1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 * emulate.c
4 *
5 * Generic x86 (32-bit and 64-bit) instruction decoder and emulator.
6 *
7 * Copyright (c) 2005 Keir Fraser
8 *
9 * Linux coding style, mod r/m decoder, segment base fixes, real-mode
10 * privileged instructions:
11 *
12 * Copyright (C) 2006 Qumranet
13 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
14 *
15 * Avi Kivity <avi@qumranet.com>
16 * Yaniv Kamay <yaniv@qumranet.com>
17 *
18 * From: xen-unstable 10676:af9809f51f81a3c43f276f00c81a52ef558afda4
19 */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/kvm_host.h>
23 #include "kvm_cache_regs.h"
24 #include "kvm_emulate.h"
25 #include <linux/stringify.h>
26 #include <asm/debugreg.h>
27 #include <asm/nospec-branch.h>
28 #include <asm/ibt.h>
29 #include <asm/text-patching.h>
30
31 #include "x86.h"
32 #include "tss.h"
33 #include "mmu.h"
34 #include "pmu.h"
35
36 /*
37 * Operand types
38 */
39 #define OpNone 0ull
40 #define OpImplicit 1ull /* No generic decode */
41 #define OpReg 2ull /* Register */
42 #define OpMem 3ull /* Memory */
43 #define OpAcc 4ull /* Accumulator: AL/AX/EAX/RAX */
44 #define OpDI 5ull /* ES:DI/EDI/RDI */
45 #define OpMem64 6ull /* Memory, 64-bit */
46 #define OpImmUByte 7ull /* Zero-extended 8-bit immediate */
47 #define OpDX 8ull /* DX register */
48 #define OpCL 9ull /* CL register (for shifts) */
49 #define OpImmByte 10ull /* 8-bit sign extended immediate */
50 #define OpOne 11ull /* Implied 1 */
51 #define OpImm 12ull /* Sign extended up to 32-bit immediate */
52 #define OpMem16 13ull /* Memory operand (16-bit). */
53 #define OpMem32 14ull /* Memory operand (32-bit). */
54 #define OpImmU 15ull /* Immediate operand, zero extended */
55 #define OpSI 16ull /* SI/ESI/RSI */
56 #define OpImmFAddr 17ull /* Immediate far address */
57 #define OpMemFAddr 18ull /* Far address in memory */
58 #define OpImmU16 19ull /* Immediate operand, 16 bits, zero extended */
59 #define OpES 20ull /* ES */
60 #define OpCS 21ull /* CS */
61 #define OpSS 22ull /* SS */
62 #define OpDS 23ull /* DS */
63 #define OpFS 24ull /* FS */
64 #define OpGS 25ull /* GS */
65 #define OpMem8 26ull /* 8-bit zero extended memory operand */
66 #define OpImm64 27ull /* Sign extended 16/32/64-bit immediate */
67 #define OpXLat 28ull /* memory at BX/EBX/RBX + zero-extended AL */
68 #define OpAccLo 29ull /* Low part of extended acc (AX/AX/EAX/RAX) */
69 #define OpAccHi 30ull /* High part of extended acc (-/DX/EDX/RDX) */
70
71 #define OpBits 5 /* Width of operand field */
72 #define OpMask ((1ull << OpBits) - 1)
73
74 /*
75 * Opcode effective-address decode tables.
76 * Note that we only emulate instructions that have at least one memory
77 * operand (excluding implicit stack references). We assume that stack
78 * references and instruction fetches will never occur in special memory
79 * areas that require emulation. So, for example, 'mov <imm>,<reg>' need
80 * not be handled.
81 */
82
83 /* Operand sizes: 8-bit operands or specified/overridden size. */
84 #define ByteOp (1<<0) /* 8-bit operands. */
85 /* Destination operand type. */
86 #define DstShift 1
87 #define ImplicitOps (OpImplicit << DstShift)
88 #define DstReg (OpReg << DstShift)
89 #define DstMem (OpMem << DstShift)
90 #define DstAcc (OpAcc << DstShift)
91 #define DstDI (OpDI << DstShift)
92 #define DstMem64 (OpMem64 << DstShift)
93 #define DstMem16 (OpMem16 << DstShift)
94 #define DstImmUByte (OpImmUByte << DstShift)
95 #define DstDX (OpDX << DstShift)
96 #define DstAccLo (OpAccLo << DstShift)
97 #define DstMask (OpMask << DstShift)
98 /* Source operand type. */
99 #define SrcShift 6
100 #define SrcNone (OpNone << SrcShift)
101 #define SrcReg (OpReg << SrcShift)
102 #define SrcMem (OpMem << SrcShift)
103 #define SrcMem16 (OpMem16 << SrcShift)
104 #define SrcMem32 (OpMem32 << SrcShift)
105 #define SrcImm (OpImm << SrcShift)
106 #define SrcImmByte (OpImmByte << SrcShift)
107 #define SrcOne (OpOne << SrcShift)
108 #define SrcImmUByte (OpImmUByte << SrcShift)
109 #define SrcImmU (OpImmU << SrcShift)
110 #define SrcSI (OpSI << SrcShift)
111 #define SrcXLat (OpXLat << SrcShift)
112 #define SrcImmFAddr (OpImmFAddr << SrcShift)
113 #define SrcMemFAddr (OpMemFAddr << SrcShift)
114 #define SrcAcc (OpAcc << SrcShift)
115 #define SrcImmU16 (OpImmU16 << SrcShift)
116 #define SrcImm64 (OpImm64 << SrcShift)
117 #define SrcDX (OpDX << SrcShift)
118 #define SrcMem8 (OpMem8 << SrcShift)
119 #define SrcAccHi (OpAccHi << SrcShift)
120 #define SrcMask (OpMask << SrcShift)
121 #define BitOp (1<<11)
122 #define MemAbs (1<<12) /* Memory operand is absolute displacement */
123 #define String (1<<13) /* String instruction (rep capable) */
124 #define Stack (1<<14) /* Stack instruction (push/pop) */
125 #define GroupMask (7<<15) /* Opcode uses one of the group mechanisms */
126 #define Group (1<<15) /* Bits 3:5 of modrm byte extend opcode */
127 #define GroupDual (2<<15) /* Alternate decoding of mod == 3 */
128 #define Prefix (3<<15) /* Instruction varies with 66/f2/f3 prefix */
129 #define RMExt (4<<15) /* Opcode extension in ModRM r/m if mod == 3 */
130 #define Escape (5<<15) /* Escape to coprocessor instruction */
131 #define InstrDual (6<<15) /* Alternate instruction decoding of mod == 3 */
132 #define ModeDual (7<<15) /* Different instruction for 32/64 bit */
133 #define Sse (1<<18) /* SSE Vector instruction */
134 /* Generic ModRM decode. */
135 #define ModRM (1<<19)
136 /* Destination is only written; never read. */
137 #define Mov (1<<20)
138 /* Misc flags */
139 #define Prot (1<<21) /* instruction generates #UD if not in prot-mode */
140 #define EmulateOnUD (1<<22) /* Emulate if unsupported by the host */
141 #define NoAccess (1<<23) /* Don't access memory (lea/invlpg/verr etc) */
142 #define Op3264 (1<<24) /* Operand is 64b in long mode, 32b otherwise */
143 #define Undefined (1<<25) /* No Such Instruction */
144 #define Lock (1<<26) /* lock prefix is allowed for the instruction */
145 #define Priv (1<<27) /* instruction generates #GP if current CPL != 0 */
146 #define No64 (1<<28)
147 #define PageTable (1 << 29) /* instruction used to write page table */
148 #define NotImpl (1 << 30) /* instruction is not implemented */
149 /* Source 2 operand type */
150 #define Src2Shift (31)
151 #define Src2None (OpNone << Src2Shift)
152 #define Src2Mem (OpMem << Src2Shift)
153 #define Src2CL (OpCL << Src2Shift)
154 #define Src2ImmByte (OpImmByte << Src2Shift)
155 #define Src2One (OpOne << Src2Shift)
156 #define Src2Imm (OpImm << Src2Shift)
157 #define Src2ES (OpES << Src2Shift)
158 #define Src2CS (OpCS << Src2Shift)
159 #define Src2SS (OpSS << Src2Shift)
160 #define Src2DS (OpDS << Src2Shift)
161 #define Src2FS (OpFS << Src2Shift)
162 #define Src2GS (OpGS << Src2Shift)
163 #define Src2Mask (OpMask << Src2Shift)
164 #define Mmx ((u64)1 << 40) /* MMX Vector instruction */
165 #define AlignMask ((u64)7 << 41)
166 #define Aligned ((u64)1 << 41) /* Explicitly aligned (e.g. MOVDQA) */
167 #define Unaligned ((u64)2 << 41) /* Explicitly unaligned (e.g. MOVDQU) */
168 #define Avx ((u64)3 << 41) /* Advanced Vector Extensions */
169 #define Aligned16 ((u64)4 << 41) /* Aligned to 16 byte boundary (e.g. FXSAVE) */
170 #define NoWrite ((u64)1 << 45) /* No writeback */
171 #define SrcWrite ((u64)1 << 46) /* Write back src operand */
172 #define NoMod ((u64)1 << 47) /* Mod field is ignored */
173 #define Intercept ((u64)1 << 48) /* Has valid intercept field */
174 #define CheckPerm ((u64)1 << 49) /* Has valid check_perm field */
175 #define PrivUD ((u64)1 << 51) /* #UD instead of #GP on CPL > 0 */
176 #define NearBranch ((u64)1 << 52) /* Near branches */
177 #define No16 ((u64)1 << 53) /* No 16 bit operand */
178 #define IncSP ((u64)1 << 54) /* SP is incremented before ModRM calc */
179 #define TwoMemOp ((u64)1 << 55) /* Instruction has two memory operand */
180 #define IsBranch ((u64)1 << 56) /* Instruction is considered a branch. */
181 #define ShadowStack ((u64)1 << 57) /* Instruction affects Shadow Stacks. */
182
183 #define DstXacc (DstAccLo | SrcAccHi | SrcWrite)
184
185 #define X2(x...) x, x
186 #define X3(x...) X2(x), x
187 #define X4(x...) X2(x), X2(x)
188 #define X5(x...) X4(x), x
189 #define X6(x...) X4(x), X2(x)
190 #define X7(x...) X4(x), X3(x)
191 #define X8(x...) X4(x), X4(x)
192 #define X16(x...) X8(x), X8(x)
193
194 struct opcode {
195 u64 flags;
196 u8 intercept;
197 u8 pad[7];
198 union {
199 int (*execute)(struct x86_emulate_ctxt *ctxt);
200 const struct opcode *group;
201 const struct group_dual *gdual;
202 const struct gprefix *gprefix;
203 const struct escape *esc;
204 const struct instr_dual *idual;
205 const struct mode_dual *mdual;
206 } u;
207 int (*check_perm)(struct x86_emulate_ctxt *ctxt);
208 };
209
210 struct group_dual {
211 struct opcode mod012[8];
212 struct opcode mod3[8];
213 };
214
215 struct gprefix {
216 struct opcode pfx_no;
217 struct opcode pfx_66;
218 struct opcode pfx_f2;
219 struct opcode pfx_f3;
220 };
221
222 struct escape {
223 struct opcode op[8];
224 struct opcode high[64];
225 };
226
227 struct instr_dual {
228 struct opcode mod012;
229 struct opcode mod3;
230 };
231
232 struct mode_dual {
233 struct opcode mode32;
234 struct opcode mode64;
235 };
236
237 #define EFLG_RESERVED_ZEROS_MASK 0xffc0802a
238
239 enum x86_transfer_type {
240 X86_TRANSFER_NONE,
241 X86_TRANSFER_CALL_JMP,
242 X86_TRANSFER_RET,
243 X86_TRANSFER_TASK_SWITCH,
244 };
245
writeback_registers(struct x86_emulate_ctxt * ctxt)246 static void writeback_registers(struct x86_emulate_ctxt *ctxt)
247 {
248 unsigned long dirty = ctxt->regs_dirty;
249 unsigned reg;
250
251 for_each_set_bit(reg, &dirty, NR_EMULATOR_GPRS)
252 ctxt->ops->write_gpr(ctxt, reg, ctxt->_regs[reg]);
253 }
254
invalidate_registers(struct x86_emulate_ctxt * ctxt)255 static void invalidate_registers(struct x86_emulate_ctxt *ctxt)
256 {
257 ctxt->regs_dirty = 0;
258 ctxt->regs_valid = 0;
259 }
260
261 /*
262 * These EFLAGS bits are restored from saved value during emulation, and
263 * any changes are written back to the saved value after emulation.
264 */
265 #define EFLAGS_MASK (X86_EFLAGS_OF|X86_EFLAGS_SF|X86_EFLAGS_ZF|X86_EFLAGS_AF|\
266 X86_EFLAGS_PF|X86_EFLAGS_CF)
267
268 #ifdef CONFIG_X86_64
269 #define ON64(x...) x
270 #else
271 #define ON64(x...)
272 #endif
273
274 #define EM_ASM_START(op) \
275 static int em_##op(struct x86_emulate_ctxt *ctxt) \
276 { \
277 unsigned long flags = (ctxt->eflags & EFLAGS_MASK) | X86_EFLAGS_IF; \
278 int bytes = 1, ok = 1; \
279 if (!(ctxt->d & ByteOp)) \
280 bytes = ctxt->dst.bytes; \
281 switch (bytes) {
282
283 #define __EM_ASM(str) \
284 asm("push %[flags]; popf \n\t" \
285 "10: " str \
286 "pushf; pop %[flags] \n\t" \
287 "11: \n\t" \
288 : "+a" (ctxt->dst.val), \
289 "+d" (ctxt->src.val), \
290 [flags] "+D" (flags), \
291 "+S" (ok) \
292 : "c" (ctxt->src2.val))
293
294 #define __EM_ASM_1(op, dst) \
295 __EM_ASM(#op " %%" #dst " \n\t")
296
297 #define __EM_ASM_1_EX(op, dst) \
298 __EM_ASM(#op " %%" #dst " \n\t" \
299 _ASM_EXTABLE_TYPE_REG(10b, 11f, EX_TYPE_ZERO_REG, %%esi))
300
301 #define __EM_ASM_2(op, dst, src) \
302 __EM_ASM(#op " %%" #src ", %%" #dst " \n\t")
303
304 #define __EM_ASM_3(op, dst, src, src2) \
305 __EM_ASM(#op " %%" #src2 ", %%" #src ", %%" #dst " \n\t")
306
307 #define EM_ASM_END \
308 } \
309 ctxt->eflags = (ctxt->eflags & ~EFLAGS_MASK) | (flags & EFLAGS_MASK); \
310 return !ok ? emulate_de(ctxt) : X86EMUL_CONTINUE; \
311 }
312
313 /* 1-operand, using "a" (dst) */
314 #define EM_ASM_1(op) \
315 EM_ASM_START(op) \
316 case 1: __EM_ASM_1(op##b, al); break; \
317 case 2: __EM_ASM_1(op##w, ax); break; \
318 case 4: __EM_ASM_1(op##l, eax); break; \
319 ON64(case 8: __EM_ASM_1(op##q, rax); break;) \
320 EM_ASM_END
321
322 /* 1-operand, using "c" (src2) */
323 #define EM_ASM_1SRC2(op, name) \
324 EM_ASM_START(name) \
325 case 1: __EM_ASM_1(op##b, cl); break; \
326 case 2: __EM_ASM_1(op##w, cx); break; \
327 case 4: __EM_ASM_1(op##l, ecx); break; \
328 ON64(case 8: __EM_ASM_1(op##q, rcx); break;) \
329 EM_ASM_END
330
331 /* 1-operand, using "c" (src2) with exception */
332 #define EM_ASM_1SRC2EX(op, name) \
333 EM_ASM_START(name) \
334 case 1: __EM_ASM_1_EX(op##b, cl); break; \
335 case 2: __EM_ASM_1_EX(op##w, cx); break; \
336 case 4: __EM_ASM_1_EX(op##l, ecx); break; \
337 ON64(case 8: __EM_ASM_1_EX(op##q, rcx); break;) \
338 EM_ASM_END
339
340 /* 2-operand, using "a" (dst), "d" (src) */
341 #define EM_ASM_2(op) \
342 EM_ASM_START(op) \
343 case 1: __EM_ASM_2(op##b, al, dl); break; \
344 case 2: __EM_ASM_2(op##w, ax, dx); break; \
345 case 4: __EM_ASM_2(op##l, eax, edx); break; \
346 ON64(case 8: __EM_ASM_2(op##q, rax, rdx); break;) \
347 EM_ASM_END
348
349 /* 2-operand, reversed */
350 #define EM_ASM_2R(op, name) \
351 EM_ASM_START(name) \
352 case 1: __EM_ASM_2(op##b, dl, al); break; \
353 case 2: __EM_ASM_2(op##w, dx, ax); break; \
354 case 4: __EM_ASM_2(op##l, edx, eax); break; \
355 ON64(case 8: __EM_ASM_2(op##q, rdx, rax); break;) \
356 EM_ASM_END
357
358 /* 2-operand, word only (no byte op) */
359 #define EM_ASM_2W(op) \
360 EM_ASM_START(op) \
361 case 1: break; \
362 case 2: __EM_ASM_2(op##w, ax, dx); break; \
363 case 4: __EM_ASM_2(op##l, eax, edx); break; \
364 ON64(case 8: __EM_ASM_2(op##q, rax, rdx); break;) \
365 EM_ASM_END
366
367 /* 2-operand, using "a" (dst) and CL (src2) */
368 #define EM_ASM_2CL(op) \
369 EM_ASM_START(op) \
370 case 1: __EM_ASM_2(op##b, al, cl); break; \
371 case 2: __EM_ASM_2(op##w, ax, cl); break; \
372 case 4: __EM_ASM_2(op##l, eax, cl); break; \
373 ON64(case 8: __EM_ASM_2(op##q, rax, cl); break;) \
374 EM_ASM_END
375
376 /* 3-operand, using "a" (dst), "d" (src) and CL (src2) */
377 #define EM_ASM_3WCL(op) \
378 EM_ASM_START(op) \
379 case 1: break; \
380 case 2: __EM_ASM_3(op##w, ax, dx, cl); break; \
381 case 4: __EM_ASM_3(op##l, eax, edx, cl); break; \
382 ON64(case 8: __EM_ASM_3(op##q, rax, rdx, cl); break;) \
383 EM_ASM_END
384
em_salc(struct x86_emulate_ctxt * ctxt)385 static int em_salc(struct x86_emulate_ctxt *ctxt)
386 {
387 /*
388 * Set AL 0xFF if CF is set, or 0x00 when clear.
389 */
390 ctxt->dst.val = 0xFF * !!(ctxt->eflags & X86_EFLAGS_CF);
391 return X86EMUL_CONTINUE;
392 }
393
394 /*
395 * XXX: inoutclob user must know where the argument is being expanded.
396 * Using asm goto would allow us to remove _fault.
397 */
398 #define asm_safe(insn, inoutclob...) \
399 ({ \
400 int _fault = 0; \
401 \
402 asm volatile("1:" insn "\n" \
403 "2:\n" \
404 _ASM_EXTABLE_TYPE_REG(1b, 2b, EX_TYPE_ONE_REG, %[_fault]) \
405 : [_fault] "+r"(_fault) inoutclob ); \
406 \
407 _fault ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; \
408 })
409
emulator_check_intercept(struct x86_emulate_ctxt * ctxt,enum x86_intercept intercept,enum x86_intercept_stage stage)410 static int emulator_check_intercept(struct x86_emulate_ctxt *ctxt,
411 enum x86_intercept intercept,
412 enum x86_intercept_stage stage)
413 {
414 struct x86_instruction_info info = {
415 .intercept = intercept,
416 .rep_prefix = ctxt->rep_prefix,
417 .modrm_mod = ctxt->modrm_mod,
418 .modrm_reg = ctxt->modrm_reg,
419 .modrm_rm = ctxt->modrm_rm,
420 .src_val = ctxt->src.val64,
421 .dst_val = ctxt->dst.val64,
422 .src_bytes = ctxt->src.bytes,
423 .dst_bytes = ctxt->dst.bytes,
424 .src_type = ctxt->src.type,
425 .dst_type = ctxt->dst.type,
426 .ad_bytes = ctxt->ad_bytes,
427 .rip = ctxt->eip,
428 .next_rip = ctxt->_eip,
429 };
430
431 return ctxt->ops->intercept(ctxt, &info, stage);
432 }
433
assign_masked(ulong * dest,ulong src,ulong mask)434 static void assign_masked(ulong *dest, ulong src, ulong mask)
435 {
436 *dest = (*dest & ~mask) | (src & mask);
437 }
438
assign_register(unsigned long * reg,u64 val,int bytes)439 static void assign_register(unsigned long *reg, u64 val, int bytes)
440 {
441 /* The 4-byte case *is* correct: in 64-bit mode we zero-extend. */
442 switch (bytes) {
443 case 1:
444 *(u8 *)reg = (u8)val;
445 break;
446 case 2:
447 *(u16 *)reg = (u16)val;
448 break;
449 case 4:
450 *reg = (u32)val;
451 break; /* 64b: zero-extend */
452 case 8:
453 *reg = val;
454 break;
455 }
456 }
457
ad_mask(struct x86_emulate_ctxt * ctxt)458 static inline unsigned long ad_mask(struct x86_emulate_ctxt *ctxt)
459 {
460 return (1UL << (ctxt->ad_bytes << 3)) - 1;
461 }
462
stack_mask(struct x86_emulate_ctxt * ctxt)463 static ulong stack_mask(struct x86_emulate_ctxt *ctxt)
464 {
465 u16 sel;
466 struct desc_struct ss;
467
468 if (ctxt->mode == X86EMUL_MODE_PROT64)
469 return ~0UL;
470 ctxt->ops->get_segment(ctxt, &sel, &ss, NULL, VCPU_SREG_SS);
471 return ~0U >> ((ss.d ^ 1) * 16); /* d=0: 0xffff; d=1: 0xffffffff */
472 }
473
stack_size(struct x86_emulate_ctxt * ctxt)474 static int stack_size(struct x86_emulate_ctxt *ctxt)
475 {
476 return (__fls(stack_mask(ctxt)) + 1) >> 3;
477 }
478
479 /* Access/update address held in a register, based on addressing mode. */
480 static inline unsigned long
address_mask(struct x86_emulate_ctxt * ctxt,unsigned long reg)481 address_mask(struct x86_emulate_ctxt *ctxt, unsigned long reg)
482 {
483 if (ctxt->ad_bytes == sizeof(unsigned long))
484 return reg;
485 else
486 return reg & ad_mask(ctxt);
487 }
488
489 static inline unsigned long
register_address(struct x86_emulate_ctxt * ctxt,int reg)490 register_address(struct x86_emulate_ctxt *ctxt, int reg)
491 {
492 return address_mask(ctxt, reg_read(ctxt, reg));
493 }
494
masked_increment(ulong * reg,ulong mask,int inc)495 static void masked_increment(ulong *reg, ulong mask, int inc)
496 {
497 assign_masked(reg, *reg + inc, mask);
498 }
499
500 static inline void
register_address_increment(struct x86_emulate_ctxt * ctxt,int reg,int inc)501 register_address_increment(struct x86_emulate_ctxt *ctxt, int reg, int inc)
502 {
503 ulong *preg = reg_rmw(ctxt, reg);
504
505 assign_register(preg, *preg + inc, ctxt->ad_bytes);
506 }
507
rsp_increment(struct x86_emulate_ctxt * ctxt,int inc)508 static void rsp_increment(struct x86_emulate_ctxt *ctxt, int inc)
509 {
510 masked_increment(reg_rmw(ctxt, VCPU_REGS_RSP), stack_mask(ctxt), inc);
511 }
512
desc_limit_scaled(struct desc_struct * desc)513 static u32 desc_limit_scaled(struct desc_struct *desc)
514 {
515 u32 limit = get_desc_limit(desc);
516
517 return desc->g ? (limit << 12) | 0xfff : limit;
518 }
519
seg_base(struct x86_emulate_ctxt * ctxt,int seg)520 static unsigned long seg_base(struct x86_emulate_ctxt *ctxt, int seg)
521 {
522 if (ctxt->mode == X86EMUL_MODE_PROT64 && seg < VCPU_SREG_FS)
523 return 0;
524
525 return ctxt->ops->get_cached_segment_base(ctxt, seg);
526 }
527
emulate_exception(struct x86_emulate_ctxt * ctxt,int vec,u32 error,bool valid)528 static int emulate_exception(struct x86_emulate_ctxt *ctxt, int vec,
529 u32 error, bool valid)
530 {
531 if (KVM_EMULATOR_BUG_ON(vec > 0x1f, ctxt))
532 return X86EMUL_UNHANDLEABLE;
533
534 ctxt->exception.vector = vec;
535 ctxt->exception.error_code = error;
536 ctxt->exception.error_code_valid = valid;
537 return X86EMUL_PROPAGATE_FAULT;
538 }
539
emulate_db(struct x86_emulate_ctxt * ctxt)540 static int emulate_db(struct x86_emulate_ctxt *ctxt)
541 {
542 return emulate_exception(ctxt, DB_VECTOR, 0, false);
543 }
544
emulate_gp(struct x86_emulate_ctxt * ctxt,int err)545 static int emulate_gp(struct x86_emulate_ctxt *ctxt, int err)
546 {
547 return emulate_exception(ctxt, GP_VECTOR, err, true);
548 }
549
emulate_ss(struct x86_emulate_ctxt * ctxt,int err)550 static int emulate_ss(struct x86_emulate_ctxt *ctxt, int err)
551 {
552 return emulate_exception(ctxt, SS_VECTOR, err, true);
553 }
554
emulate_ud(struct x86_emulate_ctxt * ctxt)555 static int emulate_ud(struct x86_emulate_ctxt *ctxt)
556 {
557 return emulate_exception(ctxt, UD_VECTOR, 0, false);
558 }
559
emulate_ts(struct x86_emulate_ctxt * ctxt,int err)560 static int emulate_ts(struct x86_emulate_ctxt *ctxt, int err)
561 {
562 return emulate_exception(ctxt, TS_VECTOR, err, true);
563 }
564
emulate_de(struct x86_emulate_ctxt * ctxt)565 static int emulate_de(struct x86_emulate_ctxt *ctxt)
566 {
567 return emulate_exception(ctxt, DE_VECTOR, 0, false);
568 }
569
emulate_nm(struct x86_emulate_ctxt * ctxt)570 static int emulate_nm(struct x86_emulate_ctxt *ctxt)
571 {
572 return emulate_exception(ctxt, NM_VECTOR, 0, false);
573 }
574
get_segment_selector(struct x86_emulate_ctxt * ctxt,unsigned seg)575 static u16 get_segment_selector(struct x86_emulate_ctxt *ctxt, unsigned seg)
576 {
577 u16 selector;
578 struct desc_struct desc;
579
580 ctxt->ops->get_segment(ctxt, &selector, &desc, NULL, seg);
581 return selector;
582 }
583
set_segment_selector(struct x86_emulate_ctxt * ctxt,u16 selector,unsigned seg)584 static void set_segment_selector(struct x86_emulate_ctxt *ctxt, u16 selector,
585 unsigned seg)
586 {
587 u16 dummy;
588 u32 base3;
589 struct desc_struct desc;
590
591 ctxt->ops->get_segment(ctxt, &dummy, &desc, &base3, seg);
592 ctxt->ops->set_segment(ctxt, selector, &desc, base3, seg);
593 }
594
ctxt_virt_addr_bits(struct x86_emulate_ctxt * ctxt)595 static inline u8 ctxt_virt_addr_bits(struct x86_emulate_ctxt *ctxt)
596 {
597 return (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_LA57) ? 57 : 48;
598 }
599
emul_is_noncanonical_address(u64 la,struct x86_emulate_ctxt * ctxt,unsigned int flags)600 static inline bool emul_is_noncanonical_address(u64 la,
601 struct x86_emulate_ctxt *ctxt,
602 unsigned int flags)
603 {
604 return !ctxt->ops->is_canonical_addr(ctxt, la, flags);
605 }
606
607 /*
608 * x86 defines three classes of vector instructions: explicitly
609 * aligned, explicitly unaligned, and the rest, which change behaviour
610 * depending on whether they're AVX encoded or not.
611 *
612 * Also included is CMPXCHG16B which is not a vector instruction, yet it is
613 * subject to the same check. FXSAVE and FXRSTOR are checked here too as their
614 * 512 bytes of data must be aligned to a 16 byte boundary.
615 */
insn_alignment(struct x86_emulate_ctxt * ctxt,unsigned size)616 static unsigned insn_alignment(struct x86_emulate_ctxt *ctxt, unsigned size)
617 {
618 u64 alignment = ctxt->d & AlignMask;
619
620 if (likely(size < 16))
621 return 1;
622
623 switch (alignment) {
624 case Unaligned:
625 case Avx:
626 return 1;
627 case Aligned16:
628 return 16;
629 case Aligned:
630 default:
631 return size;
632 }
633 }
634
__linearize(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,unsigned * max_size,unsigned size,enum x86emul_mode mode,ulong * linear,unsigned int flags)635 static __always_inline int __linearize(struct x86_emulate_ctxt *ctxt,
636 struct segmented_address addr,
637 unsigned *max_size, unsigned size,
638 enum x86emul_mode mode, ulong *linear,
639 unsigned int flags)
640 {
641 struct desc_struct desc;
642 bool usable;
643 ulong la;
644 u32 lim;
645 u16 sel;
646 u8 va_bits;
647
648 la = seg_base(ctxt, addr.seg) + addr.ea;
649 *max_size = 0;
650 switch (mode) {
651 case X86EMUL_MODE_PROT64:
652 *linear = la = ctxt->ops->get_untagged_addr(ctxt, la, flags);
653 va_bits = ctxt_virt_addr_bits(ctxt);
654 if (!__is_canonical_address(la, va_bits))
655 goto bad;
656
657 *max_size = min_t(u64, ~0u, (1ull << va_bits) - la);
658 if (size > *max_size)
659 goto bad;
660 break;
661 default:
662 *linear = la = (u32)la;
663 usable = ctxt->ops->get_segment(ctxt, &sel, &desc, NULL,
664 addr.seg);
665 if (!usable)
666 goto bad;
667 /* code segment in protected mode or read-only data segment */
668 if ((((ctxt->mode != X86EMUL_MODE_REAL) && (desc.type & 8)) || !(desc.type & 2)) &&
669 (flags & X86EMUL_F_WRITE))
670 goto bad;
671 /* unreadable code segment */
672 if (!(flags & X86EMUL_F_FETCH) && (desc.type & 8) && !(desc.type & 2))
673 goto bad;
674 lim = desc_limit_scaled(&desc);
675 if (!(desc.type & 8) && (desc.type & 4)) {
676 /* expand-down segment */
677 if (addr.ea <= lim)
678 goto bad;
679 lim = desc.d ? 0xffffffff : 0xffff;
680 }
681 if (addr.ea > lim)
682 goto bad;
683 if (lim == 0xffffffff)
684 *max_size = ~0u;
685 else {
686 *max_size = (u64)lim + 1 - addr.ea;
687 if (size > *max_size)
688 goto bad;
689 }
690 break;
691 }
692 if (la & (insn_alignment(ctxt, size) - 1))
693 return emulate_gp(ctxt, 0);
694 return X86EMUL_CONTINUE;
695 bad:
696 if (addr.seg == VCPU_SREG_SS)
697 return emulate_ss(ctxt, 0);
698 else
699 return emulate_gp(ctxt, 0);
700 }
701
linearize(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,unsigned size,bool write,ulong * linear)702 static int linearize(struct x86_emulate_ctxt *ctxt,
703 struct segmented_address addr,
704 unsigned size, bool write,
705 ulong *linear)
706 {
707 unsigned max_size;
708 return __linearize(ctxt, addr, &max_size, size, ctxt->mode, linear,
709 write ? X86EMUL_F_WRITE : 0);
710 }
711
assign_eip(struct x86_emulate_ctxt * ctxt,ulong dst)712 static inline int assign_eip(struct x86_emulate_ctxt *ctxt, ulong dst)
713 {
714 ulong linear;
715 int rc;
716 unsigned max_size;
717 struct segmented_address addr = { .seg = VCPU_SREG_CS,
718 .ea = dst };
719
720 if (ctxt->op_bytes != sizeof(unsigned long))
721 addr.ea = dst & ((1UL << (ctxt->op_bytes << 3)) - 1);
722 rc = __linearize(ctxt, addr, &max_size, 1, ctxt->mode, &linear,
723 X86EMUL_F_FETCH);
724 if (rc == X86EMUL_CONTINUE)
725 ctxt->_eip = addr.ea;
726 return rc;
727 }
728
emulator_recalc_and_set_mode(struct x86_emulate_ctxt * ctxt)729 static inline int emulator_recalc_and_set_mode(struct x86_emulate_ctxt *ctxt)
730 {
731 u64 efer;
732 struct desc_struct cs;
733 u16 selector;
734 u32 base3;
735
736 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
737
738 if (!(ctxt->ops->get_cr(ctxt, 0) & X86_CR0_PE)) {
739 /* Real mode. cpu must not have long mode active */
740 if (efer & EFER_LMA)
741 return X86EMUL_UNHANDLEABLE;
742 ctxt->mode = X86EMUL_MODE_REAL;
743 return X86EMUL_CONTINUE;
744 }
745
746 if (ctxt->eflags & X86_EFLAGS_VM) {
747 /* Protected/VM86 mode. cpu must not have long mode active */
748 if (efer & EFER_LMA)
749 return X86EMUL_UNHANDLEABLE;
750 ctxt->mode = X86EMUL_MODE_VM86;
751 return X86EMUL_CONTINUE;
752 }
753
754 if (!ctxt->ops->get_segment(ctxt, &selector, &cs, &base3, VCPU_SREG_CS))
755 return X86EMUL_UNHANDLEABLE;
756
757 if (efer & EFER_LMA) {
758 if (cs.l) {
759 /* Proper long mode */
760 ctxt->mode = X86EMUL_MODE_PROT64;
761 } else if (cs.d) {
762 /* 32 bit compatibility mode*/
763 ctxt->mode = X86EMUL_MODE_PROT32;
764 } else {
765 ctxt->mode = X86EMUL_MODE_PROT16;
766 }
767 } else {
768 /* Legacy 32 bit / 16 bit mode */
769 ctxt->mode = cs.d ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
770 }
771
772 return X86EMUL_CONTINUE;
773 }
774
assign_eip_near(struct x86_emulate_ctxt * ctxt,ulong dst)775 static inline int assign_eip_near(struct x86_emulate_ctxt *ctxt, ulong dst)
776 {
777 return assign_eip(ctxt, dst);
778 }
779
assign_eip_far(struct x86_emulate_ctxt * ctxt,ulong dst)780 static int assign_eip_far(struct x86_emulate_ctxt *ctxt, ulong dst)
781 {
782 int rc = emulator_recalc_and_set_mode(ctxt);
783
784 if (rc != X86EMUL_CONTINUE)
785 return rc;
786
787 return assign_eip(ctxt, dst);
788 }
789
jmp_rel(struct x86_emulate_ctxt * ctxt,int rel)790 static inline int jmp_rel(struct x86_emulate_ctxt *ctxt, int rel)
791 {
792 return assign_eip_near(ctxt, ctxt->_eip + rel);
793 }
794
linear_read_system(struct x86_emulate_ctxt * ctxt,ulong linear,void * data,unsigned size)795 static int linear_read_system(struct x86_emulate_ctxt *ctxt, ulong linear,
796 void *data, unsigned size)
797 {
798 return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception, true);
799 }
800
linear_write_system(struct x86_emulate_ctxt * ctxt,ulong linear,void * data,unsigned int size)801 static int linear_write_system(struct x86_emulate_ctxt *ctxt,
802 ulong linear, void *data,
803 unsigned int size)
804 {
805 return ctxt->ops->write_std(ctxt, linear, data, size, &ctxt->exception, true);
806 }
807
segmented_read_std(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,void * data,unsigned size)808 static int segmented_read_std(struct x86_emulate_ctxt *ctxt,
809 struct segmented_address addr,
810 void *data,
811 unsigned size)
812 {
813 int rc;
814 ulong linear;
815
816 rc = linearize(ctxt, addr, size, false, &linear);
817 if (rc != X86EMUL_CONTINUE)
818 return rc;
819 return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception, false);
820 }
821
segmented_write_std(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,void * data,unsigned int size)822 static int segmented_write_std(struct x86_emulate_ctxt *ctxt,
823 struct segmented_address addr,
824 void *data,
825 unsigned int size)
826 {
827 int rc;
828 ulong linear;
829
830 rc = linearize(ctxt, addr, size, true, &linear);
831 if (rc != X86EMUL_CONTINUE)
832 return rc;
833 return ctxt->ops->write_std(ctxt, linear, data, size, &ctxt->exception, false);
834 }
835
836 /*
837 * Prefetch the remaining bytes of the instruction without crossing page
838 * boundary if they are not in fetch_cache yet.
839 */
__do_insn_fetch_bytes(struct x86_emulate_ctxt * ctxt,int op_size)840 static int __do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt, int op_size)
841 {
842 int rc;
843 unsigned size, max_size;
844 unsigned long linear;
845 int cur_size = ctxt->fetch.end - ctxt->fetch.data;
846 struct segmented_address addr = { .seg = VCPU_SREG_CS,
847 .ea = ctxt->eip + cur_size };
848
849 /*
850 * We do not know exactly how many bytes will be needed, and
851 * __linearize is expensive, so fetch as much as possible. We
852 * just have to avoid going beyond the 15 byte limit, the end
853 * of the segment, or the end of the page.
854 *
855 * __linearize is called with size 0 so that it does not do any
856 * boundary check itself. Instead, we use max_size to check
857 * against op_size.
858 */
859 rc = __linearize(ctxt, addr, &max_size, 0, ctxt->mode, &linear,
860 X86EMUL_F_FETCH);
861 if (unlikely(rc != X86EMUL_CONTINUE))
862 return rc;
863
864 size = min_t(unsigned, 15UL ^ cur_size, max_size);
865 size = min_t(unsigned, size, PAGE_SIZE - offset_in_page(linear));
866
867 /*
868 * One instruction can only straddle two pages,
869 * and one has been loaded at the beginning of
870 * x86_decode_insn. So, if not enough bytes
871 * still, we must have hit the 15-byte boundary.
872 */
873 if (unlikely(size < op_size))
874 return emulate_gp(ctxt, 0);
875
876 rc = ctxt->ops->fetch(ctxt, linear, ctxt->fetch.end,
877 size, &ctxt->exception);
878 if (unlikely(rc != X86EMUL_CONTINUE))
879 return rc;
880 ctxt->fetch.end += size;
881 return X86EMUL_CONTINUE;
882 }
883
do_insn_fetch_bytes(struct x86_emulate_ctxt * ctxt,unsigned size)884 static __always_inline int do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt,
885 unsigned size)
886 {
887 unsigned done_size = ctxt->fetch.end - ctxt->fetch.ptr;
888
889 if (unlikely(done_size < size))
890 return __do_insn_fetch_bytes(ctxt, size - done_size);
891 else
892 return X86EMUL_CONTINUE;
893 }
894
895 /* Fetch next part of the instruction being emulated. */
896 #define insn_fetch(_type, _ctxt) \
897 ({ _type _x; \
898 \
899 rc = do_insn_fetch_bytes(_ctxt, sizeof(_type)); \
900 if (rc != X86EMUL_CONTINUE) \
901 goto done; \
902 ctxt->_eip += sizeof(_type); \
903 memcpy(&_x, ctxt->fetch.ptr, sizeof(_type)); \
904 ctxt->fetch.ptr += sizeof(_type); \
905 _x; \
906 })
907
908 #define insn_fetch_arr(_arr, _size, _ctxt) \
909 ({ \
910 rc = do_insn_fetch_bytes(_ctxt, _size); \
911 if (rc != X86EMUL_CONTINUE) \
912 goto done; \
913 ctxt->_eip += (_size); \
914 memcpy(_arr, ctxt->fetch.ptr, _size); \
915 ctxt->fetch.ptr += (_size); \
916 })
917
918 /*
919 * Given the 'reg' portion of a ModRM byte, and a register block, return a
920 * pointer into the block that addresses the relevant register.
921 * @highbyte_regs specifies whether to decode AH,CH,DH,BH.
922 */
decode_register(struct x86_emulate_ctxt * ctxt,u8 modrm_reg,int byteop)923 static void *decode_register(struct x86_emulate_ctxt *ctxt, u8 modrm_reg,
924 int byteop)
925 {
926 void *p;
927 int highbyte_regs = (ctxt->rex_prefix == 0) && byteop;
928
929 if (highbyte_regs && modrm_reg >= 4 && modrm_reg < 8)
930 p = (unsigned char *)reg_rmw(ctxt, modrm_reg & 3) + 1;
931 else
932 p = reg_rmw(ctxt, modrm_reg);
933 return p;
934 }
935
read_descriptor(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,u16 * size,unsigned long * address,int op_bytes)936 static int read_descriptor(struct x86_emulate_ctxt *ctxt,
937 struct segmented_address addr,
938 u16 *size, unsigned long *address, int op_bytes)
939 {
940 int rc;
941
942 if (op_bytes == 2)
943 op_bytes = 3;
944 *address = 0;
945 rc = segmented_read_std(ctxt, addr, size, 2);
946 if (rc != X86EMUL_CONTINUE)
947 return rc;
948 addr.ea += 2;
949 rc = segmented_read_std(ctxt, addr, address, op_bytes);
950 return rc;
951 }
952
953 EM_ASM_2(add);
954 EM_ASM_2(or);
955 EM_ASM_2(adc);
956 EM_ASM_2(sbb);
957 EM_ASM_2(and);
958 EM_ASM_2(sub);
959 EM_ASM_2(xor);
960 EM_ASM_2(cmp);
961 EM_ASM_2(test);
962 EM_ASM_2(xadd);
963
964 EM_ASM_1SRC2(mul, mul_ex);
965 EM_ASM_1SRC2(imul, imul_ex);
966 EM_ASM_1SRC2EX(div, div_ex);
967 EM_ASM_1SRC2EX(idiv, idiv_ex);
968
969 EM_ASM_3WCL(shld);
970 EM_ASM_3WCL(shrd);
971
972 EM_ASM_2W(imul);
973
974 EM_ASM_1(not);
975 EM_ASM_1(neg);
976 EM_ASM_1(inc);
977 EM_ASM_1(dec);
978
979 EM_ASM_2CL(rol);
980 EM_ASM_2CL(ror);
981 EM_ASM_2CL(rcl);
982 EM_ASM_2CL(rcr);
983 EM_ASM_2CL(shl);
984 EM_ASM_2CL(shr);
985 EM_ASM_2CL(sar);
986
987 EM_ASM_2W(bsf);
988 EM_ASM_2W(bsr);
989 EM_ASM_2W(bt);
990 EM_ASM_2W(bts);
991 EM_ASM_2W(btr);
992 EM_ASM_2W(btc);
993
994 EM_ASM_2R(cmp, cmp_r);
995
em_bsf_c(struct x86_emulate_ctxt * ctxt)996 static int em_bsf_c(struct x86_emulate_ctxt *ctxt)
997 {
998 /* If src is zero, do not writeback, but update flags */
999 if (ctxt->src.val == 0)
1000 ctxt->dst.type = OP_NONE;
1001 return em_bsf(ctxt);
1002 }
1003
em_bsr_c(struct x86_emulate_ctxt * ctxt)1004 static int em_bsr_c(struct x86_emulate_ctxt *ctxt)
1005 {
1006 /* If src is zero, do not writeback, but update flags */
1007 if (ctxt->src.val == 0)
1008 ctxt->dst.type = OP_NONE;
1009 return em_bsr(ctxt);
1010 }
1011
test_cc(unsigned int condition,unsigned long flags)1012 static __always_inline u8 test_cc(unsigned int condition, unsigned long flags)
1013 {
1014 return __emulate_cc(flags, condition & 0xf);
1015 }
1016
fetch_register_operand(struct operand * op)1017 static void fetch_register_operand(struct operand *op)
1018 {
1019 switch (op->bytes) {
1020 case 1:
1021 op->val = *(u8 *)op->addr.reg;
1022 break;
1023 case 2:
1024 op->val = *(u16 *)op->addr.reg;
1025 break;
1026 case 4:
1027 op->val = *(u32 *)op->addr.reg;
1028 break;
1029 case 8:
1030 op->val = *(u64 *)op->addr.reg;
1031 break;
1032 }
1033 }
1034
em_fninit(struct x86_emulate_ctxt * ctxt)1035 static int em_fninit(struct x86_emulate_ctxt *ctxt)
1036 {
1037 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1038 return emulate_nm(ctxt);
1039
1040 kvm_fpu_get();
1041 asm volatile("fninit");
1042 kvm_fpu_put();
1043 return X86EMUL_CONTINUE;
1044 }
1045
em_fnstcw(struct x86_emulate_ctxt * ctxt)1046 static int em_fnstcw(struct x86_emulate_ctxt *ctxt)
1047 {
1048 u16 fcw;
1049
1050 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1051 return emulate_nm(ctxt);
1052
1053 kvm_fpu_get();
1054 asm volatile("fnstcw %0": "+m"(fcw));
1055 kvm_fpu_put();
1056
1057 ctxt->dst.val = fcw;
1058
1059 return X86EMUL_CONTINUE;
1060 }
1061
em_fnstsw(struct x86_emulate_ctxt * ctxt)1062 static int em_fnstsw(struct x86_emulate_ctxt *ctxt)
1063 {
1064 u16 fsw;
1065
1066 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1067 return emulate_nm(ctxt);
1068
1069 kvm_fpu_get();
1070 asm volatile("fnstsw %0": "+m"(fsw));
1071 kvm_fpu_put();
1072
1073 ctxt->dst.val = fsw;
1074
1075 return X86EMUL_CONTINUE;
1076 }
1077
decode_register_operand(struct x86_emulate_ctxt * ctxt,struct operand * op)1078 static void decode_register_operand(struct x86_emulate_ctxt *ctxt,
1079 struct operand *op)
1080 {
1081 unsigned int reg;
1082
1083 if (ctxt->d & ModRM)
1084 reg = ctxt->modrm_reg;
1085 else
1086 reg = (ctxt->b & 7) | ((ctxt->rex_prefix & 1) << 3);
1087
1088 if (ctxt->d & Sse) {
1089 op->type = OP_XMM;
1090 op->bytes = 16;
1091 op->addr.xmm = reg;
1092 kvm_read_sse_reg(reg, &op->vec_val);
1093 return;
1094 }
1095 if (ctxt->d & Mmx) {
1096 reg &= 7;
1097 op->type = OP_MM;
1098 op->bytes = 8;
1099 op->addr.mm = reg;
1100 return;
1101 }
1102
1103 op->type = OP_REG;
1104 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
1105 op->addr.reg = decode_register(ctxt, reg, ctxt->d & ByteOp);
1106
1107 fetch_register_operand(op);
1108 op->orig_val = op->val;
1109 }
1110
adjust_modrm_seg(struct x86_emulate_ctxt * ctxt,int base_reg)1111 static void adjust_modrm_seg(struct x86_emulate_ctxt *ctxt, int base_reg)
1112 {
1113 if (base_reg == VCPU_REGS_RSP || base_reg == VCPU_REGS_RBP)
1114 ctxt->modrm_seg = VCPU_SREG_SS;
1115 }
1116
decode_modrm(struct x86_emulate_ctxt * ctxt,struct operand * op)1117 static int decode_modrm(struct x86_emulate_ctxt *ctxt,
1118 struct operand *op)
1119 {
1120 u8 sib;
1121 int index_reg, base_reg, scale;
1122 int rc = X86EMUL_CONTINUE;
1123 ulong modrm_ea = 0;
1124
1125 ctxt->modrm_reg = ((ctxt->rex_prefix << 1) & 8); /* REX.R */
1126 index_reg = (ctxt->rex_prefix << 2) & 8; /* REX.X */
1127 base_reg = (ctxt->rex_prefix << 3) & 8; /* REX.B */
1128
1129 ctxt->modrm_mod = (ctxt->modrm & 0xc0) >> 6;
1130 ctxt->modrm_reg |= (ctxt->modrm & 0x38) >> 3;
1131 ctxt->modrm_rm = base_reg | (ctxt->modrm & 0x07);
1132 ctxt->modrm_seg = VCPU_SREG_DS;
1133
1134 if (ctxt->modrm_mod == 3 || (ctxt->d & NoMod)) {
1135 op->type = OP_REG;
1136 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
1137 op->addr.reg = decode_register(ctxt, ctxt->modrm_rm,
1138 ctxt->d & ByteOp);
1139 if (ctxt->d & Sse) {
1140 op->type = OP_XMM;
1141 op->bytes = 16;
1142 op->addr.xmm = ctxt->modrm_rm;
1143 kvm_read_sse_reg(ctxt->modrm_rm, &op->vec_val);
1144 return rc;
1145 }
1146 if (ctxt->d & Mmx) {
1147 op->type = OP_MM;
1148 op->bytes = 8;
1149 op->addr.mm = ctxt->modrm_rm & 7;
1150 return rc;
1151 }
1152 fetch_register_operand(op);
1153 return rc;
1154 }
1155
1156 op->type = OP_MEM;
1157
1158 if (ctxt->ad_bytes == 2) {
1159 unsigned bx = reg_read(ctxt, VCPU_REGS_RBX);
1160 unsigned bp = reg_read(ctxt, VCPU_REGS_RBP);
1161 unsigned si = reg_read(ctxt, VCPU_REGS_RSI);
1162 unsigned di = reg_read(ctxt, VCPU_REGS_RDI);
1163
1164 /* 16-bit ModR/M decode. */
1165 switch (ctxt->modrm_mod) {
1166 case 0:
1167 if (ctxt->modrm_rm == 6)
1168 modrm_ea += insn_fetch(u16, ctxt);
1169 break;
1170 case 1:
1171 modrm_ea += insn_fetch(s8, ctxt);
1172 break;
1173 case 2:
1174 modrm_ea += insn_fetch(u16, ctxt);
1175 break;
1176 }
1177 switch (ctxt->modrm_rm) {
1178 case 0:
1179 modrm_ea += bx + si;
1180 break;
1181 case 1:
1182 modrm_ea += bx + di;
1183 break;
1184 case 2:
1185 modrm_ea += bp + si;
1186 break;
1187 case 3:
1188 modrm_ea += bp + di;
1189 break;
1190 case 4:
1191 modrm_ea += si;
1192 break;
1193 case 5:
1194 modrm_ea += di;
1195 break;
1196 case 6:
1197 if (ctxt->modrm_mod != 0)
1198 modrm_ea += bp;
1199 break;
1200 case 7:
1201 modrm_ea += bx;
1202 break;
1203 }
1204 if (ctxt->modrm_rm == 2 || ctxt->modrm_rm == 3 ||
1205 (ctxt->modrm_rm == 6 && ctxt->modrm_mod != 0))
1206 ctxt->modrm_seg = VCPU_SREG_SS;
1207 modrm_ea = (u16)modrm_ea;
1208 } else {
1209 /* 32/64-bit ModR/M decode. */
1210 if ((ctxt->modrm_rm & 7) == 4) {
1211 sib = insn_fetch(u8, ctxt);
1212 index_reg |= (sib >> 3) & 7;
1213 base_reg |= sib & 7;
1214 scale = sib >> 6;
1215
1216 if ((base_reg & 7) == 5 && ctxt->modrm_mod == 0)
1217 modrm_ea += insn_fetch(s32, ctxt);
1218 else {
1219 modrm_ea += reg_read(ctxt, base_reg);
1220 adjust_modrm_seg(ctxt, base_reg);
1221 /* Increment ESP on POP [ESP] */
1222 if ((ctxt->d & IncSP) &&
1223 base_reg == VCPU_REGS_RSP)
1224 modrm_ea += ctxt->op_bytes;
1225 }
1226 if (index_reg != 4)
1227 modrm_ea += reg_read(ctxt, index_reg) << scale;
1228 } else if ((ctxt->modrm_rm & 7) == 5 && ctxt->modrm_mod == 0) {
1229 modrm_ea += insn_fetch(s32, ctxt);
1230 if (ctxt->mode == X86EMUL_MODE_PROT64)
1231 ctxt->rip_relative = 1;
1232 } else {
1233 base_reg = ctxt->modrm_rm;
1234 modrm_ea += reg_read(ctxt, base_reg);
1235 adjust_modrm_seg(ctxt, base_reg);
1236 }
1237 switch (ctxt->modrm_mod) {
1238 case 1:
1239 modrm_ea += insn_fetch(s8, ctxt);
1240 break;
1241 case 2:
1242 modrm_ea += insn_fetch(s32, ctxt);
1243 break;
1244 }
1245 }
1246 op->addr.mem.ea = modrm_ea;
1247 if (ctxt->ad_bytes != 8)
1248 ctxt->memop.addr.mem.ea = (u32)ctxt->memop.addr.mem.ea;
1249
1250 done:
1251 return rc;
1252 }
1253
decode_abs(struct x86_emulate_ctxt * ctxt,struct operand * op)1254 static int decode_abs(struct x86_emulate_ctxt *ctxt,
1255 struct operand *op)
1256 {
1257 int rc = X86EMUL_CONTINUE;
1258
1259 op->type = OP_MEM;
1260 switch (ctxt->ad_bytes) {
1261 case 2:
1262 op->addr.mem.ea = insn_fetch(u16, ctxt);
1263 break;
1264 case 4:
1265 op->addr.mem.ea = insn_fetch(u32, ctxt);
1266 break;
1267 case 8:
1268 op->addr.mem.ea = insn_fetch(u64, ctxt);
1269 break;
1270 }
1271 done:
1272 return rc;
1273 }
1274
fetch_bit_operand(struct x86_emulate_ctxt * ctxt)1275 static void fetch_bit_operand(struct x86_emulate_ctxt *ctxt)
1276 {
1277 long sv = 0, mask;
1278
1279 if (ctxt->dst.type == OP_MEM && ctxt->src.type == OP_REG) {
1280 mask = ~((long)ctxt->dst.bytes * 8 - 1);
1281
1282 if (ctxt->src.bytes == 2)
1283 sv = (s16)ctxt->src.val & (s16)mask;
1284 else if (ctxt->src.bytes == 4)
1285 sv = (s32)ctxt->src.val & (s32)mask;
1286 else
1287 sv = (s64)ctxt->src.val & (s64)mask;
1288
1289 ctxt->dst.addr.mem.ea = address_mask(ctxt,
1290 ctxt->dst.addr.mem.ea + (sv >> 3));
1291 }
1292
1293 /* only subword offset */
1294 ctxt->src.val &= (ctxt->dst.bytes << 3) - 1;
1295 }
1296
read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * dest,unsigned size)1297 static int read_emulated(struct x86_emulate_ctxt *ctxt,
1298 unsigned long addr, void *dest, unsigned size)
1299 {
1300 int rc;
1301 struct read_cache *mc = &ctxt->mem_read;
1302
1303 if (mc->pos < mc->end)
1304 goto read_cached;
1305
1306 if (KVM_EMULATOR_BUG_ON((mc->end + size) >= sizeof(mc->data), ctxt))
1307 return X86EMUL_UNHANDLEABLE;
1308
1309 rc = ctxt->ops->read_emulated(ctxt, addr, mc->data + mc->end, size,
1310 &ctxt->exception);
1311 if (rc != X86EMUL_CONTINUE)
1312 return rc;
1313
1314 mc->end += size;
1315
1316 read_cached:
1317 memcpy(dest, mc->data + mc->pos, size);
1318 mc->pos += size;
1319 return X86EMUL_CONTINUE;
1320 }
1321
segmented_read(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,void * data,unsigned size)1322 static int segmented_read(struct x86_emulate_ctxt *ctxt,
1323 struct segmented_address addr,
1324 void *data,
1325 unsigned size)
1326 {
1327 int rc;
1328 ulong linear;
1329
1330 rc = linearize(ctxt, addr, size, false, &linear);
1331 if (rc != X86EMUL_CONTINUE)
1332 return rc;
1333 return read_emulated(ctxt, linear, data, size);
1334 }
1335
segmented_write(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,const void * data,unsigned size)1336 static int segmented_write(struct x86_emulate_ctxt *ctxt,
1337 struct segmented_address addr,
1338 const void *data,
1339 unsigned size)
1340 {
1341 int rc;
1342 ulong linear;
1343
1344 rc = linearize(ctxt, addr, size, true, &linear);
1345 if (rc != X86EMUL_CONTINUE)
1346 return rc;
1347 return ctxt->ops->write_emulated(ctxt, linear, data, size,
1348 &ctxt->exception);
1349 }
1350
segmented_cmpxchg(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,const void * orig_data,const void * data,unsigned size)1351 static int segmented_cmpxchg(struct x86_emulate_ctxt *ctxt,
1352 struct segmented_address addr,
1353 const void *orig_data, const void *data,
1354 unsigned size)
1355 {
1356 int rc;
1357 ulong linear;
1358
1359 rc = linearize(ctxt, addr, size, true, &linear);
1360 if (rc != X86EMUL_CONTINUE)
1361 return rc;
1362 return ctxt->ops->cmpxchg_emulated(ctxt, linear, orig_data, data,
1363 size, &ctxt->exception);
1364 }
1365
pio_in_emulated(struct x86_emulate_ctxt * ctxt,unsigned int size,unsigned short port,void * dest)1366 static int pio_in_emulated(struct x86_emulate_ctxt *ctxt,
1367 unsigned int size, unsigned short port,
1368 void *dest)
1369 {
1370 struct read_cache *rc = &ctxt->io_read;
1371
1372 if (rc->pos == rc->end) { /* refill pio read ahead */
1373 unsigned int in_page, n;
1374 unsigned int count = ctxt->rep_prefix ?
1375 address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) : 1;
1376 in_page = (ctxt->eflags & X86_EFLAGS_DF) ?
1377 offset_in_page(reg_read(ctxt, VCPU_REGS_RDI)) :
1378 PAGE_SIZE - offset_in_page(reg_read(ctxt, VCPU_REGS_RDI));
1379 n = min3(in_page, (unsigned int)sizeof(rc->data) / size, count);
1380 if (n == 0)
1381 n = 1;
1382 rc->pos = rc->end = 0;
1383 if (!ctxt->ops->pio_in_emulated(ctxt, size, port, rc->data, n))
1384 return 0;
1385 rc->end = n * size;
1386 }
1387
1388 if (ctxt->rep_prefix && (ctxt->d & String) &&
1389 !(ctxt->eflags & X86_EFLAGS_DF)) {
1390 ctxt->dst.data = rc->data + rc->pos;
1391 ctxt->dst.type = OP_MEM_STR;
1392 ctxt->dst.count = (rc->end - rc->pos) / size;
1393 rc->pos = rc->end;
1394 } else {
1395 memcpy(dest, rc->data + rc->pos, size);
1396 rc->pos += size;
1397 }
1398 return 1;
1399 }
1400
read_interrupt_descriptor(struct x86_emulate_ctxt * ctxt,u16 index,struct desc_struct * desc)1401 static int read_interrupt_descriptor(struct x86_emulate_ctxt *ctxt,
1402 u16 index, struct desc_struct *desc)
1403 {
1404 struct desc_ptr dt;
1405 ulong addr;
1406
1407 ctxt->ops->get_idt(ctxt, &dt);
1408
1409 if (dt.size < index * 8 + 7)
1410 return emulate_gp(ctxt, index << 3 | 0x2);
1411
1412 addr = dt.address + index * 8;
1413 return linear_read_system(ctxt, addr, desc, sizeof(*desc));
1414 }
1415
get_descriptor_table_ptr(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_ptr * dt)1416 static void get_descriptor_table_ptr(struct x86_emulate_ctxt *ctxt,
1417 u16 selector, struct desc_ptr *dt)
1418 {
1419 const struct x86_emulate_ops *ops = ctxt->ops;
1420 u32 base3 = 0;
1421
1422 if (selector & 1 << 2) {
1423 struct desc_struct desc;
1424 u16 sel;
1425
1426 memset(dt, 0, sizeof(*dt));
1427 if (!ops->get_segment(ctxt, &sel, &desc, &base3,
1428 VCPU_SREG_LDTR))
1429 return;
1430
1431 dt->size = desc_limit_scaled(&desc); /* what if limit > 65535? */
1432 dt->address = get_desc_base(&desc) | ((u64)base3 << 32);
1433 } else
1434 ops->get_gdt(ctxt, dt);
1435 }
1436
get_descriptor_ptr(struct x86_emulate_ctxt * ctxt,u16 selector,ulong * desc_addr_p)1437 static int get_descriptor_ptr(struct x86_emulate_ctxt *ctxt,
1438 u16 selector, ulong *desc_addr_p)
1439 {
1440 struct desc_ptr dt;
1441 u16 index = selector >> 3;
1442 ulong addr;
1443
1444 get_descriptor_table_ptr(ctxt, selector, &dt);
1445
1446 if (dt.size < index * 8 + 7)
1447 return emulate_gp(ctxt, selector & 0xfffc);
1448
1449 addr = dt.address + index * 8;
1450
1451 #ifdef CONFIG_X86_64
1452 if (addr >> 32 != 0) {
1453 u64 efer = 0;
1454
1455 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
1456 if (!(efer & EFER_LMA))
1457 addr &= (u32)-1;
1458 }
1459 #endif
1460
1461 *desc_addr_p = addr;
1462 return X86EMUL_CONTINUE;
1463 }
1464
1465 /* allowed just for 8 bytes segments */
read_segment_descriptor(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,ulong * desc_addr_p)1466 static int read_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1467 u16 selector, struct desc_struct *desc,
1468 ulong *desc_addr_p)
1469 {
1470 int rc;
1471
1472 rc = get_descriptor_ptr(ctxt, selector, desc_addr_p);
1473 if (rc != X86EMUL_CONTINUE)
1474 return rc;
1475
1476 return linear_read_system(ctxt, *desc_addr_p, desc, sizeof(*desc));
1477 }
1478
1479 /* allowed just for 8 bytes segments */
write_segment_descriptor(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc)1480 static int write_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1481 u16 selector, struct desc_struct *desc)
1482 {
1483 int rc;
1484 ulong addr;
1485
1486 rc = get_descriptor_ptr(ctxt, selector, &addr);
1487 if (rc != X86EMUL_CONTINUE)
1488 return rc;
1489
1490 return linear_write_system(ctxt, addr, desc, sizeof(*desc));
1491 }
1492
emulator_is_ssp_invalid(struct x86_emulate_ctxt * ctxt,u8 cpl)1493 static bool emulator_is_ssp_invalid(struct x86_emulate_ctxt *ctxt, u8 cpl)
1494 {
1495 const u32 MSR_IA32_X_CET = cpl == 3 ? MSR_IA32_U_CET : MSR_IA32_S_CET;
1496 u64 efer = 0, cet = 0, ssp = 0;
1497
1498 if (!(ctxt->ops->get_cr(ctxt, 4) & X86_CR4_CET))
1499 return false;
1500
1501 if (ctxt->ops->get_msr(ctxt, MSR_EFER, &efer))
1502 return true;
1503
1504 /* SSP is guaranteed to be valid if the vCPU was already in 32-bit mode. */
1505 if (!(efer & EFER_LMA))
1506 return false;
1507
1508 if (ctxt->ops->get_msr(ctxt, MSR_IA32_X_CET, &cet))
1509 return true;
1510
1511 if (!(cet & CET_SHSTK_EN))
1512 return false;
1513
1514 if (ctxt->ops->get_msr(ctxt, MSR_KVM_INTERNAL_GUEST_SSP, &ssp))
1515 return true;
1516
1517 /*
1518 * On transfer from 64-bit mode to compatibility mode, SSP[63:32] must
1519 * be 0, i.e. SSP must be a 32-bit value outside of 64-bit mode.
1520 */
1521 return ssp >> 32;
1522 }
1523
__load_segment_descriptor(struct x86_emulate_ctxt * ctxt,u16 selector,int seg,u8 cpl,enum x86_transfer_type transfer,struct desc_struct * desc)1524 static int __load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1525 u16 selector, int seg, u8 cpl,
1526 enum x86_transfer_type transfer,
1527 struct desc_struct *desc)
1528 {
1529 struct desc_struct seg_desc, old_desc;
1530 u8 dpl, rpl;
1531 unsigned err_vec = GP_VECTOR;
1532 u32 err_code = 0;
1533 bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */
1534 ulong desc_addr;
1535 int ret;
1536 u16 dummy;
1537 u32 base3 = 0;
1538
1539 memset(&seg_desc, 0, sizeof(seg_desc));
1540
1541 if (ctxt->mode == X86EMUL_MODE_REAL) {
1542 /* set real mode segment descriptor (keep limit etc. for
1543 * unreal mode) */
1544 ctxt->ops->get_segment(ctxt, &dummy, &seg_desc, NULL, seg);
1545 set_desc_base(&seg_desc, selector << 4);
1546 goto load;
1547 } else if (seg <= VCPU_SREG_GS && ctxt->mode == X86EMUL_MODE_VM86) {
1548 /* VM86 needs a clean new segment descriptor */
1549 set_desc_base(&seg_desc, selector << 4);
1550 set_desc_limit(&seg_desc, 0xffff);
1551 seg_desc.type = 3;
1552 seg_desc.p = 1;
1553 seg_desc.s = 1;
1554 seg_desc.dpl = 3;
1555 goto load;
1556 }
1557
1558 rpl = selector & 3;
1559
1560 /* TR should be in GDT only */
1561 if (seg == VCPU_SREG_TR && (selector & (1 << 2)))
1562 goto exception;
1563
1564 /* NULL selector is not valid for TR, CS and (except for long mode) SS */
1565 if (null_selector) {
1566 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_TR)
1567 goto exception;
1568
1569 if (seg == VCPU_SREG_SS) {
1570 if (ctxt->mode != X86EMUL_MODE_PROT64 || rpl != cpl)
1571 goto exception;
1572
1573 /*
1574 * ctxt->ops->set_segment expects the CPL to be in
1575 * SS.DPL, so fake an expand-up 32-bit data segment.
1576 */
1577 seg_desc.type = 3;
1578 seg_desc.p = 1;
1579 seg_desc.s = 1;
1580 seg_desc.dpl = cpl;
1581 seg_desc.d = 1;
1582 seg_desc.g = 1;
1583 }
1584
1585 /* Skip all following checks */
1586 goto load;
1587 }
1588
1589 ret = read_segment_descriptor(ctxt, selector, &seg_desc, &desc_addr);
1590 if (ret != X86EMUL_CONTINUE)
1591 return ret;
1592
1593 err_code = selector & 0xfffc;
1594 err_vec = (transfer == X86_TRANSFER_TASK_SWITCH) ? TS_VECTOR :
1595 GP_VECTOR;
1596
1597 /* can't load system descriptor into segment selector */
1598 if (seg <= VCPU_SREG_GS && !seg_desc.s) {
1599 if (transfer == X86_TRANSFER_CALL_JMP)
1600 return X86EMUL_UNHANDLEABLE;
1601 goto exception;
1602 }
1603
1604 dpl = seg_desc.dpl;
1605
1606 switch (seg) {
1607 case VCPU_SREG_SS:
1608 /*
1609 * segment is not a writable data segment or segment
1610 * selector's RPL != CPL or DPL != CPL
1611 */
1612 if (rpl != cpl || (seg_desc.type & 0xa) != 0x2 || dpl != cpl)
1613 goto exception;
1614 break;
1615 case VCPU_SREG_CS:
1616 /*
1617 * KVM uses "none" when loading CS as part of emulating Real
1618 * Mode exceptions and IRET (handled above). In all other
1619 * cases, loading CS without a control transfer is a KVM bug.
1620 */
1621 if (WARN_ON_ONCE(transfer == X86_TRANSFER_NONE))
1622 goto exception;
1623
1624 if (!(seg_desc.type & 8))
1625 goto exception;
1626
1627 if (transfer == X86_TRANSFER_RET) {
1628 /* RET can never return to an inner privilege level. */
1629 if (rpl < cpl)
1630 goto exception;
1631 /* Outer-privilege level return is not implemented */
1632 if (rpl > cpl)
1633 return X86EMUL_UNHANDLEABLE;
1634 }
1635 if (transfer == X86_TRANSFER_RET || transfer == X86_TRANSFER_TASK_SWITCH) {
1636 if (seg_desc.type & 4) {
1637 /* conforming */
1638 if (dpl > rpl)
1639 goto exception;
1640 } else {
1641 /* nonconforming */
1642 if (dpl != rpl)
1643 goto exception;
1644 }
1645 } else { /* X86_TRANSFER_CALL_JMP */
1646 if (seg_desc.type & 4) {
1647 /* conforming */
1648 if (dpl > cpl)
1649 goto exception;
1650 } else {
1651 /* nonconforming */
1652 if (rpl > cpl || dpl != cpl)
1653 goto exception;
1654 }
1655 }
1656 /* in long-mode d/b must be clear if l is set */
1657 if (seg_desc.d && seg_desc.l) {
1658 u64 efer = 0;
1659
1660 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
1661 if (efer & EFER_LMA)
1662 goto exception;
1663 }
1664 if (!seg_desc.l && emulator_is_ssp_invalid(ctxt, cpl)) {
1665 err_code = 0;
1666 goto exception;
1667 }
1668
1669 /* CS(RPL) <- CPL */
1670 selector = (selector & 0xfffc) | cpl;
1671 break;
1672 case VCPU_SREG_TR:
1673 if (seg_desc.s || (seg_desc.type != 1 && seg_desc.type != 9))
1674 goto exception;
1675 break;
1676 case VCPU_SREG_LDTR:
1677 if (seg_desc.s || seg_desc.type != 2)
1678 goto exception;
1679 break;
1680 default: /* DS, ES, FS, or GS */
1681 /*
1682 * segment is not a data or readable code segment or
1683 * ((segment is a data or nonconforming code segment)
1684 * and ((RPL > DPL) or (CPL > DPL)))
1685 */
1686 if ((seg_desc.type & 0xa) == 0x8 ||
1687 (((seg_desc.type & 0xc) != 0xc) &&
1688 (rpl > dpl || cpl > dpl)))
1689 goto exception;
1690 break;
1691 }
1692
1693 if (!seg_desc.p) {
1694 err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR;
1695 goto exception;
1696 }
1697
1698 if (seg_desc.s) {
1699 /* mark segment as accessed */
1700 if (!(seg_desc.type & 1)) {
1701 seg_desc.type |= 1;
1702 ret = write_segment_descriptor(ctxt, selector,
1703 &seg_desc);
1704 if (ret != X86EMUL_CONTINUE)
1705 return ret;
1706 }
1707 } else if (ctxt->mode == X86EMUL_MODE_PROT64) {
1708 ret = linear_read_system(ctxt, desc_addr+8, &base3, sizeof(base3));
1709 if (ret != X86EMUL_CONTINUE)
1710 return ret;
1711 if (emul_is_noncanonical_address(get_desc_base(&seg_desc) |
1712 ((u64)base3 << 32), ctxt,
1713 X86EMUL_F_DT_LOAD))
1714 return emulate_gp(ctxt, err_code);
1715 }
1716
1717 if (seg == VCPU_SREG_TR) {
1718 old_desc = seg_desc;
1719 seg_desc.type |= 2; /* busy */
1720 ret = ctxt->ops->cmpxchg_emulated(ctxt, desc_addr, &old_desc, &seg_desc,
1721 sizeof(seg_desc), &ctxt->exception);
1722 if (ret != X86EMUL_CONTINUE)
1723 return ret;
1724 }
1725 load:
1726 ctxt->ops->set_segment(ctxt, selector, &seg_desc, base3, seg);
1727 if (desc)
1728 *desc = seg_desc;
1729 return X86EMUL_CONTINUE;
1730 exception:
1731 return emulate_exception(ctxt, err_vec, err_code, true);
1732 }
1733
load_segment_descriptor(struct x86_emulate_ctxt * ctxt,u16 selector,int seg)1734 static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1735 u16 selector, int seg)
1736 {
1737 u8 cpl = ctxt->ops->cpl(ctxt);
1738
1739 /*
1740 * None of MOV, POP and LSS can load a NULL selector in CPL=3, but
1741 * they can load it at CPL<3 (Intel's manual says only LSS can,
1742 * but it's wrong).
1743 *
1744 * However, the Intel manual says that putting IST=1/DPL=3 in
1745 * an interrupt gate will result in SS=3 (the AMD manual instead
1746 * says it doesn't), so allow SS=3 in __load_segment_descriptor
1747 * and only forbid it here.
1748 */
1749 if (seg == VCPU_SREG_SS && selector == 3 &&
1750 ctxt->mode == X86EMUL_MODE_PROT64)
1751 return emulate_exception(ctxt, GP_VECTOR, 0, true);
1752
1753 return __load_segment_descriptor(ctxt, selector, seg, cpl,
1754 X86_TRANSFER_NONE, NULL);
1755 }
1756
write_register_operand(struct operand * op)1757 static void write_register_operand(struct operand *op)
1758 {
1759 return assign_register(op->addr.reg, op->val, op->bytes);
1760 }
1761
writeback(struct x86_emulate_ctxt * ctxt,struct operand * op)1762 static int writeback(struct x86_emulate_ctxt *ctxt, struct operand *op)
1763 {
1764 switch (op->type) {
1765 case OP_REG:
1766 write_register_operand(op);
1767 break;
1768 case OP_MEM:
1769 if (ctxt->lock_prefix)
1770 return segmented_cmpxchg(ctxt,
1771 op->addr.mem,
1772 &op->orig_val,
1773 &op->val,
1774 op->bytes);
1775 else
1776 return segmented_write(ctxt,
1777 op->addr.mem,
1778 &op->val,
1779 op->bytes);
1780 case OP_MEM_STR:
1781 return segmented_write(ctxt,
1782 op->addr.mem,
1783 op->data,
1784 op->bytes * op->count);
1785 case OP_XMM:
1786 kvm_write_sse_reg(op->addr.xmm, &op->vec_val);
1787 break;
1788 case OP_MM:
1789 kvm_write_mmx_reg(op->addr.mm, &op->mm_val);
1790 break;
1791 case OP_NONE:
1792 /* no writeback */
1793 break;
1794 default:
1795 break;
1796 }
1797 return X86EMUL_CONTINUE;
1798 }
1799
emulate_push(struct x86_emulate_ctxt * ctxt,const void * data,int len)1800 static int emulate_push(struct x86_emulate_ctxt *ctxt, const void *data, int len)
1801 {
1802 struct segmented_address addr;
1803
1804 rsp_increment(ctxt, -len);
1805 addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
1806 addr.seg = VCPU_SREG_SS;
1807
1808 return segmented_write(ctxt, addr, data, len);
1809 }
1810
em_push(struct x86_emulate_ctxt * ctxt)1811 static int em_push(struct x86_emulate_ctxt *ctxt)
1812 {
1813 /* Disable writeback. */
1814 ctxt->dst.type = OP_NONE;
1815 return emulate_push(ctxt, &ctxt->src.val, ctxt->op_bytes);
1816 }
1817
emulate_pop(struct x86_emulate_ctxt * ctxt,void * dest,int len)1818 static int emulate_pop(struct x86_emulate_ctxt *ctxt,
1819 void *dest, int len)
1820 {
1821 int rc;
1822 struct segmented_address addr;
1823
1824 addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
1825 addr.seg = VCPU_SREG_SS;
1826 rc = segmented_read(ctxt, addr, dest, len);
1827 if (rc != X86EMUL_CONTINUE)
1828 return rc;
1829
1830 rsp_increment(ctxt, len);
1831 return rc;
1832 }
1833
em_pop(struct x86_emulate_ctxt * ctxt)1834 static int em_pop(struct x86_emulate_ctxt *ctxt)
1835 {
1836 return emulate_pop(ctxt, &ctxt->dst.val, ctxt->op_bytes);
1837 }
1838
emulate_popf(struct x86_emulate_ctxt * ctxt,void * dest,int len)1839 static int emulate_popf(struct x86_emulate_ctxt *ctxt,
1840 void *dest, int len)
1841 {
1842 int rc;
1843 unsigned long val = 0;
1844 unsigned long change_mask;
1845 int iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT;
1846 int cpl = ctxt->ops->cpl(ctxt);
1847
1848 rc = emulate_pop(ctxt, &val, len);
1849 if (rc != X86EMUL_CONTINUE)
1850 return rc;
1851
1852 change_mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
1853 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF |
1854 X86_EFLAGS_TF | X86_EFLAGS_DF | X86_EFLAGS_NT |
1855 X86_EFLAGS_AC | X86_EFLAGS_ID;
1856
1857 switch(ctxt->mode) {
1858 case X86EMUL_MODE_PROT64:
1859 case X86EMUL_MODE_PROT32:
1860 case X86EMUL_MODE_PROT16:
1861 if (cpl == 0)
1862 change_mask |= X86_EFLAGS_IOPL;
1863 if (cpl <= iopl)
1864 change_mask |= X86_EFLAGS_IF;
1865 break;
1866 case X86EMUL_MODE_VM86:
1867 if (iopl < 3)
1868 return emulate_gp(ctxt, 0);
1869 change_mask |= X86_EFLAGS_IF;
1870 break;
1871 default: /* real mode */
1872 change_mask |= (X86_EFLAGS_IOPL | X86_EFLAGS_IF);
1873 break;
1874 }
1875
1876 *(unsigned long *)dest =
1877 (ctxt->eflags & ~change_mask) | (val & change_mask);
1878
1879 return rc;
1880 }
1881
em_popf(struct x86_emulate_ctxt * ctxt)1882 static int em_popf(struct x86_emulate_ctxt *ctxt)
1883 {
1884 ctxt->dst.type = OP_REG;
1885 ctxt->dst.addr.reg = &ctxt->eflags;
1886 ctxt->dst.bytes = ctxt->op_bytes;
1887 return emulate_popf(ctxt, &ctxt->dst.val, ctxt->op_bytes);
1888 }
1889
em_enter(struct x86_emulate_ctxt * ctxt)1890 static int em_enter(struct x86_emulate_ctxt *ctxt)
1891 {
1892 int rc;
1893 unsigned frame_size = ctxt->src.val;
1894 unsigned nesting_level = ctxt->src2.val & 31;
1895 ulong rbp;
1896
1897 if (nesting_level)
1898 return X86EMUL_UNHANDLEABLE;
1899
1900 rbp = reg_read(ctxt, VCPU_REGS_RBP);
1901 rc = emulate_push(ctxt, &rbp, stack_size(ctxt));
1902 if (rc != X86EMUL_CONTINUE)
1903 return rc;
1904 assign_masked(reg_rmw(ctxt, VCPU_REGS_RBP), reg_read(ctxt, VCPU_REGS_RSP),
1905 stack_mask(ctxt));
1906 assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP),
1907 reg_read(ctxt, VCPU_REGS_RSP) - frame_size,
1908 stack_mask(ctxt));
1909 return X86EMUL_CONTINUE;
1910 }
1911
em_leave(struct x86_emulate_ctxt * ctxt)1912 static int em_leave(struct x86_emulate_ctxt *ctxt)
1913 {
1914 assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP), reg_read(ctxt, VCPU_REGS_RBP),
1915 stack_mask(ctxt));
1916 return emulate_pop(ctxt, reg_rmw(ctxt, VCPU_REGS_RBP), ctxt->op_bytes);
1917 }
1918
em_push_sreg(struct x86_emulate_ctxt * ctxt)1919 static int em_push_sreg(struct x86_emulate_ctxt *ctxt)
1920 {
1921 int seg = ctxt->src2.val;
1922
1923 ctxt->src.val = get_segment_selector(ctxt, seg);
1924 if (ctxt->op_bytes == 4) {
1925 rsp_increment(ctxt, -2);
1926 ctxt->op_bytes = 2;
1927 }
1928
1929 return em_push(ctxt);
1930 }
1931
em_pop_sreg(struct x86_emulate_ctxt * ctxt)1932 static int em_pop_sreg(struct x86_emulate_ctxt *ctxt)
1933 {
1934 int seg = ctxt->src2.val;
1935 unsigned long selector = 0;
1936 int rc;
1937
1938 rc = emulate_pop(ctxt, &selector, 2);
1939 if (rc != X86EMUL_CONTINUE)
1940 return rc;
1941
1942 if (seg == VCPU_SREG_SS)
1943 ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
1944 if (ctxt->op_bytes > 2)
1945 rsp_increment(ctxt, ctxt->op_bytes - 2);
1946
1947 rc = load_segment_descriptor(ctxt, (u16)selector, seg);
1948 return rc;
1949 }
1950
em_pusha(struct x86_emulate_ctxt * ctxt)1951 static int em_pusha(struct x86_emulate_ctxt *ctxt)
1952 {
1953 unsigned long old_esp = reg_read(ctxt, VCPU_REGS_RSP);
1954 int rc = X86EMUL_CONTINUE;
1955 int reg = VCPU_REGS_RAX;
1956
1957 while (reg <= VCPU_REGS_RDI) {
1958 (reg == VCPU_REGS_RSP) ?
1959 (ctxt->src.val = old_esp) : (ctxt->src.val = reg_read(ctxt, reg));
1960
1961 rc = em_push(ctxt);
1962 if (rc != X86EMUL_CONTINUE)
1963 return rc;
1964
1965 ++reg;
1966 }
1967
1968 return rc;
1969 }
1970
em_pushf(struct x86_emulate_ctxt * ctxt)1971 static int em_pushf(struct x86_emulate_ctxt *ctxt)
1972 {
1973 ctxt->src.val = (unsigned long)ctxt->eflags & ~X86_EFLAGS_VM;
1974 return em_push(ctxt);
1975 }
1976
em_popa(struct x86_emulate_ctxt * ctxt)1977 static int em_popa(struct x86_emulate_ctxt *ctxt)
1978 {
1979 int rc = X86EMUL_CONTINUE;
1980 int reg = VCPU_REGS_RDI;
1981 u32 val = 0;
1982
1983 while (reg >= VCPU_REGS_RAX) {
1984 if (reg == VCPU_REGS_RSP) {
1985 rsp_increment(ctxt, ctxt->op_bytes);
1986 --reg;
1987 }
1988
1989 rc = emulate_pop(ctxt, &val, ctxt->op_bytes);
1990 if (rc != X86EMUL_CONTINUE)
1991 break;
1992 assign_register(reg_rmw(ctxt, reg), val, ctxt->op_bytes);
1993 --reg;
1994 }
1995 return rc;
1996 }
1997
__emulate_int_real(struct x86_emulate_ctxt * ctxt,int irq)1998 static int __emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
1999 {
2000 const struct x86_emulate_ops *ops = ctxt->ops;
2001 int rc;
2002 struct desc_ptr dt;
2003 gva_t cs_addr;
2004 gva_t eip_addr;
2005 u16 cs, eip;
2006
2007 /* TODO: Add limit checks */
2008 ctxt->src.val = ctxt->eflags;
2009 rc = em_push(ctxt);
2010 if (rc != X86EMUL_CONTINUE)
2011 return rc;
2012
2013 ctxt->eflags &= ~(X86_EFLAGS_IF | X86_EFLAGS_TF | X86_EFLAGS_AC);
2014
2015 ctxt->src.val = get_segment_selector(ctxt, VCPU_SREG_CS);
2016 rc = em_push(ctxt);
2017 if (rc != X86EMUL_CONTINUE)
2018 return rc;
2019
2020 ctxt->src.val = ctxt->_eip;
2021 rc = em_push(ctxt);
2022 if (rc != X86EMUL_CONTINUE)
2023 return rc;
2024
2025 ops->get_idt(ctxt, &dt);
2026
2027 eip_addr = dt.address + (irq << 2);
2028 cs_addr = dt.address + (irq << 2) + 2;
2029
2030 rc = linear_read_system(ctxt, cs_addr, &cs, 2);
2031 if (rc != X86EMUL_CONTINUE)
2032 return rc;
2033
2034 rc = linear_read_system(ctxt, eip_addr, &eip, 2);
2035 if (rc != X86EMUL_CONTINUE)
2036 return rc;
2037
2038 rc = load_segment_descriptor(ctxt, cs, VCPU_SREG_CS);
2039 if (rc != X86EMUL_CONTINUE)
2040 return rc;
2041
2042 ctxt->_eip = eip;
2043
2044 return rc;
2045 }
2046
emulate_int_real(struct x86_emulate_ctxt * ctxt,int irq)2047 int emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
2048 {
2049 int rc;
2050
2051 invalidate_registers(ctxt);
2052 rc = __emulate_int_real(ctxt, irq);
2053 if (rc == X86EMUL_CONTINUE)
2054 writeback_registers(ctxt);
2055 return rc;
2056 }
2057
emulate_int(struct x86_emulate_ctxt * ctxt,int irq)2058 static int emulate_int(struct x86_emulate_ctxt *ctxt, int irq)
2059 {
2060 switch(ctxt->mode) {
2061 case X86EMUL_MODE_REAL:
2062 return __emulate_int_real(ctxt, irq);
2063 case X86EMUL_MODE_VM86:
2064 case X86EMUL_MODE_PROT16:
2065 case X86EMUL_MODE_PROT32:
2066 case X86EMUL_MODE_PROT64:
2067 default:
2068 /* Protected mode interrupts unimplemented yet */
2069 return X86EMUL_UNHANDLEABLE;
2070 }
2071 }
2072
emulate_iret_real(struct x86_emulate_ctxt * ctxt)2073 static int emulate_iret_real(struct x86_emulate_ctxt *ctxt)
2074 {
2075 int rc = X86EMUL_CONTINUE;
2076 unsigned long temp_eip = 0;
2077 unsigned long temp_eflags = 0;
2078 unsigned long cs = 0;
2079 unsigned long mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
2080 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_TF |
2081 X86_EFLAGS_IF | X86_EFLAGS_DF | X86_EFLAGS_OF |
2082 X86_EFLAGS_IOPL | X86_EFLAGS_NT | X86_EFLAGS_RF |
2083 X86_EFLAGS_AC | X86_EFLAGS_ID |
2084 X86_EFLAGS_FIXED;
2085 unsigned long vm86_mask = X86_EFLAGS_VM | X86_EFLAGS_VIF |
2086 X86_EFLAGS_VIP;
2087
2088 /* TODO: Add stack limit check */
2089
2090 rc = emulate_pop(ctxt, &temp_eip, ctxt->op_bytes);
2091
2092 if (rc != X86EMUL_CONTINUE)
2093 return rc;
2094
2095 if (temp_eip & ~0xffff)
2096 return emulate_gp(ctxt, 0);
2097
2098 rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
2099
2100 if (rc != X86EMUL_CONTINUE)
2101 return rc;
2102
2103 rc = emulate_pop(ctxt, &temp_eflags, ctxt->op_bytes);
2104
2105 if (rc != X86EMUL_CONTINUE)
2106 return rc;
2107
2108 rc = load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS);
2109
2110 if (rc != X86EMUL_CONTINUE)
2111 return rc;
2112
2113 ctxt->_eip = temp_eip;
2114
2115 if (ctxt->op_bytes == 4)
2116 ctxt->eflags = ((temp_eflags & mask) | (ctxt->eflags & vm86_mask));
2117 else if (ctxt->op_bytes == 2) {
2118 ctxt->eflags &= ~0xffff;
2119 ctxt->eflags |= temp_eflags;
2120 }
2121
2122 ctxt->eflags &= ~EFLG_RESERVED_ZEROS_MASK; /* Clear reserved zeros */
2123 ctxt->eflags |= X86_EFLAGS_FIXED;
2124 ctxt->ops->set_nmi_mask(ctxt, false);
2125
2126 return rc;
2127 }
2128
em_iret(struct x86_emulate_ctxt * ctxt)2129 static int em_iret(struct x86_emulate_ctxt *ctxt)
2130 {
2131 switch(ctxt->mode) {
2132 case X86EMUL_MODE_REAL:
2133 return emulate_iret_real(ctxt);
2134 case X86EMUL_MODE_VM86:
2135 case X86EMUL_MODE_PROT16:
2136 case X86EMUL_MODE_PROT32:
2137 case X86EMUL_MODE_PROT64:
2138 default:
2139 /* iret from protected mode unimplemented yet */
2140 return X86EMUL_UNHANDLEABLE;
2141 }
2142 }
2143
em_jmp_far(struct x86_emulate_ctxt * ctxt)2144 static int em_jmp_far(struct x86_emulate_ctxt *ctxt)
2145 {
2146 int rc;
2147 unsigned short sel;
2148 struct desc_struct new_desc;
2149 u8 cpl = ctxt->ops->cpl(ctxt);
2150
2151 memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
2152
2153 rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl,
2154 X86_TRANSFER_CALL_JMP,
2155 &new_desc);
2156 if (rc != X86EMUL_CONTINUE)
2157 return rc;
2158
2159 rc = assign_eip_far(ctxt, ctxt->src.val);
2160 /* Error handling is not implemented. */
2161 if (rc != X86EMUL_CONTINUE)
2162 return X86EMUL_UNHANDLEABLE;
2163
2164 return rc;
2165 }
2166
em_jmp_abs(struct x86_emulate_ctxt * ctxt)2167 static int em_jmp_abs(struct x86_emulate_ctxt *ctxt)
2168 {
2169 return assign_eip_near(ctxt, ctxt->src.val);
2170 }
2171
em_call_near_abs(struct x86_emulate_ctxt * ctxt)2172 static int em_call_near_abs(struct x86_emulate_ctxt *ctxt)
2173 {
2174 int rc;
2175 long int old_eip;
2176
2177 old_eip = ctxt->_eip;
2178 rc = assign_eip_near(ctxt, ctxt->src.val);
2179 if (rc != X86EMUL_CONTINUE)
2180 return rc;
2181 ctxt->src.val = old_eip;
2182 rc = em_push(ctxt);
2183 return rc;
2184 }
2185
em_cmpxchg8b(struct x86_emulate_ctxt * ctxt)2186 static int em_cmpxchg8b(struct x86_emulate_ctxt *ctxt)
2187 {
2188 u64 old = ctxt->dst.orig_val64;
2189
2190 if (ctxt->dst.bytes == 16)
2191 return X86EMUL_UNHANDLEABLE;
2192
2193 if (((u32) (old >> 0) != (u32) reg_read(ctxt, VCPU_REGS_RAX)) ||
2194 ((u32) (old >> 32) != (u32) reg_read(ctxt, VCPU_REGS_RDX))) {
2195 *reg_write(ctxt, VCPU_REGS_RAX) = (u32) (old >> 0);
2196 *reg_write(ctxt, VCPU_REGS_RDX) = (u32) (old >> 32);
2197 ctxt->eflags &= ~X86_EFLAGS_ZF;
2198 } else {
2199 ctxt->dst.val64 = ((u64)reg_read(ctxt, VCPU_REGS_RCX) << 32) |
2200 (u32) reg_read(ctxt, VCPU_REGS_RBX);
2201
2202 ctxt->eflags |= X86_EFLAGS_ZF;
2203 }
2204 return X86EMUL_CONTINUE;
2205 }
2206
em_ret(struct x86_emulate_ctxt * ctxt)2207 static int em_ret(struct x86_emulate_ctxt *ctxt)
2208 {
2209 int rc;
2210 unsigned long eip = 0;
2211
2212 rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
2213 if (rc != X86EMUL_CONTINUE)
2214 return rc;
2215
2216 return assign_eip_near(ctxt, eip);
2217 }
2218
em_ret_far(struct x86_emulate_ctxt * ctxt)2219 static int em_ret_far(struct x86_emulate_ctxt *ctxt)
2220 {
2221 int rc;
2222 unsigned long eip = 0;
2223 unsigned long cs = 0;
2224 int cpl = ctxt->ops->cpl(ctxt);
2225 struct desc_struct new_desc;
2226
2227 rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
2228 if (rc != X86EMUL_CONTINUE)
2229 return rc;
2230 rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
2231 if (rc != X86EMUL_CONTINUE)
2232 return rc;
2233 rc = __load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS, cpl,
2234 X86_TRANSFER_RET,
2235 &new_desc);
2236 if (rc != X86EMUL_CONTINUE)
2237 return rc;
2238 rc = assign_eip_far(ctxt, eip);
2239 /* Error handling is not implemented. */
2240 if (rc != X86EMUL_CONTINUE)
2241 return X86EMUL_UNHANDLEABLE;
2242
2243 return rc;
2244 }
2245
em_ret_far_imm(struct x86_emulate_ctxt * ctxt)2246 static int em_ret_far_imm(struct x86_emulate_ctxt *ctxt)
2247 {
2248 int rc;
2249
2250 rc = em_ret_far(ctxt);
2251 if (rc != X86EMUL_CONTINUE)
2252 return rc;
2253 rsp_increment(ctxt, ctxt->src.val);
2254 return X86EMUL_CONTINUE;
2255 }
2256
em_cmpxchg(struct x86_emulate_ctxt * ctxt)2257 static int em_cmpxchg(struct x86_emulate_ctxt *ctxt)
2258 {
2259 /* Save real source value, then compare EAX against destination. */
2260 ctxt->dst.orig_val = ctxt->dst.val;
2261 ctxt->dst.val = reg_read(ctxt, VCPU_REGS_RAX);
2262 ctxt->src.orig_val = ctxt->src.val;
2263 ctxt->src.val = ctxt->dst.orig_val;
2264 em_cmp(ctxt);
2265
2266 if (ctxt->eflags & X86_EFLAGS_ZF) {
2267 /* Success: write back to memory; no update of EAX */
2268 ctxt->src.type = OP_NONE;
2269 ctxt->dst.val = ctxt->src.orig_val;
2270 } else {
2271 /* Failure: write the value we saw to EAX. */
2272 ctxt->src.type = OP_REG;
2273 ctxt->src.addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
2274 ctxt->src.val = ctxt->dst.orig_val;
2275 /* Create write-cycle to dest by writing the same value */
2276 ctxt->dst.val = ctxt->dst.orig_val;
2277 }
2278 return X86EMUL_CONTINUE;
2279 }
2280
em_lseg(struct x86_emulate_ctxt * ctxt)2281 static int em_lseg(struct x86_emulate_ctxt *ctxt)
2282 {
2283 int seg = ctxt->src2.val;
2284 unsigned short sel;
2285 int rc;
2286
2287 memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
2288
2289 rc = load_segment_descriptor(ctxt, sel, seg);
2290 if (rc != X86EMUL_CONTINUE)
2291 return rc;
2292
2293 ctxt->dst.val = ctxt->src.val;
2294 return rc;
2295 }
2296
em_rsm(struct x86_emulate_ctxt * ctxt)2297 static int em_rsm(struct x86_emulate_ctxt *ctxt)
2298 {
2299 if (!ctxt->ops->is_smm(ctxt))
2300 return emulate_ud(ctxt);
2301
2302 if (ctxt->ops->leave_smm(ctxt))
2303 ctxt->ops->triple_fault(ctxt);
2304
2305 return emulator_recalc_and_set_mode(ctxt);
2306 }
2307
2308 static void
setup_syscalls_segments(struct desc_struct * cs,struct desc_struct * ss)2309 setup_syscalls_segments(struct desc_struct *cs, struct desc_struct *ss)
2310 {
2311 cs->l = 0; /* will be adjusted later */
2312 set_desc_base(cs, 0); /* flat segment */
2313 cs->g = 1; /* 4kb granularity */
2314 set_desc_limit(cs, 0xfffff); /* 4GB limit */
2315 cs->type = 0x0b; /* Read, Execute, Accessed */
2316 cs->s = 1;
2317 cs->dpl = 0; /* will be adjusted later */
2318 cs->p = 1;
2319 cs->d = 1;
2320 cs->avl = 0;
2321
2322 set_desc_base(ss, 0); /* flat segment */
2323 set_desc_limit(ss, 0xfffff); /* 4GB limit */
2324 ss->g = 1; /* 4kb granularity */
2325 ss->s = 1;
2326 ss->type = 0x03; /* Read/Write, Accessed */
2327 ss->d = 1; /* 32bit stack segment */
2328 ss->dpl = 0;
2329 ss->p = 1;
2330 ss->l = 0;
2331 ss->avl = 0;
2332 }
2333
em_syscall(struct x86_emulate_ctxt * ctxt)2334 static int em_syscall(struct x86_emulate_ctxt *ctxt)
2335 {
2336 const struct x86_emulate_ops *ops = ctxt->ops;
2337 struct desc_struct cs, ss;
2338 u64 msr_data;
2339 u16 cs_sel, ss_sel;
2340 u64 efer = 0;
2341
2342 /* syscall is not available in real mode */
2343 if (ctxt->mode == X86EMUL_MODE_REAL ||
2344 ctxt->mode == X86EMUL_MODE_VM86)
2345 return emulate_ud(ctxt);
2346
2347 /*
2348 * Intel compatible CPUs only support SYSCALL in 64-bit mode, whereas
2349 * AMD allows SYSCALL in any flavor of protected mode. Note, it's
2350 * infeasible to emulate Intel behavior when running on AMD hardware,
2351 * as SYSCALL won't fault in the "wrong" mode, i.e. there is no #UD
2352 * for KVM to trap-and-emulate, unlike emulating AMD on Intel.
2353 */
2354 if (ctxt->mode != X86EMUL_MODE_PROT64 &&
2355 ctxt->ops->guest_cpuid_is_intel_compatible(ctxt))
2356 return emulate_ud(ctxt);
2357
2358 ops->get_msr(ctxt, MSR_EFER, &efer);
2359 if (!(efer & EFER_SCE))
2360 return emulate_ud(ctxt);
2361
2362 setup_syscalls_segments(&cs, &ss);
2363 ops->get_msr(ctxt, MSR_STAR, &msr_data);
2364 msr_data >>= 32;
2365 cs_sel = (u16)(msr_data & 0xfffc);
2366 ss_sel = (u16)(msr_data + 8);
2367
2368 if (efer & EFER_LMA) {
2369 cs.d = 0;
2370 cs.l = 1;
2371 }
2372 ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2373 ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2374
2375 *reg_write(ctxt, VCPU_REGS_RCX) = ctxt->_eip;
2376 if (efer & EFER_LMA) {
2377 #ifdef CONFIG_X86_64
2378 *reg_write(ctxt, VCPU_REGS_R11) = ctxt->eflags;
2379
2380 ops->get_msr(ctxt,
2381 ctxt->mode == X86EMUL_MODE_PROT64 ?
2382 MSR_LSTAR : MSR_CSTAR, &msr_data);
2383 ctxt->_eip = msr_data;
2384
2385 ops->get_msr(ctxt, MSR_SYSCALL_MASK, &msr_data);
2386 ctxt->eflags &= ~msr_data;
2387 ctxt->eflags |= X86_EFLAGS_FIXED;
2388 #endif
2389 } else {
2390 /* legacy mode */
2391 ops->get_msr(ctxt, MSR_STAR, &msr_data);
2392 ctxt->_eip = (u32)msr_data;
2393
2394 ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF);
2395 }
2396
2397 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
2398 return X86EMUL_CONTINUE;
2399 }
2400
em_sysenter(struct x86_emulate_ctxt * ctxt)2401 static int em_sysenter(struct x86_emulate_ctxt *ctxt)
2402 {
2403 const struct x86_emulate_ops *ops = ctxt->ops;
2404 struct desc_struct cs, ss;
2405 u64 msr_data;
2406 u16 cs_sel, ss_sel;
2407 u64 efer = 0;
2408
2409 ops->get_msr(ctxt, MSR_EFER, &efer);
2410 /* inject #GP if in real mode */
2411 if (ctxt->mode == X86EMUL_MODE_REAL)
2412 return emulate_gp(ctxt, 0);
2413
2414 /*
2415 * Intel's architecture allows SYSENTER in compatibility mode, but AMD
2416 * does not. Note, AMD does allow SYSENTER in legacy protected mode.
2417 */
2418 if ((ctxt->mode != X86EMUL_MODE_PROT64) && (efer & EFER_LMA) &&
2419 !ctxt->ops->guest_cpuid_is_intel_compatible(ctxt))
2420 return emulate_ud(ctxt);
2421
2422 /* sysenter/sysexit have not been tested in 64bit mode. */
2423 if (ctxt->mode == X86EMUL_MODE_PROT64)
2424 return X86EMUL_UNHANDLEABLE;
2425
2426 ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
2427 if ((msr_data & 0xfffc) == 0x0)
2428 return emulate_gp(ctxt, 0);
2429
2430 setup_syscalls_segments(&cs, &ss);
2431 ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF);
2432 cs_sel = (u16)msr_data & ~SEGMENT_RPL_MASK;
2433 ss_sel = cs_sel + 8;
2434 if (efer & EFER_LMA) {
2435 cs.d = 0;
2436 cs.l = 1;
2437 }
2438
2439 ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2440 ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2441
2442 ops->get_msr(ctxt, MSR_IA32_SYSENTER_EIP, &msr_data);
2443 ctxt->_eip = (efer & EFER_LMA) ? msr_data : (u32)msr_data;
2444
2445 ops->get_msr(ctxt, MSR_IA32_SYSENTER_ESP, &msr_data);
2446 *reg_write(ctxt, VCPU_REGS_RSP) = (efer & EFER_LMA) ? msr_data :
2447 (u32)msr_data;
2448 if (efer & EFER_LMA)
2449 ctxt->mode = X86EMUL_MODE_PROT64;
2450
2451 return X86EMUL_CONTINUE;
2452 }
2453
em_sysexit(struct x86_emulate_ctxt * ctxt)2454 static int em_sysexit(struct x86_emulate_ctxt *ctxt)
2455 {
2456 const struct x86_emulate_ops *ops = ctxt->ops;
2457 struct desc_struct cs, ss;
2458 u64 msr_data, rcx, rdx;
2459 int usermode;
2460 u16 cs_sel = 0, ss_sel = 0;
2461
2462 /* inject #GP if in real mode or Virtual 8086 mode */
2463 if (ctxt->mode == X86EMUL_MODE_REAL ||
2464 ctxt->mode == X86EMUL_MODE_VM86)
2465 return emulate_gp(ctxt, 0);
2466
2467 setup_syscalls_segments(&cs, &ss);
2468
2469 if ((ctxt->rex_prefix & 0x8) != 0x0)
2470 usermode = X86EMUL_MODE_PROT64;
2471 else
2472 usermode = X86EMUL_MODE_PROT32;
2473
2474 rcx = reg_read(ctxt, VCPU_REGS_RCX);
2475 rdx = reg_read(ctxt, VCPU_REGS_RDX);
2476
2477 cs.dpl = 3;
2478 ss.dpl = 3;
2479 ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
2480 switch (usermode) {
2481 case X86EMUL_MODE_PROT32:
2482 cs_sel = (u16)(msr_data + 16);
2483 if ((msr_data & 0xfffc) == 0x0)
2484 return emulate_gp(ctxt, 0);
2485 ss_sel = (u16)(msr_data + 24);
2486 rcx = (u32)rcx;
2487 rdx = (u32)rdx;
2488 break;
2489 case X86EMUL_MODE_PROT64:
2490 cs_sel = (u16)(msr_data + 32);
2491 if (msr_data == 0x0)
2492 return emulate_gp(ctxt, 0);
2493 ss_sel = cs_sel + 8;
2494 cs.d = 0;
2495 cs.l = 1;
2496 if (emul_is_noncanonical_address(rcx, ctxt, 0) ||
2497 emul_is_noncanonical_address(rdx, ctxt, 0))
2498 return emulate_gp(ctxt, 0);
2499 break;
2500 }
2501 cs_sel |= SEGMENT_RPL_MASK;
2502 ss_sel |= SEGMENT_RPL_MASK;
2503
2504 ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2505 ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2506
2507 ctxt->_eip = rdx;
2508 ctxt->mode = usermode;
2509 *reg_write(ctxt, VCPU_REGS_RSP) = rcx;
2510
2511 return X86EMUL_CONTINUE;
2512 }
2513
emulator_bad_iopl(struct x86_emulate_ctxt * ctxt)2514 static bool emulator_bad_iopl(struct x86_emulate_ctxt *ctxt)
2515 {
2516 int iopl;
2517 if (ctxt->mode == X86EMUL_MODE_REAL)
2518 return false;
2519 if (ctxt->mode == X86EMUL_MODE_VM86)
2520 return true;
2521 iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT;
2522 return ctxt->ops->cpl(ctxt) > iopl;
2523 }
2524
2525 #define VMWARE_PORT_VMPORT (0x5658)
2526 #define VMWARE_PORT_VMRPC (0x5659)
2527
emulator_io_port_access_allowed(struct x86_emulate_ctxt * ctxt,u16 port,u16 len)2528 static bool emulator_io_port_access_allowed(struct x86_emulate_ctxt *ctxt,
2529 u16 port, u16 len)
2530 {
2531 const struct x86_emulate_ops *ops = ctxt->ops;
2532 struct desc_struct tr_seg;
2533 u32 base3;
2534 int r;
2535 u16 tr, io_bitmap_ptr, perm, bit_idx = port & 0x7;
2536 unsigned mask = (1 << len) - 1;
2537 unsigned long base;
2538
2539 /*
2540 * VMware allows access to these ports even if denied
2541 * by TSS I/O permission bitmap. Mimic behavior.
2542 */
2543 if (enable_vmware_backdoor &&
2544 ((port == VMWARE_PORT_VMPORT) || (port == VMWARE_PORT_VMRPC)))
2545 return true;
2546
2547 ops->get_segment(ctxt, &tr, &tr_seg, &base3, VCPU_SREG_TR);
2548 if (!tr_seg.p)
2549 return false;
2550 if (desc_limit_scaled(&tr_seg) < 103)
2551 return false;
2552 base = get_desc_base(&tr_seg);
2553 #ifdef CONFIG_X86_64
2554 base |= ((u64)base3) << 32;
2555 #endif
2556 r = ops->read_std(ctxt, base + 102, &io_bitmap_ptr, 2, NULL, true);
2557 if (r != X86EMUL_CONTINUE)
2558 return false;
2559 if (io_bitmap_ptr + port/8 > desc_limit_scaled(&tr_seg))
2560 return false;
2561 r = ops->read_std(ctxt, base + io_bitmap_ptr + port/8, &perm, 2, NULL, true);
2562 if (r != X86EMUL_CONTINUE)
2563 return false;
2564 if ((perm >> bit_idx) & mask)
2565 return false;
2566 return true;
2567 }
2568
emulator_io_permitted(struct x86_emulate_ctxt * ctxt,u16 port,u16 len)2569 static bool emulator_io_permitted(struct x86_emulate_ctxt *ctxt,
2570 u16 port, u16 len)
2571 {
2572 if (ctxt->perm_ok)
2573 return true;
2574
2575 if (emulator_bad_iopl(ctxt))
2576 if (!emulator_io_port_access_allowed(ctxt, port, len))
2577 return false;
2578
2579 ctxt->perm_ok = true;
2580
2581 return true;
2582 }
2583
string_registers_quirk(struct x86_emulate_ctxt * ctxt)2584 static void string_registers_quirk(struct x86_emulate_ctxt *ctxt)
2585 {
2586 /*
2587 * Intel CPUs mask the counter and pointers in quite strange
2588 * manner when ECX is zero due to REP-string optimizations.
2589 */
2590 #ifdef CONFIG_X86_64
2591 u32 eax, ebx, ecx, edx;
2592
2593 if (ctxt->ad_bytes != 4)
2594 return;
2595
2596 eax = ecx = 0;
2597 ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, true);
2598 if (!is_guest_vendor_intel(ebx, ecx, edx))
2599 return;
2600
2601 *reg_write(ctxt, VCPU_REGS_RCX) = 0;
2602
2603 switch (ctxt->b) {
2604 case 0xa4: /* movsb */
2605 case 0xa5: /* movsd/w */
2606 *reg_rmw(ctxt, VCPU_REGS_RSI) &= (u32)-1;
2607 fallthrough;
2608 case 0xaa: /* stosb */
2609 case 0xab: /* stosd/w */
2610 *reg_rmw(ctxt, VCPU_REGS_RDI) &= (u32)-1;
2611 }
2612 #endif
2613 }
2614
save_state_to_tss16(struct x86_emulate_ctxt * ctxt,struct tss_segment_16 * tss)2615 static void save_state_to_tss16(struct x86_emulate_ctxt *ctxt,
2616 struct tss_segment_16 *tss)
2617 {
2618 tss->ip = ctxt->_eip;
2619 tss->flag = ctxt->eflags;
2620 tss->ax = reg_read(ctxt, VCPU_REGS_RAX);
2621 tss->cx = reg_read(ctxt, VCPU_REGS_RCX);
2622 tss->dx = reg_read(ctxt, VCPU_REGS_RDX);
2623 tss->bx = reg_read(ctxt, VCPU_REGS_RBX);
2624 tss->sp = reg_read(ctxt, VCPU_REGS_RSP);
2625 tss->bp = reg_read(ctxt, VCPU_REGS_RBP);
2626 tss->si = reg_read(ctxt, VCPU_REGS_RSI);
2627 tss->di = reg_read(ctxt, VCPU_REGS_RDI);
2628
2629 tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
2630 tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
2631 tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
2632 tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
2633 tss->ldt = get_segment_selector(ctxt, VCPU_SREG_LDTR);
2634 }
2635
load_state_from_tss16(struct x86_emulate_ctxt * ctxt,struct tss_segment_16 * tss)2636 static int load_state_from_tss16(struct x86_emulate_ctxt *ctxt,
2637 struct tss_segment_16 *tss)
2638 {
2639 int ret;
2640 u8 cpl;
2641
2642 ctxt->_eip = tss->ip;
2643 ctxt->eflags = tss->flag | 2;
2644 *reg_write(ctxt, VCPU_REGS_RAX) = tss->ax;
2645 *reg_write(ctxt, VCPU_REGS_RCX) = tss->cx;
2646 *reg_write(ctxt, VCPU_REGS_RDX) = tss->dx;
2647 *reg_write(ctxt, VCPU_REGS_RBX) = tss->bx;
2648 *reg_write(ctxt, VCPU_REGS_RSP) = tss->sp;
2649 *reg_write(ctxt, VCPU_REGS_RBP) = tss->bp;
2650 *reg_write(ctxt, VCPU_REGS_RSI) = tss->si;
2651 *reg_write(ctxt, VCPU_REGS_RDI) = tss->di;
2652
2653 /*
2654 * SDM says that segment selectors are loaded before segment
2655 * descriptors
2656 */
2657 set_segment_selector(ctxt, tss->ldt, VCPU_SREG_LDTR);
2658 set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
2659 set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
2660 set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
2661 set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
2662
2663 cpl = tss->cs & 3;
2664
2665 /*
2666 * Now load segment descriptors. If fault happens at this stage
2667 * it is handled in a context of new task
2668 */
2669 ret = __load_segment_descriptor(ctxt, tss->ldt, VCPU_SREG_LDTR, cpl,
2670 X86_TRANSFER_TASK_SWITCH, NULL);
2671 if (ret != X86EMUL_CONTINUE)
2672 return ret;
2673 ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl,
2674 X86_TRANSFER_TASK_SWITCH, NULL);
2675 if (ret != X86EMUL_CONTINUE)
2676 return ret;
2677 ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl,
2678 X86_TRANSFER_TASK_SWITCH, NULL);
2679 if (ret != X86EMUL_CONTINUE)
2680 return ret;
2681 ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl,
2682 X86_TRANSFER_TASK_SWITCH, NULL);
2683 if (ret != X86EMUL_CONTINUE)
2684 return ret;
2685 ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl,
2686 X86_TRANSFER_TASK_SWITCH, NULL);
2687 if (ret != X86EMUL_CONTINUE)
2688 return ret;
2689
2690 return X86EMUL_CONTINUE;
2691 }
2692
task_switch_16(struct x86_emulate_ctxt * ctxt,u16 old_tss_sel,ulong old_tss_base,struct desc_struct * new_desc)2693 static int task_switch_16(struct x86_emulate_ctxt *ctxt, u16 old_tss_sel,
2694 ulong old_tss_base, struct desc_struct *new_desc)
2695 {
2696 struct tss_segment_16 tss_seg;
2697 int ret;
2698 u32 new_tss_base = get_desc_base(new_desc);
2699
2700 ret = linear_read_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg));
2701 if (ret != X86EMUL_CONTINUE)
2702 return ret;
2703
2704 save_state_to_tss16(ctxt, &tss_seg);
2705
2706 ret = linear_write_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg));
2707 if (ret != X86EMUL_CONTINUE)
2708 return ret;
2709
2710 ret = linear_read_system(ctxt, new_tss_base, &tss_seg, sizeof(tss_seg));
2711 if (ret != X86EMUL_CONTINUE)
2712 return ret;
2713
2714 if (old_tss_sel != 0xffff) {
2715 tss_seg.prev_task_link = old_tss_sel;
2716
2717 ret = linear_write_system(ctxt, new_tss_base,
2718 &tss_seg.prev_task_link,
2719 sizeof(tss_seg.prev_task_link));
2720 if (ret != X86EMUL_CONTINUE)
2721 return ret;
2722 }
2723
2724 return load_state_from_tss16(ctxt, &tss_seg);
2725 }
2726
save_state_to_tss32(struct x86_emulate_ctxt * ctxt,struct tss_segment_32 * tss)2727 static void save_state_to_tss32(struct x86_emulate_ctxt *ctxt,
2728 struct tss_segment_32 *tss)
2729 {
2730 /* CR3 and ldt selector are not saved intentionally */
2731 tss->eip = ctxt->_eip;
2732 tss->eflags = ctxt->eflags;
2733 tss->eax = reg_read(ctxt, VCPU_REGS_RAX);
2734 tss->ecx = reg_read(ctxt, VCPU_REGS_RCX);
2735 tss->edx = reg_read(ctxt, VCPU_REGS_RDX);
2736 tss->ebx = reg_read(ctxt, VCPU_REGS_RBX);
2737 tss->esp = reg_read(ctxt, VCPU_REGS_RSP);
2738 tss->ebp = reg_read(ctxt, VCPU_REGS_RBP);
2739 tss->esi = reg_read(ctxt, VCPU_REGS_RSI);
2740 tss->edi = reg_read(ctxt, VCPU_REGS_RDI);
2741
2742 tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
2743 tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
2744 tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
2745 tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
2746 tss->fs = get_segment_selector(ctxt, VCPU_SREG_FS);
2747 tss->gs = get_segment_selector(ctxt, VCPU_SREG_GS);
2748 }
2749
load_state_from_tss32(struct x86_emulate_ctxt * ctxt,struct tss_segment_32 * tss)2750 static int load_state_from_tss32(struct x86_emulate_ctxt *ctxt,
2751 struct tss_segment_32 *tss)
2752 {
2753 int ret;
2754 u8 cpl;
2755
2756 if (ctxt->ops->set_cr(ctxt, 3, tss->cr3))
2757 return emulate_gp(ctxt, 0);
2758 ctxt->_eip = tss->eip;
2759 ctxt->eflags = tss->eflags | 2;
2760
2761 /* General purpose registers */
2762 *reg_write(ctxt, VCPU_REGS_RAX) = tss->eax;
2763 *reg_write(ctxt, VCPU_REGS_RCX) = tss->ecx;
2764 *reg_write(ctxt, VCPU_REGS_RDX) = tss->edx;
2765 *reg_write(ctxt, VCPU_REGS_RBX) = tss->ebx;
2766 *reg_write(ctxt, VCPU_REGS_RSP) = tss->esp;
2767 *reg_write(ctxt, VCPU_REGS_RBP) = tss->ebp;
2768 *reg_write(ctxt, VCPU_REGS_RSI) = tss->esi;
2769 *reg_write(ctxt, VCPU_REGS_RDI) = tss->edi;
2770
2771 /*
2772 * SDM says that segment selectors are loaded before segment
2773 * descriptors. This is important because CPL checks will
2774 * use CS.RPL.
2775 */
2776 set_segment_selector(ctxt, tss->ldt_selector, VCPU_SREG_LDTR);
2777 set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
2778 set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
2779 set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
2780 set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
2781 set_segment_selector(ctxt, tss->fs, VCPU_SREG_FS);
2782 set_segment_selector(ctxt, tss->gs, VCPU_SREG_GS);
2783
2784 /*
2785 * If we're switching between Protected Mode and VM86, we need to make
2786 * sure to update the mode before loading the segment descriptors so
2787 * that the selectors are interpreted correctly.
2788 */
2789 if (ctxt->eflags & X86_EFLAGS_VM) {
2790 ctxt->mode = X86EMUL_MODE_VM86;
2791 cpl = 3;
2792 } else {
2793 ctxt->mode = X86EMUL_MODE_PROT32;
2794 cpl = tss->cs & 3;
2795 }
2796
2797 /*
2798 * Now load segment descriptors. If fault happens at this stage
2799 * it is handled in a context of new task
2800 */
2801 ret = __load_segment_descriptor(ctxt, tss->ldt_selector, VCPU_SREG_LDTR,
2802 cpl, X86_TRANSFER_TASK_SWITCH, NULL);
2803 if (ret != X86EMUL_CONTINUE)
2804 return ret;
2805 ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl,
2806 X86_TRANSFER_TASK_SWITCH, NULL);
2807 if (ret != X86EMUL_CONTINUE)
2808 return ret;
2809 ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl,
2810 X86_TRANSFER_TASK_SWITCH, NULL);
2811 if (ret != X86EMUL_CONTINUE)
2812 return ret;
2813 ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl,
2814 X86_TRANSFER_TASK_SWITCH, NULL);
2815 if (ret != X86EMUL_CONTINUE)
2816 return ret;
2817 ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl,
2818 X86_TRANSFER_TASK_SWITCH, NULL);
2819 if (ret != X86EMUL_CONTINUE)
2820 return ret;
2821 ret = __load_segment_descriptor(ctxt, tss->fs, VCPU_SREG_FS, cpl,
2822 X86_TRANSFER_TASK_SWITCH, NULL);
2823 if (ret != X86EMUL_CONTINUE)
2824 return ret;
2825 ret = __load_segment_descriptor(ctxt, tss->gs, VCPU_SREG_GS, cpl,
2826 X86_TRANSFER_TASK_SWITCH, NULL);
2827
2828 return ret;
2829 }
2830
task_switch_32(struct x86_emulate_ctxt * ctxt,u16 old_tss_sel,ulong old_tss_base,struct desc_struct * new_desc)2831 static int task_switch_32(struct x86_emulate_ctxt *ctxt, u16 old_tss_sel,
2832 ulong old_tss_base, struct desc_struct *new_desc)
2833 {
2834 struct tss_segment_32 tss_seg;
2835 int ret;
2836 u32 new_tss_base = get_desc_base(new_desc);
2837 u32 eip_offset = offsetof(struct tss_segment_32, eip);
2838 u32 ldt_sel_offset = offsetof(struct tss_segment_32, ldt_selector);
2839
2840 ret = linear_read_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg));
2841 if (ret != X86EMUL_CONTINUE)
2842 return ret;
2843
2844 save_state_to_tss32(ctxt, &tss_seg);
2845
2846 /* Only GP registers and segment selectors are saved */
2847 ret = linear_write_system(ctxt, old_tss_base + eip_offset, &tss_seg.eip,
2848 ldt_sel_offset - eip_offset);
2849 if (ret != X86EMUL_CONTINUE)
2850 return ret;
2851
2852 ret = linear_read_system(ctxt, new_tss_base, &tss_seg, sizeof(tss_seg));
2853 if (ret != X86EMUL_CONTINUE)
2854 return ret;
2855
2856 if (old_tss_sel != 0xffff) {
2857 tss_seg.prev_task_link = old_tss_sel;
2858
2859 ret = linear_write_system(ctxt, new_tss_base,
2860 &tss_seg.prev_task_link,
2861 sizeof(tss_seg.prev_task_link));
2862 if (ret != X86EMUL_CONTINUE)
2863 return ret;
2864 }
2865
2866 return load_state_from_tss32(ctxt, &tss_seg);
2867 }
2868
emulator_do_task_switch(struct x86_emulate_ctxt * ctxt,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)2869 static int emulator_do_task_switch(struct x86_emulate_ctxt *ctxt,
2870 u16 tss_selector, int idt_index, int reason,
2871 bool has_error_code, u32 error_code)
2872 {
2873 const struct x86_emulate_ops *ops = ctxt->ops;
2874 struct desc_struct curr_tss_desc, next_tss_desc;
2875 int ret;
2876 u16 old_tss_sel = get_segment_selector(ctxt, VCPU_SREG_TR);
2877 ulong old_tss_base =
2878 ops->get_cached_segment_base(ctxt, VCPU_SREG_TR);
2879 u32 desc_limit;
2880 ulong desc_addr, dr7;
2881
2882 /* FIXME: old_tss_base == ~0 ? */
2883
2884 ret = read_segment_descriptor(ctxt, tss_selector, &next_tss_desc, &desc_addr);
2885 if (ret != X86EMUL_CONTINUE)
2886 return ret;
2887 ret = read_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc, &desc_addr);
2888 if (ret != X86EMUL_CONTINUE)
2889 return ret;
2890
2891 /* FIXME: check that next_tss_desc is tss */
2892
2893 /*
2894 * Check privileges. The three cases are task switch caused by...
2895 *
2896 * 1. jmp/call/int to task gate: Check against DPL of the task gate
2897 * 2. Exception/IRQ/iret: No check is performed
2898 * 3. jmp/call to TSS/task-gate: No check is performed since the
2899 * hardware checks it before exiting.
2900 */
2901 if (reason == TASK_SWITCH_GATE) {
2902 if (idt_index != -1) {
2903 /* Software interrupts */
2904 struct desc_struct task_gate_desc;
2905 int dpl;
2906
2907 ret = read_interrupt_descriptor(ctxt, idt_index,
2908 &task_gate_desc);
2909 if (ret != X86EMUL_CONTINUE)
2910 return ret;
2911
2912 dpl = task_gate_desc.dpl;
2913 if ((tss_selector & 3) > dpl || ops->cpl(ctxt) > dpl)
2914 return emulate_gp(ctxt, (idt_index << 3) | 0x2);
2915 }
2916 }
2917
2918 desc_limit = desc_limit_scaled(&next_tss_desc);
2919 if (!next_tss_desc.p ||
2920 ((desc_limit < 0x67 && (next_tss_desc.type & 8)) ||
2921 desc_limit < 0x2b)) {
2922 return emulate_ts(ctxt, tss_selector & 0xfffc);
2923 }
2924
2925 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
2926 curr_tss_desc.type &= ~(1 << 1); /* clear busy flag */
2927 write_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc);
2928 }
2929
2930 if (reason == TASK_SWITCH_IRET)
2931 ctxt->eflags = ctxt->eflags & ~X86_EFLAGS_NT;
2932
2933 /* set back link to prev task only if NT bit is set in eflags
2934 note that old_tss_sel is not used after this point */
2935 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
2936 old_tss_sel = 0xffff;
2937
2938 if (next_tss_desc.type & 8)
2939 ret = task_switch_32(ctxt, old_tss_sel, old_tss_base, &next_tss_desc);
2940 else
2941 ret = task_switch_16(ctxt, old_tss_sel,
2942 old_tss_base, &next_tss_desc);
2943 if (ret != X86EMUL_CONTINUE)
2944 return ret;
2945
2946 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE)
2947 ctxt->eflags = ctxt->eflags | X86_EFLAGS_NT;
2948
2949 if (reason != TASK_SWITCH_IRET) {
2950 next_tss_desc.type |= (1 << 1); /* set busy flag */
2951 write_segment_descriptor(ctxt, tss_selector, &next_tss_desc);
2952 }
2953
2954 ops->set_cr(ctxt, 0, ops->get_cr(ctxt, 0) | X86_CR0_TS);
2955 ops->set_segment(ctxt, tss_selector, &next_tss_desc, 0, VCPU_SREG_TR);
2956
2957 if (has_error_code) {
2958 ctxt->op_bytes = ctxt->ad_bytes = (next_tss_desc.type & 8) ? 4 : 2;
2959 ctxt->lock_prefix = 0;
2960 ctxt->src.val = (unsigned long) error_code;
2961 ret = em_push(ctxt);
2962 }
2963
2964 dr7 = ops->get_dr(ctxt, 7);
2965 ops->set_dr(ctxt, 7, dr7 & ~(DR_LOCAL_ENABLE_MASK | DR_LOCAL_SLOWDOWN));
2966
2967 return ret;
2968 }
2969
emulator_task_switch(struct x86_emulate_ctxt * ctxt,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)2970 int emulator_task_switch(struct x86_emulate_ctxt *ctxt,
2971 u16 tss_selector, int idt_index, int reason,
2972 bool has_error_code, u32 error_code)
2973 {
2974 int rc;
2975
2976 invalidate_registers(ctxt);
2977 ctxt->_eip = ctxt->eip;
2978 ctxt->dst.type = OP_NONE;
2979
2980 rc = emulator_do_task_switch(ctxt, tss_selector, idt_index, reason,
2981 has_error_code, error_code);
2982
2983 if (rc == X86EMUL_CONTINUE) {
2984 ctxt->eip = ctxt->_eip;
2985 writeback_registers(ctxt);
2986 }
2987
2988 return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
2989 }
2990
string_addr_inc(struct x86_emulate_ctxt * ctxt,int reg,struct operand * op)2991 static void string_addr_inc(struct x86_emulate_ctxt *ctxt, int reg,
2992 struct operand *op)
2993 {
2994 int df = (ctxt->eflags & X86_EFLAGS_DF) ? -op->count : op->count;
2995
2996 register_address_increment(ctxt, reg, df * op->bytes);
2997 op->addr.mem.ea = register_address(ctxt, reg);
2998 }
2999
em_das(struct x86_emulate_ctxt * ctxt)3000 static int em_das(struct x86_emulate_ctxt *ctxt)
3001 {
3002 u8 al, old_al;
3003 bool af, cf, old_cf;
3004
3005 cf = ctxt->eflags & X86_EFLAGS_CF;
3006 al = ctxt->dst.val;
3007
3008 old_al = al;
3009 old_cf = cf;
3010 cf = false;
3011 af = ctxt->eflags & X86_EFLAGS_AF;
3012 if ((al & 0x0f) > 9 || af) {
3013 al -= 6;
3014 cf = old_cf | (al >= 250);
3015 af = true;
3016 } else {
3017 af = false;
3018 }
3019 if (old_al > 0x99 || old_cf) {
3020 al -= 0x60;
3021 cf = true;
3022 }
3023
3024 ctxt->dst.val = al;
3025 /* Set PF, ZF, SF */
3026 ctxt->src.type = OP_IMM;
3027 ctxt->src.val = 0;
3028 ctxt->src.bytes = 1;
3029 em_or(ctxt);
3030 ctxt->eflags &= ~(X86_EFLAGS_AF | X86_EFLAGS_CF);
3031 if (cf)
3032 ctxt->eflags |= X86_EFLAGS_CF;
3033 if (af)
3034 ctxt->eflags |= X86_EFLAGS_AF;
3035 return X86EMUL_CONTINUE;
3036 }
3037
em_aam(struct x86_emulate_ctxt * ctxt)3038 static int em_aam(struct x86_emulate_ctxt *ctxt)
3039 {
3040 u8 al, ah;
3041
3042 if (ctxt->src.val == 0)
3043 return emulate_de(ctxt);
3044
3045 al = ctxt->dst.val & 0xff;
3046 ah = al / ctxt->src.val;
3047 al %= ctxt->src.val;
3048
3049 ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al | (ah << 8);
3050
3051 /* Set PF, ZF, SF */
3052 ctxt->src.type = OP_IMM;
3053 ctxt->src.val = 0;
3054 ctxt->src.bytes = 1;
3055 em_or(ctxt);
3056
3057 return X86EMUL_CONTINUE;
3058 }
3059
em_aad(struct x86_emulate_ctxt * ctxt)3060 static int em_aad(struct x86_emulate_ctxt *ctxt)
3061 {
3062 u8 al = ctxt->dst.val & 0xff;
3063 u8 ah = (ctxt->dst.val >> 8) & 0xff;
3064
3065 al = (al + (ah * ctxt->src.val)) & 0xff;
3066
3067 ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al;
3068
3069 /* Set PF, ZF, SF */
3070 ctxt->src.type = OP_IMM;
3071 ctxt->src.val = 0;
3072 ctxt->src.bytes = 1;
3073 em_or(ctxt);
3074
3075 return X86EMUL_CONTINUE;
3076 }
3077
em_call(struct x86_emulate_ctxt * ctxt)3078 static int em_call(struct x86_emulate_ctxt *ctxt)
3079 {
3080 int rc;
3081 long rel = ctxt->src.val;
3082
3083 ctxt->src.val = (unsigned long)ctxt->_eip;
3084 rc = jmp_rel(ctxt, rel);
3085 if (rc != X86EMUL_CONTINUE)
3086 return rc;
3087 return em_push(ctxt);
3088 }
3089
em_call_far(struct x86_emulate_ctxt * ctxt)3090 static int em_call_far(struct x86_emulate_ctxt *ctxt)
3091 {
3092 u16 sel, old_cs;
3093 ulong old_eip;
3094 int rc;
3095 struct desc_struct old_desc, new_desc;
3096 const struct x86_emulate_ops *ops = ctxt->ops;
3097 int cpl = ctxt->ops->cpl(ctxt);
3098 enum x86emul_mode prev_mode = ctxt->mode;
3099
3100 old_eip = ctxt->_eip;
3101 ops->get_segment(ctxt, &old_cs, &old_desc, NULL, VCPU_SREG_CS);
3102
3103 memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
3104 rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl,
3105 X86_TRANSFER_CALL_JMP, &new_desc);
3106 if (rc != X86EMUL_CONTINUE)
3107 return rc;
3108
3109 rc = assign_eip_far(ctxt, ctxt->src.val);
3110 if (rc != X86EMUL_CONTINUE)
3111 goto fail;
3112
3113 ctxt->src.val = old_cs;
3114 rc = em_push(ctxt);
3115 if (rc != X86EMUL_CONTINUE)
3116 goto fail;
3117
3118 ctxt->src.val = old_eip;
3119 rc = em_push(ctxt);
3120 /* If we failed, we tainted the memory, but the very least we should
3121 restore cs */
3122 if (rc != X86EMUL_CONTINUE) {
3123 pr_warn_once("faulting far call emulation tainted memory\n");
3124 goto fail;
3125 }
3126 return rc;
3127 fail:
3128 ops->set_segment(ctxt, old_cs, &old_desc, 0, VCPU_SREG_CS);
3129 ctxt->mode = prev_mode;
3130 return rc;
3131
3132 }
3133
em_ret_near_imm(struct x86_emulate_ctxt * ctxt)3134 static int em_ret_near_imm(struct x86_emulate_ctxt *ctxt)
3135 {
3136 int rc;
3137 unsigned long eip = 0;
3138
3139 rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
3140 if (rc != X86EMUL_CONTINUE)
3141 return rc;
3142 rc = assign_eip_near(ctxt, eip);
3143 if (rc != X86EMUL_CONTINUE)
3144 return rc;
3145 rsp_increment(ctxt, ctxt->src.val);
3146 return X86EMUL_CONTINUE;
3147 }
3148
em_xchg(struct x86_emulate_ctxt * ctxt)3149 static int em_xchg(struct x86_emulate_ctxt *ctxt)
3150 {
3151 /* Write back the register source. */
3152 ctxt->src.val = ctxt->dst.val;
3153 write_register_operand(&ctxt->src);
3154
3155 /* Write back the memory destination with implicit LOCK prefix. */
3156 ctxt->dst.val = ctxt->src.orig_val;
3157 ctxt->lock_prefix = 1;
3158 return X86EMUL_CONTINUE;
3159 }
3160
em_imul_3op(struct x86_emulate_ctxt * ctxt)3161 static int em_imul_3op(struct x86_emulate_ctxt *ctxt)
3162 {
3163 ctxt->dst.val = ctxt->src2.val;
3164 return em_imul(ctxt);
3165 }
3166
em_cwd(struct x86_emulate_ctxt * ctxt)3167 static int em_cwd(struct x86_emulate_ctxt *ctxt)
3168 {
3169 ctxt->dst.type = OP_REG;
3170 ctxt->dst.bytes = ctxt->src.bytes;
3171 ctxt->dst.addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
3172 ctxt->dst.val = ~((ctxt->src.val >> (ctxt->src.bytes * 8 - 1)) - 1);
3173
3174 return X86EMUL_CONTINUE;
3175 }
3176
em_rdpid(struct x86_emulate_ctxt * ctxt)3177 static int em_rdpid(struct x86_emulate_ctxt *ctxt)
3178 {
3179 u64 tsc_aux = 0;
3180
3181 if (!ctxt->ops->guest_has_rdpid(ctxt))
3182 return emulate_ud(ctxt);
3183
3184 ctxt->ops->get_msr(ctxt, MSR_TSC_AUX, &tsc_aux);
3185 ctxt->dst.val = tsc_aux;
3186 return X86EMUL_CONTINUE;
3187 }
3188
em_rdtsc(struct x86_emulate_ctxt * ctxt)3189 static int em_rdtsc(struct x86_emulate_ctxt *ctxt)
3190 {
3191 u64 tsc = 0;
3192
3193 ctxt->ops->get_msr(ctxt, MSR_IA32_TSC, &tsc);
3194 *reg_write(ctxt, VCPU_REGS_RAX) = (u32)tsc;
3195 *reg_write(ctxt, VCPU_REGS_RDX) = tsc >> 32;
3196 return X86EMUL_CONTINUE;
3197 }
3198
em_rdpmc(struct x86_emulate_ctxt * ctxt)3199 static int em_rdpmc(struct x86_emulate_ctxt *ctxt)
3200 {
3201 u64 pmc;
3202
3203 if (ctxt->ops->read_pmc(ctxt, reg_read(ctxt, VCPU_REGS_RCX), &pmc))
3204 return emulate_gp(ctxt, 0);
3205 *reg_write(ctxt, VCPU_REGS_RAX) = (u32)pmc;
3206 *reg_write(ctxt, VCPU_REGS_RDX) = pmc >> 32;
3207 return X86EMUL_CONTINUE;
3208 }
3209
em_mov(struct x86_emulate_ctxt * ctxt)3210 static int em_mov(struct x86_emulate_ctxt *ctxt)
3211 {
3212 memcpy(ctxt->dst.valptr, ctxt->src.valptr, sizeof(ctxt->src.valptr));
3213 return X86EMUL_CONTINUE;
3214 }
3215
em_movbe(struct x86_emulate_ctxt * ctxt)3216 static int em_movbe(struct x86_emulate_ctxt *ctxt)
3217 {
3218 u16 tmp;
3219
3220 if (!ctxt->ops->guest_has_movbe(ctxt))
3221 return emulate_ud(ctxt);
3222
3223 switch (ctxt->op_bytes) {
3224 case 2:
3225 /*
3226 * From MOVBE definition: "...When the operand size is 16 bits,
3227 * the upper word of the destination register remains unchanged
3228 * ..."
3229 *
3230 * Both casting ->valptr and ->val to u16 breaks strict aliasing
3231 * rules so we have to do the operation almost per hand.
3232 */
3233 tmp = (u16)ctxt->src.val;
3234 ctxt->dst.val &= ~0xffffUL;
3235 ctxt->dst.val |= (unsigned long)swab16(tmp);
3236 break;
3237 case 4:
3238 ctxt->dst.val = swab32((u32)ctxt->src.val);
3239 break;
3240 case 8:
3241 ctxt->dst.val = swab64(ctxt->src.val);
3242 break;
3243 default:
3244 BUG();
3245 }
3246 return X86EMUL_CONTINUE;
3247 }
3248
em_cr_write(struct x86_emulate_ctxt * ctxt)3249 static int em_cr_write(struct x86_emulate_ctxt *ctxt)
3250 {
3251 int cr_num = ctxt->modrm_reg;
3252 int r;
3253
3254 if (ctxt->ops->set_cr(ctxt, cr_num, ctxt->src.val))
3255 return emulate_gp(ctxt, 0);
3256
3257 /* Disable writeback. */
3258 ctxt->dst.type = OP_NONE;
3259
3260 if (cr_num == 0) {
3261 /*
3262 * CR0 write might have updated CR0.PE and/or CR0.PG
3263 * which can affect the cpu's execution mode.
3264 */
3265 r = emulator_recalc_and_set_mode(ctxt);
3266 if (r != X86EMUL_CONTINUE)
3267 return r;
3268 }
3269
3270 return X86EMUL_CONTINUE;
3271 }
3272
em_dr_write(struct x86_emulate_ctxt * ctxt)3273 static int em_dr_write(struct x86_emulate_ctxt *ctxt)
3274 {
3275 unsigned long val;
3276
3277 if (ctxt->mode == X86EMUL_MODE_PROT64)
3278 val = ctxt->src.val & ~0ULL;
3279 else
3280 val = ctxt->src.val & ~0U;
3281
3282 /* #UD condition is already handled. */
3283 if (ctxt->ops->set_dr(ctxt, ctxt->modrm_reg, val) < 0)
3284 return emulate_gp(ctxt, 0);
3285
3286 /* Disable writeback. */
3287 ctxt->dst.type = OP_NONE;
3288 return X86EMUL_CONTINUE;
3289 }
3290
em_wrmsr(struct x86_emulate_ctxt * ctxt)3291 static int em_wrmsr(struct x86_emulate_ctxt *ctxt)
3292 {
3293 u64 msr_index = reg_read(ctxt, VCPU_REGS_RCX);
3294 u64 msr_data;
3295 int r;
3296
3297 msr_data = (u32)reg_read(ctxt, VCPU_REGS_RAX)
3298 | ((u64)reg_read(ctxt, VCPU_REGS_RDX) << 32);
3299 r = ctxt->ops->set_msr_with_filter(ctxt, msr_index, msr_data);
3300
3301 if (r == X86EMUL_PROPAGATE_FAULT)
3302 return emulate_gp(ctxt, 0);
3303
3304 return r;
3305 }
3306
em_rdmsr(struct x86_emulate_ctxt * ctxt)3307 static int em_rdmsr(struct x86_emulate_ctxt *ctxt)
3308 {
3309 u64 msr_index = reg_read(ctxt, VCPU_REGS_RCX);
3310 u64 msr_data;
3311 int r;
3312
3313 r = ctxt->ops->get_msr_with_filter(ctxt, msr_index, &msr_data);
3314
3315 if (r == X86EMUL_PROPAGATE_FAULT)
3316 return emulate_gp(ctxt, 0);
3317
3318 if (r == X86EMUL_CONTINUE) {
3319 *reg_write(ctxt, VCPU_REGS_RAX) = (u32)msr_data;
3320 *reg_write(ctxt, VCPU_REGS_RDX) = msr_data >> 32;
3321 }
3322 return r;
3323 }
3324
em_store_sreg(struct x86_emulate_ctxt * ctxt,int segment)3325 static int em_store_sreg(struct x86_emulate_ctxt *ctxt, int segment)
3326 {
3327 if (segment > VCPU_SREG_GS &&
3328 (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) &&
3329 ctxt->ops->cpl(ctxt) > 0)
3330 return emulate_gp(ctxt, 0);
3331
3332 ctxt->dst.val = get_segment_selector(ctxt, segment);
3333 if (ctxt->dst.bytes == 4 && ctxt->dst.type == OP_MEM)
3334 ctxt->dst.bytes = 2;
3335 return X86EMUL_CONTINUE;
3336 }
3337
em_mov_rm_sreg(struct x86_emulate_ctxt * ctxt)3338 static int em_mov_rm_sreg(struct x86_emulate_ctxt *ctxt)
3339 {
3340 if (ctxt->modrm_reg > VCPU_SREG_GS)
3341 return emulate_ud(ctxt);
3342
3343 return em_store_sreg(ctxt, ctxt->modrm_reg);
3344 }
3345
em_mov_sreg_rm(struct x86_emulate_ctxt * ctxt)3346 static int em_mov_sreg_rm(struct x86_emulate_ctxt *ctxt)
3347 {
3348 u16 sel = ctxt->src.val;
3349
3350 if (ctxt->modrm_reg == VCPU_SREG_CS || ctxt->modrm_reg > VCPU_SREG_GS)
3351 return emulate_ud(ctxt);
3352
3353 if (ctxt->modrm_reg == VCPU_SREG_SS)
3354 ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
3355
3356 /* Disable writeback. */
3357 ctxt->dst.type = OP_NONE;
3358 return load_segment_descriptor(ctxt, sel, ctxt->modrm_reg);
3359 }
3360
em_sldt(struct x86_emulate_ctxt * ctxt)3361 static int em_sldt(struct x86_emulate_ctxt *ctxt)
3362 {
3363 return em_store_sreg(ctxt, VCPU_SREG_LDTR);
3364 }
3365
em_lldt(struct x86_emulate_ctxt * ctxt)3366 static int em_lldt(struct x86_emulate_ctxt *ctxt)
3367 {
3368 u16 sel = ctxt->src.val;
3369
3370 /* Disable writeback. */
3371 ctxt->dst.type = OP_NONE;
3372 return load_segment_descriptor(ctxt, sel, VCPU_SREG_LDTR);
3373 }
3374
em_str(struct x86_emulate_ctxt * ctxt)3375 static int em_str(struct x86_emulate_ctxt *ctxt)
3376 {
3377 return em_store_sreg(ctxt, VCPU_SREG_TR);
3378 }
3379
em_ltr(struct x86_emulate_ctxt * ctxt)3380 static int em_ltr(struct x86_emulate_ctxt *ctxt)
3381 {
3382 u16 sel = ctxt->src.val;
3383
3384 /* Disable writeback. */
3385 ctxt->dst.type = OP_NONE;
3386 return load_segment_descriptor(ctxt, sel, VCPU_SREG_TR);
3387 }
3388
em_invlpg(struct x86_emulate_ctxt * ctxt)3389 static int em_invlpg(struct x86_emulate_ctxt *ctxt)
3390 {
3391 int rc;
3392 ulong linear;
3393 unsigned int max_size;
3394
3395 rc = __linearize(ctxt, ctxt->src.addr.mem, &max_size, 1, ctxt->mode,
3396 &linear, X86EMUL_F_INVLPG);
3397 if (rc == X86EMUL_CONTINUE)
3398 ctxt->ops->invlpg(ctxt, linear);
3399 /* Disable writeback. */
3400 ctxt->dst.type = OP_NONE;
3401 return X86EMUL_CONTINUE;
3402 }
3403
em_clts(struct x86_emulate_ctxt * ctxt)3404 static int em_clts(struct x86_emulate_ctxt *ctxt)
3405 {
3406 ulong cr0;
3407
3408 cr0 = ctxt->ops->get_cr(ctxt, 0);
3409 cr0 &= ~X86_CR0_TS;
3410 ctxt->ops->set_cr(ctxt, 0, cr0);
3411 return X86EMUL_CONTINUE;
3412 }
3413
em_hypercall(struct x86_emulate_ctxt * ctxt)3414 static int em_hypercall(struct x86_emulate_ctxt *ctxt)
3415 {
3416 int rc = ctxt->ops->fix_hypercall(ctxt);
3417
3418 if (rc != X86EMUL_CONTINUE)
3419 return rc;
3420
3421 /* Let the processor re-execute the fixed hypercall */
3422 ctxt->_eip = ctxt->eip;
3423 /* Disable writeback. */
3424 ctxt->dst.type = OP_NONE;
3425 return X86EMUL_CONTINUE;
3426 }
3427
emulate_store_desc_ptr(struct x86_emulate_ctxt * ctxt,void (* get)(struct x86_emulate_ctxt * ctxt,struct desc_ptr * ptr))3428 static int emulate_store_desc_ptr(struct x86_emulate_ctxt *ctxt,
3429 void (*get)(struct x86_emulate_ctxt *ctxt,
3430 struct desc_ptr *ptr))
3431 {
3432 struct desc_ptr desc_ptr;
3433
3434 if ((ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) &&
3435 ctxt->ops->cpl(ctxt) > 0)
3436 return emulate_gp(ctxt, 0);
3437
3438 if (ctxt->mode == X86EMUL_MODE_PROT64)
3439 ctxt->op_bytes = 8;
3440 get(ctxt, &desc_ptr);
3441 if (ctxt->op_bytes == 2) {
3442 ctxt->op_bytes = 4;
3443 desc_ptr.address &= 0x00ffffff;
3444 }
3445 /* Disable writeback. */
3446 ctxt->dst.type = OP_NONE;
3447 return segmented_write_std(ctxt, ctxt->dst.addr.mem,
3448 &desc_ptr, 2 + ctxt->op_bytes);
3449 }
3450
em_sgdt(struct x86_emulate_ctxt * ctxt)3451 static int em_sgdt(struct x86_emulate_ctxt *ctxt)
3452 {
3453 return emulate_store_desc_ptr(ctxt, ctxt->ops->get_gdt);
3454 }
3455
em_sidt(struct x86_emulate_ctxt * ctxt)3456 static int em_sidt(struct x86_emulate_ctxt *ctxt)
3457 {
3458 return emulate_store_desc_ptr(ctxt, ctxt->ops->get_idt);
3459 }
3460
em_lgdt_lidt(struct x86_emulate_ctxt * ctxt,bool lgdt)3461 static int em_lgdt_lidt(struct x86_emulate_ctxt *ctxt, bool lgdt)
3462 {
3463 struct desc_ptr desc_ptr;
3464 int rc;
3465
3466 if (ctxt->mode == X86EMUL_MODE_PROT64)
3467 ctxt->op_bytes = 8;
3468 rc = read_descriptor(ctxt, ctxt->src.addr.mem,
3469 &desc_ptr.size, &desc_ptr.address,
3470 ctxt->op_bytes);
3471 if (rc != X86EMUL_CONTINUE)
3472 return rc;
3473 if (ctxt->mode == X86EMUL_MODE_PROT64 &&
3474 emul_is_noncanonical_address(desc_ptr.address, ctxt,
3475 X86EMUL_F_DT_LOAD))
3476 return emulate_gp(ctxt, 0);
3477 if (lgdt)
3478 ctxt->ops->set_gdt(ctxt, &desc_ptr);
3479 else
3480 ctxt->ops->set_idt(ctxt, &desc_ptr);
3481 /* Disable writeback. */
3482 ctxt->dst.type = OP_NONE;
3483 return X86EMUL_CONTINUE;
3484 }
3485
em_lgdt(struct x86_emulate_ctxt * ctxt)3486 static int em_lgdt(struct x86_emulate_ctxt *ctxt)
3487 {
3488 return em_lgdt_lidt(ctxt, true);
3489 }
3490
em_lidt(struct x86_emulate_ctxt * ctxt)3491 static int em_lidt(struct x86_emulate_ctxt *ctxt)
3492 {
3493 return em_lgdt_lidt(ctxt, false);
3494 }
3495
em_smsw(struct x86_emulate_ctxt * ctxt)3496 static int em_smsw(struct x86_emulate_ctxt *ctxt)
3497 {
3498 if ((ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) &&
3499 ctxt->ops->cpl(ctxt) > 0)
3500 return emulate_gp(ctxt, 0);
3501
3502 if (ctxt->dst.type == OP_MEM)
3503 ctxt->dst.bytes = 2;
3504 ctxt->dst.val = ctxt->ops->get_cr(ctxt, 0);
3505 return X86EMUL_CONTINUE;
3506 }
3507
em_lmsw(struct x86_emulate_ctxt * ctxt)3508 static int em_lmsw(struct x86_emulate_ctxt *ctxt)
3509 {
3510 ctxt->ops->set_cr(ctxt, 0, (ctxt->ops->get_cr(ctxt, 0) & ~0x0eul)
3511 | (ctxt->src.val & 0x0f));
3512 ctxt->dst.type = OP_NONE;
3513 return X86EMUL_CONTINUE;
3514 }
3515
em_loop(struct x86_emulate_ctxt * ctxt)3516 static int em_loop(struct x86_emulate_ctxt *ctxt)
3517 {
3518 int rc = X86EMUL_CONTINUE;
3519
3520 register_address_increment(ctxt, VCPU_REGS_RCX, -1);
3521 if ((address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) != 0) &&
3522 (ctxt->b == 0xe2 || test_cc(ctxt->b ^ 0x5, ctxt->eflags)))
3523 rc = jmp_rel(ctxt, ctxt->src.val);
3524
3525 return rc;
3526 }
3527
em_jcxz(struct x86_emulate_ctxt * ctxt)3528 static int em_jcxz(struct x86_emulate_ctxt *ctxt)
3529 {
3530 int rc = X86EMUL_CONTINUE;
3531
3532 if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0)
3533 rc = jmp_rel(ctxt, ctxt->src.val);
3534
3535 return rc;
3536 }
3537
em_in(struct x86_emulate_ctxt * ctxt)3538 static int em_in(struct x86_emulate_ctxt *ctxt)
3539 {
3540 if (!pio_in_emulated(ctxt, ctxt->dst.bytes, ctxt->src.val,
3541 &ctxt->dst.val))
3542 return X86EMUL_IO_NEEDED;
3543
3544 return X86EMUL_CONTINUE;
3545 }
3546
em_out(struct x86_emulate_ctxt * ctxt)3547 static int em_out(struct x86_emulate_ctxt *ctxt)
3548 {
3549 ctxt->ops->pio_out_emulated(ctxt, ctxt->src.bytes, ctxt->dst.val,
3550 &ctxt->src.val, 1);
3551 /* Disable writeback. */
3552 ctxt->dst.type = OP_NONE;
3553 return X86EMUL_CONTINUE;
3554 }
3555
em_cli(struct x86_emulate_ctxt * ctxt)3556 static int em_cli(struct x86_emulate_ctxt *ctxt)
3557 {
3558 if (emulator_bad_iopl(ctxt))
3559 return emulate_gp(ctxt, 0);
3560
3561 ctxt->eflags &= ~X86_EFLAGS_IF;
3562 return X86EMUL_CONTINUE;
3563 }
3564
em_sti(struct x86_emulate_ctxt * ctxt)3565 static int em_sti(struct x86_emulate_ctxt *ctxt)
3566 {
3567 if (emulator_bad_iopl(ctxt))
3568 return emulate_gp(ctxt, 0);
3569
3570 ctxt->interruptibility = KVM_X86_SHADOW_INT_STI;
3571 ctxt->eflags |= X86_EFLAGS_IF;
3572 return X86EMUL_CONTINUE;
3573 }
3574
em_cpuid(struct x86_emulate_ctxt * ctxt)3575 static int em_cpuid(struct x86_emulate_ctxt *ctxt)
3576 {
3577 u32 eax, ebx, ecx, edx;
3578 u64 msr = 0;
3579
3580 ctxt->ops->get_msr(ctxt, MSR_MISC_FEATURES_ENABLES, &msr);
3581 if (msr & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3582 ctxt->ops->cpl(ctxt)) {
3583 return emulate_gp(ctxt, 0);
3584 }
3585
3586 eax = reg_read(ctxt, VCPU_REGS_RAX);
3587 ecx = reg_read(ctxt, VCPU_REGS_RCX);
3588 ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, false);
3589 *reg_write(ctxt, VCPU_REGS_RAX) = eax;
3590 *reg_write(ctxt, VCPU_REGS_RBX) = ebx;
3591 *reg_write(ctxt, VCPU_REGS_RCX) = ecx;
3592 *reg_write(ctxt, VCPU_REGS_RDX) = edx;
3593 return X86EMUL_CONTINUE;
3594 }
3595
em_sahf(struct x86_emulate_ctxt * ctxt)3596 static int em_sahf(struct x86_emulate_ctxt *ctxt)
3597 {
3598 u32 flags;
3599
3600 flags = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
3601 X86_EFLAGS_SF;
3602 flags &= *reg_rmw(ctxt, VCPU_REGS_RAX) >> 8;
3603
3604 ctxt->eflags &= ~0xffUL;
3605 ctxt->eflags |= flags | X86_EFLAGS_FIXED;
3606 return X86EMUL_CONTINUE;
3607 }
3608
em_lahf(struct x86_emulate_ctxt * ctxt)3609 static int em_lahf(struct x86_emulate_ctxt *ctxt)
3610 {
3611 *reg_rmw(ctxt, VCPU_REGS_RAX) &= ~0xff00UL;
3612 *reg_rmw(ctxt, VCPU_REGS_RAX) |= (ctxt->eflags & 0xff) << 8;
3613 return X86EMUL_CONTINUE;
3614 }
3615
em_bswap(struct x86_emulate_ctxt * ctxt)3616 static int em_bswap(struct x86_emulate_ctxt *ctxt)
3617 {
3618 switch (ctxt->op_bytes) {
3619 #ifdef CONFIG_X86_64
3620 case 8:
3621 asm("bswap %0" : "+r"(ctxt->dst.val));
3622 break;
3623 #endif
3624 default:
3625 asm("bswap %0" : "+r"(*(u32 *)&ctxt->dst.val));
3626 break;
3627 }
3628 return X86EMUL_CONTINUE;
3629 }
3630
em_clflush(struct x86_emulate_ctxt * ctxt)3631 static int em_clflush(struct x86_emulate_ctxt *ctxt)
3632 {
3633 /* emulating clflush regardless of cpuid */
3634 return X86EMUL_CONTINUE;
3635 }
3636
em_clflushopt(struct x86_emulate_ctxt * ctxt)3637 static int em_clflushopt(struct x86_emulate_ctxt *ctxt)
3638 {
3639 /* emulating clflushopt regardless of cpuid */
3640 return X86EMUL_CONTINUE;
3641 }
3642
em_movsxd(struct x86_emulate_ctxt * ctxt)3643 static int em_movsxd(struct x86_emulate_ctxt *ctxt)
3644 {
3645 ctxt->dst.val = (s32) ctxt->src.val;
3646 return X86EMUL_CONTINUE;
3647 }
3648
check_fxsr(struct x86_emulate_ctxt * ctxt)3649 static int check_fxsr(struct x86_emulate_ctxt *ctxt)
3650 {
3651 if (!ctxt->ops->guest_has_fxsr(ctxt))
3652 return emulate_ud(ctxt);
3653
3654 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
3655 return emulate_nm(ctxt);
3656
3657 /*
3658 * Don't emulate a case that should never be hit, instead of working
3659 * around a lack of fxsave64/fxrstor64 on old compilers.
3660 */
3661 if (ctxt->mode >= X86EMUL_MODE_PROT64)
3662 return X86EMUL_UNHANDLEABLE;
3663
3664 return X86EMUL_CONTINUE;
3665 }
3666
3667 /*
3668 * Hardware doesn't save and restore XMM 0-7 without CR4.OSFXSR, but does save
3669 * and restore MXCSR.
3670 */
__fxstate_size(int nregs)3671 static size_t __fxstate_size(int nregs)
3672 {
3673 return offsetof(struct fxregs_state, xmm_space[0]) + nregs * 16;
3674 }
3675
fxstate_size(struct x86_emulate_ctxt * ctxt)3676 static inline size_t fxstate_size(struct x86_emulate_ctxt *ctxt)
3677 {
3678 bool cr4_osfxsr;
3679 if (ctxt->mode == X86EMUL_MODE_PROT64)
3680 return __fxstate_size(16);
3681
3682 cr4_osfxsr = ctxt->ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR;
3683 return __fxstate_size(cr4_osfxsr ? 8 : 0);
3684 }
3685
3686 /*
3687 * FXSAVE and FXRSTOR have 4 different formats depending on execution mode,
3688 * 1) 16 bit mode
3689 * 2) 32 bit mode
3690 * - like (1), but FIP and FDP (foo) are only 16 bit. At least Intel CPUs
3691 * preserve whole 32 bit values, though, so (1) and (2) are the same wrt.
3692 * save and restore
3693 * 3) 64-bit mode with REX.W prefix
3694 * - like (2), but XMM 8-15 are being saved and restored
3695 * 4) 64-bit mode without REX.W prefix
3696 * - like (3), but FIP and FDP are 64 bit
3697 *
3698 * Emulation uses (3) for (1) and (2) and preserves XMM 8-15 to reach the
3699 * desired result. (4) is not emulated.
3700 *
3701 * Note: Guest and host CPUID.(EAX=07H,ECX=0H):EBX[bit 13] (deprecate FPU CS
3702 * and FPU DS) should match.
3703 */
em_fxsave(struct x86_emulate_ctxt * ctxt)3704 static int em_fxsave(struct x86_emulate_ctxt *ctxt)
3705 {
3706 struct fxregs_state fx_state;
3707 int rc;
3708
3709 rc = check_fxsr(ctxt);
3710 if (rc != X86EMUL_CONTINUE)
3711 return rc;
3712
3713 kvm_fpu_get();
3714
3715 rc = asm_safe("fxsave %[fx]", , [fx] "+m"(fx_state));
3716
3717 kvm_fpu_put();
3718
3719 if (rc != X86EMUL_CONTINUE)
3720 return rc;
3721
3722 return segmented_write_std(ctxt, ctxt->memop.addr.mem, &fx_state,
3723 fxstate_size(ctxt));
3724 }
3725
3726 /*
3727 * FXRSTOR might restore XMM registers not provided by the guest. Fill
3728 * in the host registers (via FXSAVE) instead, so they won't be modified.
3729 * (preemption has to stay disabled until FXRSTOR).
3730 *
3731 * Use noinline to keep the stack for other functions called by callers small.
3732 */
fxregs_fixup(struct fxregs_state * fx_state,const size_t used_size)3733 static noinline int fxregs_fixup(struct fxregs_state *fx_state,
3734 const size_t used_size)
3735 {
3736 struct fxregs_state fx_tmp;
3737 int rc;
3738
3739 rc = asm_safe("fxsave %[fx]", , [fx] "+m"(fx_tmp));
3740 memcpy((void *)fx_state + used_size, (void *)&fx_tmp + used_size,
3741 __fxstate_size(16) - used_size);
3742
3743 return rc;
3744 }
3745
em_fxrstor(struct x86_emulate_ctxt * ctxt)3746 static int em_fxrstor(struct x86_emulate_ctxt *ctxt)
3747 {
3748 struct fxregs_state fx_state;
3749 int rc;
3750 size_t size;
3751
3752 rc = check_fxsr(ctxt);
3753 if (rc != X86EMUL_CONTINUE)
3754 return rc;
3755
3756 size = fxstate_size(ctxt);
3757 rc = segmented_read_std(ctxt, ctxt->memop.addr.mem, &fx_state, size);
3758 if (rc != X86EMUL_CONTINUE)
3759 return rc;
3760
3761 kvm_fpu_get();
3762
3763 if (size < __fxstate_size(16)) {
3764 rc = fxregs_fixup(&fx_state, size);
3765 if (rc != X86EMUL_CONTINUE)
3766 goto out;
3767 }
3768
3769 if (fx_state.mxcsr >> 16) {
3770 rc = emulate_gp(ctxt, 0);
3771 goto out;
3772 }
3773
3774 if (rc == X86EMUL_CONTINUE)
3775 rc = asm_safe("fxrstor %[fx]", : [fx] "m"(fx_state));
3776
3777 out:
3778 kvm_fpu_put();
3779
3780 return rc;
3781 }
3782
em_xsetbv(struct x86_emulate_ctxt * ctxt)3783 static int em_xsetbv(struct x86_emulate_ctxt *ctxt)
3784 {
3785 u32 eax, ecx, edx;
3786
3787 if (!(ctxt->ops->get_cr(ctxt, 4) & X86_CR4_OSXSAVE))
3788 return emulate_ud(ctxt);
3789
3790 eax = reg_read(ctxt, VCPU_REGS_RAX);
3791 edx = reg_read(ctxt, VCPU_REGS_RDX);
3792 ecx = reg_read(ctxt, VCPU_REGS_RCX);
3793
3794 if (ctxt->ops->set_xcr(ctxt, ecx, ((u64)edx << 32) | eax))
3795 return emulate_gp(ctxt, 0);
3796
3797 return X86EMUL_CONTINUE;
3798 }
3799
valid_cr(int nr)3800 static bool valid_cr(int nr)
3801 {
3802 switch (nr) {
3803 case 0:
3804 case 2 ... 4:
3805 case 8:
3806 return true;
3807 default:
3808 return false;
3809 }
3810 }
3811
check_cr_access(struct x86_emulate_ctxt * ctxt)3812 static int check_cr_access(struct x86_emulate_ctxt *ctxt)
3813 {
3814 if (!valid_cr(ctxt->modrm_reg))
3815 return emulate_ud(ctxt);
3816
3817 return X86EMUL_CONTINUE;
3818 }
3819
check_dr_read(struct x86_emulate_ctxt * ctxt)3820 static int check_dr_read(struct x86_emulate_ctxt *ctxt)
3821 {
3822 int dr = ctxt->modrm_reg;
3823 u64 cr4;
3824
3825 if (dr > 7)
3826 return emulate_ud(ctxt);
3827
3828 cr4 = ctxt->ops->get_cr(ctxt, 4);
3829 if ((cr4 & X86_CR4_DE) && (dr == 4 || dr == 5))
3830 return emulate_ud(ctxt);
3831
3832 if (ctxt->ops->get_dr(ctxt, 7) & DR7_GD) {
3833 ulong dr6;
3834
3835 dr6 = ctxt->ops->get_dr(ctxt, 6);
3836 dr6 &= ~DR_TRAP_BITS;
3837 dr6 |= DR6_BD | DR6_ACTIVE_LOW;
3838 ctxt->ops->set_dr(ctxt, 6, dr6);
3839 return emulate_db(ctxt);
3840 }
3841
3842 return X86EMUL_CONTINUE;
3843 }
3844
check_dr_write(struct x86_emulate_ctxt * ctxt)3845 static int check_dr_write(struct x86_emulate_ctxt *ctxt)
3846 {
3847 u64 new_val = ctxt->src.val64;
3848 int dr = ctxt->modrm_reg;
3849
3850 if ((dr == 6 || dr == 7) && (new_val & 0xffffffff00000000ULL))
3851 return emulate_gp(ctxt, 0);
3852
3853 return check_dr_read(ctxt);
3854 }
3855
check_svme(struct x86_emulate_ctxt * ctxt)3856 static int check_svme(struct x86_emulate_ctxt *ctxt)
3857 {
3858 u64 efer = 0;
3859
3860 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
3861
3862 if (!(efer & EFER_SVME))
3863 return emulate_ud(ctxt);
3864
3865 return X86EMUL_CONTINUE;
3866 }
3867
check_svme_pa(struct x86_emulate_ctxt * ctxt)3868 static int check_svme_pa(struct x86_emulate_ctxt *ctxt)
3869 {
3870 u64 rax = reg_read(ctxt, VCPU_REGS_RAX);
3871
3872 /* Valid physical address? */
3873 if (rax & 0xffff000000000000ULL)
3874 return emulate_gp(ctxt, 0);
3875
3876 return check_svme(ctxt);
3877 }
3878
check_rdtsc(struct x86_emulate_ctxt * ctxt)3879 static int check_rdtsc(struct x86_emulate_ctxt *ctxt)
3880 {
3881 u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
3882
3883 if (cr4 & X86_CR4_TSD && ctxt->ops->cpl(ctxt))
3884 return emulate_gp(ctxt, 0);
3885
3886 return X86EMUL_CONTINUE;
3887 }
3888
check_rdpmc(struct x86_emulate_ctxt * ctxt)3889 static int check_rdpmc(struct x86_emulate_ctxt *ctxt)
3890 {
3891 u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
3892 u64 rcx = reg_read(ctxt, VCPU_REGS_RCX);
3893
3894 /*
3895 * VMware allows access to these Pseduo-PMCs even when read via RDPMC
3896 * in Ring3 when CR4.PCE=0.
3897 */
3898 if (enable_vmware_backdoor && is_vmware_backdoor_pmc(rcx))
3899 return X86EMUL_CONTINUE;
3900
3901 /*
3902 * If CR4.PCE is set, the SDM requires CPL=0 or CR0.PE=0. The CR0.PE
3903 * check however is unnecessary because CPL is always 0 outside
3904 * protected mode.
3905 */
3906 if ((!(cr4 & X86_CR4_PCE) && ctxt->ops->cpl(ctxt)) ||
3907 ctxt->ops->check_rdpmc_early(ctxt, rcx))
3908 return emulate_gp(ctxt, 0);
3909
3910 return X86EMUL_CONTINUE;
3911 }
3912
check_perm_in(struct x86_emulate_ctxt * ctxt)3913 static int check_perm_in(struct x86_emulate_ctxt *ctxt)
3914 {
3915 ctxt->dst.bytes = min(ctxt->dst.bytes, 4u);
3916 if (!emulator_io_permitted(ctxt, ctxt->src.val, ctxt->dst.bytes))
3917 return emulate_gp(ctxt, 0);
3918
3919 return X86EMUL_CONTINUE;
3920 }
3921
check_perm_out(struct x86_emulate_ctxt * ctxt)3922 static int check_perm_out(struct x86_emulate_ctxt *ctxt)
3923 {
3924 ctxt->src.bytes = min(ctxt->src.bytes, 4u);
3925 if (!emulator_io_permitted(ctxt, ctxt->dst.val, ctxt->src.bytes))
3926 return emulate_gp(ctxt, 0);
3927
3928 return X86EMUL_CONTINUE;
3929 }
3930
3931 #define D(_y) { .flags = (_y) }
3932 #define DI(_y, _i) { .flags = (_y)|Intercept, .intercept = x86_intercept_##_i }
3933 #define DIP(_y, _i, _p) { .flags = (_y)|Intercept|CheckPerm, \
3934 .intercept = x86_intercept_##_i, .check_perm = (_p) }
3935 #define N D(NotImpl)
3936 #define EXT(_f, _e) { .flags = ((_f) | RMExt), .u.group = (_e) }
3937 #define G(_f, _g) { .flags = ((_f) | Group | ModRM), .u.group = (_g) }
3938 #define GD(_f, _g) { .flags = ((_f) | GroupDual | ModRM), .u.gdual = (_g) }
3939 #define ID(_f, _i) { .flags = ((_f) | InstrDual | ModRM), .u.idual = (_i) }
3940 #define MD(_f, _m) { .flags = ((_f) | ModeDual), .u.mdual = (_m) }
3941 #define E(_f, _e) { .flags = ((_f) | Escape | ModRM), .u.esc = (_e) }
3942 #define I(_f, _e) { .flags = (_f), .u.execute = (_e) }
3943 #define II(_f, _e, _i) \
3944 { .flags = (_f)|Intercept, .u.execute = (_e), .intercept = x86_intercept_##_i }
3945 #define IIP(_f, _e, _i, _p) \
3946 { .flags = (_f)|Intercept|CheckPerm, .u.execute = (_e), \
3947 .intercept = x86_intercept_##_i, .check_perm = (_p) }
3948 #define GP(_f, _g) { .flags = ((_f) | Prefix), .u.gprefix = (_g) }
3949
3950 #define D2bv(_f) D((_f) | ByteOp), D(_f)
3951 #define D2bvIP(_f, _i, _p) DIP((_f) | ByteOp, _i, _p), DIP(_f, _i, _p)
3952 #define I2bv(_f, _e) I((_f) | ByteOp, _e), I(_f, _e)
3953 #define F2bv(_f, _e) F((_f) | ByteOp, _e), F(_f, _e)
3954 #define I2bvIP(_f, _e, _i, _p) \
3955 IIP((_f) | ByteOp, _e, _i, _p), IIP(_f, _e, _i, _p)
3956
3957 #define I6ALU(_f, _e) I2bv((_f) | DstMem | SrcReg | ModRM, _e), \
3958 I2bv(((_f) | DstReg | SrcMem | ModRM) & ~Lock, _e), \
3959 I2bv(((_f) & ~Lock) | DstAcc | SrcImm, _e)
3960
3961 static const struct opcode group7_rm0[] = {
3962 N,
3963 I(SrcNone | Priv | EmulateOnUD, em_hypercall),
3964 N, N, N, N, N, N,
3965 };
3966
3967 static const struct opcode group7_rm1[] = {
3968 DI(SrcNone | Priv, monitor),
3969 DI(SrcNone | Priv, mwait),
3970 N, N, N, N, N, N,
3971 };
3972
3973 static const struct opcode group7_rm2[] = {
3974 N,
3975 II(ImplicitOps | Priv, em_xsetbv, xsetbv),
3976 N, N, N, N, N, N,
3977 };
3978
3979 static const struct opcode group7_rm3[] = {
3980 DIP(SrcNone | Prot | Priv, vmrun, check_svme_pa),
3981 II(SrcNone | Prot | EmulateOnUD, em_hypercall, vmmcall),
3982 DIP(SrcNone | Prot | Priv, vmload, check_svme_pa),
3983 DIP(SrcNone | Prot | Priv, vmsave, check_svme_pa),
3984 DIP(SrcNone | Prot | Priv, stgi, check_svme),
3985 DIP(SrcNone | Prot | Priv, clgi, check_svme),
3986 DIP(SrcNone | Prot | Priv, skinit, check_svme),
3987 DIP(SrcNone | Prot | Priv, invlpga, check_svme),
3988 };
3989
3990 static const struct opcode group7_rm7[] = {
3991 N,
3992 DIP(SrcNone, rdtscp, check_rdtsc),
3993 N, N, N, N, N, N,
3994 };
3995
3996 static const struct opcode group1[] = {
3997 I(Lock, em_add),
3998 I(Lock | PageTable, em_or),
3999 I(Lock, em_adc),
4000 I(Lock, em_sbb),
4001 I(Lock | PageTable, em_and),
4002 I(Lock, em_sub),
4003 I(Lock, em_xor),
4004 I(NoWrite, em_cmp),
4005 };
4006
4007 static const struct opcode group1A[] = {
4008 I(DstMem | SrcNone | Mov | Stack | IncSP | TwoMemOp, em_pop), N, N, N, N, N, N, N,
4009 };
4010
4011 static const struct opcode group2[] = {
4012 I(DstMem | ModRM, em_rol),
4013 I(DstMem | ModRM, em_ror),
4014 I(DstMem | ModRM, em_rcl),
4015 I(DstMem | ModRM, em_rcr),
4016 I(DstMem | ModRM, em_shl),
4017 I(DstMem | ModRM, em_shr),
4018 I(DstMem | ModRM, em_shl),
4019 I(DstMem | ModRM, em_sar),
4020 };
4021
4022 static const struct opcode group3[] = {
4023 I(DstMem | SrcImm | NoWrite, em_test),
4024 I(DstMem | SrcImm | NoWrite, em_test),
4025 I(DstMem | SrcNone | Lock, em_not),
4026 I(DstMem | SrcNone | Lock, em_neg),
4027 I(DstXacc | Src2Mem, em_mul_ex),
4028 I(DstXacc | Src2Mem, em_imul_ex),
4029 I(DstXacc | Src2Mem, em_div_ex),
4030 I(DstXacc | Src2Mem, em_idiv_ex),
4031 };
4032
4033 static const struct opcode group4[] = {
4034 I(ByteOp | DstMem | SrcNone | Lock, em_inc),
4035 I(ByteOp | DstMem | SrcNone | Lock, em_dec),
4036 N, N, N, N, N, N,
4037 };
4038
4039 static const struct opcode group5[] = {
4040 I(DstMem | SrcNone | Lock, em_inc),
4041 I(DstMem | SrcNone | Lock, em_dec),
4042 I(SrcMem | NearBranch | IsBranch | ShadowStack, em_call_near_abs),
4043 I(SrcMemFAddr | ImplicitOps | IsBranch | ShadowStack, em_call_far),
4044 I(SrcMem | NearBranch | IsBranch, em_jmp_abs),
4045 I(SrcMemFAddr | ImplicitOps | IsBranch, em_jmp_far),
4046 I(SrcMem | Stack | TwoMemOp, em_push), D(Undefined),
4047 };
4048
4049 static const struct opcode group6[] = {
4050 II(Prot | DstMem, em_sldt, sldt),
4051 II(Prot | DstMem, em_str, str),
4052 II(Prot | Priv | SrcMem16, em_lldt, lldt),
4053 II(Prot | Priv | SrcMem16, em_ltr, ltr),
4054 N, N, N, N,
4055 };
4056
4057 static const struct group_dual group7 = { {
4058 II(Mov | DstMem, em_sgdt, sgdt),
4059 II(Mov | DstMem, em_sidt, sidt),
4060 II(SrcMem | Priv, em_lgdt, lgdt),
4061 II(SrcMem | Priv, em_lidt, lidt),
4062 II(SrcNone | DstMem | Mov, em_smsw, smsw), N,
4063 II(SrcMem16 | Mov | Priv, em_lmsw, lmsw),
4064 II(SrcMem | ByteOp | Priv | NoAccess, em_invlpg, invlpg),
4065 }, {
4066 EXT(0, group7_rm0),
4067 EXT(0, group7_rm1),
4068 EXT(0, group7_rm2),
4069 EXT(0, group7_rm3),
4070 II(SrcNone | DstMem | Mov, em_smsw, smsw), N,
4071 II(SrcMem16 | Mov | Priv, em_lmsw, lmsw),
4072 EXT(0, group7_rm7),
4073 } };
4074
4075 static const struct opcode group8[] = {
4076 N, N, N, N,
4077 I(DstMem | SrcImmByte | NoWrite, em_bt),
4078 I(DstMem | SrcImmByte | Lock | PageTable, em_bts),
4079 I(DstMem | SrcImmByte | Lock, em_btr),
4080 I(DstMem | SrcImmByte | Lock | PageTable, em_btc),
4081 };
4082
4083 /*
4084 * The "memory" destination is actually always a register, since we come
4085 * from the register case of group9.
4086 */
4087 static const struct gprefix pfx_0f_c7_7 = {
4088 N, N, N, II(DstMem | ModRM | Op3264 | EmulateOnUD, em_rdpid, rdpid),
4089 };
4090
4091
4092 static const struct group_dual group9 = { {
4093 N, I(DstMem64 | Lock | PageTable, em_cmpxchg8b), N, N, N, N, N, N,
4094 }, {
4095 N, N, N, N, N, N, N,
4096 GP(0, &pfx_0f_c7_7),
4097 } };
4098
4099 static const struct opcode group11[] = {
4100 I(DstMem | SrcImm | Mov | PageTable, em_mov),
4101 X7(D(Undefined)),
4102 };
4103
4104 static const struct gprefix pfx_0f_ae_7 = {
4105 I(SrcMem | ByteOp, em_clflush), I(SrcMem | ByteOp, em_clflushopt), N, N,
4106 };
4107
4108 static const struct group_dual group15 = { {
4109 I(ModRM | Aligned16, em_fxsave),
4110 I(ModRM | Aligned16, em_fxrstor),
4111 N, N, N, N, N, GP(0, &pfx_0f_ae_7),
4112 }, {
4113 N, N, N, N, N, N, N, N,
4114 } };
4115
4116 static const struct gprefix pfx_0f_6f_0f_7f = {
4117 I(Mmx, em_mov), I(Sse | Aligned, em_mov), N, I(Sse | Unaligned, em_mov),
4118 };
4119
4120 static const struct instr_dual instr_dual_0f_2b = {
4121 I(0, em_mov), N
4122 };
4123
4124 static const struct gprefix pfx_0f_2b = {
4125 ID(0, &instr_dual_0f_2b), ID(0, &instr_dual_0f_2b), N, N,
4126 };
4127
4128 static const struct gprefix pfx_0f_10_0f_11 = {
4129 I(Unaligned, em_mov), I(Unaligned, em_mov), N, N,
4130 };
4131
4132 static const struct gprefix pfx_0f_28_0f_29 = {
4133 I(Aligned, em_mov), I(Aligned, em_mov), N, N,
4134 };
4135
4136 static const struct gprefix pfx_0f_e7 = {
4137 N, I(Sse, em_mov), N, N,
4138 };
4139
4140 static const struct escape escape_d9 = { {
4141 N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstcw),
4142 }, {
4143 /* 0xC0 - 0xC7 */
4144 N, N, N, N, N, N, N, N,
4145 /* 0xC8 - 0xCF */
4146 N, N, N, N, N, N, N, N,
4147 /* 0xD0 - 0xC7 */
4148 N, N, N, N, N, N, N, N,
4149 /* 0xD8 - 0xDF */
4150 N, N, N, N, N, N, N, N,
4151 /* 0xE0 - 0xE7 */
4152 N, N, N, N, N, N, N, N,
4153 /* 0xE8 - 0xEF */
4154 N, N, N, N, N, N, N, N,
4155 /* 0xF0 - 0xF7 */
4156 N, N, N, N, N, N, N, N,
4157 /* 0xF8 - 0xFF */
4158 N, N, N, N, N, N, N, N,
4159 } };
4160
4161 static const struct escape escape_db = { {
4162 N, N, N, N, N, N, N, N,
4163 }, {
4164 /* 0xC0 - 0xC7 */
4165 N, N, N, N, N, N, N, N,
4166 /* 0xC8 - 0xCF */
4167 N, N, N, N, N, N, N, N,
4168 /* 0xD0 - 0xC7 */
4169 N, N, N, N, N, N, N, N,
4170 /* 0xD8 - 0xDF */
4171 N, N, N, N, N, N, N, N,
4172 /* 0xE0 - 0xE7 */
4173 N, N, N, I(ImplicitOps, em_fninit), N, N, N, N,
4174 /* 0xE8 - 0xEF */
4175 N, N, N, N, N, N, N, N,
4176 /* 0xF0 - 0xF7 */
4177 N, N, N, N, N, N, N, N,
4178 /* 0xF8 - 0xFF */
4179 N, N, N, N, N, N, N, N,
4180 } };
4181
4182 static const struct escape escape_dd = { {
4183 N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstsw),
4184 }, {
4185 /* 0xC0 - 0xC7 */
4186 N, N, N, N, N, N, N, N,
4187 /* 0xC8 - 0xCF */
4188 N, N, N, N, N, N, N, N,
4189 /* 0xD0 - 0xC7 */
4190 N, N, N, N, N, N, N, N,
4191 /* 0xD8 - 0xDF */
4192 N, N, N, N, N, N, N, N,
4193 /* 0xE0 - 0xE7 */
4194 N, N, N, N, N, N, N, N,
4195 /* 0xE8 - 0xEF */
4196 N, N, N, N, N, N, N, N,
4197 /* 0xF0 - 0xF7 */
4198 N, N, N, N, N, N, N, N,
4199 /* 0xF8 - 0xFF */
4200 N, N, N, N, N, N, N, N,
4201 } };
4202
4203 static const struct instr_dual instr_dual_0f_c3 = {
4204 I(DstMem | SrcReg | ModRM | No16 | Mov, em_mov), N
4205 };
4206
4207 static const struct mode_dual mode_dual_63 = {
4208 N, I(DstReg | SrcMem32 | ModRM | Mov, em_movsxd)
4209 };
4210
4211 static const struct instr_dual instr_dual_8d = {
4212 D(DstReg | SrcMem | ModRM | NoAccess), N
4213 };
4214
4215 static const struct opcode opcode_table[256] = {
4216 /* 0x00 - 0x07 */
4217 I6ALU(Lock, em_add),
4218 I(ImplicitOps | Stack | No64 | Src2ES, em_push_sreg),
4219 I(ImplicitOps | Stack | No64 | Src2ES, em_pop_sreg),
4220 /* 0x08 - 0x0F */
4221 I6ALU(Lock | PageTable, em_or),
4222 I(ImplicitOps | Stack | No64 | Src2CS, em_push_sreg),
4223 N,
4224 /* 0x10 - 0x17 */
4225 I6ALU(Lock, em_adc),
4226 I(ImplicitOps | Stack | No64 | Src2SS, em_push_sreg),
4227 I(ImplicitOps | Stack | No64 | Src2SS, em_pop_sreg),
4228 /* 0x18 - 0x1F */
4229 I6ALU(Lock, em_sbb),
4230 I(ImplicitOps | Stack | No64 | Src2DS, em_push_sreg),
4231 I(ImplicitOps | Stack | No64 | Src2DS, em_pop_sreg),
4232 /* 0x20 - 0x27 */
4233 I6ALU(Lock | PageTable, em_and), N, N,
4234 /* 0x28 - 0x2F */
4235 I6ALU(Lock, em_sub), N, I(ByteOp | DstAcc | No64, em_das),
4236 /* 0x30 - 0x37 */
4237 I6ALU(Lock, em_xor), N, N,
4238 /* 0x38 - 0x3F */
4239 I6ALU(NoWrite, em_cmp), N, N,
4240 /* 0x40 - 0x4F */
4241 X8(I(DstReg, em_inc)), X8(I(DstReg, em_dec)),
4242 /* 0x50 - 0x57 */
4243 X8(I(SrcReg | Stack, em_push)),
4244 /* 0x58 - 0x5F */
4245 X8(I(DstReg | Stack, em_pop)),
4246 /* 0x60 - 0x67 */
4247 I(ImplicitOps | Stack | No64, em_pusha),
4248 I(ImplicitOps | Stack | No64, em_popa),
4249 N, MD(ModRM, &mode_dual_63),
4250 N, N, N, N,
4251 /* 0x68 - 0x6F */
4252 I(SrcImm | Mov | Stack, em_push),
4253 I(DstReg | SrcMem | ModRM | Src2Imm, em_imul_3op),
4254 I(SrcImmByte | Mov | Stack, em_push),
4255 I(DstReg | SrcMem | ModRM | Src2ImmByte, em_imul_3op),
4256 I2bvIP(DstDI | SrcDX | Mov | String | Unaligned, em_in, ins, check_perm_in), /* insb, insw/insd */
4257 I2bvIP(SrcSI | DstDX | String, em_out, outs, check_perm_out), /* outsb, outsw/outsd */
4258 /* 0x70 - 0x7F */
4259 X16(D(SrcImmByte | NearBranch | IsBranch)),
4260 /* 0x80 - 0x87 */
4261 G(ByteOp | DstMem | SrcImm, group1),
4262 G(DstMem | SrcImm, group1),
4263 G(ByteOp | DstMem | SrcImm | No64, group1),
4264 G(DstMem | SrcImmByte, group1),
4265 I2bv(DstMem | SrcReg | ModRM | NoWrite, em_test),
4266 I2bv(DstMem | SrcReg | ModRM | Lock | PageTable, em_xchg),
4267 /* 0x88 - 0x8F */
4268 I2bv(DstMem | SrcReg | ModRM | Mov | PageTable, em_mov),
4269 I2bv(DstReg | SrcMem | ModRM | Mov, em_mov),
4270 I(DstMem | SrcNone | ModRM | Mov | PageTable, em_mov_rm_sreg),
4271 ID(0, &instr_dual_8d),
4272 I(ImplicitOps | SrcMem16 | ModRM, em_mov_sreg_rm),
4273 G(0, group1A),
4274 /* 0x90 - 0x97 */
4275 DI(SrcAcc | DstReg, pause), X7(D(SrcAcc | DstReg)),
4276 /* 0x98 - 0x9F */
4277 D(DstAcc | SrcNone), I(ImplicitOps | SrcAcc, em_cwd),
4278 I(SrcImmFAddr | No64 | IsBranch | ShadowStack, em_call_far), N,
4279 II(ImplicitOps | Stack, em_pushf, pushf),
4280 II(ImplicitOps | Stack, em_popf, popf),
4281 I(ImplicitOps, em_sahf), I(ImplicitOps, em_lahf),
4282 /* 0xA0 - 0xA7 */
4283 I2bv(DstAcc | SrcMem | Mov | MemAbs, em_mov),
4284 I2bv(DstMem | SrcAcc | Mov | MemAbs | PageTable, em_mov),
4285 I2bv(SrcSI | DstDI | Mov | String | TwoMemOp, em_mov),
4286 I2bv(SrcSI | DstDI | String | NoWrite | TwoMemOp, em_cmp_r),
4287 /* 0xA8 - 0xAF */
4288 I2bv(DstAcc | SrcImm | NoWrite, em_test),
4289 I2bv(SrcAcc | DstDI | Mov | String, em_mov),
4290 I2bv(SrcSI | DstAcc | Mov | String, em_mov),
4291 I2bv(SrcAcc | DstDI | String | NoWrite, em_cmp_r),
4292 /* 0xB0 - 0xB7 */
4293 X8(I(ByteOp | DstReg | SrcImm | Mov, em_mov)),
4294 /* 0xB8 - 0xBF */
4295 X8(I(DstReg | SrcImm64 | Mov, em_mov)),
4296 /* 0xC0 - 0xC7 */
4297 G(ByteOp | Src2ImmByte, group2), G(Src2ImmByte, group2),
4298 I(ImplicitOps | NearBranch | SrcImmU16 | IsBranch | ShadowStack, em_ret_near_imm),
4299 I(ImplicitOps | NearBranch | IsBranch | ShadowStack, em_ret),
4300 I(DstReg | SrcMemFAddr | ModRM | No64 | Src2ES, em_lseg),
4301 I(DstReg | SrcMemFAddr | ModRM | No64 | Src2DS, em_lseg),
4302 G(ByteOp, group11), G(0, group11),
4303 /* 0xC8 - 0xCF */
4304 I(Stack | SrcImmU16 | Src2ImmByte, em_enter),
4305 I(Stack, em_leave),
4306 I(ImplicitOps | SrcImmU16 | IsBranch | ShadowStack, em_ret_far_imm),
4307 I(ImplicitOps | IsBranch | ShadowStack, em_ret_far),
4308 D(ImplicitOps | IsBranch), DI(SrcImmByte | IsBranch | ShadowStack, intn),
4309 D(ImplicitOps | No64 | IsBranch),
4310 II(ImplicitOps | IsBranch | ShadowStack, em_iret, iret),
4311 /* 0xD0 - 0xD7 */
4312 G(Src2One | ByteOp, group2), G(Src2One, group2),
4313 G(Src2CL | ByteOp, group2), G(Src2CL, group2),
4314 I(DstAcc | SrcImmUByte | No64, em_aam),
4315 I(DstAcc | SrcImmUByte | No64, em_aad),
4316 I(DstAcc | ByteOp | No64, em_salc),
4317 I(DstAcc | SrcXLat | ByteOp, em_mov),
4318 /* 0xD8 - 0xDF */
4319 N, E(0, &escape_d9), N, E(0, &escape_db), N, E(0, &escape_dd), N, N,
4320 /* 0xE0 - 0xE7 */
4321 X3(I(SrcImmByte | NearBranch | IsBranch, em_loop)),
4322 I(SrcImmByte | NearBranch | IsBranch, em_jcxz),
4323 I2bvIP(SrcImmUByte | DstAcc, em_in, in, check_perm_in),
4324 I2bvIP(SrcAcc | DstImmUByte, em_out, out, check_perm_out),
4325 /* 0xE8 - 0xEF */
4326 I(SrcImm | NearBranch | IsBranch | ShadowStack, em_call),
4327 D(SrcImm | ImplicitOps | NearBranch | IsBranch),
4328 I(SrcImmFAddr | No64 | IsBranch, em_jmp_far),
4329 D(SrcImmByte | ImplicitOps | NearBranch | IsBranch),
4330 I2bvIP(SrcDX | DstAcc, em_in, in, check_perm_in),
4331 I2bvIP(SrcAcc | DstDX, em_out, out, check_perm_out),
4332 /* 0xF0 - 0xF7 */
4333 N, DI(ImplicitOps, icebp), N, N,
4334 DI(ImplicitOps | Priv, hlt), D(ImplicitOps),
4335 G(ByteOp, group3), G(0, group3),
4336 /* 0xF8 - 0xFF */
4337 D(ImplicitOps), D(ImplicitOps),
4338 I(ImplicitOps, em_cli), I(ImplicitOps, em_sti),
4339 D(ImplicitOps), D(ImplicitOps), G(0, group4), G(0, group5),
4340 };
4341
4342 static const struct opcode twobyte_table[256] = {
4343 /* 0x00 - 0x0F */
4344 G(0, group6), GD(0, &group7), N, N,
4345 N, I(ImplicitOps | EmulateOnUD | IsBranch | ShadowStack, em_syscall),
4346 II(ImplicitOps | Priv, em_clts, clts), N,
4347 DI(ImplicitOps | Priv, invd), DI(ImplicitOps | Priv, wbinvd), N, N,
4348 N, D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N,
4349 /* 0x10 - 0x1F */
4350 GP(ModRM | DstReg | SrcMem | Mov | Sse, &pfx_0f_10_0f_11),
4351 GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_10_0f_11),
4352 N, N, N, N, N, N,
4353 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 4 * prefetch + 4 * reserved NOP */
4354 D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N,
4355 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */
4356 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */
4357 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */
4358 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* NOP + 7 * reserved NOP */
4359 /* 0x20 - 0x2F */
4360 DIP(ModRM | DstMem | Priv | Op3264 | NoMod, cr_read, check_cr_access),
4361 DIP(ModRM | DstMem | Priv | Op3264 | NoMod, dr_read, check_dr_read),
4362 IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_cr_write, cr_write,
4363 check_cr_access),
4364 IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_dr_write, dr_write,
4365 check_dr_write),
4366 N, N, N, N,
4367 GP(ModRM | DstReg | SrcMem | Mov | Sse, &pfx_0f_28_0f_29),
4368 GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_28_0f_29),
4369 N, GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_2b),
4370 N, N, N, N,
4371 /* 0x30 - 0x3F */
4372 II(ImplicitOps | Priv, em_wrmsr, wrmsr),
4373 IIP(ImplicitOps, em_rdtsc, rdtsc, check_rdtsc),
4374 II(ImplicitOps | Priv, em_rdmsr, rdmsr),
4375 IIP(ImplicitOps, em_rdpmc, rdpmc, check_rdpmc),
4376 I(ImplicitOps | EmulateOnUD | IsBranch | ShadowStack, em_sysenter),
4377 I(ImplicitOps | Priv | EmulateOnUD | IsBranch | ShadowStack, em_sysexit),
4378 N, N,
4379 N, N, N, N, N, N, N, N,
4380 /* 0x40 - 0x4F */
4381 X16(D(DstReg | SrcMem | ModRM)),
4382 /* 0x50 - 0x5F */
4383 N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
4384 /* 0x60 - 0x6F */
4385 N, N, N, N,
4386 N, N, N, N,
4387 N, N, N, N,
4388 N, N, N, GP(SrcMem | DstReg | ModRM | Mov, &pfx_0f_6f_0f_7f),
4389 /* 0x70 - 0x7F */
4390 N, N, N, N,
4391 N, N, N, N,
4392 N, N, N, N,
4393 N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_6f_0f_7f),
4394 /* 0x80 - 0x8F */
4395 X16(D(SrcImm | NearBranch | IsBranch)),
4396 /* 0x90 - 0x9F */
4397 X16(D(ByteOp | DstMem | SrcNone | ModRM| Mov)),
4398 /* 0xA0 - 0xA7 */
4399 I(Stack | Src2FS, em_push_sreg), I(Stack | Src2FS, em_pop_sreg),
4400 II(ImplicitOps, em_cpuid, cpuid),
4401 I(DstMem | SrcReg | ModRM | BitOp | NoWrite, em_bt),
4402 I(DstMem | SrcReg | Src2ImmByte | ModRM, em_shld),
4403 I(DstMem | SrcReg | Src2CL | ModRM, em_shld), N, N,
4404 /* 0xA8 - 0xAF */
4405 I(Stack | Src2GS, em_push_sreg), I(Stack | Src2GS, em_pop_sreg),
4406 II(EmulateOnUD | ImplicitOps, em_rsm, rsm),
4407 I(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_bts),
4408 I(DstMem | SrcReg | Src2ImmByte | ModRM, em_shrd),
4409 I(DstMem | SrcReg | Src2CL | ModRM, em_shrd),
4410 GD(0, &group15), I(DstReg | SrcMem | ModRM, em_imul),
4411 /* 0xB0 - 0xB7 */
4412 I2bv(DstMem | SrcReg | ModRM | Lock | PageTable | SrcWrite, em_cmpxchg),
4413 I(DstReg | SrcMemFAddr | ModRM | Src2SS, em_lseg),
4414 I(DstMem | SrcReg | ModRM | BitOp | Lock, em_btr),
4415 I(DstReg | SrcMemFAddr | ModRM | Src2FS, em_lseg),
4416 I(DstReg | SrcMemFAddr | ModRM | Src2GS, em_lseg),
4417 D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
4418 /* 0xB8 - 0xBF */
4419 N, N,
4420 G(BitOp, group8),
4421 I(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_btc),
4422 I(DstReg | SrcMem | ModRM, em_bsf_c),
4423 I(DstReg | SrcMem | ModRM, em_bsr_c),
4424 D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
4425 /* 0xC0 - 0xC7 */
4426 I2bv(DstMem | SrcReg | ModRM | SrcWrite | Lock, em_xadd),
4427 N, ID(0, &instr_dual_0f_c3),
4428 N, N, N, GD(0, &group9),
4429 /* 0xC8 - 0xCF */
4430 X8(I(DstReg, em_bswap)),
4431 /* 0xD0 - 0xDF */
4432 N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
4433 /* 0xE0 - 0xEF */
4434 N, N, N, N, N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_e7),
4435 N, N, N, N, N, N, N, N,
4436 /* 0xF0 - 0xFF */
4437 N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N
4438 };
4439
4440 static const struct instr_dual instr_dual_0f_38_f0 = {
4441 I(DstReg | SrcMem | Mov, em_movbe), N
4442 };
4443
4444 static const struct instr_dual instr_dual_0f_38_f1 = {
4445 I(DstMem | SrcReg | Mov, em_movbe), N
4446 };
4447
4448 static const struct gprefix three_byte_0f_38_f0 = {
4449 ID(0, &instr_dual_0f_38_f0), ID(0, &instr_dual_0f_38_f0), N, N
4450 };
4451
4452 static const struct gprefix three_byte_0f_38_f1 = {
4453 ID(0, &instr_dual_0f_38_f1), ID(0, &instr_dual_0f_38_f1), N, N
4454 };
4455
4456 /*
4457 * Insns below are selected by the prefix which indexed by the third opcode
4458 * byte.
4459 */
4460 static const struct opcode opcode_map_0f_38[256] = {
4461 /* 0x00 - 0x7f */
4462 X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N),
4463 /* 0x80 - 0xef */
4464 X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N),
4465 /* 0xf0 - 0xf1 */
4466 GP(EmulateOnUD | ModRM, &three_byte_0f_38_f0),
4467 GP(EmulateOnUD | ModRM, &three_byte_0f_38_f1),
4468 /* 0xf2 - 0xff */
4469 N, N, X4(N), X8(N)
4470 };
4471
4472 #undef D
4473 #undef N
4474 #undef G
4475 #undef GD
4476 #undef I
4477 #undef GP
4478 #undef EXT
4479 #undef MD
4480 #undef ID
4481
4482 #undef D2bv
4483 #undef D2bvIP
4484 #undef I2bv
4485 #undef I2bvIP
4486 #undef I6ALU
4487
is_shstk_instruction(struct x86_emulate_ctxt * ctxt)4488 static bool is_shstk_instruction(struct x86_emulate_ctxt *ctxt)
4489 {
4490 return ctxt->d & ShadowStack;
4491 }
4492
is_ibt_instruction(struct x86_emulate_ctxt * ctxt)4493 static bool is_ibt_instruction(struct x86_emulate_ctxt *ctxt)
4494 {
4495 u64 flags = ctxt->d;
4496
4497 if (!(flags & IsBranch))
4498 return false;
4499
4500 /*
4501 * All far JMPs and CALLs (including SYSCALL, SYSENTER, and INTn) are
4502 * indirect and thus affect IBT state. All far RETs (including SYSEXIT
4503 * and IRET) are protected via Shadow Stacks and thus don't affect IBT
4504 * state. IRET #GPs when returning to virtual-8086 and IBT or SHSTK is
4505 * enabled, but that should be handled by IRET emulation (in the very
4506 * unlikely scenario that KVM adds support for fully emulating IRET).
4507 */
4508 if (!(flags & NearBranch))
4509 return ctxt->execute != em_iret &&
4510 ctxt->execute != em_ret_far &&
4511 ctxt->execute != em_ret_far_imm &&
4512 ctxt->execute != em_sysexit;
4513
4514 switch (flags & SrcMask) {
4515 case SrcReg:
4516 case SrcMem:
4517 case SrcMem16:
4518 case SrcMem32:
4519 return true;
4520 case SrcMemFAddr:
4521 case SrcImmFAddr:
4522 /* Far branches should be handled above. */
4523 WARN_ON_ONCE(1);
4524 return true;
4525 case SrcNone:
4526 case SrcImm:
4527 case SrcImmByte:
4528 /*
4529 * Note, ImmU16 is used only for the stack adjustment operand on ENTER
4530 * and RET instructions. ENTER isn't a branch and RET FAR is handled
4531 * by the NearBranch check above. RET itself isn't an indirect branch.
4532 */
4533 case SrcImmU16:
4534 return false;
4535 default:
4536 WARN_ONCE(1, "Unexpected Src operand '%llx' on branch",
4537 flags & SrcMask);
4538 return false;
4539 }
4540 }
4541
imm_size(struct x86_emulate_ctxt * ctxt)4542 static unsigned imm_size(struct x86_emulate_ctxt *ctxt)
4543 {
4544 unsigned size;
4545
4546 size = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4547 if (size == 8)
4548 size = 4;
4549 return size;
4550 }
4551
decode_imm(struct x86_emulate_ctxt * ctxt,struct operand * op,unsigned size,bool sign_extension)4552 static int decode_imm(struct x86_emulate_ctxt *ctxt, struct operand *op,
4553 unsigned size, bool sign_extension)
4554 {
4555 int rc = X86EMUL_CONTINUE;
4556
4557 op->type = OP_IMM;
4558 op->bytes = size;
4559 op->addr.mem.ea = ctxt->_eip;
4560 /* NB. Immediates are sign-extended as necessary. */
4561 switch (op->bytes) {
4562 case 1:
4563 op->val = insn_fetch(s8, ctxt);
4564 break;
4565 case 2:
4566 op->val = insn_fetch(s16, ctxt);
4567 break;
4568 case 4:
4569 op->val = insn_fetch(s32, ctxt);
4570 break;
4571 case 8:
4572 op->val = insn_fetch(s64, ctxt);
4573 break;
4574 }
4575 if (!sign_extension) {
4576 switch (op->bytes) {
4577 case 1:
4578 op->val &= 0xff;
4579 break;
4580 case 2:
4581 op->val &= 0xffff;
4582 break;
4583 case 4:
4584 op->val &= 0xffffffff;
4585 break;
4586 }
4587 }
4588 done:
4589 return rc;
4590 }
4591
decode_operand(struct x86_emulate_ctxt * ctxt,struct operand * op,unsigned d)4592 static int decode_operand(struct x86_emulate_ctxt *ctxt, struct operand *op,
4593 unsigned d)
4594 {
4595 int rc = X86EMUL_CONTINUE;
4596
4597 switch (d) {
4598 case OpReg:
4599 decode_register_operand(ctxt, op);
4600 break;
4601 case OpImmUByte:
4602 rc = decode_imm(ctxt, op, 1, false);
4603 break;
4604 case OpMem:
4605 ctxt->memop.bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4606 mem_common:
4607 *op = ctxt->memop;
4608 ctxt->memopp = op;
4609 if (ctxt->d & BitOp)
4610 fetch_bit_operand(ctxt);
4611 op->orig_val = op->val;
4612 break;
4613 case OpMem64:
4614 ctxt->memop.bytes = (ctxt->op_bytes == 8) ? 16 : 8;
4615 goto mem_common;
4616 case OpAcc:
4617 op->type = OP_REG;
4618 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4619 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
4620 fetch_register_operand(op);
4621 op->orig_val = op->val;
4622 break;
4623 case OpAccLo:
4624 op->type = OP_REG;
4625 op->bytes = (ctxt->d & ByteOp) ? 2 : ctxt->op_bytes;
4626 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
4627 fetch_register_operand(op);
4628 op->orig_val = op->val;
4629 break;
4630 case OpAccHi:
4631 if (ctxt->d & ByteOp) {
4632 op->type = OP_NONE;
4633 break;
4634 }
4635 op->type = OP_REG;
4636 op->bytes = ctxt->op_bytes;
4637 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
4638 fetch_register_operand(op);
4639 op->orig_val = op->val;
4640 break;
4641 case OpDI:
4642 op->type = OP_MEM;
4643 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4644 op->addr.mem.ea =
4645 register_address(ctxt, VCPU_REGS_RDI);
4646 op->addr.mem.seg = VCPU_SREG_ES;
4647 op->val = 0;
4648 op->count = 1;
4649 break;
4650 case OpDX:
4651 op->type = OP_REG;
4652 op->bytes = 2;
4653 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
4654 fetch_register_operand(op);
4655 break;
4656 case OpCL:
4657 op->type = OP_IMM;
4658 op->bytes = 1;
4659 op->val = reg_read(ctxt, VCPU_REGS_RCX) & 0xff;
4660 break;
4661 case OpImmByte:
4662 rc = decode_imm(ctxt, op, 1, true);
4663 break;
4664 case OpOne:
4665 op->type = OP_IMM;
4666 op->bytes = 1;
4667 op->val = 1;
4668 break;
4669 case OpImm:
4670 rc = decode_imm(ctxt, op, imm_size(ctxt), true);
4671 break;
4672 case OpImm64:
4673 rc = decode_imm(ctxt, op, ctxt->op_bytes, true);
4674 break;
4675 case OpMem8:
4676 ctxt->memop.bytes = 1;
4677 if (ctxt->memop.type == OP_REG) {
4678 ctxt->memop.addr.reg = decode_register(ctxt,
4679 ctxt->modrm_rm, true);
4680 fetch_register_operand(&ctxt->memop);
4681 }
4682 goto mem_common;
4683 case OpMem16:
4684 ctxt->memop.bytes = 2;
4685 goto mem_common;
4686 case OpMem32:
4687 ctxt->memop.bytes = 4;
4688 goto mem_common;
4689 case OpImmU16:
4690 rc = decode_imm(ctxt, op, 2, false);
4691 break;
4692 case OpImmU:
4693 rc = decode_imm(ctxt, op, imm_size(ctxt), false);
4694 break;
4695 case OpSI:
4696 op->type = OP_MEM;
4697 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4698 op->addr.mem.ea =
4699 register_address(ctxt, VCPU_REGS_RSI);
4700 op->addr.mem.seg = ctxt->seg_override;
4701 op->val = 0;
4702 op->count = 1;
4703 break;
4704 case OpXLat:
4705 op->type = OP_MEM;
4706 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4707 op->addr.mem.ea =
4708 address_mask(ctxt,
4709 reg_read(ctxt, VCPU_REGS_RBX) +
4710 (reg_read(ctxt, VCPU_REGS_RAX) & 0xff));
4711 op->addr.mem.seg = ctxt->seg_override;
4712 op->val = 0;
4713 break;
4714 case OpImmFAddr:
4715 op->type = OP_IMM;
4716 op->addr.mem.ea = ctxt->_eip;
4717 op->bytes = ctxt->op_bytes + 2;
4718 insn_fetch_arr(op->valptr, op->bytes, ctxt);
4719 break;
4720 case OpMemFAddr:
4721 ctxt->memop.bytes = ctxt->op_bytes + 2;
4722 goto mem_common;
4723 case OpES:
4724 op->type = OP_IMM;
4725 op->val = VCPU_SREG_ES;
4726 break;
4727 case OpCS:
4728 op->type = OP_IMM;
4729 op->val = VCPU_SREG_CS;
4730 break;
4731 case OpSS:
4732 op->type = OP_IMM;
4733 op->val = VCPU_SREG_SS;
4734 break;
4735 case OpDS:
4736 op->type = OP_IMM;
4737 op->val = VCPU_SREG_DS;
4738 break;
4739 case OpFS:
4740 op->type = OP_IMM;
4741 op->val = VCPU_SREG_FS;
4742 break;
4743 case OpGS:
4744 op->type = OP_IMM;
4745 op->val = VCPU_SREG_GS;
4746 break;
4747 case OpImplicit:
4748 /* Special instructions do their own operand decoding. */
4749 default:
4750 op->type = OP_NONE; /* Disable writeback. */
4751 break;
4752 }
4753
4754 done:
4755 return rc;
4756 }
4757
x86_decode_insn(struct x86_emulate_ctxt * ctxt,void * insn,int insn_len,int emulation_type)4758 int x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len, int emulation_type)
4759 {
4760 int rc = X86EMUL_CONTINUE;
4761 int mode = ctxt->mode;
4762 int def_op_bytes, def_ad_bytes, goffset, simd_prefix;
4763 bool op_prefix = false;
4764 bool has_seg_override = false;
4765 struct opcode opcode;
4766 u16 dummy;
4767 struct desc_struct desc;
4768
4769 ctxt->memop.type = OP_NONE;
4770 ctxt->memopp = NULL;
4771 ctxt->_eip = ctxt->eip;
4772 ctxt->fetch.ptr = ctxt->fetch.data;
4773 ctxt->fetch.end = ctxt->fetch.data + insn_len;
4774 ctxt->opcode_len = 1;
4775 ctxt->intercept = x86_intercept_none;
4776 if (insn_len > 0)
4777 memcpy(ctxt->fetch.data, insn, insn_len);
4778 else {
4779 rc = __do_insn_fetch_bytes(ctxt, 1);
4780 if (rc != X86EMUL_CONTINUE)
4781 goto done;
4782 }
4783
4784 switch (mode) {
4785 case X86EMUL_MODE_REAL:
4786 case X86EMUL_MODE_VM86:
4787 def_op_bytes = def_ad_bytes = 2;
4788 ctxt->ops->get_segment(ctxt, &dummy, &desc, NULL, VCPU_SREG_CS);
4789 if (desc.d)
4790 def_op_bytes = def_ad_bytes = 4;
4791 break;
4792 case X86EMUL_MODE_PROT16:
4793 def_op_bytes = def_ad_bytes = 2;
4794 break;
4795 case X86EMUL_MODE_PROT32:
4796 def_op_bytes = def_ad_bytes = 4;
4797 break;
4798 #ifdef CONFIG_X86_64
4799 case X86EMUL_MODE_PROT64:
4800 def_op_bytes = 4;
4801 def_ad_bytes = 8;
4802 break;
4803 #endif
4804 default:
4805 return EMULATION_FAILED;
4806 }
4807
4808 ctxt->op_bytes = def_op_bytes;
4809 ctxt->ad_bytes = def_ad_bytes;
4810
4811 /* Legacy prefixes. */
4812 for (;;) {
4813 switch (ctxt->b = insn_fetch(u8, ctxt)) {
4814 case 0x66: /* operand-size override */
4815 op_prefix = true;
4816 /* switch between 2/4 bytes */
4817 ctxt->op_bytes = def_op_bytes ^ 6;
4818 break;
4819 case 0x67: /* address-size override */
4820 if (mode == X86EMUL_MODE_PROT64)
4821 /* switch between 4/8 bytes */
4822 ctxt->ad_bytes = def_ad_bytes ^ 12;
4823 else
4824 /* switch between 2/4 bytes */
4825 ctxt->ad_bytes = def_ad_bytes ^ 6;
4826 break;
4827 case 0x26: /* ES override */
4828 has_seg_override = true;
4829 ctxt->seg_override = VCPU_SREG_ES;
4830 break;
4831 case 0x2e: /* CS override */
4832 has_seg_override = true;
4833 ctxt->seg_override = VCPU_SREG_CS;
4834 break;
4835 case 0x36: /* SS override */
4836 has_seg_override = true;
4837 ctxt->seg_override = VCPU_SREG_SS;
4838 break;
4839 case 0x3e: /* DS override */
4840 has_seg_override = true;
4841 ctxt->seg_override = VCPU_SREG_DS;
4842 break;
4843 case 0x64: /* FS override */
4844 has_seg_override = true;
4845 ctxt->seg_override = VCPU_SREG_FS;
4846 break;
4847 case 0x65: /* GS override */
4848 has_seg_override = true;
4849 ctxt->seg_override = VCPU_SREG_GS;
4850 break;
4851 case 0x40 ... 0x4f: /* REX */
4852 if (mode != X86EMUL_MODE_PROT64)
4853 goto done_prefixes;
4854 ctxt->rex_prefix = ctxt->b;
4855 continue;
4856 case 0xf0: /* LOCK */
4857 ctxt->lock_prefix = 1;
4858 break;
4859 case 0xf2: /* REPNE/REPNZ */
4860 case 0xf3: /* REP/REPE/REPZ */
4861 ctxt->rep_prefix = ctxt->b;
4862 break;
4863 default:
4864 goto done_prefixes;
4865 }
4866
4867 /* Any legacy prefix after a REX prefix nullifies its effect. */
4868
4869 ctxt->rex_prefix = 0;
4870 }
4871
4872 done_prefixes:
4873
4874 /* REX prefix. */
4875 if (ctxt->rex_prefix & 8)
4876 ctxt->op_bytes = 8; /* REX.W */
4877
4878 /* Opcode byte(s). */
4879 opcode = opcode_table[ctxt->b];
4880 /* Two-byte opcode? */
4881 if (ctxt->b == 0x0f) {
4882 ctxt->opcode_len = 2;
4883 ctxt->b = insn_fetch(u8, ctxt);
4884 opcode = twobyte_table[ctxt->b];
4885
4886 /* 0F_38 opcode map */
4887 if (ctxt->b == 0x38) {
4888 ctxt->opcode_len = 3;
4889 ctxt->b = insn_fetch(u8, ctxt);
4890 opcode = opcode_map_0f_38[ctxt->b];
4891 }
4892 }
4893 ctxt->d = opcode.flags;
4894
4895 if (ctxt->d & ModRM)
4896 ctxt->modrm = insn_fetch(u8, ctxt);
4897
4898 /* vex-prefix instructions are not implemented */
4899 if (ctxt->opcode_len == 1 && (ctxt->b == 0xc5 || ctxt->b == 0xc4) &&
4900 (mode == X86EMUL_MODE_PROT64 || (ctxt->modrm & 0xc0) == 0xc0)) {
4901 ctxt->d = NotImpl;
4902 }
4903
4904 while (ctxt->d & GroupMask) {
4905 switch (ctxt->d & GroupMask) {
4906 case Group:
4907 goffset = (ctxt->modrm >> 3) & 7;
4908 opcode = opcode.u.group[goffset];
4909 break;
4910 case GroupDual:
4911 goffset = (ctxt->modrm >> 3) & 7;
4912 if ((ctxt->modrm >> 6) == 3)
4913 opcode = opcode.u.gdual->mod3[goffset];
4914 else
4915 opcode = opcode.u.gdual->mod012[goffset];
4916 break;
4917 case RMExt:
4918 goffset = ctxt->modrm & 7;
4919 opcode = opcode.u.group[goffset];
4920 break;
4921 case Prefix:
4922 if (ctxt->rep_prefix && op_prefix)
4923 return EMULATION_FAILED;
4924 simd_prefix = op_prefix ? 0x66 : ctxt->rep_prefix;
4925 switch (simd_prefix) {
4926 case 0x00: opcode = opcode.u.gprefix->pfx_no; break;
4927 case 0x66: opcode = opcode.u.gprefix->pfx_66; break;
4928 case 0xf2: opcode = opcode.u.gprefix->pfx_f2; break;
4929 case 0xf3: opcode = opcode.u.gprefix->pfx_f3; break;
4930 }
4931 break;
4932 case Escape:
4933 if (ctxt->modrm > 0xbf) {
4934 size_t size = ARRAY_SIZE(opcode.u.esc->high);
4935 u32 index = array_index_nospec(
4936 ctxt->modrm - 0xc0, size);
4937
4938 opcode = opcode.u.esc->high[index];
4939 } else {
4940 opcode = opcode.u.esc->op[(ctxt->modrm >> 3) & 7];
4941 }
4942 break;
4943 case InstrDual:
4944 if ((ctxt->modrm >> 6) == 3)
4945 opcode = opcode.u.idual->mod3;
4946 else
4947 opcode = opcode.u.idual->mod012;
4948 break;
4949 case ModeDual:
4950 if (ctxt->mode == X86EMUL_MODE_PROT64)
4951 opcode = opcode.u.mdual->mode64;
4952 else
4953 opcode = opcode.u.mdual->mode32;
4954 break;
4955 default:
4956 return EMULATION_FAILED;
4957 }
4958
4959 ctxt->d &= ~(u64)GroupMask;
4960 ctxt->d |= opcode.flags;
4961 }
4962
4963 ctxt->is_branch = opcode.flags & IsBranch;
4964
4965 /* Unrecognised? */
4966 if (ctxt->d == 0)
4967 return EMULATION_FAILED;
4968
4969 ctxt->execute = opcode.u.execute;
4970
4971 /*
4972 * Reject emulation if KVM might need to emulate shadow stack updates
4973 * and/or indirect branch tracking enforcement, which the emulator
4974 * doesn't support.
4975 */
4976 if ((is_ibt_instruction(ctxt) || is_shstk_instruction(ctxt)) &&
4977 ctxt->ops->get_cr(ctxt, 4) & X86_CR4_CET) {
4978 u64 u_cet = 0, s_cet = 0;
4979
4980 /*
4981 * Check both User and Supervisor on far transfers as inter-
4982 * privilege level transfers are impacted by CET at the target
4983 * privilege level, and that is not known at this time. The
4984 * expectation is that the guest will not require emulation of
4985 * any CET-affected instructions at any privilege level.
4986 */
4987 if (!(ctxt->d & NearBranch))
4988 u_cet = s_cet = CET_SHSTK_EN | CET_ENDBR_EN;
4989 else if (ctxt->ops->cpl(ctxt) == 3)
4990 u_cet = CET_SHSTK_EN | CET_ENDBR_EN;
4991 else
4992 s_cet = CET_SHSTK_EN | CET_ENDBR_EN;
4993
4994 if ((u_cet && ctxt->ops->get_msr(ctxt, MSR_IA32_U_CET, &u_cet)) ||
4995 (s_cet && ctxt->ops->get_msr(ctxt, MSR_IA32_S_CET, &s_cet)))
4996 return EMULATION_FAILED;
4997
4998 if ((u_cet | s_cet) & CET_SHSTK_EN && is_shstk_instruction(ctxt))
4999 return EMULATION_FAILED;
5000
5001 if ((u_cet | s_cet) & CET_ENDBR_EN && is_ibt_instruction(ctxt))
5002 return EMULATION_FAILED;
5003 }
5004
5005 if (unlikely(emulation_type & EMULTYPE_TRAP_UD) &&
5006 likely(!(ctxt->d & EmulateOnUD)))
5007 return EMULATION_FAILED;
5008
5009 if (unlikely(ctxt->d &
5010 (NotImpl|Stack|Op3264|Sse|Mmx|Intercept|CheckPerm|NearBranch|
5011 No16))) {
5012 /*
5013 * These are copied unconditionally here, and checked unconditionally
5014 * in x86_emulate_insn.
5015 */
5016 ctxt->check_perm = opcode.check_perm;
5017 ctxt->intercept = opcode.intercept;
5018
5019 if (ctxt->d & NotImpl)
5020 return EMULATION_FAILED;
5021
5022 if (mode == X86EMUL_MODE_PROT64) {
5023 if (ctxt->op_bytes == 4 && (ctxt->d & Stack))
5024 ctxt->op_bytes = 8;
5025 else if (ctxt->d & NearBranch)
5026 ctxt->op_bytes = 8;
5027 }
5028
5029 if (ctxt->d & Op3264) {
5030 if (mode == X86EMUL_MODE_PROT64)
5031 ctxt->op_bytes = 8;
5032 else
5033 ctxt->op_bytes = 4;
5034 }
5035
5036 if ((ctxt->d & No16) && ctxt->op_bytes == 2)
5037 ctxt->op_bytes = 4;
5038
5039 if (ctxt->d & Sse)
5040 ctxt->op_bytes = 16;
5041 else if (ctxt->d & Mmx)
5042 ctxt->op_bytes = 8;
5043 }
5044
5045 /* ModRM and SIB bytes. */
5046 if (ctxt->d & ModRM) {
5047 rc = decode_modrm(ctxt, &ctxt->memop);
5048 if (!has_seg_override) {
5049 has_seg_override = true;
5050 ctxt->seg_override = ctxt->modrm_seg;
5051 }
5052 } else if (ctxt->d & MemAbs)
5053 rc = decode_abs(ctxt, &ctxt->memop);
5054 if (rc != X86EMUL_CONTINUE)
5055 goto done;
5056
5057 if (!has_seg_override)
5058 ctxt->seg_override = VCPU_SREG_DS;
5059
5060 ctxt->memop.addr.mem.seg = ctxt->seg_override;
5061
5062 /*
5063 * Decode and fetch the source operand: register, memory
5064 * or immediate.
5065 */
5066 rc = decode_operand(ctxt, &ctxt->src, (ctxt->d >> SrcShift) & OpMask);
5067 if (rc != X86EMUL_CONTINUE)
5068 goto done;
5069
5070 /*
5071 * Decode and fetch the second source operand: register, memory
5072 * or immediate.
5073 */
5074 rc = decode_operand(ctxt, &ctxt->src2, (ctxt->d >> Src2Shift) & OpMask);
5075 if (rc != X86EMUL_CONTINUE)
5076 goto done;
5077
5078 /* Decode and fetch the destination operand: register or memory. */
5079 rc = decode_operand(ctxt, &ctxt->dst, (ctxt->d >> DstShift) & OpMask);
5080
5081 if (ctxt->rip_relative && likely(ctxt->memopp))
5082 ctxt->memopp->addr.mem.ea = address_mask(ctxt,
5083 ctxt->memopp->addr.mem.ea + ctxt->_eip);
5084
5085 done:
5086 if (rc == X86EMUL_PROPAGATE_FAULT)
5087 ctxt->have_exception = true;
5088 return (rc != X86EMUL_CONTINUE) ? EMULATION_FAILED : EMULATION_OK;
5089 }
5090
x86_page_table_writing_insn(struct x86_emulate_ctxt * ctxt)5091 bool x86_page_table_writing_insn(struct x86_emulate_ctxt *ctxt)
5092 {
5093 return ctxt->d & PageTable;
5094 }
5095
string_insn_completed(struct x86_emulate_ctxt * ctxt)5096 static bool string_insn_completed(struct x86_emulate_ctxt *ctxt)
5097 {
5098 /* The second termination condition only applies for REPE
5099 * and REPNE. Test if the repeat string operation prefix is
5100 * REPE/REPZ or REPNE/REPNZ and if it's the case it tests the
5101 * corresponding termination condition according to:
5102 * - if REPE/REPZ and ZF = 0 then done
5103 * - if REPNE/REPNZ and ZF = 1 then done
5104 */
5105 if (((ctxt->b == 0xa6) || (ctxt->b == 0xa7) ||
5106 (ctxt->b == 0xae) || (ctxt->b == 0xaf))
5107 && (((ctxt->rep_prefix == REPE_PREFIX) &&
5108 ((ctxt->eflags & X86_EFLAGS_ZF) == 0))
5109 || ((ctxt->rep_prefix == REPNE_PREFIX) &&
5110 ((ctxt->eflags & X86_EFLAGS_ZF) == X86_EFLAGS_ZF))))
5111 return true;
5112
5113 return false;
5114 }
5115
flush_pending_x87_faults(struct x86_emulate_ctxt * ctxt)5116 static int flush_pending_x87_faults(struct x86_emulate_ctxt *ctxt)
5117 {
5118 int rc;
5119
5120 kvm_fpu_get();
5121 rc = asm_safe("fwait");
5122 kvm_fpu_put();
5123
5124 if (unlikely(rc != X86EMUL_CONTINUE))
5125 return emulate_exception(ctxt, MF_VECTOR, 0, false);
5126
5127 return X86EMUL_CONTINUE;
5128 }
5129
fetch_possible_mmx_operand(struct operand * op)5130 static void fetch_possible_mmx_operand(struct operand *op)
5131 {
5132 if (op->type == OP_MM)
5133 kvm_read_mmx_reg(op->addr.mm, &op->mm_val);
5134 }
5135
init_decode_cache(struct x86_emulate_ctxt * ctxt)5136 void init_decode_cache(struct x86_emulate_ctxt *ctxt)
5137 {
5138 /* Clear fields that are set conditionally but read without a guard. */
5139 ctxt->rip_relative = false;
5140 ctxt->rex_prefix = 0;
5141 ctxt->lock_prefix = 0;
5142 ctxt->rep_prefix = 0;
5143 ctxt->regs_valid = 0;
5144 ctxt->regs_dirty = 0;
5145
5146 ctxt->io_read.pos = 0;
5147 ctxt->io_read.end = 0;
5148 ctxt->mem_read.end = 0;
5149 }
5150
x86_emulate_insn(struct x86_emulate_ctxt * ctxt,bool check_intercepts)5151 int x86_emulate_insn(struct x86_emulate_ctxt *ctxt, bool check_intercepts)
5152 {
5153 const struct x86_emulate_ops *ops = ctxt->ops;
5154 int rc = X86EMUL_CONTINUE;
5155 int saved_dst_type = ctxt->dst.type;
5156
5157 ctxt->mem_read.pos = 0;
5158
5159 /* LOCK prefix is allowed only with some instructions */
5160 if (ctxt->lock_prefix && (!(ctxt->d & Lock) || ctxt->dst.type != OP_MEM)) {
5161 rc = emulate_ud(ctxt);
5162 goto done;
5163 }
5164
5165 if ((ctxt->d & SrcMask) == SrcMemFAddr && ctxt->src.type != OP_MEM) {
5166 rc = emulate_ud(ctxt);
5167 goto done;
5168 }
5169
5170 if (unlikely(ctxt->d &
5171 (No64|Undefined|Sse|Mmx|Intercept|CheckPerm|Priv|Prot|String))) {
5172 if ((ctxt->mode == X86EMUL_MODE_PROT64 && (ctxt->d & No64)) ||
5173 (ctxt->d & Undefined)) {
5174 rc = emulate_ud(ctxt);
5175 goto done;
5176 }
5177
5178 if (((ctxt->d & (Sse|Mmx)) && ((ops->get_cr(ctxt, 0) & X86_CR0_EM)))
5179 || ((ctxt->d & Sse) && !(ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR))) {
5180 rc = emulate_ud(ctxt);
5181 goto done;
5182 }
5183
5184 if ((ctxt->d & (Sse|Mmx)) && (ops->get_cr(ctxt, 0) & X86_CR0_TS)) {
5185 rc = emulate_nm(ctxt);
5186 goto done;
5187 }
5188
5189 if (ctxt->d & Mmx) {
5190 rc = flush_pending_x87_faults(ctxt);
5191 if (rc != X86EMUL_CONTINUE)
5192 goto done;
5193 /*
5194 * Now that we know the fpu is exception safe, we can fetch
5195 * operands from it.
5196 */
5197 fetch_possible_mmx_operand(&ctxt->src);
5198 fetch_possible_mmx_operand(&ctxt->src2);
5199 if (!(ctxt->d & Mov))
5200 fetch_possible_mmx_operand(&ctxt->dst);
5201 }
5202
5203 if (unlikely(check_intercepts) && ctxt->intercept) {
5204 rc = emulator_check_intercept(ctxt, ctxt->intercept,
5205 X86_ICPT_PRE_EXCEPT);
5206 if (rc != X86EMUL_CONTINUE)
5207 goto done;
5208 }
5209
5210 /* Instruction can only be executed in protected mode */
5211 if ((ctxt->d & Prot) && ctxt->mode < X86EMUL_MODE_PROT16) {
5212 rc = emulate_ud(ctxt);
5213 goto done;
5214 }
5215
5216 /* Privileged instruction can be executed only in CPL=0 */
5217 if ((ctxt->d & Priv) && ops->cpl(ctxt)) {
5218 if (ctxt->d & PrivUD)
5219 rc = emulate_ud(ctxt);
5220 else
5221 rc = emulate_gp(ctxt, 0);
5222 goto done;
5223 }
5224
5225 /* Do instruction specific permission checks */
5226 if (ctxt->d & CheckPerm) {
5227 rc = ctxt->check_perm(ctxt);
5228 if (rc != X86EMUL_CONTINUE)
5229 goto done;
5230 }
5231
5232 if (unlikely(check_intercepts) && (ctxt->d & Intercept)) {
5233 rc = emulator_check_intercept(ctxt, ctxt->intercept,
5234 X86_ICPT_POST_EXCEPT);
5235 if (rc != X86EMUL_CONTINUE)
5236 goto done;
5237 }
5238
5239 if (ctxt->rep_prefix && (ctxt->d & String)) {
5240 /* All REP prefixes have the same first termination condition */
5241 if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0) {
5242 string_registers_quirk(ctxt);
5243 ctxt->eip = ctxt->_eip;
5244 ctxt->eflags &= ~X86_EFLAGS_RF;
5245 goto done;
5246 }
5247 }
5248 }
5249
5250 if ((ctxt->src.type == OP_MEM) && !(ctxt->d & NoAccess)) {
5251 rc = segmented_read(ctxt, ctxt->src.addr.mem,
5252 ctxt->src.valptr, ctxt->src.bytes);
5253 if (rc != X86EMUL_CONTINUE)
5254 goto done;
5255 ctxt->src.orig_val64 = ctxt->src.val64;
5256 }
5257
5258 if (ctxt->src2.type == OP_MEM) {
5259 rc = segmented_read(ctxt, ctxt->src2.addr.mem,
5260 &ctxt->src2.val, ctxt->src2.bytes);
5261 if (rc != X86EMUL_CONTINUE)
5262 goto done;
5263 }
5264
5265 if ((ctxt->d & DstMask) == ImplicitOps)
5266 goto special_insn;
5267
5268
5269 if ((ctxt->dst.type == OP_MEM) && !(ctxt->d & Mov)) {
5270 /* optimisation - avoid slow emulated read if Mov */
5271 rc = segmented_read(ctxt, ctxt->dst.addr.mem,
5272 &ctxt->dst.val, ctxt->dst.bytes);
5273 if (rc != X86EMUL_CONTINUE) {
5274 if (!(ctxt->d & NoWrite) &&
5275 rc == X86EMUL_PROPAGATE_FAULT &&
5276 ctxt->exception.vector == PF_VECTOR)
5277 ctxt->exception.error_code |= PFERR_WRITE_MASK;
5278 goto done;
5279 }
5280 }
5281 /* Copy full 64-bit value for CMPXCHG8B. */
5282 ctxt->dst.orig_val64 = ctxt->dst.val64;
5283
5284 special_insn:
5285
5286 if (unlikely(check_intercepts) && (ctxt->d & Intercept)) {
5287 rc = emulator_check_intercept(ctxt, ctxt->intercept,
5288 X86_ICPT_POST_MEMACCESS);
5289 if (rc != X86EMUL_CONTINUE)
5290 goto done;
5291 }
5292
5293 if (ctxt->rep_prefix && (ctxt->d & String))
5294 ctxt->eflags |= X86_EFLAGS_RF;
5295 else
5296 ctxt->eflags &= ~X86_EFLAGS_RF;
5297
5298 if (ctxt->execute) {
5299 rc = ctxt->execute(ctxt);
5300 if (rc != X86EMUL_CONTINUE)
5301 goto done;
5302 goto writeback;
5303 }
5304
5305 if (ctxt->opcode_len == 2)
5306 goto twobyte_insn;
5307 else if (ctxt->opcode_len == 3)
5308 goto threebyte_insn;
5309
5310 switch (ctxt->b) {
5311 case 0x70 ... 0x7f: /* jcc (short) */
5312 if (test_cc(ctxt->b, ctxt->eflags))
5313 rc = jmp_rel(ctxt, ctxt->src.val);
5314 break;
5315 case 0x8d: /* lea r16/r32, m */
5316 ctxt->dst.val = ctxt->src.addr.mem.ea;
5317 break;
5318 case 0x90 ... 0x97: /* nop / xchg reg, rax */
5319 if (ctxt->dst.addr.reg == reg_rmw(ctxt, VCPU_REGS_RAX))
5320 ctxt->dst.type = OP_NONE;
5321 else
5322 rc = em_xchg(ctxt);
5323 break;
5324 case 0x98: /* cbw/cwde/cdqe */
5325 switch (ctxt->op_bytes) {
5326 case 2: ctxt->dst.val = (s8)ctxt->dst.val; break;
5327 case 4: ctxt->dst.val = (s16)ctxt->dst.val; break;
5328 case 8: ctxt->dst.val = (s32)ctxt->dst.val; break;
5329 }
5330 break;
5331 case 0xcc: /* int3 */
5332 rc = emulate_int(ctxt, 3);
5333 break;
5334 case 0xcd: /* int n */
5335 rc = emulate_int(ctxt, ctxt->src.val);
5336 break;
5337 case 0xce: /* into */
5338 if (ctxt->eflags & X86_EFLAGS_OF)
5339 rc = emulate_int(ctxt, 4);
5340 break;
5341 case 0xe9: /* jmp rel */
5342 case 0xeb: /* jmp rel short */
5343 rc = jmp_rel(ctxt, ctxt->src.val);
5344 ctxt->dst.type = OP_NONE; /* Disable writeback. */
5345 break;
5346 case 0xf4: /* hlt */
5347 ctxt->ops->halt(ctxt);
5348 break;
5349 case 0xf5: /* cmc */
5350 /* complement carry flag from eflags reg */
5351 ctxt->eflags ^= X86_EFLAGS_CF;
5352 break;
5353 case 0xf8: /* clc */
5354 ctxt->eflags &= ~X86_EFLAGS_CF;
5355 break;
5356 case 0xf9: /* stc */
5357 ctxt->eflags |= X86_EFLAGS_CF;
5358 break;
5359 case 0xfc: /* cld */
5360 ctxt->eflags &= ~X86_EFLAGS_DF;
5361 break;
5362 case 0xfd: /* std */
5363 ctxt->eflags |= X86_EFLAGS_DF;
5364 break;
5365 default:
5366 goto cannot_emulate;
5367 }
5368
5369 if (rc != X86EMUL_CONTINUE)
5370 goto done;
5371
5372 writeback:
5373 if (ctxt->d & SrcWrite) {
5374 BUG_ON(ctxt->src.type == OP_MEM || ctxt->src.type == OP_MEM_STR);
5375 rc = writeback(ctxt, &ctxt->src);
5376 if (rc != X86EMUL_CONTINUE)
5377 goto done;
5378 }
5379 if (!(ctxt->d & NoWrite)) {
5380 rc = writeback(ctxt, &ctxt->dst);
5381 if (rc != X86EMUL_CONTINUE)
5382 goto done;
5383 }
5384
5385 /*
5386 * restore dst type in case the decoding will be reused
5387 * (happens for string instruction )
5388 */
5389 ctxt->dst.type = saved_dst_type;
5390
5391 if ((ctxt->d & SrcMask) == SrcSI)
5392 string_addr_inc(ctxt, VCPU_REGS_RSI, &ctxt->src);
5393
5394 if ((ctxt->d & DstMask) == DstDI)
5395 string_addr_inc(ctxt, VCPU_REGS_RDI, &ctxt->dst);
5396
5397 if (ctxt->rep_prefix && (ctxt->d & String)) {
5398 unsigned int count;
5399 struct read_cache *r = &ctxt->io_read;
5400 if ((ctxt->d & SrcMask) == SrcSI)
5401 count = ctxt->src.count;
5402 else
5403 count = ctxt->dst.count;
5404 register_address_increment(ctxt, VCPU_REGS_RCX, -count);
5405
5406 if (!string_insn_completed(ctxt)) {
5407 /*
5408 * Re-enter guest when pio read ahead buffer is empty
5409 * or, if it is not used, after each 1024 iteration.
5410 */
5411 if ((r->end != 0 || reg_read(ctxt, VCPU_REGS_RCX) & 0x3ff) &&
5412 (r->end == 0 || r->end != r->pos)) {
5413 /*
5414 * Reset read cache. Usually happens before
5415 * decode, but since instruction is restarted
5416 * we have to do it here.
5417 */
5418 ctxt->mem_read.end = 0;
5419 writeback_registers(ctxt);
5420 return EMULATION_RESTART;
5421 }
5422 goto done; /* skip rip writeback */
5423 }
5424 ctxt->eflags &= ~X86_EFLAGS_RF;
5425 }
5426
5427 ctxt->eip = ctxt->_eip;
5428 if (ctxt->mode != X86EMUL_MODE_PROT64)
5429 ctxt->eip = (u32)ctxt->_eip;
5430
5431 done:
5432 if (rc == X86EMUL_PROPAGATE_FAULT) {
5433 if (KVM_EMULATOR_BUG_ON(ctxt->exception.vector > 0x1f, ctxt))
5434 return EMULATION_FAILED;
5435 ctxt->have_exception = true;
5436 }
5437 if (rc == X86EMUL_INTERCEPTED)
5438 return EMULATION_INTERCEPTED;
5439
5440 if (rc == X86EMUL_CONTINUE)
5441 writeback_registers(ctxt);
5442
5443 return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
5444
5445 twobyte_insn:
5446 switch (ctxt->b) {
5447 case 0x09: /* wbinvd */
5448 (ctxt->ops->wbinvd)(ctxt);
5449 break;
5450 case 0x08: /* invd */
5451 case 0x0d: /* GrpP (prefetch) */
5452 case 0x18: /* Grp16 (prefetch/nop) */
5453 case 0x1f: /* nop */
5454 break;
5455 case 0x20: /* mov cr, reg */
5456 ctxt->dst.val = ops->get_cr(ctxt, ctxt->modrm_reg);
5457 break;
5458 case 0x21: /* mov from dr to reg */
5459 ctxt->dst.val = ops->get_dr(ctxt, ctxt->modrm_reg);
5460 break;
5461 case 0x40 ... 0x4f: /* cmov */
5462 if (test_cc(ctxt->b, ctxt->eflags))
5463 ctxt->dst.val = ctxt->src.val;
5464 else if (ctxt->op_bytes != 4)
5465 ctxt->dst.type = OP_NONE; /* no writeback */
5466 break;
5467 case 0x80 ... 0x8f: /* jnz rel, etc*/
5468 if (test_cc(ctxt->b, ctxt->eflags))
5469 rc = jmp_rel(ctxt, ctxt->src.val);
5470 break;
5471 case 0x90 ... 0x9f: /* setcc r/m8 */
5472 ctxt->dst.val = test_cc(ctxt->b, ctxt->eflags);
5473 break;
5474 case 0xb6 ... 0xb7: /* movzx */
5475 ctxt->dst.bytes = ctxt->op_bytes;
5476 ctxt->dst.val = (ctxt->src.bytes == 1) ? (u8) ctxt->src.val
5477 : (u16) ctxt->src.val;
5478 break;
5479 case 0xbe ... 0xbf: /* movsx */
5480 ctxt->dst.bytes = ctxt->op_bytes;
5481 ctxt->dst.val = (ctxt->src.bytes == 1) ? (s8) ctxt->src.val :
5482 (s16) ctxt->src.val;
5483 break;
5484 default:
5485 goto cannot_emulate;
5486 }
5487
5488 threebyte_insn:
5489
5490 if (rc != X86EMUL_CONTINUE)
5491 goto done;
5492
5493 goto writeback;
5494
5495 cannot_emulate:
5496 return EMULATION_FAILED;
5497 }
5498
emulator_invalidate_register_cache(struct x86_emulate_ctxt * ctxt)5499 void emulator_invalidate_register_cache(struct x86_emulate_ctxt *ctxt)
5500 {
5501 invalidate_registers(ctxt);
5502 }
5503
emulator_writeback_register_cache(struct x86_emulate_ctxt * ctxt)5504 void emulator_writeback_register_cache(struct x86_emulate_ctxt *ctxt)
5505 {
5506 writeback_registers(ctxt);
5507 }
5508
emulator_can_use_gpa(struct x86_emulate_ctxt * ctxt)5509 bool emulator_can_use_gpa(struct x86_emulate_ctxt *ctxt)
5510 {
5511 if (ctxt->rep_prefix && (ctxt->d & String))
5512 return false;
5513
5514 if (ctxt->d & TwoMemOp)
5515 return false;
5516
5517 return true;
5518 }
5519