1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4 * Copyright (C) 2010 Red Hat, Inc.
5 * All Rights Reserved.
6 */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_extent_busy.h"
15 #include "xfs_quota.h"
16 #include "xfs_trans.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_log.h"
19 #include "xfs_log_priv.h"
20 #include "xfs_trace.h"
21 #include "xfs_error.h"
22 #include "xfs_defer.h"
23 #include "xfs_inode.h"
24 #include "xfs_dquot_item.h"
25 #include "xfs_dquot.h"
26 #include "xfs_icache.h"
27 #include "xfs_rtbitmap.h"
28 #include "xfs_rtgroup.h"
29 #include "xfs_sb.h"
30
31 struct kmem_cache *xfs_trans_cache;
32
33 #if defined(CONFIG_TRACEPOINTS)
34 static void
xfs_trans_trace_reservations(struct xfs_mount * mp)35 xfs_trans_trace_reservations(
36 struct xfs_mount *mp)
37 {
38 struct xfs_trans_res *res;
39 struct xfs_trans_res *end_res;
40 int i;
41
42 res = (struct xfs_trans_res *)M_RES(mp);
43 end_res = (struct xfs_trans_res *)(M_RES(mp) + 1);
44 for (i = 0; res < end_res; i++, res++)
45 trace_xfs_trans_resv_calc(mp, i, res);
46 }
47 #else
48 # define xfs_trans_trace_reservations(mp)
49 #endif
50
51 /*
52 * Initialize the precomputed transaction reservation values
53 * in the mount structure.
54 */
55 void
xfs_trans_init(struct xfs_mount * mp)56 xfs_trans_init(
57 struct xfs_mount *mp)
58 {
59 xfs_trans_resv_calc(mp, M_RES(mp));
60 xfs_trans_trace_reservations(mp);
61 }
62
63 /*
64 * Free the transaction structure. If there is more clean up
65 * to do when the structure is freed, add it here.
66 */
67 STATIC void
xfs_trans_free(struct xfs_trans * tp)68 xfs_trans_free(
69 struct xfs_trans *tp)
70 {
71 xfs_extent_busy_sort(&tp->t_busy);
72 xfs_extent_busy_clear(&tp->t_busy, false);
73
74 trace_xfs_trans_free(tp, _RET_IP_);
75 xfs_trans_clear_context(tp);
76 if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT))
77 sb_end_intwrite(tp->t_mountp->m_super);
78 xfs_trans_free_dqinfo(tp);
79 kmem_cache_free(xfs_trans_cache, tp);
80 }
81
82 /*
83 * This is called to create a new transaction which will share the
84 * permanent log reservation of the given transaction. The remaining
85 * unused block and rt extent reservations are also inherited. This
86 * implies that the original transaction is no longer allowed to allocate
87 * blocks. Locks and log items, however, are no inherited. They must
88 * be added to the new transaction explicitly.
89 */
90 STATIC struct xfs_trans *
xfs_trans_dup(struct xfs_trans * tp)91 xfs_trans_dup(
92 struct xfs_trans *tp)
93 {
94 struct xfs_trans *ntp;
95
96 trace_xfs_trans_dup(tp, _RET_IP_);
97
98 ntp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
99
100 /*
101 * Initialize the new transaction structure.
102 */
103 ntp->t_mountp = tp->t_mountp;
104 INIT_LIST_HEAD(&ntp->t_items);
105 INIT_LIST_HEAD(&ntp->t_busy);
106 INIT_LIST_HEAD(&ntp->t_dfops);
107 ntp->t_highest_agno = NULLAGNUMBER;
108
109 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
110 ASSERT(tp->t_ticket != NULL);
111
112 ntp->t_flags = XFS_TRANS_PERM_LOG_RES |
113 (tp->t_flags & XFS_TRANS_RESERVE) |
114 (tp->t_flags & XFS_TRANS_NO_WRITECOUNT) |
115 (tp->t_flags & XFS_TRANS_RES_FDBLKS);
116 /* We gave our writer reference to the new transaction */
117 tp->t_flags |= XFS_TRANS_NO_WRITECOUNT;
118 ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
119
120 ASSERT(tp->t_blk_res >= tp->t_blk_res_used);
121 ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
122 tp->t_blk_res = tp->t_blk_res_used;
123
124 ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
125 tp->t_rtx_res = tp->t_rtx_res_used;
126
127 xfs_trans_switch_context(tp, ntp);
128
129 /* move deferred ops over to the new tp */
130 xfs_defer_move(ntp, tp);
131
132 xfs_trans_dup_dqinfo(tp, ntp);
133 return ntp;
134 }
135
136 /*
137 * This is called to reserve free disk blocks and log space for the
138 * given transaction. This must be done before allocating any resources
139 * within the transaction.
140 *
141 * This will return ENOSPC if there are not enough blocks available.
142 * It will sleep waiting for available log space.
143 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
144 * is used by long running transactions. If any one of the reservations
145 * fails then they will all be backed out.
146 *
147 * This does not do quota reservations. That typically is done by the
148 * caller afterwards.
149 */
150 static int
xfs_trans_reserve(struct xfs_trans * tp,struct xfs_trans_res * resp,uint blocks,uint rtextents)151 xfs_trans_reserve(
152 struct xfs_trans *tp,
153 struct xfs_trans_res *resp,
154 uint blocks,
155 uint rtextents)
156 {
157 struct xfs_mount *mp = tp->t_mountp;
158 int error = 0;
159 bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
160
161 /*
162 * Attempt to reserve the needed disk blocks by decrementing
163 * the number needed from the number available. This will
164 * fail if the count would go below zero.
165 */
166 if (blocks > 0) {
167 error = xfs_dec_fdblocks(mp, blocks, rsvd);
168 if (error != 0)
169 return -ENOSPC;
170 tp->t_blk_res += blocks;
171 }
172
173 /*
174 * Reserve the log space needed for this transaction.
175 */
176 if (resp->tr_logres > 0) {
177 bool permanent = false;
178
179 ASSERT(tp->t_log_res == 0 ||
180 tp->t_log_res == resp->tr_logres);
181 ASSERT(tp->t_log_count == 0 ||
182 tp->t_log_count == resp->tr_logcount);
183
184 if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES) {
185 tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
186 permanent = true;
187 } else {
188 ASSERT(tp->t_ticket == NULL);
189 ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
190 }
191
192 if (tp->t_ticket != NULL) {
193 ASSERT(resp->tr_logflags & XFS_TRANS_PERM_LOG_RES);
194 error = xfs_log_regrant(mp, tp->t_ticket);
195 } else {
196 error = xfs_log_reserve(mp, resp->tr_logres,
197 resp->tr_logcount,
198 &tp->t_ticket, permanent);
199 }
200
201 if (error)
202 goto undo_blocks;
203
204 tp->t_log_res = resp->tr_logres;
205 tp->t_log_count = resp->tr_logcount;
206 }
207
208 /*
209 * Attempt to reserve the needed realtime extents by decrementing
210 * the number needed from the number available. This will
211 * fail if the count would go below zero.
212 */
213 if (rtextents > 0) {
214 error = xfs_dec_frextents(mp, rtextents);
215 if (error) {
216 error = -ENOSPC;
217 goto undo_log;
218 }
219 tp->t_rtx_res += rtextents;
220 }
221
222 return 0;
223
224 /*
225 * Error cases jump to one of these labels to undo any
226 * reservations which have already been performed.
227 */
228 undo_log:
229 if (resp->tr_logres > 0) {
230 xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
231 tp->t_ticket = NULL;
232 tp->t_log_res = 0;
233 tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
234 }
235
236 undo_blocks:
237 if (blocks > 0) {
238 xfs_add_fdblocks(mp, blocks);
239 tp->t_blk_res = 0;
240 }
241 return error;
242 }
243
244 int
xfs_trans_alloc(struct xfs_mount * mp,struct xfs_trans_res * resp,uint blocks,uint rtextents,uint flags,struct xfs_trans ** tpp)245 xfs_trans_alloc(
246 struct xfs_mount *mp,
247 struct xfs_trans_res *resp,
248 uint blocks,
249 uint rtextents,
250 uint flags,
251 struct xfs_trans **tpp)
252 {
253 struct xfs_trans *tp;
254 bool want_retry = true;
255 int error;
256
257 /*
258 * Allocate the handle before we do our freeze accounting and setting up
259 * GFP_NOFS allocation context so that we avoid lockdep false positives
260 * by doing GFP_KERNEL allocations inside sb_start_intwrite().
261 */
262 retry:
263 tp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
264 if (!(flags & XFS_TRANS_NO_WRITECOUNT))
265 sb_start_intwrite(mp->m_super);
266 xfs_trans_set_context(tp);
267
268 /*
269 * Zero-reservation ("empty") transactions can't modify anything, so
270 * they're allowed to run while we're frozen.
271 */
272 WARN_ON(resp->tr_logres > 0 &&
273 mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE);
274 ASSERT(!(flags & XFS_TRANS_RES_FDBLKS) ||
275 xfs_has_lazysbcount(mp));
276
277 tp->t_flags = flags;
278 tp->t_mountp = mp;
279 INIT_LIST_HEAD(&tp->t_items);
280 INIT_LIST_HEAD(&tp->t_busy);
281 INIT_LIST_HEAD(&tp->t_dfops);
282 tp->t_highest_agno = NULLAGNUMBER;
283
284 error = xfs_trans_reserve(tp, resp, blocks, rtextents);
285 if (error == -ENOSPC && want_retry) {
286 xfs_trans_cancel(tp);
287
288 /*
289 * We weren't able to reserve enough space for the transaction.
290 * Flush the other speculative space allocations to free space.
291 * Do not perform a synchronous scan because callers can hold
292 * other locks.
293 */
294 error = xfs_blockgc_flush_all(mp);
295 if (error)
296 return error;
297 want_retry = false;
298 goto retry;
299 }
300 if (error) {
301 xfs_trans_cancel(tp);
302 return error;
303 }
304
305 trace_xfs_trans_alloc(tp, _RET_IP_);
306
307 *tpp = tp;
308 return 0;
309 }
310
311 /*
312 * Create an empty transaction with no reservation. This is a defensive
313 * mechanism for routines that query metadata without actually modifying them --
314 * if the metadata being queried is somehow cross-linked (think a btree block
315 * pointer that points higher in the tree), we risk deadlock. However, blocks
316 * grabbed as part of a transaction can be re-grabbed. The verifiers will
317 * notice the corrupt block and the operation will fail back to userspace
318 * without deadlocking.
319 *
320 * Note the zero-length reservation; this transaction MUST be cancelled without
321 * any dirty data.
322 *
323 * Callers should obtain freeze protection to avoid a conflict with fs freezing
324 * where we can be grabbing buffers at the same time that freeze is trying to
325 * drain the buffer LRU list.
326 */
327 int
xfs_trans_alloc_empty(struct xfs_mount * mp,struct xfs_trans ** tpp)328 xfs_trans_alloc_empty(
329 struct xfs_mount *mp,
330 struct xfs_trans **tpp)
331 {
332 struct xfs_trans_res resv = {0};
333
334 return xfs_trans_alloc(mp, &resv, 0, 0, XFS_TRANS_NO_WRITECOUNT, tpp);
335 }
336
337 /*
338 * Record the indicated change to the given field for application
339 * to the file system's superblock when the transaction commits.
340 * For now, just store the change in the transaction structure.
341 *
342 * Mark the transaction structure to indicate that the superblock
343 * needs to be updated before committing.
344 *
345 * Because we may not be keeping track of allocated/free inodes and
346 * used filesystem blocks in the superblock, we do not mark the
347 * superblock dirty in this transaction if we modify these fields.
348 * We still need to update the transaction deltas so that they get
349 * applied to the incore superblock, but we don't want them to
350 * cause the superblock to get locked and logged if these are the
351 * only fields in the superblock that the transaction modifies.
352 */
353 void
xfs_trans_mod_sb(xfs_trans_t * tp,uint field,int64_t delta)354 xfs_trans_mod_sb(
355 xfs_trans_t *tp,
356 uint field,
357 int64_t delta)
358 {
359 uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
360 xfs_mount_t *mp = tp->t_mountp;
361
362 switch (field) {
363 case XFS_TRANS_SB_ICOUNT:
364 tp->t_icount_delta += delta;
365 if (xfs_has_lazysbcount(mp))
366 flags &= ~XFS_TRANS_SB_DIRTY;
367 break;
368 case XFS_TRANS_SB_IFREE:
369 tp->t_ifree_delta += delta;
370 if (xfs_has_lazysbcount(mp))
371 flags &= ~XFS_TRANS_SB_DIRTY;
372 break;
373 case XFS_TRANS_SB_FDBLOCKS:
374 /*
375 * Track the number of blocks allocated in the transaction.
376 * Make sure it does not exceed the number reserved. If so,
377 * shutdown as this can lead to accounting inconsistency.
378 */
379 if (delta < 0) {
380 tp->t_blk_res_used += (uint)-delta;
381 if (tp->t_blk_res_used > tp->t_blk_res)
382 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
383 } else if (delta > 0 && (tp->t_flags & XFS_TRANS_RES_FDBLKS)) {
384 int64_t blkres_delta;
385
386 /*
387 * Return freed blocks directly to the reservation
388 * instead of the global pool, being careful not to
389 * overflow the trans counter. This is used to preserve
390 * reservation across chains of transaction rolls that
391 * repeatedly free and allocate blocks.
392 */
393 blkres_delta = min_t(int64_t, delta,
394 UINT_MAX - tp->t_blk_res);
395 tp->t_blk_res += blkres_delta;
396 delta -= blkres_delta;
397 }
398 tp->t_fdblocks_delta += delta;
399 if (xfs_has_lazysbcount(mp))
400 flags &= ~XFS_TRANS_SB_DIRTY;
401 break;
402 case XFS_TRANS_SB_RES_FDBLOCKS:
403 /*
404 * The allocation has already been applied to the
405 * in-core superblock's counter. This should only
406 * be applied to the on-disk superblock.
407 */
408 tp->t_res_fdblocks_delta += delta;
409 if (xfs_has_lazysbcount(mp))
410 flags &= ~XFS_TRANS_SB_DIRTY;
411 break;
412 case XFS_TRANS_SB_FREXTENTS:
413 /*
414 * Track the number of blocks allocated in the
415 * transaction. Make sure it does not exceed the
416 * number reserved.
417 */
418 if (delta < 0) {
419 tp->t_rtx_res_used += (uint)-delta;
420 ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
421 }
422 tp->t_frextents_delta += delta;
423 if (xfs_has_rtgroups(mp))
424 flags &= ~XFS_TRANS_SB_DIRTY;
425 break;
426 case XFS_TRANS_SB_RES_FREXTENTS:
427 /*
428 * The allocation has already been applied to the
429 * in-core superblock's counter. This should only
430 * be applied to the on-disk superblock.
431 */
432 ASSERT(delta < 0);
433 tp->t_res_frextents_delta += delta;
434 if (xfs_has_rtgroups(mp))
435 flags &= ~XFS_TRANS_SB_DIRTY;
436 break;
437 case XFS_TRANS_SB_DBLOCKS:
438 tp->t_dblocks_delta += delta;
439 break;
440 case XFS_TRANS_SB_AGCOUNT:
441 ASSERT(delta > 0);
442 tp->t_agcount_delta += delta;
443 break;
444 case XFS_TRANS_SB_IMAXPCT:
445 tp->t_imaxpct_delta += delta;
446 break;
447 case XFS_TRANS_SB_REXTSIZE:
448 tp->t_rextsize_delta += delta;
449 break;
450 case XFS_TRANS_SB_RBMBLOCKS:
451 tp->t_rbmblocks_delta += delta;
452 break;
453 case XFS_TRANS_SB_RBLOCKS:
454 tp->t_rblocks_delta += delta;
455 break;
456 case XFS_TRANS_SB_REXTENTS:
457 tp->t_rextents_delta += delta;
458 break;
459 case XFS_TRANS_SB_REXTSLOG:
460 tp->t_rextslog_delta += delta;
461 break;
462 case XFS_TRANS_SB_RGCOUNT:
463 ASSERT(delta > 0);
464 tp->t_rgcount_delta += delta;
465 break;
466 default:
467 ASSERT(0);
468 return;
469 }
470
471 tp->t_flags |= flags;
472 }
473
474 /*
475 * xfs_trans_apply_sb_deltas() is called from the commit code
476 * to bring the superblock buffer into the current transaction
477 * and modify it as requested by earlier calls to xfs_trans_mod_sb().
478 *
479 * For now we just look at each field allowed to change and change
480 * it if necessary.
481 */
482 STATIC void
xfs_trans_apply_sb_deltas(xfs_trans_t * tp)483 xfs_trans_apply_sb_deltas(
484 xfs_trans_t *tp)
485 {
486 struct xfs_dsb *sbp;
487 struct xfs_buf *bp;
488 int whole = 0;
489
490 bp = xfs_trans_getsb(tp);
491 sbp = bp->b_addr;
492
493 /*
494 * Only update the superblock counters if we are logging them
495 */
496 if (!xfs_has_lazysbcount((tp->t_mountp))) {
497 if (tp->t_icount_delta)
498 be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
499 if (tp->t_ifree_delta)
500 be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
501 if (tp->t_fdblocks_delta)
502 be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
503 if (tp->t_res_fdblocks_delta)
504 be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
505 }
506
507 /*
508 * sb_frextents was added to the lazy sb counters when the rt groups
509 * feature was introduced. This is possible because we know that all
510 * kernels supporting rtgroups will also recompute frextents from the
511 * realtime bitmap.
512 *
513 * For older file systems, updating frextents requires careful handling
514 * because we cannot rely on log recovery in older kernels to recompute
515 * the value from the rtbitmap. This means that the ondisk frextents
516 * must be consistent with the rtbitmap.
517 *
518 * Therefore, log the frextents change to the ondisk superblock and
519 * update the incore superblock so that future calls to xfs_log_sb
520 * write the correct value ondisk.
521 */
522 if ((tp->t_frextents_delta || tp->t_res_frextents_delta) &&
523 !xfs_has_rtgroups(tp->t_mountp)) {
524 struct xfs_mount *mp = tp->t_mountp;
525 int64_t rtxdelta;
526
527 rtxdelta = tp->t_frextents_delta + tp->t_res_frextents_delta;
528
529 spin_lock(&mp->m_sb_lock);
530 be64_add_cpu(&sbp->sb_frextents, rtxdelta);
531 mp->m_sb.sb_frextents += rtxdelta;
532 spin_unlock(&mp->m_sb_lock);
533 }
534
535 if (tp->t_dblocks_delta) {
536 be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
537 whole = 1;
538 }
539 if (tp->t_agcount_delta) {
540 be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
541 whole = 1;
542 }
543 if (tp->t_imaxpct_delta) {
544 sbp->sb_imax_pct += tp->t_imaxpct_delta;
545 whole = 1;
546 }
547 if (tp->t_rextsize_delta) {
548 be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
549
550 /*
551 * Because the ondisk sb records rtgroup size in units of rt
552 * extents, any time we update the rt extent size we have to
553 * recompute the ondisk rtgroup block log. The incore values
554 * will be recomputed in xfs_trans_unreserve_and_mod_sb.
555 */
556 if (xfs_has_rtgroups(tp->t_mountp)) {
557 sbp->sb_rgblklog = xfs_compute_rgblklog(
558 be32_to_cpu(sbp->sb_rgextents),
559 be32_to_cpu(sbp->sb_rextsize));
560 }
561 whole = 1;
562 }
563 if (tp->t_rbmblocks_delta) {
564 be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
565 whole = 1;
566 }
567 if (tp->t_rblocks_delta) {
568 be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
569 whole = 1;
570 }
571 if (tp->t_rextents_delta) {
572 be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
573 whole = 1;
574 }
575 if (tp->t_rextslog_delta) {
576 sbp->sb_rextslog += tp->t_rextslog_delta;
577 whole = 1;
578 }
579 if (tp->t_rgcount_delta) {
580 be32_add_cpu(&sbp->sb_rgcount, tp->t_rgcount_delta);
581 whole = 1;
582 }
583
584 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
585 if (whole)
586 /*
587 * Log the whole thing, the fields are noncontiguous.
588 */
589 xfs_trans_log_buf(tp, bp, 0, sizeof(struct xfs_dsb) - 1);
590 else
591 /*
592 * Since all the modifiable fields are contiguous, we
593 * can get away with this.
594 */
595 xfs_trans_log_buf(tp, bp, offsetof(struct xfs_dsb, sb_icount),
596 offsetof(struct xfs_dsb, sb_frextents) +
597 sizeof(sbp->sb_frextents) - 1);
598 }
599
600 /*
601 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and
602 * apply superblock counter changes to the in-core superblock. The
603 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
604 * applied to the in-core superblock. The idea is that that has already been
605 * done.
606 *
607 * If we are not logging superblock counters, then the inode allocated/free and
608 * used block counts are not updated in the on disk superblock. In this case,
609 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
610 * still need to update the incore superblock with the changes.
611 *
612 * Deltas for the inode count are +/-64, hence we use a large batch size of 128
613 * so we don't need to take the counter lock on every update.
614 */
615 #define XFS_ICOUNT_BATCH 128
616
617 void
xfs_trans_unreserve_and_mod_sb(struct xfs_trans * tp)618 xfs_trans_unreserve_and_mod_sb(
619 struct xfs_trans *tp)
620 {
621 struct xfs_mount *mp = tp->t_mountp;
622 int64_t blkdelta = tp->t_blk_res;
623 int64_t rtxdelta = tp->t_rtx_res;
624 int64_t idelta = 0;
625 int64_t ifreedelta = 0;
626
627 /*
628 * Calculate the deltas.
629 *
630 * t_fdblocks_delta and t_frextents_delta can be positive or negative:
631 *
632 * - positive values indicate blocks freed in the transaction.
633 * - negative values indicate blocks allocated in the transaction
634 *
635 * Negative values can only happen if the transaction has a block
636 * reservation that covers the allocated block. The end result is
637 * that the calculated delta values must always be positive and we
638 * can only put back previous allocated or reserved blocks here.
639 */
640 ASSERT(tp->t_blk_res || tp->t_fdblocks_delta >= 0);
641 if (xfs_has_lazysbcount(mp) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
642 blkdelta += tp->t_fdblocks_delta;
643 ASSERT(blkdelta >= 0);
644 }
645
646 ASSERT(tp->t_rtx_res || tp->t_frextents_delta >= 0);
647 if (xfs_has_rtgroups(mp) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
648 rtxdelta += tp->t_frextents_delta;
649 ASSERT(rtxdelta >= 0);
650 }
651
652 if (xfs_has_lazysbcount(mp) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
653 idelta = tp->t_icount_delta;
654 ifreedelta = tp->t_ifree_delta;
655 }
656
657 /* apply the per-cpu counters */
658 if (blkdelta)
659 xfs_add_fdblocks(mp, blkdelta);
660
661 if (idelta)
662 percpu_counter_add_batch(&mp->m_icount, idelta,
663 XFS_ICOUNT_BATCH);
664
665 if (ifreedelta)
666 percpu_counter_add(&mp->m_ifree, ifreedelta);
667
668 if (rtxdelta)
669 xfs_add_frextents(mp, rtxdelta);
670
671 if (!(tp->t_flags & XFS_TRANS_SB_DIRTY))
672 return;
673
674 /* apply remaining deltas */
675 spin_lock(&mp->m_sb_lock);
676 mp->m_sb.sb_fdblocks += tp->t_fdblocks_delta + tp->t_res_fdblocks_delta;
677 mp->m_sb.sb_icount += idelta;
678 mp->m_sb.sb_ifree += ifreedelta;
679 /*
680 * Do not touch sb_frextents here because it is handled in
681 * xfs_trans_apply_sb_deltas for file systems where it isn't a lazy
682 * counter anyway.
683 */
684 mp->m_sb.sb_dblocks += tp->t_dblocks_delta;
685 mp->m_sb.sb_agcount += tp->t_agcount_delta;
686 mp->m_sb.sb_imax_pct += tp->t_imaxpct_delta;
687 if (tp->t_rextsize_delta)
688 xfs_mount_sb_set_rextsize(mp, &mp->m_sb,
689 mp->m_sb.sb_rextsize + tp->t_rextsize_delta);
690 mp->m_sb.sb_rbmblocks += tp->t_rbmblocks_delta;
691 mp->m_sb.sb_rblocks += tp->t_rblocks_delta;
692 mp->m_sb.sb_rextents += tp->t_rextents_delta;
693 mp->m_sb.sb_rextslog += tp->t_rextslog_delta;
694 mp->m_sb.sb_rgcount += tp->t_rgcount_delta;
695 spin_unlock(&mp->m_sb_lock);
696
697 /*
698 * Debug checks outside of the spinlock so they don't lock up the
699 * machine if they fail.
700 */
701 ASSERT(mp->m_sb.sb_imax_pct >= 0);
702 ASSERT(mp->m_sb.sb_rextslog >= 0);
703 }
704
705 /* Add the given log item to the transaction's list of log items. */
706 void
xfs_trans_add_item(struct xfs_trans * tp,struct xfs_log_item * lip)707 xfs_trans_add_item(
708 struct xfs_trans *tp,
709 struct xfs_log_item *lip)
710 {
711 ASSERT(lip->li_log == tp->t_mountp->m_log);
712 ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
713 ASSERT(list_empty(&lip->li_trans));
714 ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags));
715
716 list_add_tail(&lip->li_trans, &tp->t_items);
717 trace_xfs_trans_add_item(tp, _RET_IP_);
718 }
719
720 /*
721 * Unlink the log item from the transaction. the log item is no longer
722 * considered dirty in this transaction, as the linked transaction has
723 * finished, either by abort or commit completion.
724 */
725 void
xfs_trans_del_item(struct xfs_log_item * lip)726 xfs_trans_del_item(
727 struct xfs_log_item *lip)
728 {
729 clear_bit(XFS_LI_DIRTY, &lip->li_flags);
730 list_del_init(&lip->li_trans);
731 }
732
733 /* Detach and unlock all of the items in a transaction */
734 static void
xfs_trans_free_items(struct xfs_trans * tp,bool abort)735 xfs_trans_free_items(
736 struct xfs_trans *tp,
737 bool abort)
738 {
739 struct xfs_log_item *lip, *next;
740
741 trace_xfs_trans_free_items(tp, _RET_IP_);
742
743 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
744 xfs_trans_del_item(lip);
745 if (abort) {
746 trace_xfs_trans_free_abort(lip);
747 set_bit(XFS_LI_ABORTED, &lip->li_flags);
748 }
749 if (lip->li_ops->iop_release)
750 lip->li_ops->iop_release(lip);
751 }
752 }
753
754 /*
755 * Sort transaction items prior to running precommit operations. This will
756 * attempt to order the items such that they will always be locked in the same
757 * order. Items that have no sort function are moved to the end of the list
758 * and so are locked last.
759 *
760 * This may need refinement as different types of objects add sort functions.
761 *
762 * Function is more complex than it needs to be because we are comparing 64 bit
763 * values and the function only returns 32 bit values.
764 */
765 static int
xfs_trans_precommit_sort(void * unused_arg,const struct list_head * a,const struct list_head * b)766 xfs_trans_precommit_sort(
767 void *unused_arg,
768 const struct list_head *a,
769 const struct list_head *b)
770 {
771 struct xfs_log_item *lia = container_of(a,
772 struct xfs_log_item, li_trans);
773 struct xfs_log_item *lib = container_of(b,
774 struct xfs_log_item, li_trans);
775 int64_t diff;
776
777 /*
778 * If both items are non-sortable, leave them alone. If only one is
779 * sortable, move the non-sortable item towards the end of the list.
780 */
781 if (!lia->li_ops->iop_sort && !lib->li_ops->iop_sort)
782 return 0;
783 if (!lia->li_ops->iop_sort)
784 return 1;
785 if (!lib->li_ops->iop_sort)
786 return -1;
787
788 diff = lia->li_ops->iop_sort(lia) - lib->li_ops->iop_sort(lib);
789 if (diff < 0)
790 return -1;
791 if (diff > 0)
792 return 1;
793 return 0;
794 }
795
796 /*
797 * Run transaction precommit functions.
798 *
799 * If there is an error in any of the callouts, then stop immediately and
800 * trigger a shutdown to abort the transaction. There is no recovery possible
801 * from errors at this point as the transaction is dirty....
802 */
803 static int
xfs_trans_run_precommits(struct xfs_trans * tp)804 xfs_trans_run_precommits(
805 struct xfs_trans *tp)
806 {
807 struct xfs_mount *mp = tp->t_mountp;
808 struct xfs_log_item *lip, *n;
809 int error = 0;
810
811 /*
812 * Sort the item list to avoid ABBA deadlocks with other transactions
813 * running precommit operations that lock multiple shared items such as
814 * inode cluster buffers.
815 */
816 list_sort(NULL, &tp->t_items, xfs_trans_precommit_sort);
817
818 /*
819 * Precommit operations can remove the log item from the transaction
820 * if the log item exists purely to delay modifications until they
821 * can be ordered against other operations. Hence we have to use
822 * list_for_each_entry_safe() here.
823 */
824 list_for_each_entry_safe(lip, n, &tp->t_items, li_trans) {
825 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
826 continue;
827 if (lip->li_ops->iop_precommit) {
828 error = lip->li_ops->iop_precommit(tp, lip);
829 if (error)
830 break;
831 }
832 }
833 if (error)
834 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
835 return error;
836 }
837
838 /*
839 * Commit the given transaction to the log.
840 *
841 * XFS disk error handling mechanism is not based on a typical
842 * transaction abort mechanism. Logically after the filesystem
843 * gets marked 'SHUTDOWN', we can't let any new transactions
844 * be durable - ie. committed to disk - because some metadata might
845 * be inconsistent. In such cases, this returns an error, and the
846 * caller may assume that all locked objects joined to the transaction
847 * have already been unlocked as if the commit had succeeded.
848 * Do not reference the transaction structure after this call.
849 */
850 static int
__xfs_trans_commit(struct xfs_trans * tp,bool regrant)851 __xfs_trans_commit(
852 struct xfs_trans *tp,
853 bool regrant)
854 {
855 struct xfs_mount *mp = tp->t_mountp;
856 struct xlog *log = mp->m_log;
857 xfs_csn_t commit_seq = 0;
858 int error = 0;
859 int sync = tp->t_flags & XFS_TRANS_SYNC;
860
861 trace_xfs_trans_commit(tp, _RET_IP_);
862
863 /*
864 * Commit per-transaction changes that are not already tracked through
865 * log items. This can add dirty log items to the transaction.
866 */
867 if (tp->t_flags & XFS_TRANS_SB_DIRTY)
868 xfs_trans_apply_sb_deltas(tp);
869 xfs_trans_apply_dquot_deltas(tp);
870
871 error = xfs_trans_run_precommits(tp);
872 if (error)
873 goto out_unreserve;
874
875 /*
876 * If there is nothing to be logged by the transaction,
877 * then unlock all of the items associated with the
878 * transaction and free the transaction structure.
879 * Also make sure to return any reserved blocks to
880 * the free pool.
881 */
882 if (!(tp->t_flags & XFS_TRANS_DIRTY))
883 goto out_unreserve;
884
885 /*
886 * We must check against log shutdown here because we cannot abort log
887 * items and leave them dirty, inconsistent and unpinned in memory while
888 * the log is active. This leaves them open to being written back to
889 * disk, and that will lead to on-disk corruption.
890 */
891 if (xlog_is_shutdown(log)) {
892 error = -EIO;
893 goto out_unreserve;
894 }
895
896 ASSERT(tp->t_ticket != NULL);
897
898 xlog_cil_commit(log, tp, &commit_seq, regrant);
899
900 xfs_trans_free(tp);
901
902 /*
903 * If the transaction needs to be synchronous, then force the
904 * log out now and wait for it.
905 */
906 if (sync) {
907 error = xfs_log_force_seq(mp, commit_seq, XFS_LOG_SYNC, NULL);
908 XFS_STATS_INC(mp, xs_trans_sync);
909 } else {
910 XFS_STATS_INC(mp, xs_trans_async);
911 }
912
913 return error;
914
915 out_unreserve:
916 xfs_trans_unreserve_and_mod_sb(tp);
917
918 /*
919 * It is indeed possible for the transaction to be not dirty but
920 * the dqinfo portion to be. All that means is that we have some
921 * (non-persistent) quota reservations that need to be unreserved.
922 */
923 xfs_trans_unreserve_and_mod_dquots(tp, true);
924 if (tp->t_ticket) {
925 if (regrant && !xlog_is_shutdown(log))
926 xfs_log_ticket_regrant(log, tp->t_ticket);
927 else
928 xfs_log_ticket_ungrant(log, tp->t_ticket);
929 tp->t_ticket = NULL;
930 }
931 xfs_trans_free_items(tp, !!error);
932 xfs_trans_free(tp);
933
934 XFS_STATS_INC(mp, xs_trans_empty);
935 return error;
936 }
937
938 int
xfs_trans_commit(struct xfs_trans * tp)939 xfs_trans_commit(
940 struct xfs_trans *tp)
941 {
942 /*
943 * Finish deferred items on final commit. Only permanent transactions
944 * should ever have deferred ops.
945 */
946 WARN_ON_ONCE(!list_empty(&tp->t_dfops) &&
947 !(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
948 if (tp->t_flags & XFS_TRANS_PERM_LOG_RES) {
949 int error = xfs_defer_finish_noroll(&tp);
950 if (error) {
951 xfs_trans_cancel(tp);
952 return error;
953 }
954 }
955
956 return __xfs_trans_commit(tp, false);
957 }
958
959 /*
960 * Unlock all of the transaction's items and free the transaction. If the
961 * transaction is dirty, we must shut down the filesystem because there is no
962 * way to restore them to their previous state.
963 *
964 * If the transaction has made a log reservation, make sure to release it as
965 * well.
966 *
967 * This is a high level function (equivalent to xfs_trans_commit()) and so can
968 * be called after the transaction has effectively been aborted due to the mount
969 * being shut down. However, if the mount has not been shut down and the
970 * transaction is dirty we will shut the mount down and, in doing so, that
971 * guarantees that the log is shut down, too. Hence we don't need to be as
972 * careful with shutdown state and dirty items here as we need to be in
973 * xfs_trans_commit().
974 */
975 void
xfs_trans_cancel(struct xfs_trans * tp)976 xfs_trans_cancel(
977 struct xfs_trans *tp)
978 {
979 struct xfs_mount *mp = tp->t_mountp;
980 struct xlog *log = mp->m_log;
981 bool dirty = (tp->t_flags & XFS_TRANS_DIRTY);
982
983 trace_xfs_trans_cancel(tp, _RET_IP_);
984
985 /*
986 * It's never valid to cancel a transaction with deferred ops attached,
987 * because the transaction is effectively dirty. Complain about this
988 * loudly before freeing the in-memory defer items and shutting down the
989 * filesystem.
990 */
991 if (!list_empty(&tp->t_dfops)) {
992 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
993 dirty = true;
994 xfs_defer_cancel(tp);
995 }
996
997 /*
998 * See if the caller is relying on us to shut down the filesystem. We
999 * only want an error report if there isn't already a shutdown in
1000 * progress, so we only need to check against the mount shutdown state
1001 * here.
1002 */
1003 if (dirty && !xfs_is_shutdown(mp)) {
1004 XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
1005 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1006 }
1007 #ifdef DEBUG
1008 /* Log items need to be consistent until the log is shut down. */
1009 if (!dirty && !xlog_is_shutdown(log)) {
1010 struct xfs_log_item *lip;
1011
1012 list_for_each_entry(lip, &tp->t_items, li_trans)
1013 ASSERT(!xlog_item_is_intent_done(lip));
1014 }
1015 #endif
1016 xfs_trans_unreserve_and_mod_sb(tp);
1017 xfs_trans_unreserve_and_mod_dquots(tp, false);
1018
1019 if (tp->t_ticket) {
1020 xfs_log_ticket_ungrant(log, tp->t_ticket);
1021 tp->t_ticket = NULL;
1022 }
1023
1024 xfs_trans_free_items(tp, dirty);
1025 xfs_trans_free(tp);
1026 }
1027
1028 /*
1029 * Roll from one trans in the sequence of PERMANENT transactions to
1030 * the next: permanent transactions are only flushed out when
1031 * committed with xfs_trans_commit(), but we still want as soon
1032 * as possible to let chunks of it go to the log. So we commit the
1033 * chunk we've been working on and get a new transaction to continue.
1034 */
1035 int
xfs_trans_roll(struct xfs_trans ** tpp)1036 xfs_trans_roll(
1037 struct xfs_trans **tpp)
1038 {
1039 struct xfs_trans *trans = *tpp;
1040 struct xfs_trans_res tres;
1041 int error;
1042
1043 trace_xfs_trans_roll(trans, _RET_IP_);
1044
1045 /*
1046 * Copy the critical parameters from one trans to the next.
1047 */
1048 tres.tr_logres = trans->t_log_res;
1049 tres.tr_logcount = trans->t_log_count;
1050
1051 *tpp = xfs_trans_dup(trans);
1052
1053 /*
1054 * Commit the current transaction.
1055 * If this commit failed, then it'd just unlock those items that
1056 * are not marked ihold. That also means that a filesystem shutdown
1057 * is in progress. The caller takes the responsibility to cancel
1058 * the duplicate transaction that gets returned.
1059 */
1060 error = __xfs_trans_commit(trans, true);
1061 if (error)
1062 return error;
1063
1064 /*
1065 * Reserve space in the log for the next transaction.
1066 * This also pushes items in the "AIL", the list of logged items,
1067 * out to disk if they are taking up space at the tail of the log
1068 * that we want to use. This requires that either nothing be locked
1069 * across this call, or that anything that is locked be logged in
1070 * the prior and the next transactions.
1071 */
1072 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1073 return xfs_trans_reserve(*tpp, &tres, 0, 0);
1074 }
1075
1076 /*
1077 * Allocate an transaction, lock and join the inode to it, and reserve quota.
1078 *
1079 * The caller must ensure that the on-disk dquots attached to this inode have
1080 * already been allocated and initialized. The caller is responsible for
1081 * releasing ILOCK_EXCL if a new transaction is returned.
1082 */
1083 int
xfs_trans_alloc_inode(struct xfs_inode * ip,struct xfs_trans_res * resv,unsigned int dblocks,unsigned int rblocks,bool force,struct xfs_trans ** tpp)1084 xfs_trans_alloc_inode(
1085 struct xfs_inode *ip,
1086 struct xfs_trans_res *resv,
1087 unsigned int dblocks,
1088 unsigned int rblocks,
1089 bool force,
1090 struct xfs_trans **tpp)
1091 {
1092 struct xfs_trans *tp;
1093 struct xfs_mount *mp = ip->i_mount;
1094 bool retried = false;
1095 int error;
1096
1097 retry:
1098 error = xfs_trans_alloc(mp, resv, dblocks,
1099 xfs_extlen_to_rtxlen(mp, rblocks),
1100 force ? XFS_TRANS_RESERVE : 0, &tp);
1101 if (error)
1102 return error;
1103
1104 xfs_ilock(ip, XFS_ILOCK_EXCL);
1105 xfs_trans_ijoin(tp, ip, 0);
1106
1107 error = xfs_qm_dqattach_locked(ip, false);
1108 if (error) {
1109 /* Caller should have allocated the dquots! */
1110 ASSERT(error != -ENOENT);
1111 goto out_cancel;
1112 }
1113
1114 error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, force);
1115 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1116 xfs_trans_cancel(tp);
1117 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1118 xfs_blockgc_free_quota(ip, 0);
1119 retried = true;
1120 goto retry;
1121 }
1122 if (error)
1123 goto out_cancel;
1124
1125 *tpp = tp;
1126 return 0;
1127
1128 out_cancel:
1129 xfs_trans_cancel(tp);
1130 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1131 return error;
1132 }
1133
1134 /*
1135 * Try to reserve more blocks for a transaction.
1136 *
1137 * This is for callers that need to attach resources to a transaction, scan
1138 * those resources to determine the space reservation requirements, and then
1139 * modify the attached resources. In other words, online repair. This can
1140 * fail due to ENOSPC, so the caller must be able to cancel the transaction
1141 * without shutting down the fs.
1142 */
1143 int
xfs_trans_reserve_more(struct xfs_trans * tp,unsigned int blocks,unsigned int rtextents)1144 xfs_trans_reserve_more(
1145 struct xfs_trans *tp,
1146 unsigned int blocks,
1147 unsigned int rtextents)
1148 {
1149 struct xfs_trans_res resv = { };
1150
1151 return xfs_trans_reserve(tp, &resv, blocks, rtextents);
1152 }
1153
1154 /*
1155 * Try to reserve more blocks and file quota for a transaction. Same
1156 * conditions of usage as xfs_trans_reserve_more.
1157 */
1158 int
xfs_trans_reserve_more_inode(struct xfs_trans * tp,struct xfs_inode * ip,unsigned int dblocks,unsigned int rblocks,bool force_quota)1159 xfs_trans_reserve_more_inode(
1160 struct xfs_trans *tp,
1161 struct xfs_inode *ip,
1162 unsigned int dblocks,
1163 unsigned int rblocks,
1164 bool force_quota)
1165 {
1166 struct xfs_trans_res resv = { };
1167 struct xfs_mount *mp = ip->i_mount;
1168 unsigned int rtx = xfs_extlen_to_rtxlen(mp, rblocks);
1169 int error;
1170
1171 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1172
1173 error = xfs_trans_reserve(tp, &resv, dblocks, rtx);
1174 if (error)
1175 return error;
1176
1177 if (!XFS_IS_QUOTA_ON(mp) || xfs_is_quota_inode(&mp->m_sb, ip->i_ino))
1178 return 0;
1179
1180 if (tp->t_flags & XFS_TRANS_RESERVE)
1181 force_quota = true;
1182
1183 error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks,
1184 force_quota);
1185 if (!error)
1186 return 0;
1187
1188 /* Quota failed, give back the new reservation. */
1189 xfs_add_fdblocks(mp, dblocks);
1190 tp->t_blk_res -= dblocks;
1191 xfs_add_frextents(mp, rtx);
1192 tp->t_rtx_res -= rtx;
1193 return error;
1194 }
1195
1196 /*
1197 * Allocate an transaction in preparation for inode creation by reserving quota
1198 * against the given dquots. Callers are not required to hold any inode locks.
1199 */
1200 int
xfs_trans_alloc_icreate(struct xfs_mount * mp,struct xfs_trans_res * resv,struct xfs_dquot * udqp,struct xfs_dquot * gdqp,struct xfs_dquot * pdqp,unsigned int dblocks,struct xfs_trans ** tpp)1201 xfs_trans_alloc_icreate(
1202 struct xfs_mount *mp,
1203 struct xfs_trans_res *resv,
1204 struct xfs_dquot *udqp,
1205 struct xfs_dquot *gdqp,
1206 struct xfs_dquot *pdqp,
1207 unsigned int dblocks,
1208 struct xfs_trans **tpp)
1209 {
1210 struct xfs_trans *tp;
1211 bool retried = false;
1212 int error;
1213
1214 retry:
1215 error = xfs_trans_alloc(mp, resv, dblocks, 0, 0, &tp);
1216 if (error)
1217 return error;
1218
1219 error = xfs_trans_reserve_quota_icreate(tp, udqp, gdqp, pdqp, dblocks);
1220 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1221 xfs_trans_cancel(tp);
1222 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1223 retried = true;
1224 goto retry;
1225 }
1226 if (error) {
1227 xfs_trans_cancel(tp);
1228 return error;
1229 }
1230
1231 *tpp = tp;
1232 return 0;
1233 }
1234
1235 /*
1236 * Allocate an transaction, lock and join the inode to it, and reserve quota
1237 * in preparation for inode attribute changes that include uid, gid, or prid
1238 * changes.
1239 *
1240 * The caller must ensure that the on-disk dquots attached to this inode have
1241 * already been allocated and initialized. The ILOCK will be dropped when the
1242 * transaction is committed or cancelled.
1243 */
1244 int
xfs_trans_alloc_ichange(struct xfs_inode * ip,struct xfs_dquot * new_udqp,struct xfs_dquot * new_gdqp,struct xfs_dquot * new_pdqp,bool force,struct xfs_trans ** tpp)1245 xfs_trans_alloc_ichange(
1246 struct xfs_inode *ip,
1247 struct xfs_dquot *new_udqp,
1248 struct xfs_dquot *new_gdqp,
1249 struct xfs_dquot *new_pdqp,
1250 bool force,
1251 struct xfs_trans **tpp)
1252 {
1253 struct xfs_trans *tp;
1254 struct xfs_mount *mp = ip->i_mount;
1255 struct xfs_dquot *udqp;
1256 struct xfs_dquot *gdqp;
1257 struct xfs_dquot *pdqp;
1258 bool retried = false;
1259 int error;
1260
1261 retry:
1262 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1263 if (error)
1264 return error;
1265
1266 xfs_ilock(ip, XFS_ILOCK_EXCL);
1267 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1268
1269 if (xfs_is_metadir_inode(ip))
1270 goto out;
1271
1272 error = xfs_qm_dqattach_locked(ip, false);
1273 if (error) {
1274 /* Caller should have allocated the dquots! */
1275 ASSERT(error != -ENOENT);
1276 goto out_cancel;
1277 }
1278
1279 /*
1280 * For each quota type, skip quota reservations if the inode's dquots
1281 * now match the ones that came from the caller, or the caller didn't
1282 * pass one in. The inode's dquots can change if we drop the ILOCK to
1283 * perform a blockgc scan, so we must preserve the caller's arguments.
1284 */
1285 udqp = (new_udqp != ip->i_udquot) ? new_udqp : NULL;
1286 gdqp = (new_gdqp != ip->i_gdquot) ? new_gdqp : NULL;
1287 pdqp = (new_pdqp != ip->i_pdquot) ? new_pdqp : NULL;
1288 if (udqp || gdqp || pdqp) {
1289 xfs_filblks_t dblocks, rblocks;
1290 unsigned int qflags = XFS_QMOPT_RES_REGBLKS;
1291 bool isrt = XFS_IS_REALTIME_INODE(ip);
1292
1293 if (force)
1294 qflags |= XFS_QMOPT_FORCE_RES;
1295
1296 if (isrt) {
1297 error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1298 if (error)
1299 goto out_cancel;
1300 }
1301
1302 xfs_inode_count_blocks(tp, ip, &dblocks, &rblocks);
1303
1304 if (isrt)
1305 rblocks += ip->i_delayed_blks;
1306 else
1307 dblocks += ip->i_delayed_blks;
1308
1309 /*
1310 * Reserve enough quota to handle blocks on disk and reserved
1311 * for a delayed allocation. We'll actually transfer the
1312 * delalloc reservation between dquots at chown time, even
1313 * though that part is only semi-transactional.
1314 */
1315 error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp,
1316 pdqp, dblocks, 1, qflags);
1317 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1318 xfs_trans_cancel(tp);
1319 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1320 retried = true;
1321 goto retry;
1322 }
1323 if (error)
1324 goto out_cancel;
1325
1326 /* Do the same for realtime. */
1327 qflags = XFS_QMOPT_RES_RTBLKS | (qflags & XFS_QMOPT_FORCE_RES);
1328 error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp,
1329 pdqp, rblocks, 0, qflags);
1330 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1331 xfs_trans_cancel(tp);
1332 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1333 retried = true;
1334 goto retry;
1335 }
1336 if (error)
1337 goto out_cancel;
1338 }
1339
1340 out:
1341 *tpp = tp;
1342 return 0;
1343
1344 out_cancel:
1345 xfs_trans_cancel(tp);
1346 return error;
1347 }
1348
1349 /*
1350 * Allocate an transaction, lock and join the directory and child inodes to it,
1351 * and reserve quota for a directory update. If there isn't sufficient space,
1352 * @dblocks will be set to zero for a reservationless directory update and
1353 * @nospace_error will be set to a negative errno describing the space
1354 * constraint we hit.
1355 *
1356 * The caller must ensure that the on-disk dquots attached to this inode have
1357 * already been allocated and initialized. The ILOCKs will be dropped when the
1358 * transaction is committed or cancelled.
1359 *
1360 * Caller is responsible for unlocking the inodes manually upon return
1361 */
1362 int
xfs_trans_alloc_dir(struct xfs_inode * dp,struct xfs_trans_res * resv,struct xfs_inode * ip,unsigned int * dblocks,struct xfs_trans ** tpp,int * nospace_error)1363 xfs_trans_alloc_dir(
1364 struct xfs_inode *dp,
1365 struct xfs_trans_res *resv,
1366 struct xfs_inode *ip,
1367 unsigned int *dblocks,
1368 struct xfs_trans **tpp,
1369 int *nospace_error)
1370 {
1371 struct xfs_trans *tp;
1372 struct xfs_mount *mp = ip->i_mount;
1373 unsigned int resblks;
1374 bool retried = false;
1375 int error;
1376
1377 retry:
1378 *nospace_error = 0;
1379 resblks = *dblocks;
1380 error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1381 if (error == -ENOSPC) {
1382 *nospace_error = error;
1383 resblks = 0;
1384 error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1385 }
1386 if (error)
1387 return error;
1388
1389 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
1390
1391 xfs_trans_ijoin(tp, dp, 0);
1392 xfs_trans_ijoin(tp, ip, 0);
1393
1394 error = xfs_qm_dqattach_locked(dp, false);
1395 if (error) {
1396 /* Caller should have allocated the dquots! */
1397 ASSERT(error != -ENOENT);
1398 goto out_cancel;
1399 }
1400
1401 error = xfs_qm_dqattach_locked(ip, false);
1402 if (error) {
1403 /* Caller should have allocated the dquots! */
1404 ASSERT(error != -ENOENT);
1405 goto out_cancel;
1406 }
1407
1408 if (resblks == 0)
1409 goto done;
1410
1411 error = xfs_trans_reserve_quota_nblks(tp, dp, resblks, 0, false);
1412 if (error == -EDQUOT || error == -ENOSPC) {
1413 if (!retried) {
1414 xfs_trans_cancel(tp);
1415 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1416 if (dp != ip)
1417 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1418 xfs_blockgc_free_quota(dp, 0);
1419 retried = true;
1420 goto retry;
1421 }
1422
1423 *nospace_error = error;
1424 resblks = 0;
1425 error = 0;
1426 }
1427 if (error)
1428 goto out_cancel;
1429
1430 done:
1431 *tpp = tp;
1432 *dblocks = resblks;
1433 return 0;
1434
1435 out_cancel:
1436 xfs_trans_cancel(tp);
1437 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1438 if (dp != ip)
1439 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1440 return error;
1441 }
1442