1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/objtool.h>
5 #include <linux/percpu.h>
6
7 #include <asm/debugreg.h>
8 #include <asm/mmu_context.h>
9 #include <asm/msr.h>
10
11 #include "x86.h"
12 #include "cpuid.h"
13 #include "hyperv.h"
14 #include "mmu.h"
15 #include "nested.h"
16 #include "pmu.h"
17 #include "posted_intr.h"
18 #include "sgx.h"
19 #include "trace.h"
20 #include "vmx.h"
21 #include "smm.h"
22
23 static bool __read_mostly enable_shadow_vmcs = 1;
24 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
25
26 static bool __read_mostly nested_early_check = 0;
27 module_param(nested_early_check, bool, S_IRUGO);
28
29 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
30
31 /*
32 * Hyper-V requires all of these, so mark them as supported even though
33 * they are just treated the same as all-context.
34 */
35 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
36 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
37 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
38 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
39 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
40
41 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
42
43 enum {
44 VMX_VMREAD_BITMAP,
45 VMX_VMWRITE_BITMAP,
46 VMX_BITMAP_NR
47 };
48 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
49
50 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
51 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
52
53 struct shadow_vmcs_field {
54 u16 encoding;
55 u16 offset;
56 };
57 static struct shadow_vmcs_field shadow_read_only_fields[] = {
58 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
59 #include "vmcs_shadow_fields.h"
60 };
61 static int max_shadow_read_only_fields =
62 ARRAY_SIZE(shadow_read_only_fields);
63
64 static struct shadow_vmcs_field shadow_read_write_fields[] = {
65 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
66 #include "vmcs_shadow_fields.h"
67 };
68 static int max_shadow_read_write_fields =
69 ARRAY_SIZE(shadow_read_write_fields);
70
init_vmcs_shadow_fields(void)71 static void init_vmcs_shadow_fields(void)
72 {
73 int i, j;
74
75 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
76 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
77
78 for (i = j = 0; i < max_shadow_read_only_fields; i++) {
79 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
80 u16 field = entry.encoding;
81
82 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
83 (i + 1 == max_shadow_read_only_fields ||
84 shadow_read_only_fields[i + 1].encoding != field + 1))
85 pr_err("Missing field from shadow_read_only_field %x\n",
86 field + 1);
87
88 clear_bit(field, vmx_vmread_bitmap);
89 if (field & 1)
90 #ifdef CONFIG_X86_64
91 continue;
92 #else
93 entry.offset += sizeof(u32);
94 #endif
95 shadow_read_only_fields[j++] = entry;
96 }
97 max_shadow_read_only_fields = j;
98
99 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
100 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
101 u16 field = entry.encoding;
102
103 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
104 (i + 1 == max_shadow_read_write_fields ||
105 shadow_read_write_fields[i + 1].encoding != field + 1))
106 pr_err("Missing field from shadow_read_write_field %x\n",
107 field + 1);
108
109 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
110 field <= GUEST_TR_AR_BYTES,
111 "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
112
113 /*
114 * PML and the preemption timer can be emulated, but the
115 * processor cannot vmwrite to fields that don't exist
116 * on bare metal.
117 */
118 switch (field) {
119 case GUEST_PML_INDEX:
120 if (!cpu_has_vmx_pml())
121 continue;
122 break;
123 case VMX_PREEMPTION_TIMER_VALUE:
124 if (!cpu_has_vmx_preemption_timer())
125 continue;
126 break;
127 case GUEST_INTR_STATUS:
128 if (!cpu_has_vmx_apicv())
129 continue;
130 break;
131 default:
132 break;
133 }
134
135 clear_bit(field, vmx_vmwrite_bitmap);
136 clear_bit(field, vmx_vmread_bitmap);
137 if (field & 1)
138 #ifdef CONFIG_X86_64
139 continue;
140 #else
141 entry.offset += sizeof(u32);
142 #endif
143 shadow_read_write_fields[j++] = entry;
144 }
145 max_shadow_read_write_fields = j;
146 }
147
148 /*
149 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
150 * set the success or error code of an emulated VMX instruction (as specified
151 * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
152 * instruction.
153 */
nested_vmx_succeed(struct kvm_vcpu * vcpu)154 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
155 {
156 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
157 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
158 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
159 return kvm_skip_emulated_instruction(vcpu);
160 }
161
nested_vmx_failInvalid(struct kvm_vcpu * vcpu)162 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
163 {
164 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
165 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
166 X86_EFLAGS_SF | X86_EFLAGS_OF))
167 | X86_EFLAGS_CF);
168 return kvm_skip_emulated_instruction(vcpu);
169 }
170
nested_vmx_failValid(struct kvm_vcpu * vcpu,u32 vm_instruction_error)171 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
172 u32 vm_instruction_error)
173 {
174 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
175 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
176 X86_EFLAGS_SF | X86_EFLAGS_OF))
177 | X86_EFLAGS_ZF);
178 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
179 /*
180 * We don't need to force sync to shadow VMCS because
181 * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
182 * fields and thus must be synced.
183 */
184 if (nested_vmx_is_evmptr12_set(to_vmx(vcpu)))
185 to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
186
187 return kvm_skip_emulated_instruction(vcpu);
188 }
189
nested_vmx_fail(struct kvm_vcpu * vcpu,u32 vm_instruction_error)190 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
191 {
192 struct vcpu_vmx *vmx = to_vmx(vcpu);
193
194 /*
195 * failValid writes the error number to the current VMCS, which
196 * can't be done if there isn't a current VMCS.
197 */
198 if (vmx->nested.current_vmptr == INVALID_GPA &&
199 !nested_vmx_is_evmptr12_valid(vmx))
200 return nested_vmx_failInvalid(vcpu);
201
202 return nested_vmx_failValid(vcpu, vm_instruction_error);
203 }
204
nested_vmx_abort(struct kvm_vcpu * vcpu,u32 indicator)205 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
206 {
207 /* TODO: not to reset guest simply here. */
208 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
209 pr_debug_ratelimited("nested vmx abort, indicator %d\n", indicator);
210 }
211
vmx_control_verify(u32 control,u32 low,u32 high)212 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
213 {
214 return fixed_bits_valid(control, low, high);
215 }
216
vmx_control_msr(u32 low,u32 high)217 static inline u64 vmx_control_msr(u32 low, u32 high)
218 {
219 return low | ((u64)high << 32);
220 }
221
vmx_disable_shadow_vmcs(struct vcpu_vmx * vmx)222 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
223 {
224 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
225 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
226 vmx->nested.need_vmcs12_to_shadow_sync = false;
227 }
228
nested_release_evmcs(struct kvm_vcpu * vcpu)229 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
230 {
231 #ifdef CONFIG_KVM_HYPERV
232 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
233 struct vcpu_vmx *vmx = to_vmx(vcpu);
234
235 kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map);
236 vmx->nested.hv_evmcs = NULL;
237 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
238
239 if (hv_vcpu) {
240 hv_vcpu->nested.pa_page_gpa = INVALID_GPA;
241 hv_vcpu->nested.vm_id = 0;
242 hv_vcpu->nested.vp_id = 0;
243 }
244 #endif
245 }
246
nested_evmcs_handle_vmclear(struct kvm_vcpu * vcpu,gpa_t vmptr)247 static bool nested_evmcs_handle_vmclear(struct kvm_vcpu *vcpu, gpa_t vmptr)
248 {
249 #ifdef CONFIG_KVM_HYPERV
250 struct vcpu_vmx *vmx = to_vmx(vcpu);
251 /*
252 * When Enlightened VMEntry is enabled on the calling CPU we treat
253 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
254 * way to distinguish it from VMCS12) and we must not corrupt it by
255 * writing to the non-existent 'launch_state' field. The area doesn't
256 * have to be the currently active EVMCS on the calling CPU and there's
257 * nothing KVM has to do to transition it from 'active' to 'non-active'
258 * state. It is possible that the area will stay mapped as
259 * vmx->nested.hv_evmcs but this shouldn't be a problem.
260 */
261 if (!guest_cpu_cap_has_evmcs(vcpu) ||
262 !evmptr_is_valid(nested_get_evmptr(vcpu)))
263 return false;
264
265 if (nested_vmx_evmcs(vmx) && vmptr == vmx->nested.hv_evmcs_vmptr)
266 nested_release_evmcs(vcpu);
267
268 return true;
269 #else
270 return false;
271 #endif
272 }
273
vmx_sync_vmcs_host_state(struct vcpu_vmx * vmx,struct loaded_vmcs * prev)274 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
275 struct loaded_vmcs *prev)
276 {
277 struct vmcs_host_state *dest, *src;
278
279 if (unlikely(!vmx->vt.guest_state_loaded))
280 return;
281
282 src = &prev->host_state;
283 dest = &vmx->loaded_vmcs->host_state;
284
285 vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
286 dest->ldt_sel = src->ldt_sel;
287 #ifdef CONFIG_X86_64
288 dest->ds_sel = src->ds_sel;
289 dest->es_sel = src->es_sel;
290 #endif
291 }
292
vmx_switch_vmcs(struct kvm_vcpu * vcpu,struct loaded_vmcs * vmcs)293 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
294 {
295 struct vcpu_vmx *vmx = to_vmx(vcpu);
296 struct loaded_vmcs *prev;
297 int cpu;
298
299 if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
300 return;
301
302 cpu = get_cpu();
303 prev = vmx->loaded_vmcs;
304 vmx->loaded_vmcs = vmcs;
305 vmx_vcpu_load_vmcs(vcpu, cpu);
306 vmx_sync_vmcs_host_state(vmx, prev);
307 put_cpu();
308
309 vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET;
310
311 /*
312 * All lazily updated registers will be reloaded from VMCS12 on both
313 * vmentry and vmexit.
314 */
315 vcpu->arch.regs_dirty = 0;
316 }
317
nested_put_vmcs12_pages(struct kvm_vcpu * vcpu)318 static void nested_put_vmcs12_pages(struct kvm_vcpu *vcpu)
319 {
320 struct vcpu_vmx *vmx = to_vmx(vcpu);
321
322 kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map);
323 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map);
324 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map);
325 vmx->nested.pi_desc = NULL;
326 }
327
328 /*
329 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
330 * just stops using VMX.
331 */
free_nested(struct kvm_vcpu * vcpu)332 static void free_nested(struct kvm_vcpu *vcpu)
333 {
334 struct vcpu_vmx *vmx = to_vmx(vcpu);
335
336 if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
337 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
338
339 if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
340 return;
341
342 kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
343
344 vmx->nested.vmxon = false;
345 vmx->nested.smm.vmxon = false;
346 vmx->nested.vmxon_ptr = INVALID_GPA;
347 free_vpid(vmx->nested.vpid02);
348 vmx->nested.posted_intr_nv = -1;
349 vmx->nested.current_vmptr = INVALID_GPA;
350 if (enable_shadow_vmcs) {
351 vmx_disable_shadow_vmcs(vmx);
352 vmcs_clear(vmx->vmcs01.shadow_vmcs);
353 free_vmcs(vmx->vmcs01.shadow_vmcs);
354 vmx->vmcs01.shadow_vmcs = NULL;
355 }
356 kfree(vmx->nested.cached_vmcs12);
357 vmx->nested.cached_vmcs12 = NULL;
358 kfree(vmx->nested.cached_shadow_vmcs12);
359 vmx->nested.cached_shadow_vmcs12 = NULL;
360
361 nested_put_vmcs12_pages(vcpu);
362
363 kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
364
365 nested_release_evmcs(vcpu);
366
367 free_loaded_vmcs(&vmx->nested.vmcs02);
368 }
369
370 /*
371 * Ensure that the current vmcs of the logical processor is the
372 * vmcs01 of the vcpu before calling free_nested().
373 */
nested_vmx_free_vcpu(struct kvm_vcpu * vcpu)374 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
375 {
376 vcpu_load(vcpu);
377 vmx_leave_nested(vcpu);
378 vcpu_put(vcpu);
379 }
380
381 #define EPTP_PA_MASK GENMASK_ULL(51, 12)
382
nested_ept_root_matches(hpa_t root_hpa,u64 root_eptp,u64 eptp)383 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
384 {
385 return VALID_PAGE(root_hpa) &&
386 ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
387 }
388
nested_ept_invalidate_addr(struct kvm_vcpu * vcpu,gpa_t eptp,gpa_t addr)389 static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
390 gpa_t addr)
391 {
392 unsigned long roots = 0;
393 uint i;
394 struct kvm_mmu_root_info *cached_root;
395
396 WARN_ON_ONCE(!mmu_is_nested(vcpu));
397
398 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
399 cached_root = &vcpu->arch.mmu->prev_roots[i];
400
401 if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
402 eptp))
403 roots |= KVM_MMU_ROOT_PREVIOUS(i);
404 }
405 if (roots)
406 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.mmu, addr, roots);
407 }
408
nested_ept_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)409 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
410 struct x86_exception *fault)
411 {
412 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
413 struct vcpu_vmx *vmx = to_vmx(vcpu);
414 unsigned long exit_qualification;
415 u32 vm_exit_reason;
416
417 if (vmx->nested.pml_full) {
418 vm_exit_reason = EXIT_REASON_PML_FULL;
419 vmx->nested.pml_full = false;
420
421 /*
422 * It should be impossible to trigger a nested PML Full VM-Exit
423 * for anything other than an EPT Violation from L2. KVM *can*
424 * trigger nEPT page fault injection in response to an EPT
425 * Misconfig, e.g. if the MMIO SPTE was stale and L1's EPT
426 * tables also changed, but KVM should not treat EPT Misconfig
427 * VM-Exits as writes.
428 */
429 WARN_ON_ONCE(vmx->vt.exit_reason.basic != EXIT_REASON_EPT_VIOLATION);
430
431 /*
432 * PML Full and EPT Violation VM-Exits both use bit 12 to report
433 * "NMI unblocking due to IRET", i.e. the bit can be propagated
434 * as-is from the original EXIT_QUALIFICATION.
435 */
436 exit_qualification = vmx_get_exit_qual(vcpu) & INTR_INFO_UNBLOCK_NMI;
437 } else {
438 if (fault->error_code & PFERR_RSVD_MASK) {
439 vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
440 exit_qualification = 0;
441 } else {
442 exit_qualification = fault->exit_qualification;
443 exit_qualification |= vmx_get_exit_qual(vcpu) &
444 (EPT_VIOLATION_GVA_IS_VALID |
445 EPT_VIOLATION_GVA_TRANSLATED);
446 vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
447 }
448
449 /*
450 * Although the caller (kvm_inject_emulated_page_fault) would
451 * have already synced the faulting address in the shadow EPT
452 * tables for the current EPTP12, we also need to sync it for
453 * any other cached EPTP02s based on the same EP4TA, since the
454 * TLB associates mappings to the EP4TA rather than the full EPTP.
455 */
456 nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
457 fault->address);
458 }
459
460 nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
461 vmcs12->guest_physical_address = fault->address;
462 }
463
nested_ept_new_eptp(struct kvm_vcpu * vcpu)464 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
465 {
466 struct vcpu_vmx *vmx = to_vmx(vcpu);
467 bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT;
468 int ept_lpage_level = ept_caps_to_lpage_level(vmx->nested.msrs.ept_caps);
469
470 kvm_init_shadow_ept_mmu(vcpu, execonly, ept_lpage_level,
471 nested_ept_ad_enabled(vcpu),
472 nested_ept_get_eptp(vcpu));
473 }
474
nested_ept_init_mmu_context(struct kvm_vcpu * vcpu)475 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
476 {
477 WARN_ON(mmu_is_nested(vcpu));
478
479 vcpu->arch.mmu = &vcpu->arch.guest_mmu;
480 nested_ept_new_eptp(vcpu);
481 vcpu->arch.mmu->get_guest_pgd = nested_ept_get_eptp;
482 vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
483 vcpu->arch.mmu->get_pdptr = kvm_pdptr_read;
484
485 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
486 }
487
nested_ept_uninit_mmu_context(struct kvm_vcpu * vcpu)488 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
489 {
490 vcpu->arch.mmu = &vcpu->arch.root_mmu;
491 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
492 }
493
nested_vmx_is_page_fault_vmexit(struct vmcs12 * vmcs12,u16 error_code)494 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
495 u16 error_code)
496 {
497 bool inequality, bit;
498
499 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
500 inequality =
501 (error_code & vmcs12->page_fault_error_code_mask) !=
502 vmcs12->page_fault_error_code_match;
503 return inequality ^ bit;
504 }
505
nested_vmx_is_exception_vmexit(struct kvm_vcpu * vcpu,u8 vector,u32 error_code)506 static bool nested_vmx_is_exception_vmexit(struct kvm_vcpu *vcpu, u8 vector,
507 u32 error_code)
508 {
509 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
510
511 /*
512 * Drop bits 31:16 of the error code when performing the #PF mask+match
513 * check. All VMCS fields involved are 32 bits, but Intel CPUs never
514 * set bits 31:16 and VMX disallows setting bits 31:16 in the injected
515 * error code. Including the to-be-dropped bits in the check might
516 * result in an "impossible" or missed exit from L1's perspective.
517 */
518 if (vector == PF_VECTOR)
519 return nested_vmx_is_page_fault_vmexit(vmcs12, (u16)error_code);
520
521 return (vmcs12->exception_bitmap & (1u << vector));
522 }
523
nested_vmx_check_io_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)524 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
525 struct vmcs12 *vmcs12)
526 {
527 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
528 return 0;
529
530 if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
531 CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
532 return -EINVAL;
533
534 return 0;
535 }
536
nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)537 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
538 struct vmcs12 *vmcs12)
539 {
540 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
541 return 0;
542
543 if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
544 return -EINVAL;
545
546 return 0;
547 }
548
nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)549 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
550 struct vmcs12 *vmcs12)
551 {
552 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
553 return 0;
554
555 if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
556 return -EINVAL;
557
558 return 0;
559 }
560
561 /*
562 * For x2APIC MSRs, ignore the vmcs01 bitmap. L1 can enable x2APIC without L1
563 * itself utilizing x2APIC. All MSRs were previously set to be intercepted,
564 * only the "disable intercept" case needs to be handled.
565 */
nested_vmx_disable_intercept_for_x2apic_msr(unsigned long * msr_bitmap_l1,unsigned long * msr_bitmap_l0,u32 msr,int type)566 static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1,
567 unsigned long *msr_bitmap_l0,
568 u32 msr, int type)
569 {
570 if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr))
571 vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr);
572
573 if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr))
574 vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr);
575 }
576
enable_x2apic_msr_intercepts(unsigned long * msr_bitmap)577 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
578 {
579 int msr;
580
581 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
582 unsigned word = msr / BITS_PER_LONG;
583
584 msr_bitmap[word] = ~0;
585 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
586 }
587 }
588
589 #define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw) \
590 static inline \
591 void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx, \
592 unsigned long *msr_bitmap_l1, \
593 unsigned long *msr_bitmap_l0, u32 msr) \
594 { \
595 if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) || \
596 vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr)) \
597 vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr); \
598 else \
599 vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr); \
600 }
601 BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
BUILD_NVMX_MSR_INTERCEPT_HELPER(write)602 BUILD_NVMX_MSR_INTERCEPT_HELPER(write)
603
604 static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
605 unsigned long *msr_bitmap_l1,
606 unsigned long *msr_bitmap_l0,
607 u32 msr, int types)
608 {
609 if (types & MSR_TYPE_R)
610 nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
611 msr_bitmap_l0, msr);
612 if (types & MSR_TYPE_W)
613 nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
614 msr_bitmap_l0, msr);
615 }
616
617 /*
618 * Merge L0's and L1's MSR bitmap, return false to indicate that
619 * we do not use the hardware.
620 */
nested_vmx_prepare_msr_bitmap(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)621 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
622 struct vmcs12 *vmcs12)
623 {
624 struct vcpu_vmx *vmx = to_vmx(vcpu);
625 int msr;
626 unsigned long *msr_bitmap_l1;
627 unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
628 struct kvm_host_map map;
629
630 /* Nothing to do if the MSR bitmap is not in use. */
631 if (!cpu_has_vmx_msr_bitmap() ||
632 !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
633 return false;
634
635 /*
636 * MSR bitmap update can be skipped when:
637 * - MSR bitmap for L1 hasn't changed.
638 * - Nested hypervisor (L1) is attempting to launch the same L2 as
639 * before.
640 * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature
641 * and tells KVM (L0) there were no changes in MSR bitmap for L2.
642 */
643 if (!vmx->nested.force_msr_bitmap_recalc) {
644 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
645
646 if (evmcs && evmcs->hv_enlightenments_control.msr_bitmap &&
647 evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP)
648 return true;
649 }
650
651 if (kvm_vcpu_map_readonly(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), &map))
652 return false;
653
654 msr_bitmap_l1 = (unsigned long *)map.hva;
655
656 /*
657 * To keep the control flow simple, pay eight 8-byte writes (sixteen
658 * 4-byte writes on 32-bit systems) up front to enable intercepts for
659 * the x2APIC MSR range and selectively toggle those relevant to L2.
660 */
661 enable_x2apic_msr_intercepts(msr_bitmap_l0);
662
663 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
664 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
665 /*
666 * L0 need not intercept reads for MSRs between 0x800
667 * and 0x8ff, it just lets the processor take the value
668 * from the virtual-APIC page; take those 256 bits
669 * directly from the L1 bitmap.
670 */
671 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
672 unsigned word = msr / BITS_PER_LONG;
673
674 msr_bitmap_l0[word] = msr_bitmap_l1[word];
675 }
676 }
677
678 nested_vmx_disable_intercept_for_x2apic_msr(
679 msr_bitmap_l1, msr_bitmap_l0,
680 X2APIC_MSR(APIC_TASKPRI),
681 MSR_TYPE_R | MSR_TYPE_W);
682
683 if (nested_cpu_has_vid(vmcs12)) {
684 nested_vmx_disable_intercept_for_x2apic_msr(
685 msr_bitmap_l1, msr_bitmap_l0,
686 X2APIC_MSR(APIC_EOI),
687 MSR_TYPE_W);
688 nested_vmx_disable_intercept_for_x2apic_msr(
689 msr_bitmap_l1, msr_bitmap_l0,
690 X2APIC_MSR(APIC_SELF_IPI),
691 MSR_TYPE_W);
692 }
693 }
694
695 /*
696 * Always check vmcs01's bitmap to honor userspace MSR filters and any
697 * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
698 */
699 #ifdef CONFIG_X86_64
700 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
701 MSR_FS_BASE, MSR_TYPE_RW);
702
703 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
704 MSR_GS_BASE, MSR_TYPE_RW);
705
706 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
707 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
708 #endif
709 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
710 MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
711
712 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
713 MSR_IA32_PRED_CMD, MSR_TYPE_W);
714
715 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
716 MSR_IA32_FLUSH_CMD, MSR_TYPE_W);
717
718 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
719 MSR_IA32_APERF, MSR_TYPE_R);
720
721 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
722 MSR_IA32_MPERF, MSR_TYPE_R);
723
724 kvm_vcpu_unmap(vcpu, &map);
725
726 vmx->nested.force_msr_bitmap_recalc = false;
727
728 return true;
729 }
730
nested_cache_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)731 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
732 struct vmcs12 *vmcs12)
733 {
734 struct vcpu_vmx *vmx = to_vmx(vcpu);
735 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
736
737 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
738 vmcs12->vmcs_link_pointer == INVALID_GPA)
739 return;
740
741 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
742 kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
743 vmcs12->vmcs_link_pointer, VMCS12_SIZE))
744 return;
745
746 kvm_read_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
747 VMCS12_SIZE);
748 }
749
nested_flush_cached_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)750 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
751 struct vmcs12 *vmcs12)
752 {
753 struct vcpu_vmx *vmx = to_vmx(vcpu);
754 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
755
756 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
757 vmcs12->vmcs_link_pointer == INVALID_GPA)
758 return;
759
760 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
761 kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
762 vmcs12->vmcs_link_pointer, VMCS12_SIZE))
763 return;
764
765 kvm_write_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
766 VMCS12_SIZE);
767 }
768
769 /*
770 * In nested virtualization, check if L1 has set
771 * VM_EXIT_ACK_INTR_ON_EXIT
772 */
nested_exit_intr_ack_set(struct kvm_vcpu * vcpu)773 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
774 {
775 return get_vmcs12(vcpu)->vm_exit_controls &
776 VM_EXIT_ACK_INTR_ON_EXIT;
777 }
778
nested_vmx_check_apic_access_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)779 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
780 struct vmcs12 *vmcs12)
781 {
782 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
783 CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
784 return -EINVAL;
785 else
786 return 0;
787 }
788
nested_vmx_check_apicv_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)789 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
790 struct vmcs12 *vmcs12)
791 {
792 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
793 !nested_cpu_has_apic_reg_virt(vmcs12) &&
794 !nested_cpu_has_vid(vmcs12) &&
795 !nested_cpu_has_posted_intr(vmcs12))
796 return 0;
797
798 /*
799 * If virtualize x2apic mode is enabled,
800 * virtualize apic access must be disabled.
801 */
802 if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
803 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
804 return -EINVAL;
805
806 /*
807 * If virtual interrupt delivery is enabled,
808 * we must exit on external interrupts.
809 */
810 if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
811 return -EINVAL;
812
813 /*
814 * bits 15:8 should be zero in posted_intr_nv,
815 * the descriptor address has been already checked
816 * in nested_get_vmcs12_pages.
817 *
818 * bits 5:0 of posted_intr_desc_addr should be zero.
819 */
820 if (nested_cpu_has_posted_intr(vmcs12) &&
821 (CC(!nested_cpu_has_vid(vmcs12)) ||
822 CC(!nested_exit_intr_ack_set(vcpu)) ||
823 CC((vmcs12->posted_intr_nv & 0xff00)) ||
824 CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
825 return -EINVAL;
826
827 /* tpr shadow is needed by all apicv features. */
828 if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
829 return -EINVAL;
830
831 return 0;
832 }
833
nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu * vcpu)834 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
835 {
836 struct vcpu_vmx *vmx = to_vmx(vcpu);
837 u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
838 vmx->nested.msrs.misc_high);
839
840 return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
841 }
842
nested_vmx_check_msr_switch(struct kvm_vcpu * vcpu,u32 count,u64 addr)843 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
844 u32 count, u64 addr)
845 {
846 if (count == 0)
847 return 0;
848
849 /*
850 * Exceeding the limit results in architecturally _undefined_ behavior,
851 * i.e. KVM is allowed to do literally anything in response to a bad
852 * limit. Immediately generate a consistency check so that code that
853 * consumes the count doesn't need to worry about extreme edge cases.
854 */
855 if (count > nested_vmx_max_atomic_switch_msrs(vcpu))
856 return -EINVAL;
857
858 if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
859 !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
860 return -EINVAL;
861
862 return 0;
863 }
864
nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)865 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
866 struct vmcs12 *vmcs12)
867 {
868 if (CC(nested_vmx_check_msr_switch(vcpu,
869 vmcs12->vm_exit_msr_load_count,
870 vmcs12->vm_exit_msr_load_addr)) ||
871 CC(nested_vmx_check_msr_switch(vcpu,
872 vmcs12->vm_exit_msr_store_count,
873 vmcs12->vm_exit_msr_store_addr)))
874 return -EINVAL;
875
876 return 0;
877 }
878
nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)879 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
880 struct vmcs12 *vmcs12)
881 {
882 if (CC(nested_vmx_check_msr_switch(vcpu,
883 vmcs12->vm_entry_msr_load_count,
884 vmcs12->vm_entry_msr_load_addr)))
885 return -EINVAL;
886
887 return 0;
888 }
889
nested_vmx_check_pml_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)890 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
891 struct vmcs12 *vmcs12)
892 {
893 if (!nested_cpu_has_pml(vmcs12))
894 return 0;
895
896 if (CC(!nested_cpu_has_ept(vmcs12)) ||
897 CC(!page_address_valid(vcpu, vmcs12->pml_address)))
898 return -EINVAL;
899
900 return 0;
901 }
902
nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)903 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
904 struct vmcs12 *vmcs12)
905 {
906 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
907 !nested_cpu_has_ept(vmcs12)))
908 return -EINVAL;
909 return 0;
910 }
911
nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)912 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
913 struct vmcs12 *vmcs12)
914 {
915 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
916 !nested_cpu_has_ept(vmcs12)))
917 return -EINVAL;
918 return 0;
919 }
920
nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)921 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
922 struct vmcs12 *vmcs12)
923 {
924 if (!nested_cpu_has_shadow_vmcs(vmcs12))
925 return 0;
926
927 if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
928 CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
929 return -EINVAL;
930
931 return 0;
932 }
933
nested_vmx_msr_check_common(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)934 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
935 struct vmx_msr_entry *e)
936 {
937 /* x2APIC MSR accesses are not allowed */
938 if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
939 return -EINVAL;
940 if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
941 CC(e->index == MSR_IA32_UCODE_REV))
942 return -EINVAL;
943 if (CC(e->reserved != 0))
944 return -EINVAL;
945 return 0;
946 }
947
nested_vmx_load_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)948 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
949 struct vmx_msr_entry *e)
950 {
951 if (CC(e->index == MSR_FS_BASE) ||
952 CC(e->index == MSR_GS_BASE) ||
953 CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
954 nested_vmx_msr_check_common(vcpu, e))
955 return -EINVAL;
956 return 0;
957 }
958
nested_vmx_store_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)959 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
960 struct vmx_msr_entry *e)
961 {
962 if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
963 nested_vmx_msr_check_common(vcpu, e))
964 return -EINVAL;
965 return 0;
966 }
967
968 /*
969 * Load guest's/host's msr at nested entry/exit.
970 * return 0 for success, entry index for failure.
971 *
972 * One of the failure modes for MSR load/store is when a list exceeds the
973 * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
974 * as possible, process all valid entries before failing rather than precheck
975 * for a capacity violation.
976 */
nested_vmx_load_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)977 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
978 {
979 u32 i;
980 struct vmx_msr_entry e;
981 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
982
983 for (i = 0; i < count; i++) {
984 if (WARN_ON_ONCE(i >= max_msr_list_size))
985 goto fail;
986
987 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
988 &e, sizeof(e))) {
989 pr_debug_ratelimited(
990 "%s cannot read MSR entry (%u, 0x%08llx)\n",
991 __func__, i, gpa + i * sizeof(e));
992 goto fail;
993 }
994 if (nested_vmx_load_msr_check(vcpu, &e)) {
995 pr_debug_ratelimited(
996 "%s check failed (%u, 0x%x, 0x%x)\n",
997 __func__, i, e.index, e.reserved);
998 goto fail;
999 }
1000 if (kvm_set_msr_with_filter(vcpu, e.index, e.value)) {
1001 pr_debug_ratelimited(
1002 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1003 __func__, i, e.index, e.value);
1004 goto fail;
1005 }
1006 }
1007 return 0;
1008 fail:
1009 /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
1010 return i + 1;
1011 }
1012
nested_vmx_get_vmexit_msr_value(struct kvm_vcpu * vcpu,u32 msr_index,u64 * data)1013 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
1014 u32 msr_index,
1015 u64 *data)
1016 {
1017 struct vcpu_vmx *vmx = to_vmx(vcpu);
1018
1019 /*
1020 * If the L0 hypervisor stored a more accurate value for the TSC that
1021 * does not include the time taken for emulation of the L2->L1
1022 * VM-exit in L0, use the more accurate value.
1023 */
1024 if (msr_index == MSR_IA32_TSC) {
1025 int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
1026 MSR_IA32_TSC);
1027
1028 if (i >= 0) {
1029 u64 val = vmx->msr_autostore.guest.val[i].value;
1030
1031 *data = kvm_read_l1_tsc(vcpu, val);
1032 return true;
1033 }
1034 }
1035
1036 if (kvm_get_msr_with_filter(vcpu, msr_index, data)) {
1037 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
1038 msr_index);
1039 return false;
1040 }
1041 return true;
1042 }
1043
read_and_check_msr_entry(struct kvm_vcpu * vcpu,u64 gpa,int i,struct vmx_msr_entry * e)1044 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
1045 struct vmx_msr_entry *e)
1046 {
1047 if (kvm_vcpu_read_guest(vcpu,
1048 gpa + i * sizeof(*e),
1049 e, 2 * sizeof(u32))) {
1050 pr_debug_ratelimited(
1051 "%s cannot read MSR entry (%u, 0x%08llx)\n",
1052 __func__, i, gpa + i * sizeof(*e));
1053 return false;
1054 }
1055 if (nested_vmx_store_msr_check(vcpu, e)) {
1056 pr_debug_ratelimited(
1057 "%s check failed (%u, 0x%x, 0x%x)\n",
1058 __func__, i, e->index, e->reserved);
1059 return false;
1060 }
1061 return true;
1062 }
1063
nested_vmx_store_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)1064 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
1065 {
1066 u64 data;
1067 u32 i;
1068 struct vmx_msr_entry e;
1069 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1070
1071 for (i = 0; i < count; i++) {
1072 if (WARN_ON_ONCE(i >= max_msr_list_size))
1073 return -EINVAL;
1074
1075 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1076 return -EINVAL;
1077
1078 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1079 return -EINVAL;
1080
1081 if (kvm_vcpu_write_guest(vcpu,
1082 gpa + i * sizeof(e) +
1083 offsetof(struct vmx_msr_entry, value),
1084 &data, sizeof(data))) {
1085 pr_debug_ratelimited(
1086 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1087 __func__, i, e.index, data);
1088 return -EINVAL;
1089 }
1090 }
1091 return 0;
1092 }
1093
nested_msr_store_list_has_msr(struct kvm_vcpu * vcpu,u32 msr_index)1094 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1095 {
1096 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1097 u32 count = vmcs12->vm_exit_msr_store_count;
1098 u64 gpa = vmcs12->vm_exit_msr_store_addr;
1099 struct vmx_msr_entry e;
1100 u32 i;
1101
1102 for (i = 0; i < count; i++) {
1103 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1104 return false;
1105
1106 if (e.index == msr_index)
1107 return true;
1108 }
1109 return false;
1110 }
1111
prepare_vmx_msr_autostore_list(struct kvm_vcpu * vcpu,u32 msr_index)1112 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1113 u32 msr_index)
1114 {
1115 struct vcpu_vmx *vmx = to_vmx(vcpu);
1116 struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1117 bool in_vmcs12_store_list;
1118 int msr_autostore_slot;
1119 bool in_autostore_list;
1120 int last;
1121
1122 msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1123 in_autostore_list = msr_autostore_slot >= 0;
1124 in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1125
1126 if (in_vmcs12_store_list && !in_autostore_list) {
1127 if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1128 /*
1129 * Emulated VMEntry does not fail here. Instead a less
1130 * accurate value will be returned by
1131 * nested_vmx_get_vmexit_msr_value() by reading KVM's
1132 * internal MSR state instead of reading the value from
1133 * the vmcs02 VMExit MSR-store area.
1134 */
1135 pr_warn_ratelimited(
1136 "Not enough msr entries in msr_autostore. Can't add msr %x\n",
1137 msr_index);
1138 return;
1139 }
1140 last = autostore->nr++;
1141 autostore->val[last].index = msr_index;
1142 } else if (!in_vmcs12_store_list && in_autostore_list) {
1143 last = --autostore->nr;
1144 autostore->val[msr_autostore_slot] = autostore->val[last];
1145 }
1146 }
1147
1148 /*
1149 * Load guest's/host's cr3 at nested entry/exit. @nested_ept is true if we are
1150 * emulating VM-Entry into a guest with EPT enabled. On failure, the expected
1151 * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1152 * @entry_failure_code.
1153 */
nested_vmx_load_cr3(struct kvm_vcpu * vcpu,unsigned long cr3,bool nested_ept,bool reload_pdptrs,enum vm_entry_failure_code * entry_failure_code)1154 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1155 bool nested_ept, bool reload_pdptrs,
1156 enum vm_entry_failure_code *entry_failure_code)
1157 {
1158 if (CC(!kvm_vcpu_is_legal_cr3(vcpu, cr3))) {
1159 *entry_failure_code = ENTRY_FAIL_DEFAULT;
1160 return -EINVAL;
1161 }
1162
1163 /*
1164 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1165 * must not be dereferenced.
1166 */
1167 if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1168 CC(!load_pdptrs(vcpu, cr3))) {
1169 *entry_failure_code = ENTRY_FAIL_PDPTE;
1170 return -EINVAL;
1171 }
1172
1173 vcpu->arch.cr3 = cr3;
1174 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1175
1176 /* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1177 kvm_init_mmu(vcpu);
1178
1179 if (!nested_ept)
1180 kvm_mmu_new_pgd(vcpu, cr3);
1181
1182 return 0;
1183 }
1184
1185 /*
1186 * Returns if KVM is able to config CPU to tag TLB entries
1187 * populated by L2 differently than TLB entries populated
1188 * by L1.
1189 *
1190 * If L0 uses EPT, L1 and L2 run with different EPTP because
1191 * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1192 * are tagged with different EPTP.
1193 *
1194 * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1195 * with different VPID (L1 entries are tagged with vmx->vpid
1196 * while L2 entries are tagged with vmx->nested.vpid02).
1197 */
nested_has_guest_tlb_tag(struct kvm_vcpu * vcpu)1198 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1199 {
1200 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1201
1202 return enable_ept ||
1203 (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1204 }
1205
nested_vmx_transition_tlb_flush(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,bool is_vmenter)1206 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1207 struct vmcs12 *vmcs12,
1208 bool is_vmenter)
1209 {
1210 struct vcpu_vmx *vmx = to_vmx(vcpu);
1211
1212 /* Handle pending Hyper-V TLB flush requests */
1213 kvm_hv_nested_transtion_tlb_flush(vcpu, enable_ept);
1214
1215 /*
1216 * If VPID is disabled, then guest TLB accesses use VPID=0, i.e. the
1217 * same VPID as the host, and so architecturally, linear and combined
1218 * mappings for VPID=0 must be flushed at VM-Enter and VM-Exit. KVM
1219 * emulates L2 sharing L1's VPID=0 by using vpid01 while running L2,
1220 * and so KVM must also emulate TLB flush of VPID=0, i.e. vpid01. This
1221 * is required if VPID is disabled in KVM, as a TLB flush (there are no
1222 * VPIDs) still occurs from L1's perspective, and KVM may need to
1223 * synchronize the MMU in response to the guest TLB flush.
1224 *
1225 * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1226 * EPT is a special snowflake, as guest-physical mappings aren't
1227 * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1228 * VPID disabled. As a result, KVM _never_ needs to sync nEPT
1229 * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1230 * those mappings.
1231 */
1232 if (!nested_cpu_has_vpid(vmcs12)) {
1233 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1234 return;
1235 }
1236
1237 /* L2 should never have a VPID if VPID is disabled. */
1238 WARN_ON(!enable_vpid);
1239
1240 /*
1241 * VPID is enabled and in use by vmcs12. If vpid12 is changing, then
1242 * emulate a guest TLB flush as KVM does not track vpid12 history nor
1243 * is the VPID incorporated into the MMU context. I.e. KVM must assume
1244 * that the new vpid12 has never been used and thus represents a new
1245 * guest ASID that cannot have entries in the TLB.
1246 */
1247 if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1248 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1249 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1250 return;
1251 }
1252
1253 /*
1254 * If VPID is enabled, used by vmc12, and vpid12 is not changing but
1255 * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
1256 * KVM was unable to allocate a VPID for L2, flush the current context
1257 * as the effective ASID is common to both L1 and L2.
1258 */
1259 if (!nested_has_guest_tlb_tag(vcpu))
1260 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1261 }
1262
is_bitwise_subset(u64 superset,u64 subset,u64 mask)1263 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1264 {
1265 superset &= mask;
1266 subset &= mask;
1267
1268 return (superset | subset) == superset;
1269 }
1270
vmx_restore_vmx_basic(struct vcpu_vmx * vmx,u64 data)1271 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1272 {
1273 const u64 feature_bits = VMX_BASIC_DUAL_MONITOR_TREATMENT |
1274 VMX_BASIC_INOUT |
1275 VMX_BASIC_TRUE_CTLS;
1276
1277 const u64 reserved_bits = GENMASK_ULL(63, 56) |
1278 GENMASK_ULL(47, 45) |
1279 BIT_ULL(31);
1280
1281 u64 vmx_basic = vmcs_config.nested.basic;
1282
1283 BUILD_BUG_ON(feature_bits & reserved_bits);
1284
1285 /*
1286 * Except for 32BIT_PHYS_ADDR_ONLY, which is an anti-feature bit (has
1287 * inverted polarity), the incoming value must not set feature bits or
1288 * reserved bits that aren't allowed/supported by KVM. Fields, i.e.
1289 * multi-bit values, are explicitly checked below.
1290 */
1291 if (!is_bitwise_subset(vmx_basic, data, feature_bits | reserved_bits))
1292 return -EINVAL;
1293
1294 /*
1295 * KVM does not emulate a version of VMX that constrains physical
1296 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1297 */
1298 if (data & VMX_BASIC_32BIT_PHYS_ADDR_ONLY)
1299 return -EINVAL;
1300
1301 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1302 vmx_basic_vmcs_revision_id(data))
1303 return -EINVAL;
1304
1305 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1306 return -EINVAL;
1307
1308 vmx->nested.msrs.basic = data;
1309 return 0;
1310 }
1311
vmx_get_control_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u32 ** low,u32 ** high)1312 static void vmx_get_control_msr(struct nested_vmx_msrs *msrs, u32 msr_index,
1313 u32 **low, u32 **high)
1314 {
1315 switch (msr_index) {
1316 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1317 *low = &msrs->pinbased_ctls_low;
1318 *high = &msrs->pinbased_ctls_high;
1319 break;
1320 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1321 *low = &msrs->procbased_ctls_low;
1322 *high = &msrs->procbased_ctls_high;
1323 break;
1324 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1325 *low = &msrs->exit_ctls_low;
1326 *high = &msrs->exit_ctls_high;
1327 break;
1328 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1329 *low = &msrs->entry_ctls_low;
1330 *high = &msrs->entry_ctls_high;
1331 break;
1332 case MSR_IA32_VMX_PROCBASED_CTLS2:
1333 *low = &msrs->secondary_ctls_low;
1334 *high = &msrs->secondary_ctls_high;
1335 break;
1336 default:
1337 BUG();
1338 }
1339 }
1340
1341 static int
vmx_restore_control_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1342 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1343 {
1344 u32 *lowp, *highp;
1345 u64 supported;
1346
1347 vmx_get_control_msr(&vmcs_config.nested, msr_index, &lowp, &highp);
1348
1349 supported = vmx_control_msr(*lowp, *highp);
1350
1351 /* Check must-be-1 bits are still 1. */
1352 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1353 return -EINVAL;
1354
1355 /* Check must-be-0 bits are still 0. */
1356 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1357 return -EINVAL;
1358
1359 vmx_get_control_msr(&vmx->nested.msrs, msr_index, &lowp, &highp);
1360 *lowp = data;
1361 *highp = data >> 32;
1362 return 0;
1363 }
1364
vmx_restore_vmx_misc(struct vcpu_vmx * vmx,u64 data)1365 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1366 {
1367 const u64 feature_bits = VMX_MISC_SAVE_EFER_LMA |
1368 VMX_MISC_ACTIVITY_HLT |
1369 VMX_MISC_ACTIVITY_SHUTDOWN |
1370 VMX_MISC_ACTIVITY_WAIT_SIPI |
1371 VMX_MISC_INTEL_PT |
1372 VMX_MISC_RDMSR_IN_SMM |
1373 VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
1374 VMX_MISC_VMXOFF_BLOCK_SMI |
1375 VMX_MISC_ZERO_LEN_INS;
1376
1377 const u64 reserved_bits = BIT_ULL(31) | GENMASK_ULL(13, 9);
1378
1379 u64 vmx_misc = vmx_control_msr(vmcs_config.nested.misc_low,
1380 vmcs_config.nested.misc_high);
1381
1382 BUILD_BUG_ON(feature_bits & reserved_bits);
1383
1384 /*
1385 * The incoming value must not set feature bits or reserved bits that
1386 * aren't allowed/supported by KVM. Fields, i.e. multi-bit values, are
1387 * explicitly checked below.
1388 */
1389 if (!is_bitwise_subset(vmx_misc, data, feature_bits | reserved_bits))
1390 return -EINVAL;
1391
1392 if ((vmx->nested.msrs.pinbased_ctls_high &
1393 PIN_BASED_VMX_PREEMPTION_TIMER) &&
1394 vmx_misc_preemption_timer_rate(data) !=
1395 vmx_misc_preemption_timer_rate(vmx_misc))
1396 return -EINVAL;
1397
1398 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1399 return -EINVAL;
1400
1401 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1402 return -EINVAL;
1403
1404 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1405 return -EINVAL;
1406
1407 vmx->nested.msrs.misc_low = data;
1408 vmx->nested.msrs.misc_high = data >> 32;
1409
1410 return 0;
1411 }
1412
vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx * vmx,u64 data)1413 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1414 {
1415 u64 vmx_ept_vpid_cap = vmx_control_msr(vmcs_config.nested.ept_caps,
1416 vmcs_config.nested.vpid_caps);
1417
1418 /* Every bit is either reserved or a feature bit. */
1419 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1420 return -EINVAL;
1421
1422 vmx->nested.msrs.ept_caps = data;
1423 vmx->nested.msrs.vpid_caps = data >> 32;
1424 return 0;
1425 }
1426
vmx_get_fixed0_msr(struct nested_vmx_msrs * msrs,u32 msr_index)1427 static u64 *vmx_get_fixed0_msr(struct nested_vmx_msrs *msrs, u32 msr_index)
1428 {
1429 switch (msr_index) {
1430 case MSR_IA32_VMX_CR0_FIXED0:
1431 return &msrs->cr0_fixed0;
1432 case MSR_IA32_VMX_CR4_FIXED0:
1433 return &msrs->cr4_fixed0;
1434 default:
1435 BUG();
1436 }
1437 }
1438
vmx_restore_fixed0_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1439 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1440 {
1441 const u64 *msr = vmx_get_fixed0_msr(&vmcs_config.nested, msr_index);
1442
1443 /*
1444 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1445 * must be 1 in the restored value.
1446 */
1447 if (!is_bitwise_subset(data, *msr, -1ULL))
1448 return -EINVAL;
1449
1450 *vmx_get_fixed0_msr(&vmx->nested.msrs, msr_index) = data;
1451 return 0;
1452 }
1453
1454 /*
1455 * Called when userspace is restoring VMX MSRs.
1456 *
1457 * Returns 0 on success, non-0 otherwise.
1458 */
vmx_set_vmx_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 data)1459 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1460 {
1461 struct vcpu_vmx *vmx = to_vmx(vcpu);
1462
1463 /*
1464 * Don't allow changes to the VMX capability MSRs while the vCPU
1465 * is in VMX operation.
1466 */
1467 if (vmx->nested.vmxon)
1468 return -EBUSY;
1469
1470 switch (msr_index) {
1471 case MSR_IA32_VMX_BASIC:
1472 return vmx_restore_vmx_basic(vmx, data);
1473 case MSR_IA32_VMX_PINBASED_CTLS:
1474 case MSR_IA32_VMX_PROCBASED_CTLS:
1475 case MSR_IA32_VMX_EXIT_CTLS:
1476 case MSR_IA32_VMX_ENTRY_CTLS:
1477 /*
1478 * The "non-true" VMX capability MSRs are generated from the
1479 * "true" MSRs, so we do not support restoring them directly.
1480 *
1481 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1482 * should restore the "true" MSRs with the must-be-1 bits
1483 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1484 * DEFAULT SETTINGS".
1485 */
1486 return -EINVAL;
1487 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1488 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1489 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1490 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1491 case MSR_IA32_VMX_PROCBASED_CTLS2:
1492 return vmx_restore_control_msr(vmx, msr_index, data);
1493 case MSR_IA32_VMX_MISC:
1494 return vmx_restore_vmx_misc(vmx, data);
1495 case MSR_IA32_VMX_CR0_FIXED0:
1496 case MSR_IA32_VMX_CR4_FIXED0:
1497 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1498 case MSR_IA32_VMX_CR0_FIXED1:
1499 case MSR_IA32_VMX_CR4_FIXED1:
1500 /*
1501 * These MSRs are generated based on the vCPU's CPUID, so we
1502 * do not support restoring them directly.
1503 */
1504 return -EINVAL;
1505 case MSR_IA32_VMX_EPT_VPID_CAP:
1506 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1507 case MSR_IA32_VMX_VMCS_ENUM:
1508 vmx->nested.msrs.vmcs_enum = data;
1509 return 0;
1510 case MSR_IA32_VMX_VMFUNC:
1511 if (data & ~vmcs_config.nested.vmfunc_controls)
1512 return -EINVAL;
1513 vmx->nested.msrs.vmfunc_controls = data;
1514 return 0;
1515 default:
1516 /*
1517 * The rest of the VMX capability MSRs do not support restore.
1518 */
1519 return -EINVAL;
1520 }
1521 }
1522
1523 /* Returns 0 on success, non-0 otherwise. */
vmx_get_vmx_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u64 * pdata)1524 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1525 {
1526 switch (msr_index) {
1527 case MSR_IA32_VMX_BASIC:
1528 *pdata = msrs->basic;
1529 break;
1530 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1531 case MSR_IA32_VMX_PINBASED_CTLS:
1532 *pdata = vmx_control_msr(
1533 msrs->pinbased_ctls_low,
1534 msrs->pinbased_ctls_high);
1535 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1536 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1537 break;
1538 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1539 case MSR_IA32_VMX_PROCBASED_CTLS:
1540 *pdata = vmx_control_msr(
1541 msrs->procbased_ctls_low,
1542 msrs->procbased_ctls_high);
1543 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1544 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1545 break;
1546 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1547 case MSR_IA32_VMX_EXIT_CTLS:
1548 *pdata = vmx_control_msr(
1549 msrs->exit_ctls_low,
1550 msrs->exit_ctls_high);
1551 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1552 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1553 break;
1554 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1555 case MSR_IA32_VMX_ENTRY_CTLS:
1556 *pdata = vmx_control_msr(
1557 msrs->entry_ctls_low,
1558 msrs->entry_ctls_high);
1559 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1560 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1561 break;
1562 case MSR_IA32_VMX_MISC:
1563 *pdata = vmx_control_msr(
1564 msrs->misc_low,
1565 msrs->misc_high);
1566 break;
1567 case MSR_IA32_VMX_CR0_FIXED0:
1568 *pdata = msrs->cr0_fixed0;
1569 break;
1570 case MSR_IA32_VMX_CR0_FIXED1:
1571 *pdata = msrs->cr0_fixed1;
1572 break;
1573 case MSR_IA32_VMX_CR4_FIXED0:
1574 *pdata = msrs->cr4_fixed0;
1575 break;
1576 case MSR_IA32_VMX_CR4_FIXED1:
1577 *pdata = msrs->cr4_fixed1;
1578 break;
1579 case MSR_IA32_VMX_VMCS_ENUM:
1580 *pdata = msrs->vmcs_enum;
1581 break;
1582 case MSR_IA32_VMX_PROCBASED_CTLS2:
1583 *pdata = vmx_control_msr(
1584 msrs->secondary_ctls_low,
1585 msrs->secondary_ctls_high);
1586 break;
1587 case MSR_IA32_VMX_EPT_VPID_CAP:
1588 *pdata = msrs->ept_caps |
1589 ((u64)msrs->vpid_caps << 32);
1590 break;
1591 case MSR_IA32_VMX_VMFUNC:
1592 *pdata = msrs->vmfunc_controls;
1593 break;
1594 default:
1595 return 1;
1596 }
1597
1598 return 0;
1599 }
1600
1601 /*
1602 * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1603 * been modified by the L1 guest. Note, "writable" in this context means
1604 * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1605 * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1606 * VM-exit information fields (which are actually writable if the vCPU is
1607 * configured to support "VMWRITE to any supported field in the VMCS").
1608 */
copy_shadow_to_vmcs12(struct vcpu_vmx * vmx)1609 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1610 {
1611 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1612 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1613 struct shadow_vmcs_field field;
1614 unsigned long val;
1615 int i;
1616
1617 if (WARN_ON(!shadow_vmcs))
1618 return;
1619
1620 preempt_disable();
1621
1622 vmcs_load(shadow_vmcs);
1623
1624 for (i = 0; i < max_shadow_read_write_fields; i++) {
1625 field = shadow_read_write_fields[i];
1626 val = __vmcs_readl(field.encoding);
1627 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1628 }
1629
1630 vmcs_clear(shadow_vmcs);
1631 vmcs_load(vmx->loaded_vmcs->vmcs);
1632
1633 preempt_enable();
1634 }
1635
copy_vmcs12_to_shadow(struct vcpu_vmx * vmx)1636 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1637 {
1638 const struct shadow_vmcs_field *fields[] = {
1639 shadow_read_write_fields,
1640 shadow_read_only_fields
1641 };
1642 const int max_fields[] = {
1643 max_shadow_read_write_fields,
1644 max_shadow_read_only_fields
1645 };
1646 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1647 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1648 struct shadow_vmcs_field field;
1649 unsigned long val;
1650 int i, q;
1651
1652 if (WARN_ON(!shadow_vmcs))
1653 return;
1654
1655 vmcs_load(shadow_vmcs);
1656
1657 for (q = 0; q < ARRAY_SIZE(fields); q++) {
1658 for (i = 0; i < max_fields[q]; i++) {
1659 field = fields[q][i];
1660 val = vmcs12_read_any(vmcs12, field.encoding,
1661 field.offset);
1662 __vmcs_writel(field.encoding, val);
1663 }
1664 }
1665
1666 vmcs_clear(shadow_vmcs);
1667 vmcs_load(vmx->loaded_vmcs->vmcs);
1668 }
1669
copy_enlightened_to_vmcs12(struct vcpu_vmx * vmx,u32 hv_clean_fields)1670 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1671 {
1672 #ifdef CONFIG_KVM_HYPERV
1673 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1674 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
1675 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(&vmx->vcpu);
1676
1677 /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1678 vmcs12->tpr_threshold = evmcs->tpr_threshold;
1679 vmcs12->guest_rip = evmcs->guest_rip;
1680
1681 if (unlikely(!(hv_clean_fields &
1682 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ENLIGHTENMENTSCONTROL))) {
1683 hv_vcpu->nested.pa_page_gpa = evmcs->partition_assist_page;
1684 hv_vcpu->nested.vm_id = evmcs->hv_vm_id;
1685 hv_vcpu->nested.vp_id = evmcs->hv_vp_id;
1686 }
1687
1688 if (unlikely(!(hv_clean_fields &
1689 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1690 vmcs12->guest_rsp = evmcs->guest_rsp;
1691 vmcs12->guest_rflags = evmcs->guest_rflags;
1692 vmcs12->guest_interruptibility_info =
1693 evmcs->guest_interruptibility_info;
1694 /*
1695 * Not present in struct vmcs12:
1696 * vmcs12->guest_ssp = evmcs->guest_ssp;
1697 */
1698 }
1699
1700 if (unlikely(!(hv_clean_fields &
1701 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1702 vmcs12->cpu_based_vm_exec_control =
1703 evmcs->cpu_based_vm_exec_control;
1704 }
1705
1706 if (unlikely(!(hv_clean_fields &
1707 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1708 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1709 }
1710
1711 if (unlikely(!(hv_clean_fields &
1712 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1713 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1714 }
1715
1716 if (unlikely(!(hv_clean_fields &
1717 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1718 vmcs12->vm_entry_intr_info_field =
1719 evmcs->vm_entry_intr_info_field;
1720 vmcs12->vm_entry_exception_error_code =
1721 evmcs->vm_entry_exception_error_code;
1722 vmcs12->vm_entry_instruction_len =
1723 evmcs->vm_entry_instruction_len;
1724 }
1725
1726 if (unlikely(!(hv_clean_fields &
1727 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1728 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1729 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1730 vmcs12->host_cr0 = evmcs->host_cr0;
1731 vmcs12->host_cr3 = evmcs->host_cr3;
1732 vmcs12->host_cr4 = evmcs->host_cr4;
1733 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1734 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1735 vmcs12->host_rip = evmcs->host_rip;
1736 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1737 vmcs12->host_es_selector = evmcs->host_es_selector;
1738 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1739 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1740 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1741 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1742 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1743 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1744 vmcs12->host_ia32_perf_global_ctrl = evmcs->host_ia32_perf_global_ctrl;
1745 /*
1746 * Not present in struct vmcs12:
1747 * vmcs12->host_ia32_s_cet = evmcs->host_ia32_s_cet;
1748 * vmcs12->host_ssp = evmcs->host_ssp;
1749 * vmcs12->host_ia32_int_ssp_table_addr = evmcs->host_ia32_int_ssp_table_addr;
1750 */
1751 }
1752
1753 if (unlikely(!(hv_clean_fields &
1754 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1755 vmcs12->pin_based_vm_exec_control =
1756 evmcs->pin_based_vm_exec_control;
1757 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1758 vmcs12->secondary_vm_exec_control =
1759 evmcs->secondary_vm_exec_control;
1760 }
1761
1762 if (unlikely(!(hv_clean_fields &
1763 HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1764 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1765 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1766 }
1767
1768 if (unlikely(!(hv_clean_fields &
1769 HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1770 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1771 }
1772
1773 if (unlikely(!(hv_clean_fields &
1774 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1775 vmcs12->guest_es_base = evmcs->guest_es_base;
1776 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1777 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1778 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1779 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1780 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1781 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1782 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1783 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1784 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1785 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1786 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1787 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1788 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1789 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1790 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1791 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1792 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1793 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1794 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1795 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1796 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1797 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1798 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1799 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1800 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1801 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1802 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1803 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1804 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1805 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1806 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1807 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1808 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1809 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1810 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1811 }
1812
1813 if (unlikely(!(hv_clean_fields &
1814 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1815 vmcs12->tsc_offset = evmcs->tsc_offset;
1816 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1817 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1818 vmcs12->encls_exiting_bitmap = evmcs->encls_exiting_bitmap;
1819 vmcs12->tsc_multiplier = evmcs->tsc_multiplier;
1820 }
1821
1822 if (unlikely(!(hv_clean_fields &
1823 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1824 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1825 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1826 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1827 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1828 vmcs12->guest_cr0 = evmcs->guest_cr0;
1829 vmcs12->guest_cr3 = evmcs->guest_cr3;
1830 vmcs12->guest_cr4 = evmcs->guest_cr4;
1831 vmcs12->guest_dr7 = evmcs->guest_dr7;
1832 }
1833
1834 if (unlikely(!(hv_clean_fields &
1835 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1836 vmcs12->host_fs_base = evmcs->host_fs_base;
1837 vmcs12->host_gs_base = evmcs->host_gs_base;
1838 vmcs12->host_tr_base = evmcs->host_tr_base;
1839 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1840 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1841 vmcs12->host_rsp = evmcs->host_rsp;
1842 }
1843
1844 if (unlikely(!(hv_clean_fields &
1845 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1846 vmcs12->ept_pointer = evmcs->ept_pointer;
1847 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1848 }
1849
1850 if (unlikely(!(hv_clean_fields &
1851 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1852 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1853 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1854 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1855 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1856 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1857 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1858 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1859 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1860 vmcs12->guest_pending_dbg_exceptions =
1861 evmcs->guest_pending_dbg_exceptions;
1862 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1863 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1864 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1865 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1866 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1867 vmcs12->guest_ia32_perf_global_ctrl = evmcs->guest_ia32_perf_global_ctrl;
1868 /*
1869 * Not present in struct vmcs12:
1870 * vmcs12->guest_ia32_s_cet = evmcs->guest_ia32_s_cet;
1871 * vmcs12->guest_ia32_lbr_ctl = evmcs->guest_ia32_lbr_ctl;
1872 * vmcs12->guest_ia32_int_ssp_table_addr = evmcs->guest_ia32_int_ssp_table_addr;
1873 */
1874 }
1875
1876 /*
1877 * Not used?
1878 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1879 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1880 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1881 * vmcs12->page_fault_error_code_mask =
1882 * evmcs->page_fault_error_code_mask;
1883 * vmcs12->page_fault_error_code_match =
1884 * evmcs->page_fault_error_code_match;
1885 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1886 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1887 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1888 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1889 */
1890
1891 /*
1892 * Read only fields:
1893 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1894 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1895 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1896 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1897 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1898 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1899 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1900 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1901 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1902 * vmcs12->exit_qualification = evmcs->exit_qualification;
1903 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1904 *
1905 * Not present in struct vmcs12:
1906 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1907 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1908 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1909 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1910 */
1911
1912 return;
1913 #else /* CONFIG_KVM_HYPERV */
1914 KVM_BUG_ON(1, vmx->vcpu.kvm);
1915 #endif /* CONFIG_KVM_HYPERV */
1916 }
1917
copy_vmcs12_to_enlightened(struct vcpu_vmx * vmx)1918 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1919 {
1920 #ifdef CONFIG_KVM_HYPERV
1921 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1922 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
1923
1924 /*
1925 * Should not be changed by KVM:
1926 *
1927 * evmcs->host_es_selector = vmcs12->host_es_selector;
1928 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1929 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1930 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1931 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1932 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1933 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1934 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1935 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1936 * evmcs->host_cr0 = vmcs12->host_cr0;
1937 * evmcs->host_cr3 = vmcs12->host_cr3;
1938 * evmcs->host_cr4 = vmcs12->host_cr4;
1939 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1940 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1941 * evmcs->host_rip = vmcs12->host_rip;
1942 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1943 * evmcs->host_fs_base = vmcs12->host_fs_base;
1944 * evmcs->host_gs_base = vmcs12->host_gs_base;
1945 * evmcs->host_tr_base = vmcs12->host_tr_base;
1946 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1947 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1948 * evmcs->host_rsp = vmcs12->host_rsp;
1949 * sync_vmcs02_to_vmcs12() doesn't read these:
1950 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1951 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1952 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1953 * evmcs->ept_pointer = vmcs12->ept_pointer;
1954 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1955 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1956 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1957 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1958 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1959 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1960 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1961 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1962 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1963 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1964 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1965 * evmcs->page_fault_error_code_mask =
1966 * vmcs12->page_fault_error_code_mask;
1967 * evmcs->page_fault_error_code_match =
1968 * vmcs12->page_fault_error_code_match;
1969 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1970 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1971 * evmcs->tsc_offset = vmcs12->tsc_offset;
1972 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1973 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1974 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1975 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1976 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1977 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1978 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1979 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1980 * evmcs->guest_ia32_perf_global_ctrl = vmcs12->guest_ia32_perf_global_ctrl;
1981 * evmcs->host_ia32_perf_global_ctrl = vmcs12->host_ia32_perf_global_ctrl;
1982 * evmcs->encls_exiting_bitmap = vmcs12->encls_exiting_bitmap;
1983 * evmcs->tsc_multiplier = vmcs12->tsc_multiplier;
1984 *
1985 * Not present in struct vmcs12:
1986 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1987 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1988 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1989 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1990 * evmcs->host_ia32_s_cet = vmcs12->host_ia32_s_cet;
1991 * evmcs->host_ssp = vmcs12->host_ssp;
1992 * evmcs->host_ia32_int_ssp_table_addr = vmcs12->host_ia32_int_ssp_table_addr;
1993 * evmcs->guest_ia32_s_cet = vmcs12->guest_ia32_s_cet;
1994 * evmcs->guest_ia32_lbr_ctl = vmcs12->guest_ia32_lbr_ctl;
1995 * evmcs->guest_ia32_int_ssp_table_addr = vmcs12->guest_ia32_int_ssp_table_addr;
1996 * evmcs->guest_ssp = vmcs12->guest_ssp;
1997 */
1998
1999 evmcs->guest_es_selector = vmcs12->guest_es_selector;
2000 evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
2001 evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
2002 evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
2003 evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
2004 evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
2005 evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
2006 evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
2007
2008 evmcs->guest_es_limit = vmcs12->guest_es_limit;
2009 evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
2010 evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
2011 evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
2012 evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
2013 evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
2014 evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
2015 evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
2016 evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
2017 evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
2018
2019 evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
2020 evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
2021 evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
2022 evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
2023 evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
2024 evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
2025 evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
2026 evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
2027
2028 evmcs->guest_es_base = vmcs12->guest_es_base;
2029 evmcs->guest_cs_base = vmcs12->guest_cs_base;
2030 evmcs->guest_ss_base = vmcs12->guest_ss_base;
2031 evmcs->guest_ds_base = vmcs12->guest_ds_base;
2032 evmcs->guest_fs_base = vmcs12->guest_fs_base;
2033 evmcs->guest_gs_base = vmcs12->guest_gs_base;
2034 evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
2035 evmcs->guest_tr_base = vmcs12->guest_tr_base;
2036 evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
2037 evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
2038
2039 evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
2040 evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
2041
2042 evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
2043 evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
2044 evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
2045 evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
2046
2047 evmcs->guest_pending_dbg_exceptions =
2048 vmcs12->guest_pending_dbg_exceptions;
2049 evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
2050 evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
2051
2052 evmcs->guest_activity_state = vmcs12->guest_activity_state;
2053 evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
2054
2055 evmcs->guest_cr0 = vmcs12->guest_cr0;
2056 evmcs->guest_cr3 = vmcs12->guest_cr3;
2057 evmcs->guest_cr4 = vmcs12->guest_cr4;
2058 evmcs->guest_dr7 = vmcs12->guest_dr7;
2059
2060 evmcs->guest_physical_address = vmcs12->guest_physical_address;
2061
2062 evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
2063 evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
2064 evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
2065 evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
2066 evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
2067 evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
2068 evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
2069 evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
2070
2071 evmcs->exit_qualification = vmcs12->exit_qualification;
2072
2073 evmcs->guest_linear_address = vmcs12->guest_linear_address;
2074 evmcs->guest_rsp = vmcs12->guest_rsp;
2075 evmcs->guest_rflags = vmcs12->guest_rflags;
2076
2077 evmcs->guest_interruptibility_info =
2078 vmcs12->guest_interruptibility_info;
2079 evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
2080 evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
2081 evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
2082 evmcs->vm_entry_exception_error_code =
2083 vmcs12->vm_entry_exception_error_code;
2084 evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
2085
2086 evmcs->guest_rip = vmcs12->guest_rip;
2087
2088 evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
2089
2090 return;
2091 #else /* CONFIG_KVM_HYPERV */
2092 KVM_BUG_ON(1, vmx->vcpu.kvm);
2093 #endif /* CONFIG_KVM_HYPERV */
2094 }
2095
2096 /*
2097 * This is an equivalent of the nested hypervisor executing the vmptrld
2098 * instruction.
2099 */
nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu * vcpu,bool from_launch)2100 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
2101 struct kvm_vcpu *vcpu, bool from_launch)
2102 {
2103 #ifdef CONFIG_KVM_HYPERV
2104 struct vcpu_vmx *vmx = to_vmx(vcpu);
2105 bool evmcs_gpa_changed = false;
2106 u64 evmcs_gpa;
2107
2108 if (likely(!guest_cpu_cap_has_evmcs(vcpu)))
2109 return EVMPTRLD_DISABLED;
2110
2111 evmcs_gpa = nested_get_evmptr(vcpu);
2112 if (!evmptr_is_valid(evmcs_gpa)) {
2113 nested_release_evmcs(vcpu);
2114 return EVMPTRLD_DISABLED;
2115 }
2116
2117 if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
2118 vmx->nested.current_vmptr = INVALID_GPA;
2119
2120 nested_release_evmcs(vcpu);
2121
2122 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2123 &vmx->nested.hv_evmcs_map))
2124 return EVMPTRLD_ERROR;
2125
2126 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2127
2128 /*
2129 * Currently, KVM only supports eVMCS version 1
2130 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2131 * value to first u32 field of eVMCS which should specify eVMCS
2132 * VersionNumber.
2133 *
2134 * Guest should be aware of supported eVMCS versions by host by
2135 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2136 * expected to set this CPUID leaf according to the value
2137 * returned in vmcs_version from nested_enable_evmcs().
2138 *
2139 * However, it turns out that Microsoft Hyper-V fails to comply
2140 * to their own invented interface: When Hyper-V use eVMCS, it
2141 * just sets first u32 field of eVMCS to revision_id specified
2142 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2143 * which is one of the supported versions specified in
2144 * CPUID.0x4000000A.EAX[0:15].
2145 *
2146 * To overcome Hyper-V bug, we accept here either a supported
2147 * eVMCS version or VMCS12 revision_id as valid values for first
2148 * u32 field of eVMCS.
2149 */
2150 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2151 (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2152 nested_release_evmcs(vcpu);
2153 return EVMPTRLD_VMFAIL;
2154 }
2155
2156 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2157
2158 evmcs_gpa_changed = true;
2159 /*
2160 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2161 * reloaded from guest's memory (read only fields, fields not
2162 * present in struct hv_enlightened_vmcs, ...). Make sure there
2163 * are no leftovers.
2164 */
2165 if (from_launch) {
2166 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2167 memset(vmcs12, 0, sizeof(*vmcs12));
2168 vmcs12->hdr.revision_id = VMCS12_REVISION;
2169 }
2170
2171 }
2172
2173 /*
2174 * Clean fields data can't be used on VMLAUNCH and when we switch
2175 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2176 */
2177 if (from_launch || evmcs_gpa_changed) {
2178 vmx->nested.hv_evmcs->hv_clean_fields &=
2179 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2180
2181 vmx->nested.force_msr_bitmap_recalc = true;
2182 }
2183
2184 return EVMPTRLD_SUCCEEDED;
2185 #else
2186 return EVMPTRLD_DISABLED;
2187 #endif
2188 }
2189
nested_sync_vmcs12_to_shadow(struct kvm_vcpu * vcpu)2190 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2191 {
2192 struct vcpu_vmx *vmx = to_vmx(vcpu);
2193
2194 if (nested_vmx_is_evmptr12_valid(vmx))
2195 copy_vmcs12_to_enlightened(vmx);
2196 else
2197 copy_vmcs12_to_shadow(vmx);
2198
2199 vmx->nested.need_vmcs12_to_shadow_sync = false;
2200 }
2201
vmx_preemption_timer_fn(struct hrtimer * timer)2202 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2203 {
2204 struct vcpu_vmx *vmx =
2205 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2206
2207 vmx->nested.preemption_timer_expired = true;
2208 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2209 kvm_vcpu_kick(&vmx->vcpu);
2210
2211 return HRTIMER_NORESTART;
2212 }
2213
vmx_calc_preemption_timer_value(struct kvm_vcpu * vcpu)2214 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2215 {
2216 struct vcpu_vmx *vmx = to_vmx(vcpu);
2217 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2218
2219 u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2220 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2221
2222 if (!vmx->nested.has_preemption_timer_deadline) {
2223 vmx->nested.preemption_timer_deadline =
2224 vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2225 vmx->nested.has_preemption_timer_deadline = true;
2226 }
2227 return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2228 }
2229
vmx_start_preemption_timer(struct kvm_vcpu * vcpu,u64 preemption_timeout)2230 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2231 u64 preemption_timeout)
2232 {
2233 struct vcpu_vmx *vmx = to_vmx(vcpu);
2234
2235 /*
2236 * A timer value of zero is architecturally guaranteed to cause
2237 * a VMExit prior to executing any instructions in the guest.
2238 */
2239 if (preemption_timeout == 0) {
2240 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2241 return;
2242 }
2243
2244 if (vcpu->arch.virtual_tsc_khz == 0)
2245 return;
2246
2247 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2248 preemption_timeout *= 1000000;
2249 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2250 hrtimer_start(&vmx->nested.preemption_timer,
2251 ktime_add_ns(ktime_get(), preemption_timeout),
2252 HRTIMER_MODE_ABS_PINNED);
2253 }
2254
nested_vmx_calc_efer(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2255 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2256 {
2257 if (vmx->nested.nested_run_pending &&
2258 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2259 return vmcs12->guest_ia32_efer;
2260 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2261 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2262 else
2263 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2264 }
2265
prepare_vmcs02_constant_state(struct vcpu_vmx * vmx)2266 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2267 {
2268 struct kvm *kvm = vmx->vcpu.kvm;
2269
2270 /*
2271 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2272 * according to L0's settings (vmcs12 is irrelevant here). Host
2273 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2274 * will be set as needed prior to VMLAUNCH/VMRESUME.
2275 */
2276 if (vmx->nested.vmcs02_initialized)
2277 return;
2278 vmx->nested.vmcs02_initialized = true;
2279
2280 /*
2281 * We don't care what the EPTP value is we just need to guarantee
2282 * it's valid so we don't get a false positive when doing early
2283 * consistency checks.
2284 */
2285 if (enable_ept && nested_early_check)
2286 vmcs_write64(EPT_POINTER,
2287 construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2288
2289 if (vmx->ve_info)
2290 vmcs_write64(VE_INFORMATION_ADDRESS, __pa(vmx->ve_info));
2291
2292 /* All VMFUNCs are currently emulated through L0 vmexits. */
2293 if (cpu_has_vmx_vmfunc())
2294 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2295
2296 if (cpu_has_vmx_posted_intr())
2297 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2298
2299 if (cpu_has_vmx_msr_bitmap())
2300 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2301
2302 /*
2303 * PML is emulated for L2, but never enabled in hardware as the MMU
2304 * handles A/D emulation. Disabling PML for L2 also avoids having to
2305 * deal with filtering out L2 GPAs from the buffer.
2306 */
2307 if (enable_pml) {
2308 vmcs_write64(PML_ADDRESS, 0);
2309 vmcs_write16(GUEST_PML_INDEX, -1);
2310 }
2311
2312 if (cpu_has_vmx_encls_vmexit())
2313 vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA);
2314
2315 if (kvm_notify_vmexit_enabled(kvm))
2316 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
2317
2318 /*
2319 * Set the MSR load/store lists to match L0's settings. Only the
2320 * addresses are constant (for vmcs02), the counts can change based
2321 * on L2's behavior, e.g. switching to/from long mode.
2322 */
2323 vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2324 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2325 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2326
2327 vmx_set_constant_host_state(vmx);
2328 }
2329
prepare_vmcs02_early_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2330 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2331 struct vmcs12 *vmcs12)
2332 {
2333 prepare_vmcs02_constant_state(vmx);
2334
2335 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
2336
2337 /*
2338 * If VPID is disabled, then guest TLB accesses use VPID=0, i.e. the
2339 * same VPID as the host. Emulate this behavior by using vpid01 for L2
2340 * if VPID is disabled in vmcs12. Note, if VPID is disabled, VM-Enter
2341 * and VM-Exit are architecturally required to flush VPID=0, but *only*
2342 * VPID=0. I.e. using vpid02 would be ok (so long as KVM emulates the
2343 * required flushes), but doing so would cause KVM to over-flush. E.g.
2344 * if L1 runs L2 X with VPID12=1, then runs L2 Y with VPID12 disabled,
2345 * and then runs L2 X again, then KVM can and should retain TLB entries
2346 * for VPID12=1.
2347 */
2348 if (enable_vpid) {
2349 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2350 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2351 else
2352 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2353 }
2354 }
2355
prepare_vmcs02_early(struct vcpu_vmx * vmx,struct loaded_vmcs * vmcs01,struct vmcs12 * vmcs12)2356 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2357 struct vmcs12 *vmcs12)
2358 {
2359 u32 exec_control;
2360 u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2361
2362 if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx))
2363 prepare_vmcs02_early_rare(vmx, vmcs12);
2364
2365 /*
2366 * PIN CONTROLS
2367 */
2368 exec_control = __pin_controls_get(vmcs01);
2369 exec_control |= (vmcs12->pin_based_vm_exec_control &
2370 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2371
2372 /* Posted interrupts setting is only taken from vmcs12. */
2373 vmx->nested.pi_pending = false;
2374 if (nested_cpu_has_posted_intr(vmcs12)) {
2375 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2376 } else {
2377 vmx->nested.posted_intr_nv = -1;
2378 exec_control &= ~PIN_BASED_POSTED_INTR;
2379 }
2380 pin_controls_set(vmx, exec_control);
2381
2382 /*
2383 * EXEC CONTROLS
2384 */
2385 exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2386 exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2387 exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2388 exec_control &= ~CPU_BASED_TPR_SHADOW;
2389 exec_control |= vmcs12->cpu_based_vm_exec_control;
2390
2391 vmx->nested.l1_tpr_threshold = -1;
2392 if (exec_control & CPU_BASED_TPR_SHADOW)
2393 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2394 #ifdef CONFIG_X86_64
2395 else
2396 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2397 CPU_BASED_CR8_STORE_EXITING;
2398 #endif
2399
2400 /*
2401 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2402 * for I/O port accesses.
2403 */
2404 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2405 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2406
2407 /*
2408 * This bit will be computed in nested_get_vmcs12_pages, because
2409 * we do not have access to L1's MSR bitmap yet. For now, keep
2410 * the same bit as before, hoping to avoid multiple VMWRITEs that
2411 * only set/clear this bit.
2412 */
2413 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2414 exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2415
2416 exec_controls_set(vmx, exec_control);
2417
2418 /*
2419 * SECONDARY EXEC CONTROLS
2420 */
2421 if (cpu_has_secondary_exec_ctrls()) {
2422 exec_control = __secondary_exec_controls_get(vmcs01);
2423
2424 /* Take the following fields only from vmcs12 */
2425 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2426 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2427 SECONDARY_EXEC_ENABLE_INVPCID |
2428 SECONDARY_EXEC_ENABLE_RDTSCP |
2429 SECONDARY_EXEC_ENABLE_XSAVES |
2430 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2431 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2432 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2433 SECONDARY_EXEC_ENABLE_VMFUNC |
2434 SECONDARY_EXEC_DESC);
2435
2436 if (nested_cpu_has(vmcs12,
2437 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2438 exec_control |= vmcs12->secondary_vm_exec_control;
2439
2440 /* PML is emulated and never enabled in hardware for L2. */
2441 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2442
2443 /* VMCS shadowing for L2 is emulated for now */
2444 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2445
2446 /*
2447 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2448 * will not have to rewrite the controls just for this bit.
2449 */
2450 if (vmx_umip_emulated() && (vmcs12->guest_cr4 & X86_CR4_UMIP))
2451 exec_control |= SECONDARY_EXEC_DESC;
2452
2453 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2454 vmcs_write16(GUEST_INTR_STATUS,
2455 vmcs12->guest_intr_status);
2456
2457 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2458 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2459
2460 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2461 vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2462
2463 secondary_exec_controls_set(vmx, exec_control);
2464 }
2465
2466 /*
2467 * ENTRY CONTROLS
2468 *
2469 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2470 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2471 * on the related bits (if supported by the CPU) in the hope that
2472 * we can avoid VMWrites during vmx_set_efer().
2473 *
2474 * Similarly, take vmcs01's PERF_GLOBAL_CTRL in the hope that if KVM is
2475 * loading PERF_GLOBAL_CTRL via the VMCS for L1, then KVM will want to
2476 * do the same for L2.
2477 */
2478 exec_control = __vm_entry_controls_get(vmcs01);
2479 exec_control |= (vmcs12->vm_entry_controls &
2480 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
2481 exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2482 if (cpu_has_load_ia32_efer()) {
2483 if (guest_efer & EFER_LMA)
2484 exec_control |= VM_ENTRY_IA32E_MODE;
2485 if (guest_efer != kvm_host.efer)
2486 exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2487 }
2488 vm_entry_controls_set(vmx, exec_control);
2489
2490 /*
2491 * EXIT CONTROLS
2492 *
2493 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2494 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2495 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2496 */
2497 exec_control = __vm_exit_controls_get(vmcs01);
2498 if (cpu_has_load_ia32_efer() && guest_efer != kvm_host.efer)
2499 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2500 else
2501 exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2502 vm_exit_controls_set(vmx, exec_control);
2503
2504 /*
2505 * Interrupt/Exception Fields
2506 */
2507 if (vmx->nested.nested_run_pending) {
2508 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2509 vmcs12->vm_entry_intr_info_field);
2510 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2511 vmcs12->vm_entry_exception_error_code);
2512 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2513 vmcs12->vm_entry_instruction_len);
2514 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2515 vmcs12->guest_interruptibility_info);
2516 vmx->loaded_vmcs->nmi_known_unmasked =
2517 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2518 } else {
2519 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2520 }
2521 }
2522
prepare_vmcs02_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2523 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2524 {
2525 struct hv_enlightened_vmcs *hv_evmcs = nested_vmx_evmcs(vmx);
2526
2527 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2528 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2529
2530 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2531 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2532 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2533 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2534 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2535 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2536 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2537 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2538 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2539 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2540 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2541 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2542 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2543 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2544 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2545 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2546 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2547 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2548 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2549 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2550 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2551 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2552 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2553 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2554 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2555 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2556 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2557 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2558 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2559 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2560 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2561 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2562 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2563 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2564 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2565 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2566
2567 vmx_segment_cache_clear(vmx);
2568 }
2569
2570 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2571 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2572 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2573 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2574 vmcs12->guest_pending_dbg_exceptions);
2575 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2576 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2577
2578 /*
2579 * L1 may access the L2's PDPTR, so save them to construct
2580 * vmcs12
2581 */
2582 if (enable_ept) {
2583 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2584 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2585 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2586 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2587 }
2588
2589 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2590 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2591 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2592 }
2593
2594 if (nested_cpu_has_xsaves(vmcs12))
2595 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2596
2597 /*
2598 * Whether page-faults are trapped is determined by a combination of
2599 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. If L0
2600 * doesn't care about page faults then we should set all of these to
2601 * L1's desires. However, if L0 does care about (some) page faults, it
2602 * is not easy (if at all possible?) to merge L0 and L1's desires, we
2603 * simply ask to exit on each and every L2 page fault. This is done by
2604 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2605 * Note that below we don't need special code to set EB.PF beyond the
2606 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2607 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2608 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2609 */
2610 if (vmx_need_pf_intercept(&vmx->vcpu)) {
2611 /*
2612 * TODO: if both L0 and L1 need the same MASK and MATCH,
2613 * go ahead and use it?
2614 */
2615 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2616 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2617 } else {
2618 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2619 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2620 }
2621
2622 if (cpu_has_vmx_apicv()) {
2623 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2624 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2625 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2626 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2627 }
2628
2629 /*
2630 * Make sure the msr_autostore list is up to date before we set the
2631 * count in the vmcs02.
2632 */
2633 prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2634
2635 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2636 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2637 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2638
2639 set_cr4_guest_host_mask(vmx);
2640 }
2641
2642 /*
2643 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2644 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2645 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2646 * guest in a way that will both be appropriate to L1's requests, and our
2647 * needs. In addition to modifying the active vmcs (which is vmcs02), this
2648 * function also has additional necessary side-effects, like setting various
2649 * vcpu->arch fields.
2650 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2651 * is assigned to entry_failure_code on failure.
2652 */
prepare_vmcs02(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,bool from_vmentry,enum vm_entry_failure_code * entry_failure_code)2653 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2654 bool from_vmentry,
2655 enum vm_entry_failure_code *entry_failure_code)
2656 {
2657 struct vcpu_vmx *vmx = to_vmx(vcpu);
2658 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
2659 bool load_guest_pdptrs_vmcs12 = false;
2660
2661 if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx)) {
2662 prepare_vmcs02_rare(vmx, vmcs12);
2663 vmx->nested.dirty_vmcs12 = false;
2664
2665 load_guest_pdptrs_vmcs12 = !nested_vmx_is_evmptr12_valid(vmx) ||
2666 !(evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2667 }
2668
2669 if (vmx->nested.nested_run_pending &&
2670 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2671 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2672 vmx_guest_debugctl_write(vcpu, vmcs12->guest_ia32_debugctl &
2673 vmx_get_supported_debugctl(vcpu, false));
2674 } else {
2675 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2676 vmx_guest_debugctl_write(vcpu, vmx->nested.pre_vmenter_debugctl);
2677 }
2678 if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2679 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2680 vmcs_write64(GUEST_BNDCFGS, vmx->nested.pre_vmenter_bndcfgs);
2681 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2682
2683 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2684 * bitwise-or of what L1 wants to trap for L2, and what we want to
2685 * trap. Note that CR0.TS also needs updating - we do this later.
2686 */
2687 vmx_update_exception_bitmap(vcpu);
2688 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2689 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2690
2691 if (vmx->nested.nested_run_pending &&
2692 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2693 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2694 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2695 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2696 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2697 }
2698
2699 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2700 vcpu->arch.l1_tsc_offset,
2701 vmx_get_l2_tsc_offset(vcpu),
2702 vmx_get_l2_tsc_multiplier(vcpu));
2703
2704 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2705 vcpu->arch.l1_tsc_scaling_ratio,
2706 vmx_get_l2_tsc_multiplier(vcpu));
2707
2708 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2709 if (kvm_caps.has_tsc_control)
2710 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2711
2712 nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2713
2714 if (nested_cpu_has_ept(vmcs12))
2715 nested_ept_init_mmu_context(vcpu);
2716
2717 /*
2718 * Override the CR0/CR4 read shadows after setting the effective guest
2719 * CR0/CR4. The common helpers also set the shadows, but they don't
2720 * account for vmcs12's cr0/4_guest_host_mask.
2721 */
2722 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2723 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2724
2725 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2726 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2727
2728 vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2729 /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2730 vmx_set_efer(vcpu, vcpu->arch.efer);
2731
2732 /*
2733 * Guest state is invalid and unrestricted guest is disabled,
2734 * which means L1 attempted VMEntry to L2 with invalid state.
2735 * Fail the VMEntry.
2736 *
2737 * However when force loading the guest state (SMM exit or
2738 * loading nested state after migration, it is possible to
2739 * have invalid guest state now, which will be later fixed by
2740 * restoring L2 register state
2741 */
2742 if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2743 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2744 return -EINVAL;
2745 }
2746
2747 /* Shadow page tables on either EPT or shadow page tables. */
2748 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2749 from_vmentry, entry_failure_code))
2750 return -EINVAL;
2751
2752 /*
2753 * Immediately write vmcs02.GUEST_CR3. It will be propagated to vmcs12
2754 * on nested VM-Exit, which can occur without actually running L2 and
2755 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2756 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2757 * transition to HLT instead of running L2.
2758 */
2759 if (enable_ept)
2760 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2761
2762 /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2763 if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2764 is_pae_paging(vcpu)) {
2765 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2766 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2767 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2768 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2769 }
2770
2771 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2772 kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)) &&
2773 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2774 vmcs12->guest_ia32_perf_global_ctrl))) {
2775 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2776 return -EINVAL;
2777 }
2778
2779 kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2780 kvm_rip_write(vcpu, vmcs12->guest_rip);
2781
2782 /*
2783 * It was observed that genuine Hyper-V running in L1 doesn't reset
2784 * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2785 * bits when it changes a field in eVMCS. Mark all fields as clean
2786 * here.
2787 */
2788 if (nested_vmx_is_evmptr12_valid(vmx))
2789 evmcs->hv_clean_fields |= HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2790
2791 return 0;
2792 }
2793
nested_vmx_check_nmi_controls(struct vmcs12 * vmcs12)2794 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2795 {
2796 if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2797 nested_cpu_has_virtual_nmis(vmcs12)))
2798 return -EINVAL;
2799
2800 if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2801 nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2802 return -EINVAL;
2803
2804 return 0;
2805 }
2806
nested_vmx_check_eptp(struct kvm_vcpu * vcpu,u64 new_eptp)2807 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2808 {
2809 struct vcpu_vmx *vmx = to_vmx(vcpu);
2810
2811 /* Check for memory type validity */
2812 switch (new_eptp & VMX_EPTP_MT_MASK) {
2813 case VMX_EPTP_MT_UC:
2814 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2815 return false;
2816 break;
2817 case VMX_EPTP_MT_WB:
2818 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2819 return false;
2820 break;
2821 default:
2822 return false;
2823 }
2824
2825 /* Page-walk levels validity. */
2826 switch (new_eptp & VMX_EPTP_PWL_MASK) {
2827 case VMX_EPTP_PWL_5:
2828 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2829 return false;
2830 break;
2831 case VMX_EPTP_PWL_4:
2832 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2833 return false;
2834 break;
2835 default:
2836 return false;
2837 }
2838
2839 /* Reserved bits should not be set */
2840 if (CC(!kvm_vcpu_is_legal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2841 return false;
2842
2843 /* AD, if set, should be supported */
2844 if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2845 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2846 return false;
2847 }
2848
2849 return true;
2850 }
2851
2852 /*
2853 * Checks related to VM-Execution Control Fields
2854 */
nested_check_vm_execution_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2855 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2856 struct vmcs12 *vmcs12)
2857 {
2858 struct vcpu_vmx *vmx = to_vmx(vcpu);
2859
2860 if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2861 vmx->nested.msrs.pinbased_ctls_low,
2862 vmx->nested.msrs.pinbased_ctls_high)) ||
2863 CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2864 vmx->nested.msrs.procbased_ctls_low,
2865 vmx->nested.msrs.procbased_ctls_high)))
2866 return -EINVAL;
2867
2868 if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2869 CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2870 vmx->nested.msrs.secondary_ctls_low,
2871 vmx->nested.msrs.secondary_ctls_high)))
2872 return -EINVAL;
2873
2874 if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2875 nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2876 nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2877 nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2878 nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2879 nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2880 nested_vmx_check_nmi_controls(vmcs12) ||
2881 nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2882 nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2883 nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2884 nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2885 CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2886 return -EINVAL;
2887
2888 if (!nested_cpu_has_preemption_timer(vmcs12) &&
2889 nested_cpu_has_save_preemption_timer(vmcs12))
2890 return -EINVAL;
2891
2892 if (nested_cpu_has_ept(vmcs12) &&
2893 CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2894 return -EINVAL;
2895
2896 if (nested_cpu_has_vmfunc(vmcs12)) {
2897 if (CC(vmcs12->vm_function_control &
2898 ~vmx->nested.msrs.vmfunc_controls))
2899 return -EINVAL;
2900
2901 if (nested_cpu_has_eptp_switching(vmcs12)) {
2902 if (CC(!nested_cpu_has_ept(vmcs12)) ||
2903 CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2904 return -EINVAL;
2905 }
2906 }
2907
2908 return 0;
2909 }
2910
2911 /*
2912 * Checks related to VM-Exit Control Fields
2913 */
nested_check_vm_exit_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2914 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2915 struct vmcs12 *vmcs12)
2916 {
2917 struct vcpu_vmx *vmx = to_vmx(vcpu);
2918
2919 if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2920 vmx->nested.msrs.exit_ctls_low,
2921 vmx->nested.msrs.exit_ctls_high)) ||
2922 CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2923 return -EINVAL;
2924
2925 return 0;
2926 }
2927
2928 /*
2929 * Checks related to VM-Entry Control Fields
2930 */
nested_check_vm_entry_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2931 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2932 struct vmcs12 *vmcs12)
2933 {
2934 struct vcpu_vmx *vmx = to_vmx(vcpu);
2935
2936 if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2937 vmx->nested.msrs.entry_ctls_low,
2938 vmx->nested.msrs.entry_ctls_high)))
2939 return -EINVAL;
2940
2941 /*
2942 * From the Intel SDM, volume 3:
2943 * Fields relevant to VM-entry event injection must be set properly.
2944 * These fields are the VM-entry interruption-information field, the
2945 * VM-entry exception error code, and the VM-entry instruction length.
2946 */
2947 if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2948 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2949 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2950 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2951 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2952 bool should_have_error_code;
2953 bool urg = nested_cpu_has2(vmcs12,
2954 SECONDARY_EXEC_UNRESTRICTED_GUEST);
2955 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2956
2957 /* VM-entry interruption-info field: interruption type */
2958 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2959 CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2960 !nested_cpu_supports_monitor_trap_flag(vcpu)))
2961 return -EINVAL;
2962
2963 /* VM-entry interruption-info field: vector */
2964 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2965 CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2966 CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2967 return -EINVAL;
2968
2969 /* VM-entry interruption-info field: deliver error code */
2970 should_have_error_code =
2971 intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2972 x86_exception_has_error_code(vector);
2973 if (CC(has_error_code != should_have_error_code))
2974 return -EINVAL;
2975
2976 /* VM-entry exception error code */
2977 if (CC(has_error_code &&
2978 vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2979 return -EINVAL;
2980
2981 /* VM-entry interruption-info field: reserved bits */
2982 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2983 return -EINVAL;
2984
2985 /* VM-entry instruction length */
2986 switch (intr_type) {
2987 case INTR_TYPE_SOFT_EXCEPTION:
2988 case INTR_TYPE_SOFT_INTR:
2989 case INTR_TYPE_PRIV_SW_EXCEPTION:
2990 if (CC(vmcs12->vm_entry_instruction_len > X86_MAX_INSTRUCTION_LENGTH) ||
2991 CC(vmcs12->vm_entry_instruction_len == 0 &&
2992 CC(!nested_cpu_has_zero_length_injection(vcpu))))
2993 return -EINVAL;
2994 }
2995 }
2996
2997 if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2998 return -EINVAL;
2999
3000 return 0;
3001 }
3002
nested_vmx_check_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3003 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
3004 struct vmcs12 *vmcs12)
3005 {
3006 if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
3007 nested_check_vm_exit_controls(vcpu, vmcs12) ||
3008 nested_check_vm_entry_controls(vcpu, vmcs12))
3009 return -EINVAL;
3010
3011 #ifdef CONFIG_KVM_HYPERV
3012 if (guest_cpu_cap_has_evmcs(vcpu))
3013 return nested_evmcs_check_controls(vmcs12);
3014 #endif
3015
3016 return 0;
3017 }
3018
nested_vmx_check_address_space_size(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3019 static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
3020 struct vmcs12 *vmcs12)
3021 {
3022 #ifdef CONFIG_X86_64
3023 if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
3024 !!(vcpu->arch.efer & EFER_LMA)))
3025 return -EINVAL;
3026 #endif
3027 return 0;
3028 }
3029
is_l1_noncanonical_address_on_vmexit(u64 la,struct vmcs12 * vmcs12)3030 static bool is_l1_noncanonical_address_on_vmexit(u64 la, struct vmcs12 *vmcs12)
3031 {
3032 /*
3033 * Check that the given linear address is canonical after a VM exit
3034 * from L2, based on HOST_CR4.LA57 value that will be loaded for L1.
3035 */
3036 u8 l1_address_bits_on_exit = (vmcs12->host_cr4 & X86_CR4_LA57) ? 57 : 48;
3037
3038 return !__is_canonical_address(la, l1_address_bits_on_exit);
3039 }
3040
nested_vmx_check_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3041 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
3042 struct vmcs12 *vmcs12)
3043 {
3044 bool ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
3045
3046 if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
3047 CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
3048 CC(!kvm_vcpu_is_legal_cr3(vcpu, vmcs12->host_cr3)))
3049 return -EINVAL;
3050
3051 if (CC(is_noncanonical_msr_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
3052 CC(is_noncanonical_msr_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
3053 return -EINVAL;
3054
3055 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
3056 CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
3057 return -EINVAL;
3058
3059 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3060 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3061 vmcs12->host_ia32_perf_global_ctrl)))
3062 return -EINVAL;
3063
3064 if (ia32e) {
3065 if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
3066 return -EINVAL;
3067 } else {
3068 if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
3069 CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
3070 CC((vmcs12->host_rip) >> 32))
3071 return -EINVAL;
3072 }
3073
3074 if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3075 CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3076 CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3077 CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3078 CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3079 CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3080 CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3081 CC(vmcs12->host_cs_selector == 0) ||
3082 CC(vmcs12->host_tr_selector == 0) ||
3083 CC(vmcs12->host_ss_selector == 0 && !ia32e))
3084 return -EINVAL;
3085
3086 if (CC(is_noncanonical_base_address(vmcs12->host_fs_base, vcpu)) ||
3087 CC(is_noncanonical_base_address(vmcs12->host_gs_base, vcpu)) ||
3088 CC(is_noncanonical_base_address(vmcs12->host_gdtr_base, vcpu)) ||
3089 CC(is_noncanonical_base_address(vmcs12->host_idtr_base, vcpu)) ||
3090 CC(is_noncanonical_base_address(vmcs12->host_tr_base, vcpu)) ||
3091 CC(is_l1_noncanonical_address_on_vmexit(vmcs12->host_rip, vmcs12)))
3092 return -EINVAL;
3093
3094 /*
3095 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
3096 * IA32_EFER MSR must be 0 in the field for that register. In addition,
3097 * the values of the LMA and LME bits in the field must each be that of
3098 * the host address-space size VM-exit control.
3099 */
3100 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
3101 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
3102 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
3103 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
3104 return -EINVAL;
3105 }
3106
3107 return 0;
3108 }
3109
nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3110 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
3111 struct vmcs12 *vmcs12)
3112 {
3113 struct vcpu_vmx *vmx = to_vmx(vcpu);
3114 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
3115 struct vmcs_hdr hdr;
3116
3117 if (vmcs12->vmcs_link_pointer == INVALID_GPA)
3118 return 0;
3119
3120 if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
3121 return -EINVAL;
3122
3123 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
3124 CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
3125 vmcs12->vmcs_link_pointer, VMCS12_SIZE)))
3126 return -EINVAL;
3127
3128 if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
3129 offsetof(struct vmcs12, hdr),
3130 sizeof(hdr))))
3131 return -EINVAL;
3132
3133 if (CC(hdr.revision_id != VMCS12_REVISION) ||
3134 CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
3135 return -EINVAL;
3136
3137 return 0;
3138 }
3139
3140 /*
3141 * Checks related to Guest Non-register State
3142 */
nested_check_guest_non_reg_state(struct vmcs12 * vmcs12)3143 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
3144 {
3145 if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
3146 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
3147 vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
3148 return -EINVAL;
3149
3150 return 0;
3151 }
3152
nested_vmx_check_guest_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,enum vm_entry_failure_code * entry_failure_code)3153 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
3154 struct vmcs12 *vmcs12,
3155 enum vm_entry_failure_code *entry_failure_code)
3156 {
3157 bool ia32e = !!(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE);
3158
3159 *entry_failure_code = ENTRY_FAIL_DEFAULT;
3160
3161 if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
3162 CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
3163 return -EINVAL;
3164
3165 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
3166 (CC(!kvm_dr7_valid(vmcs12->guest_dr7)) ||
3167 CC(!vmx_is_valid_debugctl(vcpu, vmcs12->guest_ia32_debugctl, false))))
3168 return -EINVAL;
3169
3170 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3171 CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3172 return -EINVAL;
3173
3174 if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3175 *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3176 return -EINVAL;
3177 }
3178
3179 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3180 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3181 vmcs12->guest_ia32_perf_global_ctrl)))
3182 return -EINVAL;
3183
3184 if (CC((vmcs12->guest_cr0 & (X86_CR0_PG | X86_CR0_PE)) == X86_CR0_PG))
3185 return -EINVAL;
3186
3187 if (CC(ia32e && !(vmcs12->guest_cr4 & X86_CR4_PAE)) ||
3188 CC(ia32e && !(vmcs12->guest_cr0 & X86_CR0_PG)))
3189 return -EINVAL;
3190
3191 /*
3192 * If the load IA32_EFER VM-entry control is 1, the following checks
3193 * are performed on the field for the IA32_EFER MSR:
3194 * - Bits reserved in the IA32_EFER MSR must be 0.
3195 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3196 * the IA-32e mode guest VM-exit control. It must also be identical
3197 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3198 * CR0.PG) is 1.
3199 */
3200 if (to_vmx(vcpu)->nested.nested_run_pending &&
3201 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3202 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3203 CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3204 CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3205 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3206 return -EINVAL;
3207 }
3208
3209 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3210 (CC(is_noncanonical_msr_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3211 CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3212 return -EINVAL;
3213
3214 if (nested_check_guest_non_reg_state(vmcs12))
3215 return -EINVAL;
3216
3217 return 0;
3218 }
3219
nested_vmx_check_vmentry_hw(struct kvm_vcpu * vcpu)3220 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3221 {
3222 struct vcpu_vmx *vmx = to_vmx(vcpu);
3223 unsigned long cr3, cr4;
3224 bool vm_fail;
3225
3226 if (!nested_early_check)
3227 return 0;
3228
3229 if (vmx->msr_autoload.host.nr)
3230 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3231 if (vmx->msr_autoload.guest.nr)
3232 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3233
3234 preempt_disable();
3235
3236 vmx_prepare_switch_to_guest(vcpu);
3237
3238 /*
3239 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3240 * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to
3241 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3242 * there is no need to preserve other bits or save/restore the field.
3243 */
3244 vmcs_writel(GUEST_RFLAGS, 0);
3245
3246 cr3 = __get_current_cr3_fast();
3247 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3248 vmcs_writel(HOST_CR3, cr3);
3249 vmx->loaded_vmcs->host_state.cr3 = cr3;
3250 }
3251
3252 cr4 = cr4_read_shadow();
3253 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3254 vmcs_writel(HOST_CR4, cr4);
3255 vmx->loaded_vmcs->host_state.cr4 = cr4;
3256 }
3257
3258 vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3259 __vmx_vcpu_run_flags(vmx));
3260
3261 if (vmx->msr_autoload.host.nr)
3262 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3263 if (vmx->msr_autoload.guest.nr)
3264 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3265
3266 if (vm_fail) {
3267 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3268
3269 preempt_enable();
3270
3271 trace_kvm_nested_vmenter_failed(
3272 "early hardware check VM-instruction error: ", error);
3273 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3274 return 1;
3275 }
3276
3277 /*
3278 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3279 */
3280 if (hw_breakpoint_active())
3281 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3282 local_irq_enable();
3283 preempt_enable();
3284
3285 /*
3286 * A non-failing VMEntry means we somehow entered guest mode with
3287 * an illegal RIP, and that's just the tip of the iceberg. There
3288 * is no telling what memory has been modified or what state has
3289 * been exposed to unknown code. Hitting this all but guarantees
3290 * a (very critical) hardware issue.
3291 */
3292 WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3293 VMX_EXIT_REASONS_FAILED_VMENTRY));
3294
3295 return 0;
3296 }
3297
3298 #ifdef CONFIG_KVM_HYPERV
nested_get_evmcs_page(struct kvm_vcpu * vcpu)3299 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3300 {
3301 struct vcpu_vmx *vmx = to_vmx(vcpu);
3302
3303 /*
3304 * hv_evmcs may end up being not mapped after migration (when
3305 * L2 was running), map it here to make sure vmcs12 changes are
3306 * properly reflected.
3307 */
3308 if (guest_cpu_cap_has_evmcs(vcpu) &&
3309 vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3310 enum nested_evmptrld_status evmptrld_status =
3311 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3312
3313 if (evmptrld_status == EVMPTRLD_VMFAIL ||
3314 evmptrld_status == EVMPTRLD_ERROR)
3315 return false;
3316
3317 /*
3318 * Post migration VMCS12 always provides the most actual
3319 * information, copy it to eVMCS upon entry.
3320 */
3321 vmx->nested.need_vmcs12_to_shadow_sync = true;
3322 }
3323
3324 return true;
3325 }
3326 #endif
3327
nested_get_vmcs12_pages(struct kvm_vcpu * vcpu)3328 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3329 {
3330 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3331 struct vcpu_vmx *vmx = to_vmx(vcpu);
3332 struct kvm_host_map *map;
3333
3334 if (!vcpu->arch.pdptrs_from_userspace &&
3335 !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3336 /*
3337 * Reload the guest's PDPTRs since after a migration
3338 * the guest CR3 might be restored prior to setting the nested
3339 * state which can lead to a load of wrong PDPTRs.
3340 */
3341 if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
3342 return false;
3343 }
3344
3345
3346 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3347 map = &vmx->nested.apic_access_page_map;
3348
3349 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->apic_access_addr), map)) {
3350 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(map->pfn));
3351 } else {
3352 pr_debug_ratelimited("%s: no backing for APIC-access address in vmcs12\n",
3353 __func__);
3354 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3355 vcpu->run->internal.suberror =
3356 KVM_INTERNAL_ERROR_EMULATION;
3357 vcpu->run->internal.ndata = 0;
3358 return false;
3359 }
3360 }
3361
3362 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3363 map = &vmx->nested.virtual_apic_map;
3364
3365 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3366 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3367 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3368 nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3369 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3370 /*
3371 * The processor will never use the TPR shadow, simply
3372 * clear the bit from the execution control. Such a
3373 * configuration is useless, but it happens in tests.
3374 * For any other configuration, failing the vm entry is
3375 * _not_ what the processor does but it's basically the
3376 * only possibility we have.
3377 */
3378 exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3379 } else {
3380 /*
3381 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3382 * force VM-Entry to fail.
3383 */
3384 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA);
3385 }
3386 }
3387
3388 if (nested_cpu_has_posted_intr(vmcs12)) {
3389 map = &vmx->nested.pi_desc_map;
3390
3391 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3392 vmx->nested.pi_desc =
3393 (struct pi_desc *)(((void *)map->hva) +
3394 offset_in_page(vmcs12->posted_intr_desc_addr));
3395 vmcs_write64(POSTED_INTR_DESC_ADDR,
3396 pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3397 } else {
3398 /*
3399 * Defer the KVM_INTERNAL_EXIT until KVM tries to
3400 * access the contents of the VMCS12 posted interrupt
3401 * descriptor. (Note that KVM may do this when it
3402 * should not, per the architectural specification.)
3403 */
3404 vmx->nested.pi_desc = NULL;
3405 pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3406 }
3407 }
3408 if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3409 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3410 else
3411 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3412
3413 return true;
3414 }
3415
vmx_get_nested_state_pages(struct kvm_vcpu * vcpu)3416 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3417 {
3418 #ifdef CONFIG_KVM_HYPERV
3419 /*
3420 * Note: nested_get_evmcs_page() also updates 'vp_assist_page' copy
3421 * in 'struct kvm_vcpu_hv' in case eVMCS is in use, this is mandatory
3422 * to make nested_evmcs_l2_tlb_flush_enabled() work correctly post
3423 * migration.
3424 */
3425 if (!nested_get_evmcs_page(vcpu)) {
3426 pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3427 __func__);
3428 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3429 vcpu->run->internal.suberror =
3430 KVM_INTERNAL_ERROR_EMULATION;
3431 vcpu->run->internal.ndata = 0;
3432
3433 return false;
3434 }
3435 #endif
3436
3437 if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3438 return false;
3439
3440 return true;
3441 }
3442
nested_vmx_write_pml_buffer(struct kvm_vcpu * vcpu,gpa_t gpa)3443 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3444 {
3445 struct vmcs12 *vmcs12;
3446 struct vcpu_vmx *vmx = to_vmx(vcpu);
3447 gpa_t dst;
3448
3449 if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3450 return 0;
3451
3452 if (WARN_ON_ONCE(vmx->nested.pml_full))
3453 return 1;
3454
3455 /*
3456 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3457 * set is already checked as part of A/D emulation.
3458 */
3459 vmcs12 = get_vmcs12(vcpu);
3460 if (!nested_cpu_has_pml(vmcs12))
3461 return 0;
3462
3463 if (vmcs12->guest_pml_index >= PML_LOG_NR_ENTRIES) {
3464 vmx->nested.pml_full = true;
3465 return 1;
3466 }
3467
3468 gpa &= ~0xFFFull;
3469 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3470
3471 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3472 offset_in_page(dst), sizeof(gpa)))
3473 return 0;
3474
3475 vmcs12->guest_pml_index--;
3476
3477 return 0;
3478 }
3479
3480 /*
3481 * Intel's VMX Instruction Reference specifies a common set of prerequisites
3482 * for running VMX instructions (except VMXON, whose prerequisites are
3483 * slightly different). It also specifies what exception to inject otherwise.
3484 * Note that many of these exceptions have priority over VM exits, so they
3485 * don't have to be checked again here.
3486 */
nested_vmx_check_permission(struct kvm_vcpu * vcpu)3487 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3488 {
3489 if (!to_vmx(vcpu)->nested.vmxon) {
3490 kvm_queue_exception(vcpu, UD_VECTOR);
3491 return 0;
3492 }
3493
3494 if (vmx_get_cpl(vcpu)) {
3495 kvm_inject_gp(vcpu, 0);
3496 return 0;
3497 }
3498
3499 return 1;
3500 }
3501
3502 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3503 struct vmcs12 *vmcs12);
3504
3505 /*
3506 * If from_vmentry is false, this is being called from state restore (either RSM
3507 * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume.
3508 *
3509 * Returns:
3510 * NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3511 * NVMX_VMENTRY_VMFAIL: Consistency check VMFail
3512 * NVMX_VMENTRY_VMEXIT: Consistency check VMExit
3513 * NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3514 */
nested_vmx_enter_non_root_mode(struct kvm_vcpu * vcpu,bool from_vmentry)3515 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3516 bool from_vmentry)
3517 {
3518 struct vcpu_vmx *vmx = to_vmx(vcpu);
3519 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3520 enum vm_entry_failure_code entry_failure_code;
3521 union vmx_exit_reason exit_reason = {
3522 .basic = EXIT_REASON_INVALID_STATE,
3523 .failed_vmentry = 1,
3524 };
3525 u32 failed_index;
3526
3527 trace_kvm_nested_vmenter(kvm_rip_read(vcpu),
3528 vmx->nested.current_vmptr,
3529 vmcs12->guest_rip,
3530 vmcs12->guest_intr_status,
3531 vmcs12->vm_entry_intr_info_field,
3532 vmcs12->secondary_vm_exec_control & SECONDARY_EXEC_ENABLE_EPT,
3533 vmcs12->ept_pointer,
3534 vmcs12->guest_cr3,
3535 KVM_ISA_VMX);
3536
3537 kvm_service_local_tlb_flush_requests(vcpu);
3538
3539 if (!vmx->nested.nested_run_pending ||
3540 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3541 vmx->nested.pre_vmenter_debugctl = vmx_guest_debugctl_read();
3542 if (kvm_mpx_supported() &&
3543 (!vmx->nested.nested_run_pending ||
3544 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
3545 vmx->nested.pre_vmenter_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3546
3547 /*
3548 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3549 * nested early checks are disabled. In the event of a "late" VM-Fail,
3550 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3551 * software model to the pre-VMEntry host state. When EPT is disabled,
3552 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3553 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3. Stuffing
3554 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3555 * the correct value. Smashing vmcs01.GUEST_CR3 is safe because nested
3556 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3557 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3558 * L1. Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3559 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3560 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3561 * path would need to manually save/restore vmcs01.GUEST_CR3.
3562 */
3563 if (!enable_ept && !nested_early_check)
3564 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3565
3566 vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3567
3568 prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3569
3570 if (from_vmentry) {
3571 if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3572 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3573 return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3574 }
3575
3576 if (nested_vmx_check_vmentry_hw(vcpu)) {
3577 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3578 return NVMX_VMENTRY_VMFAIL;
3579 }
3580
3581 if (nested_vmx_check_guest_state(vcpu, vmcs12,
3582 &entry_failure_code)) {
3583 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3584 vmcs12->exit_qualification = entry_failure_code;
3585 goto vmentry_fail_vmexit;
3586 }
3587 }
3588
3589 enter_guest_mode(vcpu);
3590
3591 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3592 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3593 vmcs12->exit_qualification = entry_failure_code;
3594 goto vmentry_fail_vmexit_guest_mode;
3595 }
3596
3597 if (from_vmentry) {
3598 failed_index = nested_vmx_load_msr(vcpu,
3599 vmcs12->vm_entry_msr_load_addr,
3600 vmcs12->vm_entry_msr_load_count);
3601 if (failed_index) {
3602 exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3603 vmcs12->exit_qualification = failed_index;
3604 goto vmentry_fail_vmexit_guest_mode;
3605 }
3606 } else {
3607 /*
3608 * The MMU is not initialized to point at the right entities yet and
3609 * "get pages" would need to read data from the guest (i.e. we will
3610 * need to perform gpa to hpa translation). Request a call
3611 * to nested_get_vmcs12_pages before the next VM-entry. The MSRs
3612 * have already been set at vmentry time and should not be reset.
3613 */
3614 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3615 }
3616
3617 /*
3618 * Re-evaluate pending events if L1 had a pending IRQ/NMI/INIT/SIPI
3619 * when it executed VMLAUNCH/VMRESUME, as entering non-root mode can
3620 * effectively unblock various events, e.g. INIT/SIPI cause VM-Exit
3621 * unconditionally. Take care to pull data from vmcs01 as appropriate,
3622 * e.g. when checking for interrupt windows, as vmcs02 is now loaded.
3623 */
3624 if ((__exec_controls_get(&vmx->vmcs01) & (CPU_BASED_INTR_WINDOW_EXITING |
3625 CPU_BASED_NMI_WINDOW_EXITING)) ||
3626 kvm_apic_has_pending_init_or_sipi(vcpu) ||
3627 kvm_apic_has_interrupt(vcpu))
3628 kvm_make_request(KVM_REQ_EVENT, vcpu);
3629
3630 /*
3631 * Do not start the preemption timer hrtimer until after we know
3632 * we are successful, so that only nested_vmx_vmexit needs to cancel
3633 * the timer.
3634 */
3635 vmx->nested.preemption_timer_expired = false;
3636 if (nested_cpu_has_preemption_timer(vmcs12)) {
3637 u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3638 vmx_start_preemption_timer(vcpu, timer_value);
3639 }
3640
3641 /*
3642 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3643 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3644 * returned as far as L1 is concerned. It will only return (and set
3645 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3646 */
3647 return NVMX_VMENTRY_SUCCESS;
3648
3649 /*
3650 * A failed consistency check that leads to a VMExit during L1's
3651 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3652 * 26.7 "VM-entry failures during or after loading guest state".
3653 */
3654 vmentry_fail_vmexit_guest_mode:
3655 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3656 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3657 leave_guest_mode(vcpu);
3658
3659 vmentry_fail_vmexit:
3660 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3661
3662 if (!from_vmentry)
3663 return NVMX_VMENTRY_VMEXIT;
3664
3665 load_vmcs12_host_state(vcpu, vmcs12);
3666 vmcs12->vm_exit_reason = exit_reason.full;
3667 if (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx))
3668 vmx->nested.need_vmcs12_to_shadow_sync = true;
3669 return NVMX_VMENTRY_VMEXIT;
3670 }
3671
3672 /*
3673 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3674 * for running an L2 nested guest.
3675 */
nested_vmx_run(struct kvm_vcpu * vcpu,bool launch)3676 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3677 {
3678 struct vmcs12 *vmcs12;
3679 enum nvmx_vmentry_status status;
3680 struct vcpu_vmx *vmx = to_vmx(vcpu);
3681 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3682 enum nested_evmptrld_status evmptrld_status;
3683
3684 if (!nested_vmx_check_permission(vcpu))
3685 return 1;
3686
3687 evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3688 if (evmptrld_status == EVMPTRLD_ERROR) {
3689 kvm_queue_exception(vcpu, UD_VECTOR);
3690 return 1;
3691 }
3692
3693 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED);
3694
3695 if (CC(evmptrld_status == EVMPTRLD_VMFAIL))
3696 return nested_vmx_failInvalid(vcpu);
3697
3698 if (CC(!nested_vmx_is_evmptr12_valid(vmx) &&
3699 vmx->nested.current_vmptr == INVALID_GPA))
3700 return nested_vmx_failInvalid(vcpu);
3701
3702 vmcs12 = get_vmcs12(vcpu);
3703
3704 /*
3705 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3706 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3707 * rather than RFLAGS.ZF, and no error number is stored to the
3708 * VM-instruction error field.
3709 */
3710 if (CC(vmcs12->hdr.shadow_vmcs))
3711 return nested_vmx_failInvalid(vcpu);
3712
3713 if (nested_vmx_is_evmptr12_valid(vmx)) {
3714 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
3715
3716 copy_enlightened_to_vmcs12(vmx, evmcs->hv_clean_fields);
3717 /* Enlightened VMCS doesn't have launch state */
3718 vmcs12->launch_state = !launch;
3719 } else if (enable_shadow_vmcs) {
3720 copy_shadow_to_vmcs12(vmx);
3721 }
3722
3723 /*
3724 * The nested entry process starts with enforcing various prerequisites
3725 * on vmcs12 as required by the Intel SDM, and act appropriately when
3726 * they fail: As the SDM explains, some conditions should cause the
3727 * instruction to fail, while others will cause the instruction to seem
3728 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3729 * To speed up the normal (success) code path, we should avoid checking
3730 * for misconfigurations which will anyway be caught by the processor
3731 * when using the merged vmcs02.
3732 */
3733 if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3734 return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3735
3736 if (CC(vmcs12->launch_state == launch))
3737 return nested_vmx_fail(vcpu,
3738 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3739 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3740
3741 if (nested_vmx_check_controls(vcpu, vmcs12))
3742 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3743
3744 if (nested_vmx_check_address_space_size(vcpu, vmcs12))
3745 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3746
3747 if (nested_vmx_check_host_state(vcpu, vmcs12))
3748 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3749
3750 /*
3751 * We're finally done with prerequisite checking, and can start with
3752 * the nested entry.
3753 */
3754 vmx->nested.nested_run_pending = 1;
3755 vmx->nested.has_preemption_timer_deadline = false;
3756 status = nested_vmx_enter_non_root_mode(vcpu, true);
3757 if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3758 goto vmentry_failed;
3759
3760 /* Hide L1D cache contents from the nested guest. */
3761 vmx->vcpu.arch.l1tf_flush_l1d = true;
3762
3763 /*
3764 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3765 * also be used as part of restoring nVMX state for
3766 * snapshot restore (migration).
3767 *
3768 * In this flow, it is assumed that vmcs12 cache was
3769 * transferred as part of captured nVMX state and should
3770 * therefore not be read from guest memory (which may not
3771 * exist on destination host yet).
3772 */
3773 nested_cache_shadow_vmcs12(vcpu, vmcs12);
3774
3775 switch (vmcs12->guest_activity_state) {
3776 case GUEST_ACTIVITY_HLT:
3777 /*
3778 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3779 * awakened by event injection or by an NMI-window VM-exit or
3780 * by an interrupt-window VM-exit, halt the vcpu.
3781 */
3782 if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3783 !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3784 !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3785 (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3786 vmx->nested.nested_run_pending = 0;
3787 return kvm_emulate_halt_noskip(vcpu);
3788 }
3789 break;
3790 case GUEST_ACTIVITY_WAIT_SIPI:
3791 vmx->nested.nested_run_pending = 0;
3792 kvm_set_mp_state(vcpu, KVM_MP_STATE_INIT_RECEIVED);
3793 break;
3794 default:
3795 break;
3796 }
3797
3798 return 1;
3799
3800 vmentry_failed:
3801 vmx->nested.nested_run_pending = 0;
3802 if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3803 return 0;
3804 if (status == NVMX_VMENTRY_VMEXIT)
3805 return 1;
3806 WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3807 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3808 }
3809
3810 /*
3811 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3812 * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3813 * This function returns the new value we should put in vmcs12.guest_cr0.
3814 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3815 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3816 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3817 * didn't trap the bit, because if L1 did, so would L0).
3818 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3819 * been modified by L2, and L1 knows it. So just leave the old value of
3820 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3821 * isn't relevant, because if L0 traps this bit it can set it to anything.
3822 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3823 * changed these bits, and therefore they need to be updated, but L0
3824 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3825 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3826 */
3827 static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3828 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3829 {
3830 return
3831 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3832 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3833 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3834 vcpu->arch.cr0_guest_owned_bits));
3835 }
3836
3837 static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3838 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3839 {
3840 return
3841 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3842 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3843 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3844 vcpu->arch.cr4_guest_owned_bits));
3845 }
3846
vmcs12_save_pending_event(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 vm_exit_reason,u32 exit_intr_info)3847 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3848 struct vmcs12 *vmcs12,
3849 u32 vm_exit_reason, u32 exit_intr_info)
3850 {
3851 u32 idt_vectoring;
3852 unsigned int nr;
3853
3854 /*
3855 * Per the SDM, VM-Exits due to double and triple faults are never
3856 * considered to occur during event delivery, even if the double/triple
3857 * fault is the result of an escalating vectoring issue.
3858 *
3859 * Note, the SDM qualifies the double fault behavior with "The original
3860 * event results in a double-fault exception". It's unclear why the
3861 * qualification exists since exits due to double fault can occur only
3862 * while vectoring a different exception (injected events are never
3863 * subject to interception), i.e. there's _always_ an original event.
3864 *
3865 * The SDM also uses NMI as a confusing example for the "original event
3866 * causes the VM exit directly" clause. NMI isn't special in any way,
3867 * the same rule applies to all events that cause an exit directly.
3868 * NMI is an odd choice for the example because NMIs can only occur on
3869 * instruction boundaries, i.e. they _can't_ occur during vectoring.
3870 */
3871 if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT ||
3872 ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI &&
3873 is_double_fault(exit_intr_info))) {
3874 vmcs12->idt_vectoring_info_field = 0;
3875 } else if (vcpu->arch.exception.injected) {
3876 nr = vcpu->arch.exception.vector;
3877 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3878
3879 if (kvm_exception_is_soft(nr)) {
3880 vmcs12->vm_exit_instruction_len =
3881 vcpu->arch.event_exit_inst_len;
3882 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3883 } else
3884 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3885
3886 if (vcpu->arch.exception.has_error_code) {
3887 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3888 vmcs12->idt_vectoring_error_code =
3889 vcpu->arch.exception.error_code;
3890 }
3891
3892 vmcs12->idt_vectoring_info_field = idt_vectoring;
3893 } else if (vcpu->arch.nmi_injected) {
3894 vmcs12->idt_vectoring_info_field =
3895 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3896 } else if (vcpu->arch.interrupt.injected) {
3897 nr = vcpu->arch.interrupt.nr;
3898 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3899
3900 if (vcpu->arch.interrupt.soft) {
3901 idt_vectoring |= INTR_TYPE_SOFT_INTR;
3902 vmcs12->vm_entry_instruction_len =
3903 vcpu->arch.event_exit_inst_len;
3904 } else
3905 idt_vectoring |= INTR_TYPE_EXT_INTR;
3906
3907 vmcs12->idt_vectoring_info_field = idt_vectoring;
3908 } else {
3909 vmcs12->idt_vectoring_info_field = 0;
3910 }
3911 }
3912
3913
nested_mark_vmcs12_pages_dirty(struct kvm_vcpu * vcpu)3914 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3915 {
3916 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3917 gfn_t gfn;
3918
3919 /*
3920 * Don't need to mark the APIC access page dirty; it is never
3921 * written to by the CPU during APIC virtualization.
3922 */
3923
3924 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3925 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3926 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3927 }
3928
3929 if (nested_cpu_has_posted_intr(vmcs12)) {
3930 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3931 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3932 }
3933 }
3934
vmx_complete_nested_posted_interrupt(struct kvm_vcpu * vcpu)3935 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3936 {
3937 struct vcpu_vmx *vmx = to_vmx(vcpu);
3938 int max_irr;
3939 void *vapic_page;
3940 u16 status;
3941
3942 if (!vmx->nested.pi_pending)
3943 return 0;
3944
3945 if (!vmx->nested.pi_desc)
3946 goto mmio_needed;
3947
3948 vmx->nested.pi_pending = false;
3949
3950 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3951 return 0;
3952
3953 max_irr = pi_find_highest_vector(vmx->nested.pi_desc);
3954 if (max_irr > 0) {
3955 vapic_page = vmx->nested.virtual_apic_map.hva;
3956 if (!vapic_page)
3957 goto mmio_needed;
3958
3959 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3960 vapic_page, &max_irr);
3961 status = vmcs_read16(GUEST_INTR_STATUS);
3962 if ((u8)max_irr > ((u8)status & 0xff)) {
3963 status &= ~0xff;
3964 status |= (u8)max_irr;
3965 vmcs_write16(GUEST_INTR_STATUS, status);
3966 }
3967 }
3968
3969 nested_mark_vmcs12_pages_dirty(vcpu);
3970 return 0;
3971
3972 mmio_needed:
3973 kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
3974 return -ENXIO;
3975 }
3976
nested_vmx_inject_exception_vmexit(struct kvm_vcpu * vcpu)3977 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu)
3978 {
3979 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
3980 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
3981 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3982 unsigned long exit_qual;
3983
3984 if (ex->has_payload) {
3985 exit_qual = ex->payload;
3986 } else if (ex->vector == PF_VECTOR) {
3987 exit_qual = vcpu->arch.cr2;
3988 } else if (ex->vector == DB_VECTOR) {
3989 exit_qual = vcpu->arch.dr6;
3990 exit_qual &= ~DR6_BT;
3991 exit_qual ^= DR6_ACTIVE_LOW;
3992 } else {
3993 exit_qual = 0;
3994 }
3995
3996 /*
3997 * Unlike AMD's Paged Real Mode, which reports an error code on #PF
3998 * VM-Exits even if the CPU is in Real Mode, Intel VMX never sets the
3999 * "has error code" flags on VM-Exit if the CPU is in Real Mode.
4000 */
4001 if (ex->has_error_code && is_protmode(vcpu)) {
4002 /*
4003 * Intel CPUs do not generate error codes with bits 31:16 set,
4004 * and more importantly VMX disallows setting bits 31:16 in the
4005 * injected error code for VM-Entry. Drop the bits to mimic
4006 * hardware and avoid inducing failure on nested VM-Entry if L1
4007 * chooses to inject the exception back to L2. AMD CPUs _do_
4008 * generate "full" 32-bit error codes, so KVM allows userspace
4009 * to inject exception error codes with bits 31:16 set.
4010 */
4011 vmcs12->vm_exit_intr_error_code = (u16)ex->error_code;
4012 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
4013 }
4014
4015 if (kvm_exception_is_soft(ex->vector))
4016 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
4017 else
4018 intr_info |= INTR_TYPE_HARD_EXCEPTION;
4019
4020 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
4021 vmx_get_nmi_mask(vcpu))
4022 intr_info |= INTR_INFO_UNBLOCK_NMI;
4023
4024 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
4025 }
4026
4027 /*
4028 * Returns true if a debug trap is (likely) pending delivery. Infer the class
4029 * of a #DB (trap-like vs. fault-like) from the exception payload (to-be-DR6).
4030 * Using the payload is flawed because code breakpoints (fault-like) and data
4031 * breakpoints (trap-like) set the same bits in DR6 (breakpoint detected), i.e.
4032 * this will return false positives if a to-be-injected code breakpoint #DB is
4033 * pending (from KVM's perspective, but not "pending" across an instruction
4034 * boundary). ICEBP, a.k.a. INT1, is also not reflected here even though it
4035 * too is trap-like.
4036 *
4037 * KVM "works" despite these flaws as ICEBP isn't currently supported by the
4038 * emulator, Monitor Trap Flag is not marked pending on intercepted #DBs (the
4039 * #DB has already happened), and MTF isn't marked pending on code breakpoints
4040 * from the emulator (because such #DBs are fault-like and thus don't trigger
4041 * actions that fire on instruction retire).
4042 */
vmx_get_pending_dbg_trap(struct kvm_queued_exception * ex)4043 static unsigned long vmx_get_pending_dbg_trap(struct kvm_queued_exception *ex)
4044 {
4045 if (!ex->pending || ex->vector != DB_VECTOR)
4046 return 0;
4047
4048 /* General Detect #DBs are always fault-like. */
4049 return ex->payload & ~DR6_BD;
4050 }
4051
4052 /*
4053 * Returns true if there's a pending #DB exception that is lower priority than
4054 * a pending Monitor Trap Flag VM-Exit. TSS T-flag #DBs are not emulated by
4055 * KVM, but could theoretically be injected by userspace. Note, this code is
4056 * imperfect, see above.
4057 */
vmx_is_low_priority_db_trap(struct kvm_queued_exception * ex)4058 static bool vmx_is_low_priority_db_trap(struct kvm_queued_exception *ex)
4059 {
4060 return vmx_get_pending_dbg_trap(ex) & ~DR6_BT;
4061 }
4062
4063 /*
4064 * Certain VM-exits set the 'pending debug exceptions' field to indicate a
4065 * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
4066 * represents these debug traps with a payload that is said to be compatible
4067 * with the 'pending debug exceptions' field, write the payload to the VMCS
4068 * field if a VM-exit is delivered before the debug trap.
4069 */
nested_vmx_update_pending_dbg(struct kvm_vcpu * vcpu)4070 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
4071 {
4072 unsigned long pending_dbg;
4073
4074 pending_dbg = vmx_get_pending_dbg_trap(&vcpu->arch.exception);
4075 if (pending_dbg)
4076 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, pending_dbg);
4077 }
4078
nested_vmx_preemption_timer_pending(struct kvm_vcpu * vcpu)4079 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
4080 {
4081 return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
4082 to_vmx(vcpu)->nested.preemption_timer_expired;
4083 }
4084
vmx_has_nested_events(struct kvm_vcpu * vcpu,bool for_injection)4085 static bool vmx_has_nested_events(struct kvm_vcpu *vcpu, bool for_injection)
4086 {
4087 struct vcpu_vmx *vmx = to_vmx(vcpu);
4088 void *vapic = vmx->nested.virtual_apic_map.hva;
4089 int max_irr, vppr;
4090
4091 if (nested_vmx_preemption_timer_pending(vcpu) ||
4092 vmx->nested.mtf_pending)
4093 return true;
4094
4095 /*
4096 * Virtual Interrupt Delivery doesn't require manual injection. Either
4097 * the interrupt is already in GUEST_RVI and will be recognized by CPU
4098 * at VM-Entry, or there is a KVM_REQ_EVENT pending and KVM will move
4099 * the interrupt from the PIR to RVI prior to entering the guest.
4100 */
4101 if (for_injection)
4102 return false;
4103
4104 if (!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4105 __vmx_interrupt_blocked(vcpu))
4106 return false;
4107
4108 if (!vapic)
4109 return false;
4110
4111 vppr = *((u32 *)(vapic + APIC_PROCPRI));
4112
4113 max_irr = vmx_get_rvi();
4114 if ((max_irr & 0xf0) > (vppr & 0xf0))
4115 return true;
4116
4117 if (vmx->nested.pi_pending && vmx->nested.pi_desc &&
4118 pi_test_on(vmx->nested.pi_desc)) {
4119 max_irr = pi_find_highest_vector(vmx->nested.pi_desc);
4120 if (max_irr > 0 && (max_irr & 0xf0) > (vppr & 0xf0))
4121 return true;
4122 }
4123
4124 return false;
4125 }
4126
4127 /*
4128 * Per the Intel SDM's table "Priority Among Concurrent Events", with minor
4129 * edits to fill in missing examples, e.g. #DB due to split-lock accesses,
4130 * and less minor edits to splice in the priority of VMX Non-Root specific
4131 * events, e.g. MTF and NMI/INTR-window exiting.
4132 *
4133 * 1 Hardware Reset and Machine Checks
4134 * - RESET
4135 * - Machine Check
4136 *
4137 * 2 Trap on Task Switch
4138 * - T flag in TSS is set (on task switch)
4139 *
4140 * 3 External Hardware Interventions
4141 * - FLUSH
4142 * - STOPCLK
4143 * - SMI
4144 * - INIT
4145 *
4146 * 3.5 Monitor Trap Flag (MTF) VM-exit[1]
4147 *
4148 * 4 Traps on Previous Instruction
4149 * - Breakpoints
4150 * - Trap-class Debug Exceptions (#DB due to TF flag set, data/I-O
4151 * breakpoint, or #DB due to a split-lock access)
4152 *
4153 * 4.3 VMX-preemption timer expired VM-exit
4154 *
4155 * 4.6 NMI-window exiting VM-exit[2]
4156 *
4157 * 5 Nonmaskable Interrupts (NMI)
4158 *
4159 * 5.5 Interrupt-window exiting VM-exit and Virtual-interrupt delivery
4160 *
4161 * 6 Maskable Hardware Interrupts
4162 *
4163 * 7 Code Breakpoint Fault
4164 *
4165 * 8 Faults from Fetching Next Instruction
4166 * - Code-Segment Limit Violation
4167 * - Code Page Fault
4168 * - Control protection exception (missing ENDBRANCH at target of indirect
4169 * call or jump)
4170 *
4171 * 9 Faults from Decoding Next Instruction
4172 * - Instruction length > 15 bytes
4173 * - Invalid Opcode
4174 * - Coprocessor Not Available
4175 *
4176 *10 Faults on Executing Instruction
4177 * - Overflow
4178 * - Bound error
4179 * - Invalid TSS
4180 * - Segment Not Present
4181 * - Stack fault
4182 * - General Protection
4183 * - Data Page Fault
4184 * - Alignment Check
4185 * - x86 FPU Floating-point exception
4186 * - SIMD floating-point exception
4187 * - Virtualization exception
4188 * - Control protection exception
4189 *
4190 * [1] Per the "Monitor Trap Flag" section: System-management interrupts (SMIs),
4191 * INIT signals, and higher priority events take priority over MTF VM exits.
4192 * MTF VM exits take priority over debug-trap exceptions and lower priority
4193 * events.
4194 *
4195 * [2] Debug-trap exceptions and higher priority events take priority over VM exits
4196 * caused by the VMX-preemption timer. VM exits caused by the VMX-preemption
4197 * timer take priority over VM exits caused by the "NMI-window exiting"
4198 * VM-execution control and lower priority events.
4199 *
4200 * [3] Debug-trap exceptions and higher priority events take priority over VM exits
4201 * caused by "NMI-window exiting". VM exits caused by this control take
4202 * priority over non-maskable interrupts (NMIs) and lower priority events.
4203 *
4204 * [4] Virtual-interrupt delivery has the same priority as that of VM exits due to
4205 * the 1-setting of the "interrupt-window exiting" VM-execution control. Thus,
4206 * non-maskable interrupts (NMIs) and higher priority events take priority over
4207 * delivery of a virtual interrupt; delivery of a virtual interrupt takes
4208 * priority over external interrupts and lower priority events.
4209 */
vmx_check_nested_events(struct kvm_vcpu * vcpu)4210 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
4211 {
4212 struct kvm_lapic *apic = vcpu->arch.apic;
4213 struct vcpu_vmx *vmx = to_vmx(vcpu);
4214 /*
4215 * Only a pending nested run blocks a pending exception. If there is a
4216 * previously injected event, the pending exception occurred while said
4217 * event was being delivered and thus needs to be handled.
4218 */
4219 bool block_nested_exceptions = vmx->nested.nested_run_pending;
4220 /*
4221 * Events that don't require injection, i.e. that are virtualized by
4222 * hardware, aren't blocked by a pending VM-Enter as KVM doesn't need
4223 * to regain control in order to deliver the event, and hardware will
4224 * handle event ordering, e.g. with respect to injected exceptions.
4225 *
4226 * But, new events (not exceptions) are only recognized at instruction
4227 * boundaries. If an event needs reinjection, then KVM is handling a
4228 * VM-Exit that occurred _during_ instruction execution; new events,
4229 * irrespective of whether or not they're injected, are blocked until
4230 * the instruction completes.
4231 */
4232 bool block_non_injected_events = kvm_event_needs_reinjection(vcpu);
4233 /*
4234 * Inject events are blocked by nested VM-Enter, as KVM is responsible
4235 * for managing priority between concurrent events, i.e. KVM needs to
4236 * wait until after VM-Enter completes to deliver injected events.
4237 */
4238 bool block_nested_events = block_nested_exceptions ||
4239 block_non_injected_events;
4240
4241 if (lapic_in_kernel(vcpu) &&
4242 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
4243 if (block_nested_events)
4244 return -EBUSY;
4245 nested_vmx_update_pending_dbg(vcpu);
4246 clear_bit(KVM_APIC_INIT, &apic->pending_events);
4247 if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
4248 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
4249
4250 /* MTF is discarded if the vCPU is in WFS. */
4251 vmx->nested.mtf_pending = false;
4252 return 0;
4253 }
4254
4255 if (lapic_in_kernel(vcpu) &&
4256 test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
4257 if (block_nested_events)
4258 return -EBUSY;
4259
4260 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
4261 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
4262 nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
4263 apic->sipi_vector & 0xFFUL);
4264 return 0;
4265 }
4266 /* Fallthrough, the SIPI is completely ignored. */
4267 }
4268
4269 /*
4270 * Process exceptions that are higher priority than Monitor Trap Flag:
4271 * fault-like exceptions, TSS T flag #DB (not emulated by KVM, but
4272 * could theoretically come in from userspace), and ICEBP (INT1).
4273 *
4274 * TODO: SMIs have higher priority than MTF and trap-like #DBs (except
4275 * for TSS T flag #DBs). KVM also doesn't save/restore pending MTF
4276 * across SMI/RSM as it should; that needs to be addressed in order to
4277 * prioritize SMI over MTF and trap-like #DBs.
4278 */
4279 if (vcpu->arch.exception_vmexit.pending &&
4280 !vmx_is_low_priority_db_trap(&vcpu->arch.exception_vmexit)) {
4281 if (block_nested_exceptions)
4282 return -EBUSY;
4283
4284 nested_vmx_inject_exception_vmexit(vcpu);
4285 return 0;
4286 }
4287
4288 if (vcpu->arch.exception.pending &&
4289 !vmx_is_low_priority_db_trap(&vcpu->arch.exception)) {
4290 if (block_nested_exceptions)
4291 return -EBUSY;
4292 goto no_vmexit;
4293 }
4294
4295 if (vmx->nested.mtf_pending) {
4296 if (block_nested_events)
4297 return -EBUSY;
4298 nested_vmx_update_pending_dbg(vcpu);
4299 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
4300 return 0;
4301 }
4302
4303 if (vcpu->arch.exception_vmexit.pending) {
4304 if (block_nested_exceptions)
4305 return -EBUSY;
4306
4307 nested_vmx_inject_exception_vmexit(vcpu);
4308 return 0;
4309 }
4310
4311 if (vcpu->arch.exception.pending) {
4312 if (block_nested_exceptions)
4313 return -EBUSY;
4314 goto no_vmexit;
4315 }
4316
4317 if (nested_vmx_preemption_timer_pending(vcpu)) {
4318 if (block_nested_events)
4319 return -EBUSY;
4320 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
4321 return 0;
4322 }
4323
4324 if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
4325 if (block_nested_events)
4326 return -EBUSY;
4327 goto no_vmexit;
4328 }
4329
4330 if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
4331 if (block_nested_events)
4332 return -EBUSY;
4333 if (!nested_exit_on_nmi(vcpu))
4334 goto no_vmexit;
4335
4336 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
4337 NMI_VECTOR | INTR_TYPE_NMI_INTR |
4338 INTR_INFO_VALID_MASK, 0);
4339 /*
4340 * The NMI-triggered VM exit counts as injection:
4341 * clear this one and block further NMIs.
4342 */
4343 vcpu->arch.nmi_pending = 0;
4344 vmx_set_nmi_mask(vcpu, true);
4345 return 0;
4346 }
4347
4348 if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
4349 int irq;
4350
4351 if (!nested_exit_on_intr(vcpu)) {
4352 if (block_nested_events)
4353 return -EBUSY;
4354
4355 goto no_vmexit;
4356 }
4357
4358 if (!nested_exit_intr_ack_set(vcpu)) {
4359 if (block_nested_events)
4360 return -EBUSY;
4361
4362 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
4363 return 0;
4364 }
4365
4366 irq = kvm_cpu_get_extint(vcpu);
4367 if (irq != -1) {
4368 if (block_nested_events)
4369 return -EBUSY;
4370
4371 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT,
4372 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR | irq, 0);
4373 return 0;
4374 }
4375
4376 irq = kvm_apic_has_interrupt(vcpu);
4377 if (WARN_ON_ONCE(irq < 0))
4378 goto no_vmexit;
4379
4380 /*
4381 * If the IRQ is L2's PI notification vector, process posted
4382 * interrupts for L2 instead of injecting VM-Exit, as the
4383 * detection/morphing architecturally occurs when the IRQ is
4384 * delivered to the CPU. Note, only interrupts that are routed
4385 * through the local APIC trigger posted interrupt processing,
4386 * and enabling posted interrupts requires ACK-on-exit.
4387 */
4388 if (irq == vmx->nested.posted_intr_nv) {
4389 /*
4390 * Nested posted interrupts are delivered via RVI, i.e.
4391 * aren't injected by KVM, and so can be queued even if
4392 * manual event injection is disallowed.
4393 */
4394 if (block_non_injected_events)
4395 return -EBUSY;
4396
4397 vmx->nested.pi_pending = true;
4398 kvm_apic_clear_irr(vcpu, irq);
4399 goto no_vmexit;
4400 }
4401
4402 if (block_nested_events)
4403 return -EBUSY;
4404
4405 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT,
4406 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR | irq, 0);
4407
4408 /*
4409 * ACK the interrupt _after_ emulating VM-Exit, as the IRQ must
4410 * be marked as in-service in vmcs01.GUEST_INTERRUPT_STATUS.SVI
4411 * if APICv is active.
4412 */
4413 kvm_apic_ack_interrupt(vcpu, irq);
4414 return 0;
4415 }
4416
4417 no_vmexit:
4418 return vmx_complete_nested_posted_interrupt(vcpu);
4419 }
4420
vmx_get_preemption_timer_value(struct kvm_vcpu * vcpu)4421 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
4422 {
4423 ktime_t remaining =
4424 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
4425 u64 value;
4426
4427 if (ktime_to_ns(remaining) <= 0)
4428 return 0;
4429
4430 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
4431 do_div(value, 1000000);
4432 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
4433 }
4434
is_vmcs12_ext_field(unsigned long field)4435 static bool is_vmcs12_ext_field(unsigned long field)
4436 {
4437 switch (field) {
4438 case GUEST_ES_SELECTOR:
4439 case GUEST_CS_SELECTOR:
4440 case GUEST_SS_SELECTOR:
4441 case GUEST_DS_SELECTOR:
4442 case GUEST_FS_SELECTOR:
4443 case GUEST_GS_SELECTOR:
4444 case GUEST_LDTR_SELECTOR:
4445 case GUEST_TR_SELECTOR:
4446 case GUEST_ES_LIMIT:
4447 case GUEST_CS_LIMIT:
4448 case GUEST_SS_LIMIT:
4449 case GUEST_DS_LIMIT:
4450 case GUEST_FS_LIMIT:
4451 case GUEST_GS_LIMIT:
4452 case GUEST_LDTR_LIMIT:
4453 case GUEST_TR_LIMIT:
4454 case GUEST_GDTR_LIMIT:
4455 case GUEST_IDTR_LIMIT:
4456 case GUEST_ES_AR_BYTES:
4457 case GUEST_DS_AR_BYTES:
4458 case GUEST_FS_AR_BYTES:
4459 case GUEST_GS_AR_BYTES:
4460 case GUEST_LDTR_AR_BYTES:
4461 case GUEST_TR_AR_BYTES:
4462 case GUEST_ES_BASE:
4463 case GUEST_CS_BASE:
4464 case GUEST_SS_BASE:
4465 case GUEST_DS_BASE:
4466 case GUEST_FS_BASE:
4467 case GUEST_GS_BASE:
4468 case GUEST_LDTR_BASE:
4469 case GUEST_TR_BASE:
4470 case GUEST_GDTR_BASE:
4471 case GUEST_IDTR_BASE:
4472 case GUEST_PENDING_DBG_EXCEPTIONS:
4473 case GUEST_BNDCFGS:
4474 return true;
4475 default:
4476 break;
4477 }
4478
4479 return false;
4480 }
4481
sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4482 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4483 struct vmcs12 *vmcs12)
4484 {
4485 struct vcpu_vmx *vmx = to_vmx(vcpu);
4486
4487 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4488 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4489 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4490 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4491 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4492 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4493 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4494 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4495 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4496 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4497 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4498 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4499 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4500 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4501 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4502 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4503 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4504 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4505 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4506 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4507 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4508 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4509 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4510 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4511 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4512 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4513 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4514 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4515 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4516 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4517 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4518 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4519 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4520 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4521 vmcs12->guest_pending_dbg_exceptions =
4522 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4523
4524 vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4525 }
4526
copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4527 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4528 struct vmcs12 *vmcs12)
4529 {
4530 struct vcpu_vmx *vmx = to_vmx(vcpu);
4531 int cpu;
4532
4533 if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4534 return;
4535
4536
4537 WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4538
4539 cpu = get_cpu();
4540 vmx->loaded_vmcs = &vmx->nested.vmcs02;
4541 vmx_vcpu_load_vmcs(vcpu, cpu);
4542
4543 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4544
4545 vmx->loaded_vmcs = &vmx->vmcs01;
4546 vmx_vcpu_load_vmcs(vcpu, cpu);
4547 put_cpu();
4548 }
4549
4550 /*
4551 * Update the guest state fields of vmcs12 to reflect changes that
4552 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4553 * VM-entry controls is also updated, since this is really a guest
4554 * state bit.)
4555 */
sync_vmcs02_to_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4556 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4557 {
4558 struct vcpu_vmx *vmx = to_vmx(vcpu);
4559
4560 if (nested_vmx_is_evmptr12_valid(vmx))
4561 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4562
4563 vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4564 !nested_vmx_is_evmptr12_valid(vmx);
4565
4566 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4567 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4568
4569 vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4570 vmcs12->guest_rip = kvm_rip_read(vcpu);
4571 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4572
4573 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4574 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4575
4576 vmcs12->guest_interruptibility_info =
4577 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4578
4579 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4580 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4581 else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4582 vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4583 else
4584 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4585
4586 if (nested_cpu_has_preemption_timer(vmcs12) &&
4587 vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4588 !vmx->nested.nested_run_pending)
4589 vmcs12->vmx_preemption_timer_value =
4590 vmx_get_preemption_timer_value(vcpu);
4591
4592 /*
4593 * In some cases (usually, nested EPT), L2 is allowed to change its
4594 * own CR3 without exiting. If it has changed it, we must keep it.
4595 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4596 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4597 *
4598 * Additionally, restore L2's PDPTR to vmcs12.
4599 */
4600 if (enable_ept) {
4601 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4602 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4603 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4604 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4605 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4606 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4607 }
4608 }
4609
4610 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4611
4612 if (nested_cpu_has_vid(vmcs12))
4613 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4614
4615 vmcs12->vm_entry_controls =
4616 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4617 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4618
4619 /*
4620 * Note! Save DR7, but intentionally don't grab DEBUGCTL from vmcs02.
4621 * Writes to DEBUGCTL that aren't intercepted by L1 are immediately
4622 * propagated to vmcs12 (see vmx_set_msr()), as the value loaded into
4623 * vmcs02 doesn't strictly track vmcs12.
4624 */
4625 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4626 vmcs12->guest_dr7 = vcpu->arch.dr7;
4627
4628 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4629 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4630 }
4631
4632 /*
4633 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4634 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4635 * and this function updates it to reflect the changes to the guest state while
4636 * L2 was running (and perhaps made some exits which were handled directly by L0
4637 * without going back to L1), and to reflect the exit reason.
4638 * Note that we do not have to copy here all VMCS fields, just those that
4639 * could have changed by the L2 guest or the exit - i.e., the guest-state and
4640 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4641 * which already writes to vmcs12 directly.
4642 */
prepare_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification,u32 exit_insn_len)4643 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4644 u32 vm_exit_reason, u32 exit_intr_info,
4645 unsigned long exit_qualification, u32 exit_insn_len)
4646 {
4647 /* update exit information fields: */
4648 vmcs12->vm_exit_reason = vm_exit_reason;
4649 if (vmx_get_exit_reason(vcpu).enclave_mode)
4650 vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4651 vmcs12->exit_qualification = exit_qualification;
4652
4653 /*
4654 * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched
4655 * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other
4656 * exit info fields are unmodified.
4657 */
4658 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4659 vmcs12->launch_state = 1;
4660
4661 /* vm_entry_intr_info_field is cleared on exit. Emulate this
4662 * instead of reading the real value. */
4663 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4664
4665 /*
4666 * Transfer the event that L0 or L1 may wanted to inject into
4667 * L2 to IDT_VECTORING_INFO_FIELD.
4668 */
4669 vmcs12_save_pending_event(vcpu, vmcs12,
4670 vm_exit_reason, exit_intr_info);
4671
4672 vmcs12->vm_exit_intr_info = exit_intr_info;
4673 vmcs12->vm_exit_instruction_len = exit_insn_len;
4674 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4675
4676 /*
4677 * According to spec, there's no need to store the guest's
4678 * MSRs if the exit is due to a VM-entry failure that occurs
4679 * during or after loading the guest state. Since this exit
4680 * does not fall in that category, we need to save the MSRs.
4681 */
4682 if (nested_vmx_store_msr(vcpu,
4683 vmcs12->vm_exit_msr_store_addr,
4684 vmcs12->vm_exit_msr_store_count))
4685 nested_vmx_abort(vcpu,
4686 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4687 }
4688 }
4689
4690 /*
4691 * A part of what we need to when the nested L2 guest exits and we want to
4692 * run its L1 parent, is to reset L1's guest state to the host state specified
4693 * in vmcs12.
4694 * This function is to be called not only on normal nested exit, but also on
4695 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4696 * Failures During or After Loading Guest State").
4697 * This function should be called when the active VMCS is L1's (vmcs01).
4698 */
load_vmcs12_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4699 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4700 struct vmcs12 *vmcs12)
4701 {
4702 enum vm_entry_failure_code ignored;
4703 struct kvm_segment seg;
4704
4705 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4706 vcpu->arch.efer = vmcs12->host_ia32_efer;
4707 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4708 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4709 else
4710 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4711 vmx_set_efer(vcpu, vcpu->arch.efer);
4712
4713 kvm_rsp_write(vcpu, vmcs12->host_rsp);
4714 kvm_rip_write(vcpu, vmcs12->host_rip);
4715 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4716 vmx_set_interrupt_shadow(vcpu, 0);
4717
4718 /*
4719 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4720 * actually changed, because vmx_set_cr0 refers to efer set above.
4721 *
4722 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4723 * (KVM doesn't change it);
4724 */
4725 vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4726 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4727
4728 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
4729 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4730 vmx_set_cr4(vcpu, vmcs12->host_cr4);
4731
4732 nested_ept_uninit_mmu_context(vcpu);
4733
4734 /*
4735 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4736 * couldn't have changed.
4737 */
4738 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4739 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4740
4741 nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4742
4743 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4744 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4745 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4746 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4747 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4748 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4749 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4750
4751 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
4752 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4753 vmcs_write64(GUEST_BNDCFGS, 0);
4754
4755 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4756 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4757 vcpu->arch.pat = vmcs12->host_ia32_pat;
4758 }
4759 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
4760 kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)))
4761 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4762 vmcs12->host_ia32_perf_global_ctrl));
4763
4764 /* Set L1 segment info according to Intel SDM
4765 27.5.2 Loading Host Segment and Descriptor-Table Registers */
4766 seg = (struct kvm_segment) {
4767 .base = 0,
4768 .limit = 0xFFFFFFFF,
4769 .selector = vmcs12->host_cs_selector,
4770 .type = 11,
4771 .present = 1,
4772 .s = 1,
4773 .g = 1
4774 };
4775 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4776 seg.l = 1;
4777 else
4778 seg.db = 1;
4779 __vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4780 seg = (struct kvm_segment) {
4781 .base = 0,
4782 .limit = 0xFFFFFFFF,
4783 .type = 3,
4784 .present = 1,
4785 .s = 1,
4786 .db = 1,
4787 .g = 1
4788 };
4789 seg.selector = vmcs12->host_ds_selector;
4790 __vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4791 seg.selector = vmcs12->host_es_selector;
4792 __vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4793 seg.selector = vmcs12->host_ss_selector;
4794 __vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4795 seg.selector = vmcs12->host_fs_selector;
4796 seg.base = vmcs12->host_fs_base;
4797 __vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4798 seg.selector = vmcs12->host_gs_selector;
4799 seg.base = vmcs12->host_gs_base;
4800 __vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4801 seg = (struct kvm_segment) {
4802 .base = vmcs12->host_tr_base,
4803 .limit = 0x67,
4804 .selector = vmcs12->host_tr_selector,
4805 .type = 11,
4806 .present = 1
4807 };
4808 __vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4809
4810 memset(&seg, 0, sizeof(seg));
4811 seg.unusable = 1;
4812 __vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4813
4814 kvm_set_dr(vcpu, 7, 0x400);
4815 vmx_guest_debugctl_write(vcpu, 0);
4816
4817 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4818 vmcs12->vm_exit_msr_load_count))
4819 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4820
4821 to_vt(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4822 }
4823
nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx * vmx)4824 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4825 {
4826 struct vmx_uret_msr *efer_msr;
4827 unsigned int i;
4828
4829 if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4830 return vmcs_read64(GUEST_IA32_EFER);
4831
4832 if (cpu_has_load_ia32_efer())
4833 return kvm_host.efer;
4834
4835 for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4836 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4837 return vmx->msr_autoload.guest.val[i].value;
4838 }
4839
4840 efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4841 if (efer_msr)
4842 return efer_msr->data;
4843
4844 return kvm_host.efer;
4845 }
4846
nested_vmx_restore_host_state(struct kvm_vcpu * vcpu)4847 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4848 {
4849 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4850 struct vcpu_vmx *vmx = to_vmx(vcpu);
4851 struct vmx_msr_entry g, h;
4852 gpa_t gpa;
4853 u32 i, j;
4854
4855 vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4856
4857 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4858 /*
4859 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4860 * as vmcs01.GUEST_DR7 contains a userspace defined value
4861 * and vcpu->arch.dr7 is not squirreled away before the
4862 * nested VMENTER (not worth adding a variable in nested_vmx).
4863 */
4864 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4865 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4866 else
4867 WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4868 }
4869
4870 /* Reload DEBUGCTL to ensure vmcs01 has a fresh FREEZE_IN_SMM value. */
4871 vmx_reload_guest_debugctl(vcpu);
4872
4873 /*
4874 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4875 * handle a variety of side effects to KVM's software model.
4876 */
4877 vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4878
4879 vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4880 vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4881
4882 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4883 vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4884
4885 nested_ept_uninit_mmu_context(vcpu);
4886 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4887 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4888
4889 /*
4890 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4891 * from vmcs01 (if necessary). The PDPTRs are not loaded on
4892 * VMFail, like everything else we just need to ensure our
4893 * software model is up-to-date.
4894 */
4895 if (enable_ept && is_pae_paging(vcpu))
4896 ept_save_pdptrs(vcpu);
4897
4898 kvm_mmu_reset_context(vcpu);
4899
4900 /*
4901 * This nasty bit of open coding is a compromise between blindly
4902 * loading L1's MSRs using the exit load lists (incorrect emulation
4903 * of VMFail), leaving the nested VM's MSRs in the software model
4904 * (incorrect behavior) and snapshotting the modified MSRs (too
4905 * expensive since the lists are unbound by hardware). For each
4906 * MSR that was (prematurely) loaded from the nested VMEntry load
4907 * list, reload it from the exit load list if it exists and differs
4908 * from the guest value. The intent is to stuff host state as
4909 * silently as possible, not to fully process the exit load list.
4910 */
4911 for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4912 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4913 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4914 pr_debug_ratelimited(
4915 "%s read MSR index failed (%u, 0x%08llx)\n",
4916 __func__, i, gpa);
4917 goto vmabort;
4918 }
4919
4920 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4921 gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4922 if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4923 pr_debug_ratelimited(
4924 "%s read MSR failed (%u, 0x%08llx)\n",
4925 __func__, j, gpa);
4926 goto vmabort;
4927 }
4928 if (h.index != g.index)
4929 continue;
4930 if (h.value == g.value)
4931 break;
4932
4933 if (nested_vmx_load_msr_check(vcpu, &h)) {
4934 pr_debug_ratelimited(
4935 "%s check failed (%u, 0x%x, 0x%x)\n",
4936 __func__, j, h.index, h.reserved);
4937 goto vmabort;
4938 }
4939
4940 if (kvm_set_msr_with_filter(vcpu, h.index, h.value)) {
4941 pr_debug_ratelimited(
4942 "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4943 __func__, j, h.index, h.value);
4944 goto vmabort;
4945 }
4946 }
4947 }
4948
4949 return;
4950
4951 vmabort:
4952 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4953 }
4954
4955 /*
4956 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4957 * and modify vmcs12 to make it see what it would expect to see there if
4958 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4959 */
__nested_vmx_vmexit(struct kvm_vcpu * vcpu,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification,u32 exit_insn_len)4960 void __nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4961 u32 exit_intr_info, unsigned long exit_qualification,
4962 u32 exit_insn_len)
4963 {
4964 struct vcpu_vmx *vmx = to_vmx(vcpu);
4965 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4966
4967 /* Pending MTF traps are discarded on VM-Exit. */
4968 vmx->nested.mtf_pending = false;
4969
4970 /* trying to cancel vmlaunch/vmresume is a bug */
4971 WARN_ON_ONCE(vmx->nested.nested_run_pending);
4972
4973 #ifdef CONFIG_KVM_HYPERV
4974 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4975 /*
4976 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4977 * Enlightened VMCS after migration and we still need to
4978 * do that when something is forcing L2->L1 exit prior to
4979 * the first L2 run.
4980 */
4981 (void)nested_get_evmcs_page(vcpu);
4982 }
4983 #endif
4984
4985 /* Service pending TLB flush requests for L2 before switching to L1. */
4986 kvm_service_local_tlb_flush_requests(vcpu);
4987
4988 /*
4989 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4990 * now and the new vmentry. Ensure that the VMCS02 PDPTR fields are
4991 * up-to-date before switching to L1.
4992 */
4993 if (enable_ept && is_pae_paging(vcpu))
4994 vmx_ept_load_pdptrs(vcpu);
4995
4996 leave_guest_mode(vcpu);
4997
4998 if (nested_cpu_has_preemption_timer(vmcs12))
4999 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
5000
5001 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
5002 vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
5003 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
5004 vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
5005 }
5006
5007 if (likely(!vmx->fail)) {
5008 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
5009
5010 if (vm_exit_reason != -1)
5011 prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
5012 exit_intr_info, exit_qualification,
5013 exit_insn_len);
5014
5015 /*
5016 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
5017 * also be used to capture vmcs12 cache as part of
5018 * capturing nVMX state for snapshot (migration).
5019 *
5020 * Otherwise, this flush will dirty guest memory at a
5021 * point it is already assumed by user-space to be
5022 * immutable.
5023 */
5024 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
5025 } else {
5026 /*
5027 * The only expected VM-instruction error is "VM entry with
5028 * invalid control field(s)." Anything else indicates a
5029 * problem with L0. And we should never get here with a
5030 * VMFail of any type if early consistency checks are enabled.
5031 */
5032 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
5033 VMXERR_ENTRY_INVALID_CONTROL_FIELD);
5034 WARN_ON_ONCE(nested_early_check);
5035 }
5036
5037 /*
5038 * Drop events/exceptions that were queued for re-injection to L2
5039 * (picked up via vmx_complete_interrupts()), as well as exceptions
5040 * that were pending for L2. Note, this must NOT be hoisted above
5041 * prepare_vmcs12(), events/exceptions queued for re-injection need to
5042 * be captured in vmcs12 (see vmcs12_save_pending_event()).
5043 */
5044 vcpu->arch.nmi_injected = false;
5045 kvm_clear_exception_queue(vcpu);
5046 kvm_clear_interrupt_queue(vcpu);
5047
5048 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
5049
5050 kvm_nested_vmexit_handle_ibrs(vcpu);
5051
5052 /* Update any VMCS fields that might have changed while L2 ran */
5053 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
5054 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
5055 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
5056 if (kvm_caps.has_tsc_control)
5057 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
5058
5059 if (vmx->nested.l1_tpr_threshold != -1)
5060 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
5061
5062 if (vmx->nested.change_vmcs01_virtual_apic_mode) {
5063 vmx->nested.change_vmcs01_virtual_apic_mode = false;
5064 vmx_set_virtual_apic_mode(vcpu);
5065 }
5066
5067 if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
5068 vmx->nested.update_vmcs01_cpu_dirty_logging = false;
5069 vmx_update_cpu_dirty_logging(vcpu);
5070 }
5071
5072 nested_put_vmcs12_pages(vcpu);
5073
5074 if (vmx->nested.reload_vmcs01_apic_access_page) {
5075 vmx->nested.reload_vmcs01_apic_access_page = false;
5076 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5077 }
5078
5079 if (vmx->nested.update_vmcs01_apicv_status) {
5080 vmx->nested.update_vmcs01_apicv_status = false;
5081 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
5082 }
5083
5084 if (vmx->nested.update_vmcs01_hwapic_isr) {
5085 vmx->nested.update_vmcs01_hwapic_isr = false;
5086 kvm_apic_update_hwapic_isr(vcpu);
5087 }
5088
5089 if ((vm_exit_reason != -1) &&
5090 (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx)))
5091 vmx->nested.need_vmcs12_to_shadow_sync = true;
5092
5093 /* in case we halted in L2 */
5094 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
5095
5096 if (likely(!vmx->fail)) {
5097 if (vm_exit_reason != -1)
5098 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
5099 vmcs12->exit_qualification,
5100 vmcs12->idt_vectoring_info_field,
5101 vmcs12->vm_exit_intr_info,
5102 vmcs12->vm_exit_intr_error_code,
5103 KVM_ISA_VMX);
5104
5105 load_vmcs12_host_state(vcpu, vmcs12);
5106
5107 /*
5108 * Process events if an injectable IRQ or NMI is pending, even
5109 * if the event is blocked (RFLAGS.IF is cleared on VM-Exit).
5110 * If an event became pending while L2 was active, KVM needs to
5111 * either inject the event or request an IRQ/NMI window. SMIs
5112 * don't need to be processed as SMM is mutually exclusive with
5113 * non-root mode. INIT/SIPI don't need to be checked as INIT
5114 * is blocked post-VMXON, and SIPIs are ignored.
5115 */
5116 if (kvm_cpu_has_injectable_intr(vcpu) || vcpu->arch.nmi_pending)
5117 kvm_make_request(KVM_REQ_EVENT, vcpu);
5118 return;
5119 }
5120
5121 /*
5122 * After an early L2 VM-entry failure, we're now back
5123 * in L1 which thinks it just finished a VMLAUNCH or
5124 * VMRESUME instruction, so we need to set the failure
5125 * flag and the VM-instruction error field of the VMCS
5126 * accordingly, and skip the emulated instruction.
5127 */
5128 (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
5129
5130 /*
5131 * Restore L1's host state to KVM's software model. We're here
5132 * because a consistency check was caught by hardware, which
5133 * means some amount of guest state has been propagated to KVM's
5134 * model and needs to be unwound to the host's state.
5135 */
5136 nested_vmx_restore_host_state(vcpu);
5137
5138 vmx->fail = 0;
5139 }
5140
nested_vmx_triple_fault(struct kvm_vcpu * vcpu)5141 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
5142 {
5143 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5144 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
5145 }
5146
5147 /*
5148 * Decode the memory-address operand of a vmx instruction, as recorded on an
5149 * exit caused by such an instruction (run by a guest hypervisor).
5150 * On success, returns 0. When the operand is invalid, returns 1 and throws
5151 * #UD, #GP, or #SS.
5152 */
get_vmx_mem_address(struct kvm_vcpu * vcpu,unsigned long exit_qualification,u32 vmx_instruction_info,bool wr,int len,gva_t * ret)5153 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
5154 u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
5155 {
5156 gva_t off;
5157 bool exn;
5158 struct kvm_segment s;
5159
5160 /*
5161 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5162 * Execution", on an exit, vmx_instruction_info holds most of the
5163 * addressing components of the operand. Only the displacement part
5164 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5165 * For how an actual address is calculated from all these components,
5166 * refer to Vol. 1, "Operand Addressing".
5167 */
5168 int scaling = vmx_instruction_info & 3;
5169 int addr_size = (vmx_instruction_info >> 7) & 7;
5170 bool is_reg = vmx_instruction_info & (1u << 10);
5171 int seg_reg = (vmx_instruction_info >> 15) & 7;
5172 int index_reg = (vmx_instruction_info >> 18) & 0xf;
5173 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5174 int base_reg = (vmx_instruction_info >> 23) & 0xf;
5175 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
5176
5177 if (is_reg) {
5178 kvm_queue_exception(vcpu, UD_VECTOR);
5179 return 1;
5180 }
5181
5182 /* Addr = segment_base + offset */
5183 /* offset = base + [index * scale] + displacement */
5184 off = exit_qualification; /* holds the displacement */
5185 if (addr_size == 1)
5186 off = (gva_t)sign_extend64(off, 31);
5187 else if (addr_size == 0)
5188 off = (gva_t)sign_extend64(off, 15);
5189 if (base_is_valid)
5190 off += kvm_register_read(vcpu, base_reg);
5191 if (index_is_valid)
5192 off += kvm_register_read(vcpu, index_reg) << scaling;
5193 vmx_get_segment(vcpu, &s, seg_reg);
5194
5195 /*
5196 * The effective address, i.e. @off, of a memory operand is truncated
5197 * based on the address size of the instruction. Note that this is
5198 * the *effective address*, i.e. the address prior to accounting for
5199 * the segment's base.
5200 */
5201 if (addr_size == 1) /* 32 bit */
5202 off &= 0xffffffff;
5203 else if (addr_size == 0) /* 16 bit */
5204 off &= 0xffff;
5205
5206 /* Checks for #GP/#SS exceptions. */
5207 exn = false;
5208 if (is_long_mode(vcpu)) {
5209 /*
5210 * The virtual/linear address is never truncated in 64-bit
5211 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
5212 * address when using FS/GS with a non-zero base.
5213 */
5214 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
5215 *ret = s.base + off;
5216 else
5217 *ret = off;
5218
5219 *ret = vmx_get_untagged_addr(vcpu, *ret, 0);
5220 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
5221 * non-canonical form. This is the only check on the memory
5222 * destination for long mode!
5223 */
5224 exn = is_noncanonical_address(*ret, vcpu, 0);
5225 } else {
5226 /*
5227 * When not in long mode, the virtual/linear address is
5228 * unconditionally truncated to 32 bits regardless of the
5229 * address size.
5230 */
5231 *ret = (s.base + off) & 0xffffffff;
5232
5233 /* Protected mode: apply checks for segment validity in the
5234 * following order:
5235 * - segment type check (#GP(0) may be thrown)
5236 * - usability check (#GP(0)/#SS(0))
5237 * - limit check (#GP(0)/#SS(0))
5238 */
5239 if (wr)
5240 /* #GP(0) if the destination operand is located in a
5241 * read-only data segment or any code segment.
5242 */
5243 exn = ((s.type & 0xa) == 0 || (s.type & 8));
5244 else
5245 /* #GP(0) if the source operand is located in an
5246 * execute-only code segment
5247 */
5248 exn = ((s.type & 0xa) == 8);
5249 if (exn) {
5250 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
5251 return 1;
5252 }
5253 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
5254 */
5255 exn = (s.unusable != 0);
5256
5257 /*
5258 * Protected mode: #GP(0)/#SS(0) if the memory operand is
5259 * outside the segment limit. All CPUs that support VMX ignore
5260 * limit checks for flat segments, i.e. segments with base==0,
5261 * limit==0xffffffff and of type expand-up data or code.
5262 */
5263 if (!(s.base == 0 && s.limit == 0xffffffff &&
5264 ((s.type & 8) || !(s.type & 4))))
5265 exn = exn || ((u64)off + len - 1 > s.limit);
5266 }
5267 if (exn) {
5268 kvm_queue_exception_e(vcpu,
5269 seg_reg == VCPU_SREG_SS ?
5270 SS_VECTOR : GP_VECTOR,
5271 0);
5272 return 1;
5273 }
5274
5275 return 0;
5276 }
5277
nested_vmx_get_vmptr(struct kvm_vcpu * vcpu,gpa_t * vmpointer,int * ret)5278 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
5279 int *ret)
5280 {
5281 gva_t gva;
5282 struct x86_exception e;
5283 int r;
5284
5285 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5286 vmcs_read32(VMX_INSTRUCTION_INFO), false,
5287 sizeof(*vmpointer), &gva)) {
5288 *ret = 1;
5289 return -EINVAL;
5290 }
5291
5292 r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
5293 if (r != X86EMUL_CONTINUE) {
5294 *ret = kvm_handle_memory_failure(vcpu, r, &e);
5295 return -EINVAL;
5296 }
5297
5298 return 0;
5299 }
5300
5301 /*
5302 * Allocate a shadow VMCS and associate it with the currently loaded
5303 * VMCS, unless such a shadow VMCS already exists. The newly allocated
5304 * VMCS is also VMCLEARed, so that it is ready for use.
5305 */
alloc_shadow_vmcs(struct kvm_vcpu * vcpu)5306 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
5307 {
5308 struct vcpu_vmx *vmx = to_vmx(vcpu);
5309 struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
5310
5311 /*
5312 * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it
5313 * when L1 executes VMXOFF or the vCPU is forced out of nested
5314 * operation. VMXON faults if the CPU is already post-VMXON, so it
5315 * should be impossible to already have an allocated shadow VMCS. KVM
5316 * doesn't support virtualization of VMCS shadowing, so vmcs01 should
5317 * always be the loaded VMCS.
5318 */
5319 if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs))
5320 return loaded_vmcs->shadow_vmcs;
5321
5322 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
5323 if (loaded_vmcs->shadow_vmcs)
5324 vmcs_clear(loaded_vmcs->shadow_vmcs);
5325
5326 return loaded_vmcs->shadow_vmcs;
5327 }
5328
enter_vmx_operation(struct kvm_vcpu * vcpu)5329 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
5330 {
5331 struct vcpu_vmx *vmx = to_vmx(vcpu);
5332 int r;
5333
5334 r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
5335 if (r < 0)
5336 goto out_vmcs02;
5337
5338 vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5339 if (!vmx->nested.cached_vmcs12)
5340 goto out_cached_vmcs12;
5341
5342 vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA;
5343 vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5344 if (!vmx->nested.cached_shadow_vmcs12)
5345 goto out_cached_shadow_vmcs12;
5346
5347 if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
5348 goto out_shadow_vmcs;
5349
5350 hrtimer_setup(&vmx->nested.preemption_timer, vmx_preemption_timer_fn, CLOCK_MONOTONIC,
5351 HRTIMER_MODE_ABS_PINNED);
5352
5353 vmx->nested.vpid02 = allocate_vpid();
5354
5355 vmx->nested.vmcs02_initialized = false;
5356 vmx->nested.vmxon = true;
5357
5358 if (vmx_pt_mode_is_host_guest()) {
5359 vmx->pt_desc.guest.ctl = 0;
5360 pt_update_intercept_for_msr(vcpu);
5361 }
5362
5363 return 0;
5364
5365 out_shadow_vmcs:
5366 kfree(vmx->nested.cached_shadow_vmcs12);
5367
5368 out_cached_shadow_vmcs12:
5369 kfree(vmx->nested.cached_vmcs12);
5370
5371 out_cached_vmcs12:
5372 free_loaded_vmcs(&vmx->nested.vmcs02);
5373
5374 out_vmcs02:
5375 return -ENOMEM;
5376 }
5377
5378 /* Emulate the VMXON instruction. */
handle_vmxon(struct kvm_vcpu * vcpu)5379 static int handle_vmxon(struct kvm_vcpu *vcpu)
5380 {
5381 int ret;
5382 gpa_t vmptr;
5383 uint32_t revision;
5384 struct vcpu_vmx *vmx = to_vmx(vcpu);
5385 const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
5386 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
5387
5388 /*
5389 * Manually check CR4.VMXE checks, KVM must force CR4.VMXE=1 to enter
5390 * the guest and so cannot rely on hardware to perform the check,
5391 * which has higher priority than VM-Exit (see Intel SDM's pseudocode
5392 * for VMXON).
5393 *
5394 * Rely on hardware for the other pre-VM-Exit checks, CR0.PE=1, !VM86
5395 * and !COMPATIBILITY modes. For an unrestricted guest, KVM doesn't
5396 * force any of the relevant guest state. For a restricted guest, KVM
5397 * does force CR0.PE=1, but only to also force VM86 in order to emulate
5398 * Real Mode, and so there's no need to check CR0.PE manually.
5399 */
5400 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_VMXE)) {
5401 kvm_queue_exception(vcpu, UD_VECTOR);
5402 return 1;
5403 }
5404
5405 /*
5406 * The CPL is checked for "not in VMX operation" and for "in VMX root",
5407 * and has higher priority than the VM-Fail due to being post-VMXON,
5408 * i.e. VMXON #GPs outside of VMX non-root if CPL!=0. In VMX non-root,
5409 * VMXON causes VM-Exit and KVM unconditionally forwards VMXON VM-Exits
5410 * from L2 to L1, i.e. there's no need to check for the vCPU being in
5411 * VMX non-root.
5412 *
5413 * Forwarding the VM-Exit unconditionally, i.e. without performing the
5414 * #UD checks (see above), is functionally ok because KVM doesn't allow
5415 * L1 to run L2 without CR4.VMXE=0, and because KVM never modifies L2's
5416 * CR0 or CR4, i.e. it's L2's responsibility to emulate #UDs that are
5417 * missed by hardware due to shadowing CR0 and/or CR4.
5418 */
5419 if (vmx_get_cpl(vcpu)) {
5420 kvm_inject_gp(vcpu, 0);
5421 return 1;
5422 }
5423
5424 if (vmx->nested.vmxon)
5425 return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5426
5427 /*
5428 * Invalid CR0/CR4 generates #GP. These checks are performed if and
5429 * only if the vCPU isn't already in VMX operation, i.e. effectively
5430 * have lower priority than the VM-Fail above.
5431 */
5432 if (!nested_host_cr0_valid(vcpu, kvm_read_cr0(vcpu)) ||
5433 !nested_host_cr4_valid(vcpu, kvm_read_cr4(vcpu))) {
5434 kvm_inject_gp(vcpu, 0);
5435 return 1;
5436 }
5437
5438 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5439 != VMXON_NEEDED_FEATURES) {
5440 kvm_inject_gp(vcpu, 0);
5441 return 1;
5442 }
5443
5444 if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
5445 return ret;
5446
5447 /*
5448 * SDM 3: 24.11.5
5449 * The first 4 bytes of VMXON region contain the supported
5450 * VMCS revision identifier
5451 *
5452 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
5453 * which replaces physical address width with 32
5454 */
5455 if (!page_address_valid(vcpu, vmptr))
5456 return nested_vmx_failInvalid(vcpu);
5457
5458 if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
5459 revision != VMCS12_REVISION)
5460 return nested_vmx_failInvalid(vcpu);
5461
5462 vmx->nested.vmxon_ptr = vmptr;
5463 ret = enter_vmx_operation(vcpu);
5464 if (ret)
5465 return ret;
5466
5467 return nested_vmx_succeed(vcpu);
5468 }
5469
nested_release_vmcs12(struct kvm_vcpu * vcpu)5470 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
5471 {
5472 struct vcpu_vmx *vmx = to_vmx(vcpu);
5473
5474 if (vmx->nested.current_vmptr == INVALID_GPA)
5475 return;
5476
5477 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
5478
5479 if (enable_shadow_vmcs) {
5480 /* copy to memory all shadowed fields in case
5481 they were modified */
5482 copy_shadow_to_vmcs12(vmx);
5483 vmx_disable_shadow_vmcs(vmx);
5484 }
5485 vmx->nested.posted_intr_nv = -1;
5486
5487 /* Flush VMCS12 to guest memory */
5488 kvm_vcpu_write_guest_page(vcpu,
5489 vmx->nested.current_vmptr >> PAGE_SHIFT,
5490 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
5491
5492 kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5493
5494 vmx->nested.current_vmptr = INVALID_GPA;
5495 }
5496
5497 /* Emulate the VMXOFF instruction */
handle_vmxoff(struct kvm_vcpu * vcpu)5498 static int handle_vmxoff(struct kvm_vcpu *vcpu)
5499 {
5500 if (!nested_vmx_check_permission(vcpu))
5501 return 1;
5502
5503 free_nested(vcpu);
5504
5505 if (kvm_apic_has_pending_init_or_sipi(vcpu))
5506 kvm_make_request(KVM_REQ_EVENT, vcpu);
5507
5508 return nested_vmx_succeed(vcpu);
5509 }
5510
5511 /* Emulate the VMCLEAR instruction */
handle_vmclear(struct kvm_vcpu * vcpu)5512 static int handle_vmclear(struct kvm_vcpu *vcpu)
5513 {
5514 struct vcpu_vmx *vmx = to_vmx(vcpu);
5515 u32 zero = 0;
5516 gpa_t vmptr;
5517 int r;
5518
5519 if (!nested_vmx_check_permission(vcpu))
5520 return 1;
5521
5522 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5523 return r;
5524
5525 if (!page_address_valid(vcpu, vmptr))
5526 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5527
5528 if (vmptr == vmx->nested.vmxon_ptr)
5529 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5530
5531 if (likely(!nested_evmcs_handle_vmclear(vcpu, vmptr))) {
5532 if (vmptr == vmx->nested.current_vmptr)
5533 nested_release_vmcs12(vcpu);
5534
5535 /*
5536 * Silently ignore memory errors on VMCLEAR, Intel's pseudocode
5537 * for VMCLEAR includes a "ensure that data for VMCS referenced
5538 * by the operand is in memory" clause that guards writes to
5539 * memory, i.e. doing nothing for I/O is architecturally valid.
5540 *
5541 * FIXME: Suppress failures if and only if no memslot is found,
5542 * i.e. exit to userspace if __copy_to_user() fails.
5543 */
5544 (void)kvm_vcpu_write_guest(vcpu,
5545 vmptr + offsetof(struct vmcs12,
5546 launch_state),
5547 &zero, sizeof(zero));
5548 }
5549
5550 return nested_vmx_succeed(vcpu);
5551 }
5552
5553 /* Emulate the VMLAUNCH instruction */
handle_vmlaunch(struct kvm_vcpu * vcpu)5554 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5555 {
5556 return nested_vmx_run(vcpu, true);
5557 }
5558
5559 /* Emulate the VMRESUME instruction */
handle_vmresume(struct kvm_vcpu * vcpu)5560 static int handle_vmresume(struct kvm_vcpu *vcpu)
5561 {
5562
5563 return nested_vmx_run(vcpu, false);
5564 }
5565
handle_vmread(struct kvm_vcpu * vcpu)5566 static int handle_vmread(struct kvm_vcpu *vcpu)
5567 {
5568 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5569 : get_vmcs12(vcpu);
5570 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5571 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5572 struct vcpu_vmx *vmx = to_vmx(vcpu);
5573 struct x86_exception e;
5574 unsigned long field;
5575 u64 value;
5576 gva_t gva = 0;
5577 short offset;
5578 int len, r;
5579
5580 if (!nested_vmx_check_permission(vcpu))
5581 return 1;
5582
5583 /* Decode instruction info and find the field to read */
5584 field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5585
5586 if (!nested_vmx_is_evmptr12_valid(vmx)) {
5587 /*
5588 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5589 * any VMREAD sets the ALU flags for VMfailInvalid.
5590 */
5591 if (vmx->nested.current_vmptr == INVALID_GPA ||
5592 (is_guest_mode(vcpu) &&
5593 get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5594 return nested_vmx_failInvalid(vcpu);
5595
5596 offset = get_vmcs12_field_offset(field);
5597 if (offset < 0)
5598 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5599
5600 if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5601 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5602
5603 /* Read the field, zero-extended to a u64 value */
5604 value = vmcs12_read_any(vmcs12, field, offset);
5605 } else {
5606 /*
5607 * Hyper-V TLFS (as of 6.0b) explicitly states, that while an
5608 * enlightened VMCS is active VMREAD/VMWRITE instructions are
5609 * unsupported. Unfortunately, certain versions of Windows 11
5610 * don't comply with this requirement which is not enforced in
5611 * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a
5612 * workaround, as misbehaving guests will panic on VM-Fail.
5613 * Note, enlightened VMCS is incompatible with shadow VMCS so
5614 * all VMREADs from L2 should go to L1.
5615 */
5616 if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5617 return nested_vmx_failInvalid(vcpu);
5618
5619 offset = evmcs_field_offset(field, NULL);
5620 if (offset < 0)
5621 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5622
5623 /* Read the field, zero-extended to a u64 value */
5624 value = evmcs_read_any(nested_vmx_evmcs(vmx), field, offset);
5625 }
5626
5627 /*
5628 * Now copy part of this value to register or memory, as requested.
5629 * Note that the number of bits actually copied is 32 or 64 depending
5630 * on the guest's mode (32 or 64 bit), not on the given field's length.
5631 */
5632 if (instr_info & BIT(10)) {
5633 kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5634 } else {
5635 len = is_64_bit_mode(vcpu) ? 8 : 4;
5636 if (get_vmx_mem_address(vcpu, exit_qualification,
5637 instr_info, true, len, &gva))
5638 return 1;
5639 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
5640 r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5641 if (r != X86EMUL_CONTINUE)
5642 return kvm_handle_memory_failure(vcpu, r, &e);
5643 }
5644
5645 return nested_vmx_succeed(vcpu);
5646 }
5647
is_shadow_field_rw(unsigned long field)5648 static bool is_shadow_field_rw(unsigned long field)
5649 {
5650 switch (field) {
5651 #define SHADOW_FIELD_RW(x, y) case x:
5652 #include "vmcs_shadow_fields.h"
5653 return true;
5654 default:
5655 break;
5656 }
5657 return false;
5658 }
5659
is_shadow_field_ro(unsigned long field)5660 static bool is_shadow_field_ro(unsigned long field)
5661 {
5662 switch (field) {
5663 #define SHADOW_FIELD_RO(x, y) case x:
5664 #include "vmcs_shadow_fields.h"
5665 return true;
5666 default:
5667 break;
5668 }
5669 return false;
5670 }
5671
handle_vmwrite(struct kvm_vcpu * vcpu)5672 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5673 {
5674 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5675 : get_vmcs12(vcpu);
5676 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5677 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5678 struct vcpu_vmx *vmx = to_vmx(vcpu);
5679 struct x86_exception e;
5680 unsigned long field;
5681 short offset;
5682 gva_t gva;
5683 int len, r;
5684
5685 /*
5686 * The value to write might be 32 or 64 bits, depending on L1's long
5687 * mode, and eventually we need to write that into a field of several
5688 * possible lengths. The code below first zero-extends the value to 64
5689 * bit (value), and then copies only the appropriate number of
5690 * bits into the vmcs12 field.
5691 */
5692 u64 value = 0;
5693
5694 if (!nested_vmx_check_permission(vcpu))
5695 return 1;
5696
5697 /*
5698 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5699 * any VMWRITE sets the ALU flags for VMfailInvalid.
5700 */
5701 if (vmx->nested.current_vmptr == INVALID_GPA ||
5702 (is_guest_mode(vcpu) &&
5703 get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5704 return nested_vmx_failInvalid(vcpu);
5705
5706 if (instr_info & BIT(10))
5707 value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5708 else {
5709 len = is_64_bit_mode(vcpu) ? 8 : 4;
5710 if (get_vmx_mem_address(vcpu, exit_qualification,
5711 instr_info, false, len, &gva))
5712 return 1;
5713 r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5714 if (r != X86EMUL_CONTINUE)
5715 return kvm_handle_memory_failure(vcpu, r, &e);
5716 }
5717
5718 field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5719
5720 offset = get_vmcs12_field_offset(field);
5721 if (offset < 0)
5722 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5723
5724 /*
5725 * If the vCPU supports "VMWRITE to any supported field in the
5726 * VMCS," then the "read-only" fields are actually read/write.
5727 */
5728 if (vmcs_field_readonly(field) &&
5729 !nested_cpu_has_vmwrite_any_field(vcpu))
5730 return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5731
5732 /*
5733 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5734 * vmcs12, else we may crush a field or consume a stale value.
5735 */
5736 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5737 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5738
5739 /*
5740 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5741 * fields on VMWRITE. Emulate this behavior to ensure consistent KVM
5742 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5743 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5744 * from L1 will return a different value than VMREAD from L2 (L1 sees
5745 * the stripped down value, L2 sees the full value as stored by KVM).
5746 */
5747 if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5748 value &= 0x1f0ff;
5749
5750 vmcs12_write_any(vmcs12, field, offset, value);
5751
5752 /*
5753 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5754 * dirty shadow vmcs12 instead of vmcs12. Fields that can be updated
5755 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5756 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5757 */
5758 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5759 /*
5760 * L1 can read these fields without exiting, ensure the
5761 * shadow VMCS is up-to-date.
5762 */
5763 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5764 preempt_disable();
5765 vmcs_load(vmx->vmcs01.shadow_vmcs);
5766
5767 __vmcs_writel(field, value);
5768
5769 vmcs_clear(vmx->vmcs01.shadow_vmcs);
5770 vmcs_load(vmx->loaded_vmcs->vmcs);
5771 preempt_enable();
5772 }
5773 vmx->nested.dirty_vmcs12 = true;
5774 }
5775
5776 return nested_vmx_succeed(vcpu);
5777 }
5778
set_current_vmptr(struct vcpu_vmx * vmx,gpa_t vmptr)5779 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5780 {
5781 vmx->nested.current_vmptr = vmptr;
5782 if (enable_shadow_vmcs) {
5783 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5784 vmcs_write64(VMCS_LINK_POINTER,
5785 __pa(vmx->vmcs01.shadow_vmcs));
5786 vmx->nested.need_vmcs12_to_shadow_sync = true;
5787 }
5788 vmx->nested.dirty_vmcs12 = true;
5789 vmx->nested.force_msr_bitmap_recalc = true;
5790 }
5791
5792 /* Emulate the VMPTRLD instruction */
handle_vmptrld(struct kvm_vcpu * vcpu)5793 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5794 {
5795 struct vcpu_vmx *vmx = to_vmx(vcpu);
5796 gpa_t vmptr;
5797 int r;
5798
5799 if (!nested_vmx_check_permission(vcpu))
5800 return 1;
5801
5802 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5803 return r;
5804
5805 if (!page_address_valid(vcpu, vmptr))
5806 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5807
5808 if (vmptr == vmx->nested.vmxon_ptr)
5809 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5810
5811 /* Forbid normal VMPTRLD if Enlightened version was used */
5812 if (nested_vmx_is_evmptr12_valid(vmx))
5813 return 1;
5814
5815 if (vmx->nested.current_vmptr != vmptr) {
5816 struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache;
5817 struct vmcs_hdr hdr;
5818
5819 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) {
5820 /*
5821 * Reads from an unbacked page return all 1s,
5822 * which means that the 32 bits located at the
5823 * given physical address won't match the required
5824 * VMCS12_REVISION identifier.
5825 */
5826 return nested_vmx_fail(vcpu,
5827 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5828 }
5829
5830 if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
5831 offsetof(struct vmcs12, hdr),
5832 sizeof(hdr))) {
5833 return nested_vmx_fail(vcpu,
5834 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5835 }
5836
5837 if (hdr.revision_id != VMCS12_REVISION ||
5838 (hdr.shadow_vmcs &&
5839 !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5840 return nested_vmx_fail(vcpu,
5841 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5842 }
5843
5844 nested_release_vmcs12(vcpu);
5845
5846 /*
5847 * Load VMCS12 from guest memory since it is not already
5848 * cached.
5849 */
5850 if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12,
5851 VMCS12_SIZE)) {
5852 return nested_vmx_fail(vcpu,
5853 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5854 }
5855
5856 set_current_vmptr(vmx, vmptr);
5857 }
5858
5859 return nested_vmx_succeed(vcpu);
5860 }
5861
5862 /* Emulate the VMPTRST instruction */
handle_vmptrst(struct kvm_vcpu * vcpu)5863 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5864 {
5865 unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5866 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5867 gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5868 struct x86_exception e;
5869 gva_t gva;
5870 int r;
5871
5872 if (!nested_vmx_check_permission(vcpu))
5873 return 1;
5874
5875 if (unlikely(nested_vmx_is_evmptr12_valid(to_vmx(vcpu))))
5876 return 1;
5877
5878 if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5879 true, sizeof(gpa_t), &gva))
5880 return 1;
5881 /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5882 r = kvm_write_guest_virt_system(vcpu, gva, (void *)¤t_vmptr,
5883 sizeof(gpa_t), &e);
5884 if (r != X86EMUL_CONTINUE)
5885 return kvm_handle_memory_failure(vcpu, r, &e);
5886
5887 return nested_vmx_succeed(vcpu);
5888 }
5889
5890 /* Emulate the INVEPT instruction */
handle_invept(struct kvm_vcpu * vcpu)5891 static int handle_invept(struct kvm_vcpu *vcpu)
5892 {
5893 struct vcpu_vmx *vmx = to_vmx(vcpu);
5894 u32 vmx_instruction_info, types;
5895 unsigned long type, roots_to_free;
5896 struct kvm_mmu *mmu;
5897 gva_t gva;
5898 struct x86_exception e;
5899 struct {
5900 u64 eptp, gpa;
5901 } operand;
5902 int i, r, gpr_index;
5903
5904 if (!(vmx->nested.msrs.secondary_ctls_high &
5905 SECONDARY_EXEC_ENABLE_EPT) ||
5906 !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5907 kvm_queue_exception(vcpu, UD_VECTOR);
5908 return 1;
5909 }
5910
5911 if (!nested_vmx_check_permission(vcpu))
5912 return 1;
5913
5914 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5915 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5916 type = kvm_register_read(vcpu, gpr_index);
5917
5918 types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5919
5920 if (type >= 32 || !(types & (1 << type)))
5921 return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5922
5923 /* According to the Intel VMX instruction reference, the memory
5924 * operand is read even if it isn't needed (e.g., for type==global)
5925 */
5926 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5927 vmx_instruction_info, false, sizeof(operand), &gva))
5928 return 1;
5929 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5930 if (r != X86EMUL_CONTINUE)
5931 return kvm_handle_memory_failure(vcpu, r, &e);
5932
5933 /*
5934 * Nested EPT roots are always held through guest_mmu,
5935 * not root_mmu.
5936 */
5937 mmu = &vcpu->arch.guest_mmu;
5938
5939 switch (type) {
5940 case VMX_EPT_EXTENT_CONTEXT:
5941 if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5942 return nested_vmx_fail(vcpu,
5943 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5944
5945 roots_to_free = 0;
5946 if (nested_ept_root_matches(mmu->root.hpa, mmu->root.pgd,
5947 operand.eptp))
5948 roots_to_free |= KVM_MMU_ROOT_CURRENT;
5949
5950 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5951 if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5952 mmu->prev_roots[i].pgd,
5953 operand.eptp))
5954 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5955 }
5956 break;
5957 case VMX_EPT_EXTENT_GLOBAL:
5958 roots_to_free = KVM_MMU_ROOTS_ALL;
5959 break;
5960 default:
5961 BUG();
5962 break;
5963 }
5964
5965 if (roots_to_free)
5966 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
5967
5968 return nested_vmx_succeed(vcpu);
5969 }
5970
handle_invvpid(struct kvm_vcpu * vcpu)5971 static int handle_invvpid(struct kvm_vcpu *vcpu)
5972 {
5973 struct vcpu_vmx *vmx = to_vmx(vcpu);
5974 u32 vmx_instruction_info;
5975 unsigned long type, types;
5976 gva_t gva;
5977 struct x86_exception e;
5978 struct {
5979 u64 vpid;
5980 u64 gla;
5981 } operand;
5982 u16 vpid02;
5983 int r, gpr_index;
5984
5985 if (!(vmx->nested.msrs.secondary_ctls_high &
5986 SECONDARY_EXEC_ENABLE_VPID) ||
5987 !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5988 kvm_queue_exception(vcpu, UD_VECTOR);
5989 return 1;
5990 }
5991
5992 if (!nested_vmx_check_permission(vcpu))
5993 return 1;
5994
5995 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5996 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5997 type = kvm_register_read(vcpu, gpr_index);
5998
5999 types = (vmx->nested.msrs.vpid_caps &
6000 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
6001
6002 if (type >= 32 || !(types & (1 << type)))
6003 return nested_vmx_fail(vcpu,
6004 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6005
6006 /* according to the intel vmx instruction reference, the memory
6007 * operand is read even if it isn't needed (e.g., for type==global)
6008 */
6009 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
6010 vmx_instruction_info, false, sizeof(operand), &gva))
6011 return 1;
6012 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
6013 if (r != X86EMUL_CONTINUE)
6014 return kvm_handle_memory_failure(vcpu, r, &e);
6015
6016 if (operand.vpid >> 16)
6017 return nested_vmx_fail(vcpu,
6018 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6019
6020 /*
6021 * Always flush the effective vpid02, i.e. never flush the current VPID
6022 * and never explicitly flush vpid01. INVVPID targets a VPID, not a
6023 * VMCS, and so whether or not the current vmcs12 has VPID enabled is
6024 * irrelevant (and there may not be a loaded vmcs12).
6025 */
6026 vpid02 = nested_get_vpid02(vcpu);
6027 switch (type) {
6028 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
6029 /*
6030 * LAM doesn't apply to addresses that are inputs to TLB
6031 * invalidation.
6032 */
6033 if (!operand.vpid ||
6034 is_noncanonical_invlpg_address(operand.gla, vcpu))
6035 return nested_vmx_fail(vcpu,
6036 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6037 vpid_sync_vcpu_addr(vpid02, operand.gla);
6038 break;
6039 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
6040 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
6041 if (!operand.vpid)
6042 return nested_vmx_fail(vcpu,
6043 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6044 vpid_sync_context(vpid02);
6045 break;
6046 case VMX_VPID_EXTENT_ALL_CONTEXT:
6047 vpid_sync_context(vpid02);
6048 break;
6049 default:
6050 WARN_ON_ONCE(1);
6051 return kvm_skip_emulated_instruction(vcpu);
6052 }
6053
6054 /*
6055 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
6056 * linear mappings for L2 (tagged with L2's VPID). Free all guest
6057 * roots as VPIDs are not tracked in the MMU role.
6058 *
6059 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
6060 * an MMU when EPT is disabled.
6061 *
6062 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
6063 */
6064 if (!enable_ept)
6065 kvm_mmu_free_guest_mode_roots(vcpu->kvm, &vcpu->arch.root_mmu);
6066
6067 return nested_vmx_succeed(vcpu);
6068 }
6069
nested_vmx_eptp_switching(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6070 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
6071 struct vmcs12 *vmcs12)
6072 {
6073 u32 index = kvm_rcx_read(vcpu);
6074 u64 new_eptp;
6075
6076 if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
6077 return 1;
6078 if (index >= VMFUNC_EPTP_ENTRIES)
6079 return 1;
6080
6081 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
6082 &new_eptp, index * 8, 8))
6083 return 1;
6084
6085 /*
6086 * If the (L2) guest does a vmfunc to the currently
6087 * active ept pointer, we don't have to do anything else
6088 */
6089 if (vmcs12->ept_pointer != new_eptp) {
6090 if (!nested_vmx_check_eptp(vcpu, new_eptp))
6091 return 1;
6092
6093 vmcs12->ept_pointer = new_eptp;
6094 nested_ept_new_eptp(vcpu);
6095
6096 if (!nested_cpu_has_vpid(vmcs12))
6097 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
6098 }
6099
6100 return 0;
6101 }
6102
handle_vmfunc(struct kvm_vcpu * vcpu)6103 static int handle_vmfunc(struct kvm_vcpu *vcpu)
6104 {
6105 struct vcpu_vmx *vmx = to_vmx(vcpu);
6106 struct vmcs12 *vmcs12;
6107 u32 function = kvm_rax_read(vcpu);
6108
6109 /*
6110 * VMFUNC should never execute cleanly while L1 is active; KVM supports
6111 * VMFUNC for nested VMs, but not for L1.
6112 */
6113 if (WARN_ON_ONCE(!is_guest_mode(vcpu))) {
6114 kvm_queue_exception(vcpu, UD_VECTOR);
6115 return 1;
6116 }
6117
6118 vmcs12 = get_vmcs12(vcpu);
6119
6120 /*
6121 * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
6122 * is enabled in vmcs02 if and only if it's enabled in vmcs12.
6123 */
6124 if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
6125 kvm_queue_exception(vcpu, UD_VECTOR);
6126 return 1;
6127 }
6128
6129 if (!(vmcs12->vm_function_control & BIT_ULL(function)))
6130 goto fail;
6131
6132 switch (function) {
6133 case 0:
6134 if (nested_vmx_eptp_switching(vcpu, vmcs12))
6135 goto fail;
6136 break;
6137 default:
6138 goto fail;
6139 }
6140 return kvm_skip_emulated_instruction(vcpu);
6141
6142 fail:
6143 /*
6144 * This is effectively a reflected VM-Exit, as opposed to a synthesized
6145 * nested VM-Exit. Pass the original exit reason, i.e. don't hardcode
6146 * EXIT_REASON_VMFUNC as the exit reason.
6147 */
6148 nested_vmx_vmexit(vcpu, vmx->vt.exit_reason.full,
6149 vmx_get_intr_info(vcpu),
6150 vmx_get_exit_qual(vcpu));
6151 return 1;
6152 }
6153
6154 /*
6155 * Return true if an IO instruction with the specified port and size should cause
6156 * a VM-exit into L1.
6157 */
nested_vmx_check_io_bitmaps(struct kvm_vcpu * vcpu,unsigned int port,int size)6158 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
6159 int size)
6160 {
6161 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6162 gpa_t bitmap, last_bitmap;
6163 u8 b;
6164
6165 last_bitmap = INVALID_GPA;
6166 b = -1;
6167
6168 while (size > 0) {
6169 if (port < 0x8000)
6170 bitmap = vmcs12->io_bitmap_a;
6171 else if (port < 0x10000)
6172 bitmap = vmcs12->io_bitmap_b;
6173 else
6174 return true;
6175 bitmap += (port & 0x7fff) / 8;
6176
6177 if (last_bitmap != bitmap)
6178 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
6179 return true;
6180 if (b & (1 << (port & 7)))
6181 return true;
6182
6183 port++;
6184 size--;
6185 last_bitmap = bitmap;
6186 }
6187
6188 return false;
6189 }
6190
nested_vmx_exit_handled_io(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6191 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6192 struct vmcs12 *vmcs12)
6193 {
6194 unsigned long exit_qualification;
6195 unsigned short port;
6196 int size;
6197
6198 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6199 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
6200
6201 exit_qualification = vmx_get_exit_qual(vcpu);
6202
6203 port = exit_qualification >> 16;
6204 size = (exit_qualification & 7) + 1;
6205
6206 return nested_vmx_check_io_bitmaps(vcpu, port, size);
6207 }
6208
6209 /*
6210 * Return 1 if we should exit from L2 to L1 to handle an MSR access,
6211 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6212 * disinterest in the current event (read or write a specific MSR) by using an
6213 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6214 */
nested_vmx_exit_handled_msr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,union vmx_exit_reason exit_reason)6215 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6216 struct vmcs12 *vmcs12,
6217 union vmx_exit_reason exit_reason)
6218 {
6219 u32 msr_index = kvm_rcx_read(vcpu);
6220 gpa_t bitmap;
6221
6222 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6223 return true;
6224
6225 /*
6226 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6227 * for the four combinations of read/write and low/high MSR numbers.
6228 * First we need to figure out which of the four to use:
6229 */
6230 bitmap = vmcs12->msr_bitmap;
6231 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6232 bitmap += 2048;
6233 if (msr_index >= 0xc0000000) {
6234 msr_index -= 0xc0000000;
6235 bitmap += 1024;
6236 }
6237
6238 /* Then read the msr_index'th bit from this bitmap: */
6239 if (msr_index < 1024*8) {
6240 unsigned char b;
6241 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
6242 return true;
6243 return 1 & (b >> (msr_index & 7));
6244 } else
6245 return true; /* let L1 handle the wrong parameter */
6246 }
6247
6248 /*
6249 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6250 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6251 * intercept (via guest_host_mask etc.) the current event.
6252 */
nested_vmx_exit_handled_cr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6253 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6254 struct vmcs12 *vmcs12)
6255 {
6256 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
6257 int cr = exit_qualification & 15;
6258 int reg;
6259 unsigned long val;
6260
6261 switch ((exit_qualification >> 4) & 3) {
6262 case 0: /* mov to cr */
6263 reg = (exit_qualification >> 8) & 15;
6264 val = kvm_register_read(vcpu, reg);
6265 switch (cr) {
6266 case 0:
6267 if (vmcs12->cr0_guest_host_mask &
6268 (val ^ vmcs12->cr0_read_shadow))
6269 return true;
6270 break;
6271 case 3:
6272 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6273 return true;
6274 break;
6275 case 4:
6276 if (vmcs12->cr4_guest_host_mask &
6277 (vmcs12->cr4_read_shadow ^ val))
6278 return true;
6279 break;
6280 case 8:
6281 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6282 return true;
6283 break;
6284 }
6285 break;
6286 case 2: /* clts */
6287 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6288 (vmcs12->cr0_read_shadow & X86_CR0_TS))
6289 return true;
6290 break;
6291 case 1: /* mov from cr */
6292 switch (cr) {
6293 case 3:
6294 if (vmcs12->cpu_based_vm_exec_control &
6295 CPU_BASED_CR3_STORE_EXITING)
6296 return true;
6297 break;
6298 case 8:
6299 if (vmcs12->cpu_based_vm_exec_control &
6300 CPU_BASED_CR8_STORE_EXITING)
6301 return true;
6302 break;
6303 }
6304 break;
6305 case 3: /* lmsw */
6306 /*
6307 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6308 * cr0. Other attempted changes are ignored, with no exit.
6309 */
6310 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
6311 if (vmcs12->cr0_guest_host_mask & 0xe &
6312 (val ^ vmcs12->cr0_read_shadow))
6313 return true;
6314 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6315 !(vmcs12->cr0_read_shadow & 0x1) &&
6316 (val & 0x1))
6317 return true;
6318 break;
6319 }
6320 return false;
6321 }
6322
nested_vmx_exit_handled_encls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6323 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
6324 struct vmcs12 *vmcs12)
6325 {
6326 u32 encls_leaf;
6327
6328 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SGX) ||
6329 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
6330 return false;
6331
6332 encls_leaf = kvm_rax_read(vcpu);
6333 if (encls_leaf > 62)
6334 encls_leaf = 63;
6335 return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
6336 }
6337
nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,gpa_t bitmap)6338 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
6339 struct vmcs12 *vmcs12, gpa_t bitmap)
6340 {
6341 u32 vmx_instruction_info;
6342 unsigned long field;
6343 u8 b;
6344
6345 if (!nested_cpu_has_shadow_vmcs(vmcs12))
6346 return true;
6347
6348 /* Decode instruction info and find the field to access */
6349 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6350 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6351
6352 /* Out-of-range fields always cause a VM exit from L2 to L1 */
6353 if (field >> 15)
6354 return true;
6355
6356 if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
6357 return true;
6358
6359 return 1 & (b >> (field & 7));
6360 }
6361
nested_vmx_exit_handled_mtf(struct vmcs12 * vmcs12)6362 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
6363 {
6364 u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
6365
6366 if (nested_cpu_has_mtf(vmcs12))
6367 return true;
6368
6369 /*
6370 * An MTF VM-exit may be injected into the guest by setting the
6371 * interruption-type to 7 (other event) and the vector field to 0. Such
6372 * is the case regardless of the 'monitor trap flag' VM-execution
6373 * control.
6374 */
6375 return entry_intr_info == (INTR_INFO_VALID_MASK
6376 | INTR_TYPE_OTHER_EVENT);
6377 }
6378
6379 /*
6380 * Return true if L0 wants to handle an exit from L2 regardless of whether or not
6381 * L1 wants the exit. Only call this when in is_guest_mode (L2).
6382 */
nested_vmx_l0_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)6383 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
6384 union vmx_exit_reason exit_reason)
6385 {
6386 u32 intr_info;
6387
6388 switch ((u16)exit_reason.basic) {
6389 case EXIT_REASON_EXCEPTION_NMI:
6390 intr_info = vmx_get_intr_info(vcpu);
6391 if (is_nmi(intr_info))
6392 return true;
6393 else if (is_page_fault(intr_info))
6394 return vcpu->arch.apf.host_apf_flags ||
6395 vmx_need_pf_intercept(vcpu);
6396 else if (is_debug(intr_info) &&
6397 vcpu->guest_debug &
6398 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
6399 return true;
6400 else if (is_breakpoint(intr_info) &&
6401 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
6402 return true;
6403 else if (is_alignment_check(intr_info) &&
6404 !vmx_guest_inject_ac(vcpu))
6405 return true;
6406 else if (is_ve_fault(intr_info))
6407 return true;
6408 return false;
6409 case EXIT_REASON_EXTERNAL_INTERRUPT:
6410 return true;
6411 case EXIT_REASON_MCE_DURING_VMENTRY:
6412 return true;
6413 case EXIT_REASON_EPT_VIOLATION:
6414 /*
6415 * L0 always deals with the EPT violation. If nested EPT is
6416 * used, and the nested mmu code discovers that the address is
6417 * missing in the guest EPT table (EPT12), the EPT violation
6418 * will be injected with nested_ept_inject_page_fault()
6419 */
6420 return true;
6421 case EXIT_REASON_EPT_MISCONFIG:
6422 /*
6423 * L2 never uses directly L1's EPT, but rather L0's own EPT
6424 * table (shadow on EPT) or a merged EPT table that L0 built
6425 * (EPT on EPT). So any problems with the structure of the
6426 * table is L0's fault.
6427 */
6428 return true;
6429 case EXIT_REASON_PREEMPTION_TIMER:
6430 return true;
6431 case EXIT_REASON_PML_FULL:
6432 /*
6433 * PML is emulated for an L1 VMM and should never be enabled in
6434 * vmcs02, always "handle" PML_FULL by exiting to userspace.
6435 */
6436 return true;
6437 case EXIT_REASON_VMFUNC:
6438 /* VM functions are emulated through L2->L0 vmexits. */
6439 return true;
6440 case EXIT_REASON_BUS_LOCK:
6441 /*
6442 * At present, bus lock VM exit is never exposed to L1.
6443 * Handle L2's bus locks in L0 directly.
6444 */
6445 return true;
6446 #ifdef CONFIG_KVM_HYPERV
6447 case EXIT_REASON_VMCALL:
6448 /* Hyper-V L2 TLB flush hypercall is handled by L0 */
6449 return guest_hv_cpuid_has_l2_tlb_flush(vcpu) &&
6450 nested_evmcs_l2_tlb_flush_enabled(vcpu) &&
6451 kvm_hv_is_tlb_flush_hcall(vcpu);
6452 #endif
6453 default:
6454 break;
6455 }
6456 return false;
6457 }
6458
6459 /*
6460 * Return 1 if L1 wants to intercept an exit from L2. Only call this when in
6461 * is_guest_mode (L2).
6462 */
nested_vmx_l1_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)6463 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
6464 union vmx_exit_reason exit_reason)
6465 {
6466 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6467 u32 intr_info;
6468
6469 switch ((u16)exit_reason.basic) {
6470 case EXIT_REASON_EXCEPTION_NMI:
6471 intr_info = vmx_get_intr_info(vcpu);
6472 if (is_nmi(intr_info))
6473 return true;
6474 else if (is_page_fault(intr_info))
6475 return true;
6476 return vmcs12->exception_bitmap &
6477 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6478 case EXIT_REASON_EXTERNAL_INTERRUPT:
6479 return nested_exit_on_intr(vcpu);
6480 case EXIT_REASON_TRIPLE_FAULT:
6481 return true;
6482 case EXIT_REASON_INTERRUPT_WINDOW:
6483 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
6484 case EXIT_REASON_NMI_WINDOW:
6485 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
6486 case EXIT_REASON_TASK_SWITCH:
6487 return true;
6488 case EXIT_REASON_CPUID:
6489 return true;
6490 case EXIT_REASON_HLT:
6491 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6492 case EXIT_REASON_INVD:
6493 return true;
6494 case EXIT_REASON_INVLPG:
6495 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6496 case EXIT_REASON_RDPMC:
6497 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6498 case EXIT_REASON_RDRAND:
6499 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
6500 case EXIT_REASON_RDSEED:
6501 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
6502 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
6503 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6504 case EXIT_REASON_VMREAD:
6505 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6506 vmcs12->vmread_bitmap);
6507 case EXIT_REASON_VMWRITE:
6508 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6509 vmcs12->vmwrite_bitmap);
6510 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6511 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6512 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
6513 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6514 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
6515 /*
6516 * VMX instructions trap unconditionally. This allows L1 to
6517 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6518 */
6519 return true;
6520 case EXIT_REASON_CR_ACCESS:
6521 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6522 case EXIT_REASON_DR_ACCESS:
6523 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6524 case EXIT_REASON_IO_INSTRUCTION:
6525 return nested_vmx_exit_handled_io(vcpu, vmcs12);
6526 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
6527 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
6528 case EXIT_REASON_MSR_READ:
6529 case EXIT_REASON_MSR_WRITE:
6530 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6531 case EXIT_REASON_INVALID_STATE:
6532 return true;
6533 case EXIT_REASON_MWAIT_INSTRUCTION:
6534 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6535 case EXIT_REASON_MONITOR_TRAP_FLAG:
6536 return nested_vmx_exit_handled_mtf(vmcs12);
6537 case EXIT_REASON_MONITOR_INSTRUCTION:
6538 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6539 case EXIT_REASON_PAUSE_INSTRUCTION:
6540 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6541 nested_cpu_has2(vmcs12,
6542 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6543 case EXIT_REASON_MCE_DURING_VMENTRY:
6544 return true;
6545 case EXIT_REASON_TPR_BELOW_THRESHOLD:
6546 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6547 case EXIT_REASON_APIC_ACCESS:
6548 case EXIT_REASON_APIC_WRITE:
6549 case EXIT_REASON_EOI_INDUCED:
6550 /*
6551 * The controls for "virtualize APIC accesses," "APIC-
6552 * register virtualization," and "virtual-interrupt
6553 * delivery" only come from vmcs12.
6554 */
6555 return true;
6556 case EXIT_REASON_INVPCID:
6557 return
6558 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6559 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6560 case EXIT_REASON_WBINVD:
6561 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6562 case EXIT_REASON_XSETBV:
6563 return true;
6564 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6565 /*
6566 * This should never happen, since it is not possible to
6567 * set XSS to a non-zero value---neither in L1 nor in L2.
6568 * If if it were, XSS would have to be checked against
6569 * the XSS exit bitmap in vmcs12.
6570 */
6571 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_XSAVES);
6572 case EXIT_REASON_UMWAIT:
6573 case EXIT_REASON_TPAUSE:
6574 return nested_cpu_has2(vmcs12,
6575 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6576 case EXIT_REASON_ENCLS:
6577 return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6578 case EXIT_REASON_NOTIFY:
6579 /* Notify VM exit is not exposed to L1 */
6580 return false;
6581 default:
6582 return true;
6583 }
6584 }
6585
6586 /*
6587 * Conditionally reflect a VM-Exit into L1. Returns %true if the VM-Exit was
6588 * reflected into L1.
6589 */
nested_vmx_reflect_vmexit(struct kvm_vcpu * vcpu)6590 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6591 {
6592 struct vcpu_vmx *vmx = to_vmx(vcpu);
6593 union vmx_exit_reason exit_reason = vmx->vt.exit_reason;
6594 unsigned long exit_qual;
6595 u32 exit_intr_info;
6596
6597 WARN_ON_ONCE(vmx->nested.nested_run_pending);
6598
6599 /*
6600 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6601 * has already loaded L2's state.
6602 */
6603 if (unlikely(vmx->fail)) {
6604 trace_kvm_nested_vmenter_failed(
6605 "hardware VM-instruction error: ",
6606 vmcs_read32(VM_INSTRUCTION_ERROR));
6607 exit_intr_info = 0;
6608 exit_qual = 0;
6609 goto reflect_vmexit;
6610 }
6611
6612 trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX);
6613
6614 /* If L0 (KVM) wants the exit, it trumps L1's desires. */
6615 if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6616 return false;
6617
6618 /* If L1 doesn't want the exit, handle it in L0. */
6619 if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6620 return false;
6621
6622 /*
6623 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits. For
6624 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6625 * need to be synthesized by querying the in-kernel LAPIC, but external
6626 * interrupts are never reflected to L1 so it's a non-issue.
6627 */
6628 exit_intr_info = vmx_get_intr_info(vcpu);
6629 if (is_exception_with_error_code(exit_intr_info)) {
6630 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6631
6632 vmcs12->vm_exit_intr_error_code =
6633 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6634 }
6635 exit_qual = vmx_get_exit_qual(vcpu);
6636
6637 reflect_vmexit:
6638 nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6639 return true;
6640 }
6641
vmx_get_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,u32 user_data_size)6642 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6643 struct kvm_nested_state __user *user_kvm_nested_state,
6644 u32 user_data_size)
6645 {
6646 struct vcpu_vmx *vmx;
6647 struct vmcs12 *vmcs12;
6648 struct kvm_nested_state kvm_state = {
6649 .flags = 0,
6650 .format = KVM_STATE_NESTED_FORMAT_VMX,
6651 .size = sizeof(kvm_state),
6652 .hdr.vmx.flags = 0,
6653 .hdr.vmx.vmxon_pa = INVALID_GPA,
6654 .hdr.vmx.vmcs12_pa = INVALID_GPA,
6655 .hdr.vmx.preemption_timer_deadline = 0,
6656 };
6657 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6658 &user_kvm_nested_state->data.vmx[0];
6659
6660 if (!vcpu)
6661 return kvm_state.size + sizeof(*user_vmx_nested_state);
6662
6663 vmx = to_vmx(vcpu);
6664 vmcs12 = get_vmcs12(vcpu);
6665
6666 if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX) &&
6667 (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6668 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6669 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6670
6671 if (vmx_has_valid_vmcs12(vcpu)) {
6672 kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6673
6674 /* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6675 if (nested_vmx_is_evmptr12_set(vmx))
6676 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6677
6678 if (is_guest_mode(vcpu) &&
6679 nested_cpu_has_shadow_vmcs(vmcs12) &&
6680 vmcs12->vmcs_link_pointer != INVALID_GPA)
6681 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6682 }
6683
6684 if (vmx->nested.smm.vmxon)
6685 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6686
6687 if (vmx->nested.smm.guest_mode)
6688 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6689
6690 if (is_guest_mode(vcpu)) {
6691 kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6692
6693 if (vmx->nested.nested_run_pending)
6694 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6695
6696 if (vmx->nested.mtf_pending)
6697 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6698
6699 if (nested_cpu_has_preemption_timer(vmcs12) &&
6700 vmx->nested.has_preemption_timer_deadline) {
6701 kvm_state.hdr.vmx.flags |=
6702 KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6703 kvm_state.hdr.vmx.preemption_timer_deadline =
6704 vmx->nested.preemption_timer_deadline;
6705 }
6706 }
6707 }
6708
6709 if (user_data_size < kvm_state.size)
6710 goto out;
6711
6712 if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6713 return -EFAULT;
6714
6715 if (!vmx_has_valid_vmcs12(vcpu))
6716 goto out;
6717
6718 /*
6719 * When running L2, the authoritative vmcs12 state is in the
6720 * vmcs02. When running L1, the authoritative vmcs12 state is
6721 * in the shadow or enlightened vmcs linked to vmcs01, unless
6722 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6723 * vmcs12 state is in the vmcs12 already.
6724 */
6725 if (is_guest_mode(vcpu)) {
6726 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6727 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6728 } else {
6729 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6730 if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6731 if (nested_vmx_is_evmptr12_valid(vmx))
6732 /*
6733 * L1 hypervisor is not obliged to keep eVMCS
6734 * clean fields data always up-to-date while
6735 * not in guest mode, 'hv_clean_fields' is only
6736 * supposed to be actual upon vmentry so we need
6737 * to ignore it here and do full copy.
6738 */
6739 copy_enlightened_to_vmcs12(vmx, 0);
6740 else if (enable_shadow_vmcs)
6741 copy_shadow_to_vmcs12(vmx);
6742 }
6743 }
6744
6745 BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6746 BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6747
6748 /*
6749 * Copy over the full allocated size of vmcs12 rather than just the size
6750 * of the struct.
6751 */
6752 if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6753 return -EFAULT;
6754
6755 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6756 vmcs12->vmcs_link_pointer != INVALID_GPA) {
6757 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6758 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6759 return -EFAULT;
6760 }
6761 out:
6762 return kvm_state.size;
6763 }
6764
vmx_leave_nested(struct kvm_vcpu * vcpu)6765 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6766 {
6767 if (is_guest_mode(vcpu)) {
6768 to_vmx(vcpu)->nested.nested_run_pending = 0;
6769 nested_vmx_vmexit(vcpu, -1, 0, 0);
6770 }
6771 free_nested(vcpu);
6772 }
6773
vmx_set_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,struct kvm_nested_state * kvm_state)6774 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6775 struct kvm_nested_state __user *user_kvm_nested_state,
6776 struct kvm_nested_state *kvm_state)
6777 {
6778 struct vcpu_vmx *vmx = to_vmx(vcpu);
6779 struct vmcs12 *vmcs12;
6780 enum vm_entry_failure_code ignored;
6781 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6782 &user_kvm_nested_state->data.vmx[0];
6783 int ret;
6784
6785 if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6786 return -EINVAL;
6787
6788 if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) {
6789 if (kvm_state->hdr.vmx.smm.flags)
6790 return -EINVAL;
6791
6792 if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)
6793 return -EINVAL;
6794
6795 /*
6796 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6797 * enable eVMCS capability on vCPU. However, since then
6798 * code was changed such that flag signals vmcs12 should
6799 * be copied into eVMCS in guest memory.
6800 *
6801 * To preserve backwards compatibility, allow user
6802 * to set this flag even when there is no VMXON region.
6803 */
6804 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6805 return -EINVAL;
6806 } else {
6807 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
6808 return -EINVAL;
6809
6810 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6811 return -EINVAL;
6812 }
6813
6814 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6815 (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6816 return -EINVAL;
6817
6818 if (kvm_state->hdr.vmx.smm.flags &
6819 ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6820 return -EINVAL;
6821
6822 if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6823 return -EINVAL;
6824
6825 /*
6826 * SMM temporarily disables VMX, so we cannot be in guest mode,
6827 * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags
6828 * must be zero.
6829 */
6830 if (is_smm(vcpu) ?
6831 (kvm_state->flags &
6832 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6833 : kvm_state->hdr.vmx.smm.flags)
6834 return -EINVAL;
6835
6836 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6837 !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6838 return -EINVAL;
6839
6840 if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6841 (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX) ||
6842 !vmx->nested.enlightened_vmcs_enabled))
6843 return -EINVAL;
6844
6845 vmx_leave_nested(vcpu);
6846
6847 if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA)
6848 return 0;
6849
6850 vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6851 ret = enter_vmx_operation(vcpu);
6852 if (ret)
6853 return ret;
6854
6855 /* Empty 'VMXON' state is permitted if no VMCS loaded */
6856 if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6857 /* See vmx_has_valid_vmcs12. */
6858 if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6859 (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6860 (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA))
6861 return -EINVAL;
6862 else
6863 return 0;
6864 }
6865
6866 if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) {
6867 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6868 !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6869 return -EINVAL;
6870
6871 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6872 #ifdef CONFIG_KVM_HYPERV
6873 } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6874 /*
6875 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6876 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6877 * restored yet. EVMCS will be mapped from
6878 * nested_get_vmcs12_pages().
6879 */
6880 vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6881 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6882 #endif
6883 } else {
6884 return -EINVAL;
6885 }
6886
6887 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6888 vmx->nested.smm.vmxon = true;
6889 vmx->nested.vmxon = false;
6890
6891 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6892 vmx->nested.smm.guest_mode = true;
6893 }
6894
6895 vmcs12 = get_vmcs12(vcpu);
6896 if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6897 return -EFAULT;
6898
6899 if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6900 return -EINVAL;
6901
6902 if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6903 return 0;
6904
6905 vmx->nested.nested_run_pending =
6906 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6907
6908 vmx->nested.mtf_pending =
6909 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6910
6911 ret = -EINVAL;
6912 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6913 vmcs12->vmcs_link_pointer != INVALID_GPA) {
6914 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6915
6916 if (kvm_state->size <
6917 sizeof(*kvm_state) +
6918 sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6919 goto error_guest_mode;
6920
6921 if (copy_from_user(shadow_vmcs12,
6922 user_vmx_nested_state->shadow_vmcs12,
6923 sizeof(*shadow_vmcs12))) {
6924 ret = -EFAULT;
6925 goto error_guest_mode;
6926 }
6927
6928 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6929 !shadow_vmcs12->hdr.shadow_vmcs)
6930 goto error_guest_mode;
6931 }
6932
6933 vmx->nested.has_preemption_timer_deadline = false;
6934 if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6935 vmx->nested.has_preemption_timer_deadline = true;
6936 vmx->nested.preemption_timer_deadline =
6937 kvm_state->hdr.vmx.preemption_timer_deadline;
6938 }
6939
6940 if (nested_vmx_check_controls(vcpu, vmcs12) ||
6941 nested_vmx_check_host_state(vcpu, vmcs12) ||
6942 nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6943 goto error_guest_mode;
6944
6945 vmx->nested.dirty_vmcs12 = true;
6946 vmx->nested.force_msr_bitmap_recalc = true;
6947 ret = nested_vmx_enter_non_root_mode(vcpu, false);
6948 if (ret)
6949 goto error_guest_mode;
6950
6951 if (vmx->nested.mtf_pending)
6952 kvm_make_request(KVM_REQ_EVENT, vcpu);
6953
6954 return 0;
6955
6956 error_guest_mode:
6957 vmx->nested.nested_run_pending = 0;
6958 return ret;
6959 }
6960
nested_vmx_set_vmcs_shadowing_bitmap(void)6961 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6962 {
6963 if (enable_shadow_vmcs) {
6964 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6965 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6966 }
6967 }
6968
6969 /*
6970 * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6. Undo
6971 * that madness to get the encoding for comparison.
6972 */
6973 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6974
nested_vmx_calc_vmcs_enum_msr(void)6975 static u64 nested_vmx_calc_vmcs_enum_msr(void)
6976 {
6977 /*
6978 * Note these are the so called "index" of the VMCS field encoding, not
6979 * the index into vmcs12.
6980 */
6981 unsigned int max_idx, idx;
6982 int i;
6983
6984 /*
6985 * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6986 * vmcs12, regardless of whether or not the associated feature is
6987 * exposed to L1. Simply find the field with the highest index.
6988 */
6989 max_idx = 0;
6990 for (i = 0; i < nr_vmcs12_fields; i++) {
6991 /* The vmcs12 table is very, very sparsely populated. */
6992 if (!vmcs12_field_offsets[i])
6993 continue;
6994
6995 idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
6996 if (idx > max_idx)
6997 max_idx = idx;
6998 }
6999
7000 return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
7001 }
7002
nested_vmx_setup_pinbased_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7003 static void nested_vmx_setup_pinbased_ctls(struct vmcs_config *vmcs_conf,
7004 struct nested_vmx_msrs *msrs)
7005 {
7006 msrs->pinbased_ctls_low =
7007 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
7008
7009 msrs->pinbased_ctls_high = vmcs_conf->pin_based_exec_ctrl;
7010 msrs->pinbased_ctls_high &=
7011 PIN_BASED_EXT_INTR_MASK |
7012 PIN_BASED_NMI_EXITING |
7013 PIN_BASED_VIRTUAL_NMIS |
7014 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
7015 msrs->pinbased_ctls_high |=
7016 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
7017 PIN_BASED_VMX_PREEMPTION_TIMER;
7018 }
7019
nested_vmx_setup_exit_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7020 static void nested_vmx_setup_exit_ctls(struct vmcs_config *vmcs_conf,
7021 struct nested_vmx_msrs *msrs)
7022 {
7023 msrs->exit_ctls_low =
7024 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
7025
7026 msrs->exit_ctls_high = vmcs_conf->vmexit_ctrl;
7027 msrs->exit_ctls_high &=
7028 #ifdef CONFIG_X86_64
7029 VM_EXIT_HOST_ADDR_SPACE_SIZE |
7030 #endif
7031 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
7032 VM_EXIT_CLEAR_BNDCFGS;
7033 msrs->exit_ctls_high |=
7034 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
7035 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
7036 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT |
7037 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
7038
7039 /* We support free control of debug control saving. */
7040 msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
7041 }
7042
nested_vmx_setup_entry_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7043 static void nested_vmx_setup_entry_ctls(struct vmcs_config *vmcs_conf,
7044 struct nested_vmx_msrs *msrs)
7045 {
7046 msrs->entry_ctls_low =
7047 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
7048
7049 msrs->entry_ctls_high = vmcs_conf->vmentry_ctrl;
7050 msrs->entry_ctls_high &=
7051 #ifdef CONFIG_X86_64
7052 VM_ENTRY_IA32E_MODE |
7053 #endif
7054 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
7055 msrs->entry_ctls_high |=
7056 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER |
7057 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
7058
7059 /* We support free control of debug control loading. */
7060 msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
7061 }
7062
nested_vmx_setup_cpubased_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7063 static void nested_vmx_setup_cpubased_ctls(struct vmcs_config *vmcs_conf,
7064 struct nested_vmx_msrs *msrs)
7065 {
7066 msrs->procbased_ctls_low =
7067 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
7068
7069 msrs->procbased_ctls_high = vmcs_conf->cpu_based_exec_ctrl;
7070 msrs->procbased_ctls_high &=
7071 CPU_BASED_INTR_WINDOW_EXITING |
7072 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
7073 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
7074 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
7075 CPU_BASED_CR3_STORE_EXITING |
7076 #ifdef CONFIG_X86_64
7077 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
7078 #endif
7079 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
7080 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
7081 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
7082 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
7083 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
7084 /*
7085 * We can allow some features even when not supported by the
7086 * hardware. For example, L1 can specify an MSR bitmap - and we
7087 * can use it to avoid exits to L1 - even when L0 runs L2
7088 * without MSR bitmaps.
7089 */
7090 msrs->procbased_ctls_high |=
7091 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
7092 CPU_BASED_USE_MSR_BITMAPS;
7093
7094 /* We support free control of CR3 access interception. */
7095 msrs->procbased_ctls_low &=
7096 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
7097 }
7098
nested_vmx_setup_secondary_ctls(u32 ept_caps,struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7099 static void nested_vmx_setup_secondary_ctls(u32 ept_caps,
7100 struct vmcs_config *vmcs_conf,
7101 struct nested_vmx_msrs *msrs)
7102 {
7103 msrs->secondary_ctls_low = 0;
7104
7105 msrs->secondary_ctls_high = vmcs_conf->cpu_based_2nd_exec_ctrl;
7106 msrs->secondary_ctls_high &=
7107 SECONDARY_EXEC_DESC |
7108 SECONDARY_EXEC_ENABLE_RDTSCP |
7109 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7110 SECONDARY_EXEC_WBINVD_EXITING |
7111 SECONDARY_EXEC_APIC_REGISTER_VIRT |
7112 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
7113 SECONDARY_EXEC_RDRAND_EXITING |
7114 SECONDARY_EXEC_ENABLE_INVPCID |
7115 SECONDARY_EXEC_ENABLE_VMFUNC |
7116 SECONDARY_EXEC_RDSEED_EXITING |
7117 SECONDARY_EXEC_ENABLE_XSAVES |
7118 SECONDARY_EXEC_TSC_SCALING |
7119 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
7120
7121 /*
7122 * We can emulate "VMCS shadowing," even if the hardware
7123 * doesn't support it.
7124 */
7125 msrs->secondary_ctls_high |=
7126 SECONDARY_EXEC_SHADOW_VMCS;
7127
7128 if (enable_ept) {
7129 /* nested EPT: emulate EPT also to L1 */
7130 msrs->secondary_ctls_high |=
7131 SECONDARY_EXEC_ENABLE_EPT;
7132 msrs->ept_caps =
7133 VMX_EPT_PAGE_WALK_4_BIT |
7134 VMX_EPT_PAGE_WALK_5_BIT |
7135 VMX_EPTP_WB_BIT |
7136 VMX_EPT_INVEPT_BIT |
7137 VMX_EPT_EXECUTE_ONLY_BIT;
7138
7139 msrs->ept_caps &= ept_caps;
7140 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
7141 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
7142 VMX_EPT_1GB_PAGE_BIT;
7143 if (enable_ept_ad_bits) {
7144 msrs->secondary_ctls_high |=
7145 SECONDARY_EXEC_ENABLE_PML;
7146 msrs->ept_caps |= VMX_EPT_AD_BIT;
7147 }
7148
7149 /*
7150 * Advertise EPTP switching irrespective of hardware support,
7151 * KVM emulates it in software so long as VMFUNC is supported.
7152 */
7153 if (cpu_has_vmx_vmfunc())
7154 msrs->vmfunc_controls = VMX_VMFUNC_EPTP_SWITCHING;
7155 }
7156
7157 /*
7158 * Old versions of KVM use the single-context version without
7159 * checking for support, so declare that it is supported even
7160 * though it is treated as global context. The alternative is
7161 * not failing the single-context invvpid, and it is worse.
7162 */
7163 if (enable_vpid) {
7164 msrs->secondary_ctls_high |=
7165 SECONDARY_EXEC_ENABLE_VPID;
7166 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
7167 VMX_VPID_EXTENT_SUPPORTED_MASK;
7168 }
7169
7170 if (enable_unrestricted_guest)
7171 msrs->secondary_ctls_high |=
7172 SECONDARY_EXEC_UNRESTRICTED_GUEST;
7173
7174 if (flexpriority_enabled)
7175 msrs->secondary_ctls_high |=
7176 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7177
7178 if (enable_sgx)
7179 msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
7180 }
7181
nested_vmx_setup_misc_data(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7182 static void nested_vmx_setup_misc_data(struct vmcs_config *vmcs_conf,
7183 struct nested_vmx_msrs *msrs)
7184 {
7185 msrs->misc_low = (u32)vmcs_conf->misc & VMX_MISC_SAVE_EFER_LMA;
7186 msrs->misc_low |=
7187 VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
7188 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
7189 VMX_MISC_ACTIVITY_HLT |
7190 VMX_MISC_ACTIVITY_WAIT_SIPI;
7191 msrs->misc_high = 0;
7192 }
7193
nested_vmx_setup_basic(struct nested_vmx_msrs * msrs)7194 static void nested_vmx_setup_basic(struct nested_vmx_msrs *msrs)
7195 {
7196 /*
7197 * This MSR reports some information about VMX support. We
7198 * should return information about the VMX we emulate for the
7199 * guest, and the VMCS structure we give it - not about the
7200 * VMX support of the underlying hardware.
7201 */
7202 msrs->basic = vmx_basic_encode_vmcs_info(VMCS12_REVISION, VMCS12_SIZE,
7203 X86_MEMTYPE_WB);
7204
7205 msrs->basic |= VMX_BASIC_TRUE_CTLS;
7206 if (cpu_has_vmx_basic_inout())
7207 msrs->basic |= VMX_BASIC_INOUT;
7208 }
7209
nested_vmx_setup_cr_fixed(struct nested_vmx_msrs * msrs)7210 static void nested_vmx_setup_cr_fixed(struct nested_vmx_msrs *msrs)
7211 {
7212 /*
7213 * These MSRs specify bits which the guest must keep fixed on
7214 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
7215 * We picked the standard core2 setting.
7216 */
7217 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
7218 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
7219 msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
7220 msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
7221
7222 /* These MSRs specify bits which the guest must keep fixed off. */
7223 rdmsrq(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
7224 rdmsrq(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
7225
7226 if (vmx_umip_emulated())
7227 msrs->cr4_fixed1 |= X86_CR4_UMIP;
7228 }
7229
7230 /*
7231 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
7232 * returned for the various VMX controls MSRs when nested VMX is enabled.
7233 * The same values should also be used to verify that vmcs12 control fields are
7234 * valid during nested entry from L1 to L2.
7235 * Each of these control msrs has a low and high 32-bit half: A low bit is on
7236 * if the corresponding bit in the (32-bit) control field *must* be on, and a
7237 * bit in the high half is on if the corresponding bit in the control field
7238 * may be on. See also vmx_control_verify().
7239 */
nested_vmx_setup_ctls_msrs(struct vmcs_config * vmcs_conf,u32 ept_caps)7240 void nested_vmx_setup_ctls_msrs(struct vmcs_config *vmcs_conf, u32 ept_caps)
7241 {
7242 struct nested_vmx_msrs *msrs = &vmcs_conf->nested;
7243
7244 /*
7245 * Note that as a general rule, the high half of the MSRs (bits in
7246 * the control fields which may be 1) should be initialized by the
7247 * intersection of the underlying hardware's MSR (i.e., features which
7248 * can be supported) and the list of features we want to expose -
7249 * because they are known to be properly supported in our code.
7250 * Also, usually, the low half of the MSRs (bits which must be 1) can
7251 * be set to 0, meaning that L1 may turn off any of these bits. The
7252 * reason is that if one of these bits is necessary, it will appear
7253 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
7254 * fields of vmcs01 and vmcs02, will turn these bits off - and
7255 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
7256 * These rules have exceptions below.
7257 */
7258 nested_vmx_setup_pinbased_ctls(vmcs_conf, msrs);
7259
7260 nested_vmx_setup_exit_ctls(vmcs_conf, msrs);
7261
7262 nested_vmx_setup_entry_ctls(vmcs_conf, msrs);
7263
7264 nested_vmx_setup_cpubased_ctls(vmcs_conf, msrs);
7265
7266 nested_vmx_setup_secondary_ctls(ept_caps, vmcs_conf, msrs);
7267
7268 nested_vmx_setup_misc_data(vmcs_conf, msrs);
7269
7270 nested_vmx_setup_basic(msrs);
7271
7272 nested_vmx_setup_cr_fixed(msrs);
7273
7274 msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
7275 }
7276
nested_vmx_hardware_unsetup(void)7277 void nested_vmx_hardware_unsetup(void)
7278 {
7279 int i;
7280
7281 if (enable_shadow_vmcs) {
7282 for (i = 0; i < VMX_BITMAP_NR; i++)
7283 free_page((unsigned long)vmx_bitmap[i]);
7284 }
7285 }
7286
nested_vmx_hardware_setup(int (* exit_handlers[])(struct kvm_vcpu *))7287 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
7288 {
7289 int i;
7290
7291 if (!cpu_has_vmx_shadow_vmcs())
7292 enable_shadow_vmcs = 0;
7293 if (enable_shadow_vmcs) {
7294 for (i = 0; i < VMX_BITMAP_NR; i++) {
7295 /*
7296 * The vmx_bitmap is not tied to a VM and so should
7297 * not be charged to a memcg.
7298 */
7299 vmx_bitmap[i] = (unsigned long *)
7300 __get_free_page(GFP_KERNEL);
7301 if (!vmx_bitmap[i]) {
7302 nested_vmx_hardware_unsetup();
7303 return -ENOMEM;
7304 }
7305 }
7306
7307 init_vmcs_shadow_fields();
7308 }
7309
7310 exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear;
7311 exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch;
7312 exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld;
7313 exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst;
7314 exit_handlers[EXIT_REASON_VMREAD] = handle_vmread;
7315 exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume;
7316 exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite;
7317 exit_handlers[EXIT_REASON_VMOFF] = handle_vmxoff;
7318 exit_handlers[EXIT_REASON_VMON] = handle_vmxon;
7319 exit_handlers[EXIT_REASON_INVEPT] = handle_invept;
7320 exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid;
7321 exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc;
7322
7323 return 0;
7324 }
7325
7326 struct kvm_x86_nested_ops vmx_nested_ops = {
7327 .leave_nested = vmx_leave_nested,
7328 .is_exception_vmexit = nested_vmx_is_exception_vmexit,
7329 .check_events = vmx_check_nested_events,
7330 .has_events = vmx_has_nested_events,
7331 .triple_fault = nested_vmx_triple_fault,
7332 .get_state = vmx_get_nested_state,
7333 .set_state = vmx_set_nested_state,
7334 .get_nested_state_pages = vmx_get_nested_state_pages,
7335 .write_log_dirty = nested_vmx_write_pml_buffer,
7336 #ifdef CONFIG_KVM_HYPERV
7337 .enable_evmcs = nested_enable_evmcs,
7338 .get_evmcs_version = nested_get_evmcs_version,
7339 .hv_inject_synthetic_vmexit_post_tlb_flush = vmx_hv_inject_synthetic_vmexit_post_tlb_flush,
7340 #endif
7341 };
7342