1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * w83791d.c - Part of lm_sensors, Linux kernel modules for hardware
4 * monitoring
5 *
6 * Copyright (C) 2006-2007 Charles Spirakis <bezaur@gmail.com>
7 */
8
9 /*
10 * Supports following chips:
11 *
12 * Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA
13 * w83791d 10 5 5 3 0x71 0x5ca3 yes no
14 *
15 * The w83791d chip appears to be part way between the 83781d and the
16 * 83792d. Thus, this file is derived from both the w83792d.c and
17 * w83781d.c files.
18 *
19 * The w83791g chip is the same as the w83791d but lead-free.
20 */
21
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/i2c.h>
26 #include <linux/hwmon.h>
27 #include <linux/hwmon-vid.h>
28 #include <linux/hwmon-sysfs.h>
29 #include <linux/err.h>
30 #include <linux/mutex.h>
31 #include <linux/jiffies.h>
32
33 #define NUMBER_OF_VIN 10
34 #define NUMBER_OF_FANIN 5
35 #define NUMBER_OF_TEMPIN 3
36 #define NUMBER_OF_PWM 5
37
38 /* Addresses to scan */
39 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, 0x2f,
40 I2C_CLIENT_END };
41
42 /* Insmod parameters */
43
44 static unsigned short force_subclients[4];
45 module_param_array(force_subclients, short, NULL, 0);
46 MODULE_PARM_DESC(force_subclients,
47 "List of subclient addresses: {bus, clientaddr, subclientaddr1, subclientaddr2}");
48
49 static bool reset;
50 module_param(reset, bool, 0);
51 MODULE_PARM_DESC(reset, "Set to one to force a hardware chip reset");
52
53 static bool init;
54 module_param(init, bool, 0);
55 MODULE_PARM_DESC(init, "Set to one to force extra software initialization");
56
57 /* The W83791D registers */
58 static const u8 W83791D_REG_IN[NUMBER_OF_VIN] = {
59 0x20, /* VCOREA in DataSheet */
60 0x21, /* VINR0 in DataSheet */
61 0x22, /* +3.3VIN in DataSheet */
62 0x23, /* VDD5V in DataSheet */
63 0x24, /* +12VIN in DataSheet */
64 0x25, /* -12VIN in DataSheet */
65 0x26, /* -5VIN in DataSheet */
66 0xB0, /* 5VSB in DataSheet */
67 0xB1, /* VBAT in DataSheet */
68 0xB2 /* VINR1 in DataSheet */
69 };
70
71 static const u8 W83791D_REG_IN_MAX[NUMBER_OF_VIN] = {
72 0x2B, /* VCOREA High Limit in DataSheet */
73 0x2D, /* VINR0 High Limit in DataSheet */
74 0x2F, /* +3.3VIN High Limit in DataSheet */
75 0x31, /* VDD5V High Limit in DataSheet */
76 0x33, /* +12VIN High Limit in DataSheet */
77 0x35, /* -12VIN High Limit in DataSheet */
78 0x37, /* -5VIN High Limit in DataSheet */
79 0xB4, /* 5VSB High Limit in DataSheet */
80 0xB6, /* VBAT High Limit in DataSheet */
81 0xB8 /* VINR1 High Limit in DataSheet */
82 };
83 static const u8 W83791D_REG_IN_MIN[NUMBER_OF_VIN] = {
84 0x2C, /* VCOREA Low Limit in DataSheet */
85 0x2E, /* VINR0 Low Limit in DataSheet */
86 0x30, /* +3.3VIN Low Limit in DataSheet */
87 0x32, /* VDD5V Low Limit in DataSheet */
88 0x34, /* +12VIN Low Limit in DataSheet */
89 0x36, /* -12VIN Low Limit in DataSheet */
90 0x38, /* -5VIN Low Limit in DataSheet */
91 0xB5, /* 5VSB Low Limit in DataSheet */
92 0xB7, /* VBAT Low Limit in DataSheet */
93 0xB9 /* VINR1 Low Limit in DataSheet */
94 };
95 static const u8 W83791D_REG_FAN[NUMBER_OF_FANIN] = {
96 0x28, /* FAN 1 Count in DataSheet */
97 0x29, /* FAN 2 Count in DataSheet */
98 0x2A, /* FAN 3 Count in DataSheet */
99 0xBA, /* FAN 4 Count in DataSheet */
100 0xBB, /* FAN 5 Count in DataSheet */
101 };
102 static const u8 W83791D_REG_FAN_MIN[NUMBER_OF_FANIN] = {
103 0x3B, /* FAN 1 Count Low Limit in DataSheet */
104 0x3C, /* FAN 2 Count Low Limit in DataSheet */
105 0x3D, /* FAN 3 Count Low Limit in DataSheet */
106 0xBC, /* FAN 4 Count Low Limit in DataSheet */
107 0xBD, /* FAN 5 Count Low Limit in DataSheet */
108 };
109
110 static const u8 W83791D_REG_PWM[NUMBER_OF_PWM] = {
111 0x81, /* PWM 1 duty cycle register in DataSheet */
112 0x83, /* PWM 2 duty cycle register in DataSheet */
113 0x94, /* PWM 3 duty cycle register in DataSheet */
114 0xA0, /* PWM 4 duty cycle register in DataSheet */
115 0xA1, /* PWM 5 duty cycle register in DataSheet */
116 };
117
118 static const u8 W83791D_REG_TEMP_TARGET[3] = {
119 0x85, /* PWM 1 target temperature for temp 1 */
120 0x86, /* PWM 2 target temperature for temp 2 */
121 0x96, /* PWM 3 target temperature for temp 3 */
122 };
123
124 static const u8 W83791D_REG_TEMP_TOL[2] = {
125 0x87, /* PWM 1/2 temperature tolerance */
126 0x97, /* PWM 3 temperature tolerance */
127 };
128
129 static const u8 W83791D_REG_FAN_CFG[2] = {
130 0x84, /* FAN 1/2 configuration */
131 0x95, /* FAN 3 configuration */
132 };
133
134 static const u8 W83791D_REG_FAN_DIV[3] = {
135 0x47, /* contains FAN1 and FAN2 Divisor */
136 0x4b, /* contains FAN3 Divisor */
137 0x5C, /* contains FAN4 and FAN5 Divisor */
138 };
139
140 #define W83791D_REG_BANK 0x4E
141 #define W83791D_REG_TEMP2_CONFIG 0xC2
142 #define W83791D_REG_TEMP3_CONFIG 0xCA
143
144 static const u8 W83791D_REG_TEMP1[3] = {
145 0x27, /* TEMP 1 in DataSheet */
146 0x39, /* TEMP 1 Over in DataSheet */
147 0x3A, /* TEMP 1 Hyst in DataSheet */
148 };
149
150 static const u8 W83791D_REG_TEMP_ADD[2][6] = {
151 {0xC0, /* TEMP 2 in DataSheet */
152 0xC1, /* TEMP 2(0.5 deg) in DataSheet */
153 0xC5, /* TEMP 2 Over High part in DataSheet */
154 0xC6, /* TEMP 2 Over Low part in DataSheet */
155 0xC3, /* TEMP 2 Thyst High part in DataSheet */
156 0xC4}, /* TEMP 2 Thyst Low part in DataSheet */
157 {0xC8, /* TEMP 3 in DataSheet */
158 0xC9, /* TEMP 3(0.5 deg) in DataSheet */
159 0xCD, /* TEMP 3 Over High part in DataSheet */
160 0xCE, /* TEMP 3 Over Low part in DataSheet */
161 0xCB, /* TEMP 3 Thyst High part in DataSheet */
162 0xCC} /* TEMP 3 Thyst Low part in DataSheet */
163 };
164
165 #define W83791D_REG_BEEP_CONFIG 0x4D
166
167 static const u8 W83791D_REG_BEEP_CTRL[3] = {
168 0x56, /* BEEP Control Register 1 */
169 0x57, /* BEEP Control Register 2 */
170 0xA3, /* BEEP Control Register 3 */
171 };
172
173 #define W83791D_REG_GPIO 0x15
174 #define W83791D_REG_CONFIG 0x40
175 #define W83791D_REG_VID_FANDIV 0x47
176 #define W83791D_REG_DID_VID4 0x49
177 #define W83791D_REG_WCHIPID 0x58
178 #define W83791D_REG_CHIPMAN 0x4F
179 #define W83791D_REG_PIN 0x4B
180 #define W83791D_REG_I2C_SUBADDR 0x4A
181
182 #define W83791D_REG_ALARM1 0xA9 /* realtime status register1 */
183 #define W83791D_REG_ALARM2 0xAA /* realtime status register2 */
184 #define W83791D_REG_ALARM3 0xAB /* realtime status register3 */
185
186 #define W83791D_REG_VBAT 0x5D
187 #define W83791D_REG_I2C_ADDR 0x48
188
189 /*
190 * The SMBus locks itself. The Winbond W83791D has a bank select register
191 * (index 0x4e), but the driver only accesses registers in bank 0. Since
192 * we don't switch banks, we don't need any special code to handle
193 * locking access between bank switches
194 */
w83791d_read(struct i2c_client * client,u8 reg)195 static inline int w83791d_read(struct i2c_client *client, u8 reg)
196 {
197 return i2c_smbus_read_byte_data(client, reg);
198 }
199
w83791d_write(struct i2c_client * client,u8 reg,u8 value)200 static inline int w83791d_write(struct i2c_client *client, u8 reg, u8 value)
201 {
202 return i2c_smbus_write_byte_data(client, reg, value);
203 }
204
205 /*
206 * The analog voltage inputs have 16mV LSB. Since the sysfs output is
207 * in mV as would be measured on the chip input pin, need to just
208 * multiply/divide by 16 to translate from/to register values.
209 */
210 #define IN_TO_REG(val) (clamp_val((((val) + 8) / 16), 0, 255))
211 #define IN_FROM_REG(val) ((val) * 16)
212
fan_to_reg(long rpm,int div)213 static u8 fan_to_reg(long rpm, int div)
214 {
215 if (rpm == 0)
216 return 255;
217 rpm = clamp_val(rpm, 1, 1000000);
218 return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
219 }
220
fan_from_reg(int val,int div)221 static int fan_from_reg(int val, int div)
222 {
223 if (val == 0)
224 return -1;
225 if (val == 255)
226 return 0;
227 return 1350000 / (val * div);
228 }
229
230 /* for temp1 which is 8-bit resolution, LSB = 1 degree Celsius */
231 #define TEMP1_FROM_REG(val) ((val) * 1000)
232 #define TEMP1_TO_REG(val) ((val) <= -128000 ? -128 : \
233 (val) >= 127000 ? 127 : \
234 (val) < 0 ? ((val) - 500) / 1000 : \
235 ((val) + 500) / 1000)
236
237 /*
238 * for temp2 and temp3 which are 9-bit resolution, LSB = 0.5 degree Celsius
239 * Assumes the top 8 bits are the integral amount and the bottom 8 bits
240 * are the fractional amount. Since we only have 0.5 degree resolution,
241 * the bottom 7 bits will always be zero
242 */
243 #define TEMP23_FROM_REG(val) ((val) / 128 * 500)
244 #define TEMP23_TO_REG(val) (DIV_ROUND_CLOSEST(clamp_val((val), -128000, \
245 127500), 500) * 128)
246
247 /* for thermal cruise target temp, 7-bits, LSB = 1 degree Celsius */
248 #define TARGET_TEMP_TO_REG(val) DIV_ROUND_CLOSEST(clamp_val((val), 0, 127000), \
249 1000)
250
251 /* for thermal cruise temp tolerance, 4-bits, LSB = 1 degree Celsius */
252 #define TOL_TEMP_TO_REG(val) DIV_ROUND_CLOSEST(clamp_val((val), 0, 15000), \
253 1000)
254
255 #define BEEP_MASK_TO_REG(val) ((val) & 0xffffff)
256 #define BEEP_MASK_FROM_REG(val) ((val) & 0xffffff)
257
258 #define DIV_FROM_REG(val) (1 << (val))
259
div_to_reg(int nr,long val)260 static u8 div_to_reg(int nr, long val)
261 {
262 int i;
263
264 /* fan divisors max out at 128 */
265 val = clamp_val(val, 1, 128) >> 1;
266 for (i = 0; i < 7; i++) {
267 if (val == 0)
268 break;
269 val >>= 1;
270 }
271 return (u8) i;
272 }
273
274 struct w83791d_data {
275 struct device *hwmon_dev;
276 struct mutex update_lock;
277
278 bool valid; /* true if following fields are valid */
279 unsigned long last_updated; /* In jiffies */
280
281 /* volts */
282 u8 in[NUMBER_OF_VIN]; /* Register value */
283 u8 in_max[NUMBER_OF_VIN]; /* Register value */
284 u8 in_min[NUMBER_OF_VIN]; /* Register value */
285
286 /* fans */
287 u8 fan[NUMBER_OF_FANIN]; /* Register value */
288 u8 fan_min[NUMBER_OF_FANIN]; /* Register value */
289 u8 fan_div[NUMBER_OF_FANIN]; /* Register encoding, shifted right */
290
291 /* Temperature sensors */
292
293 s8 temp1[3]; /* current, over, thyst */
294 s16 temp_add[2][3]; /* fixed point value. Top 8 bits are the
295 * integral part, bottom 8 bits are the
296 * fractional part. We only use the top
297 * 9 bits as the resolution is only
298 * to the 0.5 degree C...
299 * two sensors with three values
300 * (cur, over, hyst)
301 */
302
303 /* PWMs */
304 u8 pwm[5]; /* pwm duty cycle */
305 u8 pwm_enable[3]; /* pwm enable status for fan 1-3
306 * (fan 4-5 only support manual mode)
307 */
308
309 u8 temp_target[3]; /* pwm 1-3 target temperature */
310 u8 temp_tolerance[3]; /* pwm 1-3 temperature tolerance */
311
312 /* Misc */
313 u32 alarms; /* realtime status register encoding,combined */
314 u8 beep_enable; /* Global beep enable */
315 u32 beep_mask; /* Mask off specific beeps */
316 u8 vid; /* Register encoding, combined */
317 u8 vrm; /* hwmon-vid */
318 };
319
320 static int w83791d_probe(struct i2c_client *client);
321 static int w83791d_detect(struct i2c_client *client,
322 struct i2c_board_info *info);
323 static void w83791d_remove(struct i2c_client *client);
324
325 static int w83791d_read(struct i2c_client *client, u8 reg);
326 static int w83791d_write(struct i2c_client *client, u8 reg, u8 value);
327 static struct w83791d_data *w83791d_update_device(struct device *dev);
328
329 #ifdef DEBUG
330 static void w83791d_print_debug(struct w83791d_data *data, struct device *dev);
331 #endif
332
333 static void w83791d_init_client(struct i2c_client *client);
334
335 static const struct i2c_device_id w83791d_id[] = {
336 { "w83791d" },
337 { }
338 };
339 MODULE_DEVICE_TABLE(i2c, w83791d_id);
340
341 static struct i2c_driver w83791d_driver = {
342 .class = I2C_CLASS_HWMON,
343 .driver = {
344 .name = "w83791d",
345 },
346 .probe = w83791d_probe,
347 .remove = w83791d_remove,
348 .id_table = w83791d_id,
349 .detect = w83791d_detect,
350 .address_list = normal_i2c,
351 };
352
353 /* following are the sysfs callback functions */
354 #define show_in_reg(reg) \
355 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
356 char *buf) \
357 { \
358 struct sensor_device_attribute *sensor_attr = \
359 to_sensor_dev_attr(attr); \
360 struct w83791d_data *data = w83791d_update_device(dev); \
361 int nr = sensor_attr->index; \
362 return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
363 }
364
365 show_in_reg(in);
366 show_in_reg(in_min);
367 show_in_reg(in_max);
368
369 #define store_in_reg(REG, reg) \
370 static ssize_t store_in_##reg(struct device *dev, \
371 struct device_attribute *attr, \
372 const char *buf, size_t count) \
373 { \
374 struct sensor_device_attribute *sensor_attr = \
375 to_sensor_dev_attr(attr); \
376 struct i2c_client *client = to_i2c_client(dev); \
377 struct w83791d_data *data = i2c_get_clientdata(client); \
378 int nr = sensor_attr->index; \
379 unsigned long val; \
380 int err = kstrtoul(buf, 10, &val); \
381 if (err) \
382 return err; \
383 mutex_lock(&data->update_lock); \
384 data->in_##reg[nr] = IN_TO_REG(val); \
385 w83791d_write(client, W83791D_REG_IN_##REG[nr], data->in_##reg[nr]); \
386 mutex_unlock(&data->update_lock); \
387 \
388 return count; \
389 }
390 store_in_reg(MIN, min);
391 store_in_reg(MAX, max);
392
393 static struct sensor_device_attribute sda_in_input[] = {
394 SENSOR_ATTR(in0_input, S_IRUGO, show_in, NULL, 0),
395 SENSOR_ATTR(in1_input, S_IRUGO, show_in, NULL, 1),
396 SENSOR_ATTR(in2_input, S_IRUGO, show_in, NULL, 2),
397 SENSOR_ATTR(in3_input, S_IRUGO, show_in, NULL, 3),
398 SENSOR_ATTR(in4_input, S_IRUGO, show_in, NULL, 4),
399 SENSOR_ATTR(in5_input, S_IRUGO, show_in, NULL, 5),
400 SENSOR_ATTR(in6_input, S_IRUGO, show_in, NULL, 6),
401 SENSOR_ATTR(in7_input, S_IRUGO, show_in, NULL, 7),
402 SENSOR_ATTR(in8_input, S_IRUGO, show_in, NULL, 8),
403 SENSOR_ATTR(in9_input, S_IRUGO, show_in, NULL, 9),
404 };
405
406 static struct sensor_device_attribute sda_in_min[] = {
407 SENSOR_ATTR(in0_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 0),
408 SENSOR_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 1),
409 SENSOR_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 2),
410 SENSOR_ATTR(in3_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 3),
411 SENSOR_ATTR(in4_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 4),
412 SENSOR_ATTR(in5_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 5),
413 SENSOR_ATTR(in6_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 6),
414 SENSOR_ATTR(in7_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 7),
415 SENSOR_ATTR(in8_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 8),
416 SENSOR_ATTR(in9_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 9),
417 };
418
419 static struct sensor_device_attribute sda_in_max[] = {
420 SENSOR_ATTR(in0_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 0),
421 SENSOR_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 1),
422 SENSOR_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 2),
423 SENSOR_ATTR(in3_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 3),
424 SENSOR_ATTR(in4_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 4),
425 SENSOR_ATTR(in5_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 5),
426 SENSOR_ATTR(in6_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 6),
427 SENSOR_ATTR(in7_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 7),
428 SENSOR_ATTR(in8_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 8),
429 SENSOR_ATTR(in9_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 9),
430 };
431
432
show_beep(struct device * dev,struct device_attribute * attr,char * buf)433 static ssize_t show_beep(struct device *dev, struct device_attribute *attr,
434 char *buf)
435 {
436 struct sensor_device_attribute *sensor_attr =
437 to_sensor_dev_attr(attr);
438 struct w83791d_data *data = w83791d_update_device(dev);
439 int bitnr = sensor_attr->index;
440
441 return sprintf(buf, "%d\n", (data->beep_mask >> bitnr) & 1);
442 }
443
store_beep(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)444 static ssize_t store_beep(struct device *dev, struct device_attribute *attr,
445 const char *buf, size_t count)
446 {
447 struct sensor_device_attribute *sensor_attr =
448 to_sensor_dev_attr(attr);
449 struct i2c_client *client = to_i2c_client(dev);
450 struct w83791d_data *data = i2c_get_clientdata(client);
451 int bitnr = sensor_attr->index;
452 int bytenr = bitnr / 8;
453 unsigned long val;
454 int err;
455
456 err = kstrtoul(buf, 10, &val);
457 if (err)
458 return err;
459
460 val = val ? 1 : 0;
461
462 mutex_lock(&data->update_lock);
463
464 data->beep_mask &= ~(0xff << (bytenr * 8));
465 data->beep_mask |= w83791d_read(client, W83791D_REG_BEEP_CTRL[bytenr])
466 << (bytenr * 8);
467
468 data->beep_mask &= ~(1 << bitnr);
469 data->beep_mask |= val << bitnr;
470
471 w83791d_write(client, W83791D_REG_BEEP_CTRL[bytenr],
472 (data->beep_mask >> (bytenr * 8)) & 0xff);
473
474 mutex_unlock(&data->update_lock);
475
476 return count;
477 }
478
show_alarm(struct device * dev,struct device_attribute * attr,char * buf)479 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
480 char *buf)
481 {
482 struct sensor_device_attribute *sensor_attr =
483 to_sensor_dev_attr(attr);
484 struct w83791d_data *data = w83791d_update_device(dev);
485 int bitnr = sensor_attr->index;
486
487 return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1);
488 }
489
490 /*
491 * Note: The bitmask for the beep enable/disable is different than
492 * the bitmask for the alarm.
493 */
494 static struct sensor_device_attribute sda_in_beep[] = {
495 SENSOR_ATTR(in0_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 0),
496 SENSOR_ATTR(in1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 13),
497 SENSOR_ATTR(in2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 2),
498 SENSOR_ATTR(in3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 3),
499 SENSOR_ATTR(in4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 8),
500 SENSOR_ATTR(in5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 9),
501 SENSOR_ATTR(in6_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 10),
502 SENSOR_ATTR(in7_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 16),
503 SENSOR_ATTR(in8_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 17),
504 SENSOR_ATTR(in9_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 14),
505 };
506
507 static struct sensor_device_attribute sda_in_alarm[] = {
508 SENSOR_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0),
509 SENSOR_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1),
510 SENSOR_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2),
511 SENSOR_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3),
512 SENSOR_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8),
513 SENSOR_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 9),
514 SENSOR_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 10),
515 SENSOR_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 19),
516 SENSOR_ATTR(in8_alarm, S_IRUGO, show_alarm, NULL, 20),
517 SENSOR_ATTR(in9_alarm, S_IRUGO, show_alarm, NULL, 14),
518 };
519
520 #define show_fan_reg(reg) \
521 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
522 char *buf) \
523 { \
524 struct sensor_device_attribute *sensor_attr = \
525 to_sensor_dev_attr(attr); \
526 struct w83791d_data *data = w83791d_update_device(dev); \
527 int nr = sensor_attr->index; \
528 return sprintf(buf, "%d\n", \
529 fan_from_reg(data->reg[nr], DIV_FROM_REG(data->fan_div[nr]))); \
530 }
531
532 show_fan_reg(fan);
533 show_fan_reg(fan_min);
534
store_fan_min(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)535 static ssize_t store_fan_min(struct device *dev, struct device_attribute *attr,
536 const char *buf, size_t count)
537 {
538 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
539 struct i2c_client *client = to_i2c_client(dev);
540 struct w83791d_data *data = i2c_get_clientdata(client);
541 int nr = sensor_attr->index;
542 unsigned long val;
543 int err;
544
545 err = kstrtoul(buf, 10, &val);
546 if (err)
547 return err;
548
549 mutex_lock(&data->update_lock);
550 data->fan_min[nr] = fan_to_reg(val, DIV_FROM_REG(data->fan_div[nr]));
551 w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]);
552 mutex_unlock(&data->update_lock);
553
554 return count;
555 }
556
show_fan_div(struct device * dev,struct device_attribute * attr,char * buf)557 static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
558 char *buf)
559 {
560 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
561 int nr = sensor_attr->index;
562 struct w83791d_data *data = w83791d_update_device(dev);
563 return sprintf(buf, "%u\n", DIV_FROM_REG(data->fan_div[nr]));
564 }
565
566 /*
567 * Note: we save and restore the fan minimum here, because its value is
568 * determined in part by the fan divisor. This follows the principle of
569 * least surprise; the user doesn't expect the fan minimum to change just
570 * because the divisor changed.
571 */
store_fan_div(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)572 static ssize_t store_fan_div(struct device *dev, struct device_attribute *attr,
573 const char *buf, size_t count)
574 {
575 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
576 struct i2c_client *client = to_i2c_client(dev);
577 struct w83791d_data *data = i2c_get_clientdata(client);
578 int nr = sensor_attr->index;
579 unsigned long min;
580 u8 tmp_fan_div;
581 u8 fan_div_reg;
582 u8 vbat_reg;
583 int indx = 0;
584 u8 keep_mask = 0;
585 u8 new_shift = 0;
586 unsigned long val;
587 int err;
588
589 err = kstrtoul(buf, 10, &val);
590 if (err)
591 return err;
592
593 mutex_lock(&data->update_lock);
594 /* Save fan_min */
595 min = fan_from_reg(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr]));
596
597 data->fan_div[nr] = div_to_reg(nr, val);
598
599 switch (nr) {
600 case 0:
601 indx = 0;
602 keep_mask = 0xcf;
603 new_shift = 4;
604 break;
605 case 1:
606 indx = 0;
607 keep_mask = 0x3f;
608 new_shift = 6;
609 break;
610 case 2:
611 indx = 1;
612 keep_mask = 0x3f;
613 new_shift = 6;
614 break;
615 case 3:
616 indx = 2;
617 keep_mask = 0xf8;
618 new_shift = 0;
619 break;
620 case 4:
621 indx = 2;
622 keep_mask = 0x8f;
623 new_shift = 4;
624 break;
625 #ifdef DEBUG
626 default:
627 dev_warn(dev, "store_fan_div: Unexpected nr seen: %d\n", nr);
628 count = -EINVAL;
629 goto err_exit;
630 #endif
631 }
632
633 fan_div_reg = w83791d_read(client, W83791D_REG_FAN_DIV[indx])
634 & keep_mask;
635 tmp_fan_div = (data->fan_div[nr] << new_shift) & ~keep_mask;
636
637 w83791d_write(client, W83791D_REG_FAN_DIV[indx],
638 fan_div_reg | tmp_fan_div);
639
640 /* Bit 2 of fans 0-2 is stored in the vbat register (bits 5-7) */
641 if (nr < 3) {
642 keep_mask = ~(1 << (nr + 5));
643 vbat_reg = w83791d_read(client, W83791D_REG_VBAT)
644 & keep_mask;
645 tmp_fan_div = (data->fan_div[nr] << (3 + nr)) & ~keep_mask;
646 w83791d_write(client, W83791D_REG_VBAT,
647 vbat_reg | tmp_fan_div);
648 }
649
650 /* Restore fan_min */
651 data->fan_min[nr] = fan_to_reg(min, DIV_FROM_REG(data->fan_div[nr]));
652 w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]);
653
654 #ifdef DEBUG
655 err_exit:
656 #endif
657 mutex_unlock(&data->update_lock);
658
659 return count;
660 }
661
662 static struct sensor_device_attribute sda_fan_input[] = {
663 SENSOR_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0),
664 SENSOR_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1),
665 SENSOR_ATTR(fan3_input, S_IRUGO, show_fan, NULL, 2),
666 SENSOR_ATTR(fan4_input, S_IRUGO, show_fan, NULL, 3),
667 SENSOR_ATTR(fan5_input, S_IRUGO, show_fan, NULL, 4),
668 };
669
670 static struct sensor_device_attribute sda_fan_min[] = {
671 SENSOR_ATTR(fan1_min, S_IWUSR | S_IRUGO,
672 show_fan_min, store_fan_min, 0),
673 SENSOR_ATTR(fan2_min, S_IWUSR | S_IRUGO,
674 show_fan_min, store_fan_min, 1),
675 SENSOR_ATTR(fan3_min, S_IWUSR | S_IRUGO,
676 show_fan_min, store_fan_min, 2),
677 SENSOR_ATTR(fan4_min, S_IWUSR | S_IRUGO,
678 show_fan_min, store_fan_min, 3),
679 SENSOR_ATTR(fan5_min, S_IWUSR | S_IRUGO,
680 show_fan_min, store_fan_min, 4),
681 };
682
683 static struct sensor_device_attribute sda_fan_div[] = {
684 SENSOR_ATTR(fan1_div, S_IWUSR | S_IRUGO,
685 show_fan_div, store_fan_div, 0),
686 SENSOR_ATTR(fan2_div, S_IWUSR | S_IRUGO,
687 show_fan_div, store_fan_div, 1),
688 SENSOR_ATTR(fan3_div, S_IWUSR | S_IRUGO,
689 show_fan_div, store_fan_div, 2),
690 SENSOR_ATTR(fan4_div, S_IWUSR | S_IRUGO,
691 show_fan_div, store_fan_div, 3),
692 SENSOR_ATTR(fan5_div, S_IWUSR | S_IRUGO,
693 show_fan_div, store_fan_div, 4),
694 };
695
696 static struct sensor_device_attribute sda_fan_beep[] = {
697 SENSOR_ATTR(fan1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 6),
698 SENSOR_ATTR(fan2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 7),
699 SENSOR_ATTR(fan3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 11),
700 SENSOR_ATTR(fan4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 21),
701 SENSOR_ATTR(fan5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 22),
702 };
703
704 static struct sensor_device_attribute sda_fan_alarm[] = {
705 SENSOR_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6),
706 SENSOR_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7),
707 SENSOR_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11),
708 SENSOR_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 21),
709 SENSOR_ATTR(fan5_alarm, S_IRUGO, show_alarm, NULL, 22),
710 };
711
712 /* read/write PWMs */
show_pwm(struct device * dev,struct device_attribute * attr,char * buf)713 static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
714 char *buf)
715 {
716 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
717 int nr = sensor_attr->index;
718 struct w83791d_data *data = w83791d_update_device(dev);
719 return sprintf(buf, "%u\n", data->pwm[nr]);
720 }
721
store_pwm(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)722 static ssize_t store_pwm(struct device *dev, struct device_attribute *attr,
723 const char *buf, size_t count)
724 {
725 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
726 struct i2c_client *client = to_i2c_client(dev);
727 struct w83791d_data *data = i2c_get_clientdata(client);
728 int nr = sensor_attr->index;
729 unsigned long val;
730
731 if (kstrtoul(buf, 10, &val))
732 return -EINVAL;
733
734 mutex_lock(&data->update_lock);
735 data->pwm[nr] = clamp_val(val, 0, 255);
736 w83791d_write(client, W83791D_REG_PWM[nr], data->pwm[nr]);
737 mutex_unlock(&data->update_lock);
738 return count;
739 }
740
741 static struct sensor_device_attribute sda_pwm[] = {
742 SENSOR_ATTR(pwm1, S_IWUSR | S_IRUGO,
743 show_pwm, store_pwm, 0),
744 SENSOR_ATTR(pwm2, S_IWUSR | S_IRUGO,
745 show_pwm, store_pwm, 1),
746 SENSOR_ATTR(pwm3, S_IWUSR | S_IRUGO,
747 show_pwm, store_pwm, 2),
748 SENSOR_ATTR(pwm4, S_IWUSR | S_IRUGO,
749 show_pwm, store_pwm, 3),
750 SENSOR_ATTR(pwm5, S_IWUSR | S_IRUGO,
751 show_pwm, store_pwm, 4),
752 };
753
show_pwmenable(struct device * dev,struct device_attribute * attr,char * buf)754 static ssize_t show_pwmenable(struct device *dev, struct device_attribute *attr,
755 char *buf)
756 {
757 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
758 int nr = sensor_attr->index;
759 struct w83791d_data *data = w83791d_update_device(dev);
760 return sprintf(buf, "%u\n", data->pwm_enable[nr] + 1);
761 }
762
store_pwmenable(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)763 static ssize_t store_pwmenable(struct device *dev,
764 struct device_attribute *attr, const char *buf, size_t count)
765 {
766 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
767 struct i2c_client *client = to_i2c_client(dev);
768 struct w83791d_data *data = i2c_get_clientdata(client);
769 int nr = sensor_attr->index;
770 unsigned long val;
771 u8 reg_cfg_tmp;
772 u8 reg_idx = 0;
773 u8 val_shift = 0;
774 u8 keep_mask = 0;
775
776 int ret = kstrtoul(buf, 10, &val);
777
778 if (ret || val < 1 || val > 3)
779 return -EINVAL;
780
781 mutex_lock(&data->update_lock);
782 data->pwm_enable[nr] = val - 1;
783 switch (nr) {
784 case 0:
785 reg_idx = 0;
786 val_shift = 2;
787 keep_mask = 0xf3;
788 break;
789 case 1:
790 reg_idx = 0;
791 val_shift = 4;
792 keep_mask = 0xcf;
793 break;
794 case 2:
795 reg_idx = 1;
796 val_shift = 2;
797 keep_mask = 0xf3;
798 break;
799 }
800
801 reg_cfg_tmp = w83791d_read(client, W83791D_REG_FAN_CFG[reg_idx]);
802 reg_cfg_tmp = (reg_cfg_tmp & keep_mask) |
803 data->pwm_enable[nr] << val_shift;
804
805 w83791d_write(client, W83791D_REG_FAN_CFG[reg_idx], reg_cfg_tmp);
806 mutex_unlock(&data->update_lock);
807
808 return count;
809 }
810 static struct sensor_device_attribute sda_pwmenable[] = {
811 SENSOR_ATTR(pwm1_enable, S_IWUSR | S_IRUGO,
812 show_pwmenable, store_pwmenable, 0),
813 SENSOR_ATTR(pwm2_enable, S_IWUSR | S_IRUGO,
814 show_pwmenable, store_pwmenable, 1),
815 SENSOR_ATTR(pwm3_enable, S_IWUSR | S_IRUGO,
816 show_pwmenable, store_pwmenable, 2),
817 };
818
819 /* For Smart Fan I / Thermal Cruise */
show_temp_target(struct device * dev,struct device_attribute * attr,char * buf)820 static ssize_t show_temp_target(struct device *dev,
821 struct device_attribute *attr, char *buf)
822 {
823 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
824 struct w83791d_data *data = w83791d_update_device(dev);
825 int nr = sensor_attr->index;
826 return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_target[nr]));
827 }
828
store_temp_target(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)829 static ssize_t store_temp_target(struct device *dev,
830 struct device_attribute *attr, const char *buf, size_t count)
831 {
832 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
833 struct i2c_client *client = to_i2c_client(dev);
834 struct w83791d_data *data = i2c_get_clientdata(client);
835 int nr = sensor_attr->index;
836 long val;
837 u8 target_mask;
838
839 if (kstrtol(buf, 10, &val))
840 return -EINVAL;
841
842 mutex_lock(&data->update_lock);
843 data->temp_target[nr] = TARGET_TEMP_TO_REG(val);
844 target_mask = w83791d_read(client,
845 W83791D_REG_TEMP_TARGET[nr]) & 0x80;
846 w83791d_write(client, W83791D_REG_TEMP_TARGET[nr],
847 data->temp_target[nr] | target_mask);
848 mutex_unlock(&data->update_lock);
849 return count;
850 }
851
852 static struct sensor_device_attribute sda_temp_target[] = {
853 SENSOR_ATTR(temp1_target, S_IWUSR | S_IRUGO,
854 show_temp_target, store_temp_target, 0),
855 SENSOR_ATTR(temp2_target, S_IWUSR | S_IRUGO,
856 show_temp_target, store_temp_target, 1),
857 SENSOR_ATTR(temp3_target, S_IWUSR | S_IRUGO,
858 show_temp_target, store_temp_target, 2),
859 };
860
show_temp_tolerance(struct device * dev,struct device_attribute * attr,char * buf)861 static ssize_t show_temp_tolerance(struct device *dev,
862 struct device_attribute *attr, char *buf)
863 {
864 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
865 struct w83791d_data *data = w83791d_update_device(dev);
866 int nr = sensor_attr->index;
867 return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_tolerance[nr]));
868 }
869
store_temp_tolerance(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)870 static ssize_t store_temp_tolerance(struct device *dev,
871 struct device_attribute *attr, const char *buf, size_t count)
872 {
873 struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
874 struct i2c_client *client = to_i2c_client(dev);
875 struct w83791d_data *data = i2c_get_clientdata(client);
876 int nr = sensor_attr->index;
877 unsigned long val;
878 u8 target_mask;
879 u8 reg_idx = 0;
880 u8 val_shift = 0;
881 u8 keep_mask = 0;
882
883 if (kstrtoul(buf, 10, &val))
884 return -EINVAL;
885
886 switch (nr) {
887 case 0:
888 reg_idx = 0;
889 val_shift = 0;
890 keep_mask = 0xf0;
891 break;
892 case 1:
893 reg_idx = 0;
894 val_shift = 4;
895 keep_mask = 0x0f;
896 break;
897 case 2:
898 reg_idx = 1;
899 val_shift = 0;
900 keep_mask = 0xf0;
901 break;
902 }
903
904 mutex_lock(&data->update_lock);
905 data->temp_tolerance[nr] = TOL_TEMP_TO_REG(val);
906 target_mask = w83791d_read(client,
907 W83791D_REG_TEMP_TOL[reg_idx]) & keep_mask;
908 w83791d_write(client, W83791D_REG_TEMP_TOL[reg_idx],
909 (data->temp_tolerance[nr] << val_shift) | target_mask);
910 mutex_unlock(&data->update_lock);
911 return count;
912 }
913
914 static struct sensor_device_attribute sda_temp_tolerance[] = {
915 SENSOR_ATTR(temp1_tolerance, S_IWUSR | S_IRUGO,
916 show_temp_tolerance, store_temp_tolerance, 0),
917 SENSOR_ATTR(temp2_tolerance, S_IWUSR | S_IRUGO,
918 show_temp_tolerance, store_temp_tolerance, 1),
919 SENSOR_ATTR(temp3_tolerance, S_IWUSR | S_IRUGO,
920 show_temp_tolerance, store_temp_tolerance, 2),
921 };
922
923 /* read/write the temperature1, includes measured value and limits */
show_temp1(struct device * dev,struct device_attribute * devattr,char * buf)924 static ssize_t show_temp1(struct device *dev, struct device_attribute *devattr,
925 char *buf)
926 {
927 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
928 struct w83791d_data *data = w83791d_update_device(dev);
929 return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp1[attr->index]));
930 }
931
store_temp1(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)932 static ssize_t store_temp1(struct device *dev, struct device_attribute *devattr,
933 const char *buf, size_t count)
934 {
935 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
936 struct i2c_client *client = to_i2c_client(dev);
937 struct w83791d_data *data = i2c_get_clientdata(client);
938 int nr = attr->index;
939 long val;
940 int err;
941
942 err = kstrtol(buf, 10, &val);
943 if (err)
944 return err;
945
946 mutex_lock(&data->update_lock);
947 data->temp1[nr] = TEMP1_TO_REG(val);
948 w83791d_write(client, W83791D_REG_TEMP1[nr], data->temp1[nr]);
949 mutex_unlock(&data->update_lock);
950 return count;
951 }
952
953 /* read/write temperature2-3, includes measured value and limits */
show_temp23(struct device * dev,struct device_attribute * devattr,char * buf)954 static ssize_t show_temp23(struct device *dev, struct device_attribute *devattr,
955 char *buf)
956 {
957 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
958 struct w83791d_data *data = w83791d_update_device(dev);
959 int nr = attr->nr;
960 int index = attr->index;
961 return sprintf(buf, "%d\n", TEMP23_FROM_REG(data->temp_add[nr][index]));
962 }
963
store_temp23(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)964 static ssize_t store_temp23(struct device *dev,
965 struct device_attribute *devattr,
966 const char *buf, size_t count)
967 {
968 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
969 struct i2c_client *client = to_i2c_client(dev);
970 struct w83791d_data *data = i2c_get_clientdata(client);
971 long val;
972 int err;
973 int nr = attr->nr;
974 int index = attr->index;
975
976 err = kstrtol(buf, 10, &val);
977 if (err)
978 return err;
979
980 mutex_lock(&data->update_lock);
981 data->temp_add[nr][index] = TEMP23_TO_REG(val);
982 w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2],
983 data->temp_add[nr][index] >> 8);
984 w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2 + 1],
985 data->temp_add[nr][index] & 0x80);
986 mutex_unlock(&data->update_lock);
987
988 return count;
989 }
990
991 static struct sensor_device_attribute_2 sda_temp_input[] = {
992 SENSOR_ATTR_2(temp1_input, S_IRUGO, show_temp1, NULL, 0, 0),
993 SENSOR_ATTR_2(temp2_input, S_IRUGO, show_temp23, NULL, 0, 0),
994 SENSOR_ATTR_2(temp3_input, S_IRUGO, show_temp23, NULL, 1, 0),
995 };
996
997 static struct sensor_device_attribute_2 sda_temp_max[] = {
998 SENSOR_ATTR_2(temp1_max, S_IRUGO | S_IWUSR,
999 show_temp1, store_temp1, 0, 1),
1000 SENSOR_ATTR_2(temp2_max, S_IRUGO | S_IWUSR,
1001 show_temp23, store_temp23, 0, 1),
1002 SENSOR_ATTR_2(temp3_max, S_IRUGO | S_IWUSR,
1003 show_temp23, store_temp23, 1, 1),
1004 };
1005
1006 static struct sensor_device_attribute_2 sda_temp_max_hyst[] = {
1007 SENSOR_ATTR_2(temp1_max_hyst, S_IRUGO | S_IWUSR,
1008 show_temp1, store_temp1, 0, 2),
1009 SENSOR_ATTR_2(temp2_max_hyst, S_IRUGO | S_IWUSR,
1010 show_temp23, store_temp23, 0, 2),
1011 SENSOR_ATTR_2(temp3_max_hyst, S_IRUGO | S_IWUSR,
1012 show_temp23, store_temp23, 1, 2),
1013 };
1014
1015 /*
1016 * Note: The bitmask for the beep enable/disable is different than
1017 * the bitmask for the alarm.
1018 */
1019 static struct sensor_device_attribute sda_temp_beep[] = {
1020 SENSOR_ATTR(temp1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 4),
1021 SENSOR_ATTR(temp2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 5),
1022 SENSOR_ATTR(temp3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 1),
1023 };
1024
1025 static struct sensor_device_attribute sda_temp_alarm[] = {
1026 SENSOR_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4),
1027 SENSOR_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5),
1028 SENSOR_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13),
1029 };
1030
1031 /* get realtime status of all sensors items: voltage, temp, fan */
alarms_show(struct device * dev,struct device_attribute * attr,char * buf)1032 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
1033 char *buf)
1034 {
1035 struct w83791d_data *data = w83791d_update_device(dev);
1036 return sprintf(buf, "%u\n", data->alarms);
1037 }
1038
1039 static DEVICE_ATTR_RO(alarms);
1040
1041 /* Beep control */
1042
1043 #define GLOBAL_BEEP_ENABLE_SHIFT 15
1044 #define GLOBAL_BEEP_ENABLE_MASK (1 << GLOBAL_BEEP_ENABLE_SHIFT)
1045
show_beep_enable(struct device * dev,struct device_attribute * attr,char * buf)1046 static ssize_t show_beep_enable(struct device *dev,
1047 struct device_attribute *attr, char *buf)
1048 {
1049 struct w83791d_data *data = w83791d_update_device(dev);
1050 return sprintf(buf, "%d\n", data->beep_enable);
1051 }
1052
show_beep_mask(struct device * dev,struct device_attribute * attr,char * buf)1053 static ssize_t show_beep_mask(struct device *dev,
1054 struct device_attribute *attr, char *buf)
1055 {
1056 struct w83791d_data *data = w83791d_update_device(dev);
1057 return sprintf(buf, "%d\n", BEEP_MASK_FROM_REG(data->beep_mask));
1058 }
1059
1060
store_beep_mask(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1061 static ssize_t store_beep_mask(struct device *dev,
1062 struct device_attribute *attr,
1063 const char *buf, size_t count)
1064 {
1065 struct i2c_client *client = to_i2c_client(dev);
1066 struct w83791d_data *data = i2c_get_clientdata(client);
1067 int i;
1068 long val;
1069 int err;
1070
1071 err = kstrtol(buf, 10, &val);
1072 if (err)
1073 return err;
1074
1075 mutex_lock(&data->update_lock);
1076
1077 /*
1078 * The beep_enable state overrides any enabling request from
1079 * the masks
1080 */
1081 data->beep_mask = BEEP_MASK_TO_REG(val) & ~GLOBAL_BEEP_ENABLE_MASK;
1082 data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT);
1083
1084 val = data->beep_mask;
1085
1086 for (i = 0; i < 3; i++) {
1087 w83791d_write(client, W83791D_REG_BEEP_CTRL[i], (val & 0xff));
1088 val >>= 8;
1089 }
1090
1091 mutex_unlock(&data->update_lock);
1092
1093 return count;
1094 }
1095
store_beep_enable(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1096 static ssize_t store_beep_enable(struct device *dev,
1097 struct device_attribute *attr,
1098 const char *buf, size_t count)
1099 {
1100 struct i2c_client *client = to_i2c_client(dev);
1101 struct w83791d_data *data = i2c_get_clientdata(client);
1102 long val;
1103 int err;
1104
1105 err = kstrtol(buf, 10, &val);
1106 if (err)
1107 return err;
1108
1109 mutex_lock(&data->update_lock);
1110
1111 data->beep_enable = val ? 1 : 0;
1112
1113 /* Keep the full mask value in sync with the current enable */
1114 data->beep_mask &= ~GLOBAL_BEEP_ENABLE_MASK;
1115 data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT);
1116
1117 /*
1118 * The global control is in the second beep control register
1119 * so only need to update that register
1120 */
1121 val = (data->beep_mask >> 8) & 0xff;
1122
1123 w83791d_write(client, W83791D_REG_BEEP_CTRL[1], val);
1124
1125 mutex_unlock(&data->update_lock);
1126
1127 return count;
1128 }
1129
1130 static struct sensor_device_attribute sda_beep_ctrl[] = {
1131 SENSOR_ATTR(beep_enable, S_IRUGO | S_IWUSR,
1132 show_beep_enable, store_beep_enable, 0),
1133 SENSOR_ATTR(beep_mask, S_IRUGO | S_IWUSR,
1134 show_beep_mask, store_beep_mask, 1)
1135 };
1136
1137 /* cpu voltage regulation information */
cpu0_vid_show(struct device * dev,struct device_attribute * attr,char * buf)1138 static ssize_t cpu0_vid_show(struct device *dev,
1139 struct device_attribute *attr, char *buf)
1140 {
1141 struct w83791d_data *data = w83791d_update_device(dev);
1142 return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
1143 }
1144
1145 static DEVICE_ATTR_RO(cpu0_vid);
1146
vrm_show(struct device * dev,struct device_attribute * attr,char * buf)1147 static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
1148 char *buf)
1149 {
1150 struct w83791d_data *data = dev_get_drvdata(dev);
1151 return sprintf(buf, "%d\n", data->vrm);
1152 }
1153
vrm_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1154 static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
1155 const char *buf, size_t count)
1156 {
1157 struct w83791d_data *data = dev_get_drvdata(dev);
1158 unsigned long val;
1159 int err;
1160
1161 /*
1162 * No lock needed as vrm is internal to the driver
1163 * (not read from a chip register) and so is not
1164 * updated in w83791d_update_device()
1165 */
1166
1167 err = kstrtoul(buf, 10, &val);
1168 if (err)
1169 return err;
1170
1171 if (val > 255)
1172 return -EINVAL;
1173
1174 data->vrm = val;
1175 return count;
1176 }
1177
1178 static DEVICE_ATTR_RW(vrm);
1179
1180 #define IN_UNIT_ATTRS(X) \
1181 &sda_in_input[X].dev_attr.attr, \
1182 &sda_in_min[X].dev_attr.attr, \
1183 &sda_in_max[X].dev_attr.attr, \
1184 &sda_in_beep[X].dev_attr.attr, \
1185 &sda_in_alarm[X].dev_attr.attr
1186
1187 #define FAN_UNIT_ATTRS(X) \
1188 &sda_fan_input[X].dev_attr.attr, \
1189 &sda_fan_min[X].dev_attr.attr, \
1190 &sda_fan_div[X].dev_attr.attr, \
1191 &sda_fan_beep[X].dev_attr.attr, \
1192 &sda_fan_alarm[X].dev_attr.attr
1193
1194 #define TEMP_UNIT_ATTRS(X) \
1195 &sda_temp_input[X].dev_attr.attr, \
1196 &sda_temp_max[X].dev_attr.attr, \
1197 &sda_temp_max_hyst[X].dev_attr.attr, \
1198 &sda_temp_beep[X].dev_attr.attr, \
1199 &sda_temp_alarm[X].dev_attr.attr
1200
1201 static struct attribute *w83791d_attributes[] = {
1202 IN_UNIT_ATTRS(0),
1203 IN_UNIT_ATTRS(1),
1204 IN_UNIT_ATTRS(2),
1205 IN_UNIT_ATTRS(3),
1206 IN_UNIT_ATTRS(4),
1207 IN_UNIT_ATTRS(5),
1208 IN_UNIT_ATTRS(6),
1209 IN_UNIT_ATTRS(7),
1210 IN_UNIT_ATTRS(8),
1211 IN_UNIT_ATTRS(9),
1212 FAN_UNIT_ATTRS(0),
1213 FAN_UNIT_ATTRS(1),
1214 FAN_UNIT_ATTRS(2),
1215 TEMP_UNIT_ATTRS(0),
1216 TEMP_UNIT_ATTRS(1),
1217 TEMP_UNIT_ATTRS(2),
1218 &dev_attr_alarms.attr,
1219 &sda_beep_ctrl[0].dev_attr.attr,
1220 &sda_beep_ctrl[1].dev_attr.attr,
1221 &dev_attr_cpu0_vid.attr,
1222 &dev_attr_vrm.attr,
1223 &sda_pwm[0].dev_attr.attr,
1224 &sda_pwm[1].dev_attr.attr,
1225 &sda_pwm[2].dev_attr.attr,
1226 &sda_pwmenable[0].dev_attr.attr,
1227 &sda_pwmenable[1].dev_attr.attr,
1228 &sda_pwmenable[2].dev_attr.attr,
1229 &sda_temp_target[0].dev_attr.attr,
1230 &sda_temp_target[1].dev_attr.attr,
1231 &sda_temp_target[2].dev_attr.attr,
1232 &sda_temp_tolerance[0].dev_attr.attr,
1233 &sda_temp_tolerance[1].dev_attr.attr,
1234 &sda_temp_tolerance[2].dev_attr.attr,
1235 NULL
1236 };
1237
1238 static const struct attribute_group w83791d_group = {
1239 .attrs = w83791d_attributes,
1240 };
1241
1242 /*
1243 * Separate group of attributes for fan/pwm 4-5. Their pins can also be
1244 * in use for GPIO in which case their sysfs-interface should not be made
1245 * available
1246 */
1247 static struct attribute *w83791d_attributes_fanpwm45[] = {
1248 FAN_UNIT_ATTRS(3),
1249 FAN_UNIT_ATTRS(4),
1250 &sda_pwm[3].dev_attr.attr,
1251 &sda_pwm[4].dev_attr.attr,
1252 NULL
1253 };
1254
1255 static const struct attribute_group w83791d_group_fanpwm45 = {
1256 .attrs = w83791d_attributes_fanpwm45,
1257 };
1258
w83791d_detect_subclients(struct i2c_client * client)1259 static int w83791d_detect_subclients(struct i2c_client *client)
1260 {
1261 struct i2c_adapter *adapter = client->adapter;
1262 int address = client->addr;
1263 int i, id;
1264 u8 val;
1265
1266 id = i2c_adapter_id(adapter);
1267 if (force_subclients[0] == id && force_subclients[1] == address) {
1268 for (i = 2; i <= 3; i++) {
1269 if (force_subclients[i] < 0x48 ||
1270 force_subclients[i] > 0x4f) {
1271 dev_err(&client->dev,
1272 "invalid subclient "
1273 "address %d; must be 0x48-0x4f\n",
1274 force_subclients[i]);
1275 return -ENODEV;
1276 }
1277 }
1278 w83791d_write(client, W83791D_REG_I2C_SUBADDR,
1279 (force_subclients[2] & 0x07) |
1280 ((force_subclients[3] & 0x07) << 4));
1281 }
1282
1283 val = w83791d_read(client, W83791D_REG_I2C_SUBADDR);
1284
1285 if (!(val & 0x88) && (val & 0x7) == ((val >> 4) & 0x7)) {
1286 dev_err(&client->dev,
1287 "duplicate addresses 0x%x, use force_subclient\n", 0x48 + (val & 0x7));
1288 return -ENODEV;
1289 }
1290
1291 if (!(val & 0x08))
1292 devm_i2c_new_dummy_device(&client->dev, adapter, 0x48 + (val & 0x7));
1293
1294 if (!(val & 0x80))
1295 devm_i2c_new_dummy_device(&client->dev, adapter, 0x48 + ((val >> 4) & 0x7));
1296
1297 return 0;
1298 }
1299
1300
1301 /* Return 0 if detection is successful, -ENODEV otherwise */
w83791d_detect(struct i2c_client * client,struct i2c_board_info * info)1302 static int w83791d_detect(struct i2c_client *client,
1303 struct i2c_board_info *info)
1304 {
1305 struct i2c_adapter *adapter = client->adapter;
1306 int val1, val2;
1307 unsigned short address = client->addr;
1308
1309 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1310 return -ENODEV;
1311
1312 if (w83791d_read(client, W83791D_REG_CONFIG) & 0x80)
1313 return -ENODEV;
1314
1315 val1 = w83791d_read(client, W83791D_REG_BANK);
1316 val2 = w83791d_read(client, W83791D_REG_CHIPMAN);
1317 /* Check for Winbond ID if in bank 0 */
1318 if (!(val1 & 0x07)) {
1319 if ((!(val1 & 0x80) && val2 != 0xa3) ||
1320 ((val1 & 0x80) && val2 != 0x5c)) {
1321 return -ENODEV;
1322 }
1323 }
1324 /*
1325 * If Winbond chip, address of chip and W83791D_REG_I2C_ADDR
1326 * should match
1327 */
1328 if (w83791d_read(client, W83791D_REG_I2C_ADDR) != address)
1329 return -ENODEV;
1330
1331 /* We want bank 0 and Vendor ID high byte */
1332 val1 = w83791d_read(client, W83791D_REG_BANK) & 0x78;
1333 w83791d_write(client, W83791D_REG_BANK, val1 | 0x80);
1334
1335 /* Verify it is a Winbond w83791d */
1336 val1 = w83791d_read(client, W83791D_REG_WCHIPID);
1337 val2 = w83791d_read(client, W83791D_REG_CHIPMAN);
1338 if (val1 != 0x71 || val2 != 0x5c)
1339 return -ENODEV;
1340
1341 strscpy(info->type, "w83791d", I2C_NAME_SIZE);
1342
1343 return 0;
1344 }
1345
w83791d_probe(struct i2c_client * client)1346 static int w83791d_probe(struct i2c_client *client)
1347 {
1348 struct w83791d_data *data;
1349 struct device *dev = &client->dev;
1350 int i, err;
1351 u8 has_fanpwm45;
1352
1353 #ifdef DEBUG
1354 int val1;
1355 val1 = w83791d_read(client, W83791D_REG_DID_VID4);
1356 dev_dbg(dev, "Device ID version: %d.%d (0x%02x)\n",
1357 (val1 >> 5) & 0x07, (val1 >> 1) & 0x0f, val1);
1358 #endif
1359
1360 data = devm_kzalloc(&client->dev, sizeof(struct w83791d_data),
1361 GFP_KERNEL);
1362 if (!data)
1363 return -ENOMEM;
1364
1365 i2c_set_clientdata(client, data);
1366 mutex_init(&data->update_lock);
1367
1368 err = w83791d_detect_subclients(client);
1369 if (err)
1370 return err;
1371
1372 /* Initialize the chip */
1373 w83791d_init_client(client);
1374
1375 /*
1376 * If the fan_div is changed, make sure there is a rational
1377 * fan_min in place
1378 */
1379 for (i = 0; i < NUMBER_OF_FANIN; i++)
1380 data->fan_min[i] = w83791d_read(client, W83791D_REG_FAN_MIN[i]);
1381
1382 /* Register sysfs hooks */
1383 err = sysfs_create_group(&client->dev.kobj, &w83791d_group);
1384 if (err)
1385 return err;
1386
1387 /* Check if pins of fan/pwm 4-5 are in use as GPIO */
1388 has_fanpwm45 = w83791d_read(client, W83791D_REG_GPIO) & 0x10;
1389 if (has_fanpwm45) {
1390 err = sysfs_create_group(&client->dev.kobj,
1391 &w83791d_group_fanpwm45);
1392 if (err)
1393 goto error4;
1394 }
1395
1396 /* Everything is ready, now register the working device */
1397 data->hwmon_dev = hwmon_device_register(dev);
1398 if (IS_ERR(data->hwmon_dev)) {
1399 err = PTR_ERR(data->hwmon_dev);
1400 goto error5;
1401 }
1402
1403 return 0;
1404
1405 error5:
1406 if (has_fanpwm45)
1407 sysfs_remove_group(&client->dev.kobj, &w83791d_group_fanpwm45);
1408 error4:
1409 sysfs_remove_group(&client->dev.kobj, &w83791d_group);
1410 return err;
1411 }
1412
w83791d_remove(struct i2c_client * client)1413 static void w83791d_remove(struct i2c_client *client)
1414 {
1415 struct w83791d_data *data = i2c_get_clientdata(client);
1416
1417 hwmon_device_unregister(data->hwmon_dev);
1418 sysfs_remove_group(&client->dev.kobj, &w83791d_group);
1419 }
1420
w83791d_init_client(struct i2c_client * client)1421 static void w83791d_init_client(struct i2c_client *client)
1422 {
1423 struct w83791d_data *data = i2c_get_clientdata(client);
1424 u8 tmp;
1425 u8 old_beep;
1426
1427 /*
1428 * The difference between reset and init is that reset
1429 * does a hard reset of the chip via index 0x40, bit 7,
1430 * but init simply forces certain registers to have "sane"
1431 * values. The hope is that the BIOS has done the right
1432 * thing (which is why the default is reset=0, init=0),
1433 * but if not, reset is the hard hammer and init
1434 * is the soft mallet both of which are trying to whack
1435 * things into place...
1436 * NOTE: The data sheet makes a distinction between
1437 * "power on defaults" and "reset by MR". As far as I can tell,
1438 * the hard reset puts everything into a power-on state so I'm
1439 * not sure what "reset by MR" means or how it can happen.
1440 */
1441 if (reset || init) {
1442 /* keep some BIOS settings when we... */
1443 old_beep = w83791d_read(client, W83791D_REG_BEEP_CONFIG);
1444
1445 if (reset) {
1446 /* ... reset the chip and ... */
1447 w83791d_write(client, W83791D_REG_CONFIG, 0x80);
1448 }
1449
1450 /* ... disable power-on abnormal beep */
1451 w83791d_write(client, W83791D_REG_BEEP_CONFIG, old_beep | 0x80);
1452
1453 /* disable the global beep (not done by hard reset) */
1454 tmp = w83791d_read(client, W83791D_REG_BEEP_CTRL[1]);
1455 w83791d_write(client, W83791D_REG_BEEP_CTRL[1], tmp & 0xef);
1456
1457 if (init) {
1458 /* Make sure monitoring is turned on for add-ons */
1459 tmp = w83791d_read(client, W83791D_REG_TEMP2_CONFIG);
1460 if (tmp & 1) {
1461 w83791d_write(client, W83791D_REG_TEMP2_CONFIG,
1462 tmp & 0xfe);
1463 }
1464
1465 tmp = w83791d_read(client, W83791D_REG_TEMP3_CONFIG);
1466 if (tmp & 1) {
1467 w83791d_write(client, W83791D_REG_TEMP3_CONFIG,
1468 tmp & 0xfe);
1469 }
1470
1471 /* Start monitoring */
1472 tmp = w83791d_read(client, W83791D_REG_CONFIG) & 0xf7;
1473 w83791d_write(client, W83791D_REG_CONFIG, tmp | 0x01);
1474 }
1475 }
1476
1477 data->vrm = vid_which_vrm();
1478 }
1479
w83791d_update_device(struct device * dev)1480 static struct w83791d_data *w83791d_update_device(struct device *dev)
1481 {
1482 struct i2c_client *client = to_i2c_client(dev);
1483 struct w83791d_data *data = i2c_get_clientdata(client);
1484 int i, j;
1485 u8 reg_array_tmp[3];
1486 u8 vbat_reg;
1487
1488 mutex_lock(&data->update_lock);
1489
1490 if (time_after(jiffies, data->last_updated + (HZ * 3))
1491 || !data->valid) {
1492 dev_dbg(dev, "Starting w83791d device update\n");
1493
1494 /* Update the voltages measured value and limits */
1495 for (i = 0; i < NUMBER_OF_VIN; i++) {
1496 data->in[i] = w83791d_read(client,
1497 W83791D_REG_IN[i]);
1498 data->in_max[i] = w83791d_read(client,
1499 W83791D_REG_IN_MAX[i]);
1500 data->in_min[i] = w83791d_read(client,
1501 W83791D_REG_IN_MIN[i]);
1502 }
1503
1504 /* Update the fan counts and limits */
1505 for (i = 0; i < NUMBER_OF_FANIN; i++) {
1506 /* Update the Fan measured value and limits */
1507 data->fan[i] = w83791d_read(client,
1508 W83791D_REG_FAN[i]);
1509 data->fan_min[i] = w83791d_read(client,
1510 W83791D_REG_FAN_MIN[i]);
1511 }
1512
1513 /* Update the fan divisor */
1514 for (i = 0; i < 3; i++) {
1515 reg_array_tmp[i] = w83791d_read(client,
1516 W83791D_REG_FAN_DIV[i]);
1517 }
1518 data->fan_div[0] = (reg_array_tmp[0] >> 4) & 0x03;
1519 data->fan_div[1] = (reg_array_tmp[0] >> 6) & 0x03;
1520 data->fan_div[2] = (reg_array_tmp[1] >> 6) & 0x03;
1521 data->fan_div[3] = reg_array_tmp[2] & 0x07;
1522 data->fan_div[4] = (reg_array_tmp[2] >> 4) & 0x07;
1523
1524 /*
1525 * The fan divisor for fans 0-2 get bit 2 from
1526 * bits 5-7 respectively of vbat register
1527 */
1528 vbat_reg = w83791d_read(client, W83791D_REG_VBAT);
1529 for (i = 0; i < 3; i++)
1530 data->fan_div[i] |= (vbat_reg >> (3 + i)) & 0x04;
1531
1532 /* Update PWM duty cycle */
1533 for (i = 0; i < NUMBER_OF_PWM; i++) {
1534 data->pwm[i] = w83791d_read(client,
1535 W83791D_REG_PWM[i]);
1536 }
1537
1538 /* Update PWM enable status */
1539 for (i = 0; i < 2; i++) {
1540 reg_array_tmp[i] = w83791d_read(client,
1541 W83791D_REG_FAN_CFG[i]);
1542 }
1543 data->pwm_enable[0] = (reg_array_tmp[0] >> 2) & 0x03;
1544 data->pwm_enable[1] = (reg_array_tmp[0] >> 4) & 0x03;
1545 data->pwm_enable[2] = (reg_array_tmp[1] >> 2) & 0x03;
1546
1547 /* Update PWM target temperature */
1548 for (i = 0; i < 3; i++) {
1549 data->temp_target[i] = w83791d_read(client,
1550 W83791D_REG_TEMP_TARGET[i]) & 0x7f;
1551 }
1552
1553 /* Update PWM temperature tolerance */
1554 for (i = 0; i < 2; i++) {
1555 reg_array_tmp[i] = w83791d_read(client,
1556 W83791D_REG_TEMP_TOL[i]);
1557 }
1558 data->temp_tolerance[0] = reg_array_tmp[0] & 0x0f;
1559 data->temp_tolerance[1] = (reg_array_tmp[0] >> 4) & 0x0f;
1560 data->temp_tolerance[2] = reg_array_tmp[1] & 0x0f;
1561
1562 /* Update the first temperature sensor */
1563 for (i = 0; i < 3; i++) {
1564 data->temp1[i] = w83791d_read(client,
1565 W83791D_REG_TEMP1[i]);
1566 }
1567
1568 /* Update the rest of the temperature sensors */
1569 for (i = 0; i < 2; i++) {
1570 for (j = 0; j < 3; j++) {
1571 data->temp_add[i][j] =
1572 (w83791d_read(client,
1573 W83791D_REG_TEMP_ADD[i][j * 2]) << 8) |
1574 w83791d_read(client,
1575 W83791D_REG_TEMP_ADD[i][j * 2 + 1]);
1576 }
1577 }
1578
1579 /* Update the realtime status */
1580 data->alarms =
1581 w83791d_read(client, W83791D_REG_ALARM1) +
1582 (w83791d_read(client, W83791D_REG_ALARM2) << 8) +
1583 (w83791d_read(client, W83791D_REG_ALARM3) << 16);
1584
1585 /* Update the beep configuration information */
1586 data->beep_mask =
1587 w83791d_read(client, W83791D_REG_BEEP_CTRL[0]) +
1588 (w83791d_read(client, W83791D_REG_BEEP_CTRL[1]) << 8) +
1589 (w83791d_read(client, W83791D_REG_BEEP_CTRL[2]) << 16);
1590
1591 /* Extract global beep enable flag */
1592 data->beep_enable =
1593 (data->beep_mask >> GLOBAL_BEEP_ENABLE_SHIFT) & 0x01;
1594
1595 /* Update the cpu voltage information */
1596 i = w83791d_read(client, W83791D_REG_VID_FANDIV);
1597 data->vid = i & 0x0f;
1598 data->vid |= (w83791d_read(client, W83791D_REG_DID_VID4) & 0x01)
1599 << 4;
1600
1601 data->last_updated = jiffies;
1602 data->valid = true;
1603 }
1604
1605 mutex_unlock(&data->update_lock);
1606
1607 #ifdef DEBUG
1608 w83791d_print_debug(data, dev);
1609 #endif
1610
1611 return data;
1612 }
1613
1614 #ifdef DEBUG
w83791d_print_debug(struct w83791d_data * data,struct device * dev)1615 static void w83791d_print_debug(struct w83791d_data *data, struct device *dev)
1616 {
1617 int i = 0, j = 0;
1618
1619 dev_dbg(dev, "======Start of w83791d debug values======\n");
1620 dev_dbg(dev, "%d set of Voltages: ===>\n", NUMBER_OF_VIN);
1621 for (i = 0; i < NUMBER_OF_VIN; i++) {
1622 dev_dbg(dev, "vin[%d] is: 0x%02x\n", i, data->in[i]);
1623 dev_dbg(dev, "vin[%d] min is: 0x%02x\n", i, data->in_min[i]);
1624 dev_dbg(dev, "vin[%d] max is: 0x%02x\n", i, data->in_max[i]);
1625 }
1626 dev_dbg(dev, "%d set of Fan Counts/Divisors: ===>\n", NUMBER_OF_FANIN);
1627 for (i = 0; i < NUMBER_OF_FANIN; i++) {
1628 dev_dbg(dev, "fan[%d] is: 0x%02x\n", i, data->fan[i]);
1629 dev_dbg(dev, "fan[%d] min is: 0x%02x\n", i, data->fan_min[i]);
1630 dev_dbg(dev, "fan_div[%d] is: 0x%02x\n", i, data->fan_div[i]);
1631 }
1632
1633 /*
1634 * temperature math is signed, but only print out the
1635 * bits that matter
1636 */
1637 dev_dbg(dev, "%d set of Temperatures: ===>\n", NUMBER_OF_TEMPIN);
1638 for (i = 0; i < 3; i++)
1639 dev_dbg(dev, "temp1[%d] is: 0x%02x\n", i, (u8) data->temp1[i]);
1640 for (i = 0; i < 2; i++) {
1641 for (j = 0; j < 3; j++) {
1642 dev_dbg(dev, "temp_add[%d][%d] is: 0x%04x\n", i, j,
1643 (u16) data->temp_add[i][j]);
1644 }
1645 }
1646
1647 dev_dbg(dev, "Misc Information: ===>\n");
1648 dev_dbg(dev, "alarm is: 0x%08x\n", data->alarms);
1649 dev_dbg(dev, "beep_mask is: 0x%08x\n", data->beep_mask);
1650 dev_dbg(dev, "beep_enable is: %d\n", data->beep_enable);
1651 dev_dbg(dev, "vid is: 0x%02x\n", data->vid);
1652 dev_dbg(dev, "vrm is: 0x%02x\n", data->vrm);
1653 dev_dbg(dev, "=======End of w83791d debug values========\n");
1654 dev_dbg(dev, "\n");
1655 }
1656 #endif
1657
1658 module_i2c_driver(w83791d_driver);
1659
1660 MODULE_AUTHOR("Charles Spirakis <bezaur@gmail.com>");
1661 MODULE_DESCRIPTION("W83791D driver");
1662 MODULE_LICENSE("GPL");
1663