1 // SPDX-License-Identifier: GPL-2.0-or-later 2 3 /* 4 * zsmalloc memory allocator 5 * 6 * Copyright (C) 2011 Nitin Gupta 7 * Copyright (C) 2012, 2013 Minchan Kim 8 * 9 * This code is released using a dual license strategy: BSD/GPL 10 * You can choose the license that better fits your requirements. 11 * 12 * Released under the terms of 3-clause BSD License 13 * Released under the terms of GNU General Public License Version 2.0 14 */ 15 16 /* 17 * Following is how we use various fields and flags of underlying 18 * struct page(s) to form a zspage. 19 * 20 * Usage of struct page fields: 21 * page->private: points to zspage 22 * page->index: links together all component pages of a zspage 23 * For the huge page, this is always 0, so we use this field 24 * to store handle. 25 * page->page_type: PGTY_zsmalloc, lower 24 bits locate the first object 26 * offset in a subpage of a zspage 27 * 28 * Usage of struct page flags: 29 * PG_private: identifies the first component page 30 * PG_owner_priv_1: identifies the huge component page 31 * 32 */ 33 34 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 35 36 /* 37 * lock ordering: 38 * page_lock 39 * pool->migrate_lock 40 * class->lock 41 * zspage->lock 42 */ 43 44 #include <linux/module.h> 45 #include <linux/kernel.h> 46 #include <linux/sched.h> 47 #include <linux/bitops.h> 48 #include <linux/errno.h> 49 #include <linux/highmem.h> 50 #include <linux/string.h> 51 #include <linux/slab.h> 52 #include <linux/pgtable.h> 53 #include <asm/tlbflush.h> 54 #include <linux/cpumask.h> 55 #include <linux/cpu.h> 56 #include <linux/vmalloc.h> 57 #include <linux/preempt.h> 58 #include <linux/spinlock.h> 59 #include <linux/sprintf.h> 60 #include <linux/shrinker.h> 61 #include <linux/types.h> 62 #include <linux/debugfs.h> 63 #include <linux/zsmalloc.h> 64 #include <linux/zpool.h> 65 #include <linux/migrate.h> 66 #include <linux/wait.h> 67 #include <linux/pagemap.h> 68 #include <linux/fs.h> 69 #include <linux/local_lock.h> 70 71 #define ZSPAGE_MAGIC 0x58 72 73 /* 74 * This must be power of 2 and greater than or equal to sizeof(link_free). 75 * These two conditions ensure that any 'struct link_free' itself doesn't 76 * span more than 1 page which avoids complex case of mapping 2 pages simply 77 * to restore link_free pointer values. 78 */ 79 #define ZS_ALIGN 8 80 81 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 82 83 /* 84 * Object location (<PFN>, <obj_idx>) is encoded as 85 * a single (unsigned long) handle value. 86 * 87 * Note that object index <obj_idx> starts from 0. 88 * 89 * This is made more complicated by various memory models and PAE. 90 */ 91 92 #ifndef MAX_POSSIBLE_PHYSMEM_BITS 93 #ifdef MAX_PHYSMEM_BITS 94 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS 95 #else 96 /* 97 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 98 * be PAGE_SHIFT 99 */ 100 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG 101 #endif 102 #endif 103 104 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) 105 106 /* 107 * Head in allocated object should have OBJ_ALLOCATED_TAG 108 * to identify the object was allocated or not. 109 * It's okay to add the status bit in the least bit because 110 * header keeps handle which is 4byte-aligned address so we 111 * have room for two bit at least. 112 */ 113 #define OBJ_ALLOCATED_TAG 1 114 115 #define OBJ_TAG_BITS 1 116 #define OBJ_TAG_MASK OBJ_ALLOCATED_TAG 117 118 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS) 119 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 120 121 #define HUGE_BITS 1 122 #define FULLNESS_BITS 4 123 #define CLASS_BITS 8 124 #define MAGIC_VAL_BITS 8 125 126 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL)) 127 128 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 129 #define ZS_MIN_ALLOC_SIZE \ 130 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 131 /* each chunk includes extra space to keep handle */ 132 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 133 134 /* 135 * On systems with 4K page size, this gives 255 size classes! There is a 136 * trader-off here: 137 * - Large number of size classes is potentially wasteful as free page are 138 * spread across these classes 139 * - Small number of size classes causes large internal fragmentation 140 * - Probably its better to use specific size classes (empirically 141 * determined). NOTE: all those class sizes must be set as multiple of 142 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 143 * 144 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 145 * (reason above) 146 */ 147 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 148 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ 149 ZS_SIZE_CLASS_DELTA) + 1) 150 151 /* 152 * Pages are distinguished by the ratio of used memory (that is the ratio 153 * of ->inuse objects to all objects that page can store). For example, 154 * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%. 155 * 156 * The number of fullness groups is not random. It allows us to keep 157 * difference between the least busy page in the group (minimum permitted 158 * number of ->inuse objects) and the most busy page (maximum permitted 159 * number of ->inuse objects) at a reasonable value. 160 */ 161 enum fullness_group { 162 ZS_INUSE_RATIO_0, 163 ZS_INUSE_RATIO_10, 164 /* NOTE: 8 more fullness groups here */ 165 ZS_INUSE_RATIO_99 = 10, 166 ZS_INUSE_RATIO_100, 167 NR_FULLNESS_GROUPS, 168 }; 169 170 enum class_stat_type { 171 /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */ 172 ZS_OBJS_ALLOCATED = NR_FULLNESS_GROUPS, 173 ZS_OBJS_INUSE, 174 NR_CLASS_STAT_TYPES, 175 }; 176 177 struct zs_size_stat { 178 unsigned long objs[NR_CLASS_STAT_TYPES]; 179 }; 180 181 #ifdef CONFIG_ZSMALLOC_STAT 182 static struct dentry *zs_stat_root; 183 #endif 184 185 static size_t huge_class_size; 186 187 struct size_class { 188 spinlock_t lock; 189 struct list_head fullness_list[NR_FULLNESS_GROUPS]; 190 /* 191 * Size of objects stored in this class. Must be multiple 192 * of ZS_ALIGN. 193 */ 194 int size; 195 int objs_per_zspage; 196 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 197 int pages_per_zspage; 198 199 unsigned int index; 200 struct zs_size_stat stats; 201 }; 202 203 /* 204 * Placed within free objects to form a singly linked list. 205 * For every zspage, zspage->freeobj gives head of this list. 206 * 207 * This must be power of 2 and less than or equal to ZS_ALIGN 208 */ 209 struct link_free { 210 union { 211 /* 212 * Free object index; 213 * It's valid for non-allocated object 214 */ 215 unsigned long next; 216 /* 217 * Handle of allocated object. 218 */ 219 unsigned long handle; 220 }; 221 }; 222 223 struct zs_pool { 224 const char *name; 225 226 struct size_class *size_class[ZS_SIZE_CLASSES]; 227 struct kmem_cache *handle_cachep; 228 struct kmem_cache *zspage_cachep; 229 230 atomic_long_t pages_allocated; 231 232 struct zs_pool_stats stats; 233 234 /* Compact classes */ 235 struct shrinker *shrinker; 236 237 #ifdef CONFIG_ZSMALLOC_STAT 238 struct dentry *stat_dentry; 239 #endif 240 #ifdef CONFIG_COMPACTION 241 struct work_struct free_work; 242 #endif 243 /* protect page/zspage migration */ 244 rwlock_t migrate_lock; 245 atomic_t compaction_in_progress; 246 }; 247 248 struct zspage { 249 struct { 250 unsigned int huge:HUGE_BITS; 251 unsigned int fullness:FULLNESS_BITS; 252 unsigned int class:CLASS_BITS + 1; 253 unsigned int magic:MAGIC_VAL_BITS; 254 }; 255 unsigned int inuse; 256 unsigned int freeobj; 257 struct page *first_page; 258 struct list_head list; /* fullness list */ 259 struct zs_pool *pool; 260 rwlock_t lock; 261 }; 262 263 struct mapping_area { 264 local_lock_t lock; 265 char *vm_buf; /* copy buffer for objects that span pages */ 266 char *vm_addr; /* address of kmap_local_page()'ed pages */ 267 enum zs_mapmode vm_mm; /* mapping mode */ 268 }; 269 270 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 271 static void SetZsHugePage(struct zspage *zspage) 272 { 273 zspage->huge = 1; 274 } 275 276 static bool ZsHugePage(struct zspage *zspage) 277 { 278 return zspage->huge; 279 } 280 281 static void migrate_lock_init(struct zspage *zspage); 282 static void migrate_read_lock(struct zspage *zspage); 283 static void migrate_read_unlock(struct zspage *zspage); 284 static void migrate_write_lock(struct zspage *zspage); 285 static void migrate_write_unlock(struct zspage *zspage); 286 287 #ifdef CONFIG_COMPACTION 288 static void kick_deferred_free(struct zs_pool *pool); 289 static void init_deferred_free(struct zs_pool *pool); 290 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 291 #else 292 static void kick_deferred_free(struct zs_pool *pool) {} 293 static void init_deferred_free(struct zs_pool *pool) {} 294 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 295 #endif 296 297 static int create_cache(struct zs_pool *pool) 298 { 299 char *name; 300 301 name = kasprintf(GFP_KERNEL, "zs_handle-%s", pool->name); 302 if (!name) 303 return -ENOMEM; 304 pool->handle_cachep = kmem_cache_create(name, ZS_HANDLE_SIZE, 305 0, 0, NULL); 306 kfree(name); 307 if (!pool->handle_cachep) 308 return -EINVAL; 309 310 name = kasprintf(GFP_KERNEL, "zspage-%s", pool->name); 311 if (!name) 312 return -ENOMEM; 313 pool->zspage_cachep = kmem_cache_create(name, sizeof(struct zspage), 314 0, 0, NULL); 315 kfree(name); 316 if (!pool->zspage_cachep) { 317 kmem_cache_destroy(pool->handle_cachep); 318 pool->handle_cachep = NULL; 319 return -EINVAL; 320 } 321 322 return 0; 323 } 324 325 static void destroy_cache(struct zs_pool *pool) 326 { 327 kmem_cache_destroy(pool->handle_cachep); 328 kmem_cache_destroy(pool->zspage_cachep); 329 } 330 331 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 332 { 333 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 334 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 335 } 336 337 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 338 { 339 kmem_cache_free(pool->handle_cachep, (void *)handle); 340 } 341 342 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 343 { 344 return kmem_cache_zalloc(pool->zspage_cachep, 345 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 346 } 347 348 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 349 { 350 kmem_cache_free(pool->zspage_cachep, zspage); 351 } 352 353 /* class->lock(which owns the handle) synchronizes races */ 354 static void record_obj(unsigned long handle, unsigned long obj) 355 { 356 *(unsigned long *)handle = obj; 357 } 358 359 /* zpool driver */ 360 361 #ifdef CONFIG_ZPOOL 362 363 static void *zs_zpool_create(const char *name, gfp_t gfp) 364 { 365 /* 366 * Ignore global gfp flags: zs_malloc() may be invoked from 367 * different contexts and its caller must provide a valid 368 * gfp mask. 369 */ 370 return zs_create_pool(name); 371 } 372 373 static void zs_zpool_destroy(void *pool) 374 { 375 zs_destroy_pool(pool); 376 } 377 378 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 379 unsigned long *handle) 380 { 381 *handle = zs_malloc(pool, size, gfp); 382 383 if (IS_ERR_VALUE(*handle)) 384 return PTR_ERR((void *)*handle); 385 return 0; 386 } 387 static void zs_zpool_free(void *pool, unsigned long handle) 388 { 389 zs_free(pool, handle); 390 } 391 392 static void *zs_zpool_map(void *pool, unsigned long handle, 393 enum zpool_mapmode mm) 394 { 395 enum zs_mapmode zs_mm; 396 397 switch (mm) { 398 case ZPOOL_MM_RO: 399 zs_mm = ZS_MM_RO; 400 break; 401 case ZPOOL_MM_WO: 402 zs_mm = ZS_MM_WO; 403 break; 404 case ZPOOL_MM_RW: 405 default: 406 zs_mm = ZS_MM_RW; 407 break; 408 } 409 410 return zs_map_object(pool, handle, zs_mm); 411 } 412 static void zs_zpool_unmap(void *pool, unsigned long handle) 413 { 414 zs_unmap_object(pool, handle); 415 } 416 417 static u64 zs_zpool_total_pages(void *pool) 418 { 419 return zs_get_total_pages(pool); 420 } 421 422 static struct zpool_driver zs_zpool_driver = { 423 .type = "zsmalloc", 424 .owner = THIS_MODULE, 425 .create = zs_zpool_create, 426 .destroy = zs_zpool_destroy, 427 .malloc_support_movable = true, 428 .malloc = zs_zpool_malloc, 429 .free = zs_zpool_free, 430 .map = zs_zpool_map, 431 .unmap = zs_zpool_unmap, 432 .total_pages = zs_zpool_total_pages, 433 }; 434 435 MODULE_ALIAS("zpool-zsmalloc"); 436 #endif /* CONFIG_ZPOOL */ 437 438 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 439 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = { 440 .lock = INIT_LOCAL_LOCK(lock), 441 }; 442 443 static __maybe_unused int is_first_page(struct page *page) 444 { 445 return PagePrivate(page); 446 } 447 448 /* Protected by class->lock */ 449 static inline int get_zspage_inuse(struct zspage *zspage) 450 { 451 return zspage->inuse; 452 } 453 454 455 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 456 { 457 zspage->inuse += val; 458 } 459 460 static inline struct page *get_first_page(struct zspage *zspage) 461 { 462 struct page *first_page = zspage->first_page; 463 464 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); 465 return first_page; 466 } 467 468 #define FIRST_OBJ_PAGE_TYPE_MASK 0xffffff 469 470 static inline unsigned int get_first_obj_offset(struct page *page) 471 { 472 VM_WARN_ON_ONCE(!PageZsmalloc(page)); 473 return page->page_type & FIRST_OBJ_PAGE_TYPE_MASK; 474 } 475 476 static inline void set_first_obj_offset(struct page *page, unsigned int offset) 477 { 478 /* With 24 bits available, we can support offsets into 16 MiB pages. */ 479 BUILD_BUG_ON(PAGE_SIZE > SZ_16M); 480 VM_WARN_ON_ONCE(!PageZsmalloc(page)); 481 VM_WARN_ON_ONCE(offset & ~FIRST_OBJ_PAGE_TYPE_MASK); 482 page->page_type &= ~FIRST_OBJ_PAGE_TYPE_MASK; 483 page->page_type |= offset & FIRST_OBJ_PAGE_TYPE_MASK; 484 } 485 486 static inline unsigned int get_freeobj(struct zspage *zspage) 487 { 488 return zspage->freeobj; 489 } 490 491 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 492 { 493 zspage->freeobj = obj; 494 } 495 496 static struct size_class *zspage_class(struct zs_pool *pool, 497 struct zspage *zspage) 498 { 499 return pool->size_class[zspage->class]; 500 } 501 502 /* 503 * zsmalloc divides the pool into various size classes where each 504 * class maintains a list of zspages where each zspage is divided 505 * into equal sized chunks. Each allocation falls into one of these 506 * classes depending on its size. This function returns index of the 507 * size class which has chunk size big enough to hold the given size. 508 */ 509 static int get_size_class_index(int size) 510 { 511 int idx = 0; 512 513 if (likely(size > ZS_MIN_ALLOC_SIZE)) 514 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 515 ZS_SIZE_CLASS_DELTA); 516 517 return min_t(int, ZS_SIZE_CLASSES - 1, idx); 518 } 519 520 static inline void class_stat_add(struct size_class *class, int type, 521 unsigned long cnt) 522 { 523 class->stats.objs[type] += cnt; 524 } 525 526 static inline void class_stat_sub(struct size_class *class, int type, 527 unsigned long cnt) 528 { 529 class->stats.objs[type] -= cnt; 530 } 531 532 static inline unsigned long class_stat_read(struct size_class *class, int type) 533 { 534 return class->stats.objs[type]; 535 } 536 537 #ifdef CONFIG_ZSMALLOC_STAT 538 539 static void __init zs_stat_init(void) 540 { 541 if (!debugfs_initialized()) { 542 pr_warn("debugfs not available, stat dir not created\n"); 543 return; 544 } 545 546 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 547 } 548 549 static void __exit zs_stat_exit(void) 550 { 551 debugfs_remove_recursive(zs_stat_root); 552 } 553 554 static unsigned long zs_can_compact(struct size_class *class); 555 556 static int zs_stats_size_show(struct seq_file *s, void *v) 557 { 558 int i, fg; 559 struct zs_pool *pool = s->private; 560 struct size_class *class; 561 int objs_per_zspage; 562 unsigned long obj_allocated, obj_used, pages_used, freeable; 563 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 564 unsigned long total_freeable = 0; 565 unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, }; 566 567 seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n", 568 "class", "size", "10%", "20%", "30%", "40%", 569 "50%", "60%", "70%", "80%", "90%", "99%", "100%", 570 "obj_allocated", "obj_used", "pages_used", 571 "pages_per_zspage", "freeable"); 572 573 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 574 575 class = pool->size_class[i]; 576 577 if (class->index != i) 578 continue; 579 580 spin_lock(&class->lock); 581 582 seq_printf(s, " %5u %5u ", i, class->size); 583 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) { 584 inuse_totals[fg] += class_stat_read(class, fg); 585 seq_printf(s, "%9lu ", class_stat_read(class, fg)); 586 } 587 588 obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED); 589 obj_used = class_stat_read(class, ZS_OBJS_INUSE); 590 freeable = zs_can_compact(class); 591 spin_unlock(&class->lock); 592 593 objs_per_zspage = class->objs_per_zspage; 594 pages_used = obj_allocated / objs_per_zspage * 595 class->pages_per_zspage; 596 597 seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n", 598 obj_allocated, obj_used, pages_used, 599 class->pages_per_zspage, freeable); 600 601 total_objs += obj_allocated; 602 total_used_objs += obj_used; 603 total_pages += pages_used; 604 total_freeable += freeable; 605 } 606 607 seq_puts(s, "\n"); 608 seq_printf(s, " %5s %5s ", "Total", ""); 609 610 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) 611 seq_printf(s, "%9lu ", inuse_totals[fg]); 612 613 seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n", 614 total_objs, total_used_objs, total_pages, "", 615 total_freeable); 616 617 return 0; 618 } 619 DEFINE_SHOW_ATTRIBUTE(zs_stats_size); 620 621 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 622 { 623 if (!zs_stat_root) { 624 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 625 return; 626 } 627 628 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root); 629 630 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool, 631 &zs_stats_size_fops); 632 } 633 634 static void zs_pool_stat_destroy(struct zs_pool *pool) 635 { 636 debugfs_remove_recursive(pool->stat_dentry); 637 } 638 639 #else /* CONFIG_ZSMALLOC_STAT */ 640 static void __init zs_stat_init(void) 641 { 642 } 643 644 static void __exit zs_stat_exit(void) 645 { 646 } 647 648 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 649 { 650 } 651 652 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 653 { 654 } 655 #endif 656 657 658 /* 659 * For each size class, zspages are divided into different groups 660 * depending on their usage ratio. This function returns fullness 661 * status of the given page. 662 */ 663 static int get_fullness_group(struct size_class *class, struct zspage *zspage) 664 { 665 int inuse, objs_per_zspage, ratio; 666 667 inuse = get_zspage_inuse(zspage); 668 objs_per_zspage = class->objs_per_zspage; 669 670 if (inuse == 0) 671 return ZS_INUSE_RATIO_0; 672 if (inuse == objs_per_zspage) 673 return ZS_INUSE_RATIO_100; 674 675 ratio = 100 * inuse / objs_per_zspage; 676 /* 677 * Take integer division into consideration: a page with one inuse 678 * object out of 127 possible, will end up having 0 usage ratio, 679 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group. 680 */ 681 return ratio / 10 + 1; 682 } 683 684 /* 685 * Each size class maintains various freelists and zspages are assigned 686 * to one of these freelists based on the number of live objects they 687 * have. This functions inserts the given zspage into the freelist 688 * identified by <class, fullness_group>. 689 */ 690 static void insert_zspage(struct size_class *class, 691 struct zspage *zspage, 692 int fullness) 693 { 694 class_stat_add(class, fullness, 1); 695 list_add(&zspage->list, &class->fullness_list[fullness]); 696 zspage->fullness = fullness; 697 } 698 699 /* 700 * This function removes the given zspage from the freelist identified 701 * by <class, fullness_group>. 702 */ 703 static void remove_zspage(struct size_class *class, struct zspage *zspage) 704 { 705 int fullness = zspage->fullness; 706 707 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 708 709 list_del_init(&zspage->list); 710 class_stat_sub(class, fullness, 1); 711 } 712 713 /* 714 * Each size class maintains zspages in different fullness groups depending 715 * on the number of live objects they contain. When allocating or freeing 716 * objects, the fullness status of the page can change, for instance, from 717 * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function 718 * checks if such a status change has occurred for the given page and 719 * accordingly moves the page from the list of the old fullness group to that 720 * of the new fullness group. 721 */ 722 static int fix_fullness_group(struct size_class *class, struct zspage *zspage) 723 { 724 int newfg; 725 726 newfg = get_fullness_group(class, zspage); 727 if (newfg == zspage->fullness) 728 goto out; 729 730 remove_zspage(class, zspage); 731 insert_zspage(class, zspage, newfg); 732 out: 733 return newfg; 734 } 735 736 static struct zspage *get_zspage(struct page *page) 737 { 738 struct zspage *zspage = (struct zspage *)page_private(page); 739 740 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 741 return zspage; 742 } 743 744 static struct page *get_next_page(struct page *page) 745 { 746 struct zspage *zspage = get_zspage(page); 747 748 if (unlikely(ZsHugePage(zspage))) 749 return NULL; 750 751 return (struct page *)page->index; 752 } 753 754 /** 755 * obj_to_location - get (<page>, <obj_idx>) from encoded object value 756 * @obj: the encoded object value 757 * @page: page object resides in zspage 758 * @obj_idx: object index 759 */ 760 static void obj_to_location(unsigned long obj, struct page **page, 761 unsigned int *obj_idx) 762 { 763 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 764 *obj_idx = (obj & OBJ_INDEX_MASK); 765 } 766 767 static void obj_to_page(unsigned long obj, struct page **page) 768 { 769 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 770 } 771 772 /** 773 * location_to_obj - get obj value encoded from (<page>, <obj_idx>) 774 * @page: page object resides in zspage 775 * @obj_idx: object index 776 */ 777 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) 778 { 779 unsigned long obj; 780 781 obj = page_to_pfn(page) << OBJ_INDEX_BITS; 782 obj |= obj_idx & OBJ_INDEX_MASK; 783 784 return obj; 785 } 786 787 static unsigned long handle_to_obj(unsigned long handle) 788 { 789 return *(unsigned long *)handle; 790 } 791 792 static inline bool obj_allocated(struct page *page, void *obj, 793 unsigned long *phandle) 794 { 795 unsigned long handle; 796 struct zspage *zspage = get_zspage(page); 797 798 if (unlikely(ZsHugePage(zspage))) { 799 VM_BUG_ON_PAGE(!is_first_page(page), page); 800 handle = page->index; 801 } else 802 handle = *(unsigned long *)obj; 803 804 if (!(handle & OBJ_ALLOCATED_TAG)) 805 return false; 806 807 /* Clear all tags before returning the handle */ 808 *phandle = handle & ~OBJ_TAG_MASK; 809 return true; 810 } 811 812 static void reset_page(struct page *page) 813 { 814 __ClearPageMovable(page); 815 ClearPagePrivate(page); 816 set_page_private(page, 0); 817 page->index = 0; 818 __ClearPageZsmalloc(page); 819 } 820 821 static int trylock_zspage(struct zspage *zspage) 822 { 823 struct page *cursor, *fail; 824 825 for (cursor = get_first_page(zspage); cursor != NULL; cursor = 826 get_next_page(cursor)) { 827 if (!trylock_page(cursor)) { 828 fail = cursor; 829 goto unlock; 830 } 831 } 832 833 return 1; 834 unlock: 835 for (cursor = get_first_page(zspage); cursor != fail; cursor = 836 get_next_page(cursor)) 837 unlock_page(cursor); 838 839 return 0; 840 } 841 842 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 843 struct zspage *zspage) 844 { 845 struct page *page, *next; 846 847 assert_spin_locked(&class->lock); 848 849 VM_BUG_ON(get_zspage_inuse(zspage)); 850 VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0); 851 852 next = page = get_first_page(zspage); 853 do { 854 VM_BUG_ON_PAGE(!PageLocked(page), page); 855 next = get_next_page(page); 856 reset_page(page); 857 unlock_page(page); 858 dec_zone_page_state(page, NR_ZSPAGES); 859 put_page(page); 860 page = next; 861 } while (page != NULL); 862 863 cache_free_zspage(pool, zspage); 864 865 class_stat_sub(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage); 866 atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated); 867 } 868 869 static void free_zspage(struct zs_pool *pool, struct size_class *class, 870 struct zspage *zspage) 871 { 872 VM_BUG_ON(get_zspage_inuse(zspage)); 873 VM_BUG_ON(list_empty(&zspage->list)); 874 875 /* 876 * Since zs_free couldn't be sleepable, this function cannot call 877 * lock_page. The page locks trylock_zspage got will be released 878 * by __free_zspage. 879 */ 880 if (!trylock_zspage(zspage)) { 881 kick_deferred_free(pool); 882 return; 883 } 884 885 remove_zspage(class, zspage); 886 __free_zspage(pool, class, zspage); 887 } 888 889 /* Initialize a newly allocated zspage */ 890 static void init_zspage(struct size_class *class, struct zspage *zspage) 891 { 892 unsigned int freeobj = 1; 893 unsigned long off = 0; 894 struct page *page = get_first_page(zspage); 895 896 while (page) { 897 struct page *next_page; 898 struct link_free *link; 899 void *vaddr; 900 901 set_first_obj_offset(page, off); 902 903 vaddr = kmap_local_page(page); 904 link = (struct link_free *)vaddr + off / sizeof(*link); 905 906 while ((off += class->size) < PAGE_SIZE) { 907 link->next = freeobj++ << OBJ_TAG_BITS; 908 link += class->size / sizeof(*link); 909 } 910 911 /* 912 * We now come to the last (full or partial) object on this 913 * page, which must point to the first object on the next 914 * page (if present) 915 */ 916 next_page = get_next_page(page); 917 if (next_page) { 918 link->next = freeobj++ << OBJ_TAG_BITS; 919 } else { 920 /* 921 * Reset OBJ_TAG_BITS bit to last link to tell 922 * whether it's allocated object or not. 923 */ 924 link->next = -1UL << OBJ_TAG_BITS; 925 } 926 kunmap_local(vaddr); 927 page = next_page; 928 off %= PAGE_SIZE; 929 } 930 931 set_freeobj(zspage, 0); 932 } 933 934 static void create_page_chain(struct size_class *class, struct zspage *zspage, 935 struct page *pages[]) 936 { 937 int i; 938 struct page *page; 939 struct page *prev_page = NULL; 940 int nr_pages = class->pages_per_zspage; 941 942 /* 943 * Allocate individual pages and link them together as: 944 * 1. all pages are linked together using page->index 945 * 2. each sub-page point to zspage using page->private 946 * 947 * we set PG_private to identify the first page (i.e. no other sub-page 948 * has this flag set). 949 */ 950 for (i = 0; i < nr_pages; i++) { 951 page = pages[i]; 952 set_page_private(page, (unsigned long)zspage); 953 page->index = 0; 954 if (i == 0) { 955 zspage->first_page = page; 956 SetPagePrivate(page); 957 if (unlikely(class->objs_per_zspage == 1 && 958 class->pages_per_zspage == 1)) 959 SetZsHugePage(zspage); 960 } else { 961 prev_page->index = (unsigned long)page; 962 } 963 prev_page = page; 964 } 965 } 966 967 /* 968 * Allocate a zspage for the given size class 969 */ 970 static struct zspage *alloc_zspage(struct zs_pool *pool, 971 struct size_class *class, 972 gfp_t gfp) 973 { 974 int i; 975 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; 976 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 977 978 if (!zspage) 979 return NULL; 980 981 zspage->magic = ZSPAGE_MAGIC; 982 migrate_lock_init(zspage); 983 984 for (i = 0; i < class->pages_per_zspage; i++) { 985 struct page *page; 986 987 page = alloc_page(gfp); 988 if (!page) { 989 while (--i >= 0) { 990 dec_zone_page_state(pages[i], NR_ZSPAGES); 991 __ClearPageZsmalloc(pages[i]); 992 __free_page(pages[i]); 993 } 994 cache_free_zspage(pool, zspage); 995 return NULL; 996 } 997 __SetPageZsmalloc(page); 998 999 inc_zone_page_state(page, NR_ZSPAGES); 1000 pages[i] = page; 1001 } 1002 1003 create_page_chain(class, zspage, pages); 1004 init_zspage(class, zspage); 1005 zspage->pool = pool; 1006 zspage->class = class->index; 1007 1008 return zspage; 1009 } 1010 1011 static struct zspage *find_get_zspage(struct size_class *class) 1012 { 1013 int i; 1014 struct zspage *zspage; 1015 1016 for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) { 1017 zspage = list_first_entry_or_null(&class->fullness_list[i], 1018 struct zspage, list); 1019 if (zspage) 1020 break; 1021 } 1022 1023 return zspage; 1024 } 1025 1026 static inline int __zs_cpu_up(struct mapping_area *area) 1027 { 1028 /* 1029 * Make sure we don't leak memory if a cpu UP notification 1030 * and zs_init() race and both call zs_cpu_up() on the same cpu 1031 */ 1032 if (area->vm_buf) 1033 return 0; 1034 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 1035 if (!area->vm_buf) 1036 return -ENOMEM; 1037 return 0; 1038 } 1039 1040 static inline void __zs_cpu_down(struct mapping_area *area) 1041 { 1042 kfree(area->vm_buf); 1043 area->vm_buf = NULL; 1044 } 1045 1046 static void *__zs_map_object(struct mapping_area *area, 1047 struct page *pages[2], int off, int size) 1048 { 1049 size_t sizes[2]; 1050 char *buf = area->vm_buf; 1051 1052 /* disable page faults to match kmap_local_page() return conditions */ 1053 pagefault_disable(); 1054 1055 /* no read fastpath */ 1056 if (area->vm_mm == ZS_MM_WO) 1057 goto out; 1058 1059 sizes[0] = PAGE_SIZE - off; 1060 sizes[1] = size - sizes[0]; 1061 1062 /* copy object to per-cpu buffer */ 1063 memcpy_from_page(buf, pages[0], off, sizes[0]); 1064 memcpy_from_page(buf + sizes[0], pages[1], 0, sizes[1]); 1065 out: 1066 return area->vm_buf; 1067 } 1068 1069 static void __zs_unmap_object(struct mapping_area *area, 1070 struct page *pages[2], int off, int size) 1071 { 1072 size_t sizes[2]; 1073 char *buf; 1074 1075 /* no write fastpath */ 1076 if (area->vm_mm == ZS_MM_RO) 1077 goto out; 1078 1079 buf = area->vm_buf; 1080 buf = buf + ZS_HANDLE_SIZE; 1081 size -= ZS_HANDLE_SIZE; 1082 off += ZS_HANDLE_SIZE; 1083 1084 sizes[0] = PAGE_SIZE - off; 1085 sizes[1] = size - sizes[0]; 1086 1087 /* copy per-cpu buffer to object */ 1088 memcpy_to_page(pages[0], off, buf, sizes[0]); 1089 memcpy_to_page(pages[1], 0, buf + sizes[0], sizes[1]); 1090 1091 out: 1092 /* enable page faults to match kunmap_local() return conditions */ 1093 pagefault_enable(); 1094 } 1095 1096 static int zs_cpu_prepare(unsigned int cpu) 1097 { 1098 struct mapping_area *area; 1099 1100 area = &per_cpu(zs_map_area, cpu); 1101 return __zs_cpu_up(area); 1102 } 1103 1104 static int zs_cpu_dead(unsigned int cpu) 1105 { 1106 struct mapping_area *area; 1107 1108 area = &per_cpu(zs_map_area, cpu); 1109 __zs_cpu_down(area); 1110 return 0; 1111 } 1112 1113 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1114 int objs_per_zspage) 1115 { 1116 if (prev->pages_per_zspage == pages_per_zspage && 1117 prev->objs_per_zspage == objs_per_zspage) 1118 return true; 1119 1120 return false; 1121 } 1122 1123 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1124 { 1125 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1126 } 1127 1128 static bool zspage_empty(struct zspage *zspage) 1129 { 1130 return get_zspage_inuse(zspage) == 0; 1131 } 1132 1133 /** 1134 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class 1135 * that hold objects of the provided size. 1136 * @pool: zsmalloc pool to use 1137 * @size: object size 1138 * 1139 * Context: Any context. 1140 * 1141 * Return: the index of the zsmalloc &size_class that hold objects of the 1142 * provided size. 1143 */ 1144 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size) 1145 { 1146 struct size_class *class; 1147 1148 class = pool->size_class[get_size_class_index(size)]; 1149 1150 return class->index; 1151 } 1152 EXPORT_SYMBOL_GPL(zs_lookup_class_index); 1153 1154 unsigned long zs_get_total_pages(struct zs_pool *pool) 1155 { 1156 return atomic_long_read(&pool->pages_allocated); 1157 } 1158 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1159 1160 /** 1161 * zs_map_object - get address of allocated object from handle. 1162 * @pool: pool from which the object was allocated 1163 * @handle: handle returned from zs_malloc 1164 * @mm: mapping mode to use 1165 * 1166 * Before using an object allocated from zs_malloc, it must be mapped using 1167 * this function. When done with the object, it must be unmapped using 1168 * zs_unmap_object. 1169 * 1170 * Only one object can be mapped per cpu at a time. There is no protection 1171 * against nested mappings. 1172 * 1173 * This function returns with preemption and page faults disabled. 1174 */ 1175 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1176 enum zs_mapmode mm) 1177 { 1178 struct zspage *zspage; 1179 struct page *page; 1180 unsigned long obj, off; 1181 unsigned int obj_idx; 1182 1183 struct size_class *class; 1184 struct mapping_area *area; 1185 struct page *pages[2]; 1186 void *ret; 1187 1188 /* 1189 * Because we use per-cpu mapping areas shared among the 1190 * pools/users, we can't allow mapping in interrupt context 1191 * because it can corrupt another users mappings. 1192 */ 1193 BUG_ON(in_interrupt()); 1194 1195 /* It guarantees it can get zspage from handle safely */ 1196 read_lock(&pool->migrate_lock); 1197 obj = handle_to_obj(handle); 1198 obj_to_location(obj, &page, &obj_idx); 1199 zspage = get_zspage(page); 1200 1201 /* 1202 * migration cannot move any zpages in this zspage. Here, class->lock 1203 * is too heavy since callers would take some time until they calls 1204 * zs_unmap_object API so delegate the locking from class to zspage 1205 * which is smaller granularity. 1206 */ 1207 migrate_read_lock(zspage); 1208 read_unlock(&pool->migrate_lock); 1209 1210 class = zspage_class(pool, zspage); 1211 off = offset_in_page(class->size * obj_idx); 1212 1213 local_lock(&zs_map_area.lock); 1214 area = this_cpu_ptr(&zs_map_area); 1215 area->vm_mm = mm; 1216 if (off + class->size <= PAGE_SIZE) { 1217 /* this object is contained entirely within a page */ 1218 area->vm_addr = kmap_local_page(page); 1219 ret = area->vm_addr + off; 1220 goto out; 1221 } 1222 1223 /* this object spans two pages */ 1224 pages[0] = page; 1225 pages[1] = get_next_page(page); 1226 BUG_ON(!pages[1]); 1227 1228 ret = __zs_map_object(area, pages, off, class->size); 1229 out: 1230 if (likely(!ZsHugePage(zspage))) 1231 ret += ZS_HANDLE_SIZE; 1232 1233 return ret; 1234 } 1235 EXPORT_SYMBOL_GPL(zs_map_object); 1236 1237 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1238 { 1239 struct zspage *zspage; 1240 struct page *page; 1241 unsigned long obj, off; 1242 unsigned int obj_idx; 1243 1244 struct size_class *class; 1245 struct mapping_area *area; 1246 1247 obj = handle_to_obj(handle); 1248 obj_to_location(obj, &page, &obj_idx); 1249 zspage = get_zspage(page); 1250 class = zspage_class(pool, zspage); 1251 off = offset_in_page(class->size * obj_idx); 1252 1253 area = this_cpu_ptr(&zs_map_area); 1254 if (off + class->size <= PAGE_SIZE) 1255 kunmap_local(area->vm_addr); 1256 else { 1257 struct page *pages[2]; 1258 1259 pages[0] = page; 1260 pages[1] = get_next_page(page); 1261 BUG_ON(!pages[1]); 1262 1263 __zs_unmap_object(area, pages, off, class->size); 1264 } 1265 local_unlock(&zs_map_area.lock); 1266 1267 migrate_read_unlock(zspage); 1268 } 1269 EXPORT_SYMBOL_GPL(zs_unmap_object); 1270 1271 /** 1272 * zs_huge_class_size() - Returns the size (in bytes) of the first huge 1273 * zsmalloc &size_class. 1274 * @pool: zsmalloc pool to use 1275 * 1276 * The function returns the size of the first huge class - any object of equal 1277 * or bigger size will be stored in zspage consisting of a single physical 1278 * page. 1279 * 1280 * Context: Any context. 1281 * 1282 * Return: the size (in bytes) of the first huge zsmalloc &size_class. 1283 */ 1284 size_t zs_huge_class_size(struct zs_pool *pool) 1285 { 1286 return huge_class_size; 1287 } 1288 EXPORT_SYMBOL_GPL(zs_huge_class_size); 1289 1290 static unsigned long obj_malloc(struct zs_pool *pool, 1291 struct zspage *zspage, unsigned long handle) 1292 { 1293 int i, nr_page, offset; 1294 unsigned long obj; 1295 struct link_free *link; 1296 struct size_class *class; 1297 1298 struct page *m_page; 1299 unsigned long m_offset; 1300 void *vaddr; 1301 1302 class = pool->size_class[zspage->class]; 1303 obj = get_freeobj(zspage); 1304 1305 offset = obj * class->size; 1306 nr_page = offset >> PAGE_SHIFT; 1307 m_offset = offset_in_page(offset); 1308 m_page = get_first_page(zspage); 1309 1310 for (i = 0; i < nr_page; i++) 1311 m_page = get_next_page(m_page); 1312 1313 vaddr = kmap_local_page(m_page); 1314 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1315 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1316 if (likely(!ZsHugePage(zspage))) 1317 /* record handle in the header of allocated chunk */ 1318 link->handle = handle | OBJ_ALLOCATED_TAG; 1319 else 1320 /* record handle to page->index */ 1321 zspage->first_page->index = handle | OBJ_ALLOCATED_TAG; 1322 1323 kunmap_local(vaddr); 1324 mod_zspage_inuse(zspage, 1); 1325 1326 obj = location_to_obj(m_page, obj); 1327 record_obj(handle, obj); 1328 1329 return obj; 1330 } 1331 1332 1333 /** 1334 * zs_malloc - Allocate block of given size from pool. 1335 * @pool: pool to allocate from 1336 * @size: size of block to allocate 1337 * @gfp: gfp flags when allocating object 1338 * 1339 * On success, handle to the allocated object is returned, 1340 * otherwise an ERR_PTR(). 1341 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1342 */ 1343 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) 1344 { 1345 unsigned long handle; 1346 struct size_class *class; 1347 int newfg; 1348 struct zspage *zspage; 1349 1350 if (unlikely(!size)) 1351 return (unsigned long)ERR_PTR(-EINVAL); 1352 1353 if (unlikely(size > ZS_MAX_ALLOC_SIZE)) 1354 return (unsigned long)ERR_PTR(-ENOSPC); 1355 1356 handle = cache_alloc_handle(pool, gfp); 1357 if (!handle) 1358 return (unsigned long)ERR_PTR(-ENOMEM); 1359 1360 /* extra space in chunk to keep the handle */ 1361 size += ZS_HANDLE_SIZE; 1362 class = pool->size_class[get_size_class_index(size)]; 1363 1364 /* class->lock effectively protects the zpage migration */ 1365 spin_lock(&class->lock); 1366 zspage = find_get_zspage(class); 1367 if (likely(zspage)) { 1368 obj_malloc(pool, zspage, handle); 1369 /* Now move the zspage to another fullness group, if required */ 1370 fix_fullness_group(class, zspage); 1371 class_stat_add(class, ZS_OBJS_INUSE, 1); 1372 1373 goto out; 1374 } 1375 1376 spin_unlock(&class->lock); 1377 1378 zspage = alloc_zspage(pool, class, gfp); 1379 if (!zspage) { 1380 cache_free_handle(pool, handle); 1381 return (unsigned long)ERR_PTR(-ENOMEM); 1382 } 1383 1384 spin_lock(&class->lock); 1385 obj_malloc(pool, zspage, handle); 1386 newfg = get_fullness_group(class, zspage); 1387 insert_zspage(class, zspage, newfg); 1388 atomic_long_add(class->pages_per_zspage, &pool->pages_allocated); 1389 class_stat_add(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage); 1390 class_stat_add(class, ZS_OBJS_INUSE, 1); 1391 1392 /* We completely set up zspage so mark them as movable */ 1393 SetZsPageMovable(pool, zspage); 1394 out: 1395 spin_unlock(&class->lock); 1396 1397 return handle; 1398 } 1399 EXPORT_SYMBOL_GPL(zs_malloc); 1400 1401 static void obj_free(int class_size, unsigned long obj) 1402 { 1403 struct link_free *link; 1404 struct zspage *zspage; 1405 struct page *f_page; 1406 unsigned long f_offset; 1407 unsigned int f_objidx; 1408 void *vaddr; 1409 1410 obj_to_location(obj, &f_page, &f_objidx); 1411 f_offset = offset_in_page(class_size * f_objidx); 1412 zspage = get_zspage(f_page); 1413 1414 vaddr = kmap_local_page(f_page); 1415 link = (struct link_free *)(vaddr + f_offset); 1416 1417 /* Insert this object in containing zspage's freelist */ 1418 if (likely(!ZsHugePage(zspage))) 1419 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1420 else 1421 f_page->index = 0; 1422 set_freeobj(zspage, f_objidx); 1423 1424 kunmap_local(vaddr); 1425 mod_zspage_inuse(zspage, -1); 1426 } 1427 1428 void zs_free(struct zs_pool *pool, unsigned long handle) 1429 { 1430 struct zspage *zspage; 1431 struct page *f_page; 1432 unsigned long obj; 1433 struct size_class *class; 1434 int fullness; 1435 1436 if (IS_ERR_OR_NULL((void *)handle)) 1437 return; 1438 1439 /* 1440 * The pool->migrate_lock protects the race with zpage's migration 1441 * so it's safe to get the page from handle. 1442 */ 1443 read_lock(&pool->migrate_lock); 1444 obj = handle_to_obj(handle); 1445 obj_to_page(obj, &f_page); 1446 zspage = get_zspage(f_page); 1447 class = zspage_class(pool, zspage); 1448 spin_lock(&class->lock); 1449 read_unlock(&pool->migrate_lock); 1450 1451 class_stat_sub(class, ZS_OBJS_INUSE, 1); 1452 obj_free(class->size, obj); 1453 1454 fullness = fix_fullness_group(class, zspage); 1455 if (fullness == ZS_INUSE_RATIO_0) 1456 free_zspage(pool, class, zspage); 1457 1458 spin_unlock(&class->lock); 1459 cache_free_handle(pool, handle); 1460 } 1461 EXPORT_SYMBOL_GPL(zs_free); 1462 1463 static void zs_object_copy(struct size_class *class, unsigned long dst, 1464 unsigned long src) 1465 { 1466 struct page *s_page, *d_page; 1467 unsigned int s_objidx, d_objidx; 1468 unsigned long s_off, d_off; 1469 void *s_addr, *d_addr; 1470 int s_size, d_size, size; 1471 int written = 0; 1472 1473 s_size = d_size = class->size; 1474 1475 obj_to_location(src, &s_page, &s_objidx); 1476 obj_to_location(dst, &d_page, &d_objidx); 1477 1478 s_off = offset_in_page(class->size * s_objidx); 1479 d_off = offset_in_page(class->size * d_objidx); 1480 1481 if (s_off + class->size > PAGE_SIZE) 1482 s_size = PAGE_SIZE - s_off; 1483 1484 if (d_off + class->size > PAGE_SIZE) 1485 d_size = PAGE_SIZE - d_off; 1486 1487 s_addr = kmap_local_page(s_page); 1488 d_addr = kmap_local_page(d_page); 1489 1490 while (1) { 1491 size = min(s_size, d_size); 1492 memcpy(d_addr + d_off, s_addr + s_off, size); 1493 written += size; 1494 1495 if (written == class->size) 1496 break; 1497 1498 s_off += size; 1499 s_size -= size; 1500 d_off += size; 1501 d_size -= size; 1502 1503 /* 1504 * Calling kunmap_local(d_addr) is necessary. kunmap_local() 1505 * calls must occurs in reverse order of calls to kmap_local_page(). 1506 * So, to call kunmap_local(s_addr) we should first call 1507 * kunmap_local(d_addr). For more details see 1508 * Documentation/mm/highmem.rst. 1509 */ 1510 if (s_off >= PAGE_SIZE) { 1511 kunmap_local(d_addr); 1512 kunmap_local(s_addr); 1513 s_page = get_next_page(s_page); 1514 s_addr = kmap_local_page(s_page); 1515 d_addr = kmap_local_page(d_page); 1516 s_size = class->size - written; 1517 s_off = 0; 1518 } 1519 1520 if (d_off >= PAGE_SIZE) { 1521 kunmap_local(d_addr); 1522 d_page = get_next_page(d_page); 1523 d_addr = kmap_local_page(d_page); 1524 d_size = class->size - written; 1525 d_off = 0; 1526 } 1527 } 1528 1529 kunmap_local(d_addr); 1530 kunmap_local(s_addr); 1531 } 1532 1533 /* 1534 * Find alloced object in zspage from index object and 1535 * return handle. 1536 */ 1537 static unsigned long find_alloced_obj(struct size_class *class, 1538 struct page *page, int *obj_idx) 1539 { 1540 unsigned int offset; 1541 int index = *obj_idx; 1542 unsigned long handle = 0; 1543 void *addr = kmap_local_page(page); 1544 1545 offset = get_first_obj_offset(page); 1546 offset += class->size * index; 1547 1548 while (offset < PAGE_SIZE) { 1549 if (obj_allocated(page, addr + offset, &handle)) 1550 break; 1551 1552 offset += class->size; 1553 index++; 1554 } 1555 1556 kunmap_local(addr); 1557 1558 *obj_idx = index; 1559 1560 return handle; 1561 } 1562 1563 static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage, 1564 struct zspage *dst_zspage) 1565 { 1566 unsigned long used_obj, free_obj; 1567 unsigned long handle; 1568 int obj_idx = 0; 1569 struct page *s_page = get_first_page(src_zspage); 1570 struct size_class *class = pool->size_class[src_zspage->class]; 1571 1572 while (1) { 1573 handle = find_alloced_obj(class, s_page, &obj_idx); 1574 if (!handle) { 1575 s_page = get_next_page(s_page); 1576 if (!s_page) 1577 break; 1578 obj_idx = 0; 1579 continue; 1580 } 1581 1582 used_obj = handle_to_obj(handle); 1583 free_obj = obj_malloc(pool, dst_zspage, handle); 1584 zs_object_copy(class, free_obj, used_obj); 1585 obj_idx++; 1586 obj_free(class->size, used_obj); 1587 1588 /* Stop if there is no more space */ 1589 if (zspage_full(class, dst_zspage)) 1590 break; 1591 1592 /* Stop if there are no more objects to migrate */ 1593 if (zspage_empty(src_zspage)) 1594 break; 1595 } 1596 } 1597 1598 static struct zspage *isolate_src_zspage(struct size_class *class) 1599 { 1600 struct zspage *zspage; 1601 int fg; 1602 1603 for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) { 1604 zspage = list_first_entry_or_null(&class->fullness_list[fg], 1605 struct zspage, list); 1606 if (zspage) { 1607 remove_zspage(class, zspage); 1608 return zspage; 1609 } 1610 } 1611 1612 return zspage; 1613 } 1614 1615 static struct zspage *isolate_dst_zspage(struct size_class *class) 1616 { 1617 struct zspage *zspage; 1618 int fg; 1619 1620 for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) { 1621 zspage = list_first_entry_or_null(&class->fullness_list[fg], 1622 struct zspage, list); 1623 if (zspage) { 1624 remove_zspage(class, zspage); 1625 return zspage; 1626 } 1627 } 1628 1629 return zspage; 1630 } 1631 1632 /* 1633 * putback_zspage - add @zspage into right class's fullness list 1634 * @class: destination class 1635 * @zspage: target page 1636 * 1637 * Return @zspage's fullness status 1638 */ 1639 static int putback_zspage(struct size_class *class, struct zspage *zspage) 1640 { 1641 int fullness; 1642 1643 fullness = get_fullness_group(class, zspage); 1644 insert_zspage(class, zspage, fullness); 1645 1646 return fullness; 1647 } 1648 1649 #ifdef CONFIG_COMPACTION 1650 /* 1651 * To prevent zspage destroy during migration, zspage freeing should 1652 * hold locks of all pages in the zspage. 1653 */ 1654 static void lock_zspage(struct zspage *zspage) 1655 { 1656 struct page *curr_page, *page; 1657 1658 /* 1659 * Pages we haven't locked yet can be migrated off the list while we're 1660 * trying to lock them, so we need to be careful and only attempt to 1661 * lock each page under migrate_read_lock(). Otherwise, the page we lock 1662 * may no longer belong to the zspage. This means that we may wait for 1663 * the wrong page to unlock, so we must take a reference to the page 1664 * prior to waiting for it to unlock outside migrate_read_lock(). 1665 */ 1666 while (1) { 1667 migrate_read_lock(zspage); 1668 page = get_first_page(zspage); 1669 if (trylock_page(page)) 1670 break; 1671 get_page(page); 1672 migrate_read_unlock(zspage); 1673 wait_on_page_locked(page); 1674 put_page(page); 1675 } 1676 1677 curr_page = page; 1678 while ((page = get_next_page(curr_page))) { 1679 if (trylock_page(page)) { 1680 curr_page = page; 1681 } else { 1682 get_page(page); 1683 migrate_read_unlock(zspage); 1684 wait_on_page_locked(page); 1685 put_page(page); 1686 migrate_read_lock(zspage); 1687 } 1688 } 1689 migrate_read_unlock(zspage); 1690 } 1691 #endif /* CONFIG_COMPACTION */ 1692 1693 static void migrate_lock_init(struct zspage *zspage) 1694 { 1695 rwlock_init(&zspage->lock); 1696 } 1697 1698 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock) 1699 { 1700 read_lock(&zspage->lock); 1701 } 1702 1703 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock) 1704 { 1705 read_unlock(&zspage->lock); 1706 } 1707 1708 static void migrate_write_lock(struct zspage *zspage) 1709 { 1710 write_lock(&zspage->lock); 1711 } 1712 1713 static void migrate_write_unlock(struct zspage *zspage) 1714 { 1715 write_unlock(&zspage->lock); 1716 } 1717 1718 #ifdef CONFIG_COMPACTION 1719 1720 static const struct movable_operations zsmalloc_mops; 1721 1722 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 1723 struct page *newpage, struct page *oldpage) 1724 { 1725 struct page *page; 1726 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 1727 int idx = 0; 1728 1729 page = get_first_page(zspage); 1730 do { 1731 if (page == oldpage) 1732 pages[idx] = newpage; 1733 else 1734 pages[idx] = page; 1735 idx++; 1736 } while ((page = get_next_page(page)) != NULL); 1737 1738 create_page_chain(class, zspage, pages); 1739 set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); 1740 if (unlikely(ZsHugePage(zspage))) 1741 newpage->index = oldpage->index; 1742 __SetPageMovable(newpage, &zsmalloc_mops); 1743 } 1744 1745 static bool zs_page_isolate(struct page *page, isolate_mode_t mode) 1746 { 1747 /* 1748 * Page is locked so zspage couldn't be destroyed. For detail, look at 1749 * lock_zspage in free_zspage. 1750 */ 1751 VM_BUG_ON_PAGE(PageIsolated(page), page); 1752 1753 return true; 1754 } 1755 1756 static int zs_page_migrate(struct page *newpage, struct page *page, 1757 enum migrate_mode mode) 1758 { 1759 struct zs_pool *pool; 1760 struct size_class *class; 1761 struct zspage *zspage; 1762 struct page *dummy; 1763 void *s_addr, *d_addr, *addr; 1764 unsigned int offset; 1765 unsigned long handle; 1766 unsigned long old_obj, new_obj; 1767 unsigned int obj_idx; 1768 1769 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1770 1771 /* We're committed, tell the world that this is a Zsmalloc page. */ 1772 __SetPageZsmalloc(newpage); 1773 1774 /* The page is locked, so this pointer must remain valid */ 1775 zspage = get_zspage(page); 1776 pool = zspage->pool; 1777 1778 /* 1779 * The pool migrate_lock protects the race between zpage migration 1780 * and zs_free. 1781 */ 1782 write_lock(&pool->migrate_lock); 1783 class = zspage_class(pool, zspage); 1784 1785 /* 1786 * the class lock protects zpage alloc/free in the zspage. 1787 */ 1788 spin_lock(&class->lock); 1789 /* the migrate_write_lock protects zpage access via zs_map_object */ 1790 migrate_write_lock(zspage); 1791 1792 offset = get_first_obj_offset(page); 1793 s_addr = kmap_local_page(page); 1794 1795 /* 1796 * Here, any user cannot access all objects in the zspage so let's move. 1797 */ 1798 d_addr = kmap_local_page(newpage); 1799 copy_page(d_addr, s_addr); 1800 kunmap_local(d_addr); 1801 1802 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE; 1803 addr += class->size) { 1804 if (obj_allocated(page, addr, &handle)) { 1805 1806 old_obj = handle_to_obj(handle); 1807 obj_to_location(old_obj, &dummy, &obj_idx); 1808 new_obj = (unsigned long)location_to_obj(newpage, 1809 obj_idx); 1810 record_obj(handle, new_obj); 1811 } 1812 } 1813 kunmap_local(s_addr); 1814 1815 replace_sub_page(class, zspage, newpage, page); 1816 /* 1817 * Since we complete the data copy and set up new zspage structure, 1818 * it's okay to release migration_lock. 1819 */ 1820 write_unlock(&pool->migrate_lock); 1821 spin_unlock(&class->lock); 1822 migrate_write_unlock(zspage); 1823 1824 get_page(newpage); 1825 if (page_zone(newpage) != page_zone(page)) { 1826 dec_zone_page_state(page, NR_ZSPAGES); 1827 inc_zone_page_state(newpage, NR_ZSPAGES); 1828 } 1829 1830 reset_page(page); 1831 put_page(page); 1832 1833 return MIGRATEPAGE_SUCCESS; 1834 } 1835 1836 static void zs_page_putback(struct page *page) 1837 { 1838 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1839 } 1840 1841 static const struct movable_operations zsmalloc_mops = { 1842 .isolate_page = zs_page_isolate, 1843 .migrate_page = zs_page_migrate, 1844 .putback_page = zs_page_putback, 1845 }; 1846 1847 /* 1848 * Caller should hold page_lock of all pages in the zspage 1849 * In here, we cannot use zspage meta data. 1850 */ 1851 static void async_free_zspage(struct work_struct *work) 1852 { 1853 int i; 1854 struct size_class *class; 1855 struct zspage *zspage, *tmp; 1856 LIST_HEAD(free_pages); 1857 struct zs_pool *pool = container_of(work, struct zs_pool, 1858 free_work); 1859 1860 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 1861 class = pool->size_class[i]; 1862 if (class->index != i) 1863 continue; 1864 1865 spin_lock(&class->lock); 1866 list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0], 1867 &free_pages); 1868 spin_unlock(&class->lock); 1869 } 1870 1871 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 1872 list_del(&zspage->list); 1873 lock_zspage(zspage); 1874 1875 class = zspage_class(pool, zspage); 1876 spin_lock(&class->lock); 1877 class_stat_sub(class, ZS_INUSE_RATIO_0, 1); 1878 __free_zspage(pool, class, zspage); 1879 spin_unlock(&class->lock); 1880 } 1881 }; 1882 1883 static void kick_deferred_free(struct zs_pool *pool) 1884 { 1885 schedule_work(&pool->free_work); 1886 } 1887 1888 static void zs_flush_migration(struct zs_pool *pool) 1889 { 1890 flush_work(&pool->free_work); 1891 } 1892 1893 static void init_deferred_free(struct zs_pool *pool) 1894 { 1895 INIT_WORK(&pool->free_work, async_free_zspage); 1896 } 1897 1898 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 1899 { 1900 struct page *page = get_first_page(zspage); 1901 1902 do { 1903 WARN_ON(!trylock_page(page)); 1904 __SetPageMovable(page, &zsmalloc_mops); 1905 unlock_page(page); 1906 } while ((page = get_next_page(page)) != NULL); 1907 } 1908 #else 1909 static inline void zs_flush_migration(struct zs_pool *pool) { } 1910 #endif 1911 1912 /* 1913 * 1914 * Based on the number of unused allocated objects calculate 1915 * and return the number of pages that we can free. 1916 */ 1917 static unsigned long zs_can_compact(struct size_class *class) 1918 { 1919 unsigned long obj_wasted; 1920 unsigned long obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED); 1921 unsigned long obj_used = class_stat_read(class, ZS_OBJS_INUSE); 1922 1923 if (obj_allocated <= obj_used) 1924 return 0; 1925 1926 obj_wasted = obj_allocated - obj_used; 1927 obj_wasted /= class->objs_per_zspage; 1928 1929 return obj_wasted * class->pages_per_zspage; 1930 } 1931 1932 static unsigned long __zs_compact(struct zs_pool *pool, 1933 struct size_class *class) 1934 { 1935 struct zspage *src_zspage = NULL; 1936 struct zspage *dst_zspage = NULL; 1937 unsigned long pages_freed = 0; 1938 1939 /* 1940 * protect the race between zpage migration and zs_free 1941 * as well as zpage allocation/free 1942 */ 1943 write_lock(&pool->migrate_lock); 1944 spin_lock(&class->lock); 1945 while (zs_can_compact(class)) { 1946 int fg; 1947 1948 if (!dst_zspage) { 1949 dst_zspage = isolate_dst_zspage(class); 1950 if (!dst_zspage) 1951 break; 1952 } 1953 1954 src_zspage = isolate_src_zspage(class); 1955 if (!src_zspage) 1956 break; 1957 1958 migrate_write_lock(src_zspage); 1959 migrate_zspage(pool, src_zspage, dst_zspage); 1960 migrate_write_unlock(src_zspage); 1961 1962 fg = putback_zspage(class, src_zspage); 1963 if (fg == ZS_INUSE_RATIO_0) { 1964 free_zspage(pool, class, src_zspage); 1965 pages_freed += class->pages_per_zspage; 1966 } 1967 src_zspage = NULL; 1968 1969 if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100 1970 || rwlock_is_contended(&pool->migrate_lock)) { 1971 putback_zspage(class, dst_zspage); 1972 dst_zspage = NULL; 1973 1974 spin_unlock(&class->lock); 1975 write_unlock(&pool->migrate_lock); 1976 cond_resched(); 1977 write_lock(&pool->migrate_lock); 1978 spin_lock(&class->lock); 1979 } 1980 } 1981 1982 if (src_zspage) 1983 putback_zspage(class, src_zspage); 1984 1985 if (dst_zspage) 1986 putback_zspage(class, dst_zspage); 1987 1988 spin_unlock(&class->lock); 1989 write_unlock(&pool->migrate_lock); 1990 1991 return pages_freed; 1992 } 1993 1994 unsigned long zs_compact(struct zs_pool *pool) 1995 { 1996 int i; 1997 struct size_class *class; 1998 unsigned long pages_freed = 0; 1999 2000 /* 2001 * Pool compaction is performed under pool->migrate_lock so it is basically 2002 * single-threaded. Having more than one thread in __zs_compact() 2003 * will increase pool->migrate_lock contention, which will impact other 2004 * zsmalloc operations that need pool->migrate_lock. 2005 */ 2006 if (atomic_xchg(&pool->compaction_in_progress, 1)) 2007 return 0; 2008 2009 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2010 class = pool->size_class[i]; 2011 if (class->index != i) 2012 continue; 2013 pages_freed += __zs_compact(pool, class); 2014 } 2015 atomic_long_add(pages_freed, &pool->stats.pages_compacted); 2016 atomic_set(&pool->compaction_in_progress, 0); 2017 2018 return pages_freed; 2019 } 2020 EXPORT_SYMBOL_GPL(zs_compact); 2021 2022 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2023 { 2024 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2025 } 2026 EXPORT_SYMBOL_GPL(zs_pool_stats); 2027 2028 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2029 struct shrink_control *sc) 2030 { 2031 unsigned long pages_freed; 2032 struct zs_pool *pool = shrinker->private_data; 2033 2034 /* 2035 * Compact classes and calculate compaction delta. 2036 * Can run concurrently with a manually triggered 2037 * (by user) compaction. 2038 */ 2039 pages_freed = zs_compact(pool); 2040 2041 return pages_freed ? pages_freed : SHRINK_STOP; 2042 } 2043 2044 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2045 struct shrink_control *sc) 2046 { 2047 int i; 2048 struct size_class *class; 2049 unsigned long pages_to_free = 0; 2050 struct zs_pool *pool = shrinker->private_data; 2051 2052 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2053 class = pool->size_class[i]; 2054 if (class->index != i) 2055 continue; 2056 2057 pages_to_free += zs_can_compact(class); 2058 } 2059 2060 return pages_to_free; 2061 } 2062 2063 static void zs_unregister_shrinker(struct zs_pool *pool) 2064 { 2065 shrinker_free(pool->shrinker); 2066 } 2067 2068 static int zs_register_shrinker(struct zs_pool *pool) 2069 { 2070 pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name); 2071 if (!pool->shrinker) 2072 return -ENOMEM; 2073 2074 pool->shrinker->scan_objects = zs_shrinker_scan; 2075 pool->shrinker->count_objects = zs_shrinker_count; 2076 pool->shrinker->batch = 0; 2077 pool->shrinker->private_data = pool; 2078 2079 shrinker_register(pool->shrinker); 2080 2081 return 0; 2082 } 2083 2084 static int calculate_zspage_chain_size(int class_size) 2085 { 2086 int i, min_waste = INT_MAX; 2087 int chain_size = 1; 2088 2089 if (is_power_of_2(class_size)) 2090 return chain_size; 2091 2092 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 2093 int waste; 2094 2095 waste = (i * PAGE_SIZE) % class_size; 2096 if (waste < min_waste) { 2097 min_waste = waste; 2098 chain_size = i; 2099 } 2100 } 2101 2102 return chain_size; 2103 } 2104 2105 /** 2106 * zs_create_pool - Creates an allocation pool to work from. 2107 * @name: pool name to be created 2108 * 2109 * This function must be called before anything when using 2110 * the zsmalloc allocator. 2111 * 2112 * On success, a pointer to the newly created pool is returned, 2113 * otherwise NULL. 2114 */ 2115 struct zs_pool *zs_create_pool(const char *name) 2116 { 2117 int i; 2118 struct zs_pool *pool; 2119 struct size_class *prev_class = NULL; 2120 2121 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2122 if (!pool) 2123 return NULL; 2124 2125 init_deferred_free(pool); 2126 rwlock_init(&pool->migrate_lock); 2127 atomic_set(&pool->compaction_in_progress, 0); 2128 2129 pool->name = kstrdup(name, GFP_KERNEL); 2130 if (!pool->name) 2131 goto err; 2132 2133 if (create_cache(pool)) 2134 goto err; 2135 2136 /* 2137 * Iterate reversely, because, size of size_class that we want to use 2138 * for merging should be larger or equal to current size. 2139 */ 2140 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2141 int size; 2142 int pages_per_zspage; 2143 int objs_per_zspage; 2144 struct size_class *class; 2145 int fullness; 2146 2147 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2148 if (size > ZS_MAX_ALLOC_SIZE) 2149 size = ZS_MAX_ALLOC_SIZE; 2150 pages_per_zspage = calculate_zspage_chain_size(size); 2151 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2152 2153 /* 2154 * We iterate from biggest down to smallest classes, 2155 * so huge_class_size holds the size of the first huge 2156 * class. Any object bigger than or equal to that will 2157 * endup in the huge class. 2158 */ 2159 if (pages_per_zspage != 1 && objs_per_zspage != 1 && 2160 !huge_class_size) { 2161 huge_class_size = size; 2162 /* 2163 * The object uses ZS_HANDLE_SIZE bytes to store the 2164 * handle. We need to subtract it, because zs_malloc() 2165 * unconditionally adds handle size before it performs 2166 * size class search - so object may be smaller than 2167 * huge class size, yet it still can end up in the huge 2168 * class because it grows by ZS_HANDLE_SIZE extra bytes 2169 * right before class lookup. 2170 */ 2171 huge_class_size -= (ZS_HANDLE_SIZE - 1); 2172 } 2173 2174 /* 2175 * size_class is used for normal zsmalloc operation such 2176 * as alloc/free for that size. Although it is natural that we 2177 * have one size_class for each size, there is a chance that we 2178 * can get more memory utilization if we use one size_class for 2179 * many different sizes whose size_class have same 2180 * characteristics. So, we makes size_class point to 2181 * previous size_class if possible. 2182 */ 2183 if (prev_class) { 2184 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2185 pool->size_class[i] = prev_class; 2186 continue; 2187 } 2188 } 2189 2190 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2191 if (!class) 2192 goto err; 2193 2194 class->size = size; 2195 class->index = i; 2196 class->pages_per_zspage = pages_per_zspage; 2197 class->objs_per_zspage = objs_per_zspage; 2198 spin_lock_init(&class->lock); 2199 pool->size_class[i] = class; 2200 2201 fullness = ZS_INUSE_RATIO_0; 2202 while (fullness < NR_FULLNESS_GROUPS) { 2203 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2204 fullness++; 2205 } 2206 2207 prev_class = class; 2208 } 2209 2210 /* debug only, don't abort if it fails */ 2211 zs_pool_stat_create(pool, name); 2212 2213 /* 2214 * Not critical since shrinker is only used to trigger internal 2215 * defragmentation of the pool which is pretty optional thing. If 2216 * registration fails we still can use the pool normally and user can 2217 * trigger compaction manually. Thus, ignore return code. 2218 */ 2219 zs_register_shrinker(pool); 2220 2221 return pool; 2222 2223 err: 2224 zs_destroy_pool(pool); 2225 return NULL; 2226 } 2227 EXPORT_SYMBOL_GPL(zs_create_pool); 2228 2229 void zs_destroy_pool(struct zs_pool *pool) 2230 { 2231 int i; 2232 2233 zs_unregister_shrinker(pool); 2234 zs_flush_migration(pool); 2235 zs_pool_stat_destroy(pool); 2236 2237 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2238 int fg; 2239 struct size_class *class = pool->size_class[i]; 2240 2241 if (!class) 2242 continue; 2243 2244 if (class->index != i) 2245 continue; 2246 2247 for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) { 2248 if (list_empty(&class->fullness_list[fg])) 2249 continue; 2250 2251 pr_err("Class-%d fullness group %d is not empty\n", 2252 class->size, fg); 2253 } 2254 kfree(class); 2255 } 2256 2257 destroy_cache(pool); 2258 kfree(pool->name); 2259 kfree(pool); 2260 } 2261 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2262 2263 static int __init zs_init(void) 2264 { 2265 int ret; 2266 2267 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", 2268 zs_cpu_prepare, zs_cpu_dead); 2269 if (ret) 2270 goto out; 2271 2272 #ifdef CONFIG_ZPOOL 2273 zpool_register_driver(&zs_zpool_driver); 2274 #endif 2275 2276 zs_stat_init(); 2277 2278 return 0; 2279 2280 out: 2281 return ret; 2282 } 2283 2284 static void __exit zs_exit(void) 2285 { 2286 #ifdef CONFIG_ZPOOL 2287 zpool_unregister_driver(&zs_zpool_driver); 2288 #endif 2289 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); 2290 2291 zs_stat_exit(); 2292 } 2293 2294 module_init(zs_init); 2295 module_exit(zs_exit); 2296 2297 MODULE_LICENSE("Dual BSD/GPL"); 2298 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2299 MODULE_DESCRIPTION("zsmalloc memory allocator"); 2300