1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * XArray implementation 4 * Copyright (c) 2017-2018 Microsoft Corporation 5 * Copyright (c) 2018-2020 Oracle 6 * Author: Matthew Wilcox <willy@infradead.org> 7 */ 8 9 #include <linux/bitmap.h> 10 #include <linux/export.h> 11 #include <linux/list.h> 12 #include <linux/slab.h> 13 #include <linux/xarray.h> 14 15 #include "radix-tree.h" 16 17 /* 18 * Coding conventions in this file: 19 * 20 * @xa is used to refer to the entire xarray. 21 * @xas is the 'xarray operation state'. It may be either a pointer to 22 * an xa_state, or an xa_state stored on the stack. This is an unfortunate 23 * ambiguity. 24 * @index is the index of the entry being operated on 25 * @mark is an xa_mark_t; a small number indicating one of the mark bits. 26 * @node refers to an xa_node; usually the primary one being operated on by 27 * this function. 28 * @offset is the index into the slots array inside an xa_node. 29 * @parent refers to the @xa_node closer to the head than @node. 30 * @entry refers to something stored in a slot in the xarray 31 */ 32 33 static inline unsigned int xa_lock_type(const struct xarray *xa) 34 { 35 return (__force unsigned int)xa->xa_flags & 3; 36 } 37 38 static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type) 39 { 40 if (lock_type == XA_LOCK_IRQ) 41 xas_lock_irq(xas); 42 else if (lock_type == XA_LOCK_BH) 43 xas_lock_bh(xas); 44 else 45 xas_lock(xas); 46 } 47 48 static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type) 49 { 50 if (lock_type == XA_LOCK_IRQ) 51 xas_unlock_irq(xas); 52 else if (lock_type == XA_LOCK_BH) 53 xas_unlock_bh(xas); 54 else 55 xas_unlock(xas); 56 } 57 58 static inline bool xa_track_free(const struct xarray *xa) 59 { 60 return xa->xa_flags & XA_FLAGS_TRACK_FREE; 61 } 62 63 static inline bool xa_zero_busy(const struct xarray *xa) 64 { 65 return xa->xa_flags & XA_FLAGS_ZERO_BUSY; 66 } 67 68 static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark) 69 { 70 if (!(xa->xa_flags & XA_FLAGS_MARK(mark))) 71 xa->xa_flags |= XA_FLAGS_MARK(mark); 72 } 73 74 static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark) 75 { 76 if (xa->xa_flags & XA_FLAGS_MARK(mark)) 77 xa->xa_flags &= ~(XA_FLAGS_MARK(mark)); 78 } 79 80 static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark) 81 { 82 return node->marks[(__force unsigned)mark]; 83 } 84 85 static inline bool node_get_mark(struct xa_node *node, 86 unsigned int offset, xa_mark_t mark) 87 { 88 return test_bit(offset, node_marks(node, mark)); 89 } 90 91 /* returns true if the bit was set */ 92 static inline bool node_set_mark(struct xa_node *node, unsigned int offset, 93 xa_mark_t mark) 94 { 95 return __test_and_set_bit(offset, node_marks(node, mark)); 96 } 97 98 /* returns true if the bit was set */ 99 static inline bool node_clear_mark(struct xa_node *node, unsigned int offset, 100 xa_mark_t mark) 101 { 102 return __test_and_clear_bit(offset, node_marks(node, mark)); 103 } 104 105 static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark) 106 { 107 return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE); 108 } 109 110 static inline void node_mark_all(struct xa_node *node, xa_mark_t mark) 111 { 112 bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE); 113 } 114 115 #define mark_inc(mark) do { \ 116 mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \ 117 } while (0) 118 119 /* 120 * xas_squash_marks() - Merge all marks to the first entry 121 * @xas: Array operation state. 122 * 123 * Set a mark on the first entry if any entry has it set. Clear marks on 124 * all sibling entries. 125 */ 126 static void xas_squash_marks(const struct xa_state *xas) 127 { 128 xa_mark_t mark = 0; 129 unsigned int limit = xas->xa_offset + xas->xa_sibs + 1; 130 131 for (;;) { 132 unsigned long *marks = node_marks(xas->xa_node, mark); 133 134 if (find_next_bit(marks, limit, xas->xa_offset + 1) != limit) { 135 __set_bit(xas->xa_offset, marks); 136 bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs); 137 } 138 if (mark == XA_MARK_MAX) 139 break; 140 mark_inc(mark); 141 } 142 } 143 144 /* extracts the offset within this node from the index */ 145 static unsigned int get_offset(unsigned long index, struct xa_node *node) 146 { 147 return (index >> node->shift) & XA_CHUNK_MASK; 148 } 149 150 static void xas_set_offset(struct xa_state *xas) 151 { 152 xas->xa_offset = get_offset(xas->xa_index, xas->xa_node); 153 } 154 155 /* move the index either forwards (find) or backwards (sibling slot) */ 156 static void xas_move_index(struct xa_state *xas, unsigned long offset) 157 { 158 unsigned int shift = xas->xa_node->shift; 159 xas->xa_index &= ~XA_CHUNK_MASK << shift; 160 xas->xa_index += offset << shift; 161 } 162 163 static void xas_next_offset(struct xa_state *xas) 164 { 165 xas->xa_offset++; 166 xas_move_index(xas, xas->xa_offset); 167 } 168 169 static void *set_bounds(struct xa_state *xas) 170 { 171 xas->xa_node = XAS_BOUNDS; 172 return NULL; 173 } 174 175 /* 176 * Starts a walk. If the @xas is already valid, we assume that it's on 177 * the right path and just return where we've got to. If we're in an 178 * error state, return NULL. If the index is outside the current scope 179 * of the xarray, return NULL without changing @xas->xa_node. Otherwise 180 * set @xas->xa_node to NULL and return the current head of the array. 181 */ 182 static void *xas_start(struct xa_state *xas) 183 { 184 void *entry; 185 186 if (xas_valid(xas)) 187 return xas_reload(xas); 188 if (xas_error(xas)) 189 return NULL; 190 191 entry = xa_head(xas->xa); 192 if (!xa_is_node(entry)) { 193 if (xas->xa_index) 194 return set_bounds(xas); 195 } else { 196 if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK) 197 return set_bounds(xas); 198 } 199 200 xas->xa_node = NULL; 201 return entry; 202 } 203 204 static __always_inline void *xas_descend(struct xa_state *xas, 205 struct xa_node *node) 206 { 207 unsigned int offset = get_offset(xas->xa_index, node); 208 void *entry = xa_entry(xas->xa, node, offset); 209 210 xas->xa_node = node; 211 while (xa_is_sibling(entry)) { 212 offset = xa_to_sibling(entry); 213 entry = xa_entry(xas->xa, node, offset); 214 if (node->shift && xa_is_node(entry)) 215 entry = XA_RETRY_ENTRY; 216 } 217 218 xas->xa_offset = offset; 219 return entry; 220 } 221 222 /** 223 * xas_load() - Load an entry from the XArray (advanced). 224 * @xas: XArray operation state. 225 * 226 * Usually walks the @xas to the appropriate state to load the entry 227 * stored at xa_index. However, it will do nothing and return %NULL if 228 * @xas is in an error state. xas_load() will never expand the tree. 229 * 230 * If the xa_state is set up to operate on a multi-index entry, xas_load() 231 * may return %NULL or an internal entry, even if there are entries 232 * present within the range specified by @xas. 233 * 234 * Context: Any context. The caller should hold the xa_lock or the RCU lock. 235 * Return: Usually an entry in the XArray, but see description for exceptions. 236 */ 237 void *xas_load(struct xa_state *xas) 238 { 239 void *entry = xas_start(xas); 240 241 while (xa_is_node(entry)) { 242 struct xa_node *node = xa_to_node(entry); 243 244 if (xas->xa_shift > node->shift) 245 break; 246 entry = xas_descend(xas, node); 247 if (node->shift == 0) 248 break; 249 } 250 return entry; 251 } 252 EXPORT_SYMBOL_GPL(xas_load); 253 254 #define XA_RCU_FREE ((struct xarray *)1) 255 256 static void xa_node_free(struct xa_node *node) 257 { 258 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 259 node->array = XA_RCU_FREE; 260 call_rcu(&node->rcu_head, radix_tree_node_rcu_free); 261 } 262 263 /* 264 * xas_destroy() - Free any resources allocated during the XArray operation. 265 * @xas: XArray operation state. 266 * 267 * Most users will not need to call this function; it is called for you 268 * by xas_nomem(). 269 */ 270 void xas_destroy(struct xa_state *xas) 271 { 272 struct xa_node *next, *node = xas->xa_alloc; 273 274 while (node) { 275 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 276 next = rcu_dereference_raw(node->parent); 277 radix_tree_node_rcu_free(&node->rcu_head); 278 xas->xa_alloc = node = next; 279 } 280 } 281 282 /** 283 * xas_nomem() - Allocate memory if needed. 284 * @xas: XArray operation state. 285 * @gfp: Memory allocation flags. 286 * 287 * If we need to add new nodes to the XArray, we try to allocate memory 288 * with GFP_NOWAIT while holding the lock, which will usually succeed. 289 * If it fails, @xas is flagged as needing memory to continue. The caller 290 * should drop the lock and call xas_nomem(). If xas_nomem() succeeds, 291 * the caller should retry the operation. 292 * 293 * Forward progress is guaranteed as one node is allocated here and 294 * stored in the xa_state where it will be found by xas_alloc(). More 295 * nodes will likely be found in the slab allocator, but we do not tie 296 * them up here. 297 * 298 * Return: true if memory was needed, and was successfully allocated. 299 */ 300 bool xas_nomem(struct xa_state *xas, gfp_t gfp) 301 { 302 if (xas->xa_node != XA_ERROR(-ENOMEM)) { 303 xas_destroy(xas); 304 return false; 305 } 306 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 307 gfp |= __GFP_ACCOUNT; 308 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 309 if (!xas->xa_alloc) 310 return false; 311 xas->xa_alloc->parent = NULL; 312 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); 313 xas->xa_node = XAS_RESTART; 314 return true; 315 } 316 EXPORT_SYMBOL_GPL(xas_nomem); 317 318 /* 319 * __xas_nomem() - Drop locks and allocate memory if needed. 320 * @xas: XArray operation state. 321 * @gfp: Memory allocation flags. 322 * 323 * Internal variant of xas_nomem(). 324 * 325 * Return: true if memory was needed, and was successfully allocated. 326 */ 327 static bool __xas_nomem(struct xa_state *xas, gfp_t gfp) 328 __must_hold(xas->xa->xa_lock) 329 { 330 unsigned int lock_type = xa_lock_type(xas->xa); 331 332 if (xas->xa_node != XA_ERROR(-ENOMEM)) { 333 xas_destroy(xas); 334 return false; 335 } 336 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 337 gfp |= __GFP_ACCOUNT; 338 if (gfpflags_allow_blocking(gfp)) { 339 xas_unlock_type(xas, lock_type); 340 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 341 xas_lock_type(xas, lock_type); 342 } else { 343 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 344 } 345 if (!xas->xa_alloc) 346 return false; 347 xas->xa_alloc->parent = NULL; 348 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); 349 xas->xa_node = XAS_RESTART; 350 return true; 351 } 352 353 static void xas_update(struct xa_state *xas, struct xa_node *node) 354 { 355 if (xas->xa_update) 356 xas->xa_update(node); 357 else 358 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 359 } 360 361 static void *xas_alloc(struct xa_state *xas, unsigned int shift) 362 { 363 struct xa_node *parent = xas->xa_node; 364 struct xa_node *node = xas->xa_alloc; 365 366 if (xas_invalid(xas)) 367 return NULL; 368 369 if (node) { 370 xas->xa_alloc = NULL; 371 } else { 372 gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN; 373 374 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 375 gfp |= __GFP_ACCOUNT; 376 377 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 378 if (!node) { 379 xas_set_err(xas, -ENOMEM); 380 return NULL; 381 } 382 } 383 384 if (parent) { 385 node->offset = xas->xa_offset; 386 parent->count++; 387 XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE); 388 xas_update(xas, parent); 389 } 390 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); 391 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 392 node->shift = shift; 393 node->count = 0; 394 node->nr_values = 0; 395 RCU_INIT_POINTER(node->parent, xas->xa_node); 396 node->array = xas->xa; 397 398 return node; 399 } 400 401 #ifdef CONFIG_XARRAY_MULTI 402 /* Returns the number of indices covered by a given xa_state */ 403 static unsigned long xas_size(const struct xa_state *xas) 404 { 405 return (xas->xa_sibs + 1UL) << xas->xa_shift; 406 } 407 #endif 408 409 /* 410 * Use this to calculate the maximum index that will need to be created 411 * in order to add the entry described by @xas. Because we cannot store a 412 * multi-index entry at index 0, the calculation is a little more complex 413 * than you might expect. 414 */ 415 static unsigned long xas_max(struct xa_state *xas) 416 { 417 unsigned long max = xas->xa_index; 418 419 #ifdef CONFIG_XARRAY_MULTI 420 if (xas->xa_shift || xas->xa_sibs) { 421 unsigned long mask = xas_size(xas) - 1; 422 max |= mask; 423 if (mask == max) 424 max++; 425 } 426 #endif 427 428 return max; 429 } 430 431 /* The maximum index that can be contained in the array without expanding it */ 432 static unsigned long max_index(void *entry) 433 { 434 if (!xa_is_node(entry)) 435 return 0; 436 return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1; 437 } 438 439 static inline void *xa_zero_to_null(void *entry) 440 { 441 return xa_is_zero(entry) ? NULL : entry; 442 } 443 444 static void xas_shrink(struct xa_state *xas) 445 { 446 struct xarray *xa = xas->xa; 447 struct xa_node *node = xas->xa_node; 448 449 for (;;) { 450 void *entry; 451 452 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 453 if (node->count != 1) 454 break; 455 entry = xa_entry_locked(xa, node, 0); 456 if (!entry) 457 break; 458 if (!xa_is_node(entry) && node->shift) 459 break; 460 if (xa_zero_busy(xa)) 461 entry = xa_zero_to_null(entry); 462 xas->xa_node = XAS_BOUNDS; 463 464 RCU_INIT_POINTER(xa->xa_head, entry); 465 if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK)) 466 xa_mark_clear(xa, XA_FREE_MARK); 467 468 node->count = 0; 469 node->nr_values = 0; 470 if (!xa_is_node(entry)) 471 RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY); 472 xas_update(xas, node); 473 xa_node_free(node); 474 if (!xa_is_node(entry)) 475 break; 476 node = xa_to_node(entry); 477 node->parent = NULL; 478 } 479 } 480 481 /* 482 * xas_delete_node() - Attempt to delete an xa_node 483 * @xas: Array operation state. 484 * 485 * Attempts to delete the @xas->xa_node. This will fail if xa->node has 486 * a non-zero reference count. 487 */ 488 static void xas_delete_node(struct xa_state *xas) 489 { 490 struct xa_node *node = xas->xa_node; 491 492 for (;;) { 493 struct xa_node *parent; 494 495 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 496 if (node->count) 497 break; 498 499 parent = xa_parent_locked(xas->xa, node); 500 xas->xa_node = parent; 501 xas->xa_offset = node->offset; 502 xa_node_free(node); 503 504 if (!parent) { 505 xas->xa->xa_head = NULL; 506 xas->xa_node = XAS_BOUNDS; 507 return; 508 } 509 510 parent->slots[xas->xa_offset] = NULL; 511 parent->count--; 512 XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE); 513 node = parent; 514 xas_update(xas, node); 515 } 516 517 if (!node->parent) 518 xas_shrink(xas); 519 } 520 521 /** 522 * xas_free_nodes() - Free this node and all nodes that it references 523 * @xas: Array operation state. 524 * @top: Node to free 525 * 526 * This node has been removed from the tree. We must now free it and all 527 * of its subnodes. There may be RCU walkers with references into the tree, 528 * so we must replace all entries with retry markers. 529 */ 530 static void xas_free_nodes(struct xa_state *xas, struct xa_node *top) 531 { 532 unsigned int offset = 0; 533 struct xa_node *node = top; 534 535 for (;;) { 536 void *entry = xa_entry_locked(xas->xa, node, offset); 537 538 if (node->shift && xa_is_node(entry)) { 539 node = xa_to_node(entry); 540 offset = 0; 541 continue; 542 } 543 if (entry) 544 RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY); 545 offset++; 546 while (offset == XA_CHUNK_SIZE) { 547 struct xa_node *parent; 548 549 parent = xa_parent_locked(xas->xa, node); 550 offset = node->offset + 1; 551 node->count = 0; 552 node->nr_values = 0; 553 xas_update(xas, node); 554 xa_node_free(node); 555 if (node == top) 556 return; 557 node = parent; 558 } 559 } 560 } 561 562 /* 563 * xas_expand adds nodes to the head of the tree until it has reached 564 * sufficient height to be able to contain @xas->xa_index 565 */ 566 static int xas_expand(struct xa_state *xas, void *head) 567 { 568 struct xarray *xa = xas->xa; 569 struct xa_node *node = NULL; 570 unsigned int shift = 0; 571 unsigned long max = xas_max(xas); 572 573 if (!head) { 574 if (max == 0) 575 return 0; 576 while ((max >> shift) >= XA_CHUNK_SIZE) 577 shift += XA_CHUNK_SHIFT; 578 return shift + XA_CHUNK_SHIFT; 579 } else if (xa_is_node(head)) { 580 node = xa_to_node(head); 581 shift = node->shift + XA_CHUNK_SHIFT; 582 } 583 xas->xa_node = NULL; 584 585 while (max > max_index(head)) { 586 xa_mark_t mark = 0; 587 588 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); 589 node = xas_alloc(xas, shift); 590 if (!node) 591 return -ENOMEM; 592 593 node->count = 1; 594 if (xa_is_value(head)) 595 node->nr_values = 1; 596 RCU_INIT_POINTER(node->slots[0], head); 597 598 /* Propagate the aggregated mark info to the new child */ 599 for (;;) { 600 if (xa_track_free(xa) && mark == XA_FREE_MARK) { 601 node_mark_all(node, XA_FREE_MARK); 602 if (!xa_marked(xa, XA_FREE_MARK)) { 603 node_clear_mark(node, 0, XA_FREE_MARK); 604 xa_mark_set(xa, XA_FREE_MARK); 605 } 606 } else if (xa_marked(xa, mark)) { 607 node_set_mark(node, 0, mark); 608 } 609 if (mark == XA_MARK_MAX) 610 break; 611 mark_inc(mark); 612 } 613 614 /* 615 * Now that the new node is fully initialised, we can add 616 * it to the tree 617 */ 618 if (xa_is_node(head)) { 619 xa_to_node(head)->offset = 0; 620 rcu_assign_pointer(xa_to_node(head)->parent, node); 621 } 622 head = xa_mk_node(node); 623 rcu_assign_pointer(xa->xa_head, head); 624 xas_update(xas, node); 625 626 shift += XA_CHUNK_SHIFT; 627 } 628 629 xas->xa_node = node; 630 return shift; 631 } 632 633 /* 634 * xas_create() - Create a slot to store an entry in. 635 * @xas: XArray operation state. 636 * @allow_root: %true if we can store the entry in the root directly 637 * 638 * Most users will not need to call this function directly, as it is called 639 * by xas_store(). It is useful for doing conditional store operations 640 * (see the xa_cmpxchg() implementation for an example). 641 * 642 * Return: If the slot already existed, returns the contents of this slot. 643 * If the slot was newly created, returns %NULL. If it failed to create the 644 * slot, returns %NULL and indicates the error in @xas. 645 */ 646 static void *xas_create(struct xa_state *xas, bool allow_root) 647 { 648 struct xarray *xa = xas->xa; 649 void *entry; 650 void __rcu **slot; 651 struct xa_node *node = xas->xa_node; 652 int shift; 653 unsigned int order = xas->xa_shift; 654 655 if (xas_top(node)) { 656 entry = xa_head_locked(xa); 657 xas->xa_node = NULL; 658 if (!entry && xa_zero_busy(xa)) 659 entry = XA_ZERO_ENTRY; 660 shift = xas_expand(xas, entry); 661 if (shift < 0) 662 return NULL; 663 if (!shift && !allow_root) 664 shift = XA_CHUNK_SHIFT; 665 entry = xa_head_locked(xa); 666 slot = &xa->xa_head; 667 } else if (xas_error(xas)) { 668 return NULL; 669 } else if (node) { 670 unsigned int offset = xas->xa_offset; 671 672 shift = node->shift; 673 entry = xa_entry_locked(xa, node, offset); 674 slot = &node->slots[offset]; 675 } else { 676 shift = 0; 677 entry = xa_head_locked(xa); 678 slot = &xa->xa_head; 679 } 680 681 while (shift > order) { 682 shift -= XA_CHUNK_SHIFT; 683 if (!entry) { 684 node = xas_alloc(xas, shift); 685 if (!node) 686 break; 687 if (xa_track_free(xa)) 688 node_mark_all(node, XA_FREE_MARK); 689 rcu_assign_pointer(*slot, xa_mk_node(node)); 690 } else if (xa_is_node(entry)) { 691 node = xa_to_node(entry); 692 } else { 693 break; 694 } 695 entry = xas_descend(xas, node); 696 slot = &node->slots[xas->xa_offset]; 697 } 698 699 return entry; 700 } 701 702 /** 703 * xas_create_range() - Ensure that stores to this range will succeed 704 * @xas: XArray operation state. 705 * 706 * Creates all of the slots in the range covered by @xas. Sets @xas to 707 * create single-index entries and positions it at the beginning of the 708 * range. This is for the benefit of users which have not yet been 709 * converted to use multi-index entries. 710 */ 711 void xas_create_range(struct xa_state *xas) 712 { 713 unsigned long index = xas->xa_index; 714 unsigned char shift = xas->xa_shift; 715 unsigned char sibs = xas->xa_sibs; 716 717 xas->xa_index |= ((sibs + 1UL) << shift) - 1; 718 if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift) 719 xas->xa_offset |= sibs; 720 xas->xa_shift = 0; 721 xas->xa_sibs = 0; 722 723 for (;;) { 724 xas_create(xas, true); 725 if (xas_error(xas)) 726 goto restore; 727 if (xas->xa_index <= (index | XA_CHUNK_MASK)) 728 goto success; 729 xas->xa_index -= XA_CHUNK_SIZE; 730 731 for (;;) { 732 struct xa_node *node = xas->xa_node; 733 if (node->shift >= shift) 734 break; 735 xas->xa_node = xa_parent_locked(xas->xa, node); 736 xas->xa_offset = node->offset - 1; 737 if (node->offset != 0) 738 break; 739 } 740 } 741 742 restore: 743 xas->xa_shift = shift; 744 xas->xa_sibs = sibs; 745 xas->xa_index = index; 746 return; 747 success: 748 xas->xa_index = index; 749 if (xas->xa_node) 750 xas_set_offset(xas); 751 } 752 EXPORT_SYMBOL_GPL(xas_create_range); 753 754 static void update_node(struct xa_state *xas, struct xa_node *node, 755 int count, int values) 756 { 757 if (!node || (!count && !values)) 758 return; 759 760 node->count += count; 761 node->nr_values += values; 762 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 763 XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE); 764 xas_update(xas, node); 765 if (count < 0) 766 xas_delete_node(xas); 767 } 768 769 /** 770 * xas_store() - Store this entry in the XArray. 771 * @xas: XArray operation state. 772 * @entry: New entry. 773 * 774 * If @xas is operating on a multi-index entry, the entry returned by this 775 * function is essentially meaningless (it may be an internal entry or it 776 * may be %NULL, even if there are non-NULL entries at some of the indices 777 * covered by the range). This is not a problem for any current users, 778 * and can be changed if needed. 779 * 780 * Return: The old entry at this index. 781 */ 782 void *xas_store(struct xa_state *xas, void *entry) 783 { 784 struct xa_node *node; 785 void __rcu **slot = &xas->xa->xa_head; 786 unsigned int offset, max; 787 int count = 0; 788 int values = 0; 789 void *first, *next; 790 bool value = xa_is_value(entry); 791 792 if (entry) { 793 bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry); 794 first = xas_create(xas, allow_root); 795 } else { 796 first = xas_load(xas); 797 } 798 799 if (xas_invalid(xas)) 800 return first; 801 node = xas->xa_node; 802 if (node && (xas->xa_shift < node->shift)) 803 xas->xa_sibs = 0; 804 if ((first == entry) && !xas->xa_sibs) 805 return first; 806 807 next = first; 808 offset = xas->xa_offset; 809 max = xas->xa_offset + xas->xa_sibs; 810 if (node) { 811 slot = &node->slots[offset]; 812 if (xas->xa_sibs) 813 xas_squash_marks(xas); 814 } 815 if (!entry) 816 xas_init_marks(xas); 817 818 for (;;) { 819 /* 820 * Must clear the marks before setting the entry to NULL, 821 * otherwise xas_for_each_marked may find a NULL entry and 822 * stop early. rcu_assign_pointer contains a release barrier 823 * so the mark clearing will appear to happen before the 824 * entry is set to NULL. 825 */ 826 rcu_assign_pointer(*slot, entry); 827 if (xa_is_node(next) && (!node || node->shift)) 828 xas_free_nodes(xas, xa_to_node(next)); 829 if (!node) 830 break; 831 count += !next - !entry; 832 values += !xa_is_value(first) - !value; 833 if (entry) { 834 if (offset == max) 835 break; 836 if (!xa_is_sibling(entry)) 837 entry = xa_mk_sibling(xas->xa_offset); 838 } else { 839 if (offset == XA_CHUNK_MASK) 840 break; 841 } 842 next = xa_entry_locked(xas->xa, node, ++offset); 843 if (!xa_is_sibling(next)) { 844 if (!entry && (offset > max)) 845 break; 846 first = next; 847 } 848 slot++; 849 } 850 851 update_node(xas, node, count, values); 852 return first; 853 } 854 EXPORT_SYMBOL_GPL(xas_store); 855 856 /** 857 * xas_get_mark() - Returns the state of this mark. 858 * @xas: XArray operation state. 859 * @mark: Mark number. 860 * 861 * Return: true if the mark is set, false if the mark is clear or @xas 862 * is in an error state. 863 */ 864 bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark) 865 { 866 if (xas_invalid(xas)) 867 return false; 868 if (!xas->xa_node) 869 return xa_marked(xas->xa, mark); 870 return node_get_mark(xas->xa_node, xas->xa_offset, mark); 871 } 872 EXPORT_SYMBOL_GPL(xas_get_mark); 873 874 /** 875 * xas_set_mark() - Sets the mark on this entry and its parents. 876 * @xas: XArray operation state. 877 * @mark: Mark number. 878 * 879 * Sets the specified mark on this entry, and walks up the tree setting it 880 * on all the ancestor entries. Does nothing if @xas has not been walked to 881 * an entry, or is in an error state. 882 */ 883 void xas_set_mark(const struct xa_state *xas, xa_mark_t mark) 884 { 885 struct xa_node *node = xas->xa_node; 886 unsigned int offset = xas->xa_offset; 887 888 if (xas_invalid(xas)) 889 return; 890 891 while (node) { 892 if (node_set_mark(node, offset, mark)) 893 return; 894 offset = node->offset; 895 node = xa_parent_locked(xas->xa, node); 896 } 897 898 if (!xa_marked(xas->xa, mark)) 899 xa_mark_set(xas->xa, mark); 900 } 901 EXPORT_SYMBOL_GPL(xas_set_mark); 902 903 /** 904 * xas_clear_mark() - Clears the mark on this entry and its parents. 905 * @xas: XArray operation state. 906 * @mark: Mark number. 907 * 908 * Clears the specified mark on this entry, and walks back to the head 909 * attempting to clear it on all the ancestor entries. Does nothing if 910 * @xas has not been walked to an entry, or is in an error state. 911 */ 912 void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark) 913 { 914 struct xa_node *node = xas->xa_node; 915 unsigned int offset = xas->xa_offset; 916 917 if (xas_invalid(xas)) 918 return; 919 920 while (node) { 921 if (!node_clear_mark(node, offset, mark)) 922 return; 923 if (node_any_mark(node, mark)) 924 return; 925 926 offset = node->offset; 927 node = xa_parent_locked(xas->xa, node); 928 } 929 930 if (xa_marked(xas->xa, mark)) 931 xa_mark_clear(xas->xa, mark); 932 } 933 EXPORT_SYMBOL_GPL(xas_clear_mark); 934 935 /** 936 * xas_init_marks() - Initialise all marks for the entry 937 * @xas: Array operations state. 938 * 939 * Initialise all marks for the entry specified by @xas. If we're tracking 940 * free entries with a mark, we need to set it on all entries. All other 941 * marks are cleared. 942 * 943 * This implementation is not as efficient as it could be; we may walk 944 * up the tree multiple times. 945 */ 946 void xas_init_marks(const struct xa_state *xas) 947 { 948 xa_mark_t mark = 0; 949 950 for (;;) { 951 if (xa_track_free(xas->xa) && mark == XA_FREE_MARK) 952 xas_set_mark(xas, mark); 953 else 954 xas_clear_mark(xas, mark); 955 if (mark == XA_MARK_MAX) 956 break; 957 mark_inc(mark); 958 } 959 } 960 EXPORT_SYMBOL_GPL(xas_init_marks); 961 962 #ifdef CONFIG_XARRAY_MULTI 963 static unsigned int node_get_marks(struct xa_node *node, unsigned int offset) 964 { 965 unsigned int marks = 0; 966 xa_mark_t mark = XA_MARK_0; 967 968 for (;;) { 969 if (node_get_mark(node, offset, mark)) 970 marks |= 1 << (__force unsigned int)mark; 971 if (mark == XA_MARK_MAX) 972 break; 973 mark_inc(mark); 974 } 975 976 return marks; 977 } 978 979 static inline void node_mark_slots(struct xa_node *node, unsigned int sibs, 980 xa_mark_t mark) 981 { 982 int i; 983 984 if (sibs == 0) 985 node_mark_all(node, mark); 986 else { 987 for (i = 0; i < XA_CHUNK_SIZE; i += sibs + 1) 988 node_set_mark(node, i, mark); 989 } 990 } 991 992 static void node_set_marks(struct xa_node *node, unsigned int offset, 993 struct xa_node *child, unsigned int sibs, 994 unsigned int marks) 995 { 996 xa_mark_t mark = XA_MARK_0; 997 998 for (;;) { 999 if (marks & (1 << (__force unsigned int)mark)) { 1000 node_set_mark(node, offset, mark); 1001 if (child) 1002 node_mark_slots(child, sibs, mark); 1003 } 1004 if (mark == XA_MARK_MAX) 1005 break; 1006 mark_inc(mark); 1007 } 1008 } 1009 1010 /** 1011 * xas_split_alloc() - Allocate memory for splitting an entry. 1012 * @xas: XArray operation state. 1013 * @entry: New entry which will be stored in the array. 1014 * @order: Current entry order. 1015 * @gfp: Memory allocation flags. 1016 * 1017 * This function should be called before calling xas_split(). 1018 * If necessary, it will allocate new nodes (and fill them with @entry) 1019 * to prepare for the upcoming split of an entry of @order size into 1020 * entries of the order stored in the @xas. 1021 * 1022 * Context: May sleep if @gfp flags permit. 1023 */ 1024 void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order, 1025 gfp_t gfp) 1026 { 1027 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; 1028 unsigned int mask = xas->xa_sibs; 1029 1030 /* XXX: no support for splitting really large entries yet */ 1031 if (WARN_ON(xas->xa_shift + 2 * XA_CHUNK_SHIFT <= order)) 1032 goto nomem; 1033 if (xas->xa_shift + XA_CHUNK_SHIFT > order) 1034 return; 1035 1036 do { 1037 unsigned int i; 1038 void *sibling = NULL; 1039 struct xa_node *node; 1040 1041 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 1042 if (!node) 1043 goto nomem; 1044 node->array = xas->xa; 1045 for (i = 0; i < XA_CHUNK_SIZE; i++) { 1046 if ((i & mask) == 0) { 1047 RCU_INIT_POINTER(node->slots[i], entry); 1048 sibling = xa_mk_sibling(i); 1049 } else { 1050 RCU_INIT_POINTER(node->slots[i], sibling); 1051 } 1052 } 1053 RCU_INIT_POINTER(node->parent, xas->xa_alloc); 1054 xas->xa_alloc = node; 1055 } while (sibs-- > 0); 1056 1057 return; 1058 nomem: 1059 xas_destroy(xas); 1060 xas_set_err(xas, -ENOMEM); 1061 } 1062 EXPORT_SYMBOL_GPL(xas_split_alloc); 1063 1064 /** 1065 * xas_split() - Split a multi-index entry into smaller entries. 1066 * @xas: XArray operation state. 1067 * @entry: New entry to store in the array. 1068 * @order: Current entry order. 1069 * 1070 * The size of the new entries is set in @xas. The value in @entry is 1071 * copied to all the replacement entries. 1072 * 1073 * Context: Any context. The caller should hold the xa_lock. 1074 */ 1075 void xas_split(struct xa_state *xas, void *entry, unsigned int order) 1076 { 1077 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; 1078 unsigned int offset, marks; 1079 struct xa_node *node; 1080 void *curr = xas_load(xas); 1081 int values = 0; 1082 1083 node = xas->xa_node; 1084 if (xas_top(node)) 1085 return; 1086 1087 marks = node_get_marks(node, xas->xa_offset); 1088 1089 offset = xas->xa_offset + sibs; 1090 do { 1091 if (xas->xa_shift < node->shift) { 1092 struct xa_node *child = xas->xa_alloc; 1093 1094 xas->xa_alloc = rcu_dereference_raw(child->parent); 1095 child->shift = node->shift - XA_CHUNK_SHIFT; 1096 child->offset = offset; 1097 child->count = XA_CHUNK_SIZE; 1098 child->nr_values = xa_is_value(entry) ? 1099 XA_CHUNK_SIZE : 0; 1100 RCU_INIT_POINTER(child->parent, node); 1101 node_set_marks(node, offset, child, xas->xa_sibs, 1102 marks); 1103 rcu_assign_pointer(node->slots[offset], 1104 xa_mk_node(child)); 1105 if (xa_is_value(curr)) 1106 values--; 1107 xas_update(xas, child); 1108 } else { 1109 unsigned int canon = offset - xas->xa_sibs; 1110 1111 node_set_marks(node, canon, NULL, 0, marks); 1112 rcu_assign_pointer(node->slots[canon], entry); 1113 while (offset > canon) 1114 rcu_assign_pointer(node->slots[offset--], 1115 xa_mk_sibling(canon)); 1116 values += (xa_is_value(entry) - xa_is_value(curr)) * 1117 (xas->xa_sibs + 1); 1118 } 1119 } while (offset-- > xas->xa_offset); 1120 1121 node->nr_values += values; 1122 xas_update(xas, node); 1123 } 1124 EXPORT_SYMBOL_GPL(xas_split); 1125 #endif 1126 1127 /** 1128 * xas_pause() - Pause a walk to drop a lock. 1129 * @xas: XArray operation state. 1130 * 1131 * Some users need to pause a walk and drop the lock they're holding in 1132 * order to yield to a higher priority thread or carry out an operation 1133 * on an entry. Those users should call this function before they drop 1134 * the lock. It resets the @xas to be suitable for the next iteration 1135 * of the loop after the user has reacquired the lock. If most entries 1136 * found during a walk require you to call xas_pause(), the xa_for_each() 1137 * iterator may be more appropriate. 1138 * 1139 * Note that xas_pause() only works for forward iteration. If a user needs 1140 * to pause a reverse iteration, we will need a xas_pause_rev(). 1141 */ 1142 void xas_pause(struct xa_state *xas) 1143 { 1144 struct xa_node *node = xas->xa_node; 1145 1146 if (xas_invalid(xas)) 1147 return; 1148 1149 xas->xa_node = XAS_RESTART; 1150 if (node) { 1151 unsigned long offset = xas->xa_offset; 1152 while (++offset < XA_CHUNK_SIZE) { 1153 if (!xa_is_sibling(xa_entry(xas->xa, node, offset))) 1154 break; 1155 } 1156 xas->xa_index &= ~0UL << node->shift; 1157 xas->xa_index += (offset - xas->xa_offset) << node->shift; 1158 if (xas->xa_index == 0) 1159 xas->xa_node = XAS_BOUNDS; 1160 } else { 1161 xas->xa_index++; 1162 } 1163 } 1164 EXPORT_SYMBOL_GPL(xas_pause); 1165 1166 /* 1167 * __xas_prev() - Find the previous entry in the XArray. 1168 * @xas: XArray operation state. 1169 * 1170 * Helper function for xas_prev() which handles all the complex cases 1171 * out of line. 1172 */ 1173 void *__xas_prev(struct xa_state *xas) 1174 { 1175 void *entry; 1176 1177 if (!xas_frozen(xas->xa_node)) 1178 xas->xa_index--; 1179 if (!xas->xa_node) 1180 return set_bounds(xas); 1181 if (xas_not_node(xas->xa_node)) 1182 return xas_load(xas); 1183 1184 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) 1185 xas->xa_offset--; 1186 1187 while (xas->xa_offset == 255) { 1188 xas->xa_offset = xas->xa_node->offset - 1; 1189 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1190 if (!xas->xa_node) 1191 return set_bounds(xas); 1192 } 1193 1194 for (;;) { 1195 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1196 if (!xa_is_node(entry)) 1197 return entry; 1198 1199 xas->xa_node = xa_to_node(entry); 1200 xas_set_offset(xas); 1201 } 1202 } 1203 EXPORT_SYMBOL_GPL(__xas_prev); 1204 1205 /* 1206 * __xas_next() - Find the next entry in the XArray. 1207 * @xas: XArray operation state. 1208 * 1209 * Helper function for xas_next() which handles all the complex cases 1210 * out of line. 1211 */ 1212 void *__xas_next(struct xa_state *xas) 1213 { 1214 void *entry; 1215 1216 if (!xas_frozen(xas->xa_node)) 1217 xas->xa_index++; 1218 if (!xas->xa_node) 1219 return set_bounds(xas); 1220 if (xas_not_node(xas->xa_node)) 1221 return xas_load(xas); 1222 1223 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) 1224 xas->xa_offset++; 1225 1226 while (xas->xa_offset == XA_CHUNK_SIZE) { 1227 xas->xa_offset = xas->xa_node->offset + 1; 1228 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1229 if (!xas->xa_node) 1230 return set_bounds(xas); 1231 } 1232 1233 for (;;) { 1234 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1235 if (!xa_is_node(entry)) 1236 return entry; 1237 1238 xas->xa_node = xa_to_node(entry); 1239 xas_set_offset(xas); 1240 } 1241 } 1242 EXPORT_SYMBOL_GPL(__xas_next); 1243 1244 /** 1245 * xas_find() - Find the next present entry in the XArray. 1246 * @xas: XArray operation state. 1247 * @max: Highest index to return. 1248 * 1249 * If the @xas has not yet been walked to an entry, return the entry 1250 * which has an index >= xas.xa_index. If it has been walked, the entry 1251 * currently being pointed at has been processed, and so we move to the 1252 * next entry. 1253 * 1254 * If no entry is found and the array is smaller than @max, the iterator 1255 * is set to the smallest index not yet in the array. This allows @xas 1256 * to be immediately passed to xas_store(). 1257 * 1258 * Return: The entry, if found, otherwise %NULL. 1259 */ 1260 void *xas_find(struct xa_state *xas, unsigned long max) 1261 { 1262 void *entry; 1263 1264 if (xas_error(xas) || xas->xa_node == XAS_BOUNDS) 1265 return NULL; 1266 if (xas->xa_index > max) 1267 return set_bounds(xas); 1268 1269 if (!xas->xa_node) { 1270 xas->xa_index = 1; 1271 return set_bounds(xas); 1272 } else if (xas->xa_node == XAS_RESTART) { 1273 entry = xas_load(xas); 1274 if (entry || xas_not_node(xas->xa_node)) 1275 return entry; 1276 } else if (!xas->xa_node->shift && 1277 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) { 1278 xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1; 1279 } 1280 1281 xas_next_offset(xas); 1282 1283 while (xas->xa_node && (xas->xa_index <= max)) { 1284 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { 1285 xas->xa_offset = xas->xa_node->offset + 1; 1286 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1287 continue; 1288 } 1289 1290 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1291 if (xa_is_node(entry)) { 1292 xas->xa_node = xa_to_node(entry); 1293 xas->xa_offset = 0; 1294 continue; 1295 } 1296 if (entry && !xa_is_sibling(entry)) 1297 return entry; 1298 1299 xas_next_offset(xas); 1300 } 1301 1302 if (!xas->xa_node) 1303 xas->xa_node = XAS_BOUNDS; 1304 return NULL; 1305 } 1306 EXPORT_SYMBOL_GPL(xas_find); 1307 1308 /** 1309 * xas_find_marked() - Find the next marked entry in the XArray. 1310 * @xas: XArray operation state. 1311 * @max: Highest index to return. 1312 * @mark: Mark number to search for. 1313 * 1314 * If the @xas has not yet been walked to an entry, return the marked entry 1315 * which has an index >= xas.xa_index. If it has been walked, the entry 1316 * currently being pointed at has been processed, and so we return the 1317 * first marked entry with an index > xas.xa_index. 1318 * 1319 * If no marked entry is found and the array is smaller than @max, @xas is 1320 * set to the bounds state and xas->xa_index is set to the smallest index 1321 * not yet in the array. This allows @xas to be immediately passed to 1322 * xas_store(). 1323 * 1324 * If no entry is found before @max is reached, @xas is set to the restart 1325 * state. 1326 * 1327 * Return: The entry, if found, otherwise %NULL. 1328 */ 1329 void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark) 1330 { 1331 bool advance = true; 1332 unsigned int offset; 1333 void *entry; 1334 1335 if (xas_error(xas)) 1336 return NULL; 1337 if (xas->xa_index > max) 1338 goto max; 1339 1340 if (!xas->xa_node) { 1341 xas->xa_index = 1; 1342 goto out; 1343 } else if (xas_top(xas->xa_node)) { 1344 advance = false; 1345 entry = xa_head(xas->xa); 1346 xas->xa_node = NULL; 1347 if (xas->xa_index > max_index(entry)) 1348 goto out; 1349 if (!xa_is_node(entry)) { 1350 if (xa_marked(xas->xa, mark)) 1351 return entry; 1352 xas->xa_index = 1; 1353 goto out; 1354 } 1355 xas->xa_node = xa_to_node(entry); 1356 xas->xa_offset = xas->xa_index >> xas->xa_node->shift; 1357 } 1358 1359 while (xas->xa_index <= max) { 1360 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { 1361 xas->xa_offset = xas->xa_node->offset + 1; 1362 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1363 if (!xas->xa_node) 1364 break; 1365 advance = false; 1366 continue; 1367 } 1368 1369 if (!advance) { 1370 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1371 if (xa_is_sibling(entry)) { 1372 xas->xa_offset = xa_to_sibling(entry); 1373 xas_move_index(xas, xas->xa_offset); 1374 } 1375 } 1376 1377 offset = xas_find_chunk(xas, advance, mark); 1378 if (offset > xas->xa_offset) { 1379 advance = false; 1380 xas_move_index(xas, offset); 1381 /* Mind the wrap */ 1382 if ((xas->xa_index - 1) >= max) 1383 goto max; 1384 xas->xa_offset = offset; 1385 if (offset == XA_CHUNK_SIZE) 1386 continue; 1387 } 1388 1389 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1390 if (!entry && !(xa_track_free(xas->xa) && mark == XA_FREE_MARK)) 1391 continue; 1392 if (xa_is_sibling(entry)) 1393 continue; 1394 if (!xa_is_node(entry)) 1395 return entry; 1396 xas->xa_node = xa_to_node(entry); 1397 xas_set_offset(xas); 1398 } 1399 1400 out: 1401 if (xas->xa_index > max) 1402 goto max; 1403 return set_bounds(xas); 1404 max: 1405 xas->xa_node = XAS_RESTART; 1406 return NULL; 1407 } 1408 EXPORT_SYMBOL_GPL(xas_find_marked); 1409 1410 /** 1411 * xas_find_conflict() - Find the next present entry in a range. 1412 * @xas: XArray operation state. 1413 * 1414 * The @xas describes both a range and a position within that range. 1415 * 1416 * Context: Any context. Expects xa_lock to be held. 1417 * Return: The next entry in the range covered by @xas or %NULL. 1418 */ 1419 void *xas_find_conflict(struct xa_state *xas) 1420 { 1421 void *curr; 1422 1423 if (xas_error(xas)) 1424 return NULL; 1425 1426 if (!xas->xa_node) 1427 return NULL; 1428 1429 if (xas_top(xas->xa_node)) { 1430 curr = xas_start(xas); 1431 if (!curr) 1432 return NULL; 1433 while (xa_is_node(curr)) { 1434 struct xa_node *node = xa_to_node(curr); 1435 curr = xas_descend(xas, node); 1436 } 1437 if (curr) 1438 return curr; 1439 } 1440 1441 if (xas->xa_node->shift > xas->xa_shift) 1442 return NULL; 1443 1444 for (;;) { 1445 if (xas->xa_node->shift == xas->xa_shift) { 1446 if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs) 1447 break; 1448 } else if (xas->xa_offset == XA_CHUNK_MASK) { 1449 xas->xa_offset = xas->xa_node->offset; 1450 xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node); 1451 if (!xas->xa_node) 1452 break; 1453 continue; 1454 } 1455 curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset); 1456 if (xa_is_sibling(curr)) 1457 continue; 1458 while (xa_is_node(curr)) { 1459 xas->xa_node = xa_to_node(curr); 1460 xas->xa_offset = 0; 1461 curr = xa_entry_locked(xas->xa, xas->xa_node, 0); 1462 } 1463 if (curr) 1464 return curr; 1465 } 1466 xas->xa_offset -= xas->xa_sibs; 1467 return NULL; 1468 } 1469 EXPORT_SYMBOL_GPL(xas_find_conflict); 1470 1471 /** 1472 * xa_load() - Load an entry from an XArray. 1473 * @xa: XArray. 1474 * @index: index into array. 1475 * 1476 * Context: Any context. Takes and releases the RCU lock. 1477 * Return: The entry at @index in @xa. 1478 */ 1479 void *xa_load(struct xarray *xa, unsigned long index) 1480 { 1481 XA_STATE(xas, xa, index); 1482 void *entry; 1483 1484 rcu_read_lock(); 1485 do { 1486 entry = xa_zero_to_null(xas_load(&xas)); 1487 } while (xas_retry(&xas, entry)); 1488 rcu_read_unlock(); 1489 1490 return entry; 1491 } 1492 EXPORT_SYMBOL(xa_load); 1493 1494 static void *xas_result(struct xa_state *xas, void *curr) 1495 { 1496 if (xas_error(xas)) 1497 curr = xas->xa_node; 1498 return curr; 1499 } 1500 1501 /** 1502 * __xa_erase() - Erase this entry from the XArray while locked. 1503 * @xa: XArray. 1504 * @index: Index into array. 1505 * 1506 * After this function returns, loading from @index will return %NULL. 1507 * If the index is part of a multi-index entry, all indices will be erased 1508 * and none of the entries will be part of a multi-index entry. 1509 * 1510 * Context: Any context. Expects xa_lock to be held on entry. 1511 * Return: The entry which used to be at this index. 1512 */ 1513 void *__xa_erase(struct xarray *xa, unsigned long index) 1514 { 1515 XA_STATE(xas, xa, index); 1516 return xas_result(&xas, xa_zero_to_null(xas_store(&xas, NULL))); 1517 } 1518 EXPORT_SYMBOL(__xa_erase); 1519 1520 /** 1521 * xa_erase() - Erase this entry from the XArray. 1522 * @xa: XArray. 1523 * @index: Index of entry. 1524 * 1525 * After this function returns, loading from @index will return %NULL. 1526 * If the index is part of a multi-index entry, all indices will be erased 1527 * and none of the entries will be part of a multi-index entry. 1528 * 1529 * Context: Any context. Takes and releases the xa_lock. 1530 * Return: The entry which used to be at this index. 1531 */ 1532 void *xa_erase(struct xarray *xa, unsigned long index) 1533 { 1534 void *entry; 1535 1536 xa_lock(xa); 1537 entry = __xa_erase(xa, index); 1538 xa_unlock(xa); 1539 1540 return entry; 1541 } 1542 EXPORT_SYMBOL(xa_erase); 1543 1544 /** 1545 * __xa_store() - Store this entry in the XArray. 1546 * @xa: XArray. 1547 * @index: Index into array. 1548 * @entry: New entry. 1549 * @gfp: Memory allocation flags. 1550 * 1551 * You must already be holding the xa_lock when calling this function. 1552 * It will drop the lock if needed to allocate memory, and then reacquire 1553 * it afterwards. 1554 * 1555 * Context: Any context. Expects xa_lock to be held on entry. May 1556 * release and reacquire xa_lock if @gfp flags permit. 1557 * Return: The old entry at this index or xa_err() if an error happened. 1558 */ 1559 void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1560 { 1561 XA_STATE(xas, xa, index); 1562 void *curr; 1563 1564 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1565 return XA_ERROR(-EINVAL); 1566 if (xa_track_free(xa) && !entry) 1567 entry = XA_ZERO_ENTRY; 1568 1569 do { 1570 curr = xas_store(&xas, entry); 1571 if (xa_track_free(xa)) 1572 xas_clear_mark(&xas, XA_FREE_MARK); 1573 } while (__xas_nomem(&xas, gfp)); 1574 1575 return xas_result(&xas, xa_zero_to_null(curr)); 1576 } 1577 EXPORT_SYMBOL(__xa_store); 1578 1579 /** 1580 * xa_store() - Store this entry in the XArray. 1581 * @xa: XArray. 1582 * @index: Index into array. 1583 * @entry: New entry. 1584 * @gfp: Memory allocation flags. 1585 * 1586 * After this function returns, loads from this index will return @entry. 1587 * Storing into an existing multi-index entry updates the entry of every index. 1588 * The marks associated with @index are unaffected unless @entry is %NULL. 1589 * 1590 * Context: Any context. Takes and releases the xa_lock. 1591 * May sleep if the @gfp flags permit. 1592 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry 1593 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation 1594 * failed. 1595 */ 1596 void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1597 { 1598 void *curr; 1599 1600 xa_lock(xa); 1601 curr = __xa_store(xa, index, entry, gfp); 1602 xa_unlock(xa); 1603 1604 return curr; 1605 } 1606 EXPORT_SYMBOL(xa_store); 1607 1608 static inline void *__xa_cmpxchg_raw(struct xarray *xa, unsigned long index, 1609 void *old, void *entry, gfp_t gfp); 1610 1611 /** 1612 * __xa_cmpxchg() - Store this entry in the XArray. 1613 * @xa: XArray. 1614 * @index: Index into array. 1615 * @old: Old value to test against. 1616 * @entry: New entry. 1617 * @gfp: Memory allocation flags. 1618 * 1619 * You must already be holding the xa_lock when calling this function. 1620 * It will drop the lock if needed to allocate memory, and then reacquire 1621 * it afterwards. 1622 * 1623 * Context: Any context. Expects xa_lock to be held on entry. May 1624 * release and reacquire xa_lock if @gfp flags permit. 1625 * Return: The old entry at this index or xa_err() if an error happened. 1626 */ 1627 void *__xa_cmpxchg(struct xarray *xa, unsigned long index, 1628 void *old, void *entry, gfp_t gfp) 1629 { 1630 return xa_zero_to_null(__xa_cmpxchg_raw(xa, index, old, entry, gfp)); 1631 } 1632 EXPORT_SYMBOL(__xa_cmpxchg); 1633 1634 static inline void *__xa_cmpxchg_raw(struct xarray *xa, unsigned long index, 1635 void *old, void *entry, gfp_t gfp) 1636 { 1637 XA_STATE(xas, xa, index); 1638 void *curr; 1639 1640 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1641 return XA_ERROR(-EINVAL); 1642 1643 do { 1644 curr = xas_load(&xas); 1645 if (curr == old) { 1646 xas_store(&xas, entry); 1647 if (xa_track_free(xa) && entry && !curr) 1648 xas_clear_mark(&xas, XA_FREE_MARK); 1649 } 1650 } while (__xas_nomem(&xas, gfp)); 1651 1652 return xas_result(&xas, curr); 1653 } 1654 1655 /** 1656 * __xa_insert() - Store this entry in the XArray if no entry is present. 1657 * @xa: XArray. 1658 * @index: Index into array. 1659 * @entry: New entry. 1660 * @gfp: Memory allocation flags. 1661 * 1662 * Inserting a NULL entry will store a reserved entry (like xa_reserve()) 1663 * if no entry is present. Inserting will fail if a reserved entry is 1664 * present, even though loading from this index will return NULL. 1665 * 1666 * Context: Any context. Expects xa_lock to be held on entry. May 1667 * release and reacquire xa_lock if @gfp flags permit. 1668 * Return: 0 if the store succeeded. -EBUSY if another entry was present. 1669 * -ENOMEM if memory could not be allocated. 1670 */ 1671 int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1672 { 1673 void *curr; 1674 int errno; 1675 1676 if (!entry) 1677 entry = XA_ZERO_ENTRY; 1678 curr = __xa_cmpxchg_raw(xa, index, NULL, entry, gfp); 1679 errno = xa_err(curr); 1680 if (errno) 1681 return errno; 1682 return (curr != NULL) ? -EBUSY : 0; 1683 } 1684 EXPORT_SYMBOL(__xa_insert); 1685 1686 #ifdef CONFIG_XARRAY_MULTI 1687 static void xas_set_range(struct xa_state *xas, unsigned long first, 1688 unsigned long last) 1689 { 1690 unsigned int shift = 0; 1691 unsigned long sibs = last - first; 1692 unsigned int offset = XA_CHUNK_MASK; 1693 1694 xas_set(xas, first); 1695 1696 while ((first & XA_CHUNK_MASK) == 0) { 1697 if (sibs < XA_CHUNK_MASK) 1698 break; 1699 if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK)) 1700 break; 1701 shift += XA_CHUNK_SHIFT; 1702 if (offset == XA_CHUNK_MASK) 1703 offset = sibs & XA_CHUNK_MASK; 1704 sibs >>= XA_CHUNK_SHIFT; 1705 first >>= XA_CHUNK_SHIFT; 1706 } 1707 1708 offset = first & XA_CHUNK_MASK; 1709 if (offset + sibs > XA_CHUNK_MASK) 1710 sibs = XA_CHUNK_MASK - offset; 1711 if ((((first + sibs + 1) << shift) - 1) > last) 1712 sibs -= 1; 1713 1714 xas->xa_shift = shift; 1715 xas->xa_sibs = sibs; 1716 } 1717 1718 /** 1719 * xa_store_range() - Store this entry at a range of indices in the XArray. 1720 * @xa: XArray. 1721 * @first: First index to affect. 1722 * @last: Last index to affect. 1723 * @entry: New entry. 1724 * @gfp: Memory allocation flags. 1725 * 1726 * After this function returns, loads from any index between @first and @last, 1727 * inclusive will return @entry. 1728 * Storing into an existing multi-index entry updates the entry of every index. 1729 * The marks associated with @index are unaffected unless @entry is %NULL. 1730 * 1731 * Context: Process context. Takes and releases the xa_lock. May sleep 1732 * if the @gfp flags permit. 1733 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in 1734 * an XArray, or xa_err(-ENOMEM) if memory allocation failed. 1735 */ 1736 void *xa_store_range(struct xarray *xa, unsigned long first, 1737 unsigned long last, void *entry, gfp_t gfp) 1738 { 1739 XA_STATE(xas, xa, 0); 1740 1741 if (WARN_ON_ONCE(xa_is_internal(entry))) 1742 return XA_ERROR(-EINVAL); 1743 if (last < first) 1744 return XA_ERROR(-EINVAL); 1745 1746 do { 1747 xas_lock(&xas); 1748 if (entry) { 1749 unsigned int order = BITS_PER_LONG; 1750 if (last + 1) 1751 order = __ffs(last + 1); 1752 xas_set_order(&xas, last, order); 1753 xas_create(&xas, true); 1754 if (xas_error(&xas)) 1755 goto unlock; 1756 } 1757 do { 1758 xas_set_range(&xas, first, last); 1759 xas_store(&xas, entry); 1760 if (xas_error(&xas)) 1761 goto unlock; 1762 first += xas_size(&xas); 1763 } while (first <= last); 1764 unlock: 1765 xas_unlock(&xas); 1766 } while (xas_nomem(&xas, gfp)); 1767 1768 return xas_result(&xas, NULL); 1769 } 1770 EXPORT_SYMBOL(xa_store_range); 1771 1772 /** 1773 * xas_get_order() - Get the order of an entry. 1774 * @xas: XArray operation state. 1775 * 1776 * Called after xas_load, the xas should not be in an error state. 1777 * 1778 * Return: A number between 0 and 63 indicating the order of the entry. 1779 */ 1780 int xas_get_order(struct xa_state *xas) 1781 { 1782 int order = 0; 1783 1784 if (!xas->xa_node) 1785 return 0; 1786 1787 for (;;) { 1788 unsigned int slot = xas->xa_offset + (1 << order); 1789 1790 if (slot >= XA_CHUNK_SIZE) 1791 break; 1792 if (!xa_is_sibling(xa_entry(xas->xa, xas->xa_node, slot))) 1793 break; 1794 order++; 1795 } 1796 1797 order += xas->xa_node->shift; 1798 return order; 1799 } 1800 EXPORT_SYMBOL_GPL(xas_get_order); 1801 1802 /** 1803 * xa_get_order() - Get the order of an entry. 1804 * @xa: XArray. 1805 * @index: Index of the entry. 1806 * 1807 * Return: A number between 0 and 63 indicating the order of the entry. 1808 */ 1809 int xa_get_order(struct xarray *xa, unsigned long index) 1810 { 1811 XA_STATE(xas, xa, index); 1812 int order = 0; 1813 void *entry; 1814 1815 rcu_read_lock(); 1816 entry = xas_load(&xas); 1817 if (entry) 1818 order = xas_get_order(&xas); 1819 rcu_read_unlock(); 1820 1821 return order; 1822 } 1823 EXPORT_SYMBOL(xa_get_order); 1824 #endif /* CONFIG_XARRAY_MULTI */ 1825 1826 /** 1827 * __xa_alloc() - Find somewhere to store this entry in the XArray. 1828 * @xa: XArray. 1829 * @id: Pointer to ID. 1830 * @limit: Range for allocated ID. 1831 * @entry: New entry. 1832 * @gfp: Memory allocation flags. 1833 * 1834 * Finds an empty entry in @xa between @limit.min and @limit.max, 1835 * stores the index into the @id pointer, then stores the entry at 1836 * that index. A concurrent lookup will not see an uninitialised @id. 1837 * 1838 * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set 1839 * in xa_init_flags(). 1840 * 1841 * Context: Any context. Expects xa_lock to be held on entry. May 1842 * release and reacquire xa_lock if @gfp flags permit. 1843 * Return: 0 on success, -ENOMEM if memory could not be allocated or 1844 * -EBUSY if there are no free entries in @limit. 1845 */ 1846 int __xa_alloc(struct xarray *xa, u32 *id, void *entry, 1847 struct xa_limit limit, gfp_t gfp) 1848 { 1849 XA_STATE(xas, xa, 0); 1850 1851 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1852 return -EINVAL; 1853 if (WARN_ON_ONCE(!xa_track_free(xa))) 1854 return -EINVAL; 1855 1856 if (!entry) 1857 entry = XA_ZERO_ENTRY; 1858 1859 do { 1860 xas.xa_index = limit.min; 1861 xas_find_marked(&xas, limit.max, XA_FREE_MARK); 1862 if (xas.xa_node == XAS_RESTART) 1863 xas_set_err(&xas, -EBUSY); 1864 else 1865 *id = xas.xa_index; 1866 xas_store(&xas, entry); 1867 xas_clear_mark(&xas, XA_FREE_MARK); 1868 } while (__xas_nomem(&xas, gfp)); 1869 1870 return xas_error(&xas); 1871 } 1872 EXPORT_SYMBOL(__xa_alloc); 1873 1874 /** 1875 * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray. 1876 * @xa: XArray. 1877 * @id: Pointer to ID. 1878 * @entry: New entry. 1879 * @limit: Range of allocated ID. 1880 * @next: Pointer to next ID to allocate. 1881 * @gfp: Memory allocation flags. 1882 * 1883 * Finds an empty entry in @xa between @limit.min and @limit.max, 1884 * stores the index into the @id pointer, then stores the entry at 1885 * that index. A concurrent lookup will not see an uninitialised @id. 1886 * The search for an empty entry will start at @next and will wrap 1887 * around if necessary. 1888 * 1889 * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set 1890 * in xa_init_flags(). 1891 * 1892 * Context: Any context. Expects xa_lock to be held on entry. May 1893 * release and reacquire xa_lock if @gfp flags permit. 1894 * Return: 0 if the allocation succeeded without wrapping. 1 if the 1895 * allocation succeeded after wrapping, -ENOMEM if memory could not be 1896 * allocated or -EBUSY if there are no free entries in @limit. 1897 */ 1898 int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry, 1899 struct xa_limit limit, u32 *next, gfp_t gfp) 1900 { 1901 u32 min = limit.min; 1902 int ret; 1903 1904 limit.min = max(min, *next); 1905 ret = __xa_alloc(xa, id, entry, limit, gfp); 1906 if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) { 1907 xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED; 1908 ret = 1; 1909 } 1910 1911 if (ret < 0 && limit.min > min) { 1912 limit.min = min; 1913 ret = __xa_alloc(xa, id, entry, limit, gfp); 1914 if (ret == 0) 1915 ret = 1; 1916 } 1917 1918 if (ret >= 0) { 1919 *next = *id + 1; 1920 if (*next == 0) 1921 xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED; 1922 } 1923 return ret; 1924 } 1925 EXPORT_SYMBOL(__xa_alloc_cyclic); 1926 1927 /** 1928 * __xa_set_mark() - Set this mark on this entry while locked. 1929 * @xa: XArray. 1930 * @index: Index of entry. 1931 * @mark: Mark number. 1932 * 1933 * Attempting to set a mark on a %NULL entry does not succeed. 1934 * 1935 * Context: Any context. Expects xa_lock to be held on entry. 1936 */ 1937 void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1938 { 1939 XA_STATE(xas, xa, index); 1940 void *entry = xas_load(&xas); 1941 1942 if (entry) 1943 xas_set_mark(&xas, mark); 1944 } 1945 EXPORT_SYMBOL(__xa_set_mark); 1946 1947 /** 1948 * __xa_clear_mark() - Clear this mark on this entry while locked. 1949 * @xa: XArray. 1950 * @index: Index of entry. 1951 * @mark: Mark number. 1952 * 1953 * Context: Any context. Expects xa_lock to be held on entry. 1954 */ 1955 void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1956 { 1957 XA_STATE(xas, xa, index); 1958 void *entry = xas_load(&xas); 1959 1960 if (entry) 1961 xas_clear_mark(&xas, mark); 1962 } 1963 EXPORT_SYMBOL(__xa_clear_mark); 1964 1965 /** 1966 * xa_get_mark() - Inquire whether this mark is set on this entry. 1967 * @xa: XArray. 1968 * @index: Index of entry. 1969 * @mark: Mark number. 1970 * 1971 * This function uses the RCU read lock, so the result may be out of date 1972 * by the time it returns. If you need the result to be stable, use a lock. 1973 * 1974 * Context: Any context. Takes and releases the RCU lock. 1975 * Return: True if the entry at @index has this mark set, false if it doesn't. 1976 */ 1977 bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1978 { 1979 XA_STATE(xas, xa, index); 1980 void *entry; 1981 1982 rcu_read_lock(); 1983 entry = xas_start(&xas); 1984 while (xas_get_mark(&xas, mark)) { 1985 if (!xa_is_node(entry)) 1986 goto found; 1987 entry = xas_descend(&xas, xa_to_node(entry)); 1988 } 1989 rcu_read_unlock(); 1990 return false; 1991 found: 1992 rcu_read_unlock(); 1993 return true; 1994 } 1995 EXPORT_SYMBOL(xa_get_mark); 1996 1997 /** 1998 * xa_set_mark() - Set this mark on this entry. 1999 * @xa: XArray. 2000 * @index: Index of entry. 2001 * @mark: Mark number. 2002 * 2003 * Attempting to set a mark on a %NULL entry does not succeed. 2004 * 2005 * Context: Process context. Takes and releases the xa_lock. 2006 */ 2007 void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 2008 { 2009 xa_lock(xa); 2010 __xa_set_mark(xa, index, mark); 2011 xa_unlock(xa); 2012 } 2013 EXPORT_SYMBOL(xa_set_mark); 2014 2015 /** 2016 * xa_clear_mark() - Clear this mark on this entry. 2017 * @xa: XArray. 2018 * @index: Index of entry. 2019 * @mark: Mark number. 2020 * 2021 * Clearing a mark always succeeds. 2022 * 2023 * Context: Process context. Takes and releases the xa_lock. 2024 */ 2025 void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 2026 { 2027 xa_lock(xa); 2028 __xa_clear_mark(xa, index, mark); 2029 xa_unlock(xa); 2030 } 2031 EXPORT_SYMBOL(xa_clear_mark); 2032 2033 /** 2034 * xa_find() - Search the XArray for an entry. 2035 * @xa: XArray. 2036 * @indexp: Pointer to an index. 2037 * @max: Maximum index to search to. 2038 * @filter: Selection criterion. 2039 * 2040 * Finds the entry in @xa which matches the @filter, and has the lowest 2041 * index that is at least @indexp and no more than @max. 2042 * If an entry is found, @indexp is updated to be the index of the entry. 2043 * This function is protected by the RCU read lock, so it may not find 2044 * entries which are being simultaneously added. It will not return an 2045 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). 2046 * 2047 * Context: Any context. Takes and releases the RCU lock. 2048 * Return: The entry, if found, otherwise %NULL. 2049 */ 2050 void *xa_find(struct xarray *xa, unsigned long *indexp, 2051 unsigned long max, xa_mark_t filter) 2052 { 2053 XA_STATE(xas, xa, *indexp); 2054 void *entry; 2055 2056 rcu_read_lock(); 2057 do { 2058 if ((__force unsigned int)filter < XA_MAX_MARKS) 2059 entry = xas_find_marked(&xas, max, filter); 2060 else 2061 entry = xas_find(&xas, max); 2062 } while (xas_retry(&xas, entry)); 2063 rcu_read_unlock(); 2064 2065 if (entry) 2066 *indexp = xas.xa_index; 2067 return entry; 2068 } 2069 EXPORT_SYMBOL(xa_find); 2070 2071 static bool xas_sibling(struct xa_state *xas) 2072 { 2073 struct xa_node *node = xas->xa_node; 2074 unsigned long mask; 2075 2076 if (!IS_ENABLED(CONFIG_XARRAY_MULTI) || !node) 2077 return false; 2078 mask = (XA_CHUNK_SIZE << node->shift) - 1; 2079 return (xas->xa_index & mask) > 2080 ((unsigned long)xas->xa_offset << node->shift); 2081 } 2082 2083 /** 2084 * xa_find_after() - Search the XArray for a present entry. 2085 * @xa: XArray. 2086 * @indexp: Pointer to an index. 2087 * @max: Maximum index to search to. 2088 * @filter: Selection criterion. 2089 * 2090 * Finds the entry in @xa which matches the @filter and has the lowest 2091 * index that is above @indexp and no more than @max. 2092 * If an entry is found, @indexp is updated to be the index of the entry. 2093 * This function is protected by the RCU read lock, so it may miss entries 2094 * which are being simultaneously added. It will not return an 2095 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). 2096 * 2097 * Context: Any context. Takes and releases the RCU lock. 2098 * Return: The pointer, if found, otherwise %NULL. 2099 */ 2100 void *xa_find_after(struct xarray *xa, unsigned long *indexp, 2101 unsigned long max, xa_mark_t filter) 2102 { 2103 XA_STATE(xas, xa, *indexp + 1); 2104 void *entry; 2105 2106 if (xas.xa_index == 0) 2107 return NULL; 2108 2109 rcu_read_lock(); 2110 for (;;) { 2111 if ((__force unsigned int)filter < XA_MAX_MARKS) 2112 entry = xas_find_marked(&xas, max, filter); 2113 else 2114 entry = xas_find(&xas, max); 2115 2116 if (xas_invalid(&xas)) 2117 break; 2118 if (xas_sibling(&xas)) 2119 continue; 2120 if (!xas_retry(&xas, entry)) 2121 break; 2122 } 2123 rcu_read_unlock(); 2124 2125 if (entry) 2126 *indexp = xas.xa_index; 2127 return entry; 2128 } 2129 EXPORT_SYMBOL(xa_find_after); 2130 2131 static unsigned int xas_extract_present(struct xa_state *xas, void **dst, 2132 unsigned long max, unsigned int n) 2133 { 2134 void *entry; 2135 unsigned int i = 0; 2136 2137 rcu_read_lock(); 2138 xas_for_each(xas, entry, max) { 2139 if (xas_retry(xas, entry)) 2140 continue; 2141 dst[i++] = entry; 2142 if (i == n) 2143 break; 2144 } 2145 rcu_read_unlock(); 2146 2147 return i; 2148 } 2149 2150 static unsigned int xas_extract_marked(struct xa_state *xas, void **dst, 2151 unsigned long max, unsigned int n, xa_mark_t mark) 2152 { 2153 void *entry; 2154 unsigned int i = 0; 2155 2156 rcu_read_lock(); 2157 xas_for_each_marked(xas, entry, max, mark) { 2158 if (xas_retry(xas, entry)) 2159 continue; 2160 dst[i++] = entry; 2161 if (i == n) 2162 break; 2163 } 2164 rcu_read_unlock(); 2165 2166 return i; 2167 } 2168 2169 /** 2170 * xa_extract() - Copy selected entries from the XArray into a normal array. 2171 * @xa: The source XArray to copy from. 2172 * @dst: The buffer to copy entries into. 2173 * @start: The first index in the XArray eligible to be selected. 2174 * @max: The last index in the XArray eligible to be selected. 2175 * @n: The maximum number of entries to copy. 2176 * @filter: Selection criterion. 2177 * 2178 * Copies up to @n entries that match @filter from the XArray. The 2179 * copied entries will have indices between @start and @max, inclusive. 2180 * 2181 * The @filter may be an XArray mark value, in which case entries which are 2182 * marked with that mark will be copied. It may also be %XA_PRESENT, in 2183 * which case all entries which are not %NULL will be copied. 2184 * 2185 * The entries returned may not represent a snapshot of the XArray at a 2186 * moment in time. For example, if another thread stores to index 5, then 2187 * index 10, calling xa_extract() may return the old contents of index 5 2188 * and the new contents of index 10. Indices not modified while this 2189 * function is running will not be skipped. 2190 * 2191 * If you need stronger guarantees, holding the xa_lock across calls to this 2192 * function will prevent concurrent modification. 2193 * 2194 * Context: Any context. Takes and releases the RCU lock. 2195 * Return: The number of entries copied. 2196 */ 2197 unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start, 2198 unsigned long max, unsigned int n, xa_mark_t filter) 2199 { 2200 XA_STATE(xas, xa, start); 2201 2202 if (!n) 2203 return 0; 2204 2205 if ((__force unsigned int)filter < XA_MAX_MARKS) 2206 return xas_extract_marked(&xas, dst, max, n, filter); 2207 return xas_extract_present(&xas, dst, max, n); 2208 } 2209 EXPORT_SYMBOL(xa_extract); 2210 2211 /** 2212 * xa_delete_node() - Private interface for workingset code. 2213 * @node: Node to be removed from the tree. 2214 * @update: Function to call to update ancestor nodes. 2215 * 2216 * Context: xa_lock must be held on entry and will not be released. 2217 */ 2218 void xa_delete_node(struct xa_node *node, xa_update_node_t update) 2219 { 2220 struct xa_state xas = { 2221 .xa = node->array, 2222 .xa_index = (unsigned long)node->offset << 2223 (node->shift + XA_CHUNK_SHIFT), 2224 .xa_shift = node->shift + XA_CHUNK_SHIFT, 2225 .xa_offset = node->offset, 2226 .xa_node = xa_parent_locked(node->array, node), 2227 .xa_update = update, 2228 }; 2229 2230 xas_store(&xas, NULL); 2231 } 2232 EXPORT_SYMBOL_GPL(xa_delete_node); /* For the benefit of the test suite */ 2233 2234 /** 2235 * xa_destroy() - Free all internal data structures. 2236 * @xa: XArray. 2237 * 2238 * After calling this function, the XArray is empty and has freed all memory 2239 * allocated for its internal data structures. You are responsible for 2240 * freeing the objects referenced by the XArray. 2241 * 2242 * Context: Any context. Takes and releases the xa_lock, interrupt-safe. 2243 */ 2244 void xa_destroy(struct xarray *xa) 2245 { 2246 XA_STATE(xas, xa, 0); 2247 unsigned long flags; 2248 void *entry; 2249 2250 xas.xa_node = NULL; 2251 xas_lock_irqsave(&xas, flags); 2252 entry = xa_head_locked(xa); 2253 RCU_INIT_POINTER(xa->xa_head, NULL); 2254 xas_init_marks(&xas); 2255 if (xa_zero_busy(xa)) 2256 xa_mark_clear(xa, XA_FREE_MARK); 2257 /* lockdep checks we're still holding the lock in xas_free_nodes() */ 2258 if (xa_is_node(entry)) 2259 xas_free_nodes(&xas, xa_to_node(entry)); 2260 xas_unlock_irqrestore(&xas, flags); 2261 } 2262 EXPORT_SYMBOL(xa_destroy); 2263 2264 #ifdef XA_DEBUG 2265 void xa_dump_node(const struct xa_node *node) 2266 { 2267 unsigned i, j; 2268 2269 if (!node) 2270 return; 2271 if ((unsigned long)node & 3) { 2272 pr_cont("node %px\n", node); 2273 return; 2274 } 2275 2276 pr_cont("node %px %s %d parent %px shift %d count %d values %d " 2277 "array %px list %px %px marks", 2278 node, node->parent ? "offset" : "max", node->offset, 2279 node->parent, node->shift, node->count, node->nr_values, 2280 node->array, node->private_list.prev, node->private_list.next); 2281 for (i = 0; i < XA_MAX_MARKS; i++) 2282 for (j = 0; j < XA_MARK_LONGS; j++) 2283 pr_cont(" %lx", node->marks[i][j]); 2284 pr_cont("\n"); 2285 } 2286 2287 void xa_dump_index(unsigned long index, unsigned int shift) 2288 { 2289 if (!shift) 2290 pr_info("%lu: ", index); 2291 else if (shift >= BITS_PER_LONG) 2292 pr_info("0-%lu: ", ~0UL); 2293 else 2294 pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1)); 2295 } 2296 2297 void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift) 2298 { 2299 if (!entry) 2300 return; 2301 2302 xa_dump_index(index, shift); 2303 2304 if (xa_is_node(entry)) { 2305 if (shift == 0) { 2306 pr_cont("%px\n", entry); 2307 } else { 2308 unsigned long i; 2309 struct xa_node *node = xa_to_node(entry); 2310 xa_dump_node(node); 2311 for (i = 0; i < XA_CHUNK_SIZE; i++) 2312 xa_dump_entry(node->slots[i], 2313 index + (i << node->shift), node->shift); 2314 } 2315 } else if (xa_is_value(entry)) 2316 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry), 2317 xa_to_value(entry), entry); 2318 else if (!xa_is_internal(entry)) 2319 pr_cont("%px\n", entry); 2320 else if (xa_is_retry(entry)) 2321 pr_cont("retry (%ld)\n", xa_to_internal(entry)); 2322 else if (xa_is_sibling(entry)) 2323 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry)); 2324 else if (xa_is_zero(entry)) 2325 pr_cont("zero (%ld)\n", xa_to_internal(entry)); 2326 else 2327 pr_cont("UNKNOWN ENTRY (%px)\n", entry); 2328 } 2329 2330 void xa_dump(const struct xarray *xa) 2331 { 2332 void *entry = xa->xa_head; 2333 unsigned int shift = 0; 2334 2335 pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry, 2336 xa->xa_flags, xa_marked(xa, XA_MARK_0), 2337 xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2)); 2338 if (xa_is_node(entry)) 2339 shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT; 2340 xa_dump_entry(entry, 0, shift); 2341 } 2342 #endif 2343