1 /* SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause */
2 /*
3 * Copyright (c) Meta Platforms, Inc. and affiliates.
4 * All rights reserved.
5 *
6 * This source code is licensed under both the BSD-style license (found in the
7 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
8 * in the COPYING file in the root directory of this source tree).
9 * You may select, at your option, one of the above-listed licenses.
10 */
11
12 #ifndef ZSTD_CWKSP_H
13 #define ZSTD_CWKSP_H
14
15 /*-*************************************
16 * Dependencies
17 ***************************************/
18 #include "../common/allocations.h" /* ZSTD_customMalloc, ZSTD_customFree */
19 #include "../common/zstd_internal.h"
20 #include "../common/portability_macros.h"
21 #include "../common/compiler.h" /* ZS2_isPower2 */
22
23 /*-*************************************
24 * Constants
25 ***************************************/
26
27 /* Since the workspace is effectively its own little malloc implementation /
28 * arena, when we run under ASAN, we should similarly insert redzones between
29 * each internal element of the workspace, so ASAN will catch overruns that
30 * reach outside an object but that stay inside the workspace.
31 *
32 * This defines the size of that redzone.
33 */
34 #ifndef ZSTD_CWKSP_ASAN_REDZONE_SIZE
35 #define ZSTD_CWKSP_ASAN_REDZONE_SIZE 128
36 #endif
37
38
39 /* Set our tables and aligneds to align by 64 bytes */
40 #define ZSTD_CWKSP_ALIGNMENT_BYTES 64
41
42 /*-*************************************
43 * Structures
44 ***************************************/
45 typedef enum {
46 ZSTD_cwksp_alloc_objects,
47 ZSTD_cwksp_alloc_aligned_init_once,
48 ZSTD_cwksp_alloc_aligned,
49 ZSTD_cwksp_alloc_buffers
50 } ZSTD_cwksp_alloc_phase_e;
51
52 /*
53 * Used to describe whether the workspace is statically allocated (and will not
54 * necessarily ever be freed), or if it's dynamically allocated and we can
55 * expect a well-formed caller to free this.
56 */
57 typedef enum {
58 ZSTD_cwksp_dynamic_alloc,
59 ZSTD_cwksp_static_alloc
60 } ZSTD_cwksp_static_alloc_e;
61
62 /*
63 * Zstd fits all its internal datastructures into a single continuous buffer,
64 * so that it only needs to perform a single OS allocation (or so that a buffer
65 * can be provided to it and it can perform no allocations at all). This buffer
66 * is called the workspace.
67 *
68 * Several optimizations complicate that process of allocating memory ranges
69 * from this workspace for each internal datastructure:
70 *
71 * - These different internal datastructures have different setup requirements:
72 *
73 * - The static objects need to be cleared once and can then be trivially
74 * reused for each compression.
75 *
76 * - Various buffers don't need to be initialized at all--they are always
77 * written into before they're read.
78 *
79 * - The matchstate tables have a unique requirement that they don't need
80 * their memory to be totally cleared, but they do need the memory to have
81 * some bound, i.e., a guarantee that all values in the memory they've been
82 * allocated is less than some maximum value (which is the starting value
83 * for the indices that they will then use for compression). When this
84 * guarantee is provided to them, they can use the memory without any setup
85 * work. When it can't, they have to clear the area.
86 *
87 * - These buffers also have different alignment requirements.
88 *
89 * - We would like to reuse the objects in the workspace for multiple
90 * compressions without having to perform any expensive reallocation or
91 * reinitialization work.
92 *
93 * - We would like to be able to efficiently reuse the workspace across
94 * multiple compressions **even when the compression parameters change** and
95 * we need to resize some of the objects (where possible).
96 *
97 * To attempt to manage this buffer, given these constraints, the ZSTD_cwksp
98 * abstraction was created. It works as follows:
99 *
100 * Workspace Layout:
101 *
102 * [ ... workspace ... ]
103 * [objects][tables ->] free space [<- buffers][<- aligned][<- init once]
104 *
105 * The various objects that live in the workspace are divided into the
106 * following categories, and are allocated separately:
107 *
108 * - Static objects: this is optionally the enclosing ZSTD_CCtx or ZSTD_CDict,
109 * so that literally everything fits in a single buffer. Note: if present,
110 * this must be the first object in the workspace, since ZSTD_customFree{CCtx,
111 * CDict}() rely on a pointer comparison to see whether one or two frees are
112 * required.
113 *
114 * - Fixed size objects: these are fixed-size, fixed-count objects that are
115 * nonetheless "dynamically" allocated in the workspace so that we can
116 * control how they're initialized separately from the broader ZSTD_CCtx.
117 * Examples:
118 * - Entropy Workspace
119 * - 2 x ZSTD_compressedBlockState_t
120 * - CDict dictionary contents
121 *
122 * - Tables: these are any of several different datastructures (hash tables,
123 * chain tables, binary trees) that all respect a common format: they are
124 * uint32_t arrays, all of whose values are between 0 and (nextSrc - base).
125 * Their sizes depend on the cparams. These tables are 64-byte aligned.
126 *
127 * - Init once: these buffers require to be initialized at least once before
128 * use. They should be used when we want to skip memory initialization
129 * while not triggering memory checkers (like Valgrind) when reading from
130 * from this memory without writing to it first.
131 * These buffers should be used carefully as they might contain data
132 * from previous compressions.
133 * Buffers are aligned to 64 bytes.
134 *
135 * - Aligned: these buffers don't require any initialization before they're
136 * used. The user of the buffer should make sure they write into a buffer
137 * location before reading from it.
138 * Buffers are aligned to 64 bytes.
139 *
140 * - Buffers: these buffers are used for various purposes that don't require
141 * any alignment or initialization before they're used. This means they can
142 * be moved around at no cost for a new compression.
143 *
144 * Allocating Memory:
145 *
146 * The various types of objects must be allocated in order, so they can be
147 * correctly packed into the workspace buffer. That order is:
148 *
149 * 1. Objects
150 * 2. Init once / Tables
151 * 3. Aligned / Tables
152 * 4. Buffers / Tables
153 *
154 * Attempts to reserve objects of different types out of order will fail.
155 */
156 typedef struct {
157 void* workspace;
158 void* workspaceEnd;
159
160 void* objectEnd;
161 void* tableEnd;
162 void* tableValidEnd;
163 void* allocStart;
164 void* initOnceStart;
165
166 BYTE allocFailed;
167 int workspaceOversizedDuration;
168 ZSTD_cwksp_alloc_phase_e phase;
169 ZSTD_cwksp_static_alloc_e isStatic;
170 } ZSTD_cwksp;
171
172 /*-*************************************
173 * Functions
174 ***************************************/
175
176 MEM_STATIC size_t ZSTD_cwksp_available_space(ZSTD_cwksp* ws);
177 MEM_STATIC void* ZSTD_cwksp_initialAllocStart(ZSTD_cwksp* ws);
178
ZSTD_cwksp_assert_internal_consistency(ZSTD_cwksp * ws)179 MEM_STATIC void ZSTD_cwksp_assert_internal_consistency(ZSTD_cwksp* ws) {
180 (void)ws;
181 assert(ws->workspace <= ws->objectEnd);
182 assert(ws->objectEnd <= ws->tableEnd);
183 assert(ws->objectEnd <= ws->tableValidEnd);
184 assert(ws->tableEnd <= ws->allocStart);
185 assert(ws->tableValidEnd <= ws->allocStart);
186 assert(ws->allocStart <= ws->workspaceEnd);
187 assert(ws->initOnceStart <= ZSTD_cwksp_initialAllocStart(ws));
188 assert(ws->workspace <= ws->initOnceStart);
189 }
190
191 /*
192 * Align must be a power of 2.
193 */
ZSTD_cwksp_align(size_t size,size_t align)194 MEM_STATIC size_t ZSTD_cwksp_align(size_t size, size_t align) {
195 size_t const mask = align - 1;
196 assert(ZSTD_isPower2(align));
197 return (size + mask) & ~mask;
198 }
199
200 /*
201 * Use this to determine how much space in the workspace we will consume to
202 * allocate this object. (Normally it should be exactly the size of the object,
203 * but under special conditions, like ASAN, where we pad each object, it might
204 * be larger.)
205 *
206 * Since tables aren't currently redzoned, you don't need to call through this
207 * to figure out how much space you need for the matchState tables. Everything
208 * else is though.
209 *
210 * Do not use for sizing aligned buffers. Instead, use ZSTD_cwksp_aligned64_alloc_size().
211 */
ZSTD_cwksp_alloc_size(size_t size)212 MEM_STATIC size_t ZSTD_cwksp_alloc_size(size_t size) {
213 if (size == 0)
214 return 0;
215 return size;
216 }
217
ZSTD_cwksp_aligned_alloc_size(size_t size,size_t alignment)218 MEM_STATIC size_t ZSTD_cwksp_aligned_alloc_size(size_t size, size_t alignment) {
219 return ZSTD_cwksp_alloc_size(ZSTD_cwksp_align(size, alignment));
220 }
221
222 /*
223 * Returns an adjusted alloc size that is the nearest larger multiple of 64 bytes.
224 * Used to determine the number of bytes required for a given "aligned".
225 */
ZSTD_cwksp_aligned64_alloc_size(size_t size)226 MEM_STATIC size_t ZSTD_cwksp_aligned64_alloc_size(size_t size) {
227 return ZSTD_cwksp_aligned_alloc_size(size, ZSTD_CWKSP_ALIGNMENT_BYTES);
228 }
229
230 /*
231 * Returns the amount of additional space the cwksp must allocate
232 * for internal purposes (currently only alignment).
233 */
ZSTD_cwksp_slack_space_required(void)234 MEM_STATIC size_t ZSTD_cwksp_slack_space_required(void) {
235 /* For alignment, the wksp will always allocate an additional 2*ZSTD_CWKSP_ALIGNMENT_BYTES
236 * bytes to align the beginning of tables section and end of buffers;
237 */
238 size_t const slackSpace = ZSTD_CWKSP_ALIGNMENT_BYTES * 2;
239 return slackSpace;
240 }
241
242
243 /*
244 * Return the number of additional bytes required to align a pointer to the given number of bytes.
245 * alignBytes must be a power of two.
246 */
ZSTD_cwksp_bytes_to_align_ptr(void * ptr,const size_t alignBytes)247 MEM_STATIC size_t ZSTD_cwksp_bytes_to_align_ptr(void* ptr, const size_t alignBytes) {
248 size_t const alignBytesMask = alignBytes - 1;
249 size_t const bytes = (alignBytes - ((size_t)ptr & (alignBytesMask))) & alignBytesMask;
250 assert(ZSTD_isPower2(alignBytes));
251 assert(bytes < alignBytes);
252 return bytes;
253 }
254
255 /*
256 * Returns the initial value for allocStart which is used to determine the position from
257 * which we can allocate from the end of the workspace.
258 */
ZSTD_cwksp_initialAllocStart(ZSTD_cwksp * ws)259 MEM_STATIC void* ZSTD_cwksp_initialAllocStart(ZSTD_cwksp* ws)
260 {
261 char* endPtr = (char*)ws->workspaceEnd;
262 assert(ZSTD_isPower2(ZSTD_CWKSP_ALIGNMENT_BYTES));
263 endPtr = endPtr - ((size_t)endPtr % ZSTD_CWKSP_ALIGNMENT_BYTES);
264 return (void*)endPtr;
265 }
266
267 /*
268 * Internal function. Do not use directly.
269 * Reserves the given number of bytes within the aligned/buffer segment of the wksp,
270 * which counts from the end of the wksp (as opposed to the object/table segment).
271 *
272 * Returns a pointer to the beginning of that space.
273 */
274 MEM_STATIC void*
ZSTD_cwksp_reserve_internal_buffer_space(ZSTD_cwksp * ws,size_t const bytes)275 ZSTD_cwksp_reserve_internal_buffer_space(ZSTD_cwksp* ws, size_t const bytes)
276 {
277 void* const alloc = (BYTE*)ws->allocStart - bytes;
278 void* const bottom = ws->tableEnd;
279 DEBUGLOG(5, "cwksp: reserving [0x%p]:%zd bytes; %zd bytes remaining",
280 alloc, bytes, ZSTD_cwksp_available_space(ws) - bytes);
281 ZSTD_cwksp_assert_internal_consistency(ws);
282 assert(alloc >= bottom);
283 if (alloc < bottom) {
284 DEBUGLOG(4, "cwksp: alloc failed!");
285 ws->allocFailed = 1;
286 return NULL;
287 }
288 /* the area is reserved from the end of wksp.
289 * If it overlaps with tableValidEnd, it voids guarantees on values' range */
290 if (alloc < ws->tableValidEnd) {
291 ws->tableValidEnd = alloc;
292 }
293 ws->allocStart = alloc;
294 return alloc;
295 }
296
297 /*
298 * Moves the cwksp to the next phase, and does any necessary allocations.
299 * cwksp initialization must necessarily go through each phase in order.
300 * Returns a 0 on success, or zstd error
301 */
302 MEM_STATIC size_t
ZSTD_cwksp_internal_advance_phase(ZSTD_cwksp * ws,ZSTD_cwksp_alloc_phase_e phase)303 ZSTD_cwksp_internal_advance_phase(ZSTD_cwksp* ws, ZSTD_cwksp_alloc_phase_e phase)
304 {
305 assert(phase >= ws->phase);
306 if (phase > ws->phase) {
307 /* Going from allocating objects to allocating initOnce / tables */
308 if (ws->phase < ZSTD_cwksp_alloc_aligned_init_once &&
309 phase >= ZSTD_cwksp_alloc_aligned_init_once) {
310 ws->tableValidEnd = ws->objectEnd;
311 ws->initOnceStart = ZSTD_cwksp_initialAllocStart(ws);
312
313 { /* Align the start of the tables to 64 bytes. Use [0, 63] bytes */
314 void *const alloc = ws->objectEnd;
315 size_t const bytesToAlign = ZSTD_cwksp_bytes_to_align_ptr(alloc, ZSTD_CWKSP_ALIGNMENT_BYTES);
316 void *const objectEnd = (BYTE *) alloc + bytesToAlign;
317 DEBUGLOG(5, "reserving table alignment addtl space: %zu", bytesToAlign);
318 RETURN_ERROR_IF(objectEnd > ws->workspaceEnd, memory_allocation,
319 "table phase - alignment initial allocation failed!");
320 ws->objectEnd = objectEnd;
321 ws->tableEnd = objectEnd; /* table area starts being empty */
322 if (ws->tableValidEnd < ws->tableEnd) {
323 ws->tableValidEnd = ws->tableEnd;
324 }
325 }
326 }
327 ws->phase = phase;
328 ZSTD_cwksp_assert_internal_consistency(ws);
329 }
330 return 0;
331 }
332
333 /*
334 * Returns whether this object/buffer/etc was allocated in this workspace.
335 */
ZSTD_cwksp_owns_buffer(const ZSTD_cwksp * ws,const void * ptr)336 MEM_STATIC int ZSTD_cwksp_owns_buffer(const ZSTD_cwksp* ws, const void* ptr)
337 {
338 return (ptr != NULL) && (ws->workspace <= ptr) && (ptr < ws->workspaceEnd);
339 }
340
341 /*
342 * Internal function. Do not use directly.
343 */
344 MEM_STATIC void*
ZSTD_cwksp_reserve_internal(ZSTD_cwksp * ws,size_t bytes,ZSTD_cwksp_alloc_phase_e phase)345 ZSTD_cwksp_reserve_internal(ZSTD_cwksp* ws, size_t bytes, ZSTD_cwksp_alloc_phase_e phase)
346 {
347 void* alloc;
348 if (ZSTD_isError(ZSTD_cwksp_internal_advance_phase(ws, phase)) || bytes == 0) {
349 return NULL;
350 }
351
352
353 alloc = ZSTD_cwksp_reserve_internal_buffer_space(ws, bytes);
354
355
356 return alloc;
357 }
358
359 /*
360 * Reserves and returns unaligned memory.
361 */
ZSTD_cwksp_reserve_buffer(ZSTD_cwksp * ws,size_t bytes)362 MEM_STATIC BYTE* ZSTD_cwksp_reserve_buffer(ZSTD_cwksp* ws, size_t bytes)
363 {
364 return (BYTE*)ZSTD_cwksp_reserve_internal(ws, bytes, ZSTD_cwksp_alloc_buffers);
365 }
366
367 /*
368 * Reserves and returns memory sized on and aligned on ZSTD_CWKSP_ALIGNMENT_BYTES (64 bytes).
369 * This memory has been initialized at least once in the past.
370 * This doesn't mean it has been initialized this time, and it might contain data from previous
371 * operations.
372 * The main usage is for algorithms that might need read access into uninitialized memory.
373 * The algorithm must maintain safety under these conditions and must make sure it doesn't
374 * leak any of the past data (directly or in side channels).
375 */
ZSTD_cwksp_reserve_aligned_init_once(ZSTD_cwksp * ws,size_t bytes)376 MEM_STATIC void* ZSTD_cwksp_reserve_aligned_init_once(ZSTD_cwksp* ws, size_t bytes)
377 {
378 size_t const alignedBytes = ZSTD_cwksp_align(bytes, ZSTD_CWKSP_ALIGNMENT_BYTES);
379 void* ptr = ZSTD_cwksp_reserve_internal(ws, alignedBytes, ZSTD_cwksp_alloc_aligned_init_once);
380 assert(((size_t)ptr & (ZSTD_CWKSP_ALIGNMENT_BYTES-1)) == 0);
381 if(ptr && ptr < ws->initOnceStart) {
382 /* We assume the memory following the current allocation is either:
383 * 1. Not usable as initOnce memory (end of workspace)
384 * 2. Another initOnce buffer that has been allocated before (and so was previously memset)
385 * 3. An ASAN redzone, in which case we don't want to write on it
386 * For these reasons it should be fine to not explicitly zero every byte up to ws->initOnceStart.
387 * Note that we assume here that MSAN and ASAN cannot run in the same time. */
388 ZSTD_memset(ptr, 0, MIN((size_t)((U8*)ws->initOnceStart - (U8*)ptr), alignedBytes));
389 ws->initOnceStart = ptr;
390 }
391 return ptr;
392 }
393
394 /*
395 * Reserves and returns memory sized on and aligned on ZSTD_CWKSP_ALIGNMENT_BYTES (64 bytes).
396 */
ZSTD_cwksp_reserve_aligned64(ZSTD_cwksp * ws,size_t bytes)397 MEM_STATIC void* ZSTD_cwksp_reserve_aligned64(ZSTD_cwksp* ws, size_t bytes)
398 {
399 void* const ptr = ZSTD_cwksp_reserve_internal(ws,
400 ZSTD_cwksp_align(bytes, ZSTD_CWKSP_ALIGNMENT_BYTES),
401 ZSTD_cwksp_alloc_aligned);
402 assert(((size_t)ptr & (ZSTD_CWKSP_ALIGNMENT_BYTES-1)) == 0);
403 return ptr;
404 }
405
406 /*
407 * Aligned on 64 bytes. These buffers have the special property that
408 * their values remain constrained, allowing us to reuse them without
409 * memset()-ing them.
410 */
ZSTD_cwksp_reserve_table(ZSTD_cwksp * ws,size_t bytes)411 MEM_STATIC void* ZSTD_cwksp_reserve_table(ZSTD_cwksp* ws, size_t bytes)
412 {
413 const ZSTD_cwksp_alloc_phase_e phase = ZSTD_cwksp_alloc_aligned_init_once;
414 void* alloc;
415 void* end;
416 void* top;
417
418 /* We can only start allocating tables after we are done reserving space for objects at the
419 * start of the workspace */
420 if(ws->phase < phase) {
421 if (ZSTD_isError(ZSTD_cwksp_internal_advance_phase(ws, phase))) {
422 return NULL;
423 }
424 }
425 alloc = ws->tableEnd;
426 end = (BYTE *)alloc + bytes;
427 top = ws->allocStart;
428
429 DEBUGLOG(5, "cwksp: reserving %p table %zd bytes, %zd bytes remaining",
430 alloc, bytes, ZSTD_cwksp_available_space(ws) - bytes);
431 assert((bytes & (sizeof(U32)-1)) == 0);
432 ZSTD_cwksp_assert_internal_consistency(ws);
433 assert(end <= top);
434 if (end > top) {
435 DEBUGLOG(4, "cwksp: table alloc failed!");
436 ws->allocFailed = 1;
437 return NULL;
438 }
439 ws->tableEnd = end;
440
441
442 assert((bytes & (ZSTD_CWKSP_ALIGNMENT_BYTES-1)) == 0);
443 assert(((size_t)alloc & (ZSTD_CWKSP_ALIGNMENT_BYTES-1)) == 0);
444 return alloc;
445 }
446
447 /*
448 * Aligned on sizeof(void*).
449 * Note : should happen only once, at workspace first initialization
450 */
ZSTD_cwksp_reserve_object(ZSTD_cwksp * ws,size_t bytes)451 MEM_STATIC void* ZSTD_cwksp_reserve_object(ZSTD_cwksp* ws, size_t bytes)
452 {
453 size_t const roundedBytes = ZSTD_cwksp_align(bytes, sizeof(void*));
454 void* alloc = ws->objectEnd;
455 void* end = (BYTE*)alloc + roundedBytes;
456
457
458 DEBUGLOG(4,
459 "cwksp: reserving %p object %zd bytes (rounded to %zd), %zd bytes remaining",
460 alloc, bytes, roundedBytes, ZSTD_cwksp_available_space(ws) - roundedBytes);
461 assert((size_t)alloc % ZSTD_ALIGNOF(void*) == 0);
462 assert(bytes % ZSTD_ALIGNOF(void*) == 0);
463 ZSTD_cwksp_assert_internal_consistency(ws);
464 /* we must be in the first phase, no advance is possible */
465 if (ws->phase != ZSTD_cwksp_alloc_objects || end > ws->workspaceEnd) {
466 DEBUGLOG(3, "cwksp: object alloc failed!");
467 ws->allocFailed = 1;
468 return NULL;
469 }
470 ws->objectEnd = end;
471 ws->tableEnd = end;
472 ws->tableValidEnd = end;
473
474
475 return alloc;
476 }
477 /*
478 * with alignment control
479 * Note : should happen only once, at workspace first initialization
480 */
ZSTD_cwksp_reserve_object_aligned(ZSTD_cwksp * ws,size_t byteSize,size_t alignment)481 MEM_STATIC void* ZSTD_cwksp_reserve_object_aligned(ZSTD_cwksp* ws, size_t byteSize, size_t alignment)
482 {
483 size_t const mask = alignment - 1;
484 size_t const surplus = (alignment > sizeof(void*)) ? alignment - sizeof(void*) : 0;
485 void* const start = ZSTD_cwksp_reserve_object(ws, byteSize + surplus);
486 if (start == NULL) return NULL;
487 if (surplus == 0) return start;
488 assert(ZSTD_isPower2(alignment));
489 return (void*)(((size_t)start + surplus) & ~mask);
490 }
491
ZSTD_cwksp_mark_tables_dirty(ZSTD_cwksp * ws)492 MEM_STATIC void ZSTD_cwksp_mark_tables_dirty(ZSTD_cwksp* ws)
493 {
494 DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_dirty");
495
496
497 assert(ws->tableValidEnd >= ws->objectEnd);
498 assert(ws->tableValidEnd <= ws->allocStart);
499 ws->tableValidEnd = ws->objectEnd;
500 ZSTD_cwksp_assert_internal_consistency(ws);
501 }
502
ZSTD_cwksp_mark_tables_clean(ZSTD_cwksp * ws)503 MEM_STATIC void ZSTD_cwksp_mark_tables_clean(ZSTD_cwksp* ws) {
504 DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_clean");
505 assert(ws->tableValidEnd >= ws->objectEnd);
506 assert(ws->tableValidEnd <= ws->allocStart);
507 if (ws->tableValidEnd < ws->tableEnd) {
508 ws->tableValidEnd = ws->tableEnd;
509 }
510 ZSTD_cwksp_assert_internal_consistency(ws);
511 }
512
513 /*
514 * Zero the part of the allocated tables not already marked clean.
515 */
ZSTD_cwksp_clean_tables(ZSTD_cwksp * ws)516 MEM_STATIC void ZSTD_cwksp_clean_tables(ZSTD_cwksp* ws) {
517 DEBUGLOG(4, "cwksp: ZSTD_cwksp_clean_tables");
518 assert(ws->tableValidEnd >= ws->objectEnd);
519 assert(ws->tableValidEnd <= ws->allocStart);
520 if (ws->tableValidEnd < ws->tableEnd) {
521 ZSTD_memset(ws->tableValidEnd, 0, (size_t)((BYTE*)ws->tableEnd - (BYTE*)ws->tableValidEnd));
522 }
523 ZSTD_cwksp_mark_tables_clean(ws);
524 }
525
526 /*
527 * Invalidates table allocations.
528 * All other allocations remain valid.
529 */
ZSTD_cwksp_clear_tables(ZSTD_cwksp * ws)530 MEM_STATIC void ZSTD_cwksp_clear_tables(ZSTD_cwksp* ws)
531 {
532 DEBUGLOG(4, "cwksp: clearing tables!");
533
534
535 ws->tableEnd = ws->objectEnd;
536 ZSTD_cwksp_assert_internal_consistency(ws);
537 }
538
539 /*
540 * Invalidates all buffer, aligned, and table allocations.
541 * Object allocations remain valid.
542 */
ZSTD_cwksp_clear(ZSTD_cwksp * ws)543 MEM_STATIC void ZSTD_cwksp_clear(ZSTD_cwksp* ws) {
544 DEBUGLOG(4, "cwksp: clearing!");
545
546
547
548 ws->tableEnd = ws->objectEnd;
549 ws->allocStart = ZSTD_cwksp_initialAllocStart(ws);
550 ws->allocFailed = 0;
551 if (ws->phase > ZSTD_cwksp_alloc_aligned_init_once) {
552 ws->phase = ZSTD_cwksp_alloc_aligned_init_once;
553 }
554 ZSTD_cwksp_assert_internal_consistency(ws);
555 }
556
ZSTD_cwksp_sizeof(const ZSTD_cwksp * ws)557 MEM_STATIC size_t ZSTD_cwksp_sizeof(const ZSTD_cwksp* ws) {
558 return (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->workspace);
559 }
560
ZSTD_cwksp_used(const ZSTD_cwksp * ws)561 MEM_STATIC size_t ZSTD_cwksp_used(const ZSTD_cwksp* ws) {
562 return (size_t)((BYTE*)ws->tableEnd - (BYTE*)ws->workspace)
563 + (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->allocStart);
564 }
565
566 /*
567 * The provided workspace takes ownership of the buffer [start, start+size).
568 * Any existing values in the workspace are ignored (the previously managed
569 * buffer, if present, must be separately freed).
570 */
ZSTD_cwksp_init(ZSTD_cwksp * ws,void * start,size_t size,ZSTD_cwksp_static_alloc_e isStatic)571 MEM_STATIC void ZSTD_cwksp_init(ZSTD_cwksp* ws, void* start, size_t size, ZSTD_cwksp_static_alloc_e isStatic) {
572 DEBUGLOG(4, "cwksp: init'ing workspace with %zd bytes", size);
573 assert(((size_t)start & (sizeof(void*)-1)) == 0); /* ensure correct alignment */
574 ws->workspace = start;
575 ws->workspaceEnd = (BYTE*)start + size;
576 ws->objectEnd = ws->workspace;
577 ws->tableValidEnd = ws->objectEnd;
578 ws->initOnceStart = ZSTD_cwksp_initialAllocStart(ws);
579 ws->phase = ZSTD_cwksp_alloc_objects;
580 ws->isStatic = isStatic;
581 ZSTD_cwksp_clear(ws);
582 ws->workspaceOversizedDuration = 0;
583 ZSTD_cwksp_assert_internal_consistency(ws);
584 }
585
ZSTD_cwksp_create(ZSTD_cwksp * ws,size_t size,ZSTD_customMem customMem)586 MEM_STATIC size_t ZSTD_cwksp_create(ZSTD_cwksp* ws, size_t size, ZSTD_customMem customMem) {
587 void* workspace = ZSTD_customMalloc(size, customMem);
588 DEBUGLOG(4, "cwksp: creating new workspace with %zd bytes", size);
589 RETURN_ERROR_IF(workspace == NULL, memory_allocation, "NULL pointer!");
590 ZSTD_cwksp_init(ws, workspace, size, ZSTD_cwksp_dynamic_alloc);
591 return 0;
592 }
593
ZSTD_cwksp_free(ZSTD_cwksp * ws,ZSTD_customMem customMem)594 MEM_STATIC void ZSTD_cwksp_free(ZSTD_cwksp* ws, ZSTD_customMem customMem) {
595 void *ptr = ws->workspace;
596 DEBUGLOG(4, "cwksp: freeing workspace");
597 ZSTD_memset(ws, 0, sizeof(ZSTD_cwksp));
598 ZSTD_customFree(ptr, customMem);
599 }
600
601 /*
602 * Moves the management of a workspace from one cwksp to another. The src cwksp
603 * is left in an invalid state (src must be re-init()'ed before it's used again).
604 */
ZSTD_cwksp_move(ZSTD_cwksp * dst,ZSTD_cwksp * src)605 MEM_STATIC void ZSTD_cwksp_move(ZSTD_cwksp* dst, ZSTD_cwksp* src) {
606 *dst = *src;
607 ZSTD_memset(src, 0, sizeof(ZSTD_cwksp));
608 }
609
ZSTD_cwksp_reserve_failed(const ZSTD_cwksp * ws)610 MEM_STATIC int ZSTD_cwksp_reserve_failed(const ZSTD_cwksp* ws) {
611 return ws->allocFailed;
612 }
613
614 /*-*************************************
615 * Functions Checking Free Space
616 ***************************************/
617
618 /* ZSTD_alignmentSpaceWithinBounds() :
619 * Returns if the estimated space needed for a wksp is within an acceptable limit of the
620 * actual amount of space used.
621 */
ZSTD_cwksp_estimated_space_within_bounds(const ZSTD_cwksp * const ws,size_t const estimatedSpace)622 MEM_STATIC int ZSTD_cwksp_estimated_space_within_bounds(const ZSTD_cwksp *const ws, size_t const estimatedSpace) {
623 /* We have an alignment space between objects and tables between tables and buffers, so we can have up to twice
624 * the alignment bytes difference between estimation and actual usage */
625 return (estimatedSpace - ZSTD_cwksp_slack_space_required()) <= ZSTD_cwksp_used(ws) &&
626 ZSTD_cwksp_used(ws) <= estimatedSpace;
627 }
628
629
ZSTD_cwksp_available_space(ZSTD_cwksp * ws)630 MEM_STATIC size_t ZSTD_cwksp_available_space(ZSTD_cwksp* ws) {
631 return (size_t)((BYTE*)ws->allocStart - (BYTE*)ws->tableEnd);
632 }
633
ZSTD_cwksp_check_available(ZSTD_cwksp * ws,size_t additionalNeededSpace)634 MEM_STATIC int ZSTD_cwksp_check_available(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
635 return ZSTD_cwksp_available_space(ws) >= additionalNeededSpace;
636 }
637
ZSTD_cwksp_check_too_large(ZSTD_cwksp * ws,size_t additionalNeededSpace)638 MEM_STATIC int ZSTD_cwksp_check_too_large(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
639 return ZSTD_cwksp_check_available(
640 ws, additionalNeededSpace * ZSTD_WORKSPACETOOLARGE_FACTOR);
641 }
642
ZSTD_cwksp_check_wasteful(ZSTD_cwksp * ws,size_t additionalNeededSpace)643 MEM_STATIC int ZSTD_cwksp_check_wasteful(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
644 return ZSTD_cwksp_check_too_large(ws, additionalNeededSpace)
645 && ws->workspaceOversizedDuration > ZSTD_WORKSPACETOOLARGE_MAXDURATION;
646 }
647
ZSTD_cwksp_bump_oversized_duration(ZSTD_cwksp * ws,size_t additionalNeededSpace)648 MEM_STATIC void ZSTD_cwksp_bump_oversized_duration(
649 ZSTD_cwksp* ws, size_t additionalNeededSpace) {
650 if (ZSTD_cwksp_check_too_large(ws, additionalNeededSpace)) {
651 ws->workspaceOversizedDuration++;
652 } else {
653 ws->workspaceOversizedDuration = 0;
654 }
655 }
656
657 #endif /* ZSTD_CWKSP_H */
658