) (!!((setting) & IAVF_ITR_DYNAMIC))
29 
30 #define IAVF_ITR_RX_DEF		(IAVF_ITR_20K | IAVF_ITR_DYNAMIC)
31 #define IAVF_ITR_TX_DEF		(IAVF_ITR_20K | IAVF_ITR_DYNAMIC)
32 
33 /* 0x40 is the enable bit for interrupt rate limiting, and must be set if
34  * the value of the rate limit is non-zero
35  */
36 #define INTRL_ENA                  BIT(6)
37 #define IAVF_MAX_INTRL             0x3B    /* reg uses 4 usec resolution */
38 #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
39 #define INTRL_USEC_TO_REG(set) ((set) ? ((set) >> 2) | INTRL_ENA : 0)
40 #define IAVF_INTRL_8K              125     /* 8000 ints/sec */
41 #define IAVF_INTRL_62K             16      /* 62500 ints/sec */
42 #define IAVF_INTRL_83K             12      /* 83333 ints/sec */
43 
44 #define IAVF_QUEUE_END_OF_LIST 0x7FF
45 
46 /* this enum matches hardware bits and is meant to be used by DYN_CTLN
47  * registers and QINT registers or more generally anywhere in the manual
48  * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
49  * register but instead is a special value meaning "don't update" ITR0/1/2.
50  */
51 enum iavf_dyn_idx_t {
52 	IAVF_IDX_ITR0 = 0,
53 	IAVF_IDX_ITR1 = 1,
54 	IAVF_IDX_ITR2 = 2,
55 	IAVF_ITR_NONE = 3	/* ITR_NONE must not be used as an index */
56 };
57 
58 /* these are indexes into ITRN registers */
59 #define IAVF_RX_ITR    IAVF_IDX_ITR0
60 #define IAVF_TX_ITR    IAVF_IDX_ITR1
61 #define IAVF_PE_ITR    IAVF_IDX_ITR2
62 
63 /* Supported RSS offloads */
64 #define IAVF_DEFAULT_RSS_HASHCFG ( \
65 	BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_IPV4_UDP) | \
66 	BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
67 	BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_IPV4_TCP) | \
68 	BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
69 	BIT_ULL(LIBIE_FILTER_PCTYPE_FRAG_IPV4) | \
70 	BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_IPV6_UDP) | \
71 	BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_IPV6_TCP) | \
72 	BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
73 	BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
74 	BIT_ULL(LIBIE_FILTER_PCTYPE_FRAG_IPV6) | \
75 	BIT_ULL(LIBIE_FILTER_PCTYPE_L2_PAYLOAD))
76 
77 #define IAVF_DEFAULT_RSS_HASHCFG_EXPANDED (IAVF_DEFAULT_RSS_HASHCFG | \
78 	BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
79 	BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
80 	BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
81 	BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
82 	BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
83 	BIT_ULL(LIBIE_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
84 
85 /* How many Rx Buffers do we bundle into one write to the hardware ? */
86 #define IAVF_RX_INCREMENT(r, i) \
87 	do {					\
88 		(i)++;				\
89 		if ((i) == (r)->count)		\
90 			i = 0;			\
91 		r->next_to_clean = i;		\
92 	} while (0)
93 
94 #define IAVF_RX_NEXT_DESC(r, i, n)		\
95 	do {					\
96 		(i)++;				\
97 		if ((i) == (r)->count)		\
98 			i = 0;			\
99 		(n) = IAVF_RX_DESC((r), (i));	\
100 	} while (0)
101 
102 #define IAVF_RX_NEXT_DESC_PREFETCH(r, i, n)		\
103 	do {						\
104 		IAVF_RX_NEXT_DESC((r), (i), (n));	\
105 		prefetch((n));				\
106 	} while (0)
107 
108 #define IAVF_MAX_BUFFER_TXD	8
109 #define IAVF_MIN_TX_LEN		17
110 
111 /* The size limit for a transmit buffer in a descriptor is (16K - 1).
112  * In order to align with the read requests we will align the value to
113  * the nearest 4K which represents our maximum read request size.
114  */
115 #define IAVF_MAX_READ_REQ_SIZE		4096
116 #define IAVF_MAX_DATA_PER_TXD		(16 * 1024 - 1)
117 #define IAVF_MAX_DATA_PER_TXD_ALIGNED \
118 	(IAVF_MAX_DATA_PER_TXD & ~(IAVF_MAX_READ_REQ_SIZE - 1))
119 
120 /**
121  * iavf_txd_use_count  - estimate the number of descriptors needed for Tx
122  * @size: transmit request size in bytes
123  *
124  * Due to hardware alignment restrictions (4K alignment), we need to
125  * assume that we can have no more than 12K of data per descriptor, even
126  * though each descriptor can take up to 16K - 1 bytes of aligned memory.
127  * Thus, we need to divide by 12K. But division is slow! Instead,
128  * we decompose the operation into shifts and one relatively cheap
129  * multiply operation.
130  *
131  * To divide by 12K, we first divide by 4K, then divide by 3:
132  *     To divide by 4K, shift right by 12 bits
133  *     To divide by 3, multiply by 85, then divide by 256
134  *     (Divide by 256 is done by shifting right by 8 bits)
135  * Finally, we add one to round up. Because 256 isn't an exact multiple of
136  * 3, we'll underestimate near each multiple of 12K. This is actually more
137  * accurate as we have 4K - 1 of wiggle room that we can fit into the last
138  * segment.  For our purposes this is accurate out to 1M which is orders of
139  * magnitude greater than our largest possible GSO size.
140  *
141  * This would then be implemented as:
142  *     return (((size >> 12) * 85) >> 8) + 1;
143  *
144  * Since multiplication and division are commutative, we can reorder
145  * operations into:
146  *     return ((size * 85) >> 20) + 1;
147  */
iavf_txd_use_count(unsigned int size)148 static inline unsigned int iavf_txd_use_count(unsigned int size)
149 {
150 	return ((size * 85) >> 20) + 1;
151 }
152 
153 /* Tx Descriptors needed, worst case */
154 #define DESC_NEEDED (MAX_SKB_FRAGS + 6)
155 #define IAVF_MIN_DESC_PENDING	4
156 
157 #define IAVF_TX_FLAGS_HW_VLAN			BIT(1)
158 #define IAVF_TX_FLAGS_SW_VLAN			BIT(2)
159 #define IAVF_TX_FLAGS_TSO			BIT(3)
160 #define IAVF_TX_FLAGS_IPV4			BIT(4)
161 #define IAVF_TX_FLAGS_IPV6			BIT(5)
162 #define IAVF_TX_FLAGS_FCCRC			BIT(6)
163 #define IAVF_TX_FLAGS_FSO			BIT(7)
164 #define IAVF_TX_FLAGS_FD_SB			BIT(9)
165 #define IAVF_TX_FLAGS_VXLAN_TUNNEL		BIT(10)
166 #define IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN	BIT(11)
167 #define IAVF_TX_FLAGS_VLAN_MASK			0xffff0000
168 #define IAVF_TX_FLAGS_VLAN_PRIO_MASK		0xe0000000
169 #define IAVF_TX_FLAGS_VLAN_PRIO_SHIFT		29
170 #define IAVF_TX_FLAGS_VLAN_SHIFT		16
171 
172 struct iavf_tx_buffer {
173 	struct iavf_tx_desc *next_to_watch;
174 	union {
175 		struct sk_buff *skb;
176 		void *raw_buf;
177 	};
178 	unsigned int bytecount;
179 	unsigned short gso_segs;
180 
181 	DEFINE_DMA_UNMAP_ADDR(dma);
182 	DEFINE_DMA_UNMAP_LEN(len);
183 	u32 tx_flags;
184 };
185 
186 struct iavf_queue_stats {
187 	u64 packets;
188 	u64 bytes;
189 };
190 
191 struct iavf_tx_queue_stats {
192 	u64 restart_queue;
193 	u64 tx_busy;
194 	u64 tx_done_old;
195 	u64 tx_linearize;
196 	u64 tx_force_wb;
197 	u64 tx_lost_interrupt;
198 };
199 
200 struct iavf_rx_queue_stats {
201 	u64 non_eop_descs;
202 	u64 alloc_page_failed;
203 	u64 alloc_buff_failed;
204 };
205 
206 /* some useful defines for virtchannel interface, which
207  * is the only remaining user of header split
208  */
209 #define IAVF_RX_DTYPE_NO_SPLIT      0
210 #define IAVF_RX_DTYPE_HEADER_SPLIT  1
211 #define IAVF_RX_DTYPE_SPLIT_ALWAYS  2
212 #define IAVF_RX_SPLIT_L2      0x1
213 #define IAVF_RX_SPLIT_IP      0x2
214 #define IAVF_RX_SPLIT_TCP_UDP 0x4
215 #define IAVF_RX_SPLIT_SCTP    0x8
216 
217 /* struct that defines a descriptor ring, associated with a VSI */
218 struct iavf_ring {
219 	struct iavf_ring *next;		/* pointer to next ring in q_vector */
220 	void *desc;			/* Descriptor ring memory */
221 	union {
222 		struct page_pool *pp;	/* Used on Rx for buffer management */
223 		struct device *dev;	/* Used on Tx for DMA mapping */
224 	};
225 	struct net_device *netdev;	/* netdev ring maps to */
226 	union {
227 		struct libeth_fqe *rx_fqes;
228 		struct iavf_tx_buffer *tx_bi;
229 	};
230 	u8 __iomem *tail;
231 	u32 truesize;
232 
233 	u16 queue_index;		/* Queue number of ring */
234 
235 	/* high bit set means dynamic, use accessors routines to read/write.
236 	 * hardware only supports 2us resolution for the ITR registers.
237 	 * these values always store the USER setting, and must be converted
238 	 * before programming to a register.
239 	 */
240 	u16 itr_setting;
241 
242 	u16 count;			/* Number of descriptors */
243 
244 	/* used in interrupt processing */
245 	u16 next_to_use;
246 	u16 next_to_clean;
247 
248 	u16 rxdid;		/* Rx descriptor format */
249 
250 	u16 flags;
251 #define IAVF_TXR_FLAGS_WB_ON_ITR		BIT(0)
252 #define IAVF_TXR_FLAGS_ARM_WB			BIT(1)
253 /* BIT(2) is free */
254 #define IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1	BIT(3)
255 #define IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2	BIT(4)
256 #define IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2	BIT(5)
257 #define IAVF_TXRX_FLAGS_HW_TSTAMP		BIT(6)
258 
259 	/* stats structs */
260 	struct iavf_queue_stats	stats;
261 	struct u64_stats_sync syncp;
262 	union {
263 		struct iavf_tx_queue_stats tx_stats;
264 		struct iavf_rx_queue_stats rx_stats;
265 	};
266 
267 	int prev_pkt_ctr;		/* For Tx stall detection */
268 	unsigned int size;		/* length of descriptor ring in bytes */
269 	dma_addr_t dma;			/* physical address of ring */
270 
271 	struct iavf_vsi *vsi;		/* Backreference to associated VSI */
272 	struct iavf_q_vector *q_vector;	/* Backreference to associated vector */
273 
274 	struct rcu_head rcu;		/* to avoid race on free */
275 	struct sk_buff *skb;		/* When iavf_clean_rx_ring_irq() must
276 					 * return before it sees the EOP for
277 					 * the current packet, we save that skb
278 					 * here and resume receiving this
279 					 * packet the next time
280 					 * iavf_clean_rx_ring_irq() is called
281 					 * for this ring.
282 					 */
283 
284 	struct iavf_ptp *ptp;
285 
286 	u32 rx_buf_len;
287 	struct net_shaper q_shaper;
288 	bool q_shaper_update;
289 } ____cacheline_internodealigned_in_smp;
290 
291 #define IAVF_ITR_ADAPTIVE_MIN_INC	0x0002
292 #define IAVF_ITR_ADAPTIVE_MIN_USECS	0x0002
293 #define IAVF_ITR_ADAPTIVE_MAX_USECS	0x007e
294 #define IAVF_ITR_ADAPTIVE_LATENCY	0x8000
295 #define IAVF_ITR_ADAPTIVE_BULK		0x0000
296 #define ITR_IS_BULK(x) (!((x) & IAVF_ITR_ADAPTIVE_LATENCY))
297 
298 struct iavf_ring_container {
299 	struct iavf_ring *ring;		/* pointer to linked list of ring(s) */
300 	unsigned long next_update;	/* jiffies value of next update */
301 	unsigned int total_bytes;	/* total bytes processed this int */
302 	unsigned int total_packets;	/* total packets processed this int */
303 	u16 count;
304 	u16 target_itr;			/* target ITR setting for ring(s) */
305 	u16 current_itr;		/* current ITR setting for ring(s) */
306 };
307 
308 /* iterator for handling rings in ring container */
309 #define iavf_for_each_ring(pos, head) \
310 	for (pos = (head).ring; pos != NULL; pos = pos->next)
311 
312 bool iavf_alloc_rx_buffers(struct iavf_ring *rxr, u16 cleaned_count);
313 netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
314 int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring);
315 int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring);
316 void iavf_free_tx_resources(struct iavf_ring *tx_ring);
317 void iavf_free_rx_resources(struct iavf_ring *rx_ring);
318 int iavf_napi_poll(struct napi_struct *napi, int budget);
319 void iavf_detect_recover_hung(struct iavf_vsi *vsi);
320 int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size);
321 bool __iavf_chk_linearize(struct sk_buff *skb);
322 
323 /**
324  * iavf_xmit_descriptor_count - calculate number of Tx descriptors needed
325  * @skb:     send buffer
326  *
327  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
328  * there is not enough descriptors available in this ring since we need at least
329  * one descriptor.
330  **/
iavf_xmit_descriptor_count(struct sk_buff * skb)331 static inline int iavf_xmit_descriptor_count(struct sk_buff *skb)
332 {
333 	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
334 	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
335 	int count = 0, size = skb_headlen(skb);
336 
337 	for (;;) {
338 		count += iavf_txd_use_count(size);
339 
340 		if (!nr_frags--)
341 			break;
342 
343 		size = skb_frag_size(frag++);
344 	}
345 
346 	return count;
347 }
348 
349 /**
350  * iavf_maybe_stop_tx - 1st level check for Tx stop conditions
351  * @tx_ring: the ring to be checked
352  * @size:    the size buffer we want to assure is available
353  *
354  * Returns 0 if stop is not needed
355  **/
iavf_maybe_stop_tx(struct iavf_ring * tx_ring,int size)356 static inline int iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size)
357 {
358 	if (likely(IAVF_DESC_UNUSED(tx_ring) >= size))
359 		return 0;
360 	return __iavf_maybe_stop_tx(tx_ring, size);
361 }
362 
363 /**
364  * iavf_chk_linearize - Check if there are more than 8 fragments per packet
365  * @skb:      send buffer
366  * @count:    number of buffers used
367  *
368  * Note: Our HW can't scatter-gather more than 8 fragments to build
369  * a packet on the wire and so we need to figure out the cases where we
370  * need to linearize the skb.
371  **/
iavf_chk_linearize(struct sk_buff * skb,int count)372 static inline bool iavf_chk_linearize(struct sk_buff *skb, int count)
373 {
374 	/* Both TSO and single send will work if count is less than 8 */
375 	if (likely(count < IAVF_MAX_BUFFER_TXD))
376 		return false;
377 
378 	if (skb_is_gso(skb))
379 		return __iavf_chk_linearize(skb);
380 
381 	/* we can support up to 8 data buffers for a single send */
382 	return count != IAVF_MAX_BUFFER_TXD;
383 }
384 /**
385  * txring_txq - helper to convert from a ring to a queue
386  * @ring: Tx ring to find the netdev equivalent of
387  **/
txring_txq(const struct iavf_ring * ring)388 static inline struct netdev_queue *txring_txq(const struct iavf_ring *ring)
389 {
390 	return netdev_get_tx_queue(ring->netdev, ring->queue_index);
391 }
392 #endif /* _IAVF_TXRX_H_ */
393