1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * IEEE 802.11 defines 4 * 5 * Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen 6 * <jkmaline@cc.hut.fi> 7 * Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi> 8 * Copyright (c) 2005, Devicescape Software, Inc. 9 * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net> 10 * Copyright (c) 2013 - 2014 Intel Mobile Communications GmbH 11 * Copyright (c) 2016 - 2017 Intel Deutschland GmbH 12 * Copyright (c) 2018 - 2025 Intel Corporation 13 */ 14 15 #ifndef LINUX_IEEE80211_H 16 #define LINUX_IEEE80211_H 17 18 #include <linux/types.h> 19 #include <linux/if_ether.h> 20 #include <linux/etherdevice.h> 21 #include <linux/bitfield.h> 22 #include <asm/byteorder.h> 23 #include <linux/unaligned.h> 24 25 /* 26 * DS bit usage 27 * 28 * TA = transmitter address 29 * RA = receiver address 30 * DA = destination address 31 * SA = source address 32 * 33 * ToDS FromDS A1(RA) A2(TA) A3 A4 Use 34 * ----------------------------------------------------------------- 35 * 0 0 DA SA BSSID - IBSS/DLS 36 * 0 1 DA BSSID SA - AP -> STA 37 * 1 0 BSSID SA DA - AP <- STA 38 * 1 1 RA TA DA SA unspecified (WDS) 39 */ 40 41 #define FCS_LEN 4 42 43 #define IEEE80211_FCTL_VERS 0x0003 44 #define IEEE80211_FCTL_FTYPE 0x000c 45 #define IEEE80211_FCTL_STYPE 0x00f0 46 #define IEEE80211_FCTL_TODS 0x0100 47 #define IEEE80211_FCTL_FROMDS 0x0200 48 #define IEEE80211_FCTL_MOREFRAGS 0x0400 49 #define IEEE80211_FCTL_RETRY 0x0800 50 #define IEEE80211_FCTL_PM 0x1000 51 #define IEEE80211_FCTL_MOREDATA 0x2000 52 #define IEEE80211_FCTL_PROTECTED 0x4000 53 #define IEEE80211_FCTL_ORDER 0x8000 54 #define IEEE80211_FCTL_CTL_EXT 0x0f00 55 56 #define IEEE80211_SCTL_FRAG 0x000F 57 #define IEEE80211_SCTL_SEQ 0xFFF0 58 59 #define IEEE80211_FTYPE_MGMT 0x0000 60 #define IEEE80211_FTYPE_CTL 0x0004 61 #define IEEE80211_FTYPE_DATA 0x0008 62 #define IEEE80211_FTYPE_EXT 0x000c 63 64 /* management */ 65 #define IEEE80211_STYPE_ASSOC_REQ 0x0000 66 #define IEEE80211_STYPE_ASSOC_RESP 0x0010 67 #define IEEE80211_STYPE_REASSOC_REQ 0x0020 68 #define IEEE80211_STYPE_REASSOC_RESP 0x0030 69 #define IEEE80211_STYPE_PROBE_REQ 0x0040 70 #define IEEE80211_STYPE_PROBE_RESP 0x0050 71 #define IEEE80211_STYPE_BEACON 0x0080 72 #define IEEE80211_STYPE_ATIM 0x0090 73 #define IEEE80211_STYPE_DISASSOC 0x00A0 74 #define IEEE80211_STYPE_AUTH 0x00B0 75 #define IEEE80211_STYPE_DEAUTH 0x00C0 76 #define IEEE80211_STYPE_ACTION 0x00D0 77 78 /* control */ 79 #define IEEE80211_STYPE_TRIGGER 0x0020 80 #define IEEE80211_STYPE_CTL_EXT 0x0060 81 #define IEEE80211_STYPE_BACK_REQ 0x0080 82 #define IEEE80211_STYPE_BACK 0x0090 83 #define IEEE80211_STYPE_PSPOLL 0x00A0 84 #define IEEE80211_STYPE_RTS 0x00B0 85 #define IEEE80211_STYPE_CTS 0x00C0 86 #define IEEE80211_STYPE_ACK 0x00D0 87 #define IEEE80211_STYPE_CFEND 0x00E0 88 #define IEEE80211_STYPE_CFENDACK 0x00F0 89 90 /* data */ 91 #define IEEE80211_STYPE_DATA 0x0000 92 #define IEEE80211_STYPE_DATA_CFACK 0x0010 93 #define IEEE80211_STYPE_DATA_CFPOLL 0x0020 94 #define IEEE80211_STYPE_DATA_CFACKPOLL 0x0030 95 #define IEEE80211_STYPE_NULLFUNC 0x0040 96 #define IEEE80211_STYPE_CFACK 0x0050 97 #define IEEE80211_STYPE_CFPOLL 0x0060 98 #define IEEE80211_STYPE_CFACKPOLL 0x0070 99 #define IEEE80211_STYPE_QOS_DATA 0x0080 100 #define IEEE80211_STYPE_QOS_DATA_CFACK 0x0090 101 #define IEEE80211_STYPE_QOS_DATA_CFPOLL 0x00A0 102 #define IEEE80211_STYPE_QOS_DATA_CFACKPOLL 0x00B0 103 #define IEEE80211_STYPE_QOS_NULLFUNC 0x00C0 104 #define IEEE80211_STYPE_QOS_CFACK 0x00D0 105 #define IEEE80211_STYPE_QOS_CFPOLL 0x00E0 106 #define IEEE80211_STYPE_QOS_CFACKPOLL 0x00F0 107 108 /* extension, added by 802.11ad */ 109 #define IEEE80211_STYPE_DMG_BEACON 0x0000 110 #define IEEE80211_STYPE_S1G_BEACON 0x0010 111 112 /* bits unique to S1G beacon */ 113 #define IEEE80211_S1G_BCN_NEXT_TBTT 0x100 114 #define IEEE80211_S1G_BCN_CSSID 0x200 115 #define IEEE80211_S1G_BCN_ANO 0x400 116 117 /* see 802.11ah-2016 9.9 NDP CMAC frames */ 118 #define IEEE80211_S1G_1MHZ_NDP_BITS 25 119 #define IEEE80211_S1G_1MHZ_NDP_BYTES 4 120 #define IEEE80211_S1G_2MHZ_NDP_BITS 37 121 #define IEEE80211_S1G_2MHZ_NDP_BYTES 5 122 123 #define IEEE80211_NDP_FTYPE_CTS 0 124 #define IEEE80211_NDP_FTYPE_CF_END 0 125 #define IEEE80211_NDP_FTYPE_PS_POLL 1 126 #define IEEE80211_NDP_FTYPE_ACK 2 127 #define IEEE80211_NDP_FTYPE_PS_POLL_ACK 3 128 #define IEEE80211_NDP_FTYPE_BA 4 129 #define IEEE80211_NDP_FTYPE_BF_REPORT_POLL 5 130 #define IEEE80211_NDP_FTYPE_PAGING 6 131 #define IEEE80211_NDP_FTYPE_PREQ 7 132 133 #define SM64(f, v) ((((u64)v) << f##_S) & f) 134 135 /* NDP CMAC frame fields */ 136 #define IEEE80211_NDP_FTYPE 0x0000000000000007 137 #define IEEE80211_NDP_FTYPE_S 0x0000000000000000 138 139 /* 1M Probe Request 11ah 9.9.3.1.1 */ 140 #define IEEE80211_NDP_1M_PREQ_ANO 0x0000000000000008 141 #define IEEE80211_NDP_1M_PREQ_ANO_S 3 142 #define IEEE80211_NDP_1M_PREQ_CSSID 0x00000000000FFFF0 143 #define IEEE80211_NDP_1M_PREQ_CSSID_S 4 144 #define IEEE80211_NDP_1M_PREQ_RTYPE 0x0000000000100000 145 #define IEEE80211_NDP_1M_PREQ_RTYPE_S 20 146 #define IEEE80211_NDP_1M_PREQ_RSV 0x0000000001E00000 147 #define IEEE80211_NDP_1M_PREQ_RSV 0x0000000001E00000 148 /* 2M Probe Request 11ah 9.9.3.1.2 */ 149 #define IEEE80211_NDP_2M_PREQ_ANO 0x0000000000000008 150 #define IEEE80211_NDP_2M_PREQ_ANO_S 3 151 #define IEEE80211_NDP_2M_PREQ_CSSID 0x0000000FFFFFFFF0 152 #define IEEE80211_NDP_2M_PREQ_CSSID_S 4 153 #define IEEE80211_NDP_2M_PREQ_RTYPE 0x0000001000000000 154 #define IEEE80211_NDP_2M_PREQ_RTYPE_S 36 155 156 #define IEEE80211_ANO_NETTYPE_WILD 15 157 158 /* control extension - for IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTL_EXT */ 159 #define IEEE80211_CTL_EXT_POLL 0x2000 160 #define IEEE80211_CTL_EXT_SPR 0x3000 161 #define IEEE80211_CTL_EXT_GRANT 0x4000 162 #define IEEE80211_CTL_EXT_DMG_CTS 0x5000 163 #define IEEE80211_CTL_EXT_DMG_DTS 0x6000 164 #define IEEE80211_CTL_EXT_SSW 0x8000 165 #define IEEE80211_CTL_EXT_SSW_FBACK 0x9000 166 #define IEEE80211_CTL_EXT_SSW_ACK 0xa000 167 168 169 #define IEEE80211_SN_MASK ((IEEE80211_SCTL_SEQ) >> 4) 170 #define IEEE80211_MAX_SN IEEE80211_SN_MASK 171 #define IEEE80211_SN_MODULO (IEEE80211_MAX_SN + 1) 172 173 174 /* PV1 Layout IEEE 802.11-2020 9.8.3.1 */ 175 #define IEEE80211_PV1_FCTL_VERS 0x0003 176 #define IEEE80211_PV1_FCTL_FTYPE 0x001c 177 #define IEEE80211_PV1_FCTL_STYPE 0x00e0 178 #define IEEE80211_PV1_FCTL_FROMDS 0x0100 179 #define IEEE80211_PV1_FCTL_MOREFRAGS 0x0200 180 #define IEEE80211_PV1_FCTL_PM 0x0400 181 #define IEEE80211_PV1_FCTL_MOREDATA 0x0800 182 #define IEEE80211_PV1_FCTL_PROTECTED 0x1000 183 #define IEEE80211_PV1_FCTL_END_SP 0x2000 184 #define IEEE80211_PV1_FCTL_RELAYED 0x4000 185 #define IEEE80211_PV1_FCTL_ACK_POLICY 0x8000 186 #define IEEE80211_PV1_FCTL_CTL_EXT 0x0f00 187 188 static inline bool ieee80211_sn_less(u16 sn1, u16 sn2) 189 { 190 return ((sn1 - sn2) & IEEE80211_SN_MASK) > (IEEE80211_SN_MODULO >> 1); 191 } 192 193 static inline bool ieee80211_sn_less_eq(u16 sn1, u16 sn2) 194 { 195 return ((sn2 - sn1) & IEEE80211_SN_MASK) <= (IEEE80211_SN_MODULO >> 1); 196 } 197 198 static inline u16 ieee80211_sn_add(u16 sn1, u16 sn2) 199 { 200 return (sn1 + sn2) & IEEE80211_SN_MASK; 201 } 202 203 static inline u16 ieee80211_sn_inc(u16 sn) 204 { 205 return ieee80211_sn_add(sn, 1); 206 } 207 208 static inline u16 ieee80211_sn_sub(u16 sn1, u16 sn2) 209 { 210 return (sn1 - sn2) & IEEE80211_SN_MASK; 211 } 212 213 #define IEEE80211_SEQ_TO_SN(seq) (((seq) & IEEE80211_SCTL_SEQ) >> 4) 214 #define IEEE80211_SN_TO_SEQ(ssn) (((ssn) << 4) & IEEE80211_SCTL_SEQ) 215 216 /* miscellaneous IEEE 802.11 constants */ 217 #define IEEE80211_MAX_FRAG_THRESHOLD 2352 218 #define IEEE80211_MAX_RTS_THRESHOLD 2353 219 #define IEEE80211_MAX_AID 2007 220 #define IEEE80211_MAX_AID_S1G 8191 221 #define IEEE80211_MAX_TIM_LEN 251 222 #define IEEE80211_MAX_MESH_PEERINGS 63 223 /* Maximum size for the MA-UNITDATA primitive, 802.11 standard section 224 6.2.1.1.2. 225 226 802.11e clarifies the figure in section 7.1.2. The frame body is 227 up to 2304 octets long (maximum MSDU size) plus any crypt overhead. */ 228 #define IEEE80211_MAX_DATA_LEN 2304 229 /* 802.11ad extends maximum MSDU size for DMG (freq > 40Ghz) networks 230 * to 7920 bytes, see 8.2.3 General frame format 231 */ 232 #define IEEE80211_MAX_DATA_LEN_DMG 7920 233 /* 30 byte 4 addr hdr, 2 byte QoS, 2304 byte MSDU, 12 byte crypt, 4 byte FCS */ 234 #define IEEE80211_MAX_FRAME_LEN 2352 235 236 /* Maximal size of an A-MSDU that can be transported in a HT BA session */ 237 #define IEEE80211_MAX_MPDU_LEN_HT_BA 4095 238 239 /* Maximal size of an A-MSDU */ 240 #define IEEE80211_MAX_MPDU_LEN_HT_3839 3839 241 #define IEEE80211_MAX_MPDU_LEN_HT_7935 7935 242 243 #define IEEE80211_MAX_MPDU_LEN_VHT_3895 3895 244 #define IEEE80211_MAX_MPDU_LEN_VHT_7991 7991 245 #define IEEE80211_MAX_MPDU_LEN_VHT_11454 11454 246 247 #define IEEE80211_MAX_SSID_LEN 32 248 249 #define IEEE80211_MAX_MESH_ID_LEN 32 250 251 #define IEEE80211_FIRST_TSPEC_TSID 8 252 #define IEEE80211_NUM_TIDS 16 253 254 /* number of user priorities 802.11 uses */ 255 #define IEEE80211_NUM_UPS 8 256 /* number of ACs */ 257 #define IEEE80211_NUM_ACS 4 258 259 #define IEEE80211_QOS_CTL_LEN 2 260 /* 1d tag mask */ 261 #define IEEE80211_QOS_CTL_TAG1D_MASK 0x0007 262 /* TID mask */ 263 #define IEEE80211_QOS_CTL_TID_MASK 0x000f 264 /* EOSP */ 265 #define IEEE80211_QOS_CTL_EOSP 0x0010 266 /* ACK policy */ 267 #define IEEE80211_QOS_CTL_ACK_POLICY_NORMAL 0x0000 268 #define IEEE80211_QOS_CTL_ACK_POLICY_NOACK 0x0020 269 #define IEEE80211_QOS_CTL_ACK_POLICY_NO_EXPL 0x0040 270 #define IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK 0x0060 271 #define IEEE80211_QOS_CTL_ACK_POLICY_MASK 0x0060 272 /* A-MSDU 802.11n */ 273 #define IEEE80211_QOS_CTL_A_MSDU_PRESENT 0x0080 274 /* Mesh Control 802.11s */ 275 #define IEEE80211_QOS_CTL_MESH_CONTROL_PRESENT 0x0100 276 277 /* Mesh Power Save Level */ 278 #define IEEE80211_QOS_CTL_MESH_PS_LEVEL 0x0200 279 /* Mesh Receiver Service Period Initiated */ 280 #define IEEE80211_QOS_CTL_RSPI 0x0400 281 282 /* U-APSD queue for WMM IEs sent by AP */ 283 #define IEEE80211_WMM_IE_AP_QOSINFO_UAPSD (1<<7) 284 #define IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK 0x0f 285 286 /* U-APSD queues for WMM IEs sent by STA */ 287 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VO (1<<0) 288 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VI (1<<1) 289 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BK (1<<2) 290 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BE (1<<3) 291 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_MASK 0x0f 292 293 /* U-APSD max SP length for WMM IEs sent by STA */ 294 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_ALL 0x00 295 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_2 0x01 296 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_4 0x02 297 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_6 0x03 298 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_MASK 0x03 299 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_SHIFT 5 300 301 #define IEEE80211_HT_CTL_LEN 4 302 303 /* trigger type within common_info of trigger frame */ 304 #define IEEE80211_TRIGGER_TYPE_MASK 0xf 305 #define IEEE80211_TRIGGER_TYPE_BASIC 0x0 306 #define IEEE80211_TRIGGER_TYPE_BFRP 0x1 307 #define IEEE80211_TRIGGER_TYPE_MU_BAR 0x2 308 #define IEEE80211_TRIGGER_TYPE_MU_RTS 0x3 309 #define IEEE80211_TRIGGER_TYPE_BSRP 0x4 310 #define IEEE80211_TRIGGER_TYPE_GCR_MU_BAR 0x5 311 #define IEEE80211_TRIGGER_TYPE_BQRP 0x6 312 #define IEEE80211_TRIGGER_TYPE_NFRP 0x7 313 314 /* UL-bandwidth within common_info of trigger frame */ 315 #define IEEE80211_TRIGGER_ULBW_MASK 0xc0000 316 #define IEEE80211_TRIGGER_ULBW_20MHZ 0x0 317 #define IEEE80211_TRIGGER_ULBW_40MHZ 0x1 318 #define IEEE80211_TRIGGER_ULBW_80MHZ 0x2 319 #define IEEE80211_TRIGGER_ULBW_160_80P80MHZ 0x3 320 321 struct ieee80211_hdr { 322 __le16 frame_control; 323 __le16 duration_id; 324 struct_group(addrs, 325 u8 addr1[ETH_ALEN]; 326 u8 addr2[ETH_ALEN]; 327 u8 addr3[ETH_ALEN]; 328 ); 329 __le16 seq_ctrl; 330 u8 addr4[ETH_ALEN]; 331 } __packed __aligned(2); 332 333 struct ieee80211_hdr_3addr { 334 __le16 frame_control; 335 __le16 duration_id; 336 u8 addr1[ETH_ALEN]; 337 u8 addr2[ETH_ALEN]; 338 u8 addr3[ETH_ALEN]; 339 __le16 seq_ctrl; 340 } __packed __aligned(2); 341 342 struct ieee80211_qos_hdr { 343 __le16 frame_control; 344 __le16 duration_id; 345 u8 addr1[ETH_ALEN]; 346 u8 addr2[ETH_ALEN]; 347 u8 addr3[ETH_ALEN]; 348 __le16 seq_ctrl; 349 __le16 qos_ctrl; 350 } __packed __aligned(2); 351 352 struct ieee80211_qos_hdr_4addr { 353 __le16 frame_control; 354 __le16 duration_id; 355 u8 addr1[ETH_ALEN]; 356 u8 addr2[ETH_ALEN]; 357 u8 addr3[ETH_ALEN]; 358 __le16 seq_ctrl; 359 u8 addr4[ETH_ALEN]; 360 __le16 qos_ctrl; 361 } __packed __aligned(2); 362 363 struct ieee80211_trigger { 364 __le16 frame_control; 365 __le16 duration; 366 u8 ra[ETH_ALEN]; 367 u8 ta[ETH_ALEN]; 368 __le64 common_info; 369 u8 variable[]; 370 } __packed __aligned(2); 371 372 /** 373 * ieee80211_has_tods - check if IEEE80211_FCTL_TODS is set 374 * @fc: frame control bytes in little-endian byteorder 375 * Return: whether or not the frame has to-DS set 376 */ 377 static inline bool ieee80211_has_tods(__le16 fc) 378 { 379 return (fc & cpu_to_le16(IEEE80211_FCTL_TODS)) != 0; 380 } 381 382 /** 383 * ieee80211_has_fromds - check if IEEE80211_FCTL_FROMDS is set 384 * @fc: frame control bytes in little-endian byteorder 385 * Return: whether or not the frame has from-DS set 386 */ 387 static inline bool ieee80211_has_fromds(__le16 fc) 388 { 389 return (fc & cpu_to_le16(IEEE80211_FCTL_FROMDS)) != 0; 390 } 391 392 /** 393 * ieee80211_has_a4 - check if IEEE80211_FCTL_TODS and IEEE80211_FCTL_FROMDS are set 394 * @fc: frame control bytes in little-endian byteorder 395 * Return: whether or not it's a 4-address frame (from-DS and to-DS set) 396 */ 397 static inline bool ieee80211_has_a4(__le16 fc) 398 { 399 __le16 tmp = cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS); 400 return (fc & tmp) == tmp; 401 } 402 403 /** 404 * ieee80211_has_morefrags - check if IEEE80211_FCTL_MOREFRAGS is set 405 * @fc: frame control bytes in little-endian byteorder 406 * Return: whether or not the frame has more fragments (more frags bit set) 407 */ 408 static inline bool ieee80211_has_morefrags(__le16 fc) 409 { 410 return (fc & cpu_to_le16(IEEE80211_FCTL_MOREFRAGS)) != 0; 411 } 412 413 /** 414 * ieee80211_has_retry - check if IEEE80211_FCTL_RETRY is set 415 * @fc: frame control bytes in little-endian byteorder 416 * Return: whether or not the retry flag is set 417 */ 418 static inline bool ieee80211_has_retry(__le16 fc) 419 { 420 return (fc & cpu_to_le16(IEEE80211_FCTL_RETRY)) != 0; 421 } 422 423 /** 424 * ieee80211_has_pm - check if IEEE80211_FCTL_PM is set 425 * @fc: frame control bytes in little-endian byteorder 426 * Return: whether or not the power management flag is set 427 */ 428 static inline bool ieee80211_has_pm(__le16 fc) 429 { 430 return (fc & cpu_to_le16(IEEE80211_FCTL_PM)) != 0; 431 } 432 433 /** 434 * ieee80211_has_moredata - check if IEEE80211_FCTL_MOREDATA is set 435 * @fc: frame control bytes in little-endian byteorder 436 * Return: whether or not the more data flag is set 437 */ 438 static inline bool ieee80211_has_moredata(__le16 fc) 439 { 440 return (fc & cpu_to_le16(IEEE80211_FCTL_MOREDATA)) != 0; 441 } 442 443 /** 444 * ieee80211_has_protected - check if IEEE80211_FCTL_PROTECTED is set 445 * @fc: frame control bytes in little-endian byteorder 446 * Return: whether or not the protected flag is set 447 */ 448 static inline bool ieee80211_has_protected(__le16 fc) 449 { 450 return (fc & cpu_to_le16(IEEE80211_FCTL_PROTECTED)) != 0; 451 } 452 453 /** 454 * ieee80211_has_order - check if IEEE80211_FCTL_ORDER is set 455 * @fc: frame control bytes in little-endian byteorder 456 * Return: whether or not the order flag is set 457 */ 458 static inline bool ieee80211_has_order(__le16 fc) 459 { 460 return (fc & cpu_to_le16(IEEE80211_FCTL_ORDER)) != 0; 461 } 462 463 /** 464 * ieee80211_is_mgmt - check if type is IEEE80211_FTYPE_MGMT 465 * @fc: frame control bytes in little-endian byteorder 466 * Return: whether or not the frame type is management 467 */ 468 static inline bool ieee80211_is_mgmt(__le16 fc) 469 { 470 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) == 471 cpu_to_le16(IEEE80211_FTYPE_MGMT); 472 } 473 474 /** 475 * ieee80211_is_ctl - check if type is IEEE80211_FTYPE_CTL 476 * @fc: frame control bytes in little-endian byteorder 477 * Return: whether or not the frame type is control 478 */ 479 static inline bool ieee80211_is_ctl(__le16 fc) 480 { 481 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) == 482 cpu_to_le16(IEEE80211_FTYPE_CTL); 483 } 484 485 /** 486 * ieee80211_is_data - check if type is IEEE80211_FTYPE_DATA 487 * @fc: frame control bytes in little-endian byteorder 488 * Return: whether or not the frame is a data frame 489 */ 490 static inline bool ieee80211_is_data(__le16 fc) 491 { 492 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) == 493 cpu_to_le16(IEEE80211_FTYPE_DATA); 494 } 495 496 /** 497 * ieee80211_is_ext - check if type is IEEE80211_FTYPE_EXT 498 * @fc: frame control bytes in little-endian byteorder 499 * Return: whether or not the frame type is extended 500 */ 501 static inline bool ieee80211_is_ext(__le16 fc) 502 { 503 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) == 504 cpu_to_le16(IEEE80211_FTYPE_EXT); 505 } 506 507 508 /** 509 * ieee80211_is_data_qos - check if type is IEEE80211_FTYPE_DATA and IEEE80211_STYPE_QOS_DATA is set 510 * @fc: frame control bytes in little-endian byteorder 511 * Return: whether or not the frame is a QoS data frame 512 */ 513 static inline bool ieee80211_is_data_qos(__le16 fc) 514 { 515 /* 516 * mask with QOS_DATA rather than IEEE80211_FCTL_STYPE as we just need 517 * to check the one bit 518 */ 519 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_STYPE_QOS_DATA)) == 520 cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_DATA); 521 } 522 523 /** 524 * ieee80211_is_data_present - check if type is IEEE80211_FTYPE_DATA and has data 525 * @fc: frame control bytes in little-endian byteorder 526 * Return: whether or not the frame is a QoS data frame that has data 527 * (i.e. is not null data) 528 */ 529 static inline bool ieee80211_is_data_present(__le16 fc) 530 { 531 /* 532 * mask with 0x40 and test that that bit is clear to only return true 533 * for the data-containing substypes. 534 */ 535 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | 0x40)) == 536 cpu_to_le16(IEEE80211_FTYPE_DATA); 537 } 538 539 /** 540 * ieee80211_is_assoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_REQ 541 * @fc: frame control bytes in little-endian byteorder 542 * Return: whether or not the frame is an association request 543 */ 544 static inline bool ieee80211_is_assoc_req(__le16 fc) 545 { 546 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 547 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_REQ); 548 } 549 550 /** 551 * ieee80211_is_assoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_RESP 552 * @fc: frame control bytes in little-endian byteorder 553 * Return: whether or not the frame is an association response 554 */ 555 static inline bool ieee80211_is_assoc_resp(__le16 fc) 556 { 557 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 558 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_RESP); 559 } 560 561 /** 562 * ieee80211_is_reassoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_REQ 563 * @fc: frame control bytes in little-endian byteorder 564 * Return: whether or not the frame is a reassociation request 565 */ 566 static inline bool ieee80211_is_reassoc_req(__le16 fc) 567 { 568 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 569 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_REQ); 570 } 571 572 /** 573 * ieee80211_is_reassoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_RESP 574 * @fc: frame control bytes in little-endian byteorder 575 * Return: whether or not the frame is a reassociation response 576 */ 577 static inline bool ieee80211_is_reassoc_resp(__le16 fc) 578 { 579 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 580 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_RESP); 581 } 582 583 /** 584 * ieee80211_is_probe_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_REQ 585 * @fc: frame control bytes in little-endian byteorder 586 * Return: whether or not the frame is a probe request 587 */ 588 static inline bool ieee80211_is_probe_req(__le16 fc) 589 { 590 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 591 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_REQ); 592 } 593 594 /** 595 * ieee80211_is_probe_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_RESP 596 * @fc: frame control bytes in little-endian byteorder 597 * Return: whether or not the frame is a probe response 598 */ 599 static inline bool ieee80211_is_probe_resp(__le16 fc) 600 { 601 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 602 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_RESP); 603 } 604 605 /** 606 * ieee80211_is_beacon - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_BEACON 607 * @fc: frame control bytes in little-endian byteorder 608 * Return: whether or not the frame is a (regular, not S1G) beacon 609 */ 610 static inline bool ieee80211_is_beacon(__le16 fc) 611 { 612 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 613 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON); 614 } 615 616 /** 617 * ieee80211_is_s1g_beacon - check if IEEE80211_FTYPE_EXT && 618 * IEEE80211_STYPE_S1G_BEACON 619 * @fc: frame control bytes in little-endian byteorder 620 * Return: whether or not the frame is an S1G beacon 621 */ 622 static inline bool ieee80211_is_s1g_beacon(__le16 fc) 623 { 624 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | 625 IEEE80211_FCTL_STYPE)) == 626 cpu_to_le16(IEEE80211_FTYPE_EXT | IEEE80211_STYPE_S1G_BEACON); 627 } 628 629 /** 630 * ieee80211_s1g_has_next_tbtt - check if IEEE80211_S1G_BCN_NEXT_TBTT 631 * @fc: frame control bytes in little-endian byteorder 632 * Return: whether or not the frame contains the variable-length 633 * next TBTT field 634 */ 635 static inline bool ieee80211_s1g_has_next_tbtt(__le16 fc) 636 { 637 return ieee80211_is_s1g_beacon(fc) && 638 (fc & cpu_to_le16(IEEE80211_S1G_BCN_NEXT_TBTT)); 639 } 640 641 /** 642 * ieee80211_s1g_has_ano - check if IEEE80211_S1G_BCN_ANO 643 * @fc: frame control bytes in little-endian byteorder 644 * Return: whether or not the frame contains the variable-length 645 * ANO field 646 */ 647 static inline bool ieee80211_s1g_has_ano(__le16 fc) 648 { 649 return ieee80211_is_s1g_beacon(fc) && 650 (fc & cpu_to_le16(IEEE80211_S1G_BCN_ANO)); 651 } 652 653 /** 654 * ieee80211_s1g_has_cssid - check if IEEE80211_S1G_BCN_CSSID 655 * @fc: frame control bytes in little-endian byteorder 656 * Return: whether or not the frame contains the variable-length 657 * compressed SSID field 658 */ 659 static inline bool ieee80211_s1g_has_cssid(__le16 fc) 660 { 661 return ieee80211_is_s1g_beacon(fc) && 662 (fc & cpu_to_le16(IEEE80211_S1G_BCN_CSSID)); 663 } 664 665 /** 666 * ieee80211_is_atim - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ATIM 667 * @fc: frame control bytes in little-endian byteorder 668 * Return: whether or not the frame is an ATIM frame 669 */ 670 static inline bool ieee80211_is_atim(__le16 fc) 671 { 672 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 673 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ATIM); 674 } 675 676 /** 677 * ieee80211_is_disassoc - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DISASSOC 678 * @fc: frame control bytes in little-endian byteorder 679 * Return: whether or not the frame is a disassociation frame 680 */ 681 static inline bool ieee80211_is_disassoc(__le16 fc) 682 { 683 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 684 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DISASSOC); 685 } 686 687 /** 688 * ieee80211_is_auth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_AUTH 689 * @fc: frame control bytes in little-endian byteorder 690 * Return: whether or not the frame is an authentication frame 691 */ 692 static inline bool ieee80211_is_auth(__le16 fc) 693 { 694 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 695 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_AUTH); 696 } 697 698 /** 699 * ieee80211_is_deauth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DEAUTH 700 * @fc: frame control bytes in little-endian byteorder 701 * Return: whether or not the frame is a deauthentication frame 702 */ 703 static inline bool ieee80211_is_deauth(__le16 fc) 704 { 705 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 706 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DEAUTH); 707 } 708 709 /** 710 * ieee80211_is_action - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ACTION 711 * @fc: frame control bytes in little-endian byteorder 712 * Return: whether or not the frame is an action frame 713 */ 714 static inline bool ieee80211_is_action(__le16 fc) 715 { 716 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 717 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); 718 } 719 720 /** 721 * ieee80211_is_back_req - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK_REQ 722 * @fc: frame control bytes in little-endian byteorder 723 * Return: whether or not the frame is a block-ACK request frame 724 */ 725 static inline bool ieee80211_is_back_req(__le16 fc) 726 { 727 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 728 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK_REQ); 729 } 730 731 /** 732 * ieee80211_is_back - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK 733 * @fc: frame control bytes in little-endian byteorder 734 * Return: whether or not the frame is a block-ACK frame 735 */ 736 static inline bool ieee80211_is_back(__le16 fc) 737 { 738 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 739 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK); 740 } 741 742 /** 743 * ieee80211_is_pspoll - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_PSPOLL 744 * @fc: frame control bytes in little-endian byteorder 745 * Return: whether or not the frame is a PS-poll frame 746 */ 747 static inline bool ieee80211_is_pspoll(__le16 fc) 748 { 749 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 750 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_PSPOLL); 751 } 752 753 /** 754 * ieee80211_is_rts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_RTS 755 * @fc: frame control bytes in little-endian byteorder 756 * Return: whether or not the frame is an RTS frame 757 */ 758 static inline bool ieee80211_is_rts(__le16 fc) 759 { 760 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 761 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS); 762 } 763 764 /** 765 * ieee80211_is_cts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CTS 766 * @fc: frame control bytes in little-endian byteorder 767 * Return: whether or not the frame is a CTS frame 768 */ 769 static inline bool ieee80211_is_cts(__le16 fc) 770 { 771 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 772 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS); 773 } 774 775 /** 776 * ieee80211_is_ack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_ACK 777 * @fc: frame control bytes in little-endian byteorder 778 * Return: whether or not the frame is an ACK frame 779 */ 780 static inline bool ieee80211_is_ack(__le16 fc) 781 { 782 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 783 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_ACK); 784 } 785 786 /** 787 * ieee80211_is_cfend - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFEND 788 * @fc: frame control bytes in little-endian byteorder 789 * Return: whether or not the frame is a CF-end frame 790 */ 791 static inline bool ieee80211_is_cfend(__le16 fc) 792 { 793 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 794 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFEND); 795 } 796 797 /** 798 * ieee80211_is_cfendack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFENDACK 799 * @fc: frame control bytes in little-endian byteorder 800 * Return: whether or not the frame is a CF-end-ack frame 801 */ 802 static inline bool ieee80211_is_cfendack(__le16 fc) 803 { 804 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 805 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFENDACK); 806 } 807 808 /** 809 * ieee80211_is_nullfunc - check if frame is a regular (non-QoS) nullfunc frame 810 * @fc: frame control bytes in little-endian byteorder 811 * Return: whether or not the frame is a nullfunc frame 812 */ 813 static inline bool ieee80211_is_nullfunc(__le16 fc) 814 { 815 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 816 cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC); 817 } 818 819 /** 820 * ieee80211_is_qos_nullfunc - check if frame is a QoS nullfunc frame 821 * @fc: frame control bytes in little-endian byteorder 822 * Return: whether or not the frame is a QoS nullfunc frame 823 */ 824 static inline bool ieee80211_is_qos_nullfunc(__le16 fc) 825 { 826 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 827 cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_NULLFUNC); 828 } 829 830 /** 831 * ieee80211_is_trigger - check if frame is trigger frame 832 * @fc: frame control field in little-endian byteorder 833 * Return: whether or not the frame is a trigger frame 834 */ 835 static inline bool ieee80211_is_trigger(__le16 fc) 836 { 837 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 838 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_TRIGGER); 839 } 840 841 /** 842 * ieee80211_is_any_nullfunc - check if frame is regular or QoS nullfunc frame 843 * @fc: frame control bytes in little-endian byteorder 844 * Return: whether or not the frame is a nullfunc or QoS nullfunc frame 845 */ 846 static inline bool ieee80211_is_any_nullfunc(__le16 fc) 847 { 848 return (ieee80211_is_nullfunc(fc) || ieee80211_is_qos_nullfunc(fc)); 849 } 850 851 /** 852 * ieee80211_is_first_frag - check if IEEE80211_SCTL_FRAG is not set 853 * @seq_ctrl: frame sequence control bytes in little-endian byteorder 854 * Return: whether or not the frame is the first fragment (also true if 855 * it's not fragmented at all) 856 */ 857 static inline bool ieee80211_is_first_frag(__le16 seq_ctrl) 858 { 859 return (seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG)) == 0; 860 } 861 862 /** 863 * ieee80211_is_frag - check if a frame is a fragment 864 * @hdr: 802.11 header of the frame 865 * Return: whether or not the frame is a fragment 866 */ 867 static inline bool ieee80211_is_frag(struct ieee80211_hdr *hdr) 868 { 869 return ieee80211_has_morefrags(hdr->frame_control) || 870 hdr->seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG); 871 } 872 873 static inline u16 ieee80211_get_sn(struct ieee80211_hdr *hdr) 874 { 875 return le16_get_bits(hdr->seq_ctrl, IEEE80211_SCTL_SEQ); 876 } 877 878 struct ieee80211s_hdr { 879 u8 flags; 880 u8 ttl; 881 __le32 seqnum; 882 u8 eaddr1[ETH_ALEN]; 883 u8 eaddr2[ETH_ALEN]; 884 } __packed __aligned(2); 885 886 /* Mesh flags */ 887 #define MESH_FLAGS_AE_A4 0x1 888 #define MESH_FLAGS_AE_A5_A6 0x2 889 #define MESH_FLAGS_AE 0x3 890 #define MESH_FLAGS_PS_DEEP 0x4 891 892 /** 893 * enum ieee80211_preq_flags - mesh PREQ element flags 894 * 895 * @IEEE80211_PREQ_PROACTIVE_PREP_FLAG: proactive PREP subfield 896 */ 897 enum ieee80211_preq_flags { 898 IEEE80211_PREQ_PROACTIVE_PREP_FLAG = 1<<2, 899 }; 900 901 /** 902 * enum ieee80211_preq_target_flags - mesh PREQ element per target flags 903 * 904 * @IEEE80211_PREQ_TO_FLAG: target only subfield 905 * @IEEE80211_PREQ_USN_FLAG: unknown target HWMP sequence number subfield 906 */ 907 enum ieee80211_preq_target_flags { 908 IEEE80211_PREQ_TO_FLAG = 1<<0, 909 IEEE80211_PREQ_USN_FLAG = 1<<2, 910 }; 911 912 /** 913 * struct ieee80211_quiet_ie - Quiet element 914 * @count: Quiet Count 915 * @period: Quiet Period 916 * @duration: Quiet Duration 917 * @offset: Quiet Offset 918 * 919 * This structure represents the payload of the "Quiet element" as 920 * described in IEEE Std 802.11-2020 section 9.4.2.22. 921 */ 922 struct ieee80211_quiet_ie { 923 u8 count; 924 u8 period; 925 __le16 duration; 926 __le16 offset; 927 } __packed; 928 929 /** 930 * struct ieee80211_msrment_ie - Measurement element 931 * @token: Measurement Token 932 * @mode: Measurement Report Mode 933 * @type: Measurement Type 934 * @request: Measurement Request or Measurement Report 935 * 936 * This structure represents the payload of both the "Measurement 937 * Request element" and the "Measurement Report element" as described 938 * in IEEE Std 802.11-2020 sections 9.4.2.20 and 9.4.2.21. 939 */ 940 struct ieee80211_msrment_ie { 941 u8 token; 942 u8 mode; 943 u8 type; 944 u8 request[]; 945 } __packed; 946 947 /** 948 * struct ieee80211_channel_sw_ie - Channel Switch Announcement element 949 * @mode: Channel Switch Mode 950 * @new_ch_num: New Channel Number 951 * @count: Channel Switch Count 952 * 953 * This structure represents the payload of the "Channel Switch 954 * Announcement element" as described in IEEE Std 802.11-2020 section 955 * 9.4.2.18. 956 */ 957 struct ieee80211_channel_sw_ie { 958 u8 mode; 959 u8 new_ch_num; 960 u8 count; 961 } __packed; 962 963 /** 964 * struct ieee80211_ext_chansw_ie - Extended Channel Switch Announcement element 965 * @mode: Channel Switch Mode 966 * @new_operating_class: New Operating Class 967 * @new_ch_num: New Channel Number 968 * @count: Channel Switch Count 969 * 970 * This structure represents the "Extended Channel Switch Announcement 971 * element" as described in IEEE Std 802.11-2020 section 9.4.2.52. 972 */ 973 struct ieee80211_ext_chansw_ie { 974 u8 mode; 975 u8 new_operating_class; 976 u8 new_ch_num; 977 u8 count; 978 } __packed; 979 980 /** 981 * struct ieee80211_sec_chan_offs_ie - secondary channel offset IE 982 * @sec_chan_offs: secondary channel offset, uses IEEE80211_HT_PARAM_CHA_SEC_* 983 * values here 984 * This structure represents the "Secondary Channel Offset element" 985 */ 986 struct ieee80211_sec_chan_offs_ie { 987 u8 sec_chan_offs; 988 } __packed; 989 990 /** 991 * struct ieee80211_mesh_chansw_params_ie - mesh channel switch parameters IE 992 * @mesh_ttl: Time To Live 993 * @mesh_flags: Flags 994 * @mesh_reason: Reason Code 995 * @mesh_pre_value: Precedence Value 996 * 997 * This structure represents the payload of the "Mesh Channel Switch 998 * Parameters element" as described in IEEE Std 802.11-2020 section 999 * 9.4.2.102. 1000 */ 1001 struct ieee80211_mesh_chansw_params_ie { 1002 u8 mesh_ttl; 1003 u8 mesh_flags; 1004 __le16 mesh_reason; 1005 __le16 mesh_pre_value; 1006 } __packed; 1007 1008 /** 1009 * struct ieee80211_wide_bw_chansw_ie - wide bandwidth channel switch IE 1010 * @new_channel_width: New Channel Width 1011 * @new_center_freq_seg0: New Channel Center Frequency Segment 0 1012 * @new_center_freq_seg1: New Channel Center Frequency Segment 1 1013 * 1014 * This structure represents the payload of the "Wide Bandwidth 1015 * Channel Switch element" as described in IEEE Std 802.11-2020 1016 * section 9.4.2.160. 1017 */ 1018 struct ieee80211_wide_bw_chansw_ie { 1019 u8 new_channel_width; 1020 u8 new_center_freq_seg0, new_center_freq_seg1; 1021 } __packed; 1022 1023 /** 1024 * struct ieee80211_tim_ie - Traffic Indication Map information element 1025 * @dtim_count: DTIM Count 1026 * @dtim_period: DTIM Period 1027 * @bitmap_ctrl: Bitmap Control 1028 * @required_octet: "Syntatic sugar" to force the struct size to the 1029 * minimum valid size when carried in a non-S1G PPDU 1030 * @virtual_map: Partial Virtual Bitmap 1031 * 1032 * This structure represents the payload of the "TIM element" as 1033 * described in IEEE Std 802.11-2020 section 9.4.2.5. Note that this 1034 * definition is only applicable when the element is carried in a 1035 * non-S1G PPDU. When the TIM is carried in an S1G PPDU, the Bitmap 1036 * Control and Partial Virtual Bitmap may not be present. 1037 */ 1038 struct ieee80211_tim_ie { 1039 u8 dtim_count; 1040 u8 dtim_period; 1041 u8 bitmap_ctrl; 1042 union { 1043 u8 required_octet; 1044 DECLARE_FLEX_ARRAY(u8, virtual_map); 1045 }; 1046 } __packed; 1047 1048 /** 1049 * struct ieee80211_meshconf_ie - Mesh Configuration element 1050 * @meshconf_psel: Active Path Selection Protocol Identifier 1051 * @meshconf_pmetric: Active Path Selection Metric Identifier 1052 * @meshconf_congest: Congestion Control Mode Identifier 1053 * @meshconf_synch: Synchronization Method Identifier 1054 * @meshconf_auth: Authentication Protocol Identifier 1055 * @meshconf_form: Mesh Formation Info 1056 * @meshconf_cap: Mesh Capability (see &enum mesh_config_capab_flags) 1057 * 1058 * This structure represents the payload of the "Mesh Configuration 1059 * element" as described in IEEE Std 802.11-2020 section 9.4.2.97. 1060 */ 1061 struct ieee80211_meshconf_ie { 1062 u8 meshconf_psel; 1063 u8 meshconf_pmetric; 1064 u8 meshconf_congest; 1065 u8 meshconf_synch; 1066 u8 meshconf_auth; 1067 u8 meshconf_form; 1068 u8 meshconf_cap; 1069 } __packed; 1070 1071 /** 1072 * enum mesh_config_capab_flags - Mesh Configuration IE capability field flags 1073 * 1074 * @IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS: STA is willing to establish 1075 * additional mesh peerings with other mesh STAs 1076 * @IEEE80211_MESHCONF_CAPAB_FORWARDING: the STA forwards MSDUs 1077 * @IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING: TBTT adjustment procedure 1078 * is ongoing 1079 * @IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL: STA is in deep sleep mode or has 1080 * neighbors in deep sleep mode 1081 * 1082 * Enumerates the "Mesh Capability" as described in IEEE Std 1083 * 802.11-2020 section 9.4.2.97.7. 1084 */ 1085 enum mesh_config_capab_flags { 1086 IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS = 0x01, 1087 IEEE80211_MESHCONF_CAPAB_FORWARDING = 0x08, 1088 IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING = 0x20, 1089 IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL = 0x40, 1090 }; 1091 1092 #define IEEE80211_MESHCONF_FORM_CONNECTED_TO_GATE 0x1 1093 1094 /* 1095 * mesh channel switch parameters element's flag indicator 1096 * 1097 */ 1098 #define WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT BIT(0) 1099 #define WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR BIT(1) 1100 #define WLAN_EID_CHAN_SWITCH_PARAM_REASON BIT(2) 1101 1102 /** 1103 * struct ieee80211_rann_ie - RANN (root announcement) element 1104 * @rann_flags: Flags 1105 * @rann_hopcount: Hop Count 1106 * @rann_ttl: Element TTL 1107 * @rann_addr: Root Mesh STA Address 1108 * @rann_seq: HWMP Sequence Number 1109 * @rann_interval: Interval 1110 * @rann_metric: Metric 1111 * 1112 * This structure represents the payload of the "RANN element" as 1113 * described in IEEE Std 802.11-2020 section 9.4.2.111. 1114 */ 1115 struct ieee80211_rann_ie { 1116 u8 rann_flags; 1117 u8 rann_hopcount; 1118 u8 rann_ttl; 1119 u8 rann_addr[ETH_ALEN]; 1120 __le32 rann_seq; 1121 __le32 rann_interval; 1122 __le32 rann_metric; 1123 } __packed; 1124 1125 enum ieee80211_rann_flags { 1126 RANN_FLAG_IS_GATE = 1 << 0, 1127 }; 1128 1129 enum ieee80211_ht_chanwidth_values { 1130 IEEE80211_HT_CHANWIDTH_20MHZ = 0, 1131 IEEE80211_HT_CHANWIDTH_ANY = 1, 1132 }; 1133 1134 /** 1135 * enum ieee80211_vht_opmode_bits - VHT operating mode field bits 1136 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK: channel width mask 1137 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ: 20 MHz channel width 1138 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ: 40 MHz channel width 1139 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ: 80 MHz channel width 1140 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ: 160 MHz or 80+80 MHz channel width 1141 * @IEEE80211_OPMODE_NOTIF_BW_160_80P80: 160 / 80+80 MHz indicator flag 1142 * @IEEE80211_OPMODE_NOTIF_RX_NSS_MASK: number of spatial streams mask 1143 * (the NSS value is the value of this field + 1) 1144 * @IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT: number of spatial streams shift 1145 * @IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF: indicates streams in SU-MIMO PPDU 1146 * using a beamforming steering matrix 1147 */ 1148 enum ieee80211_vht_opmode_bits { 1149 IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK = 0x03, 1150 IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ = 0, 1151 IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ = 1, 1152 IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ = 2, 1153 IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ = 3, 1154 IEEE80211_OPMODE_NOTIF_BW_160_80P80 = 0x04, 1155 IEEE80211_OPMODE_NOTIF_RX_NSS_MASK = 0x70, 1156 IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT = 4, 1157 IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF = 0x80, 1158 }; 1159 1160 /** 1161 * enum ieee80211_s1g_chanwidth - S1G channel widths 1162 * These are defined in IEEE802.11-2016ah Table 10-20 1163 * as BSS Channel Width 1164 * 1165 * @IEEE80211_S1G_CHANWIDTH_1MHZ: 1MHz operating channel 1166 * @IEEE80211_S1G_CHANWIDTH_2MHZ: 2MHz operating channel 1167 * @IEEE80211_S1G_CHANWIDTH_4MHZ: 4MHz operating channel 1168 * @IEEE80211_S1G_CHANWIDTH_8MHZ: 8MHz operating channel 1169 * @IEEE80211_S1G_CHANWIDTH_16MHZ: 16MHz operating channel 1170 */ 1171 enum ieee80211_s1g_chanwidth { 1172 IEEE80211_S1G_CHANWIDTH_1MHZ = 0, 1173 IEEE80211_S1G_CHANWIDTH_2MHZ = 1, 1174 IEEE80211_S1G_CHANWIDTH_4MHZ = 3, 1175 IEEE80211_S1G_CHANWIDTH_8MHZ = 7, 1176 IEEE80211_S1G_CHANWIDTH_16MHZ = 15, 1177 }; 1178 1179 #define WLAN_SA_QUERY_TR_ID_LEN 2 1180 #define WLAN_MEMBERSHIP_LEN 8 1181 #define WLAN_USER_POSITION_LEN 16 1182 1183 /** 1184 * struct ieee80211_tpc_report_ie - TPC Report element 1185 * @tx_power: Transmit Power 1186 * @link_margin: Link Margin 1187 * 1188 * This structure represents the payload of the "TPC Report element" as 1189 * described in IEEE Std 802.11-2020 section 9.4.2.16. 1190 */ 1191 struct ieee80211_tpc_report_ie { 1192 u8 tx_power; 1193 u8 link_margin; 1194 } __packed; 1195 1196 #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_MASK GENMASK(2, 1) 1197 #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_SHIFT 1 1198 #define IEEE80211_ADDBA_EXT_NO_FRAG BIT(0) 1199 #define IEEE80211_ADDBA_EXT_BUF_SIZE_MASK GENMASK(7, 5) 1200 #define IEEE80211_ADDBA_EXT_BUF_SIZE_SHIFT 10 1201 1202 struct ieee80211_addba_ext_ie { 1203 u8 data; 1204 } __packed; 1205 1206 /** 1207 * struct ieee80211_s1g_bcn_compat_ie - S1G Beacon Compatibility element 1208 * @compat_info: Compatibility Information 1209 * @beacon_int: Beacon Interval 1210 * @tsf_completion: TSF Completion 1211 * 1212 * This structure represents the payload of the "S1G Beacon 1213 * Compatibility element" as described in IEEE Std 802.11-2020 section 1214 * 9.4.2.196. 1215 */ 1216 struct ieee80211_s1g_bcn_compat_ie { 1217 __le16 compat_info; 1218 __le16 beacon_int; 1219 __le32 tsf_completion; 1220 } __packed; 1221 1222 /** 1223 * struct ieee80211_s1g_oper_ie - S1G Operation element 1224 * @ch_width: S1G Operation Information Channel Width 1225 * @oper_class: S1G Operation Information Operating Class 1226 * @primary_ch: S1G Operation Information Primary Channel Number 1227 * @oper_ch: S1G Operation Information Channel Center Frequency 1228 * @basic_mcs_nss: Basic S1G-MCS and NSS Set 1229 * 1230 * This structure represents the payload of the "S1G Operation 1231 * element" as described in IEEE Std 802.11-2020 section 9.4.2.212. 1232 */ 1233 struct ieee80211_s1g_oper_ie { 1234 u8 ch_width; 1235 u8 oper_class; 1236 u8 primary_ch; 1237 u8 oper_ch; 1238 __le16 basic_mcs_nss; 1239 } __packed; 1240 1241 /** 1242 * struct ieee80211_aid_response_ie - AID Response element 1243 * @aid: AID/Group AID 1244 * @switch_count: AID Switch Count 1245 * @response_int: AID Response Interval 1246 * 1247 * This structure represents the payload of the "AID Response element" 1248 * as described in IEEE Std 802.11-2020 section 9.4.2.194. 1249 */ 1250 struct ieee80211_aid_response_ie { 1251 __le16 aid; 1252 u8 switch_count; 1253 __le16 response_int; 1254 } __packed; 1255 1256 struct ieee80211_s1g_cap { 1257 u8 capab_info[10]; 1258 u8 supp_mcs_nss[5]; 1259 } __packed; 1260 1261 struct ieee80211_ext { 1262 __le16 frame_control; 1263 __le16 duration; 1264 union { 1265 struct { 1266 u8 sa[ETH_ALEN]; 1267 __le32 timestamp; 1268 u8 change_seq; 1269 u8 variable[]; 1270 } __packed s1g_beacon; 1271 } u; 1272 } __packed __aligned(2); 1273 1274 /** 1275 * ieee80211_s1g_optional_len - determine length of optional S1G beacon fields 1276 * @fc: frame control bytes in little-endian byteorder 1277 * Return: total length in bytes of the optional fixed-length fields 1278 * 1279 * S1G beacons may contain up to three optional fixed-length fields that 1280 * precede the variable-length elements. Whether these fields are present 1281 * is indicated by flags in the frame control field. 1282 * 1283 * From IEEE 802.11-2024 section 9.3.4.3: 1284 * - Next TBTT field may be 0 or 3 bytes 1285 * - Short SSID field may be 0 or 4 bytes 1286 * - Access Network Options (ANO) field may be 0 or 1 byte 1287 */ 1288 static inline size_t 1289 ieee80211_s1g_optional_len(__le16 fc) 1290 { 1291 size_t len = 0; 1292 1293 if (ieee80211_s1g_has_next_tbtt(fc)) 1294 len += 3; 1295 1296 if (ieee80211_s1g_has_cssid(fc)) 1297 len += 4; 1298 1299 if (ieee80211_s1g_has_ano(fc)) 1300 len += 1; 1301 1302 return len; 1303 } 1304 1305 #define IEEE80211_TWT_CONTROL_NDP BIT(0) 1306 #define IEEE80211_TWT_CONTROL_RESP_MODE BIT(1) 1307 #define IEEE80211_TWT_CONTROL_NEG_TYPE_BROADCAST BIT(3) 1308 #define IEEE80211_TWT_CONTROL_RX_DISABLED BIT(4) 1309 #define IEEE80211_TWT_CONTROL_WAKE_DUR_UNIT BIT(5) 1310 1311 #define IEEE80211_TWT_REQTYPE_REQUEST BIT(0) 1312 #define IEEE80211_TWT_REQTYPE_SETUP_CMD GENMASK(3, 1) 1313 #define IEEE80211_TWT_REQTYPE_TRIGGER BIT(4) 1314 #define IEEE80211_TWT_REQTYPE_IMPLICIT BIT(5) 1315 #define IEEE80211_TWT_REQTYPE_FLOWTYPE BIT(6) 1316 #define IEEE80211_TWT_REQTYPE_FLOWID GENMASK(9, 7) 1317 #define IEEE80211_TWT_REQTYPE_WAKE_INT_EXP GENMASK(14, 10) 1318 #define IEEE80211_TWT_REQTYPE_PROTECTION BIT(15) 1319 1320 enum ieee80211_twt_setup_cmd { 1321 TWT_SETUP_CMD_REQUEST, 1322 TWT_SETUP_CMD_SUGGEST, 1323 TWT_SETUP_CMD_DEMAND, 1324 TWT_SETUP_CMD_GROUPING, 1325 TWT_SETUP_CMD_ACCEPT, 1326 TWT_SETUP_CMD_ALTERNATE, 1327 TWT_SETUP_CMD_DICTATE, 1328 TWT_SETUP_CMD_REJECT, 1329 }; 1330 1331 struct ieee80211_twt_params { 1332 __le16 req_type; 1333 __le64 twt; 1334 u8 min_twt_dur; 1335 __le16 mantissa; 1336 u8 channel; 1337 } __packed; 1338 1339 struct ieee80211_twt_setup { 1340 u8 dialog_token; 1341 u8 element_id; 1342 u8 length; 1343 u8 control; 1344 u8 params[]; 1345 } __packed; 1346 1347 #define IEEE80211_TTLM_MAX_CNT 2 1348 #define IEEE80211_TTLM_CONTROL_DIRECTION 0x03 1349 #define IEEE80211_TTLM_CONTROL_DEF_LINK_MAP 0x04 1350 #define IEEE80211_TTLM_CONTROL_SWITCH_TIME_PRESENT 0x08 1351 #define IEEE80211_TTLM_CONTROL_EXPECTED_DUR_PRESENT 0x10 1352 #define IEEE80211_TTLM_CONTROL_LINK_MAP_SIZE 0x20 1353 1354 #define IEEE80211_TTLM_DIRECTION_DOWN 0 1355 #define IEEE80211_TTLM_DIRECTION_UP 1 1356 #define IEEE80211_TTLM_DIRECTION_BOTH 2 1357 1358 /** 1359 * struct ieee80211_ttlm_elem - TID-To-Link Mapping element 1360 * 1361 * Defined in section 9.4.2.314 in P802.11be_D4 1362 * 1363 * @control: the first part of control field 1364 * @optional: the second part of control field 1365 */ 1366 struct ieee80211_ttlm_elem { 1367 u8 control; 1368 u8 optional[]; 1369 } __packed; 1370 1371 /** 1372 * struct ieee80211_bss_load_elem - BSS Load elemen 1373 * 1374 * Defined in section 9.4.2.26 in IEEE 802.11-REVme D4.1 1375 * 1376 * @sta_count: total number of STAs currently associated with the AP. 1377 * @channel_util: Percentage of time that the access point sensed the channel 1378 * was busy. This value is in range [0, 255], the highest value means 1379 * 100% busy. 1380 * @avail_admission_capa: remaining amount of medium time used for admission 1381 * control. 1382 */ 1383 struct ieee80211_bss_load_elem { 1384 __le16 sta_count; 1385 u8 channel_util; 1386 __le16 avail_admission_capa; 1387 } __packed; 1388 1389 struct ieee80211_mgmt { 1390 __le16 frame_control; 1391 __le16 duration; 1392 u8 da[ETH_ALEN]; 1393 u8 sa[ETH_ALEN]; 1394 u8 bssid[ETH_ALEN]; 1395 __le16 seq_ctrl; 1396 union { 1397 struct { 1398 __le16 auth_alg; 1399 __le16 auth_transaction; 1400 __le16 status_code; 1401 /* possibly followed by Challenge text */ 1402 u8 variable[]; 1403 } __packed auth; 1404 struct { 1405 __le16 reason_code; 1406 } __packed deauth; 1407 struct { 1408 __le16 capab_info; 1409 __le16 listen_interval; 1410 /* followed by SSID and Supported rates */ 1411 u8 variable[]; 1412 } __packed assoc_req; 1413 struct { 1414 __le16 capab_info; 1415 __le16 status_code; 1416 __le16 aid; 1417 /* followed by Supported rates */ 1418 u8 variable[]; 1419 } __packed assoc_resp, reassoc_resp; 1420 struct { 1421 __le16 capab_info; 1422 __le16 status_code; 1423 u8 variable[]; 1424 } __packed s1g_assoc_resp, s1g_reassoc_resp; 1425 struct { 1426 __le16 capab_info; 1427 __le16 listen_interval; 1428 u8 current_ap[ETH_ALEN]; 1429 /* followed by SSID and Supported rates */ 1430 u8 variable[]; 1431 } __packed reassoc_req; 1432 struct { 1433 __le16 reason_code; 1434 } __packed disassoc; 1435 struct { 1436 __le64 timestamp; 1437 __le16 beacon_int; 1438 __le16 capab_info; 1439 /* followed by some of SSID, Supported rates, 1440 * FH Params, DS Params, CF Params, IBSS Params, TIM */ 1441 u8 variable[]; 1442 } __packed beacon; 1443 struct { 1444 /* only variable items: SSID, Supported rates */ 1445 DECLARE_FLEX_ARRAY(u8, variable); 1446 } __packed probe_req; 1447 struct { 1448 __le64 timestamp; 1449 __le16 beacon_int; 1450 __le16 capab_info; 1451 /* followed by some of SSID, Supported rates, 1452 * FH Params, DS Params, CF Params, IBSS Params */ 1453 u8 variable[]; 1454 } __packed probe_resp; 1455 struct { 1456 u8 category; 1457 union { 1458 struct { 1459 u8 action_code; 1460 u8 dialog_token; 1461 u8 status_code; 1462 u8 variable[]; 1463 } __packed wme_action; 1464 struct{ 1465 u8 action_code; 1466 u8 variable[]; 1467 } __packed chan_switch; 1468 struct{ 1469 u8 action_code; 1470 struct ieee80211_ext_chansw_ie data; 1471 u8 variable[]; 1472 } __packed ext_chan_switch; 1473 struct{ 1474 u8 action_code; 1475 u8 dialog_token; 1476 u8 element_id; 1477 u8 length; 1478 struct ieee80211_msrment_ie msr_elem; 1479 } __packed measurement; 1480 struct{ 1481 u8 action_code; 1482 u8 dialog_token; 1483 __le16 capab; 1484 __le16 timeout; 1485 __le16 start_seq_num; 1486 /* followed by BA Extension */ 1487 u8 variable[]; 1488 } __packed addba_req; 1489 struct{ 1490 u8 action_code; 1491 u8 dialog_token; 1492 __le16 status; 1493 __le16 capab; 1494 __le16 timeout; 1495 /* followed by BA Extension */ 1496 u8 variable[]; 1497 } __packed addba_resp; 1498 struct{ 1499 u8 action_code; 1500 __le16 params; 1501 __le16 reason_code; 1502 } __packed delba; 1503 struct { 1504 u8 action_code; 1505 u8 variable[]; 1506 } __packed self_prot; 1507 struct{ 1508 u8 action_code; 1509 u8 variable[]; 1510 } __packed mesh_action; 1511 struct { 1512 u8 action; 1513 u8 trans_id[WLAN_SA_QUERY_TR_ID_LEN]; 1514 } __packed sa_query; 1515 struct { 1516 u8 action; 1517 u8 smps_control; 1518 } __packed ht_smps; 1519 struct { 1520 u8 action_code; 1521 u8 chanwidth; 1522 } __packed ht_notify_cw; 1523 struct { 1524 u8 action_code; 1525 u8 dialog_token; 1526 __le16 capability; 1527 u8 variable[]; 1528 } __packed tdls_discover_resp; 1529 struct { 1530 u8 action_code; 1531 u8 operating_mode; 1532 } __packed vht_opmode_notif; 1533 struct { 1534 u8 action_code; 1535 u8 membership[WLAN_MEMBERSHIP_LEN]; 1536 u8 position[WLAN_USER_POSITION_LEN]; 1537 } __packed vht_group_notif; 1538 struct { 1539 u8 action_code; 1540 u8 dialog_token; 1541 u8 tpc_elem_id; 1542 u8 tpc_elem_length; 1543 struct ieee80211_tpc_report_ie tpc; 1544 } __packed tpc_report; 1545 struct { 1546 u8 action_code; 1547 u8 dialog_token; 1548 u8 follow_up; 1549 u8 tod[6]; 1550 u8 toa[6]; 1551 __le16 tod_error; 1552 __le16 toa_error; 1553 u8 variable[]; 1554 } __packed ftm; 1555 struct { 1556 u8 action_code; 1557 u8 variable[]; 1558 } __packed s1g; 1559 struct { 1560 u8 action_code; 1561 u8 dialog_token; 1562 u8 follow_up; 1563 u32 tod; 1564 u32 toa; 1565 u8 max_tod_error; 1566 u8 max_toa_error; 1567 } __packed wnm_timing_msr; 1568 struct { 1569 u8 action_code; 1570 u8 dialog_token; 1571 u8 variable[]; 1572 } __packed ttlm_req; 1573 struct { 1574 u8 action_code; 1575 u8 dialog_token; 1576 __le16 status_code; 1577 u8 variable[]; 1578 } __packed ttlm_res; 1579 struct { 1580 u8 action_code; 1581 } __packed ttlm_tear_down; 1582 struct { 1583 u8 action_code; 1584 u8 dialog_token; 1585 u8 variable[]; 1586 } __packed ml_reconf_req; 1587 struct { 1588 u8 action_code; 1589 u8 dialog_token; 1590 u8 count; 1591 u8 variable[]; 1592 } __packed ml_reconf_resp; 1593 struct { 1594 u8 action_code; 1595 u8 variable[]; 1596 } __packed epcs; 1597 } u; 1598 } __packed action; 1599 DECLARE_FLEX_ARRAY(u8, body); /* Generic frame body */ 1600 } u; 1601 } __packed __aligned(2); 1602 1603 /* Supported rates membership selectors */ 1604 #define BSS_MEMBERSHIP_SELECTOR_HT_PHY 127 1605 #define BSS_MEMBERSHIP_SELECTOR_VHT_PHY 126 1606 #define BSS_MEMBERSHIP_SELECTOR_GLK 125 1607 #define BSS_MEMBERSHIP_SELECTOR_EPD 124 1608 #define BSS_MEMBERSHIP_SELECTOR_SAE_H2E 123 1609 #define BSS_MEMBERSHIP_SELECTOR_HE_PHY 122 1610 #define BSS_MEMBERSHIP_SELECTOR_EHT_PHY 121 1611 1612 #define BSS_MEMBERSHIP_SELECTOR_MIN BSS_MEMBERSHIP_SELECTOR_EHT_PHY 1613 1614 /* mgmt header + 1 byte category code */ 1615 #define IEEE80211_MIN_ACTION_SIZE offsetof(struct ieee80211_mgmt, u.action.u) 1616 1617 1618 /* Management MIC information element (IEEE 802.11w) */ 1619 struct ieee80211_mmie { 1620 u8 element_id; 1621 u8 length; 1622 __le16 key_id; 1623 u8 sequence_number[6]; 1624 u8 mic[8]; 1625 } __packed; 1626 1627 /* Management MIC information element (IEEE 802.11w) for GMAC and CMAC-256 */ 1628 struct ieee80211_mmie_16 { 1629 u8 element_id; 1630 u8 length; 1631 __le16 key_id; 1632 u8 sequence_number[6]; 1633 u8 mic[16]; 1634 } __packed; 1635 1636 struct ieee80211_vendor_ie { 1637 u8 element_id; 1638 u8 len; 1639 u8 oui[3]; 1640 u8 oui_type; 1641 } __packed; 1642 1643 struct ieee80211_wmm_ac_param { 1644 u8 aci_aifsn; /* AIFSN, ACM, ACI */ 1645 u8 cw; /* ECWmin, ECWmax (CW = 2^ECW - 1) */ 1646 __le16 txop_limit; 1647 } __packed; 1648 1649 struct ieee80211_wmm_param_ie { 1650 u8 element_id; /* Element ID: 221 (0xdd); */ 1651 u8 len; /* Length: 24 */ 1652 /* required fields for WMM version 1 */ 1653 u8 oui[3]; /* 00:50:f2 */ 1654 u8 oui_type; /* 2 */ 1655 u8 oui_subtype; /* 1 */ 1656 u8 version; /* 1 for WMM version 1.0 */ 1657 u8 qos_info; /* AP/STA specific QoS info */ 1658 u8 reserved; /* 0 */ 1659 /* AC_BE, AC_BK, AC_VI, AC_VO */ 1660 struct ieee80211_wmm_ac_param ac[4]; 1661 } __packed; 1662 1663 /* Control frames */ 1664 struct ieee80211_rts { 1665 __le16 frame_control; 1666 __le16 duration; 1667 u8 ra[ETH_ALEN]; 1668 u8 ta[ETH_ALEN]; 1669 } __packed __aligned(2); 1670 1671 struct ieee80211_cts { 1672 __le16 frame_control; 1673 __le16 duration; 1674 u8 ra[ETH_ALEN]; 1675 } __packed __aligned(2); 1676 1677 struct ieee80211_pspoll { 1678 __le16 frame_control; 1679 __le16 aid; 1680 u8 bssid[ETH_ALEN]; 1681 u8 ta[ETH_ALEN]; 1682 } __packed __aligned(2); 1683 1684 /* TDLS */ 1685 1686 /* Channel switch timing */ 1687 struct ieee80211_ch_switch_timing { 1688 __le16 switch_time; 1689 __le16 switch_timeout; 1690 } __packed; 1691 1692 /* Link-id information element */ 1693 struct ieee80211_tdls_lnkie { 1694 u8 ie_type; /* Link Identifier IE */ 1695 u8 ie_len; 1696 u8 bssid[ETH_ALEN]; 1697 u8 init_sta[ETH_ALEN]; 1698 u8 resp_sta[ETH_ALEN]; 1699 } __packed; 1700 1701 struct ieee80211_tdls_data { 1702 u8 da[ETH_ALEN]; 1703 u8 sa[ETH_ALEN]; 1704 __be16 ether_type; 1705 u8 payload_type; 1706 u8 category; 1707 u8 action_code; 1708 union { 1709 struct { 1710 u8 dialog_token; 1711 __le16 capability; 1712 u8 variable[]; 1713 } __packed setup_req; 1714 struct { 1715 __le16 status_code; 1716 u8 dialog_token; 1717 __le16 capability; 1718 u8 variable[]; 1719 } __packed setup_resp; 1720 struct { 1721 __le16 status_code; 1722 u8 dialog_token; 1723 u8 variable[]; 1724 } __packed setup_cfm; 1725 struct { 1726 __le16 reason_code; 1727 u8 variable[]; 1728 } __packed teardown; 1729 struct { 1730 u8 dialog_token; 1731 u8 variable[]; 1732 } __packed discover_req; 1733 struct { 1734 u8 target_channel; 1735 u8 oper_class; 1736 u8 variable[]; 1737 } __packed chan_switch_req; 1738 struct { 1739 __le16 status_code; 1740 u8 variable[]; 1741 } __packed chan_switch_resp; 1742 } u; 1743 } __packed; 1744 1745 /* 1746 * Peer-to-Peer IE attribute related definitions. 1747 */ 1748 /* 1749 * enum ieee80211_p2p_attr_id - identifies type of peer-to-peer attribute. 1750 */ 1751 enum ieee80211_p2p_attr_id { 1752 IEEE80211_P2P_ATTR_STATUS = 0, 1753 IEEE80211_P2P_ATTR_MINOR_REASON, 1754 IEEE80211_P2P_ATTR_CAPABILITY, 1755 IEEE80211_P2P_ATTR_DEVICE_ID, 1756 IEEE80211_P2P_ATTR_GO_INTENT, 1757 IEEE80211_P2P_ATTR_GO_CONFIG_TIMEOUT, 1758 IEEE80211_P2P_ATTR_LISTEN_CHANNEL, 1759 IEEE80211_P2P_ATTR_GROUP_BSSID, 1760 IEEE80211_P2P_ATTR_EXT_LISTEN_TIMING, 1761 IEEE80211_P2P_ATTR_INTENDED_IFACE_ADDR, 1762 IEEE80211_P2P_ATTR_MANAGABILITY, 1763 IEEE80211_P2P_ATTR_CHANNEL_LIST, 1764 IEEE80211_P2P_ATTR_ABSENCE_NOTICE, 1765 IEEE80211_P2P_ATTR_DEVICE_INFO, 1766 IEEE80211_P2P_ATTR_GROUP_INFO, 1767 IEEE80211_P2P_ATTR_GROUP_ID, 1768 IEEE80211_P2P_ATTR_INTERFACE, 1769 IEEE80211_P2P_ATTR_OPER_CHANNEL, 1770 IEEE80211_P2P_ATTR_INVITE_FLAGS, 1771 /* 19 - 220: Reserved */ 1772 IEEE80211_P2P_ATTR_VENDOR_SPECIFIC = 221, 1773 1774 IEEE80211_P2P_ATTR_MAX 1775 }; 1776 1777 /* Notice of Absence attribute - described in P2P spec 4.1.14 */ 1778 /* Typical max value used here */ 1779 #define IEEE80211_P2P_NOA_DESC_MAX 4 1780 1781 struct ieee80211_p2p_noa_desc { 1782 u8 count; 1783 __le32 duration; 1784 __le32 interval; 1785 __le32 start_time; 1786 } __packed; 1787 1788 struct ieee80211_p2p_noa_attr { 1789 u8 index; 1790 u8 oppps_ctwindow; 1791 struct ieee80211_p2p_noa_desc desc[IEEE80211_P2P_NOA_DESC_MAX]; 1792 } __packed; 1793 1794 #define IEEE80211_P2P_OPPPS_ENABLE_BIT BIT(7) 1795 #define IEEE80211_P2P_OPPPS_CTWINDOW_MASK 0x7F 1796 1797 /** 1798 * struct ieee80211_bar - Block Ack Request frame format 1799 * @frame_control: Frame Control 1800 * @duration: Duration 1801 * @ra: RA 1802 * @ta: TA 1803 * @control: BAR Control 1804 * @start_seq_num: Starting Sequence Number (see Figure 9-37) 1805 * 1806 * This structure represents the "BlockAckReq frame format" 1807 * as described in IEEE Std 802.11-2020 section 9.3.1.7. 1808 */ 1809 struct ieee80211_bar { 1810 __le16 frame_control; 1811 __le16 duration; 1812 __u8 ra[ETH_ALEN]; 1813 __u8 ta[ETH_ALEN]; 1814 __le16 control; 1815 __le16 start_seq_num; 1816 } __packed; 1817 1818 /* 802.11 BAR control masks */ 1819 #define IEEE80211_BAR_CTRL_ACK_POLICY_NORMAL 0x0000 1820 #define IEEE80211_BAR_CTRL_MULTI_TID 0x0002 1821 #define IEEE80211_BAR_CTRL_CBMTID_COMPRESSED_BA 0x0004 1822 #define IEEE80211_BAR_CTRL_TID_INFO_MASK 0xf000 1823 #define IEEE80211_BAR_CTRL_TID_INFO_SHIFT 12 1824 1825 #define IEEE80211_HT_MCS_MASK_LEN 10 1826 1827 /** 1828 * struct ieee80211_mcs_info - Supported MCS Set field 1829 * @rx_mask: RX mask 1830 * @rx_highest: highest supported RX rate. If set represents 1831 * the highest supported RX data rate in units of 1 Mbps. 1832 * If this field is 0 this value should not be used to 1833 * consider the highest RX data rate supported. 1834 * @tx_params: TX parameters 1835 * @reserved: Reserved bits 1836 * 1837 * This structure represents the "Supported MCS Set field" as 1838 * described in IEEE Std 802.11-2020 section 9.4.2.55.4. 1839 */ 1840 struct ieee80211_mcs_info { 1841 u8 rx_mask[IEEE80211_HT_MCS_MASK_LEN]; 1842 __le16 rx_highest; 1843 u8 tx_params; 1844 u8 reserved[3]; 1845 } __packed; 1846 1847 /* 802.11n HT capability MSC set */ 1848 #define IEEE80211_HT_MCS_RX_HIGHEST_MASK 0x3ff 1849 #define IEEE80211_HT_MCS_TX_DEFINED 0x01 1850 #define IEEE80211_HT_MCS_TX_RX_DIFF 0x02 1851 /* value 0 == 1 stream etc */ 1852 #define IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK 0x0C 1853 #define IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT 2 1854 #define IEEE80211_HT_MCS_TX_MAX_STREAMS 4 1855 #define IEEE80211_HT_MCS_TX_UNEQUAL_MODULATION 0x10 1856 1857 #define IEEE80211_HT_MCS_CHAINS(mcs) ((mcs) == 32 ? 1 : (1 + ((mcs) >> 3))) 1858 1859 /* 1860 * 802.11n D5.0 20.3.5 / 20.6 says: 1861 * - indices 0 to 7 and 32 are single spatial stream 1862 * - 8 to 31 are multiple spatial streams using equal modulation 1863 * [8..15 for two streams, 16..23 for three and 24..31 for four] 1864 * - remainder are multiple spatial streams using unequal modulation 1865 */ 1866 #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START 33 1867 #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START_BYTE \ 1868 (IEEE80211_HT_MCS_UNEQUAL_MODULATION_START / 8) 1869 1870 /** 1871 * struct ieee80211_ht_cap - HT capabilities element 1872 * @cap_info: HT Capability Information 1873 * @ampdu_params_info: A-MPDU Parameters 1874 * @mcs: Supported MCS Set 1875 * @extended_ht_cap_info: HT Extended Capabilities 1876 * @tx_BF_cap_info: Transmit Beamforming Capabilities 1877 * @antenna_selection_info: ASEL Capability 1878 * 1879 * This structure represents the payload of the "HT Capabilities 1880 * element" as described in IEEE Std 802.11-2020 section 9.4.2.55. 1881 */ 1882 struct ieee80211_ht_cap { 1883 __le16 cap_info; 1884 u8 ampdu_params_info; 1885 1886 /* 16 bytes MCS information */ 1887 struct ieee80211_mcs_info mcs; 1888 1889 __le16 extended_ht_cap_info; 1890 __le32 tx_BF_cap_info; 1891 u8 antenna_selection_info; 1892 } __packed; 1893 1894 /* 802.11n HT capabilities masks (for cap_info) */ 1895 #define IEEE80211_HT_CAP_LDPC_CODING 0x0001 1896 #define IEEE80211_HT_CAP_SUP_WIDTH_20_40 0x0002 1897 #define IEEE80211_HT_CAP_SM_PS 0x000C 1898 #define IEEE80211_HT_CAP_SM_PS_SHIFT 2 1899 #define IEEE80211_HT_CAP_GRN_FLD 0x0010 1900 #define IEEE80211_HT_CAP_SGI_20 0x0020 1901 #define IEEE80211_HT_CAP_SGI_40 0x0040 1902 #define IEEE80211_HT_CAP_TX_STBC 0x0080 1903 #define IEEE80211_HT_CAP_RX_STBC 0x0300 1904 #define IEEE80211_HT_CAP_RX_STBC_SHIFT 8 1905 #define IEEE80211_HT_CAP_DELAY_BA 0x0400 1906 #define IEEE80211_HT_CAP_MAX_AMSDU 0x0800 1907 #define IEEE80211_HT_CAP_DSSSCCK40 0x1000 1908 #define IEEE80211_HT_CAP_RESERVED 0x2000 1909 #define IEEE80211_HT_CAP_40MHZ_INTOLERANT 0x4000 1910 #define IEEE80211_HT_CAP_LSIG_TXOP_PROT 0x8000 1911 1912 /* 802.11n HT extended capabilities masks (for extended_ht_cap_info) */ 1913 #define IEEE80211_HT_EXT_CAP_PCO 0x0001 1914 #define IEEE80211_HT_EXT_CAP_PCO_TIME 0x0006 1915 #define IEEE80211_HT_EXT_CAP_PCO_TIME_SHIFT 1 1916 #define IEEE80211_HT_EXT_CAP_MCS_FB 0x0300 1917 #define IEEE80211_HT_EXT_CAP_MCS_FB_SHIFT 8 1918 #define IEEE80211_HT_EXT_CAP_HTC_SUP 0x0400 1919 #define IEEE80211_HT_EXT_CAP_RD_RESPONDER 0x0800 1920 1921 /* 802.11n HT capability AMPDU settings (for ampdu_params_info) */ 1922 #define IEEE80211_HT_AMPDU_PARM_FACTOR 0x03 1923 #define IEEE80211_HT_AMPDU_PARM_DENSITY 0x1C 1924 #define IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT 2 1925 1926 /* 1927 * Maximum length of AMPDU that the STA can receive in high-throughput (HT). 1928 * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets) 1929 */ 1930 enum ieee80211_max_ampdu_length_exp { 1931 IEEE80211_HT_MAX_AMPDU_8K = 0, 1932 IEEE80211_HT_MAX_AMPDU_16K = 1, 1933 IEEE80211_HT_MAX_AMPDU_32K = 2, 1934 IEEE80211_HT_MAX_AMPDU_64K = 3 1935 }; 1936 1937 /* 1938 * Maximum length of AMPDU that the STA can receive in VHT. 1939 * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets) 1940 */ 1941 enum ieee80211_vht_max_ampdu_length_exp { 1942 IEEE80211_VHT_MAX_AMPDU_8K = 0, 1943 IEEE80211_VHT_MAX_AMPDU_16K = 1, 1944 IEEE80211_VHT_MAX_AMPDU_32K = 2, 1945 IEEE80211_VHT_MAX_AMPDU_64K = 3, 1946 IEEE80211_VHT_MAX_AMPDU_128K = 4, 1947 IEEE80211_VHT_MAX_AMPDU_256K = 5, 1948 IEEE80211_VHT_MAX_AMPDU_512K = 6, 1949 IEEE80211_VHT_MAX_AMPDU_1024K = 7 1950 }; 1951 1952 #define IEEE80211_HT_MAX_AMPDU_FACTOR 13 1953 1954 /* Minimum MPDU start spacing */ 1955 enum ieee80211_min_mpdu_spacing { 1956 IEEE80211_HT_MPDU_DENSITY_NONE = 0, /* No restriction */ 1957 IEEE80211_HT_MPDU_DENSITY_0_25 = 1, /* 1/4 usec */ 1958 IEEE80211_HT_MPDU_DENSITY_0_5 = 2, /* 1/2 usec */ 1959 IEEE80211_HT_MPDU_DENSITY_1 = 3, /* 1 usec */ 1960 IEEE80211_HT_MPDU_DENSITY_2 = 4, /* 2 usec */ 1961 IEEE80211_HT_MPDU_DENSITY_4 = 5, /* 4 usec */ 1962 IEEE80211_HT_MPDU_DENSITY_8 = 6, /* 8 usec */ 1963 IEEE80211_HT_MPDU_DENSITY_16 = 7 /* 16 usec */ 1964 }; 1965 1966 /** 1967 * struct ieee80211_ht_operation - HT operation IE 1968 * @primary_chan: Primary Channel 1969 * @ht_param: HT Operation Information parameters 1970 * @operation_mode: HT Operation Information operation mode 1971 * @stbc_param: HT Operation Information STBC params 1972 * @basic_set: Basic HT-MCS Set 1973 * 1974 * This structure represents the payload of the "HT Operation 1975 * element" as described in IEEE Std 802.11-2020 section 9.4.2.56. 1976 */ 1977 struct ieee80211_ht_operation { 1978 u8 primary_chan; 1979 u8 ht_param; 1980 __le16 operation_mode; 1981 __le16 stbc_param; 1982 u8 basic_set[16]; 1983 } __packed; 1984 1985 /* for ht_param */ 1986 #define IEEE80211_HT_PARAM_CHA_SEC_OFFSET 0x03 1987 #define IEEE80211_HT_PARAM_CHA_SEC_NONE 0x00 1988 #define IEEE80211_HT_PARAM_CHA_SEC_ABOVE 0x01 1989 #define IEEE80211_HT_PARAM_CHA_SEC_BELOW 0x03 1990 #define IEEE80211_HT_PARAM_CHAN_WIDTH_ANY 0x04 1991 #define IEEE80211_HT_PARAM_RIFS_MODE 0x08 1992 1993 /* for operation_mode */ 1994 #define IEEE80211_HT_OP_MODE_PROTECTION 0x0003 1995 #define IEEE80211_HT_OP_MODE_PROTECTION_NONE 0 1996 #define IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER 1 1997 #define IEEE80211_HT_OP_MODE_PROTECTION_20MHZ 2 1998 #define IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED 3 1999 #define IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT 0x0004 2000 #define IEEE80211_HT_OP_MODE_NON_HT_STA_PRSNT 0x0010 2001 #define IEEE80211_HT_OP_MODE_CCFS2_SHIFT 5 2002 #define IEEE80211_HT_OP_MODE_CCFS2_MASK 0x1fe0 2003 2004 /* for stbc_param */ 2005 #define IEEE80211_HT_STBC_PARAM_DUAL_BEACON 0x0040 2006 #define IEEE80211_HT_STBC_PARAM_DUAL_CTS_PROT 0x0080 2007 #define IEEE80211_HT_STBC_PARAM_STBC_BEACON 0x0100 2008 #define IEEE80211_HT_STBC_PARAM_LSIG_TXOP_FULLPROT 0x0200 2009 #define IEEE80211_HT_STBC_PARAM_PCO_ACTIVE 0x0400 2010 #define IEEE80211_HT_STBC_PARAM_PCO_PHASE 0x0800 2011 2012 2013 /* block-ack parameters */ 2014 #define IEEE80211_ADDBA_PARAM_AMSDU_MASK 0x0001 2015 #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002 2016 #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C 2017 #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFC0 2018 #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000 2019 #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800 2020 2021 /* 2022 * A-MPDU buffer sizes 2023 * According to HT size varies from 8 to 64 frames 2024 * HE adds the ability to have up to 256 frames. 2025 * EHT adds the ability to have up to 1K frames. 2026 */ 2027 #define IEEE80211_MIN_AMPDU_BUF 0x8 2028 #define IEEE80211_MAX_AMPDU_BUF_HT 0x40 2029 #define IEEE80211_MAX_AMPDU_BUF_HE 0x100 2030 #define IEEE80211_MAX_AMPDU_BUF_EHT 0x400 2031 2032 2033 /* Spatial Multiplexing Power Save Modes (for capability) */ 2034 #define WLAN_HT_CAP_SM_PS_STATIC 0 2035 #define WLAN_HT_CAP_SM_PS_DYNAMIC 1 2036 #define WLAN_HT_CAP_SM_PS_INVALID 2 2037 #define WLAN_HT_CAP_SM_PS_DISABLED 3 2038 2039 /* for SM power control field lower two bits */ 2040 #define WLAN_HT_SMPS_CONTROL_DISABLED 0 2041 #define WLAN_HT_SMPS_CONTROL_STATIC 1 2042 #define WLAN_HT_SMPS_CONTROL_DYNAMIC 3 2043 2044 /** 2045 * struct ieee80211_vht_mcs_info - VHT MCS information 2046 * @rx_mcs_map: RX MCS map 2 bits for each stream, total 8 streams 2047 * @rx_highest: Indicates highest long GI VHT PPDU data rate 2048 * STA can receive. Rate expressed in units of 1 Mbps. 2049 * If this field is 0 this value should not be used to 2050 * consider the highest RX data rate supported. 2051 * The top 3 bits of this field indicate the Maximum NSTS,total 2052 * (a beamformee capability.) 2053 * @tx_mcs_map: TX MCS map 2 bits for each stream, total 8 streams 2054 * @tx_highest: Indicates highest long GI VHT PPDU data rate 2055 * STA can transmit. Rate expressed in units of 1 Mbps. 2056 * If this field is 0 this value should not be used to 2057 * consider the highest TX data rate supported. 2058 * The top 2 bits of this field are reserved, the 2059 * 3rd bit from the top indiciates VHT Extended NSS BW 2060 * Capability. 2061 */ 2062 struct ieee80211_vht_mcs_info { 2063 __le16 rx_mcs_map; 2064 __le16 rx_highest; 2065 __le16 tx_mcs_map; 2066 __le16 tx_highest; 2067 } __packed; 2068 2069 /* for rx_highest */ 2070 #define IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT 13 2071 #define IEEE80211_VHT_MAX_NSTS_TOTAL_MASK (7 << IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT) 2072 2073 /* for tx_highest */ 2074 #define IEEE80211_VHT_EXT_NSS_BW_CAPABLE (1 << 13) 2075 2076 /** 2077 * enum ieee80211_vht_mcs_support - VHT MCS support definitions 2078 * @IEEE80211_VHT_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the 2079 * number of streams 2080 * @IEEE80211_VHT_MCS_SUPPORT_0_8: MCSes 0-8 are supported 2081 * @IEEE80211_VHT_MCS_SUPPORT_0_9: MCSes 0-9 are supported 2082 * @IEEE80211_VHT_MCS_NOT_SUPPORTED: This number of streams isn't supported 2083 * 2084 * These definitions are used in each 2-bit subfield of the @rx_mcs_map 2085 * and @tx_mcs_map fields of &struct ieee80211_vht_mcs_info, which are 2086 * both split into 8 subfields by number of streams. These values indicate 2087 * which MCSes are supported for the number of streams the value appears 2088 * for. 2089 */ 2090 enum ieee80211_vht_mcs_support { 2091 IEEE80211_VHT_MCS_SUPPORT_0_7 = 0, 2092 IEEE80211_VHT_MCS_SUPPORT_0_8 = 1, 2093 IEEE80211_VHT_MCS_SUPPORT_0_9 = 2, 2094 IEEE80211_VHT_MCS_NOT_SUPPORTED = 3, 2095 }; 2096 2097 /** 2098 * struct ieee80211_vht_cap - VHT capabilities 2099 * 2100 * This structure is the "VHT capabilities element" as 2101 * described in 802.11ac D3.0 8.4.2.160 2102 * @vht_cap_info: VHT capability info 2103 * @supp_mcs: VHT MCS supported rates 2104 */ 2105 struct ieee80211_vht_cap { 2106 __le32 vht_cap_info; 2107 struct ieee80211_vht_mcs_info supp_mcs; 2108 } __packed; 2109 2110 /** 2111 * enum ieee80211_vht_chanwidth - VHT channel width 2112 * @IEEE80211_VHT_CHANWIDTH_USE_HT: use the HT operation IE to 2113 * determine the channel width (20 or 40 MHz) 2114 * @IEEE80211_VHT_CHANWIDTH_80MHZ: 80 MHz bandwidth 2115 * @IEEE80211_VHT_CHANWIDTH_160MHZ: 160 MHz bandwidth 2116 * @IEEE80211_VHT_CHANWIDTH_80P80MHZ: 80+80 MHz bandwidth 2117 */ 2118 enum ieee80211_vht_chanwidth { 2119 IEEE80211_VHT_CHANWIDTH_USE_HT = 0, 2120 IEEE80211_VHT_CHANWIDTH_80MHZ = 1, 2121 IEEE80211_VHT_CHANWIDTH_160MHZ = 2, 2122 IEEE80211_VHT_CHANWIDTH_80P80MHZ = 3, 2123 }; 2124 2125 /** 2126 * struct ieee80211_vht_operation - VHT operation IE 2127 * 2128 * This structure is the "VHT operation element" as 2129 * described in 802.11ac D3.0 8.4.2.161 2130 * @chan_width: Operating channel width 2131 * @center_freq_seg0_idx: center freq segment 0 index 2132 * @center_freq_seg1_idx: center freq segment 1 index 2133 * @basic_mcs_set: VHT Basic MCS rate set 2134 */ 2135 struct ieee80211_vht_operation { 2136 u8 chan_width; 2137 u8 center_freq_seg0_idx; 2138 u8 center_freq_seg1_idx; 2139 __le16 basic_mcs_set; 2140 } __packed; 2141 2142 /** 2143 * struct ieee80211_he_cap_elem - HE capabilities element 2144 * @mac_cap_info: HE MAC Capabilities Information 2145 * @phy_cap_info: HE PHY Capabilities Information 2146 * 2147 * This structure represents the fixed fields of the payload of the 2148 * "HE capabilities element" as described in IEEE Std 802.11ax-2021 2149 * sections 9.4.2.248.2 and 9.4.2.248.3. 2150 */ 2151 struct ieee80211_he_cap_elem { 2152 u8 mac_cap_info[6]; 2153 u8 phy_cap_info[11]; 2154 } __packed; 2155 2156 #define IEEE80211_TX_RX_MCS_NSS_DESC_MAX_LEN 5 2157 2158 /** 2159 * enum ieee80211_he_mcs_support - HE MCS support definitions 2160 * @IEEE80211_HE_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the 2161 * number of streams 2162 * @IEEE80211_HE_MCS_SUPPORT_0_9: MCSes 0-9 are supported 2163 * @IEEE80211_HE_MCS_SUPPORT_0_11: MCSes 0-11 are supported 2164 * @IEEE80211_HE_MCS_NOT_SUPPORTED: This number of streams isn't supported 2165 * 2166 * These definitions are used in each 2-bit subfield of the rx_mcs_* 2167 * and tx_mcs_* fields of &struct ieee80211_he_mcs_nss_supp, which are 2168 * both split into 8 subfields by number of streams. These values indicate 2169 * which MCSes are supported for the number of streams the value appears 2170 * for. 2171 */ 2172 enum ieee80211_he_mcs_support { 2173 IEEE80211_HE_MCS_SUPPORT_0_7 = 0, 2174 IEEE80211_HE_MCS_SUPPORT_0_9 = 1, 2175 IEEE80211_HE_MCS_SUPPORT_0_11 = 2, 2176 IEEE80211_HE_MCS_NOT_SUPPORTED = 3, 2177 }; 2178 2179 /** 2180 * struct ieee80211_he_mcs_nss_supp - HE Tx/Rx HE MCS NSS Support Field 2181 * 2182 * This structure holds the data required for the Tx/Rx HE MCS NSS Support Field 2183 * described in P802.11ax_D2.0 section 9.4.2.237.4 2184 * 2185 * @rx_mcs_80: Rx MCS map 2 bits for each stream, total 8 streams, for channel 2186 * widths less than 80MHz. 2187 * @tx_mcs_80: Tx MCS map 2 bits for each stream, total 8 streams, for channel 2188 * widths less than 80MHz. 2189 * @rx_mcs_160: Rx MCS map 2 bits for each stream, total 8 streams, for channel 2190 * width 160MHz. 2191 * @tx_mcs_160: Tx MCS map 2 bits for each stream, total 8 streams, for channel 2192 * width 160MHz. 2193 * @rx_mcs_80p80: Rx MCS map 2 bits for each stream, total 8 streams, for 2194 * channel width 80p80MHz. 2195 * @tx_mcs_80p80: Tx MCS map 2 bits for each stream, total 8 streams, for 2196 * channel width 80p80MHz. 2197 */ 2198 struct ieee80211_he_mcs_nss_supp { 2199 __le16 rx_mcs_80; 2200 __le16 tx_mcs_80; 2201 __le16 rx_mcs_160; 2202 __le16 tx_mcs_160; 2203 __le16 rx_mcs_80p80; 2204 __le16 tx_mcs_80p80; 2205 } __packed; 2206 2207 /** 2208 * struct ieee80211_he_operation - HE Operation element 2209 * @he_oper_params: HE Operation Parameters + BSS Color Information 2210 * @he_mcs_nss_set: Basic HE-MCS And NSS Set 2211 * @optional: Optional fields VHT Operation Information, Max Co-Hosted 2212 * BSSID Indicator, and 6 GHz Operation Information 2213 * 2214 * This structure represents the payload of the "HE Operation 2215 * element" as described in IEEE Std 802.11ax-2021 section 9.4.2.249. 2216 */ 2217 struct ieee80211_he_operation { 2218 __le32 he_oper_params; 2219 __le16 he_mcs_nss_set; 2220 u8 optional[]; 2221 } __packed; 2222 2223 /** 2224 * struct ieee80211_he_spr - Spatial Reuse Parameter Set element 2225 * @he_sr_control: SR Control 2226 * @optional: Optional fields Non-SRG OBSS PD Max Offset, SRG OBSS PD 2227 * Min Offset, SRG OBSS PD Max Offset, SRG BSS Color 2228 * Bitmap, and SRG Partial BSSID Bitmap 2229 * 2230 * This structure represents the payload of the "Spatial Reuse 2231 * Parameter Set element" as described in IEEE Std 802.11ax-2021 2232 * section 9.4.2.252. 2233 */ 2234 struct ieee80211_he_spr { 2235 u8 he_sr_control; 2236 u8 optional[]; 2237 } __packed; 2238 2239 /** 2240 * struct ieee80211_he_mu_edca_param_ac_rec - MU AC Parameter Record field 2241 * @aifsn: ACI/AIFSN 2242 * @ecw_min_max: ECWmin/ECWmax 2243 * @mu_edca_timer: MU EDCA Timer 2244 * 2245 * This structure represents the "MU AC Parameter Record" as described 2246 * in IEEE Std 802.11ax-2021 section 9.4.2.251, Figure 9-788p. 2247 */ 2248 struct ieee80211_he_mu_edca_param_ac_rec { 2249 u8 aifsn; 2250 u8 ecw_min_max; 2251 u8 mu_edca_timer; 2252 } __packed; 2253 2254 /** 2255 * struct ieee80211_mu_edca_param_set - MU EDCA Parameter Set element 2256 * @mu_qos_info: QoS Info 2257 * @ac_be: MU AC_BE Parameter Record 2258 * @ac_bk: MU AC_BK Parameter Record 2259 * @ac_vi: MU AC_VI Parameter Record 2260 * @ac_vo: MU AC_VO Parameter Record 2261 * 2262 * This structure represents the payload of the "MU EDCA Parameter Set 2263 * element" as described in IEEE Std 802.11ax-2021 section 9.4.2.251. 2264 */ 2265 struct ieee80211_mu_edca_param_set { 2266 u8 mu_qos_info; 2267 struct ieee80211_he_mu_edca_param_ac_rec ac_be; 2268 struct ieee80211_he_mu_edca_param_ac_rec ac_bk; 2269 struct ieee80211_he_mu_edca_param_ac_rec ac_vi; 2270 struct ieee80211_he_mu_edca_param_ac_rec ac_vo; 2271 } __packed; 2272 2273 #define IEEE80211_EHT_MCS_NSS_RX 0x0f 2274 #define IEEE80211_EHT_MCS_NSS_TX 0xf0 2275 2276 /** 2277 * struct ieee80211_eht_mcs_nss_supp_20mhz_only - EHT 20MHz only station max 2278 * supported NSS for per MCS. 2279 * 2280 * For each field below, bits 0 - 3 indicate the maximal number of spatial 2281 * streams for Rx, and bits 4 - 7 indicate the maximal number of spatial streams 2282 * for Tx. 2283 * 2284 * @rx_tx_mcs7_max_nss: indicates the maximum number of spatial streams 2285 * supported for reception and the maximum number of spatial streams 2286 * supported for transmission for MCS 0 - 7. 2287 * @rx_tx_mcs9_max_nss: indicates the maximum number of spatial streams 2288 * supported for reception and the maximum number of spatial streams 2289 * supported for transmission for MCS 8 - 9. 2290 * @rx_tx_mcs11_max_nss: indicates the maximum number of spatial streams 2291 * supported for reception and the maximum number of spatial streams 2292 * supported for transmission for MCS 10 - 11. 2293 * @rx_tx_mcs13_max_nss: indicates the maximum number of spatial streams 2294 * supported for reception and the maximum number of spatial streams 2295 * supported for transmission for MCS 12 - 13. 2296 * @rx_tx_max_nss: array of the previous fields for easier loop access 2297 */ 2298 struct ieee80211_eht_mcs_nss_supp_20mhz_only { 2299 union { 2300 struct { 2301 u8 rx_tx_mcs7_max_nss; 2302 u8 rx_tx_mcs9_max_nss; 2303 u8 rx_tx_mcs11_max_nss; 2304 u8 rx_tx_mcs13_max_nss; 2305 }; 2306 u8 rx_tx_max_nss[4]; 2307 }; 2308 }; 2309 2310 /** 2311 * struct ieee80211_eht_mcs_nss_supp_bw - EHT max supported NSS per MCS (except 2312 * 20MHz only stations). 2313 * 2314 * For each field below, bits 0 - 3 indicate the maximal number of spatial 2315 * streams for Rx, and bits 4 - 7 indicate the maximal number of spatial streams 2316 * for Tx. 2317 * 2318 * @rx_tx_mcs9_max_nss: indicates the maximum number of spatial streams 2319 * supported for reception and the maximum number of spatial streams 2320 * supported for transmission for MCS 0 - 9. 2321 * @rx_tx_mcs11_max_nss: indicates the maximum number of spatial streams 2322 * supported for reception and the maximum number of spatial streams 2323 * supported for transmission for MCS 10 - 11. 2324 * @rx_tx_mcs13_max_nss: indicates the maximum number of spatial streams 2325 * supported for reception and the maximum number of spatial streams 2326 * supported for transmission for MCS 12 - 13. 2327 * @rx_tx_max_nss: array of the previous fields for easier loop access 2328 */ 2329 struct ieee80211_eht_mcs_nss_supp_bw { 2330 union { 2331 struct { 2332 u8 rx_tx_mcs9_max_nss; 2333 u8 rx_tx_mcs11_max_nss; 2334 u8 rx_tx_mcs13_max_nss; 2335 }; 2336 u8 rx_tx_max_nss[3]; 2337 }; 2338 }; 2339 2340 /** 2341 * struct ieee80211_eht_cap_elem_fixed - EHT capabilities fixed data 2342 * 2343 * This structure is the "EHT Capabilities element" fixed fields as 2344 * described in P802.11be_D2.0 section 9.4.2.313. 2345 * 2346 * @mac_cap_info: MAC capabilities, see IEEE80211_EHT_MAC_CAP* 2347 * @phy_cap_info: PHY capabilities, see IEEE80211_EHT_PHY_CAP* 2348 */ 2349 struct ieee80211_eht_cap_elem_fixed { 2350 u8 mac_cap_info[2]; 2351 u8 phy_cap_info[9]; 2352 } __packed; 2353 2354 /** 2355 * struct ieee80211_eht_cap_elem - EHT capabilities element 2356 * @fixed: fixed parts, see &ieee80211_eht_cap_elem_fixed 2357 * @optional: optional parts 2358 */ 2359 struct ieee80211_eht_cap_elem { 2360 struct ieee80211_eht_cap_elem_fixed fixed; 2361 2362 /* 2363 * Followed by: 2364 * Supported EHT-MCS And NSS Set field: 4, 3, 6 or 9 octets. 2365 * EHT PPE Thresholds field: variable length. 2366 */ 2367 u8 optional[]; 2368 } __packed; 2369 2370 #define IEEE80211_EHT_OPER_INFO_PRESENT 0x01 2371 #define IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT 0x02 2372 #define IEEE80211_EHT_OPER_EHT_DEF_PE_DURATION 0x04 2373 #define IEEE80211_EHT_OPER_GROUP_ADDRESSED_BU_IND_LIMIT 0x08 2374 #define IEEE80211_EHT_OPER_GROUP_ADDRESSED_BU_IND_EXP_MASK 0x30 2375 #define IEEE80211_EHT_OPER_MCS15_DISABLE 0x40 2376 2377 /** 2378 * struct ieee80211_eht_operation - eht operation element 2379 * 2380 * This structure is the "EHT Operation Element" fields as 2381 * described in P802.11be_D2.0 section 9.4.2.311 2382 * 2383 * @params: EHT operation element parameters. See &IEEE80211_EHT_OPER_* 2384 * @basic_mcs_nss: indicates the EHT-MCSs for each number of spatial streams in 2385 * EHT PPDUs that are supported by all EHT STAs in the BSS in transmit and 2386 * receive. 2387 * @optional: optional parts 2388 */ 2389 struct ieee80211_eht_operation { 2390 u8 params; 2391 struct ieee80211_eht_mcs_nss_supp_20mhz_only basic_mcs_nss; 2392 u8 optional[]; 2393 } __packed; 2394 2395 /** 2396 * struct ieee80211_eht_operation_info - eht operation information 2397 * 2398 * @control: EHT operation information control. 2399 * @ccfs0: defines a channel center frequency for a 20, 40, 80, 160, or 320 MHz 2400 * EHT BSS. 2401 * @ccfs1: defines a channel center frequency for a 160 or 320 MHz EHT BSS. 2402 * @optional: optional parts 2403 */ 2404 struct ieee80211_eht_operation_info { 2405 u8 control; 2406 u8 ccfs0; 2407 u8 ccfs1; 2408 u8 optional[]; 2409 } __packed; 2410 2411 /* 802.11ac VHT Capabilities */ 2412 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895 0x00000000 2413 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991 0x00000001 2414 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 0x00000002 2415 #define IEEE80211_VHT_CAP_MAX_MPDU_MASK 0x00000003 2416 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ 0x00000004 2417 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ 0x00000008 2418 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK 0x0000000C 2419 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_SHIFT 2 2420 #define IEEE80211_VHT_CAP_RXLDPC 0x00000010 2421 #define IEEE80211_VHT_CAP_SHORT_GI_80 0x00000020 2422 #define IEEE80211_VHT_CAP_SHORT_GI_160 0x00000040 2423 #define IEEE80211_VHT_CAP_TXSTBC 0x00000080 2424 #define IEEE80211_VHT_CAP_RXSTBC_1 0x00000100 2425 #define IEEE80211_VHT_CAP_RXSTBC_2 0x00000200 2426 #define IEEE80211_VHT_CAP_RXSTBC_3 0x00000300 2427 #define IEEE80211_VHT_CAP_RXSTBC_4 0x00000400 2428 #define IEEE80211_VHT_CAP_RXSTBC_MASK 0x00000700 2429 #define IEEE80211_VHT_CAP_RXSTBC_SHIFT 8 2430 #define IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE 0x00000800 2431 #define IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE 0x00001000 2432 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT 13 2433 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK \ 2434 (7 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT) 2435 #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT 16 2436 #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK \ 2437 (7 << IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT) 2438 #define IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE 0x00080000 2439 #define IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE 0x00100000 2440 #define IEEE80211_VHT_CAP_VHT_TXOP_PS 0x00200000 2441 #define IEEE80211_VHT_CAP_HTC_VHT 0x00400000 2442 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT 23 2443 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK \ 2444 (7 << IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT) 2445 #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_UNSOL_MFB 0x08000000 2446 #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_MRQ_MFB 0x0c000000 2447 #define IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN 0x10000000 2448 #define IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN 0x20000000 2449 #define IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT 30 2450 #define IEEE80211_VHT_CAP_EXT_NSS_BW_MASK 0xc0000000 2451 2452 /** 2453 * ieee80211_get_vht_max_nss - return max NSS for a given bandwidth/MCS 2454 * @cap: VHT capabilities of the peer 2455 * @bw: bandwidth to use 2456 * @mcs: MCS index to use 2457 * @ext_nss_bw_capable: indicates whether or not the local transmitter 2458 * (rate scaling algorithm) can deal with the new logic 2459 * (dot11VHTExtendedNSSBWCapable) 2460 * @max_vht_nss: current maximum NSS as advertised by the STA in 2461 * operating mode notification, can be 0 in which case the 2462 * capability data will be used to derive this (from MCS support) 2463 * Return: The maximum NSS that can be used for the given bandwidth/MCS 2464 * combination 2465 * 2466 * Due to the VHT Extended NSS Bandwidth Support, the maximum NSS can 2467 * vary for a given BW/MCS. This function parses the data. 2468 * 2469 * Note: This function is exported by cfg80211. 2470 */ 2471 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, 2472 enum ieee80211_vht_chanwidth bw, 2473 int mcs, bool ext_nss_bw_capable, 2474 unsigned int max_vht_nss); 2475 2476 /* 802.11ax HE MAC capabilities */ 2477 #define IEEE80211_HE_MAC_CAP0_HTC_HE 0x01 2478 #define IEEE80211_HE_MAC_CAP0_TWT_REQ 0x02 2479 #define IEEE80211_HE_MAC_CAP0_TWT_RES 0x04 2480 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_NOT_SUPP 0x00 2481 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_1 0x08 2482 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_2 0x10 2483 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_3 0x18 2484 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_MASK 0x18 2485 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_1 0x00 2486 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_2 0x20 2487 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_4 0x40 2488 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_8 0x60 2489 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_16 0x80 2490 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_32 0xa0 2491 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_64 0xc0 2492 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_UNLIMITED 0xe0 2493 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_MASK 0xe0 2494 2495 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_UNLIMITED 0x00 2496 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_128 0x01 2497 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_256 0x02 2498 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_512 0x03 2499 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_MASK 0x03 2500 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_0US 0x00 2501 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_8US 0x04 2502 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US 0x08 2503 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_MASK 0x0c 2504 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_1 0x00 2505 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_2 0x10 2506 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_3 0x20 2507 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_4 0x30 2508 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_5 0x40 2509 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_6 0x50 2510 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_7 0x60 2511 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8 0x70 2512 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_MASK 0x70 2513 2514 /* Link adaptation is split between byte HE_MAC_CAP1 and 2515 * HE_MAC_CAP2. It should be set only if IEEE80211_HE_MAC_CAP0_HTC_HE 2516 * in which case the following values apply: 2517 * 0 = No feedback. 2518 * 1 = reserved. 2519 * 2 = Unsolicited feedback. 2520 * 3 = both 2521 */ 2522 #define IEEE80211_HE_MAC_CAP1_LINK_ADAPTATION 0x80 2523 2524 #define IEEE80211_HE_MAC_CAP2_LINK_ADAPTATION 0x01 2525 #define IEEE80211_HE_MAC_CAP2_ALL_ACK 0x02 2526 #define IEEE80211_HE_MAC_CAP2_TRS 0x04 2527 #define IEEE80211_HE_MAC_CAP2_BSR 0x08 2528 #define IEEE80211_HE_MAC_CAP2_BCAST_TWT 0x10 2529 #define IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP 0x20 2530 #define IEEE80211_HE_MAC_CAP2_MU_CASCADING 0x40 2531 #define IEEE80211_HE_MAC_CAP2_ACK_EN 0x80 2532 2533 #define IEEE80211_HE_MAC_CAP3_OMI_CONTROL 0x02 2534 #define IEEE80211_HE_MAC_CAP3_OFDMA_RA 0x04 2535 2536 /* The maximum length of an A-MDPU is defined by the combination of the Maximum 2537 * A-MDPU Length Exponent field in the HT capabilities, VHT capabilities and the 2538 * same field in the HE capabilities. 2539 */ 2540 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_0 0x00 2541 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1 0x08 2542 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2 0x10 2543 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3 0x18 2544 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK 0x18 2545 #define IEEE80211_HE_MAC_CAP3_AMSDU_FRAG 0x20 2546 #define IEEE80211_HE_MAC_CAP3_FLEX_TWT_SCHED 0x40 2547 #define IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS 0x80 2548 2549 #define IEEE80211_HE_MAC_CAP4_BSRP_BQRP_A_MPDU_AGG 0x01 2550 #define IEEE80211_HE_MAC_CAP4_QTP 0x02 2551 #define IEEE80211_HE_MAC_CAP4_BQR 0x04 2552 #define IEEE80211_HE_MAC_CAP4_PSR_RESP 0x08 2553 #define IEEE80211_HE_MAC_CAP4_NDP_FB_REP 0x10 2554 #define IEEE80211_HE_MAC_CAP4_OPS 0x20 2555 #define IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU 0x40 2556 /* Multi TID agg TX is split between byte #4 and #5 2557 * The value is a combination of B39,B40,B41 2558 */ 2559 #define IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39 0x80 2560 2561 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 0x01 2562 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 0x02 2563 #define IEEE80211_HE_MAC_CAP5_SUBCHAN_SELECTIVE_TRANSMISSION 0x04 2564 #define IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU 0x08 2565 #define IEEE80211_HE_MAC_CAP5_OM_CTRL_UL_MU_DATA_DIS_RX 0x10 2566 #define IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS 0x20 2567 #define IEEE80211_HE_MAC_CAP5_PUNCTURED_SOUNDING 0x40 2568 #define IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX 0x80 2569 2570 #define IEEE80211_HE_VHT_MAX_AMPDU_FACTOR 20 2571 #define IEEE80211_HE_HT_MAX_AMPDU_FACTOR 16 2572 #define IEEE80211_HE_6GHZ_MAX_AMPDU_FACTOR 13 2573 2574 /* 802.11ax HE PHY capabilities */ 2575 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G 0x02 2576 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G 0x04 2577 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G 0x08 2578 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G 0x10 2579 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK_ALL 0x1e 2580 2581 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G 0x20 2582 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G 0x40 2583 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK 0xfe 2584 2585 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_20MHZ 0x01 2586 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_40MHZ 0x02 2587 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_20MHZ 0x04 2588 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_40MHZ 0x08 2589 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK 0x0f 2590 #define IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A 0x10 2591 #define IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD 0x20 2592 #define IEEE80211_HE_PHY_CAP1_HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US 0x40 2593 /* Midamble RX/TX Max NSTS is split between byte #2 and byte #3 */ 2594 #define IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS 0x80 2595 2596 #define IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS 0x01 2597 #define IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US 0x02 2598 #define IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ 0x04 2599 #define IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ 0x08 2600 #define IEEE80211_HE_PHY_CAP2_DOPPLER_TX 0x10 2601 #define IEEE80211_HE_PHY_CAP2_DOPPLER_RX 0x20 2602 2603 /* Note that the meaning of UL MU below is different between an AP and a non-AP 2604 * sta, where in the AP case it indicates support for Rx and in the non-AP sta 2605 * case it indicates support for Tx. 2606 */ 2607 #define IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO 0x40 2608 #define IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO 0x80 2609 2610 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM 0x00 2611 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK 0x01 2612 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK 0x02 2613 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_16_QAM 0x03 2614 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_MASK 0x03 2615 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 0x00 2616 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_2 0x04 2617 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM 0x00 2618 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK 0x08 2619 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK 0x10 2620 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_16_QAM 0x18 2621 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_MASK 0x18 2622 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1 0x00 2623 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_2 0x20 2624 #define IEEE80211_HE_PHY_CAP3_RX_PARTIAL_BW_SU_IN_20MHZ_MU 0x40 2625 #define IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER 0x80 2626 2627 #define IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE 0x01 2628 #define IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER 0x02 2629 2630 /* Minimal allowed value of Max STS under 80MHz is 3 */ 2631 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_4 0x0c 2632 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_5 0x10 2633 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_6 0x14 2634 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_7 0x18 2635 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8 0x1c 2636 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_MASK 0x1c 2637 2638 /* Minimal allowed value of Max STS above 80MHz is 3 */ 2639 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_4 0x60 2640 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_5 0x80 2641 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_6 0xa0 2642 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_7 0xc0 2643 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 0xe0 2644 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_MASK 0xe0 2645 2646 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_1 0x00 2647 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 0x01 2648 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_3 0x02 2649 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_4 0x03 2650 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_5 0x04 2651 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_6 0x05 2652 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_7 0x06 2653 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_8 0x07 2654 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK 0x07 2655 2656 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_1 0x00 2657 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2 0x08 2658 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_3 0x10 2659 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_4 0x18 2660 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_5 0x20 2661 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_6 0x28 2662 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_7 0x30 2663 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_8 0x38 2664 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK 0x38 2665 2666 #define IEEE80211_HE_PHY_CAP5_NG16_SU_FEEDBACK 0x40 2667 #define IEEE80211_HE_PHY_CAP5_NG16_MU_FEEDBACK 0x80 2668 2669 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_42_SU 0x01 2670 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU 0x02 2671 #define IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB 0x04 2672 #define IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB 0x08 2673 #define IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB 0x10 2674 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE 0x20 2675 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO 0x40 2676 #define IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT 0x80 2677 2678 #define IEEE80211_HE_PHY_CAP7_PSR_BASED_SR 0x01 2679 #define IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP 0x02 2680 #define IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI 0x04 2681 #define IEEE80211_HE_PHY_CAP7_MAX_NC_1 0x08 2682 #define IEEE80211_HE_PHY_CAP7_MAX_NC_2 0x10 2683 #define IEEE80211_HE_PHY_CAP7_MAX_NC_3 0x18 2684 #define IEEE80211_HE_PHY_CAP7_MAX_NC_4 0x20 2685 #define IEEE80211_HE_PHY_CAP7_MAX_NC_5 0x28 2686 #define IEEE80211_HE_PHY_CAP7_MAX_NC_6 0x30 2687 #define IEEE80211_HE_PHY_CAP7_MAX_NC_7 0x38 2688 #define IEEE80211_HE_PHY_CAP7_MAX_NC_MASK 0x38 2689 #define IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ 0x40 2690 #define IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ 0x80 2691 2692 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI 0x01 2693 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G 0x02 2694 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU 0x04 2695 #define IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU 0x08 2696 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_1XLTF_AND_08_US_GI 0x10 2697 #define IEEE80211_HE_PHY_CAP8_MIDAMBLE_RX_TX_2X_AND_1XLTF 0x20 2698 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242 0x00 2699 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484 0x40 2700 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996 0x80 2701 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996 0xc0 2702 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK 0xc0 2703 2704 #define IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM 0x01 2705 #define IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK 0x02 2706 #define IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU 0x04 2707 #define IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU 0x08 2708 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB 0x10 2709 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB 0x20 2710 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_0US 0x0 2711 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_8US 0x1 2712 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_16US 0x2 2713 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED 0x3 2714 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS 6 2715 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_MASK 0xc0 2716 2717 #define IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF 0x01 2718 2719 /* 802.11ax HE TX/RX MCS NSS Support */ 2720 #define IEEE80211_TX_RX_MCS_NSS_SUPP_HIGHEST_MCS_POS (3) 2721 #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_POS (6) 2722 #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_POS (11) 2723 #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_MASK 0x07c0 2724 #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_MASK 0xf800 2725 2726 /* TX/RX HE MCS Support field Highest MCS subfield encoding */ 2727 enum ieee80211_he_highest_mcs_supported_subfield_enc { 2728 HIGHEST_MCS_SUPPORTED_MCS7 = 0, 2729 HIGHEST_MCS_SUPPORTED_MCS8, 2730 HIGHEST_MCS_SUPPORTED_MCS9, 2731 HIGHEST_MCS_SUPPORTED_MCS10, 2732 HIGHEST_MCS_SUPPORTED_MCS11, 2733 }; 2734 2735 /* Calculate 802.11ax HE capabilities IE Tx/Rx HE MCS NSS Support Field size */ 2736 static inline u8 2737 ieee80211_he_mcs_nss_size(const struct ieee80211_he_cap_elem *he_cap) 2738 { 2739 u8 count = 4; 2740 2741 if (he_cap->phy_cap_info[0] & 2742 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G) 2743 count += 4; 2744 2745 if (he_cap->phy_cap_info[0] & 2746 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G) 2747 count += 4; 2748 2749 return count; 2750 } 2751 2752 /* 802.11ax HE PPE Thresholds */ 2753 #define IEEE80211_PPE_THRES_NSS_SUPPORT_2NSS (1) 2754 #define IEEE80211_PPE_THRES_NSS_POS (0) 2755 #define IEEE80211_PPE_THRES_NSS_MASK (7) 2756 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_2x966_AND_966_RU \ 2757 (BIT(5) | BIT(6)) 2758 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK 0x78 2759 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_POS (3) 2760 #define IEEE80211_PPE_THRES_INFO_PPET_SIZE (3) 2761 #define IEEE80211_HE_PPE_THRES_INFO_HEADER_SIZE (7) 2762 2763 /* 2764 * Calculate 802.11ax HE capabilities IE PPE field size 2765 * Input: Header byte of ppe_thres (first byte), and HE capa IE's PHY cap u8* 2766 */ 2767 static inline u8 2768 ieee80211_he_ppe_size(u8 ppe_thres_hdr, const u8 *phy_cap_info) 2769 { 2770 u8 n; 2771 2772 if ((phy_cap_info[6] & 2773 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) 2774 return 0; 2775 2776 n = hweight8(ppe_thres_hdr & 2777 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); 2778 n *= (1 + ((ppe_thres_hdr & IEEE80211_PPE_THRES_NSS_MASK) >> 2779 IEEE80211_PPE_THRES_NSS_POS)); 2780 2781 /* 2782 * Each pair is 6 bits, and we need to add the 7 "header" bits to the 2783 * total size. 2784 */ 2785 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; 2786 n = DIV_ROUND_UP(n, 8); 2787 2788 return n; 2789 } 2790 2791 static inline bool ieee80211_he_capa_size_ok(const u8 *data, u8 len) 2792 { 2793 const struct ieee80211_he_cap_elem *he_cap_ie_elem = (const void *)data; 2794 u8 needed = sizeof(*he_cap_ie_elem); 2795 2796 if (len < needed) 2797 return false; 2798 2799 needed += ieee80211_he_mcs_nss_size(he_cap_ie_elem); 2800 if (len < needed) 2801 return false; 2802 2803 if (he_cap_ie_elem->phy_cap_info[6] & 2804 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) { 2805 if (len < needed + 1) 2806 return false; 2807 needed += ieee80211_he_ppe_size(data[needed], 2808 he_cap_ie_elem->phy_cap_info); 2809 } 2810 2811 return len >= needed; 2812 } 2813 2814 /* HE Operation defines */ 2815 #define IEEE80211_HE_OPERATION_DFLT_PE_DURATION_MASK 0x00000007 2816 #define IEEE80211_HE_OPERATION_TWT_REQUIRED 0x00000008 2817 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK 0x00003ff0 2818 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_OFFSET 4 2819 #define IEEE80211_HE_OPERATION_VHT_OPER_INFO 0x00004000 2820 #define IEEE80211_HE_OPERATION_CO_HOSTED_BSS 0x00008000 2821 #define IEEE80211_HE_OPERATION_ER_SU_DISABLE 0x00010000 2822 #define IEEE80211_HE_OPERATION_6GHZ_OP_INFO 0x00020000 2823 #define IEEE80211_HE_OPERATION_BSS_COLOR_MASK 0x3f000000 2824 #define IEEE80211_HE_OPERATION_BSS_COLOR_OFFSET 24 2825 #define IEEE80211_HE_OPERATION_PARTIAL_BSS_COLOR 0x40000000 2826 #define IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED 0x80000000 2827 2828 #define IEEE80211_6GHZ_CTRL_REG_LPI_AP 0 2829 #define IEEE80211_6GHZ_CTRL_REG_SP_AP 1 2830 #define IEEE80211_6GHZ_CTRL_REG_VLP_AP 2 2831 #define IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP 3 2832 #define IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP_OLD 4 2833 #define IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP 8 2834 2835 /** 2836 * struct ieee80211_he_6ghz_oper - HE 6 GHz operation Information field 2837 * @primary: primary channel 2838 * @control: control flags 2839 * @ccfs0: channel center frequency segment 0 2840 * @ccfs1: channel center frequency segment 1 2841 * @minrate: minimum rate (in 1 Mbps units) 2842 */ 2843 struct ieee80211_he_6ghz_oper { 2844 u8 primary; 2845 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH 0x3 2846 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ 0 2847 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ 1 2848 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ 2 2849 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ 3 2850 #define IEEE80211_HE_6GHZ_OPER_CTRL_DUP_BEACON 0x4 2851 #define IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO 0x78 2852 u8 control; 2853 u8 ccfs0; 2854 u8 ccfs1; 2855 u8 minrate; 2856 } __packed; 2857 2858 /** 2859 * enum ieee80211_reg_conn_bits - represents Regulatory connectivity field bits. 2860 * 2861 * This enumeration defines bit flags used to represent regulatory connectivity 2862 * field bits. 2863 * 2864 * @IEEE80211_REG_CONN_LPI_VALID: Indicates whether the LPI bit is valid. 2865 * @IEEE80211_REG_CONN_LPI_VALUE: Represents the value of the LPI bit. 2866 * @IEEE80211_REG_CONN_SP_VALID: Indicates whether the SP bit is valid. 2867 * @IEEE80211_REG_CONN_SP_VALUE: Represents the value of the SP bit. 2868 */ 2869 enum ieee80211_reg_conn_bits { 2870 IEEE80211_REG_CONN_LPI_VALID = BIT(0), 2871 IEEE80211_REG_CONN_LPI_VALUE = BIT(1), 2872 IEEE80211_REG_CONN_SP_VALID = BIT(2), 2873 IEEE80211_REG_CONN_SP_VALUE = BIT(3), 2874 }; 2875 2876 /* transmit power interpretation type of transmit power envelope element */ 2877 enum ieee80211_tx_power_intrpt_type { 2878 IEEE80211_TPE_LOCAL_EIRP, 2879 IEEE80211_TPE_LOCAL_EIRP_PSD, 2880 IEEE80211_TPE_REG_CLIENT_EIRP, 2881 IEEE80211_TPE_REG_CLIENT_EIRP_PSD, 2882 }; 2883 2884 /* category type of transmit power envelope element */ 2885 enum ieee80211_tx_power_category_6ghz { 2886 IEEE80211_TPE_CAT_6GHZ_DEFAULT = 0, 2887 IEEE80211_TPE_CAT_6GHZ_SUBORDINATE = 1, 2888 }; 2889 2890 /* 2891 * For IEEE80211_TPE_LOCAL_EIRP / IEEE80211_TPE_REG_CLIENT_EIRP, 2892 * setting to 63.5 dBm means no constraint. 2893 */ 2894 #define IEEE80211_TPE_MAX_TX_PWR_NO_CONSTRAINT 127 2895 2896 /* 2897 * For IEEE80211_TPE_LOCAL_EIRP_PSD / IEEE80211_TPE_REG_CLIENT_EIRP_PSD, 2898 * setting to 127 indicates no PSD limit for the 20 MHz channel. 2899 */ 2900 #define IEEE80211_TPE_PSD_NO_LIMIT 127 2901 2902 /** 2903 * struct ieee80211_tx_pwr_env - Transmit Power Envelope 2904 * @info: Transmit Power Information field 2905 * @variable: Maximum Transmit Power field 2906 * 2907 * This structure represents the payload of the "Transmit Power 2908 * Envelope element" as described in IEEE Std 802.11ax-2021 section 2909 * 9.4.2.161 2910 */ 2911 struct ieee80211_tx_pwr_env { 2912 u8 info; 2913 u8 variable[]; 2914 } __packed; 2915 2916 #define IEEE80211_TX_PWR_ENV_INFO_COUNT 0x7 2917 #define IEEE80211_TX_PWR_ENV_INFO_INTERPRET 0x38 2918 #define IEEE80211_TX_PWR_ENV_INFO_CATEGORY 0xC0 2919 2920 #define IEEE80211_TX_PWR_ENV_EXT_COUNT 0xF 2921 2922 static inline bool ieee80211_valid_tpe_element(const u8 *data, u8 len) 2923 { 2924 const struct ieee80211_tx_pwr_env *env = (const void *)data; 2925 u8 count, interpret, category; 2926 u8 needed = sizeof(*env); 2927 u8 N; /* also called N in the spec */ 2928 2929 if (len < needed) 2930 return false; 2931 2932 count = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_COUNT); 2933 interpret = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_INTERPRET); 2934 category = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_CATEGORY); 2935 2936 switch (category) { 2937 case IEEE80211_TPE_CAT_6GHZ_DEFAULT: 2938 case IEEE80211_TPE_CAT_6GHZ_SUBORDINATE: 2939 break; 2940 default: 2941 return false; 2942 } 2943 2944 switch (interpret) { 2945 case IEEE80211_TPE_LOCAL_EIRP: 2946 case IEEE80211_TPE_REG_CLIENT_EIRP: 2947 if (count > 3) 2948 return false; 2949 2950 /* count == 0 encodes 1 value for 20 MHz, etc. */ 2951 needed += count + 1; 2952 2953 if (len < needed) 2954 return false; 2955 2956 /* there can be extension fields not accounted for in 'count' */ 2957 2958 return true; 2959 case IEEE80211_TPE_LOCAL_EIRP_PSD: 2960 case IEEE80211_TPE_REG_CLIENT_EIRP_PSD: 2961 if (count > 4) 2962 return false; 2963 2964 N = count ? 1 << (count - 1) : 1; 2965 needed += N; 2966 2967 if (len < needed) 2968 return false; 2969 2970 if (len > needed) { 2971 u8 K = u8_get_bits(env->variable[N], 2972 IEEE80211_TX_PWR_ENV_EXT_COUNT); 2973 2974 needed += 1 + K; 2975 if (len < needed) 2976 return false; 2977 } 2978 2979 return true; 2980 } 2981 2982 return false; 2983 } 2984 2985 /* 2986 * ieee80211_he_oper_size - calculate 802.11ax HE Operations IE size 2987 * @he_oper_ie: byte data of the He Operations IE, stating from the byte 2988 * after the ext ID byte. It is assumed that he_oper_ie has at least 2989 * sizeof(struct ieee80211_he_operation) bytes, the caller must have 2990 * validated this. 2991 * @return the actual size of the IE data (not including header), or 0 on error 2992 */ 2993 static inline u8 2994 ieee80211_he_oper_size(const u8 *he_oper_ie) 2995 { 2996 const struct ieee80211_he_operation *he_oper = (const void *)he_oper_ie; 2997 u8 oper_len = sizeof(struct ieee80211_he_operation); 2998 u32 he_oper_params; 2999 3000 /* Make sure the input is not NULL */ 3001 if (!he_oper_ie) 3002 return 0; 3003 3004 /* Calc required length */ 3005 he_oper_params = le32_to_cpu(he_oper->he_oper_params); 3006 if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO) 3007 oper_len += 3; 3008 if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS) 3009 oper_len++; 3010 if (he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO) 3011 oper_len += sizeof(struct ieee80211_he_6ghz_oper); 3012 3013 /* Add the first byte (extension ID) to the total length */ 3014 oper_len++; 3015 3016 return oper_len; 3017 } 3018 3019 /** 3020 * ieee80211_he_6ghz_oper - obtain 6 GHz operation field 3021 * @he_oper: HE operation element (must be pre-validated for size) 3022 * but may be %NULL 3023 * 3024 * Return: a pointer to the 6 GHz operation field, or %NULL 3025 */ 3026 static inline const struct ieee80211_he_6ghz_oper * 3027 ieee80211_he_6ghz_oper(const struct ieee80211_he_operation *he_oper) 3028 { 3029 const u8 *ret; 3030 u32 he_oper_params; 3031 3032 if (!he_oper) 3033 return NULL; 3034 3035 ret = (const void *)&he_oper->optional; 3036 3037 he_oper_params = le32_to_cpu(he_oper->he_oper_params); 3038 3039 if (!(he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO)) 3040 return NULL; 3041 if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO) 3042 ret += 3; 3043 if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS) 3044 ret++; 3045 3046 return (const void *)ret; 3047 } 3048 3049 /* HE Spatial Reuse defines */ 3050 #define IEEE80211_HE_SPR_PSR_DISALLOWED BIT(0) 3051 #define IEEE80211_HE_SPR_NON_SRG_OBSS_PD_SR_DISALLOWED BIT(1) 3052 #define IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT BIT(2) 3053 #define IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT BIT(3) 3054 #define IEEE80211_HE_SPR_HESIGA_SR_VAL15_ALLOWED BIT(4) 3055 3056 /* 3057 * ieee80211_he_spr_size - calculate 802.11ax HE Spatial Reuse IE size 3058 * @he_spr_ie: byte data of the He Spatial Reuse IE, stating from the byte 3059 * after the ext ID byte. It is assumed that he_spr_ie has at least 3060 * sizeof(struct ieee80211_he_spr) bytes, the caller must have validated 3061 * this 3062 * @return the actual size of the IE data (not including header), or 0 on error 3063 */ 3064 static inline u8 3065 ieee80211_he_spr_size(const u8 *he_spr_ie) 3066 { 3067 const struct ieee80211_he_spr *he_spr = (const void *)he_spr_ie; 3068 u8 spr_len = sizeof(struct ieee80211_he_spr); 3069 u8 he_spr_params; 3070 3071 /* Make sure the input is not NULL */ 3072 if (!he_spr_ie) 3073 return 0; 3074 3075 /* Calc required length */ 3076 he_spr_params = he_spr->he_sr_control; 3077 if (he_spr_params & IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT) 3078 spr_len++; 3079 if (he_spr_params & IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT) 3080 spr_len += 18; 3081 3082 /* Add the first byte (extension ID) to the total length */ 3083 spr_len++; 3084 3085 return spr_len; 3086 } 3087 3088 /* S1G Capabilities Information field */ 3089 #define IEEE80211_S1G_CAPABILITY_LEN 15 3090 3091 #define S1G_CAP0_S1G_LONG BIT(0) 3092 #define S1G_CAP0_SGI_1MHZ BIT(1) 3093 #define S1G_CAP0_SGI_2MHZ BIT(2) 3094 #define S1G_CAP0_SGI_4MHZ BIT(3) 3095 #define S1G_CAP0_SGI_8MHZ BIT(4) 3096 #define S1G_CAP0_SGI_16MHZ BIT(5) 3097 #define S1G_CAP0_SUPP_CH_WIDTH GENMASK(7, 6) 3098 3099 #define S1G_SUPP_CH_WIDTH_2 0 3100 #define S1G_SUPP_CH_WIDTH_4 1 3101 #define S1G_SUPP_CH_WIDTH_8 2 3102 #define S1G_SUPP_CH_WIDTH_16 3 3103 #define S1G_SUPP_CH_WIDTH_MAX(cap) ((1 << FIELD_GET(S1G_CAP0_SUPP_CH_WIDTH, \ 3104 cap[0])) << 1) 3105 3106 #define S1G_CAP1_RX_LDPC BIT(0) 3107 #define S1G_CAP1_TX_STBC BIT(1) 3108 #define S1G_CAP1_RX_STBC BIT(2) 3109 #define S1G_CAP1_SU_BFER BIT(3) 3110 #define S1G_CAP1_SU_BFEE BIT(4) 3111 #define S1G_CAP1_BFEE_STS GENMASK(7, 5) 3112 3113 #define S1G_CAP2_SOUNDING_DIMENSIONS GENMASK(2, 0) 3114 #define S1G_CAP2_MU_BFER BIT(3) 3115 #define S1G_CAP2_MU_BFEE BIT(4) 3116 #define S1G_CAP2_PLUS_HTC_VHT BIT(5) 3117 #define S1G_CAP2_TRAVELING_PILOT GENMASK(7, 6) 3118 3119 #define S1G_CAP3_RD_RESPONDER BIT(0) 3120 #define S1G_CAP3_HT_DELAYED_BA BIT(1) 3121 #define S1G_CAP3_MAX_MPDU_LEN BIT(2) 3122 #define S1G_CAP3_MAX_AMPDU_LEN_EXP GENMASK(4, 3) 3123 #define S1G_CAP3_MIN_MPDU_START GENMASK(7, 5) 3124 3125 #define S1G_CAP4_UPLINK_SYNC BIT(0) 3126 #define S1G_CAP4_DYNAMIC_AID BIT(1) 3127 #define S1G_CAP4_BAT BIT(2) 3128 #define S1G_CAP4_TIME_ADE BIT(3) 3129 #define S1G_CAP4_NON_TIM BIT(4) 3130 #define S1G_CAP4_GROUP_AID BIT(5) 3131 #define S1G_CAP4_STA_TYPE GENMASK(7, 6) 3132 3133 #define S1G_CAP5_CENT_AUTH_CONTROL BIT(0) 3134 #define S1G_CAP5_DIST_AUTH_CONTROL BIT(1) 3135 #define S1G_CAP5_AMSDU BIT(2) 3136 #define S1G_CAP5_AMPDU BIT(3) 3137 #define S1G_CAP5_ASYMMETRIC_BA BIT(4) 3138 #define S1G_CAP5_FLOW_CONTROL BIT(5) 3139 #define S1G_CAP5_SECTORIZED_BEAM GENMASK(7, 6) 3140 3141 #define S1G_CAP6_OBSS_MITIGATION BIT(0) 3142 #define S1G_CAP6_FRAGMENT_BA BIT(1) 3143 #define S1G_CAP6_NDP_PS_POLL BIT(2) 3144 #define S1G_CAP6_RAW_OPERATION BIT(3) 3145 #define S1G_CAP6_PAGE_SLICING BIT(4) 3146 #define S1G_CAP6_TXOP_SHARING_IMP_ACK BIT(5) 3147 #define S1G_CAP6_VHT_LINK_ADAPT GENMASK(7, 6) 3148 3149 #define S1G_CAP7_TACK_AS_PS_POLL BIT(0) 3150 #define S1G_CAP7_DUP_1MHZ BIT(1) 3151 #define S1G_CAP7_MCS_NEGOTIATION BIT(2) 3152 #define S1G_CAP7_1MHZ_CTL_RESPONSE_PREAMBLE BIT(3) 3153 #define S1G_CAP7_NDP_BFING_REPORT_POLL BIT(4) 3154 #define S1G_CAP7_UNSOLICITED_DYN_AID BIT(5) 3155 #define S1G_CAP7_SECTOR_TRAINING_OPERATION BIT(6) 3156 #define S1G_CAP7_TEMP_PS_MODE_SWITCH BIT(7) 3157 3158 #define S1G_CAP8_TWT_GROUPING BIT(0) 3159 #define S1G_CAP8_BDT BIT(1) 3160 #define S1G_CAP8_COLOR GENMASK(4, 2) 3161 #define S1G_CAP8_TWT_REQUEST BIT(5) 3162 #define S1G_CAP8_TWT_RESPOND BIT(6) 3163 #define S1G_CAP8_PV1_FRAME BIT(7) 3164 3165 #define S1G_CAP9_LINK_ADAPT_PER_CONTROL_RESPONSE BIT(0) 3166 3167 #define S1G_OPER_CH_WIDTH_PRIMARY_1MHZ BIT(0) 3168 #define S1G_OPER_CH_WIDTH_OPER GENMASK(4, 1) 3169 3170 /* EHT MAC capabilities as defined in P802.11be_D2.0 section 9.4.2.313.2 */ 3171 #define IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS 0x01 3172 #define IEEE80211_EHT_MAC_CAP0_OM_CONTROL 0x02 3173 #define IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 0x04 3174 #define IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2 0x08 3175 #define IEEE80211_EHT_MAC_CAP0_RESTRICTED_TWT 0x10 3176 #define IEEE80211_EHT_MAC_CAP0_SCS_TRAFFIC_DESC 0x20 3177 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK 0xc0 3178 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_3895 0 3179 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_7991 1 3180 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454 2 3181 3182 #define IEEE80211_EHT_MAC_CAP1_MAX_AMPDU_LEN_MASK 0x01 3183 #define IEEE80211_EHT_MAC_CAP1_EHT_TRS 0x02 3184 #define IEEE80211_EHT_MAC_CAP1_TXOP_RET 0x04 3185 #define IEEE80211_EHT_MAC_CAP1_TWO_BQRS 0x08 3186 #define IEEE80211_EHT_MAC_CAP1_EHT_LINK_ADAPT_MASK 0x30 3187 #define IEEE80211_EHT_MAC_CAP1_UNSOL_EPCS_PRIO_ACCESS 0x40 3188 3189 /* EHT PHY capabilities as defined in P802.11be_D2.0 section 9.4.2.313.3 */ 3190 #define IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ 0x02 3191 #define IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ 0x04 3192 #define IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI 0x08 3193 #define IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO 0x10 3194 #define IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMER 0x20 3195 #define IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE 0x40 3196 3197 /* EHT beamformee number of spatial streams <= 80MHz is split */ 3198 #define IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK 0x80 3199 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK 0x03 3200 3201 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK 0x1c 3202 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK 0xe0 3203 3204 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_80MHZ_MASK 0x07 3205 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK 0x38 3206 3207 /* EHT number of sounding dimensions for 320MHz is split */ 3208 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK 0xc0 3209 #define IEEE80211_EHT_PHY_CAP3_SOUNDING_DIM_320MHZ_MASK 0x01 3210 #define IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK 0x02 3211 #define IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK 0x04 3212 #define IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK 0x08 3213 #define IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK 0x10 3214 #define IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK 0x20 3215 #define IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK 0x40 3216 #define IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK 0x80 3217 3218 #define IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO 0x01 3219 #define IEEE80211_EHT_PHY_CAP4_PSR_SR_SUPP 0x02 3220 #define IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP 0x04 3221 #define IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI 0x08 3222 #define IEEE80211_EHT_PHY_CAP4_MAX_NC_MASK 0xf0 3223 3224 #define IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK 0x01 3225 #define IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP 0x02 3226 #define IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP 0x04 3227 #define IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT 0x08 3228 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK 0x30 3229 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_0US 0 3230 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_8US 1 3231 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US 2 3232 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_20US 3 3233 3234 /* Maximum number of supported EHT LTF is split */ 3235 #define IEEE80211_EHT_PHY_CAP5_MAX_NUM_SUPP_EHT_LTF_MASK 0xc0 3236 #define IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF 0x40 3237 #define IEEE80211_EHT_PHY_CAP6_MAX_NUM_SUPP_EHT_LTF_MASK 0x07 3238 3239 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_80MHZ 0x08 3240 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_160MHZ 0x30 3241 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_320MHZ 0x40 3242 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK 0x78 3243 #define IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP 0x80 3244 3245 #define IEEE80211_EHT_PHY_CAP7_20MHZ_STA_RX_NDP_WIDER_BW 0x01 3246 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_80MHZ 0x02 3247 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_160MHZ 0x04 3248 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_320MHZ 0x08 3249 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ 0x10 3250 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ 0x20 3251 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_320MHZ 0x40 3252 #define IEEE80211_EHT_PHY_CAP7_TB_SOUNDING_FDBK_RATE_LIMIT 0x80 3253 3254 #define IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA 0x01 3255 #define IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA 0x02 3256 3257 /* 3258 * EHT operation channel width as defined in P802.11be_D2.0 section 9.4.2.311 3259 */ 3260 #define IEEE80211_EHT_OPER_CHAN_WIDTH 0x7 3261 #define IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ 0 3262 #define IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ 1 3263 #define IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ 2 3264 #define IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ 3 3265 #define IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ 4 3266 3267 /* Calculate 802.11be EHT capabilities IE Tx/Rx EHT MCS NSS Support Field size */ 3268 static inline u8 3269 ieee80211_eht_mcs_nss_size(const struct ieee80211_he_cap_elem *he_cap, 3270 const struct ieee80211_eht_cap_elem_fixed *eht_cap, 3271 bool from_ap) 3272 { 3273 u8 count = 0; 3274 3275 /* on 2.4 GHz, if it supports 40 MHz, the result is 3 */ 3276 if (he_cap->phy_cap_info[0] & 3277 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G) 3278 return 3; 3279 3280 /* on 2.4 GHz, these three bits are reserved, so should be 0 */ 3281 if (he_cap->phy_cap_info[0] & 3282 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G) 3283 count += 3; 3284 3285 if (he_cap->phy_cap_info[0] & 3286 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G) 3287 count += 3; 3288 3289 if (eht_cap->phy_cap_info[0] & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ) 3290 count += 3; 3291 3292 if (count) 3293 return count; 3294 3295 return from_ap ? 3 : 4; 3296 } 3297 3298 /* 802.11be EHT PPE Thresholds */ 3299 #define IEEE80211_EHT_PPE_THRES_NSS_POS 0 3300 #define IEEE80211_EHT_PPE_THRES_NSS_MASK 0xf 3301 #define IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK 0x1f0 3302 #define IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE 3 3303 #define IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE 9 3304 3305 /* 3306 * Calculate 802.11be EHT capabilities IE EHT field size 3307 */ 3308 static inline u8 3309 ieee80211_eht_ppe_size(u16 ppe_thres_hdr, const u8 *phy_cap_info) 3310 { 3311 u32 n; 3312 3313 if (!(phy_cap_info[5] & 3314 IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT)) 3315 return 0; 3316 3317 n = hweight16(ppe_thres_hdr & 3318 IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK); 3319 n *= 1 + u16_get_bits(ppe_thres_hdr, IEEE80211_EHT_PPE_THRES_NSS_MASK); 3320 3321 /* 3322 * Each pair is 6 bits, and we need to add the 9 "header" bits to the 3323 * total size. 3324 */ 3325 n = n * IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE * 2 + 3326 IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE; 3327 return DIV_ROUND_UP(n, 8); 3328 } 3329 3330 static inline bool 3331 ieee80211_eht_capa_size_ok(const u8 *he_capa, const u8 *data, u8 len, 3332 bool from_ap) 3333 { 3334 const struct ieee80211_eht_cap_elem_fixed *elem = (const void *)data; 3335 u8 needed = sizeof(struct ieee80211_eht_cap_elem_fixed); 3336 3337 if (len < needed || !he_capa) 3338 return false; 3339 3340 needed += ieee80211_eht_mcs_nss_size((const void *)he_capa, 3341 (const void *)data, 3342 from_ap); 3343 if (len < needed) 3344 return false; 3345 3346 if (elem->phy_cap_info[5] & 3347 IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT) { 3348 u16 ppe_thres_hdr; 3349 3350 if (len < needed + sizeof(ppe_thres_hdr)) 3351 return false; 3352 3353 ppe_thres_hdr = get_unaligned_le16(data + needed); 3354 needed += ieee80211_eht_ppe_size(ppe_thres_hdr, 3355 elem->phy_cap_info); 3356 } 3357 3358 return len >= needed; 3359 } 3360 3361 static inline bool 3362 ieee80211_eht_oper_size_ok(const u8 *data, u8 len) 3363 { 3364 const struct ieee80211_eht_operation *elem = (const void *)data; 3365 u8 needed = sizeof(*elem); 3366 3367 if (len < needed) 3368 return false; 3369 3370 if (elem->params & IEEE80211_EHT_OPER_INFO_PRESENT) { 3371 needed += 3; 3372 3373 if (elem->params & 3374 IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT) 3375 needed += 2; 3376 } 3377 3378 return len >= needed; 3379 } 3380 3381 /* must validate ieee80211_eht_oper_size_ok() first */ 3382 static inline u16 3383 ieee80211_eht_oper_dis_subchan_bitmap(const struct ieee80211_eht_operation *eht_oper) 3384 { 3385 const struct ieee80211_eht_operation_info *info = 3386 (const void *)eht_oper->optional; 3387 3388 if (!(eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT)) 3389 return 0; 3390 3391 if (!(eht_oper->params & IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT)) 3392 return 0; 3393 3394 return get_unaligned_le16(info->optional); 3395 } 3396 3397 #define IEEE80211_BW_IND_DIS_SUBCH_PRESENT BIT(1) 3398 3399 struct ieee80211_bandwidth_indication { 3400 u8 params; 3401 struct ieee80211_eht_operation_info info; 3402 } __packed; 3403 3404 static inline bool 3405 ieee80211_bandwidth_indication_size_ok(const u8 *data, u8 len) 3406 { 3407 const struct ieee80211_bandwidth_indication *bwi = (const void *)data; 3408 3409 if (len < sizeof(*bwi)) 3410 return false; 3411 3412 if (bwi->params & IEEE80211_BW_IND_DIS_SUBCH_PRESENT && 3413 len < sizeof(*bwi) + 2) 3414 return false; 3415 3416 return true; 3417 } 3418 3419 #define LISTEN_INT_USF GENMASK(15, 14) 3420 #define LISTEN_INT_UI GENMASK(13, 0) 3421 3422 #define IEEE80211_MAX_USF FIELD_MAX(LISTEN_INT_USF) 3423 #define IEEE80211_MAX_UI FIELD_MAX(LISTEN_INT_UI) 3424 3425 /* Authentication algorithms */ 3426 #define WLAN_AUTH_OPEN 0 3427 #define WLAN_AUTH_SHARED_KEY 1 3428 #define WLAN_AUTH_FT 2 3429 #define WLAN_AUTH_SAE 3 3430 #define WLAN_AUTH_FILS_SK 4 3431 #define WLAN_AUTH_FILS_SK_PFS 5 3432 #define WLAN_AUTH_FILS_PK 6 3433 #define WLAN_AUTH_LEAP 128 3434 3435 #define WLAN_AUTH_CHALLENGE_LEN 128 3436 3437 #define WLAN_CAPABILITY_ESS (1<<0) 3438 #define WLAN_CAPABILITY_IBSS (1<<1) 3439 3440 /* 3441 * A mesh STA sets the ESS and IBSS capability bits to zero. 3442 * however, this holds true for p2p probe responses (in the p2p_find 3443 * phase) as well. 3444 */ 3445 #define WLAN_CAPABILITY_IS_STA_BSS(cap) \ 3446 (!((cap) & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS))) 3447 3448 #define WLAN_CAPABILITY_CF_POLLABLE (1<<2) 3449 #define WLAN_CAPABILITY_CF_POLL_REQUEST (1<<3) 3450 #define WLAN_CAPABILITY_PRIVACY (1<<4) 3451 #define WLAN_CAPABILITY_SHORT_PREAMBLE (1<<5) 3452 #define WLAN_CAPABILITY_PBCC (1<<6) 3453 #define WLAN_CAPABILITY_CHANNEL_AGILITY (1<<7) 3454 3455 /* 802.11h */ 3456 #define WLAN_CAPABILITY_SPECTRUM_MGMT (1<<8) 3457 #define WLAN_CAPABILITY_QOS (1<<9) 3458 #define WLAN_CAPABILITY_SHORT_SLOT_TIME (1<<10) 3459 #define WLAN_CAPABILITY_APSD (1<<11) 3460 #define WLAN_CAPABILITY_RADIO_MEASURE (1<<12) 3461 #define WLAN_CAPABILITY_DSSS_OFDM (1<<13) 3462 #define WLAN_CAPABILITY_DEL_BACK (1<<14) 3463 #define WLAN_CAPABILITY_IMM_BACK (1<<15) 3464 3465 /* DMG (60gHz) 802.11ad */ 3466 /* type - bits 0..1 */ 3467 #define WLAN_CAPABILITY_DMG_TYPE_MASK (3<<0) 3468 #define WLAN_CAPABILITY_DMG_TYPE_IBSS (1<<0) /* Tx by: STA */ 3469 #define WLAN_CAPABILITY_DMG_TYPE_PBSS (2<<0) /* Tx by: PCP */ 3470 #define WLAN_CAPABILITY_DMG_TYPE_AP (3<<0) /* Tx by: AP */ 3471 3472 #define WLAN_CAPABILITY_DMG_CBAP_ONLY (1<<2) 3473 #define WLAN_CAPABILITY_DMG_CBAP_SOURCE (1<<3) 3474 #define WLAN_CAPABILITY_DMG_PRIVACY (1<<4) 3475 #define WLAN_CAPABILITY_DMG_ECPAC (1<<5) 3476 3477 #define WLAN_CAPABILITY_DMG_SPECTRUM_MGMT (1<<8) 3478 #define WLAN_CAPABILITY_DMG_RADIO_MEASURE (1<<12) 3479 3480 /* measurement */ 3481 #define IEEE80211_SPCT_MSR_RPRT_MODE_LATE (1<<0) 3482 #define IEEE80211_SPCT_MSR_RPRT_MODE_INCAPABLE (1<<1) 3483 #define IEEE80211_SPCT_MSR_RPRT_MODE_REFUSED (1<<2) 3484 3485 #define IEEE80211_SPCT_MSR_RPRT_TYPE_BASIC 0 3486 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CCA 1 3487 #define IEEE80211_SPCT_MSR_RPRT_TYPE_RPI 2 3488 #define IEEE80211_SPCT_MSR_RPRT_TYPE_LCI 8 3489 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CIVIC 11 3490 3491 /* 802.11g ERP information element */ 3492 #define WLAN_ERP_NON_ERP_PRESENT (1<<0) 3493 #define WLAN_ERP_USE_PROTECTION (1<<1) 3494 #define WLAN_ERP_BARKER_PREAMBLE (1<<2) 3495 3496 /* WLAN_ERP_BARKER_PREAMBLE values */ 3497 enum { 3498 WLAN_ERP_PREAMBLE_SHORT = 0, 3499 WLAN_ERP_PREAMBLE_LONG = 1, 3500 }; 3501 3502 /* Band ID, 802.11ad #8.4.1.45 */ 3503 enum { 3504 IEEE80211_BANDID_TV_WS = 0, /* TV white spaces */ 3505 IEEE80211_BANDID_SUB1 = 1, /* Sub-1 GHz (excluding TV white spaces) */ 3506 IEEE80211_BANDID_2G = 2, /* 2.4 GHz */ 3507 IEEE80211_BANDID_3G = 3, /* 3.6 GHz */ 3508 IEEE80211_BANDID_5G = 4, /* 4.9 and 5 GHz */ 3509 IEEE80211_BANDID_60G = 5, /* 60 GHz */ 3510 }; 3511 3512 /* Status codes */ 3513 enum ieee80211_statuscode { 3514 WLAN_STATUS_SUCCESS = 0, 3515 WLAN_STATUS_UNSPECIFIED_FAILURE = 1, 3516 WLAN_STATUS_CAPS_UNSUPPORTED = 10, 3517 WLAN_STATUS_REASSOC_NO_ASSOC = 11, 3518 WLAN_STATUS_ASSOC_DENIED_UNSPEC = 12, 3519 WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG = 13, 3520 WLAN_STATUS_UNKNOWN_AUTH_TRANSACTION = 14, 3521 WLAN_STATUS_CHALLENGE_FAIL = 15, 3522 WLAN_STATUS_AUTH_TIMEOUT = 16, 3523 WLAN_STATUS_AP_UNABLE_TO_HANDLE_NEW_STA = 17, 3524 WLAN_STATUS_ASSOC_DENIED_RATES = 18, 3525 /* 802.11b */ 3526 WLAN_STATUS_ASSOC_DENIED_NOSHORTPREAMBLE = 19, 3527 WLAN_STATUS_ASSOC_DENIED_NOPBCC = 20, 3528 WLAN_STATUS_ASSOC_DENIED_NOAGILITY = 21, 3529 /* 802.11h */ 3530 WLAN_STATUS_ASSOC_DENIED_NOSPECTRUM = 22, 3531 WLAN_STATUS_ASSOC_REJECTED_BAD_POWER = 23, 3532 WLAN_STATUS_ASSOC_REJECTED_BAD_SUPP_CHAN = 24, 3533 /* 802.11g */ 3534 WLAN_STATUS_ASSOC_DENIED_NOSHORTTIME = 25, 3535 WLAN_STATUS_ASSOC_DENIED_NODSSSOFDM = 26, 3536 /* 802.11w */ 3537 WLAN_STATUS_ASSOC_REJECTED_TEMPORARILY = 30, 3538 WLAN_STATUS_ROBUST_MGMT_FRAME_POLICY_VIOLATION = 31, 3539 /* 802.11i */ 3540 WLAN_STATUS_INVALID_IE = 40, 3541 WLAN_STATUS_INVALID_GROUP_CIPHER = 41, 3542 WLAN_STATUS_INVALID_PAIRWISE_CIPHER = 42, 3543 WLAN_STATUS_INVALID_AKMP = 43, 3544 WLAN_STATUS_UNSUPP_RSN_VERSION = 44, 3545 WLAN_STATUS_INVALID_RSN_IE_CAP = 45, 3546 WLAN_STATUS_CIPHER_SUITE_REJECTED = 46, 3547 /* 802.11e */ 3548 WLAN_STATUS_UNSPECIFIED_QOS = 32, 3549 WLAN_STATUS_ASSOC_DENIED_NOBANDWIDTH = 33, 3550 WLAN_STATUS_ASSOC_DENIED_LOWACK = 34, 3551 WLAN_STATUS_ASSOC_DENIED_UNSUPP_QOS = 35, 3552 WLAN_STATUS_REQUEST_DECLINED = 37, 3553 WLAN_STATUS_INVALID_QOS_PARAM = 38, 3554 WLAN_STATUS_CHANGE_TSPEC = 39, 3555 WLAN_STATUS_WAIT_TS_DELAY = 47, 3556 WLAN_STATUS_NO_DIRECT_LINK = 48, 3557 WLAN_STATUS_STA_NOT_PRESENT = 49, 3558 WLAN_STATUS_STA_NOT_QSTA = 50, 3559 /* 802.11s */ 3560 WLAN_STATUS_ANTI_CLOG_REQUIRED = 76, 3561 WLAN_STATUS_FCG_NOT_SUPP = 78, 3562 WLAN_STATUS_STA_NO_TBTT = 78, 3563 /* 802.11ad */ 3564 WLAN_STATUS_REJECTED_WITH_SUGGESTED_CHANGES = 39, 3565 WLAN_STATUS_REJECTED_FOR_DELAY_PERIOD = 47, 3566 WLAN_STATUS_REJECT_WITH_SCHEDULE = 83, 3567 WLAN_STATUS_PENDING_ADMITTING_FST_SESSION = 86, 3568 WLAN_STATUS_PERFORMING_FST_NOW = 87, 3569 WLAN_STATUS_PENDING_GAP_IN_BA_WINDOW = 88, 3570 WLAN_STATUS_REJECT_U_PID_SETTING = 89, 3571 WLAN_STATUS_REJECT_DSE_BAND = 96, 3572 WLAN_STATUS_DENIED_WITH_SUGGESTED_BAND_AND_CHANNEL = 99, 3573 WLAN_STATUS_DENIED_DUE_TO_SPECTRUM_MANAGEMENT = 103, 3574 /* 802.11ai */ 3575 WLAN_STATUS_FILS_AUTHENTICATION_FAILURE = 108, 3576 WLAN_STATUS_UNKNOWN_AUTHENTICATION_SERVER = 109, 3577 WLAN_STATUS_SAE_HASH_TO_ELEMENT = 126, 3578 WLAN_STATUS_SAE_PK = 127, 3579 WLAN_STATUS_DENIED_TID_TO_LINK_MAPPING = 133, 3580 WLAN_STATUS_PREF_TID_TO_LINK_MAPPING_SUGGESTED = 134, 3581 }; 3582 3583 3584 /* Reason codes */ 3585 enum ieee80211_reasoncode { 3586 WLAN_REASON_UNSPECIFIED = 1, 3587 WLAN_REASON_PREV_AUTH_NOT_VALID = 2, 3588 WLAN_REASON_DEAUTH_LEAVING = 3, 3589 WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY = 4, 3590 WLAN_REASON_DISASSOC_AP_BUSY = 5, 3591 WLAN_REASON_CLASS2_FRAME_FROM_NONAUTH_STA = 6, 3592 WLAN_REASON_CLASS3_FRAME_FROM_NONASSOC_STA = 7, 3593 WLAN_REASON_DISASSOC_STA_HAS_LEFT = 8, 3594 WLAN_REASON_STA_REQ_ASSOC_WITHOUT_AUTH = 9, 3595 /* 802.11h */ 3596 WLAN_REASON_DISASSOC_BAD_POWER = 10, 3597 WLAN_REASON_DISASSOC_BAD_SUPP_CHAN = 11, 3598 /* 802.11i */ 3599 WLAN_REASON_INVALID_IE = 13, 3600 WLAN_REASON_MIC_FAILURE = 14, 3601 WLAN_REASON_4WAY_HANDSHAKE_TIMEOUT = 15, 3602 WLAN_REASON_GROUP_KEY_HANDSHAKE_TIMEOUT = 16, 3603 WLAN_REASON_IE_DIFFERENT = 17, 3604 WLAN_REASON_INVALID_GROUP_CIPHER = 18, 3605 WLAN_REASON_INVALID_PAIRWISE_CIPHER = 19, 3606 WLAN_REASON_INVALID_AKMP = 20, 3607 WLAN_REASON_UNSUPP_RSN_VERSION = 21, 3608 WLAN_REASON_INVALID_RSN_IE_CAP = 22, 3609 WLAN_REASON_IEEE8021X_FAILED = 23, 3610 WLAN_REASON_CIPHER_SUITE_REJECTED = 24, 3611 /* TDLS (802.11z) */ 3612 WLAN_REASON_TDLS_TEARDOWN_UNREACHABLE = 25, 3613 WLAN_REASON_TDLS_TEARDOWN_UNSPECIFIED = 26, 3614 /* 802.11e */ 3615 WLAN_REASON_DISASSOC_UNSPECIFIED_QOS = 32, 3616 WLAN_REASON_DISASSOC_QAP_NO_BANDWIDTH = 33, 3617 WLAN_REASON_DISASSOC_LOW_ACK = 34, 3618 WLAN_REASON_DISASSOC_QAP_EXCEED_TXOP = 35, 3619 WLAN_REASON_QSTA_LEAVE_QBSS = 36, 3620 WLAN_REASON_QSTA_NOT_USE = 37, 3621 WLAN_REASON_QSTA_REQUIRE_SETUP = 38, 3622 WLAN_REASON_QSTA_TIMEOUT = 39, 3623 WLAN_REASON_QSTA_CIPHER_NOT_SUPP = 45, 3624 /* 802.11s */ 3625 WLAN_REASON_MESH_PEER_CANCELED = 52, 3626 WLAN_REASON_MESH_MAX_PEERS = 53, 3627 WLAN_REASON_MESH_CONFIG = 54, 3628 WLAN_REASON_MESH_CLOSE = 55, 3629 WLAN_REASON_MESH_MAX_RETRIES = 56, 3630 WLAN_REASON_MESH_CONFIRM_TIMEOUT = 57, 3631 WLAN_REASON_MESH_INVALID_GTK = 58, 3632 WLAN_REASON_MESH_INCONSISTENT_PARAM = 59, 3633 WLAN_REASON_MESH_INVALID_SECURITY = 60, 3634 WLAN_REASON_MESH_PATH_ERROR = 61, 3635 WLAN_REASON_MESH_PATH_NOFORWARD = 62, 3636 WLAN_REASON_MESH_PATH_DEST_UNREACHABLE = 63, 3637 WLAN_REASON_MAC_EXISTS_IN_MBSS = 64, 3638 WLAN_REASON_MESH_CHAN_REGULATORY = 65, 3639 WLAN_REASON_MESH_CHAN = 66, 3640 }; 3641 3642 3643 /* Information Element IDs */ 3644 enum ieee80211_eid { 3645 WLAN_EID_SSID = 0, 3646 WLAN_EID_SUPP_RATES = 1, 3647 WLAN_EID_FH_PARAMS = 2, /* reserved now */ 3648 WLAN_EID_DS_PARAMS = 3, 3649 WLAN_EID_CF_PARAMS = 4, 3650 WLAN_EID_TIM = 5, 3651 WLAN_EID_IBSS_PARAMS = 6, 3652 WLAN_EID_COUNTRY = 7, 3653 /* 8, 9 reserved */ 3654 WLAN_EID_REQUEST = 10, 3655 WLAN_EID_QBSS_LOAD = 11, 3656 WLAN_EID_EDCA_PARAM_SET = 12, 3657 WLAN_EID_TSPEC = 13, 3658 WLAN_EID_TCLAS = 14, 3659 WLAN_EID_SCHEDULE = 15, 3660 WLAN_EID_CHALLENGE = 16, 3661 /* 17-31 reserved for challenge text extension */ 3662 WLAN_EID_PWR_CONSTRAINT = 32, 3663 WLAN_EID_PWR_CAPABILITY = 33, 3664 WLAN_EID_TPC_REQUEST = 34, 3665 WLAN_EID_TPC_REPORT = 35, 3666 WLAN_EID_SUPPORTED_CHANNELS = 36, 3667 WLAN_EID_CHANNEL_SWITCH = 37, 3668 WLAN_EID_MEASURE_REQUEST = 38, 3669 WLAN_EID_MEASURE_REPORT = 39, 3670 WLAN_EID_QUIET = 40, 3671 WLAN_EID_IBSS_DFS = 41, 3672 WLAN_EID_ERP_INFO = 42, 3673 WLAN_EID_TS_DELAY = 43, 3674 WLAN_EID_TCLAS_PROCESSING = 44, 3675 WLAN_EID_HT_CAPABILITY = 45, 3676 WLAN_EID_QOS_CAPA = 46, 3677 /* 47 reserved for Broadcom */ 3678 WLAN_EID_RSN = 48, 3679 WLAN_EID_802_15_COEX = 49, 3680 WLAN_EID_EXT_SUPP_RATES = 50, 3681 WLAN_EID_AP_CHAN_REPORT = 51, 3682 WLAN_EID_NEIGHBOR_REPORT = 52, 3683 WLAN_EID_RCPI = 53, 3684 WLAN_EID_MOBILITY_DOMAIN = 54, 3685 WLAN_EID_FAST_BSS_TRANSITION = 55, 3686 WLAN_EID_TIMEOUT_INTERVAL = 56, 3687 WLAN_EID_RIC_DATA = 57, 3688 WLAN_EID_DSE_REGISTERED_LOCATION = 58, 3689 WLAN_EID_SUPPORTED_REGULATORY_CLASSES = 59, 3690 WLAN_EID_EXT_CHANSWITCH_ANN = 60, 3691 WLAN_EID_HT_OPERATION = 61, 3692 WLAN_EID_SECONDARY_CHANNEL_OFFSET = 62, 3693 WLAN_EID_BSS_AVG_ACCESS_DELAY = 63, 3694 WLAN_EID_ANTENNA_INFO = 64, 3695 WLAN_EID_RSNI = 65, 3696 WLAN_EID_MEASUREMENT_PILOT_TX_INFO = 66, 3697 WLAN_EID_BSS_AVAILABLE_CAPACITY = 67, 3698 WLAN_EID_BSS_AC_ACCESS_DELAY = 68, 3699 WLAN_EID_TIME_ADVERTISEMENT = 69, 3700 WLAN_EID_RRM_ENABLED_CAPABILITIES = 70, 3701 WLAN_EID_MULTIPLE_BSSID = 71, 3702 WLAN_EID_BSS_COEX_2040 = 72, 3703 WLAN_EID_BSS_INTOLERANT_CHL_REPORT = 73, 3704 WLAN_EID_OVERLAP_BSS_SCAN_PARAM = 74, 3705 WLAN_EID_RIC_DESCRIPTOR = 75, 3706 WLAN_EID_MMIE = 76, 3707 WLAN_EID_ASSOC_COMEBACK_TIME = 77, 3708 WLAN_EID_EVENT_REQUEST = 78, 3709 WLAN_EID_EVENT_REPORT = 79, 3710 WLAN_EID_DIAGNOSTIC_REQUEST = 80, 3711 WLAN_EID_DIAGNOSTIC_REPORT = 81, 3712 WLAN_EID_LOCATION_PARAMS = 82, 3713 WLAN_EID_NON_TX_BSSID_CAP = 83, 3714 WLAN_EID_SSID_LIST = 84, 3715 WLAN_EID_MULTI_BSSID_IDX = 85, 3716 WLAN_EID_FMS_DESCRIPTOR = 86, 3717 WLAN_EID_FMS_REQUEST = 87, 3718 WLAN_EID_FMS_RESPONSE = 88, 3719 WLAN_EID_QOS_TRAFFIC_CAPA = 89, 3720 WLAN_EID_BSS_MAX_IDLE_PERIOD = 90, 3721 WLAN_EID_TSF_REQUEST = 91, 3722 WLAN_EID_TSF_RESPOSNE = 92, 3723 WLAN_EID_WNM_SLEEP_MODE = 93, 3724 WLAN_EID_TIM_BCAST_REQ = 94, 3725 WLAN_EID_TIM_BCAST_RESP = 95, 3726 WLAN_EID_COLL_IF_REPORT = 96, 3727 WLAN_EID_CHANNEL_USAGE = 97, 3728 WLAN_EID_TIME_ZONE = 98, 3729 WLAN_EID_DMS_REQUEST = 99, 3730 WLAN_EID_DMS_RESPONSE = 100, 3731 WLAN_EID_LINK_ID = 101, 3732 WLAN_EID_WAKEUP_SCHEDUL = 102, 3733 /* 103 reserved */ 3734 WLAN_EID_CHAN_SWITCH_TIMING = 104, 3735 WLAN_EID_PTI_CONTROL = 105, 3736 WLAN_EID_PU_BUFFER_STATUS = 106, 3737 WLAN_EID_INTERWORKING = 107, 3738 WLAN_EID_ADVERTISEMENT_PROTOCOL = 108, 3739 WLAN_EID_EXPEDITED_BW_REQ = 109, 3740 WLAN_EID_QOS_MAP_SET = 110, 3741 WLAN_EID_ROAMING_CONSORTIUM = 111, 3742 WLAN_EID_EMERGENCY_ALERT = 112, 3743 WLAN_EID_MESH_CONFIG = 113, 3744 WLAN_EID_MESH_ID = 114, 3745 WLAN_EID_LINK_METRIC_REPORT = 115, 3746 WLAN_EID_CONGESTION_NOTIFICATION = 116, 3747 WLAN_EID_PEER_MGMT = 117, 3748 WLAN_EID_CHAN_SWITCH_PARAM = 118, 3749 WLAN_EID_MESH_AWAKE_WINDOW = 119, 3750 WLAN_EID_BEACON_TIMING = 120, 3751 WLAN_EID_MCCAOP_SETUP_REQ = 121, 3752 WLAN_EID_MCCAOP_SETUP_RESP = 122, 3753 WLAN_EID_MCCAOP_ADVERT = 123, 3754 WLAN_EID_MCCAOP_TEARDOWN = 124, 3755 WLAN_EID_GANN = 125, 3756 WLAN_EID_RANN = 126, 3757 WLAN_EID_EXT_CAPABILITY = 127, 3758 /* 128, 129 reserved for Agere */ 3759 WLAN_EID_PREQ = 130, 3760 WLAN_EID_PREP = 131, 3761 WLAN_EID_PERR = 132, 3762 /* 133-136 reserved for Cisco */ 3763 WLAN_EID_PXU = 137, 3764 WLAN_EID_PXUC = 138, 3765 WLAN_EID_AUTH_MESH_PEER_EXCH = 139, 3766 WLAN_EID_MIC = 140, 3767 WLAN_EID_DESTINATION_URI = 141, 3768 WLAN_EID_UAPSD_COEX = 142, 3769 WLAN_EID_WAKEUP_SCHEDULE = 143, 3770 WLAN_EID_EXT_SCHEDULE = 144, 3771 WLAN_EID_STA_AVAILABILITY = 145, 3772 WLAN_EID_DMG_TSPEC = 146, 3773 WLAN_EID_DMG_AT = 147, 3774 WLAN_EID_DMG_CAP = 148, 3775 /* 149 reserved for Cisco */ 3776 WLAN_EID_CISCO_VENDOR_SPECIFIC = 150, 3777 WLAN_EID_DMG_OPERATION = 151, 3778 WLAN_EID_DMG_BSS_PARAM_CHANGE = 152, 3779 WLAN_EID_DMG_BEAM_REFINEMENT = 153, 3780 WLAN_EID_CHANNEL_MEASURE_FEEDBACK = 154, 3781 /* 155-156 reserved for Cisco */ 3782 WLAN_EID_AWAKE_WINDOW = 157, 3783 WLAN_EID_MULTI_BAND = 158, 3784 WLAN_EID_ADDBA_EXT = 159, 3785 WLAN_EID_NEXT_PCP_LIST = 160, 3786 WLAN_EID_PCP_HANDOVER = 161, 3787 WLAN_EID_DMG_LINK_MARGIN = 162, 3788 WLAN_EID_SWITCHING_STREAM = 163, 3789 WLAN_EID_SESSION_TRANSITION = 164, 3790 WLAN_EID_DYN_TONE_PAIRING_REPORT = 165, 3791 WLAN_EID_CLUSTER_REPORT = 166, 3792 WLAN_EID_RELAY_CAP = 167, 3793 WLAN_EID_RELAY_XFER_PARAM_SET = 168, 3794 WLAN_EID_BEAM_LINK_MAINT = 169, 3795 WLAN_EID_MULTIPLE_MAC_ADDR = 170, 3796 WLAN_EID_U_PID = 171, 3797 WLAN_EID_DMG_LINK_ADAPT_ACK = 172, 3798 /* 173 reserved for Symbol */ 3799 WLAN_EID_MCCAOP_ADV_OVERVIEW = 174, 3800 WLAN_EID_QUIET_PERIOD_REQ = 175, 3801 /* 176 reserved for Symbol */ 3802 WLAN_EID_QUIET_PERIOD_RESP = 177, 3803 /* 178-179 reserved for Symbol */ 3804 /* 180 reserved for ISO/IEC 20011 */ 3805 WLAN_EID_EPAC_POLICY = 182, 3806 WLAN_EID_CLISTER_TIME_OFF = 183, 3807 WLAN_EID_INTER_AC_PRIO = 184, 3808 WLAN_EID_SCS_DESCRIPTOR = 185, 3809 WLAN_EID_QLOAD_REPORT = 186, 3810 WLAN_EID_HCCA_TXOP_UPDATE_COUNT = 187, 3811 WLAN_EID_HL_STREAM_ID = 188, 3812 WLAN_EID_GCR_GROUP_ADDR = 189, 3813 WLAN_EID_ANTENNA_SECTOR_ID_PATTERN = 190, 3814 WLAN_EID_VHT_CAPABILITY = 191, 3815 WLAN_EID_VHT_OPERATION = 192, 3816 WLAN_EID_EXTENDED_BSS_LOAD = 193, 3817 WLAN_EID_WIDE_BW_CHANNEL_SWITCH = 194, 3818 WLAN_EID_TX_POWER_ENVELOPE = 195, 3819 WLAN_EID_CHANNEL_SWITCH_WRAPPER = 196, 3820 WLAN_EID_AID = 197, 3821 WLAN_EID_QUIET_CHANNEL = 198, 3822 WLAN_EID_OPMODE_NOTIF = 199, 3823 3824 WLAN_EID_REDUCED_NEIGHBOR_REPORT = 201, 3825 3826 WLAN_EID_AID_REQUEST = 210, 3827 WLAN_EID_AID_RESPONSE = 211, 3828 WLAN_EID_S1G_BCN_COMPAT = 213, 3829 WLAN_EID_S1G_SHORT_BCN_INTERVAL = 214, 3830 WLAN_EID_S1G_TWT = 216, 3831 WLAN_EID_S1G_CAPABILITIES = 217, 3832 WLAN_EID_VENDOR_SPECIFIC = 221, 3833 WLAN_EID_QOS_PARAMETER = 222, 3834 WLAN_EID_S1G_OPERATION = 232, 3835 WLAN_EID_CAG_NUMBER = 237, 3836 WLAN_EID_AP_CSN = 239, 3837 WLAN_EID_FILS_INDICATION = 240, 3838 WLAN_EID_DILS = 241, 3839 WLAN_EID_FRAGMENT = 242, 3840 WLAN_EID_RSNX = 244, 3841 WLAN_EID_EXTENSION = 255 3842 }; 3843 3844 /* Element ID Extensions for Element ID 255 */ 3845 enum ieee80211_eid_ext { 3846 WLAN_EID_EXT_ASSOC_DELAY_INFO = 1, 3847 WLAN_EID_EXT_FILS_REQ_PARAMS = 2, 3848 WLAN_EID_EXT_FILS_KEY_CONFIRM = 3, 3849 WLAN_EID_EXT_FILS_SESSION = 4, 3850 WLAN_EID_EXT_FILS_HLP_CONTAINER = 5, 3851 WLAN_EID_EXT_FILS_IP_ADDR_ASSIGN = 6, 3852 WLAN_EID_EXT_KEY_DELIVERY = 7, 3853 WLAN_EID_EXT_FILS_WRAPPED_DATA = 8, 3854 WLAN_EID_EXT_FILS_PUBLIC_KEY = 12, 3855 WLAN_EID_EXT_FILS_NONCE = 13, 3856 WLAN_EID_EXT_FUTURE_CHAN_GUIDANCE = 14, 3857 WLAN_EID_EXT_DH_PARAMETER = 32, 3858 WLAN_EID_EXT_HE_CAPABILITY = 35, 3859 WLAN_EID_EXT_HE_OPERATION = 36, 3860 WLAN_EID_EXT_UORA = 37, 3861 WLAN_EID_EXT_HE_MU_EDCA = 38, 3862 WLAN_EID_EXT_HE_SPR = 39, 3863 WLAN_EID_EXT_NDP_FEEDBACK_REPORT_PARAMSET = 41, 3864 WLAN_EID_EXT_BSS_COLOR_CHG_ANN = 42, 3865 WLAN_EID_EXT_QUIET_TIME_PERIOD_SETUP = 43, 3866 WLAN_EID_EXT_ESS_REPORT = 45, 3867 WLAN_EID_EXT_OPS = 46, 3868 WLAN_EID_EXT_HE_BSS_LOAD = 47, 3869 WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME = 52, 3870 WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION = 55, 3871 WLAN_EID_EXT_NON_INHERITANCE = 56, 3872 WLAN_EID_EXT_KNOWN_BSSID = 57, 3873 WLAN_EID_EXT_SHORT_SSID_LIST = 58, 3874 WLAN_EID_EXT_HE_6GHZ_CAPA = 59, 3875 WLAN_EID_EXT_UL_MU_POWER_CAPA = 60, 3876 WLAN_EID_EXT_EHT_OPERATION = 106, 3877 WLAN_EID_EXT_EHT_MULTI_LINK = 107, 3878 WLAN_EID_EXT_EHT_CAPABILITY = 108, 3879 WLAN_EID_EXT_TID_TO_LINK_MAPPING = 109, 3880 WLAN_EID_EXT_BANDWIDTH_INDICATION = 135, 3881 WLAN_EID_EXT_KNOWN_STA_IDENTIFCATION = 136, 3882 WLAN_EID_EXT_NON_AP_STA_REG_CON = 137, 3883 }; 3884 3885 /* Action category code */ 3886 enum ieee80211_category { 3887 WLAN_CATEGORY_SPECTRUM_MGMT = 0, 3888 WLAN_CATEGORY_QOS = 1, 3889 WLAN_CATEGORY_DLS = 2, 3890 WLAN_CATEGORY_BACK = 3, 3891 WLAN_CATEGORY_PUBLIC = 4, 3892 WLAN_CATEGORY_RADIO_MEASUREMENT = 5, 3893 WLAN_CATEGORY_FAST_BBS_TRANSITION = 6, 3894 WLAN_CATEGORY_HT = 7, 3895 WLAN_CATEGORY_SA_QUERY = 8, 3896 WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION = 9, 3897 WLAN_CATEGORY_WNM = 10, 3898 WLAN_CATEGORY_WNM_UNPROTECTED = 11, 3899 WLAN_CATEGORY_TDLS = 12, 3900 WLAN_CATEGORY_MESH_ACTION = 13, 3901 WLAN_CATEGORY_MULTIHOP_ACTION = 14, 3902 WLAN_CATEGORY_SELF_PROTECTED = 15, 3903 WLAN_CATEGORY_DMG = 16, 3904 WLAN_CATEGORY_WMM = 17, 3905 WLAN_CATEGORY_FST = 18, 3906 WLAN_CATEGORY_UNPROT_DMG = 20, 3907 WLAN_CATEGORY_VHT = 21, 3908 WLAN_CATEGORY_S1G = 22, 3909 WLAN_CATEGORY_PROTECTED_EHT = 37, 3910 WLAN_CATEGORY_VENDOR_SPECIFIC_PROTECTED = 126, 3911 WLAN_CATEGORY_VENDOR_SPECIFIC = 127, 3912 }; 3913 3914 /* SPECTRUM_MGMT action code */ 3915 enum ieee80211_spectrum_mgmt_actioncode { 3916 WLAN_ACTION_SPCT_MSR_REQ = 0, 3917 WLAN_ACTION_SPCT_MSR_RPRT = 1, 3918 WLAN_ACTION_SPCT_TPC_REQ = 2, 3919 WLAN_ACTION_SPCT_TPC_RPRT = 3, 3920 WLAN_ACTION_SPCT_CHL_SWITCH = 4, 3921 }; 3922 3923 /* HT action codes */ 3924 enum ieee80211_ht_actioncode { 3925 WLAN_HT_ACTION_NOTIFY_CHANWIDTH = 0, 3926 WLAN_HT_ACTION_SMPS = 1, 3927 WLAN_HT_ACTION_PSMP = 2, 3928 WLAN_HT_ACTION_PCO_PHASE = 3, 3929 WLAN_HT_ACTION_CSI = 4, 3930 WLAN_HT_ACTION_NONCOMPRESSED_BF = 5, 3931 WLAN_HT_ACTION_COMPRESSED_BF = 6, 3932 WLAN_HT_ACTION_ASEL_IDX_FEEDBACK = 7, 3933 }; 3934 3935 /* VHT action codes */ 3936 enum ieee80211_vht_actioncode { 3937 WLAN_VHT_ACTION_COMPRESSED_BF = 0, 3938 WLAN_VHT_ACTION_GROUPID_MGMT = 1, 3939 WLAN_VHT_ACTION_OPMODE_NOTIF = 2, 3940 }; 3941 3942 /* Self Protected Action codes */ 3943 enum ieee80211_self_protected_actioncode { 3944 WLAN_SP_RESERVED = 0, 3945 WLAN_SP_MESH_PEERING_OPEN = 1, 3946 WLAN_SP_MESH_PEERING_CONFIRM = 2, 3947 WLAN_SP_MESH_PEERING_CLOSE = 3, 3948 WLAN_SP_MGK_INFORM = 4, 3949 WLAN_SP_MGK_ACK = 5, 3950 }; 3951 3952 /* Mesh action codes */ 3953 enum ieee80211_mesh_actioncode { 3954 WLAN_MESH_ACTION_LINK_METRIC_REPORT, 3955 WLAN_MESH_ACTION_HWMP_PATH_SELECTION, 3956 WLAN_MESH_ACTION_GATE_ANNOUNCEMENT, 3957 WLAN_MESH_ACTION_CONGESTION_CONTROL_NOTIFICATION, 3958 WLAN_MESH_ACTION_MCCA_SETUP_REQUEST, 3959 WLAN_MESH_ACTION_MCCA_SETUP_REPLY, 3960 WLAN_MESH_ACTION_MCCA_ADVERTISEMENT_REQUEST, 3961 WLAN_MESH_ACTION_MCCA_ADVERTISEMENT, 3962 WLAN_MESH_ACTION_MCCA_TEARDOWN, 3963 WLAN_MESH_ACTION_TBTT_ADJUSTMENT_REQUEST, 3964 WLAN_MESH_ACTION_TBTT_ADJUSTMENT_RESPONSE, 3965 }; 3966 3967 /* Unprotected WNM action codes */ 3968 enum ieee80211_unprotected_wnm_actioncode { 3969 WLAN_UNPROTECTED_WNM_ACTION_TIM = 0, 3970 WLAN_UNPROTECTED_WNM_ACTION_TIMING_MEASUREMENT_RESPONSE = 1, 3971 }; 3972 3973 /* Protected EHT action codes */ 3974 enum ieee80211_protected_eht_actioncode { 3975 WLAN_PROTECTED_EHT_ACTION_TTLM_REQ = 0, 3976 WLAN_PROTECTED_EHT_ACTION_TTLM_RES = 1, 3977 WLAN_PROTECTED_EHT_ACTION_TTLM_TEARDOWN = 2, 3978 WLAN_PROTECTED_EHT_ACTION_EPCS_ENABLE_REQ = 3, 3979 WLAN_PROTECTED_EHT_ACTION_EPCS_ENABLE_RESP = 4, 3980 WLAN_PROTECTED_EHT_ACTION_EPCS_ENABLE_TEARDOWN = 5, 3981 WLAN_PROTECTED_EHT_ACTION_EML_OP_MODE_NOTIF = 6, 3982 WLAN_PROTECTED_EHT_ACTION_LINK_RECOMMEND = 7, 3983 WLAN_PROTECTED_EHT_ACTION_ML_OP_UPDATE_REQ = 8, 3984 WLAN_PROTECTED_EHT_ACTION_ML_OP_UPDATE_RESP = 9, 3985 WLAN_PROTECTED_EHT_ACTION_LINK_RECONFIG_NOTIF = 10, 3986 WLAN_PROTECTED_EHT_ACTION_LINK_RECONFIG_REQ = 11, 3987 WLAN_PROTECTED_EHT_ACTION_LINK_RECONFIG_RESP = 12, 3988 }; 3989 3990 /* Security key length */ 3991 enum ieee80211_key_len { 3992 WLAN_KEY_LEN_WEP40 = 5, 3993 WLAN_KEY_LEN_WEP104 = 13, 3994 WLAN_KEY_LEN_CCMP = 16, 3995 WLAN_KEY_LEN_CCMP_256 = 32, 3996 WLAN_KEY_LEN_TKIP = 32, 3997 WLAN_KEY_LEN_AES_CMAC = 16, 3998 WLAN_KEY_LEN_SMS4 = 32, 3999 WLAN_KEY_LEN_GCMP = 16, 4000 WLAN_KEY_LEN_GCMP_256 = 32, 4001 WLAN_KEY_LEN_BIP_CMAC_256 = 32, 4002 WLAN_KEY_LEN_BIP_GMAC_128 = 16, 4003 WLAN_KEY_LEN_BIP_GMAC_256 = 32, 4004 }; 4005 4006 enum ieee80211_s1g_actioncode { 4007 WLAN_S1G_AID_SWITCH_REQUEST, 4008 WLAN_S1G_AID_SWITCH_RESPONSE, 4009 WLAN_S1G_SYNC_CONTROL, 4010 WLAN_S1G_STA_INFO_ANNOUNCE, 4011 WLAN_S1G_EDCA_PARAM_SET, 4012 WLAN_S1G_EL_OPERATION, 4013 WLAN_S1G_TWT_SETUP, 4014 WLAN_S1G_TWT_TEARDOWN, 4015 WLAN_S1G_SECT_GROUP_ID_LIST, 4016 WLAN_S1G_SECT_ID_FEEDBACK, 4017 WLAN_S1G_TWT_INFORMATION = 11, 4018 }; 4019 4020 /* Radio measurement action codes as defined in IEEE 802.11-2024 - Table 9-470 */ 4021 enum ieee80211_radio_measurement_actioncode { 4022 WLAN_RM_ACTION_RADIO_MEASUREMENT_REQUEST = 0, 4023 WLAN_RM_ACTION_RADIO_MEASUREMENT_REPORT = 1, 4024 WLAN_RM_ACTION_LINK_MEASUREMENT_REQUEST = 2, 4025 WLAN_RM_ACTION_LINK_MEASUREMENT_REPORT = 3, 4026 WLAN_RM_ACTION_NEIGHBOR_REPORT_REQUEST = 4, 4027 WLAN_RM_ACTION_NEIGHBOR_REPORT_RESPONSE = 5, 4028 }; 4029 4030 #define IEEE80211_WEP_IV_LEN 4 4031 #define IEEE80211_WEP_ICV_LEN 4 4032 #define IEEE80211_CCMP_HDR_LEN 8 4033 #define IEEE80211_CCMP_MIC_LEN 8 4034 #define IEEE80211_CCMP_PN_LEN 6 4035 #define IEEE80211_CCMP_256_HDR_LEN 8 4036 #define IEEE80211_CCMP_256_MIC_LEN 16 4037 #define IEEE80211_CCMP_256_PN_LEN 6 4038 #define IEEE80211_TKIP_IV_LEN 8 4039 #define IEEE80211_TKIP_ICV_LEN 4 4040 #define IEEE80211_CMAC_PN_LEN 6 4041 #define IEEE80211_GMAC_PN_LEN 6 4042 #define IEEE80211_GCMP_HDR_LEN 8 4043 #define IEEE80211_GCMP_MIC_LEN 16 4044 #define IEEE80211_GCMP_PN_LEN 6 4045 4046 #define FILS_NONCE_LEN 16 4047 #define FILS_MAX_KEK_LEN 64 4048 4049 #define FILS_ERP_MAX_USERNAME_LEN 16 4050 #define FILS_ERP_MAX_REALM_LEN 253 4051 #define FILS_ERP_MAX_RRK_LEN 64 4052 4053 #define PMK_MAX_LEN 64 4054 #define SAE_PASSWORD_MAX_LEN 128 4055 4056 /* Public action codes (IEEE Std 802.11-2016, 9.6.8.1, Table 9-307) */ 4057 enum ieee80211_pub_actioncode { 4058 WLAN_PUB_ACTION_20_40_BSS_COEX = 0, 4059 WLAN_PUB_ACTION_DSE_ENABLEMENT = 1, 4060 WLAN_PUB_ACTION_DSE_DEENABLEMENT = 2, 4061 WLAN_PUB_ACTION_DSE_REG_LOC_ANN = 3, 4062 WLAN_PUB_ACTION_EXT_CHANSW_ANN = 4, 4063 WLAN_PUB_ACTION_DSE_MSMT_REQ = 5, 4064 WLAN_PUB_ACTION_DSE_MSMT_RESP = 6, 4065 WLAN_PUB_ACTION_MSMT_PILOT = 7, 4066 WLAN_PUB_ACTION_DSE_PC = 8, 4067 WLAN_PUB_ACTION_VENDOR_SPECIFIC = 9, 4068 WLAN_PUB_ACTION_GAS_INITIAL_REQ = 10, 4069 WLAN_PUB_ACTION_GAS_INITIAL_RESP = 11, 4070 WLAN_PUB_ACTION_GAS_COMEBACK_REQ = 12, 4071 WLAN_PUB_ACTION_GAS_COMEBACK_RESP = 13, 4072 WLAN_PUB_ACTION_TDLS_DISCOVER_RES = 14, 4073 WLAN_PUB_ACTION_LOC_TRACK_NOTI = 15, 4074 WLAN_PUB_ACTION_QAB_REQUEST_FRAME = 16, 4075 WLAN_PUB_ACTION_QAB_RESPONSE_FRAME = 17, 4076 WLAN_PUB_ACTION_QMF_POLICY = 18, 4077 WLAN_PUB_ACTION_QMF_POLICY_CHANGE = 19, 4078 WLAN_PUB_ACTION_QLOAD_REQUEST = 20, 4079 WLAN_PUB_ACTION_QLOAD_REPORT = 21, 4080 WLAN_PUB_ACTION_HCCA_TXOP_ADVERT = 22, 4081 WLAN_PUB_ACTION_HCCA_TXOP_RESPONSE = 23, 4082 WLAN_PUB_ACTION_PUBLIC_KEY = 24, 4083 WLAN_PUB_ACTION_CHANNEL_AVAIL_QUERY = 25, 4084 WLAN_PUB_ACTION_CHANNEL_SCHEDULE_MGMT = 26, 4085 WLAN_PUB_ACTION_CONTACT_VERI_SIGNAL = 27, 4086 WLAN_PUB_ACTION_GDD_ENABLEMENT_REQ = 28, 4087 WLAN_PUB_ACTION_GDD_ENABLEMENT_RESP = 29, 4088 WLAN_PUB_ACTION_NETWORK_CHANNEL_CONTROL = 30, 4089 WLAN_PUB_ACTION_WHITE_SPACE_MAP_ANN = 31, 4090 WLAN_PUB_ACTION_FTM_REQUEST = 32, 4091 WLAN_PUB_ACTION_FTM_RESPONSE = 33, 4092 WLAN_PUB_ACTION_FILS_DISCOVERY = 34, 4093 }; 4094 4095 /* TDLS action codes */ 4096 enum ieee80211_tdls_actioncode { 4097 WLAN_TDLS_SETUP_REQUEST = 0, 4098 WLAN_TDLS_SETUP_RESPONSE = 1, 4099 WLAN_TDLS_SETUP_CONFIRM = 2, 4100 WLAN_TDLS_TEARDOWN = 3, 4101 WLAN_TDLS_PEER_TRAFFIC_INDICATION = 4, 4102 WLAN_TDLS_CHANNEL_SWITCH_REQUEST = 5, 4103 WLAN_TDLS_CHANNEL_SWITCH_RESPONSE = 6, 4104 WLAN_TDLS_PEER_PSM_REQUEST = 7, 4105 WLAN_TDLS_PEER_PSM_RESPONSE = 8, 4106 WLAN_TDLS_PEER_TRAFFIC_RESPONSE = 9, 4107 WLAN_TDLS_DISCOVERY_REQUEST = 10, 4108 }; 4109 4110 /* Extended Channel Switching capability to be set in the 1st byte of 4111 * the @WLAN_EID_EXT_CAPABILITY information element 4112 */ 4113 #define WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING BIT(2) 4114 4115 /* Multiple BSSID capability is set in the 6th bit of 3rd byte of the 4116 * @WLAN_EID_EXT_CAPABILITY information element 4117 */ 4118 #define WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT BIT(6) 4119 4120 /* Timing Measurement protocol for time sync is set in the 7th bit of 3rd byte 4121 * of the @WLAN_EID_EXT_CAPABILITY information element 4122 */ 4123 #define WLAN_EXT_CAPA3_TIMING_MEASUREMENT_SUPPORT BIT(7) 4124 4125 /* TDLS capabilities in the 4th byte of @WLAN_EID_EXT_CAPABILITY */ 4126 #define WLAN_EXT_CAPA4_TDLS_BUFFER_STA BIT(4) 4127 #define WLAN_EXT_CAPA4_TDLS_PEER_PSM BIT(5) 4128 #define WLAN_EXT_CAPA4_TDLS_CHAN_SWITCH BIT(6) 4129 4130 /* Interworking capabilities are set in 7th bit of 4th byte of the 4131 * @WLAN_EID_EXT_CAPABILITY information element 4132 */ 4133 #define WLAN_EXT_CAPA4_INTERWORKING_ENABLED BIT(7) 4134 4135 /* 4136 * TDLS capabililites to be enabled in the 5th byte of the 4137 * @WLAN_EID_EXT_CAPABILITY information element 4138 */ 4139 #define WLAN_EXT_CAPA5_TDLS_ENABLED BIT(5) 4140 #define WLAN_EXT_CAPA5_TDLS_PROHIBITED BIT(6) 4141 #define WLAN_EXT_CAPA5_TDLS_CH_SW_PROHIBITED BIT(7) 4142 4143 #define WLAN_EXT_CAPA8_TDLS_WIDE_BW_ENABLED BIT(5) 4144 #define WLAN_EXT_CAPA8_OPMODE_NOTIF BIT(6) 4145 4146 /* Defines the maximal number of MSDUs in an A-MSDU. */ 4147 #define WLAN_EXT_CAPA8_MAX_MSDU_IN_AMSDU_LSB BIT(7) 4148 #define WLAN_EXT_CAPA9_MAX_MSDU_IN_AMSDU_MSB BIT(0) 4149 4150 /* 4151 * Fine Timing Measurement Initiator - bit 71 of @WLAN_EID_EXT_CAPABILITY 4152 * information element 4153 */ 4154 #define WLAN_EXT_CAPA9_FTM_INITIATOR BIT(7) 4155 4156 /* Defines support for TWT Requester and TWT Responder */ 4157 #define WLAN_EXT_CAPA10_TWT_REQUESTER_SUPPORT BIT(5) 4158 #define WLAN_EXT_CAPA10_TWT_RESPONDER_SUPPORT BIT(6) 4159 4160 /* 4161 * When set, indicates that the AP is able to tolerate 26-tone RU UL 4162 * OFDMA transmissions using HE TB PPDU from OBSS (not falsely classify the 4163 * 26-tone RU UL OFDMA transmissions as radar pulses). 4164 */ 4165 #define WLAN_EXT_CAPA10_OBSS_NARROW_BW_RU_TOLERANCE_SUPPORT BIT(7) 4166 4167 /* Defines support for enhanced multi-bssid advertisement*/ 4168 #define WLAN_EXT_CAPA11_EMA_SUPPORT BIT(3) 4169 4170 /* Enable Beacon Protection */ 4171 #define WLAN_EXT_CAPA11_BCN_PROTECT BIT(4) 4172 4173 /* TDLS specific payload type in the LLC/SNAP header */ 4174 #define WLAN_TDLS_SNAP_RFTYPE 0x2 4175 4176 /* BSS Coex IE information field bits */ 4177 #define WLAN_BSS_COEX_INFORMATION_REQUEST BIT(0) 4178 4179 /** 4180 * enum ieee80211_mesh_sync_method - mesh synchronization method identifier 4181 * 4182 * @IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET: the default synchronization method 4183 * @IEEE80211_SYNC_METHOD_VENDOR: a vendor specific synchronization method 4184 * that will be specified in a vendor specific information element 4185 */ 4186 enum ieee80211_mesh_sync_method { 4187 IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET = 1, 4188 IEEE80211_SYNC_METHOD_VENDOR = 255, 4189 }; 4190 4191 /** 4192 * enum ieee80211_mesh_path_protocol - mesh path selection protocol identifier 4193 * 4194 * @IEEE80211_PATH_PROTOCOL_HWMP: the default path selection protocol 4195 * @IEEE80211_PATH_PROTOCOL_VENDOR: a vendor specific protocol that will 4196 * be specified in a vendor specific information element 4197 */ 4198 enum ieee80211_mesh_path_protocol { 4199 IEEE80211_PATH_PROTOCOL_HWMP = 1, 4200 IEEE80211_PATH_PROTOCOL_VENDOR = 255, 4201 }; 4202 4203 /** 4204 * enum ieee80211_mesh_path_metric - mesh path selection metric identifier 4205 * 4206 * @IEEE80211_PATH_METRIC_AIRTIME: the default path selection metric 4207 * @IEEE80211_PATH_METRIC_VENDOR: a vendor specific metric that will be 4208 * specified in a vendor specific information element 4209 */ 4210 enum ieee80211_mesh_path_metric { 4211 IEEE80211_PATH_METRIC_AIRTIME = 1, 4212 IEEE80211_PATH_METRIC_VENDOR = 255, 4213 }; 4214 4215 /** 4216 * enum ieee80211_root_mode_identifier - root mesh STA mode identifier 4217 * 4218 * These attribute are used by dot11MeshHWMPRootMode to set root mesh STA mode 4219 * 4220 * @IEEE80211_ROOTMODE_NO_ROOT: the mesh STA is not a root mesh STA (default) 4221 * @IEEE80211_ROOTMODE_ROOT: the mesh STA is a root mesh STA if greater than 4222 * this value 4223 * @IEEE80211_PROACTIVE_PREQ_NO_PREP: the mesh STA is a root mesh STA supports 4224 * the proactive PREQ with proactive PREP subfield set to 0 4225 * @IEEE80211_PROACTIVE_PREQ_WITH_PREP: the mesh STA is a root mesh STA 4226 * supports the proactive PREQ with proactive PREP subfield set to 1 4227 * @IEEE80211_PROACTIVE_RANN: the mesh STA is a root mesh STA supports 4228 * the proactive RANN 4229 */ 4230 enum ieee80211_root_mode_identifier { 4231 IEEE80211_ROOTMODE_NO_ROOT = 0, 4232 IEEE80211_ROOTMODE_ROOT = 1, 4233 IEEE80211_PROACTIVE_PREQ_NO_PREP = 2, 4234 IEEE80211_PROACTIVE_PREQ_WITH_PREP = 3, 4235 IEEE80211_PROACTIVE_RANN = 4, 4236 }; 4237 4238 /* 4239 * IEEE 802.11-2007 7.3.2.9 Country information element 4240 * 4241 * Minimum length is 8 octets, ie len must be evenly 4242 * divisible by 2 4243 */ 4244 4245 /* Although the spec says 8 I'm seeing 6 in practice */ 4246 #define IEEE80211_COUNTRY_IE_MIN_LEN 6 4247 4248 /* The Country String field of the element shall be 3 octets in length */ 4249 #define IEEE80211_COUNTRY_STRING_LEN 3 4250 4251 /* 4252 * For regulatory extension stuff see IEEE 802.11-2007 4253 * Annex I (page 1141) and Annex J (page 1147). Also 4254 * review 7.3.2.9. 4255 * 4256 * When dot11RegulatoryClassesRequired is true and the 4257 * first_channel/reg_extension_id is >= 201 then the IE 4258 * compromises of the 'ext' struct represented below: 4259 * 4260 * - Regulatory extension ID - when generating IE this just needs 4261 * to be monotonically increasing for each triplet passed in 4262 * the IE 4263 * - Regulatory class - index into set of rules 4264 * - Coverage class - index into air propagation time (Table 7-27), 4265 * in microseconds, you can compute the air propagation time from 4266 * the index by multiplying by 3, so index 10 yields a propagation 4267 * of 10 us. Valid values are 0-31, values 32-255 are not defined 4268 * yet. A value of 0 inicates air propagation of <= 1 us. 4269 * 4270 * See also Table I.2 for Emission limit sets and table 4271 * I.3 for Behavior limit sets. Table J.1 indicates how to map 4272 * a reg_class to an emission limit set and behavior limit set. 4273 */ 4274 #define IEEE80211_COUNTRY_EXTENSION_ID 201 4275 4276 /* 4277 * Channels numbers in the IE must be monotonically increasing 4278 * if dot11RegulatoryClassesRequired is not true. 4279 * 4280 * If dot11RegulatoryClassesRequired is true consecutive 4281 * subband triplets following a regulatory triplet shall 4282 * have monotonically increasing first_channel number fields. 4283 * 4284 * Channel numbers shall not overlap. 4285 * 4286 * Note that max_power is signed. 4287 */ 4288 struct ieee80211_country_ie_triplet { 4289 union { 4290 struct { 4291 u8 first_channel; 4292 u8 num_channels; 4293 s8 max_power; 4294 } __packed chans; 4295 struct { 4296 u8 reg_extension_id; 4297 u8 reg_class; 4298 u8 coverage_class; 4299 } __packed ext; 4300 }; 4301 } __packed; 4302 4303 enum ieee80211_timeout_interval_type { 4304 WLAN_TIMEOUT_REASSOC_DEADLINE = 1 /* 802.11r */, 4305 WLAN_TIMEOUT_KEY_LIFETIME = 2 /* 802.11r */, 4306 WLAN_TIMEOUT_ASSOC_COMEBACK = 3 /* 802.11w */, 4307 }; 4308 4309 /** 4310 * struct ieee80211_timeout_interval_ie - Timeout Interval element 4311 * @type: type, see &enum ieee80211_timeout_interval_type 4312 * @value: timeout interval value 4313 */ 4314 struct ieee80211_timeout_interval_ie { 4315 u8 type; 4316 __le32 value; 4317 } __packed; 4318 4319 /** 4320 * enum ieee80211_idle_options - BSS idle options 4321 * @WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE: the station should send an RSN 4322 * protected frame to the AP to reset the idle timer at the AP for 4323 * the station. 4324 */ 4325 enum ieee80211_idle_options { 4326 WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE = BIT(0), 4327 }; 4328 4329 /** 4330 * struct ieee80211_bss_max_idle_period_ie - BSS max idle period element struct 4331 * 4332 * This structure refers to "BSS Max idle period element" 4333 * 4334 * @max_idle_period: indicates the time period during which a station can 4335 * refrain from transmitting frames to its associated AP without being 4336 * disassociated. In units of 1000 TUs. 4337 * @idle_options: indicates the options associated with the BSS idle capability 4338 * as specified in &enum ieee80211_idle_options. 4339 */ 4340 struct ieee80211_bss_max_idle_period_ie { 4341 __le16 max_idle_period; 4342 u8 idle_options; 4343 } __packed; 4344 4345 /* BACK action code */ 4346 enum ieee80211_back_actioncode { 4347 WLAN_ACTION_ADDBA_REQ = 0, 4348 WLAN_ACTION_ADDBA_RESP = 1, 4349 WLAN_ACTION_DELBA = 2, 4350 }; 4351 4352 /* BACK (block-ack) parties */ 4353 enum ieee80211_back_parties { 4354 WLAN_BACK_RECIPIENT = 0, 4355 WLAN_BACK_INITIATOR = 1, 4356 }; 4357 4358 /* SA Query action */ 4359 enum ieee80211_sa_query_action { 4360 WLAN_ACTION_SA_QUERY_REQUEST = 0, 4361 WLAN_ACTION_SA_QUERY_RESPONSE = 1, 4362 }; 4363 4364 /** 4365 * struct ieee80211_bssid_index - multiple BSSID index element structure 4366 * 4367 * This structure refers to "Multiple BSSID-index element" 4368 * 4369 * @bssid_index: BSSID index 4370 * @dtim_period: optional, overrides transmitted BSS dtim period 4371 * @dtim_count: optional, overrides transmitted BSS dtim count 4372 */ 4373 struct ieee80211_bssid_index { 4374 u8 bssid_index; 4375 u8 dtim_period; 4376 u8 dtim_count; 4377 }; 4378 4379 /** 4380 * struct ieee80211_multiple_bssid_configuration - multiple BSSID configuration 4381 * element structure 4382 * 4383 * This structure refers to "Multiple BSSID Configuration element" 4384 * 4385 * @bssid_count: total number of active BSSIDs in the set 4386 * @profile_periodicity: the least number of beacon frames need to be received 4387 * in order to discover all the nontransmitted BSSIDs in the set. 4388 */ 4389 struct ieee80211_multiple_bssid_configuration { 4390 u8 bssid_count; 4391 u8 profile_periodicity; 4392 }; 4393 4394 #define SUITE(oui, id) (((oui) << 8) | (id)) 4395 4396 /* cipher suite selectors */ 4397 #define WLAN_CIPHER_SUITE_USE_GROUP SUITE(0x000FAC, 0) 4398 #define WLAN_CIPHER_SUITE_WEP40 SUITE(0x000FAC, 1) 4399 #define WLAN_CIPHER_SUITE_TKIP SUITE(0x000FAC, 2) 4400 /* reserved: SUITE(0x000FAC, 3) */ 4401 #define WLAN_CIPHER_SUITE_CCMP SUITE(0x000FAC, 4) 4402 #define WLAN_CIPHER_SUITE_WEP104 SUITE(0x000FAC, 5) 4403 #define WLAN_CIPHER_SUITE_AES_CMAC SUITE(0x000FAC, 6) 4404 #define WLAN_CIPHER_SUITE_GCMP SUITE(0x000FAC, 8) 4405 #define WLAN_CIPHER_SUITE_GCMP_256 SUITE(0x000FAC, 9) 4406 #define WLAN_CIPHER_SUITE_CCMP_256 SUITE(0x000FAC, 10) 4407 #define WLAN_CIPHER_SUITE_BIP_GMAC_128 SUITE(0x000FAC, 11) 4408 #define WLAN_CIPHER_SUITE_BIP_GMAC_256 SUITE(0x000FAC, 12) 4409 #define WLAN_CIPHER_SUITE_BIP_CMAC_256 SUITE(0x000FAC, 13) 4410 4411 #define WLAN_CIPHER_SUITE_SMS4 SUITE(0x001472, 1) 4412 4413 /* AKM suite selectors */ 4414 #define WLAN_AKM_SUITE_8021X SUITE(0x000FAC, 1) 4415 #define WLAN_AKM_SUITE_PSK SUITE(0x000FAC, 2) 4416 #define WLAN_AKM_SUITE_FT_8021X SUITE(0x000FAC, 3) 4417 #define WLAN_AKM_SUITE_FT_PSK SUITE(0x000FAC, 4) 4418 #define WLAN_AKM_SUITE_8021X_SHA256 SUITE(0x000FAC, 5) 4419 #define WLAN_AKM_SUITE_PSK_SHA256 SUITE(0x000FAC, 6) 4420 #define WLAN_AKM_SUITE_TDLS SUITE(0x000FAC, 7) 4421 #define WLAN_AKM_SUITE_SAE SUITE(0x000FAC, 8) 4422 #define WLAN_AKM_SUITE_FT_OVER_SAE SUITE(0x000FAC, 9) 4423 #define WLAN_AKM_SUITE_AP_PEER_KEY SUITE(0x000FAC, 10) 4424 #define WLAN_AKM_SUITE_8021X_SUITE_B SUITE(0x000FAC, 11) 4425 #define WLAN_AKM_SUITE_8021X_SUITE_B_192 SUITE(0x000FAC, 12) 4426 #define WLAN_AKM_SUITE_FT_8021X_SHA384 SUITE(0x000FAC, 13) 4427 #define WLAN_AKM_SUITE_FILS_SHA256 SUITE(0x000FAC, 14) 4428 #define WLAN_AKM_SUITE_FILS_SHA384 SUITE(0x000FAC, 15) 4429 #define WLAN_AKM_SUITE_FT_FILS_SHA256 SUITE(0x000FAC, 16) 4430 #define WLAN_AKM_SUITE_FT_FILS_SHA384 SUITE(0x000FAC, 17) 4431 #define WLAN_AKM_SUITE_OWE SUITE(0x000FAC, 18) 4432 #define WLAN_AKM_SUITE_FT_PSK_SHA384 SUITE(0x000FAC, 19) 4433 #define WLAN_AKM_SUITE_PSK_SHA384 SUITE(0x000FAC, 20) 4434 4435 #define WLAN_AKM_SUITE_WFA_DPP SUITE(WLAN_OUI_WFA, 2) 4436 4437 #define WLAN_MAX_KEY_LEN 32 4438 4439 #define WLAN_PMK_NAME_LEN 16 4440 #define WLAN_PMKID_LEN 16 4441 #define WLAN_PMK_LEN_EAP_LEAP 16 4442 #define WLAN_PMK_LEN 32 4443 #define WLAN_PMK_LEN_SUITE_B_192 48 4444 4445 #define WLAN_OUI_WFA 0x506f9a 4446 #define WLAN_OUI_TYPE_WFA_P2P 9 4447 #define WLAN_OUI_TYPE_WFA_DPP 0x1A 4448 #define WLAN_OUI_MICROSOFT 0x0050f2 4449 #define WLAN_OUI_TYPE_MICROSOFT_WPA 1 4450 #define WLAN_OUI_TYPE_MICROSOFT_WMM 2 4451 #define WLAN_OUI_TYPE_MICROSOFT_WPS 4 4452 #define WLAN_OUI_TYPE_MICROSOFT_TPC 8 4453 4454 /* 4455 * WMM/802.11e Tspec Element 4456 */ 4457 #define IEEE80211_WMM_IE_TSPEC_TID_MASK 0x0F 4458 #define IEEE80211_WMM_IE_TSPEC_TID_SHIFT 1 4459 4460 enum ieee80211_tspec_status_code { 4461 IEEE80211_TSPEC_STATUS_ADMISS_ACCEPTED = 0, 4462 IEEE80211_TSPEC_STATUS_ADDTS_INVAL_PARAMS = 0x1, 4463 }; 4464 4465 struct ieee80211_tspec_ie { 4466 u8 element_id; 4467 u8 len; 4468 u8 oui[3]; 4469 u8 oui_type; 4470 u8 oui_subtype; 4471 u8 version; 4472 __le16 tsinfo; 4473 u8 tsinfo_resvd; 4474 __le16 nominal_msdu; 4475 __le16 max_msdu; 4476 __le32 min_service_int; 4477 __le32 max_service_int; 4478 __le32 inactivity_int; 4479 __le32 suspension_int; 4480 __le32 service_start_time; 4481 __le32 min_data_rate; 4482 __le32 mean_data_rate; 4483 __le32 peak_data_rate; 4484 __le32 max_burst_size; 4485 __le32 delay_bound; 4486 __le32 min_phy_rate; 4487 __le16 sba; 4488 __le16 medium_time; 4489 } __packed; 4490 4491 struct ieee80211_he_6ghz_capa { 4492 /* uses IEEE80211_HE_6GHZ_CAP_* below */ 4493 __le16 capa; 4494 } __packed; 4495 4496 /* HE 6 GHz band capabilities */ 4497 /* uses enum ieee80211_min_mpdu_spacing values */ 4498 #define IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START 0x0007 4499 /* uses enum ieee80211_vht_max_ampdu_length_exp values */ 4500 #define IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP 0x0038 4501 /* uses IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_* values */ 4502 #define IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN 0x00c0 4503 /* WLAN_HT_CAP_SM_PS_* values */ 4504 #define IEEE80211_HE_6GHZ_CAP_SM_PS 0x0600 4505 #define IEEE80211_HE_6GHZ_CAP_RD_RESPONDER 0x0800 4506 #define IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS 0x1000 4507 #define IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS 0x2000 4508 4509 /** 4510 * ieee80211_get_qos_ctl - get pointer to qos control bytes 4511 * @hdr: the frame 4512 * Return: a pointer to the QoS control field in the frame header 4513 * 4514 * The qos ctrl bytes come after the frame_control, duration, seq_num 4515 * and 3 or 4 addresses of length ETH_ALEN. Checks frame_control to choose 4516 * between struct ieee80211_qos_hdr_4addr and struct ieee80211_qos_hdr. 4517 */ 4518 static inline u8 *ieee80211_get_qos_ctl(struct ieee80211_hdr *hdr) 4519 { 4520 union { 4521 struct ieee80211_qos_hdr addr3; 4522 struct ieee80211_qos_hdr_4addr addr4; 4523 } *qos; 4524 4525 qos = (void *)hdr; 4526 if (ieee80211_has_a4(qos->addr3.frame_control)) 4527 return (u8 *)&qos->addr4.qos_ctrl; 4528 else 4529 return (u8 *)&qos->addr3.qos_ctrl; 4530 } 4531 4532 /** 4533 * ieee80211_get_tid - get qos TID 4534 * @hdr: the frame 4535 * Return: the TID from the QoS control field 4536 */ 4537 static inline u8 ieee80211_get_tid(struct ieee80211_hdr *hdr) 4538 { 4539 u8 *qc = ieee80211_get_qos_ctl(hdr); 4540 4541 return qc[0] & IEEE80211_QOS_CTL_TID_MASK; 4542 } 4543 4544 /** 4545 * ieee80211_get_SA - get pointer to SA 4546 * @hdr: the frame 4547 * Return: a pointer to the source address (SA) 4548 * 4549 * Given an 802.11 frame, this function returns the offset 4550 * to the source address (SA). It does not verify that the 4551 * header is long enough to contain the address, and the 4552 * header must be long enough to contain the frame control 4553 * field. 4554 */ 4555 static inline u8 *ieee80211_get_SA(struct ieee80211_hdr *hdr) 4556 { 4557 if (ieee80211_has_a4(hdr->frame_control)) 4558 return hdr->addr4; 4559 if (ieee80211_has_fromds(hdr->frame_control)) 4560 return hdr->addr3; 4561 return hdr->addr2; 4562 } 4563 4564 /** 4565 * ieee80211_get_DA - get pointer to DA 4566 * @hdr: the frame 4567 * Return: a pointer to the destination address (DA) 4568 * 4569 * Given an 802.11 frame, this function returns the offset 4570 * to the destination address (DA). It does not verify that 4571 * the header is long enough to contain the address, and the 4572 * header must be long enough to contain the frame control 4573 * field. 4574 */ 4575 static inline u8 *ieee80211_get_DA(struct ieee80211_hdr *hdr) 4576 { 4577 if (ieee80211_has_tods(hdr->frame_control)) 4578 return hdr->addr3; 4579 else 4580 return hdr->addr1; 4581 } 4582 4583 /** 4584 * ieee80211_is_bufferable_mmpdu - check if frame is bufferable MMPDU 4585 * @skb: the skb to check, starting with the 802.11 header 4586 * Return: whether or not the MMPDU is bufferable 4587 */ 4588 static inline bool ieee80211_is_bufferable_mmpdu(struct sk_buff *skb) 4589 { 4590 struct ieee80211_mgmt *mgmt = (void *)skb->data; 4591 __le16 fc = mgmt->frame_control; 4592 4593 /* 4594 * IEEE 802.11 REVme D2.0 definition of bufferable MMPDU; 4595 * note that this ignores the IBSS special case. 4596 */ 4597 if (!ieee80211_is_mgmt(fc)) 4598 return false; 4599 4600 if (ieee80211_is_disassoc(fc) || ieee80211_is_deauth(fc)) 4601 return true; 4602 4603 if (!ieee80211_is_action(fc)) 4604 return false; 4605 4606 if (skb->len < offsetofend(typeof(*mgmt), u.action.u.ftm.action_code)) 4607 return true; 4608 4609 /* action frame - additionally check for non-bufferable FTM */ 4610 4611 if (mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 4612 mgmt->u.action.category != WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION) 4613 return true; 4614 4615 if (mgmt->u.action.u.ftm.action_code == WLAN_PUB_ACTION_FTM_REQUEST || 4616 mgmt->u.action.u.ftm.action_code == WLAN_PUB_ACTION_FTM_RESPONSE) 4617 return false; 4618 4619 return true; 4620 } 4621 4622 /** 4623 * _ieee80211_is_robust_mgmt_frame - check if frame is a robust management frame 4624 * @hdr: the frame (buffer must include at least the first octet of payload) 4625 * Return: whether or not the frame is a robust management frame 4626 */ 4627 static inline bool _ieee80211_is_robust_mgmt_frame(struct ieee80211_hdr *hdr) 4628 { 4629 if (ieee80211_is_disassoc(hdr->frame_control) || 4630 ieee80211_is_deauth(hdr->frame_control)) 4631 return true; 4632 4633 if (ieee80211_is_action(hdr->frame_control)) { 4634 u8 *category; 4635 4636 /* 4637 * Action frames, excluding Public Action frames, are Robust 4638 * Management Frames. However, if we are looking at a Protected 4639 * frame, skip the check since the data may be encrypted and 4640 * the frame has already been found to be a Robust Management 4641 * Frame (by the other end). 4642 */ 4643 if (ieee80211_has_protected(hdr->frame_control)) 4644 return true; 4645 category = ((u8 *) hdr) + 24; 4646 return *category != WLAN_CATEGORY_PUBLIC && 4647 *category != WLAN_CATEGORY_HT && 4648 *category != WLAN_CATEGORY_WNM_UNPROTECTED && 4649 *category != WLAN_CATEGORY_SELF_PROTECTED && 4650 *category != WLAN_CATEGORY_UNPROT_DMG && 4651 *category != WLAN_CATEGORY_VHT && 4652 *category != WLAN_CATEGORY_S1G && 4653 *category != WLAN_CATEGORY_VENDOR_SPECIFIC; 4654 } 4655 4656 return false; 4657 } 4658 4659 /** 4660 * ieee80211_is_robust_mgmt_frame - check if skb contains a robust mgmt frame 4661 * @skb: the skb containing the frame, length will be checked 4662 * Return: whether or not the frame is a robust management frame 4663 */ 4664 static inline bool ieee80211_is_robust_mgmt_frame(struct sk_buff *skb) 4665 { 4666 if (skb->len < IEEE80211_MIN_ACTION_SIZE) 4667 return false; 4668 return _ieee80211_is_robust_mgmt_frame((void *)skb->data); 4669 } 4670 4671 /** 4672 * ieee80211_is_public_action - check if frame is a public action frame 4673 * @hdr: the frame 4674 * @len: length of the frame 4675 * Return: whether or not the frame is a public action frame 4676 */ 4677 static inline bool ieee80211_is_public_action(struct ieee80211_hdr *hdr, 4678 size_t len) 4679 { 4680 struct ieee80211_mgmt *mgmt = (void *)hdr; 4681 4682 if (len < IEEE80211_MIN_ACTION_SIZE) 4683 return false; 4684 if (!ieee80211_is_action(hdr->frame_control)) 4685 return false; 4686 return mgmt->u.action.category == WLAN_CATEGORY_PUBLIC; 4687 } 4688 4689 /** 4690 * ieee80211_is_protected_dual_of_public_action - check if skb contains a 4691 * protected dual of public action management frame 4692 * @skb: the skb containing the frame, length will be checked 4693 * 4694 * Return: true if the skb contains a protected dual of public action 4695 * management frame, false otherwise. 4696 */ 4697 static inline bool 4698 ieee80211_is_protected_dual_of_public_action(struct sk_buff *skb) 4699 { 4700 u8 action; 4701 4702 if (!ieee80211_is_public_action((void *)skb->data, skb->len) || 4703 skb->len < IEEE80211_MIN_ACTION_SIZE + 1) 4704 return false; 4705 4706 action = *(u8 *)(skb->data + IEEE80211_MIN_ACTION_SIZE); 4707 4708 return action != WLAN_PUB_ACTION_20_40_BSS_COEX && 4709 action != WLAN_PUB_ACTION_DSE_REG_LOC_ANN && 4710 action != WLAN_PUB_ACTION_MSMT_PILOT && 4711 action != WLAN_PUB_ACTION_TDLS_DISCOVER_RES && 4712 action != WLAN_PUB_ACTION_LOC_TRACK_NOTI && 4713 action != WLAN_PUB_ACTION_FTM_REQUEST && 4714 action != WLAN_PUB_ACTION_FTM_RESPONSE && 4715 action != WLAN_PUB_ACTION_FILS_DISCOVERY && 4716 action != WLAN_PUB_ACTION_VENDOR_SPECIFIC; 4717 } 4718 4719 /** 4720 * _ieee80211_is_group_privacy_action - check if frame is a group addressed 4721 * privacy action frame 4722 * @hdr: the frame 4723 * Return: whether or not the frame is a group addressed privacy action frame 4724 */ 4725 static inline bool _ieee80211_is_group_privacy_action(struct ieee80211_hdr *hdr) 4726 { 4727 struct ieee80211_mgmt *mgmt = (void *)hdr; 4728 4729 if (!ieee80211_is_action(hdr->frame_control) || 4730 !is_multicast_ether_addr(hdr->addr1)) 4731 return false; 4732 4733 return mgmt->u.action.category == WLAN_CATEGORY_MESH_ACTION || 4734 mgmt->u.action.category == WLAN_CATEGORY_MULTIHOP_ACTION; 4735 } 4736 4737 /** 4738 * ieee80211_is_group_privacy_action - check if frame is a group addressed 4739 * privacy action frame 4740 * @skb: the skb containing the frame, length will be checked 4741 * Return: whether or not the frame is a group addressed privacy action frame 4742 */ 4743 static inline bool ieee80211_is_group_privacy_action(struct sk_buff *skb) 4744 { 4745 if (skb->len < IEEE80211_MIN_ACTION_SIZE) 4746 return false; 4747 return _ieee80211_is_group_privacy_action((void *)skb->data); 4748 } 4749 4750 /** 4751 * ieee80211_tu_to_usec - convert time units (TU) to microseconds 4752 * @tu: the TUs 4753 * Return: the time value converted to microseconds 4754 */ 4755 static inline unsigned long ieee80211_tu_to_usec(unsigned long tu) 4756 { 4757 return 1024 * tu; 4758 } 4759 4760 /** 4761 * ieee80211_check_tim - check if AID bit is set in TIM 4762 * @tim: the TIM IE 4763 * @tim_len: length of the TIM IE 4764 * @aid: the AID to look for 4765 * Return: whether or not traffic is indicated in the TIM for the given AID 4766 */ 4767 static inline bool ieee80211_check_tim(const struct ieee80211_tim_ie *tim, 4768 u8 tim_len, u16 aid) 4769 { 4770 u8 mask; 4771 u8 index, indexn1, indexn2; 4772 4773 if (unlikely(!tim || tim_len < sizeof(*tim))) 4774 return false; 4775 4776 aid &= 0x3fff; 4777 index = aid / 8; 4778 mask = 1 << (aid & 7); 4779 4780 indexn1 = tim->bitmap_ctrl & 0xfe; 4781 indexn2 = tim_len + indexn1 - 4; 4782 4783 if (index < indexn1 || index > indexn2) 4784 return false; 4785 4786 index -= indexn1; 4787 4788 return !!(tim->virtual_map[index] & mask); 4789 } 4790 4791 /** 4792 * ieee80211_get_tdls_action - get TDLS action code 4793 * @skb: the skb containing the frame, length will not be checked 4794 * Return: the TDLS action code, or -1 if it's not an encapsulated TDLS action 4795 * frame 4796 * 4797 * This function assumes the frame is a data frame, and that the network header 4798 * is in the correct place. 4799 */ 4800 static inline int ieee80211_get_tdls_action(struct sk_buff *skb) 4801 { 4802 if (!skb_is_nonlinear(skb) && 4803 skb->len > (skb_network_offset(skb) + 2)) { 4804 /* Point to where the indication of TDLS should start */ 4805 const u8 *tdls_data = skb_network_header(skb) - 2; 4806 4807 if (get_unaligned_be16(tdls_data) == ETH_P_TDLS && 4808 tdls_data[2] == WLAN_TDLS_SNAP_RFTYPE && 4809 tdls_data[3] == WLAN_CATEGORY_TDLS) 4810 return tdls_data[4]; 4811 } 4812 4813 return -1; 4814 } 4815 4816 /* convert time units */ 4817 #define TU_TO_JIFFIES(x) (usecs_to_jiffies((x) * 1024)) 4818 #define TU_TO_EXP_TIME(x) (jiffies + TU_TO_JIFFIES(x)) 4819 4820 /* convert frequencies */ 4821 #define MHZ_TO_KHZ(freq) ((freq) * 1000) 4822 #define KHZ_TO_MHZ(freq) ((freq) / 1000) 4823 #define PR_KHZ(f) KHZ_TO_MHZ(f), f % 1000 4824 #define KHZ_F "%d.%03d" 4825 4826 /* convert powers */ 4827 #define DBI_TO_MBI(gain) ((gain) * 100) 4828 #define MBI_TO_DBI(gain) ((gain) / 100) 4829 #define DBM_TO_MBM(gain) ((gain) * 100) 4830 #define MBM_TO_DBM(gain) ((gain) / 100) 4831 4832 /** 4833 * ieee80211_action_contains_tpc - checks if the frame contains TPC element 4834 * @skb: the skb containing the frame, length will be checked 4835 * Return: %true if the frame contains a TPC element, %false otherwise 4836 * 4837 * This function checks if it's either TPC report action frame or Link 4838 * Measurement report action frame as defined in IEEE Std. 802.11-2012 8.5.2.5 4839 * and 8.5.7.5 accordingly. 4840 */ 4841 static inline bool ieee80211_action_contains_tpc(struct sk_buff *skb) 4842 { 4843 struct ieee80211_mgmt *mgmt = (void *)skb->data; 4844 4845 if (!ieee80211_is_action(mgmt->frame_control)) 4846 return false; 4847 4848 if (skb->len < IEEE80211_MIN_ACTION_SIZE + 4849 sizeof(mgmt->u.action.u.tpc_report)) 4850 return false; 4851 4852 /* 4853 * TPC report - check that: 4854 * category = 0 (Spectrum Management) or 5 (Radio Measurement) 4855 * spectrum management action = 3 (TPC/Link Measurement report) 4856 * TPC report EID = 35 4857 * TPC report element length = 2 4858 * 4859 * The spectrum management's tpc_report struct is used here both for 4860 * parsing tpc_report and radio measurement's link measurement report 4861 * frame, since the relevant part is identical in both frames. 4862 */ 4863 if (mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT && 4864 mgmt->u.action.category != WLAN_CATEGORY_RADIO_MEASUREMENT) 4865 return false; 4866 4867 /* both spectrum mgmt and link measurement have same action code */ 4868 if (mgmt->u.action.u.tpc_report.action_code != 4869 WLAN_ACTION_SPCT_TPC_RPRT) 4870 return false; 4871 4872 if (mgmt->u.action.u.tpc_report.tpc_elem_id != WLAN_EID_TPC_REPORT || 4873 mgmt->u.action.u.tpc_report.tpc_elem_length != 4874 sizeof(struct ieee80211_tpc_report_ie)) 4875 return false; 4876 4877 return true; 4878 } 4879 4880 /** 4881 * ieee80211_is_timing_measurement - check if frame is timing measurement response 4882 * @skb: the SKB to check 4883 * Return: whether or not the frame is a valid timing measurement response 4884 */ 4885 static inline bool ieee80211_is_timing_measurement(struct sk_buff *skb) 4886 { 4887 struct ieee80211_mgmt *mgmt = (void *)skb->data; 4888 4889 if (skb->len < IEEE80211_MIN_ACTION_SIZE) 4890 return false; 4891 4892 if (!ieee80211_is_action(mgmt->frame_control)) 4893 return false; 4894 4895 if (mgmt->u.action.category == WLAN_CATEGORY_WNM_UNPROTECTED && 4896 mgmt->u.action.u.wnm_timing_msr.action_code == 4897 WLAN_UNPROTECTED_WNM_ACTION_TIMING_MEASUREMENT_RESPONSE && 4898 skb->len >= offsetofend(typeof(*mgmt), u.action.u.wnm_timing_msr)) 4899 return true; 4900 4901 return false; 4902 } 4903 4904 /** 4905 * ieee80211_is_ftm - check if frame is FTM response 4906 * @skb: the SKB to check 4907 * Return: whether or not the frame is a valid FTM response action frame 4908 */ 4909 static inline bool ieee80211_is_ftm(struct sk_buff *skb) 4910 { 4911 struct ieee80211_mgmt *mgmt = (void *)skb->data; 4912 4913 if (!ieee80211_is_public_action((void *)mgmt, skb->len)) 4914 return false; 4915 4916 if (mgmt->u.action.u.ftm.action_code == 4917 WLAN_PUB_ACTION_FTM_RESPONSE && 4918 skb->len >= offsetofend(typeof(*mgmt), u.action.u.ftm)) 4919 return true; 4920 4921 return false; 4922 } 4923 4924 /** 4925 * ieee80211_is_s1g_short_beacon - check if frame is an S1G short beacon 4926 * @fc: frame control bytes in little-endian byteorder 4927 * @variable: pointer to the beacon frame elements 4928 * @variable_len: length of the frame elements 4929 * Return: whether or not the frame is an S1G short beacon. As per 4930 * IEEE80211-2024 11.1.3.10.1, The S1G beacon compatibility element shall 4931 * always be present as the first element in beacon frames generated at a 4932 * TBTT (Target Beacon Transmission Time), so any frame not containing 4933 * this element must have been generated at a TSBTT (Target Short Beacon 4934 * Transmission Time) that is not a TBTT. Additionally, short beacons are 4935 * prohibited from containing the S1G beacon compatibility element as per 4936 * IEEE80211-2024 9.3.4.3 Table 9-76, so if we have an S1G beacon with 4937 * either no elements or the first element is not the beacon compatibility 4938 * element, we have a short beacon. 4939 */ 4940 static inline bool ieee80211_is_s1g_short_beacon(__le16 fc, const u8 *variable, 4941 size_t variable_len) 4942 { 4943 if (!ieee80211_is_s1g_beacon(fc)) 4944 return false; 4945 4946 /* 4947 * If the frame does not contain at least 1 element (this is perfectly 4948 * valid in a short beacon) and is an S1G beacon, we have a short 4949 * beacon. 4950 */ 4951 if (variable_len < 2) 4952 return true; 4953 4954 return variable[0] != WLAN_EID_S1G_BCN_COMPAT; 4955 } 4956 4957 struct element { 4958 u8 id; 4959 u8 datalen; 4960 u8 data[]; 4961 } __packed; 4962 4963 /* element iteration helpers */ 4964 #define for_each_element(_elem, _data, _datalen) \ 4965 for (_elem = (const struct element *)(_data); \ 4966 (const u8 *)(_data) + (_datalen) - (const u8 *)_elem >= \ 4967 (int)sizeof(*_elem) && \ 4968 (const u8 *)(_data) + (_datalen) - (const u8 *)_elem >= \ 4969 (int)sizeof(*_elem) + _elem->datalen; \ 4970 _elem = (const struct element *)(_elem->data + _elem->datalen)) 4971 4972 #define for_each_element_id(element, _id, data, datalen) \ 4973 for_each_element(element, data, datalen) \ 4974 if (element->id == (_id)) 4975 4976 #define for_each_element_extid(element, extid, _data, _datalen) \ 4977 for_each_element(element, _data, _datalen) \ 4978 if (element->id == WLAN_EID_EXTENSION && \ 4979 element->datalen > 0 && \ 4980 element->data[0] == (extid)) 4981 4982 #define for_each_subelement(sub, element) \ 4983 for_each_element(sub, (element)->data, (element)->datalen) 4984 4985 #define for_each_subelement_id(sub, id, element) \ 4986 for_each_element_id(sub, id, (element)->data, (element)->datalen) 4987 4988 #define for_each_subelement_extid(sub, extid, element) \ 4989 for_each_element_extid(sub, extid, (element)->data, (element)->datalen) 4990 4991 /** 4992 * for_each_element_completed - determine if element parsing consumed all data 4993 * @element: element pointer after for_each_element() or friends 4994 * @data: same data pointer as passed to for_each_element() or friends 4995 * @datalen: same data length as passed to for_each_element() or friends 4996 * Return: %true if all elements were iterated, %false otherwise; see notes 4997 * 4998 * This function returns %true if all the data was parsed or considered 4999 * while walking the elements. Only use this if your for_each_element() 5000 * loop cannot be broken out of, otherwise it always returns %false. 5001 * 5002 * If some data was malformed, this returns %false since the last parsed 5003 * element will not fill the whole remaining data. 5004 */ 5005 static inline bool for_each_element_completed(const struct element *element, 5006 const void *data, size_t datalen) 5007 { 5008 return (const u8 *)element == (const u8 *)data + datalen; 5009 } 5010 5011 /* 5012 * RSNX Capabilities: 5013 * bits 0-3: Field length (n-1) 5014 */ 5015 #define WLAN_RSNX_CAPA_PROTECTED_TWT BIT(4) 5016 #define WLAN_RSNX_CAPA_SAE_H2E BIT(5) 5017 5018 /* 5019 * reduced neighbor report, based on Draft P802.11ax_D6.1, 5020 * section 9.4.2.170 and accepted contributions. 5021 */ 5022 #define IEEE80211_AP_INFO_TBTT_HDR_TYPE 0x03 5023 #define IEEE80211_AP_INFO_TBTT_HDR_FILTERED 0x04 5024 #define IEEE80211_AP_INFO_TBTT_HDR_COLOC 0x08 5025 #define IEEE80211_AP_INFO_TBTT_HDR_COUNT 0xF0 5026 #define IEEE80211_TBTT_INFO_TYPE_TBTT 0 5027 #define IEEE80211_TBTT_INFO_TYPE_MLD 1 5028 5029 #define IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED 0x01 5030 #define IEEE80211_RNR_TBTT_PARAMS_SAME_SSID 0x02 5031 #define IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID 0x04 5032 #define IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID 0x08 5033 #define IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS 0x10 5034 #define IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE 0x20 5035 #define IEEE80211_RNR_TBTT_PARAMS_COLOC_AP 0x40 5036 5037 #define IEEE80211_RNR_TBTT_PARAMS_PSD_NO_LIMIT 127 5038 #define IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED -128 5039 5040 struct ieee80211_neighbor_ap_info { 5041 u8 tbtt_info_hdr; 5042 u8 tbtt_info_len; 5043 u8 op_class; 5044 u8 channel; 5045 } __packed; 5046 5047 enum ieee80211_range_params_max_total_ltf { 5048 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_4 = 0, 5049 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_8, 5050 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_16, 5051 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_UNSPECIFIED, 5052 }; 5053 5054 /* 5055 * reduced neighbor report, based on Draft P802.11be_D3.0, 5056 * section 9.4.2.170.2. 5057 */ 5058 struct ieee80211_rnr_mld_params { 5059 u8 mld_id; 5060 __le16 params; 5061 } __packed; 5062 5063 #define IEEE80211_RNR_MLD_PARAMS_LINK_ID 0x000F 5064 #define IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT 0x0FF0 5065 #define IEEE80211_RNR_MLD_PARAMS_UPDATES_INCLUDED 0x1000 5066 #define IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK 0x2000 5067 5068 /* Format of the TBTT information element if it has 7, 8 or 9 bytes */ 5069 struct ieee80211_tbtt_info_7_8_9 { 5070 u8 tbtt_offset; 5071 u8 bssid[ETH_ALEN]; 5072 5073 /* The following element is optional, structure may not grow */ 5074 u8 bss_params; 5075 s8 psd_20; 5076 } __packed; 5077 5078 /* Format of the TBTT information element if it has >= 11 bytes */ 5079 struct ieee80211_tbtt_info_ge_11 { 5080 u8 tbtt_offset; 5081 u8 bssid[ETH_ALEN]; 5082 __le32 short_ssid; 5083 5084 /* The following elements are optional, structure may grow */ 5085 u8 bss_params; 5086 s8 psd_20; 5087 struct ieee80211_rnr_mld_params mld_params; 5088 } __packed; 5089 5090 /* multi-link device */ 5091 #define IEEE80211_MLD_MAX_NUM_LINKS 15 5092 5093 #define IEEE80211_ML_CONTROL_TYPE 0x0007 5094 #define IEEE80211_ML_CONTROL_TYPE_BASIC 0 5095 #define IEEE80211_ML_CONTROL_TYPE_PREQ 1 5096 #define IEEE80211_ML_CONTROL_TYPE_RECONF 2 5097 #define IEEE80211_ML_CONTROL_TYPE_TDLS 3 5098 #define IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS 4 5099 #define IEEE80211_ML_CONTROL_PRESENCE_MASK 0xfff0 5100 5101 struct ieee80211_multi_link_elem { 5102 __le16 control; 5103 u8 variable[]; 5104 } __packed; 5105 5106 #define IEEE80211_MLC_BASIC_PRES_LINK_ID 0x0010 5107 #define IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT 0x0020 5108 #define IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY 0x0040 5109 #define IEEE80211_MLC_BASIC_PRES_EML_CAPA 0x0080 5110 #define IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP 0x0100 5111 #define IEEE80211_MLC_BASIC_PRES_MLD_ID 0x0200 5112 #define IEEE80211_MLC_BASIC_PRES_EXT_MLD_CAPA_OP 0x0400 5113 5114 #define IEEE80211_MED_SYNC_DELAY_DURATION 0x00ff 5115 #define IEEE80211_MED_SYNC_DELAY_SYNC_OFDM_ED_THRESH 0x0f00 5116 #define IEEE80211_MED_SYNC_DELAY_SYNC_MAX_NUM_TXOPS 0xf000 5117 5118 /* 5119 * Described in P802.11be_D3.0 5120 * dot11MSDTimerDuration should default to 5484 (i.e. 171.375) 5121 * dot11MSDOFDMEDthreshold defaults to -72 (i.e. 0) 5122 * dot11MSDTXOPMAX defaults to 1 5123 */ 5124 #define IEEE80211_MED_SYNC_DELAY_DEFAULT 0x10ac 5125 5126 #define IEEE80211_EML_CAP_EMLSR_SUPP 0x0001 5127 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY 0x000e 5128 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_0US 0 5129 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_32US 1 5130 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_64US 2 5131 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_128US 3 5132 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_256US 4 5133 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY 0x0070 5134 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_0US 0 5135 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_16US 1 5136 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_32US 2 5137 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_64US 3 5138 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_128US 4 5139 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_256US 5 5140 #define IEEE80211_EML_CAP_EMLMR_SUPPORT 0x0080 5141 #define IEEE80211_EML_CAP_EMLMR_DELAY 0x0700 5142 #define IEEE80211_EML_CAP_EMLMR_DELAY_0US 0 5143 #define IEEE80211_EML_CAP_EMLMR_DELAY_32US 1 5144 #define IEEE80211_EML_CAP_EMLMR_DELAY_64US 2 5145 #define IEEE80211_EML_CAP_EMLMR_DELAY_128US 3 5146 #define IEEE80211_EML_CAP_EMLMR_DELAY_256US 4 5147 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT 0x7800 5148 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_0 0 5149 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128US 1 5150 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_256US 2 5151 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_512US 3 5152 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_1TU 4 5153 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_2TU 5 5154 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_4TU 6 5155 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_8TU 7 5156 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_16TU 8 5157 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_32TU 9 5158 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_64TU 10 5159 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128TU 11 5160 5161 #define IEEE80211_MLD_CAP_OP_MAX_SIMUL_LINKS 0x000f 5162 #define IEEE80211_MLD_CAP_OP_SRS_SUPPORT 0x0010 5163 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP 0x0060 5164 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_NO_SUPP 0 5165 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP_SAME 1 5166 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_RESERVED 2 5167 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP_DIFF 3 5168 #define IEEE80211_MLD_CAP_OP_FREQ_SEP_TYPE_IND 0x0f80 5169 #define IEEE80211_MLD_CAP_OP_AAR_SUPPORT 0x1000 5170 #define IEEE80211_MLD_CAP_OP_LINK_RECONF_SUPPORT 0x2000 5171 #define IEEE80211_MLD_CAP_OP_ALIGNED_TWT_SUPPORT 0x4000 5172 5173 struct ieee80211_mle_basic_common_info { 5174 u8 len; 5175 u8 mld_mac_addr[ETH_ALEN]; 5176 u8 variable[]; 5177 } __packed; 5178 5179 #define IEEE80211_MLC_PREQ_PRES_MLD_ID 0x0010 5180 5181 struct ieee80211_mle_preq_common_info { 5182 u8 len; 5183 u8 variable[]; 5184 } __packed; 5185 5186 #define IEEE80211_MLC_RECONF_PRES_MLD_MAC_ADDR 0x0010 5187 #define IEEE80211_MLC_RECONF_PRES_EML_CAPA 0x0020 5188 #define IEEE80211_MLC_RECONF_PRES_MLD_CAPA_OP 0x0040 5189 #define IEEE80211_MLC_RECONF_PRES_EXT_MLD_CAPA_OP 0x0080 5190 5191 /* no fixed fields in RECONF */ 5192 5193 struct ieee80211_mle_tdls_common_info { 5194 u8 len; 5195 u8 ap_mld_mac_addr[ETH_ALEN]; 5196 } __packed; 5197 5198 #define IEEE80211_MLC_PRIO_ACCESS_PRES_AP_MLD_MAC_ADDR 0x0010 5199 5200 /* no fixed fields in PRIO_ACCESS */ 5201 5202 /** 5203 * ieee80211_mle_common_size - check multi-link element common size 5204 * @data: multi-link element, must already be checked for size using 5205 * ieee80211_mle_size_ok() 5206 * Return: the size of the multi-link element's "common" subfield 5207 */ 5208 static inline u8 ieee80211_mle_common_size(const u8 *data) 5209 { 5210 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5211 u16 control = le16_to_cpu(mle->control); 5212 5213 switch (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE)) { 5214 case IEEE80211_ML_CONTROL_TYPE_BASIC: 5215 case IEEE80211_ML_CONTROL_TYPE_PREQ: 5216 case IEEE80211_ML_CONTROL_TYPE_TDLS: 5217 case IEEE80211_ML_CONTROL_TYPE_RECONF: 5218 case IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS: 5219 /* 5220 * The length is the first octet pointed by mle->variable so no 5221 * need to add anything 5222 */ 5223 break; 5224 default: 5225 WARN_ON(1); 5226 return 0; 5227 } 5228 5229 return sizeof(*mle) + mle->variable[0]; 5230 } 5231 5232 /** 5233 * ieee80211_mle_get_link_id - returns the link ID 5234 * @data: the basic multi link element 5235 * Return: the link ID, or -1 if not present 5236 * 5237 * The element is assumed to be of the correct type (BASIC) and big enough, 5238 * this must be checked using ieee80211_mle_type_ok(). 5239 */ 5240 static inline int ieee80211_mle_get_link_id(const u8 *data) 5241 { 5242 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5243 u16 control = le16_to_cpu(mle->control); 5244 const u8 *common = mle->variable; 5245 5246 /* common points now at the beginning of ieee80211_mle_basic_common_info */ 5247 common += sizeof(struct ieee80211_mle_basic_common_info); 5248 5249 if (!(control & IEEE80211_MLC_BASIC_PRES_LINK_ID)) 5250 return -1; 5251 5252 return *common; 5253 } 5254 5255 /** 5256 * ieee80211_mle_get_bss_param_ch_cnt - returns the BSS parameter change count 5257 * @data: pointer to the basic multi link element 5258 * Return: the BSS Parameter Change Count field value, or -1 if not present 5259 * 5260 * The element is assumed to be of the correct type (BASIC) and big enough, 5261 * this must be checked using ieee80211_mle_type_ok(). 5262 */ 5263 static inline int 5264 ieee80211_mle_get_bss_param_ch_cnt(const u8 *data) 5265 { 5266 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5267 u16 control = le16_to_cpu(mle->control); 5268 const u8 *common = mle->variable; 5269 5270 /* common points now at the beginning of ieee80211_mle_basic_common_info */ 5271 common += sizeof(struct ieee80211_mle_basic_common_info); 5272 5273 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)) 5274 return -1; 5275 5276 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID) 5277 common += 1; 5278 5279 return *common; 5280 } 5281 5282 /** 5283 * ieee80211_mle_get_eml_med_sync_delay - returns the medium sync delay 5284 * @data: pointer to the multi-link element 5285 * Return: the medium synchronization delay field value from the multi-link 5286 * element, or the default value (%IEEE80211_MED_SYNC_DELAY_DEFAULT) 5287 * if not present 5288 * 5289 * The element is assumed to be of the correct type (BASIC) and big enough, 5290 * this must be checked using ieee80211_mle_type_ok(). 5291 */ 5292 static inline u16 ieee80211_mle_get_eml_med_sync_delay(const u8 *data) 5293 { 5294 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5295 u16 control = le16_to_cpu(mle->control); 5296 const u8 *common = mle->variable; 5297 5298 /* common points now at the beginning of ieee80211_mle_basic_common_info */ 5299 common += sizeof(struct ieee80211_mle_basic_common_info); 5300 5301 if (!(control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)) 5302 return IEEE80211_MED_SYNC_DELAY_DEFAULT; 5303 5304 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID) 5305 common += 1; 5306 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) 5307 common += 1; 5308 5309 return get_unaligned_le16(common); 5310 } 5311 5312 /** 5313 * ieee80211_mle_get_eml_cap - returns the EML capability 5314 * @data: pointer to the multi-link element 5315 * Return: the EML capability field value from the multi-link element, 5316 * or 0 if not present 5317 * 5318 * The element is assumed to be of the correct type (BASIC) and big enough, 5319 * this must be checked using ieee80211_mle_type_ok(). 5320 */ 5321 static inline u16 ieee80211_mle_get_eml_cap(const u8 *data) 5322 { 5323 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5324 u16 control = le16_to_cpu(mle->control); 5325 const u8 *common = mle->variable; 5326 5327 /* common points now at the beginning of ieee80211_mle_basic_common_info */ 5328 common += sizeof(struct ieee80211_mle_basic_common_info); 5329 5330 if (!(control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)) 5331 return 0; 5332 5333 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID) 5334 common += 1; 5335 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) 5336 common += 1; 5337 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY) 5338 common += 2; 5339 5340 return get_unaligned_le16(common); 5341 } 5342 5343 /** 5344 * ieee80211_mle_get_mld_capa_op - returns the MLD capabilities and operations. 5345 * @data: pointer to the multi-link element 5346 * Return: the MLD capabilities and operations field value from the multi-link 5347 * element, or 0 if not present 5348 * 5349 * The element is assumed to be of the correct type (BASIC) and big enough, 5350 * this must be checked using ieee80211_mle_type_ok(). 5351 */ 5352 static inline u16 ieee80211_mle_get_mld_capa_op(const u8 *data) 5353 { 5354 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5355 u16 control = le16_to_cpu(mle->control); 5356 const u8 *common = mle->variable; 5357 5358 /* 5359 * common points now at the beginning of 5360 * ieee80211_mle_basic_common_info 5361 */ 5362 common += sizeof(struct ieee80211_mle_basic_common_info); 5363 5364 if (!(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)) 5365 return 0; 5366 5367 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID) 5368 common += 1; 5369 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) 5370 common += 1; 5371 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY) 5372 common += 2; 5373 if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA) 5374 common += 2; 5375 5376 return get_unaligned_le16(common); 5377 } 5378 5379 /* Defined in Figure 9-1074t in P802.11be_D7.0 */ 5380 #define IEEE80211_EHT_ML_EXT_MLD_CAPA_OP_PARAM_UPDATE 0x0001 5381 #define IEEE80211_EHT_ML_EXT_MLD_CAPA_OP_RECO_MAX_LINKS_MASK 0x001e 5382 #define IEEE80211_EHT_ML_EXT_MLD_CAPA_NSTR_UPDATE 0x0020 5383 #define IEEE80211_EHT_ML_EXT_MLD_CAPA_EMLSR_ENA_ON_ONE_LINK 0x0040 5384 #define IEEE80211_EHT_ML_EXT_MLD_CAPA_BTM_MLD_RECO_MULTI_AP 0x0080 5385 5386 /** 5387 * ieee80211_mle_get_ext_mld_capa_op - returns the extended MLD capabilities 5388 * and operations. 5389 * @data: pointer to the multi-link element 5390 * Return: the extended MLD capabilities and operations field value from 5391 * the multi-link element, or 0 if not present 5392 * 5393 * The element is assumed to be of the correct type (BASIC) and big enough, 5394 * this must be checked using ieee80211_mle_type_ok(). 5395 */ 5396 static inline u16 ieee80211_mle_get_ext_mld_capa_op(const u8 *data) 5397 { 5398 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5399 u16 control = le16_to_cpu(mle->control); 5400 const u8 *common = mle->variable; 5401 5402 /* 5403 * common points now at the beginning of 5404 * ieee80211_mle_basic_common_info 5405 */ 5406 common += sizeof(struct ieee80211_mle_basic_common_info); 5407 5408 if (!(control & IEEE80211_MLC_BASIC_PRES_EXT_MLD_CAPA_OP)) 5409 return 0; 5410 5411 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID) 5412 common += 1; 5413 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) 5414 common += 1; 5415 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY) 5416 common += 2; 5417 if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA) 5418 common += 2; 5419 if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP) 5420 common += 2; 5421 if (control & IEEE80211_MLC_BASIC_PRES_MLD_ID) 5422 common += 1; 5423 5424 return get_unaligned_le16(common); 5425 } 5426 5427 /** 5428 * ieee80211_mle_get_mld_id - returns the MLD ID 5429 * @data: pointer to the multi-link element 5430 * Return: The MLD ID in the given multi-link element, or 0 if not present 5431 * 5432 * The element is assumed to be of the correct type (BASIC) and big enough, 5433 * this must be checked using ieee80211_mle_type_ok(). 5434 */ 5435 static inline u8 ieee80211_mle_get_mld_id(const u8 *data) 5436 { 5437 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5438 u16 control = le16_to_cpu(mle->control); 5439 const u8 *common = mle->variable; 5440 5441 /* 5442 * common points now at the beginning of 5443 * ieee80211_mle_basic_common_info 5444 */ 5445 common += sizeof(struct ieee80211_mle_basic_common_info); 5446 5447 if (!(control & IEEE80211_MLC_BASIC_PRES_MLD_ID)) 5448 return 0; 5449 5450 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID) 5451 common += 1; 5452 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) 5453 common += 1; 5454 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY) 5455 common += 2; 5456 if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA) 5457 common += 2; 5458 if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP) 5459 common += 2; 5460 5461 return *common; 5462 } 5463 5464 /** 5465 * ieee80211_mle_size_ok - validate multi-link element size 5466 * @data: pointer to the element data 5467 * @len: length of the containing element 5468 * Return: whether or not the multi-link element size is OK 5469 */ 5470 static inline bool ieee80211_mle_size_ok(const u8 *data, size_t len) 5471 { 5472 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5473 u8 fixed = sizeof(*mle); 5474 u8 common = 0; 5475 bool check_common_len = false; 5476 u16 control; 5477 5478 if (!data || len < fixed) 5479 return false; 5480 5481 control = le16_to_cpu(mle->control); 5482 5483 switch (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE)) { 5484 case IEEE80211_ML_CONTROL_TYPE_BASIC: 5485 common += sizeof(struct ieee80211_mle_basic_common_info); 5486 check_common_len = true; 5487 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID) 5488 common += 1; 5489 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) 5490 common += 1; 5491 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY) 5492 common += 2; 5493 if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA) 5494 common += 2; 5495 if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP) 5496 common += 2; 5497 if (control & IEEE80211_MLC_BASIC_PRES_MLD_ID) 5498 common += 1; 5499 if (control & IEEE80211_MLC_BASIC_PRES_EXT_MLD_CAPA_OP) 5500 common += 2; 5501 break; 5502 case IEEE80211_ML_CONTROL_TYPE_PREQ: 5503 common += sizeof(struct ieee80211_mle_preq_common_info); 5504 if (control & IEEE80211_MLC_PREQ_PRES_MLD_ID) 5505 common += 1; 5506 check_common_len = true; 5507 break; 5508 case IEEE80211_ML_CONTROL_TYPE_RECONF: 5509 if (control & IEEE80211_MLC_RECONF_PRES_MLD_MAC_ADDR) 5510 common += ETH_ALEN; 5511 if (control & IEEE80211_MLC_RECONF_PRES_EML_CAPA) 5512 common += 2; 5513 if (control & IEEE80211_MLC_RECONF_PRES_MLD_CAPA_OP) 5514 common += 2; 5515 if (control & IEEE80211_MLC_RECONF_PRES_EXT_MLD_CAPA_OP) 5516 common += 2; 5517 break; 5518 case IEEE80211_ML_CONTROL_TYPE_TDLS: 5519 common += sizeof(struct ieee80211_mle_tdls_common_info); 5520 check_common_len = true; 5521 break; 5522 case IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS: 5523 common = ETH_ALEN + 1; 5524 break; 5525 default: 5526 /* we don't know this type */ 5527 return true; 5528 } 5529 5530 if (len < fixed + common) 5531 return false; 5532 5533 if (!check_common_len) 5534 return true; 5535 5536 /* if present, common length is the first octet there */ 5537 return mle->variable[0] >= common; 5538 } 5539 5540 /** 5541 * ieee80211_mle_type_ok - validate multi-link element type and size 5542 * @data: pointer to the element data 5543 * @type: expected type of the element 5544 * @len: length of the containing element 5545 * Return: whether or not the multi-link element type matches and size is OK 5546 */ 5547 static inline bool ieee80211_mle_type_ok(const u8 *data, u8 type, size_t len) 5548 { 5549 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5550 u16 control; 5551 5552 if (!ieee80211_mle_size_ok(data, len)) 5553 return false; 5554 5555 control = le16_to_cpu(mle->control); 5556 5557 if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) == type) 5558 return true; 5559 5560 return false; 5561 } 5562 5563 enum ieee80211_mle_subelems { 5564 IEEE80211_MLE_SUBELEM_PER_STA_PROFILE = 0, 5565 IEEE80211_MLE_SUBELEM_FRAGMENT = 254, 5566 }; 5567 5568 #define IEEE80211_MLE_STA_CONTROL_LINK_ID 0x000f 5569 #define IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE 0x0010 5570 #define IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT 0x0020 5571 #define IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT 0x0040 5572 #define IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT 0x0080 5573 #define IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT 0x0100 5574 #define IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT 0x0200 5575 #define IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE 0x0400 5576 #define IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT 0x0800 5577 5578 struct ieee80211_mle_per_sta_profile { 5579 __le16 control; 5580 u8 sta_info_len; 5581 u8 variable[]; 5582 } __packed; 5583 5584 /** 5585 * ieee80211_mle_basic_sta_prof_size_ok - validate basic multi-link element sta 5586 * profile size 5587 * @data: pointer to the sub element data 5588 * @len: length of the containing sub element 5589 * Return: %true if the STA profile is large enough, %false otherwise 5590 */ 5591 static inline bool ieee80211_mle_basic_sta_prof_size_ok(const u8 *data, 5592 size_t len) 5593 { 5594 const struct ieee80211_mle_per_sta_profile *prof = (const void *)data; 5595 u16 control; 5596 u8 fixed = sizeof(*prof); 5597 u8 info_len = 1; 5598 5599 if (len < fixed) 5600 return false; 5601 5602 control = le16_to_cpu(prof->control); 5603 5604 if (control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT) 5605 info_len += 6; 5606 if (control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) 5607 info_len += 2; 5608 if (control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) 5609 info_len += 8; 5610 if (control & IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT) 5611 info_len += 2; 5612 if (control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE && 5613 control & IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT) { 5614 if (control & IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE) 5615 info_len += 2; 5616 else 5617 info_len += 1; 5618 } 5619 if (control & IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT) 5620 info_len += 1; 5621 5622 return prof->sta_info_len >= info_len && 5623 fixed + prof->sta_info_len - 1 <= len; 5624 } 5625 5626 /** 5627 * ieee80211_mle_basic_sta_prof_bss_param_ch_cnt - get per-STA profile BSS 5628 * parameter change count 5629 * @prof: the per-STA profile, having been checked with 5630 * ieee80211_mle_basic_sta_prof_size_ok() for the correct length 5631 * 5632 * Return: The BSS parameter change count value if present, 0 otherwise. 5633 */ 5634 static inline u8 5635 ieee80211_mle_basic_sta_prof_bss_param_ch_cnt(const struct ieee80211_mle_per_sta_profile *prof) 5636 { 5637 u16 control = le16_to_cpu(prof->control); 5638 const u8 *pos = prof->variable; 5639 5640 if (!(control & IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT)) 5641 return 0; 5642 5643 if (control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT) 5644 pos += 6; 5645 if (control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) 5646 pos += 2; 5647 if (control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) 5648 pos += 8; 5649 if (control & IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT) 5650 pos += 2; 5651 if (control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE && 5652 control & IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT) { 5653 if (control & IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE) 5654 pos += 2; 5655 else 5656 pos += 1; 5657 } 5658 5659 return *pos; 5660 } 5661 5662 #define IEEE80211_MLE_STA_RECONF_CONTROL_LINK_ID 0x000f 5663 #define IEEE80211_MLE_STA_RECONF_CONTROL_COMPLETE_PROFILE 0x0010 5664 #define IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT 0x0020 5665 #define IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT 0x0040 5666 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE 0x0780 5667 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_AP_REM 0 5668 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_OP_PARAM_UPDATE 1 5669 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_ADD_LINK 2 5670 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_DEL_LINK 3 5671 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_NSTR_STATUS 4 5672 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_PARAMS_PRESENT 0x0800 5673 5674 /** 5675 * ieee80211_mle_reconf_sta_prof_size_ok - validate reconfiguration multi-link 5676 * element sta profile size. 5677 * @data: pointer to the sub element data 5678 * @len: length of the containing sub element 5679 * Return: %true if the STA profile is large enough, %false otherwise 5680 */ 5681 static inline bool ieee80211_mle_reconf_sta_prof_size_ok(const u8 *data, 5682 size_t len) 5683 { 5684 const struct ieee80211_mle_per_sta_profile *prof = (const void *)data; 5685 u16 control; 5686 u8 fixed = sizeof(*prof); 5687 u8 info_len = 1; 5688 5689 if (len < fixed) 5690 return false; 5691 5692 control = le16_to_cpu(prof->control); 5693 5694 if (control & IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT) 5695 info_len += ETH_ALEN; 5696 if (control & IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT) 5697 info_len += 2; 5698 if (control & IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_PARAMS_PRESENT) 5699 info_len += 2; 5700 5701 return prof->sta_info_len >= info_len && 5702 fixed + prof->sta_info_len - 1 <= len; 5703 } 5704 5705 #define IEEE80211_MLE_STA_EPCS_CONTROL_LINK_ID 0x000f 5706 #define IEEE80211_EPCS_ENA_RESP_BODY_LEN 3 5707 5708 static inline bool ieee80211_tid_to_link_map_size_ok(const u8 *data, size_t len) 5709 { 5710 const struct ieee80211_ttlm_elem *t2l = (const void *)data; 5711 u8 control, fixed = sizeof(*t2l), elem_len = 0; 5712 5713 if (len < fixed) 5714 return false; 5715 5716 control = t2l->control; 5717 5718 if (control & IEEE80211_TTLM_CONTROL_SWITCH_TIME_PRESENT) 5719 elem_len += 2; 5720 if (control & IEEE80211_TTLM_CONTROL_EXPECTED_DUR_PRESENT) 5721 elem_len += 3; 5722 5723 if (!(control & IEEE80211_TTLM_CONTROL_DEF_LINK_MAP)) { 5724 u8 bm_size; 5725 5726 elem_len += 1; 5727 if (len < fixed + elem_len) 5728 return false; 5729 5730 if (control & IEEE80211_TTLM_CONTROL_LINK_MAP_SIZE) 5731 bm_size = 1; 5732 else 5733 bm_size = 2; 5734 5735 elem_len += hweight8(t2l->optional[0]) * bm_size; 5736 } 5737 5738 return len >= fixed + elem_len; 5739 } 5740 5741 /** 5742 * ieee80211_emlsr_pad_delay_in_us - Fetch the EMLSR Padding delay 5743 * in microseconds 5744 * @eml_cap: EML capabilities field value from common info field of 5745 * the Multi-link element 5746 * Return: the EMLSR Padding delay (in microseconds) encoded in the 5747 * EML Capabilities field 5748 */ 5749 5750 static inline u32 ieee80211_emlsr_pad_delay_in_us(u16 eml_cap) 5751 { 5752 /* IEEE Std 802.11be-2024 Table 9-417i—Encoding of the EMLSR 5753 * Padding Delay subfield. 5754 */ 5755 u32 pad_delay = u16_get_bits(eml_cap, 5756 IEEE80211_EML_CAP_EMLSR_PADDING_DELAY); 5757 5758 if (!pad_delay || 5759 pad_delay > IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_256US) 5760 return 0; 5761 5762 return 32 * (1 << (pad_delay - 1)); 5763 } 5764 5765 /** 5766 * ieee80211_emlsr_trans_delay_in_us - Fetch the EMLSR Transition 5767 * delay in microseconds 5768 * @eml_cap: EML capabilities field value from common info field of 5769 * the Multi-link element 5770 * Return: the EMLSR Transition delay (in microseconds) encoded in the 5771 * EML Capabilities field 5772 */ 5773 5774 static inline u32 ieee80211_emlsr_trans_delay_in_us(u16 eml_cap) 5775 { 5776 /* IEEE Std 802.11be-2024 Table 9-417j—Encoding of the EMLSR 5777 * Transition Delay subfield. 5778 */ 5779 u32 trans_delay = 5780 u16_get_bits(eml_cap, 5781 IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY); 5782 5783 /* invalid values also just use 0 */ 5784 if (!trans_delay || 5785 trans_delay > IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_256US) 5786 return 0; 5787 5788 return 16 * (1 << (trans_delay - 1)); 5789 } 5790 5791 /** 5792 * ieee80211_eml_trans_timeout_in_us - Fetch the EMLSR Transition 5793 * timeout value in microseconds 5794 * @eml_cap: EML capabilities field value from common info field of 5795 * the Multi-link element 5796 * Return: the EMLSR Transition timeout (in microseconds) encoded in 5797 * the EML Capabilities field 5798 */ 5799 5800 static inline u32 ieee80211_eml_trans_timeout_in_us(u16 eml_cap) 5801 { 5802 /* IEEE Std 802.11be-2024 Table 9-417m—Encoding of the 5803 * Transition Timeout subfield. 5804 */ 5805 u8 timeout = u16_get_bits(eml_cap, 5806 IEEE80211_EML_CAP_TRANSITION_TIMEOUT); 5807 5808 /* invalid values also just use 0 */ 5809 if (!timeout || timeout > IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128TU) 5810 return 0; 5811 5812 return 128 * (1 << (timeout - 1)); 5813 } 5814 5815 #define for_each_mle_subelement(_elem, _data, _len) \ 5816 if (ieee80211_mle_size_ok(_data, _len)) \ 5817 for_each_element(_elem, \ 5818 _data + ieee80211_mle_common_size(_data),\ 5819 _len - ieee80211_mle_common_size(_data)) 5820 5821 #endif /* LINUX_IEEE80211_H */ 5822