xref: /linux/include/linux/mmzone.h (revision beace86e61e465dba204a268ab3f3377153a4973)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/list_nulls.h>
11 #include <linux/wait.h>
12 #include <linux/bitops.h>
13 #include <linux/cache.h>
14 #include <linux/threads.h>
15 #include <linux/numa.h>
16 #include <linux/init.h>
17 #include <linux/seqlock.h>
18 #include <linux/nodemask.h>
19 #include <linux/pageblock-flags.h>
20 #include <linux/page-flags-layout.h>
21 #include <linux/atomic.h>
22 #include <linux/mm_types.h>
23 #include <linux/page-flags.h>
24 #include <linux/local_lock.h>
25 #include <linux/zswap.h>
26 #include <asm/page.h>
27 
28 /* Free memory management - zoned buddy allocator.  */
29 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER
30 #define MAX_PAGE_ORDER 10
31 #else
32 #define MAX_PAGE_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
33 #endif
34 #define MAX_ORDER_NR_PAGES (1 << MAX_PAGE_ORDER)
35 
36 #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES)
37 
38 #define NR_PAGE_ORDERS (MAX_PAGE_ORDER + 1)
39 
40 /* Defines the order for the number of pages that have a migrate type. */
41 #ifndef CONFIG_PAGE_BLOCK_MAX_ORDER
42 #define PAGE_BLOCK_MAX_ORDER MAX_PAGE_ORDER
43 #else
44 #define PAGE_BLOCK_MAX_ORDER CONFIG_PAGE_BLOCK_MAX_ORDER
45 #endif /* CONFIG_PAGE_BLOCK_MAX_ORDER */
46 
47 /*
48  * The MAX_PAGE_ORDER, which defines the max order of pages to be allocated
49  * by the buddy allocator, has to be larger or equal to the PAGE_BLOCK_MAX_ORDER,
50  * which defines the order for the number of pages that can have a migrate type
51  */
52 #if (PAGE_BLOCK_MAX_ORDER > MAX_PAGE_ORDER)
53 #error MAX_PAGE_ORDER must be >= PAGE_BLOCK_MAX_ORDER
54 #endif
55 
56 /*
57  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
58  * costly to service.  That is between allocation orders which should
59  * coalesce naturally under reasonable reclaim pressure and those which
60  * will not.
61  */
62 #define PAGE_ALLOC_COSTLY_ORDER 3
63 
64 enum migratetype {
65 	MIGRATE_UNMOVABLE,
66 	MIGRATE_MOVABLE,
67 	MIGRATE_RECLAIMABLE,
68 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
69 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
70 #ifdef CONFIG_CMA
71 	/*
72 	 * MIGRATE_CMA migration type is designed to mimic the way
73 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
74 	 * from MIGRATE_CMA pageblocks and page allocator never
75 	 * implicitly change migration type of MIGRATE_CMA pageblock.
76 	 *
77 	 * The way to use it is to change migratetype of a range of
78 	 * pageblocks to MIGRATE_CMA which can be done by
79 	 * __free_pageblock_cma() function.
80 	 */
81 	MIGRATE_CMA,
82 	__MIGRATE_TYPE_END = MIGRATE_CMA,
83 #else
84 	__MIGRATE_TYPE_END = MIGRATE_HIGHATOMIC,
85 #endif
86 #ifdef CONFIG_MEMORY_ISOLATION
87 	MIGRATE_ISOLATE,	/* can't allocate from here */
88 #endif
89 	MIGRATE_TYPES
90 };
91 
92 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
93 extern const char * const migratetype_names[MIGRATE_TYPES];
94 
95 #ifdef CONFIG_CMA
96 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
97 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
98 /*
99  * __dump_folio() in mm/debug.c passes a folio pointer to on-stack struct folio,
100  * so folio_pfn() cannot be used and pfn is needed.
101  */
102 #  define is_migrate_cma_folio(folio, pfn) \
103 	(get_pfnblock_migratetype(&folio->page, pfn) == MIGRATE_CMA)
104 #else
105 #  define is_migrate_cma(migratetype) false
106 #  define is_migrate_cma_page(_page) false
107 #  define is_migrate_cma_folio(folio, pfn) false
108 #endif
109 
110 static inline bool is_migrate_movable(int mt)
111 {
112 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
113 }
114 
115 /*
116  * Check whether a migratetype can be merged with another migratetype.
117  *
118  * It is only mergeable when it can fall back to other migratetypes for
119  * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
120  */
121 static inline bool migratetype_is_mergeable(int mt)
122 {
123 	return mt < MIGRATE_PCPTYPES;
124 }
125 
126 #define for_each_migratetype_order(order, type) \
127 	for (order = 0; order < NR_PAGE_ORDERS; order++) \
128 		for (type = 0; type < MIGRATE_TYPES; type++)
129 
130 extern int page_group_by_mobility_disabled;
131 
132 #define get_pageblock_migratetype(page) \
133 	get_pfnblock_migratetype(page, page_to_pfn(page))
134 
135 #define folio_migratetype(folio) \
136 	get_pageblock_migratetype(&folio->page)
137 
138 struct free_area {
139 	struct list_head	free_list[MIGRATE_TYPES];
140 	unsigned long		nr_free;
141 };
142 
143 struct pglist_data;
144 
145 #ifdef CONFIG_NUMA
146 enum numa_stat_item {
147 	NUMA_HIT,		/* allocated in intended node */
148 	NUMA_MISS,		/* allocated in non intended node */
149 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
150 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
151 	NUMA_LOCAL,		/* allocation from local node */
152 	NUMA_OTHER,		/* allocation from other node */
153 	NR_VM_NUMA_EVENT_ITEMS
154 };
155 #else
156 #define NR_VM_NUMA_EVENT_ITEMS 0
157 #endif
158 
159 enum zone_stat_item {
160 	/* First 128 byte cacheline (assuming 64 bit words) */
161 	NR_FREE_PAGES,
162 	NR_FREE_PAGES_BLOCKS,
163 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
164 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
165 	NR_ZONE_ACTIVE_ANON,
166 	NR_ZONE_INACTIVE_FILE,
167 	NR_ZONE_ACTIVE_FILE,
168 	NR_ZONE_UNEVICTABLE,
169 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
170 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
171 	/* Second 128 byte cacheline */
172 #if IS_ENABLED(CONFIG_ZSMALLOC)
173 	NR_ZSPAGES,		/* allocated in zsmalloc */
174 #endif
175 	NR_FREE_CMA_PAGES,
176 #ifdef CONFIG_UNACCEPTED_MEMORY
177 	NR_UNACCEPTED,
178 #endif
179 	NR_VM_ZONE_STAT_ITEMS };
180 
181 enum node_stat_item {
182 	NR_LRU_BASE,
183 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
184 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
185 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
186 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
187 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
188 	NR_SLAB_RECLAIMABLE_B,
189 	NR_SLAB_UNRECLAIMABLE_B,
190 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
191 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
192 	WORKINGSET_NODES,
193 	WORKINGSET_REFAULT_BASE,
194 	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
195 	WORKINGSET_REFAULT_FILE,
196 	WORKINGSET_ACTIVATE_BASE,
197 	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
198 	WORKINGSET_ACTIVATE_FILE,
199 	WORKINGSET_RESTORE_BASE,
200 	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
201 	WORKINGSET_RESTORE_FILE,
202 	WORKINGSET_NODERECLAIM,
203 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
204 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
205 			   only modified from process context */
206 	NR_FILE_PAGES,
207 	NR_FILE_DIRTY,
208 	NR_WRITEBACK,
209 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
210 	NR_SHMEM_THPS,
211 	NR_SHMEM_PMDMAPPED,
212 	NR_FILE_THPS,
213 	NR_FILE_PMDMAPPED,
214 	NR_ANON_THPS,
215 	NR_VMSCAN_WRITE,
216 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
217 	NR_DIRTIED,		/* page dirtyings since bootup */
218 	NR_WRITTEN,		/* page writings since bootup */
219 	NR_THROTTLED_WRITTEN,	/* NR_WRITTEN while reclaim throttled */
220 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
221 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
222 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
223 	NR_KERNEL_STACK_KB,	/* measured in KiB */
224 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
225 	NR_KERNEL_SCS_KB,	/* measured in KiB */
226 #endif
227 	NR_PAGETABLE,		/* used for pagetables */
228 	NR_SECONDARY_PAGETABLE, /* secondary pagetables, KVM & IOMMU */
229 #ifdef CONFIG_IOMMU_SUPPORT
230 	NR_IOMMU_PAGES,		/* # of pages allocated by IOMMU */
231 #endif
232 #ifdef CONFIG_SWAP
233 	NR_SWAPCACHE,
234 #endif
235 #ifdef CONFIG_NUMA_BALANCING
236 	PGPROMOTE_SUCCESS,	/* promote successfully */
237 	PGPROMOTE_CANDIDATE,	/* candidate pages to promote */
238 #endif
239 	/* PGDEMOTE_*: pages demoted */
240 	PGDEMOTE_KSWAPD,
241 	PGDEMOTE_DIRECT,
242 	PGDEMOTE_KHUGEPAGED,
243 	PGDEMOTE_PROACTIVE,
244 #ifdef CONFIG_HUGETLB_PAGE
245 	NR_HUGETLB,
246 #endif
247 	NR_BALLOON_PAGES,
248 	NR_VM_NODE_STAT_ITEMS
249 };
250 
251 /*
252  * Returns true if the item should be printed in THPs (/proc/vmstat
253  * currently prints number of anon, file and shmem THPs. But the item
254  * is charged in pages).
255  */
256 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
257 {
258 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
259 		return false;
260 
261 	return item == NR_ANON_THPS ||
262 	       item == NR_FILE_THPS ||
263 	       item == NR_SHMEM_THPS ||
264 	       item == NR_SHMEM_PMDMAPPED ||
265 	       item == NR_FILE_PMDMAPPED;
266 }
267 
268 /*
269  * Returns true if the value is measured in bytes (most vmstat values are
270  * measured in pages). This defines the API part, the internal representation
271  * might be different.
272  */
273 static __always_inline bool vmstat_item_in_bytes(int idx)
274 {
275 	/*
276 	 * Global and per-node slab counters track slab pages.
277 	 * It's expected that changes are multiples of PAGE_SIZE.
278 	 * Internally values are stored in pages.
279 	 *
280 	 * Per-memcg and per-lruvec counters track memory, consumed
281 	 * by individual slab objects. These counters are actually
282 	 * byte-precise.
283 	 */
284 	return (idx == NR_SLAB_RECLAIMABLE_B ||
285 		idx == NR_SLAB_UNRECLAIMABLE_B);
286 }
287 
288 /*
289  * We do arithmetic on the LRU lists in various places in the code,
290  * so it is important to keep the active lists LRU_ACTIVE higher in
291  * the array than the corresponding inactive lists, and to keep
292  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
293  *
294  * This has to be kept in sync with the statistics in zone_stat_item
295  * above and the descriptions in vmstat_text in mm/vmstat.c
296  */
297 #define LRU_BASE 0
298 #define LRU_ACTIVE 1
299 #define LRU_FILE 2
300 
301 enum lru_list {
302 	LRU_INACTIVE_ANON = LRU_BASE,
303 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
304 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
305 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
306 	LRU_UNEVICTABLE,
307 	NR_LRU_LISTS
308 };
309 
310 enum vmscan_throttle_state {
311 	VMSCAN_THROTTLE_WRITEBACK,
312 	VMSCAN_THROTTLE_ISOLATED,
313 	VMSCAN_THROTTLE_NOPROGRESS,
314 	VMSCAN_THROTTLE_CONGESTED,
315 	NR_VMSCAN_THROTTLE,
316 };
317 
318 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
319 
320 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
321 
322 static inline bool is_file_lru(enum lru_list lru)
323 {
324 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
325 }
326 
327 static inline bool is_active_lru(enum lru_list lru)
328 {
329 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
330 }
331 
332 #define WORKINGSET_ANON 0
333 #define WORKINGSET_FILE 1
334 #define ANON_AND_FILE 2
335 
336 enum lruvec_flags {
337 	/*
338 	 * An lruvec has many dirty pages backed by a congested BDI:
339 	 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim.
340 	 *    It can be cleared by cgroup reclaim or kswapd.
341 	 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim.
342 	 *    It can only be cleared by kswapd.
343 	 *
344 	 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup
345 	 * reclaim, but not vice versa. This only applies to the root cgroup.
346 	 * The goal is to prevent cgroup reclaim on the root cgroup (e.g.
347 	 * memory.reclaim) to unthrottle an unbalanced node (that was throttled
348 	 * by kswapd).
349 	 */
350 	LRUVEC_CGROUP_CONGESTED,
351 	LRUVEC_NODE_CONGESTED,
352 };
353 
354 #endif /* !__GENERATING_BOUNDS_H */
355 
356 /*
357  * Evictable folios are divided into multiple generations. The youngest and the
358  * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
359  * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
360  * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
361  * corresponding generation. The gen counter in folio->flags stores gen+1 while
362  * a folio is on one of lrugen->folios[]. Otherwise it stores 0.
363  *
364  * After a folio is faulted in, the aging needs to check the accessed bit at
365  * least twice before handing this folio over to the eviction. The first check
366  * clears the accessed bit from the initial fault; the second check makes sure
367  * this folio hasn't been used since then. This process, AKA second chance,
368  * requires a minimum of two generations, hence MIN_NR_GENS. And to maintain ABI
369  * compatibility with the active/inactive LRU, e.g., /proc/vmstat, these two
370  * generations are considered active; the rest of generations, if they exist,
371  * are considered inactive. See lru_gen_is_active().
372  *
373  * PG_active is always cleared while a folio is on one of lrugen->folios[] so
374  * that the sliding window needs not to worry about it. And it's set again when
375  * a folio considered active is isolated for non-reclaiming purposes, e.g.,
376  * migration. See lru_gen_add_folio() and lru_gen_del_folio().
377  *
378  * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
379  * number of categories of the active/inactive LRU when keeping track of
380  * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
381  * in folio->flags, masked by LRU_GEN_MASK.
382  */
383 #define MIN_NR_GENS		2U
384 #define MAX_NR_GENS		4U
385 
386 /*
387  * Each generation is divided into multiple tiers. A folio accessed N times
388  * through file descriptors is in tier order_base_2(N). A folio in the first
389  * tier (N=0,1) is marked by PG_referenced unless it was faulted in through page
390  * tables or read ahead. A folio in the last tier (MAX_NR_TIERS-1) is marked by
391  * PG_workingset. A folio in any other tier (1<N<5) between the first and last
392  * is marked by additional bits of LRU_REFS_WIDTH in folio->flags.
393  *
394  * In contrast to moving across generations which requires the LRU lock, moving
395  * across tiers only involves atomic operations on folio->flags and therefore
396  * has a negligible cost in the buffered access path. In the eviction path,
397  * comparisons of refaulted/(evicted+protected) from the first tier and the rest
398  * infer whether folios accessed multiple times through file descriptors are
399  * statistically hot and thus worth protecting.
400  *
401  * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
402  * number of categories of the active/inactive LRU when keeping track of
403  * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
404  * folio->flags, masked by LRU_REFS_MASK.
405  */
406 #define MAX_NR_TIERS		4U
407 
408 #ifndef __GENERATING_BOUNDS_H
409 
410 #define LRU_GEN_MASK		((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
411 #define LRU_REFS_MASK		((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
412 
413 /*
414  * For folios accessed multiple times through file descriptors,
415  * lru_gen_inc_refs() sets additional bits of LRU_REFS_WIDTH in folio->flags
416  * after PG_referenced, then PG_workingset after LRU_REFS_WIDTH. After all its
417  * bits are set, i.e., LRU_REFS_FLAGS|BIT(PG_workingset), a folio is lazily
418  * promoted into the second oldest generation in the eviction path. And when
419  * folio_inc_gen() does that, it clears LRU_REFS_FLAGS so that
420  * lru_gen_inc_refs() can start over. Note that for this case, LRU_REFS_MASK is
421  * only valid when PG_referenced is set.
422  *
423  * For folios accessed multiple times through page tables, folio_update_gen()
424  * from a page table walk or lru_gen_set_refs() from a rmap walk sets
425  * PG_referenced after the accessed bit is cleared for the first time.
426  * Thereafter, those two paths set PG_workingset and promote folios to the
427  * youngest generation. Like folio_inc_gen(), folio_update_gen() also clears
428  * PG_referenced. Note that for this case, LRU_REFS_MASK is not used.
429  *
430  * For both cases above, after PG_workingset is set on a folio, it remains until
431  * this folio is either reclaimed, or "deactivated" by lru_gen_clear_refs(). It
432  * can be set again if lru_gen_test_recent() returns true upon a refault.
433  */
434 #define LRU_REFS_FLAGS		(LRU_REFS_MASK | BIT(PG_referenced))
435 
436 struct lruvec;
437 struct page_vma_mapped_walk;
438 
439 #ifdef CONFIG_LRU_GEN
440 
441 enum {
442 	LRU_GEN_ANON,
443 	LRU_GEN_FILE,
444 };
445 
446 enum {
447 	LRU_GEN_CORE,
448 	LRU_GEN_MM_WALK,
449 	LRU_GEN_NONLEAF_YOUNG,
450 	NR_LRU_GEN_CAPS
451 };
452 
453 #define MIN_LRU_BATCH		BITS_PER_LONG
454 #define MAX_LRU_BATCH		(MIN_LRU_BATCH * 64)
455 
456 /* whether to keep historical stats from evicted generations */
457 #ifdef CONFIG_LRU_GEN_STATS
458 #define NR_HIST_GENS		MAX_NR_GENS
459 #else
460 #define NR_HIST_GENS		1U
461 #endif
462 
463 /*
464  * The youngest generation number is stored in max_seq for both anon and file
465  * types as they are aged on an equal footing. The oldest generation numbers are
466  * stored in min_seq[] separately for anon and file types so that they can be
467  * incremented independently. Ideally min_seq[] are kept in sync when both anon
468  * and file types are evictable. However, to adapt to situations like extreme
469  * swappiness, they are allowed to be out of sync by at most
470  * MAX_NR_GENS-MIN_NR_GENS-1.
471  *
472  * The number of pages in each generation is eventually consistent and therefore
473  * can be transiently negative when reset_batch_size() is pending.
474  */
475 struct lru_gen_folio {
476 	/* the aging increments the youngest generation number */
477 	unsigned long max_seq;
478 	/* the eviction increments the oldest generation numbers */
479 	unsigned long min_seq[ANON_AND_FILE];
480 	/* the birth time of each generation in jiffies */
481 	unsigned long timestamps[MAX_NR_GENS];
482 	/* the multi-gen LRU lists, lazily sorted on eviction */
483 	struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
484 	/* the multi-gen LRU sizes, eventually consistent */
485 	long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
486 	/* the exponential moving average of refaulted */
487 	unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
488 	/* the exponential moving average of evicted+protected */
489 	unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
490 	/* can only be modified under the LRU lock */
491 	unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
492 	/* can be modified without holding the LRU lock */
493 	atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
494 	atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
495 	/* whether the multi-gen LRU is enabled */
496 	bool enabled;
497 	/* the memcg generation this lru_gen_folio belongs to */
498 	u8 gen;
499 	/* the list segment this lru_gen_folio belongs to */
500 	u8 seg;
501 	/* per-node lru_gen_folio list for global reclaim */
502 	struct hlist_nulls_node list;
503 };
504 
505 enum {
506 	MM_LEAF_TOTAL,		/* total leaf entries */
507 	MM_LEAF_YOUNG,		/* young leaf entries */
508 	MM_NONLEAF_FOUND,	/* non-leaf entries found in Bloom filters */
509 	MM_NONLEAF_ADDED,	/* non-leaf entries added to Bloom filters */
510 	NR_MM_STATS
511 };
512 
513 /* double-buffering Bloom filters */
514 #define NR_BLOOM_FILTERS	2
515 
516 struct lru_gen_mm_state {
517 	/* synced with max_seq after each iteration */
518 	unsigned long seq;
519 	/* where the current iteration continues after */
520 	struct list_head *head;
521 	/* where the last iteration ended before */
522 	struct list_head *tail;
523 	/* Bloom filters flip after each iteration */
524 	unsigned long *filters[NR_BLOOM_FILTERS];
525 	/* the mm stats for debugging */
526 	unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
527 };
528 
529 struct lru_gen_mm_walk {
530 	/* the lruvec under reclaim */
531 	struct lruvec *lruvec;
532 	/* max_seq from lru_gen_folio: can be out of date */
533 	unsigned long seq;
534 	/* the next address within an mm to scan */
535 	unsigned long next_addr;
536 	/* to batch promoted pages */
537 	int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
538 	/* to batch the mm stats */
539 	int mm_stats[NR_MM_STATS];
540 	/* total batched items */
541 	int batched;
542 	int swappiness;
543 	bool force_scan;
544 };
545 
546 /*
547  * For each node, memcgs are divided into two generations: the old and the
548  * young. For each generation, memcgs are randomly sharded into multiple bins
549  * to improve scalability. For each bin, the hlist_nulls is virtually divided
550  * into three segments: the head, the tail and the default.
551  *
552  * An onlining memcg is added to the tail of a random bin in the old generation.
553  * The eviction starts at the head of a random bin in the old generation. The
554  * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
555  * the old generation, is incremented when all its bins become empty.
556  *
557  * There are four operations:
558  * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its
559  *    current generation (old or young) and updates its "seg" to "head";
560  * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its
561  *    current generation (old or young) and updates its "seg" to "tail";
562  * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old
563  *    generation, updates its "gen" to "old" and resets its "seg" to "default";
564  * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the
565  *    young generation, updates its "gen" to "young" and resets its "seg" to
566  *    "default".
567  *
568  * The events that trigger the above operations are:
569  * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
570  * 2. The first attempt to reclaim a memcg below low, which triggers
571  *    MEMCG_LRU_TAIL;
572  * 3. The first attempt to reclaim a memcg offlined or below reclaimable size
573  *    threshold, which triggers MEMCG_LRU_TAIL;
574  * 4. The second attempt to reclaim a memcg offlined or below reclaimable size
575  *    threshold, which triggers MEMCG_LRU_YOUNG;
576  * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG;
577  * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
578  * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD.
579  *
580  * Notes:
581  * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing
582  *    of their max_seq counters ensures the eventual fairness to all eligible
583  *    memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
584  * 2. There are only two valid generations: old (seq) and young (seq+1).
585  *    MEMCG_NR_GENS is set to three so that when reading the generation counter
586  *    locklessly, a stale value (seq-1) does not wraparound to young.
587  */
588 #define MEMCG_NR_GENS	3
589 #define MEMCG_NR_BINS	8
590 
591 struct lru_gen_memcg {
592 	/* the per-node memcg generation counter */
593 	unsigned long seq;
594 	/* each memcg has one lru_gen_folio per node */
595 	unsigned long nr_memcgs[MEMCG_NR_GENS];
596 	/* per-node lru_gen_folio list for global reclaim */
597 	struct hlist_nulls_head	fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
598 	/* protects the above */
599 	spinlock_t lock;
600 };
601 
602 void lru_gen_init_pgdat(struct pglist_data *pgdat);
603 void lru_gen_init_lruvec(struct lruvec *lruvec);
604 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
605 
606 void lru_gen_init_memcg(struct mem_cgroup *memcg);
607 void lru_gen_exit_memcg(struct mem_cgroup *memcg);
608 void lru_gen_online_memcg(struct mem_cgroup *memcg);
609 void lru_gen_offline_memcg(struct mem_cgroup *memcg);
610 void lru_gen_release_memcg(struct mem_cgroup *memcg);
611 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid);
612 
613 #else /* !CONFIG_LRU_GEN */
614 
615 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
616 {
617 }
618 
619 static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
620 {
621 }
622 
623 static inline bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
624 {
625 	return false;
626 }
627 
628 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
629 {
630 }
631 
632 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
633 {
634 }
635 
636 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
637 {
638 }
639 
640 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
641 {
642 }
643 
644 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
645 {
646 }
647 
648 static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
649 {
650 }
651 
652 #endif /* CONFIG_LRU_GEN */
653 
654 struct lruvec {
655 	struct list_head		lists[NR_LRU_LISTS];
656 	/* per lruvec lru_lock for memcg */
657 	spinlock_t			lru_lock;
658 	/*
659 	 * These track the cost of reclaiming one LRU - file or anon -
660 	 * over the other. As the observed cost of reclaiming one LRU
661 	 * increases, the reclaim scan balance tips toward the other.
662 	 */
663 	unsigned long			anon_cost;
664 	unsigned long			file_cost;
665 	/* Non-resident age, driven by LRU movement */
666 	atomic_long_t			nonresident_age;
667 	/* Refaults at the time of last reclaim cycle */
668 	unsigned long			refaults[ANON_AND_FILE];
669 	/* Various lruvec state flags (enum lruvec_flags) */
670 	unsigned long			flags;
671 #ifdef CONFIG_LRU_GEN
672 	/* evictable pages divided into generations */
673 	struct lru_gen_folio		lrugen;
674 #ifdef CONFIG_LRU_GEN_WALKS_MMU
675 	/* to concurrently iterate lru_gen_mm_list */
676 	struct lru_gen_mm_state		mm_state;
677 #endif
678 #endif /* CONFIG_LRU_GEN */
679 #ifdef CONFIG_MEMCG
680 	struct pglist_data *pgdat;
681 #endif
682 	struct zswap_lruvec_state zswap_lruvec_state;
683 };
684 
685 /* Isolate for asynchronous migration */
686 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
687 /* Isolate unevictable pages */
688 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
689 
690 /* LRU Isolation modes. */
691 typedef unsigned __bitwise isolate_mode_t;
692 
693 enum zone_watermarks {
694 	WMARK_MIN,
695 	WMARK_LOW,
696 	WMARK_HIGH,
697 	WMARK_PROMO,
698 	NR_WMARK
699 };
700 
701 /*
702  * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. Two additional lists
703  * are added for THP. One PCP list is used by GPF_MOVABLE, and the other PCP list
704  * is used by GFP_UNMOVABLE and GFP_RECLAIMABLE.
705  */
706 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
707 #define NR_PCP_THP 2
708 #else
709 #define NR_PCP_THP 0
710 #endif
711 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
712 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
713 
714 /*
715  * Flags used in pcp->flags field.
716  *
717  * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the
718  * previous page freeing.  To avoid to drain PCP for an accident
719  * high-order page freeing.
720  *
721  * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before
722  * draining PCP for consecutive high-order pages freeing without
723  * allocation if data cache slice of CPU is large enough.  To reduce
724  * zone lock contention and keep cache-hot pages reusing.
725  */
726 #define	PCPF_PREV_FREE_HIGH_ORDER	BIT(0)
727 #define	PCPF_FREE_HIGH_BATCH		BIT(1)
728 
729 struct per_cpu_pages {
730 	spinlock_t lock;	/* Protects lists field */
731 	int count;		/* number of pages in the list */
732 	int high;		/* high watermark, emptying needed */
733 	int high_min;		/* min high watermark */
734 	int high_max;		/* max high watermark */
735 	int batch;		/* chunk size for buddy add/remove */
736 	u8 flags;		/* protected by pcp->lock */
737 	u8 alloc_factor;	/* batch scaling factor during allocate */
738 #ifdef CONFIG_NUMA
739 	u8 expire;		/* When 0, remote pagesets are drained */
740 #endif
741 	short free_count;	/* consecutive free count */
742 
743 	/* Lists of pages, one per migrate type stored on the pcp-lists */
744 	struct list_head lists[NR_PCP_LISTS];
745 } ____cacheline_aligned_in_smp;
746 
747 struct per_cpu_zonestat {
748 #ifdef CONFIG_SMP
749 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
750 	s8 stat_threshold;
751 #endif
752 #ifdef CONFIG_NUMA
753 	/*
754 	 * Low priority inaccurate counters that are only folded
755 	 * on demand. Use a large type to avoid the overhead of
756 	 * folding during refresh_cpu_vm_stats.
757 	 */
758 	unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
759 #endif
760 };
761 
762 struct per_cpu_nodestat {
763 	s8 stat_threshold;
764 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
765 };
766 
767 #endif /* !__GENERATING_BOUNDS.H */
768 
769 enum zone_type {
770 	/*
771 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
772 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
773 	 * On architectures where this area covers the whole 32 bit address
774 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
775 	 * DMA addressing constraints. This distinction is important as a 32bit
776 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
777 	 * platforms may need both zones as they support peripherals with
778 	 * different DMA addressing limitations.
779 	 */
780 #ifdef CONFIG_ZONE_DMA
781 	ZONE_DMA,
782 #endif
783 #ifdef CONFIG_ZONE_DMA32
784 	ZONE_DMA32,
785 #endif
786 	/*
787 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
788 	 * performed on pages in ZONE_NORMAL if the DMA devices support
789 	 * transfers to all addressable memory.
790 	 */
791 	ZONE_NORMAL,
792 #ifdef CONFIG_HIGHMEM
793 	/*
794 	 * A memory area that is only addressable by the kernel through
795 	 * mapping portions into its own address space. This is for example
796 	 * used by i386 to allow the kernel to address the memory beyond
797 	 * 900MB. The kernel will set up special mappings (page
798 	 * table entries on i386) for each page that the kernel needs to
799 	 * access.
800 	 */
801 	ZONE_HIGHMEM,
802 #endif
803 	/*
804 	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
805 	 * movable pages with few exceptional cases described below. Main use
806 	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
807 	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
808 	 * to increase the number of THP/huge pages. Notable special cases are:
809 	 *
810 	 * 1. Pinned pages: (long-term) pinning of movable pages might
811 	 *    essentially turn such pages unmovable. Therefore, we do not allow
812 	 *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
813 	 *    faulted, they come from the right zone right away. However, it is
814 	 *    still possible that address space already has pages in
815 	 *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
816 	 *    touches that memory before pinning). In such case we migrate them
817 	 *    to a different zone. When migration fails - pinning fails.
818 	 * 2. memblock allocations: kernelcore/movablecore setups might create
819 	 *    situations where ZONE_MOVABLE contains unmovable allocations
820 	 *    after boot. Memory offlining and allocations fail early.
821 	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
822 	 *    situations where ZONE_MOVABLE contains memory holes after boot,
823 	 *    for example, if we have sections that are only partially
824 	 *    populated. Memory offlining and allocations fail early.
825 	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
826 	 *    memory offlining, such pages cannot be allocated.
827 	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
828 	 *    hotplugged memory blocks might only partially be managed by the
829 	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
830 	 *    parts not manged by the buddy are unmovable PG_offline pages. In
831 	 *    some cases (virtio-mem), such pages can be skipped during
832 	 *    memory offlining, however, cannot be moved/allocated. These
833 	 *    techniques might use alloc_contig_range() to hide previously
834 	 *    exposed pages from the buddy again (e.g., to implement some sort
835 	 *    of memory unplug in virtio-mem).
836 	 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
837 	 *    situations where ZERO_PAGE(0) which is allocated differently
838 	 *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
839 	 *    cannot be migrated.
840 	 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
841 	 *    memory to the MOVABLE zone, the vmemmap pages are also placed in
842 	 *    such zone. Such pages cannot be really moved around as they are
843 	 *    self-stored in the range, but they are treated as movable when
844 	 *    the range they describe is about to be offlined.
845 	 *
846 	 * In general, no unmovable allocations that degrade memory offlining
847 	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
848 	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
849 	 * if has_unmovable_pages() states that there are no unmovable pages,
850 	 * there can be false negatives).
851 	 */
852 	ZONE_MOVABLE,
853 #ifdef CONFIG_ZONE_DEVICE
854 	ZONE_DEVICE,
855 #endif
856 	__MAX_NR_ZONES
857 
858 };
859 
860 #ifndef __GENERATING_BOUNDS_H
861 
862 #define ASYNC_AND_SYNC 2
863 
864 struct zone {
865 	/* Read-mostly fields */
866 
867 	/* zone watermarks, access with *_wmark_pages(zone) macros */
868 	unsigned long _watermark[NR_WMARK];
869 	unsigned long watermark_boost;
870 
871 	unsigned long nr_reserved_highatomic;
872 	unsigned long nr_free_highatomic;
873 
874 	/*
875 	 * We don't know if the memory that we're going to allocate will be
876 	 * freeable or/and it will be released eventually, so to avoid totally
877 	 * wasting several GB of ram we must reserve some of the lower zone
878 	 * memory (otherwise we risk to run OOM on the lower zones despite
879 	 * there being tons of freeable ram on the higher zones).  This array is
880 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
881 	 * changes.
882 	 */
883 	long lowmem_reserve[MAX_NR_ZONES];
884 
885 #ifdef CONFIG_NUMA
886 	int node;
887 #endif
888 	struct pglist_data	*zone_pgdat;
889 	struct per_cpu_pages	__percpu *per_cpu_pageset;
890 	struct per_cpu_zonestat	__percpu *per_cpu_zonestats;
891 	/*
892 	 * the high and batch values are copied to individual pagesets for
893 	 * faster access
894 	 */
895 	int pageset_high_min;
896 	int pageset_high_max;
897 	int pageset_batch;
898 
899 #ifndef CONFIG_SPARSEMEM
900 	/*
901 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
902 	 * In SPARSEMEM, this map is stored in struct mem_section
903 	 */
904 	unsigned long		*pageblock_flags;
905 #endif /* CONFIG_SPARSEMEM */
906 
907 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
908 	unsigned long		zone_start_pfn;
909 
910 	/*
911 	 * spanned_pages is the total pages spanned by the zone, including
912 	 * holes, which is calculated as:
913 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
914 	 *
915 	 * present_pages is physical pages existing within the zone, which
916 	 * is calculated as:
917 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
918 	 *
919 	 * present_early_pages is present pages existing within the zone
920 	 * located on memory available since early boot, excluding hotplugged
921 	 * memory.
922 	 *
923 	 * managed_pages is present pages managed by the buddy system, which
924 	 * is calculated as (reserved_pages includes pages allocated by the
925 	 * bootmem allocator):
926 	 *	managed_pages = present_pages - reserved_pages;
927 	 *
928 	 * cma pages is present pages that are assigned for CMA use
929 	 * (MIGRATE_CMA).
930 	 *
931 	 * So present_pages may be used by memory hotplug or memory power
932 	 * management logic to figure out unmanaged pages by checking
933 	 * (present_pages - managed_pages). And managed_pages should be used
934 	 * by page allocator and vm scanner to calculate all kinds of watermarks
935 	 * and thresholds.
936 	 *
937 	 * Locking rules:
938 	 *
939 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
940 	 * It is a seqlock because it has to be read outside of zone->lock,
941 	 * and it is done in the main allocator path.  But, it is written
942 	 * quite infrequently.
943 	 *
944 	 * The span_seq lock is declared along with zone->lock because it is
945 	 * frequently read in proximity to zone->lock.  It's good to
946 	 * give them a chance of being in the same cacheline.
947 	 *
948 	 * Write access to present_pages at runtime should be protected by
949 	 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
950 	 * present_pages should use get_online_mems() to get a stable value.
951 	 */
952 	atomic_long_t		managed_pages;
953 	unsigned long		spanned_pages;
954 	unsigned long		present_pages;
955 #if defined(CONFIG_MEMORY_HOTPLUG)
956 	unsigned long		present_early_pages;
957 #endif
958 #ifdef CONFIG_CMA
959 	unsigned long		cma_pages;
960 #endif
961 
962 	const char		*name;
963 
964 #ifdef CONFIG_MEMORY_ISOLATION
965 	/*
966 	 * Number of isolated pageblock. It is used to solve incorrect
967 	 * freepage counting problem due to racy retrieving migratetype
968 	 * of pageblock. Protected by zone->lock.
969 	 */
970 	unsigned long		nr_isolate_pageblock;
971 #endif
972 
973 #ifdef CONFIG_MEMORY_HOTPLUG
974 	/* see spanned/present_pages for more description */
975 	seqlock_t		span_seqlock;
976 #endif
977 
978 	int initialized;
979 
980 	/* Write-intensive fields used from the page allocator */
981 	CACHELINE_PADDING(_pad1_);
982 
983 	/* free areas of different sizes */
984 	struct free_area	free_area[NR_PAGE_ORDERS];
985 
986 #ifdef CONFIG_UNACCEPTED_MEMORY
987 	/* Pages to be accepted. All pages on the list are MAX_PAGE_ORDER */
988 	struct list_head	unaccepted_pages;
989 
990 	/* To be called once the last page in the zone is accepted */
991 	struct work_struct	unaccepted_cleanup;
992 #endif
993 
994 	/* zone flags, see below */
995 	unsigned long		flags;
996 
997 	/* Primarily protects free_area */
998 	spinlock_t		lock;
999 
1000 	/* Pages to be freed when next trylock succeeds */
1001 	struct llist_head	trylock_free_pages;
1002 
1003 	/* Write-intensive fields used by compaction and vmstats. */
1004 	CACHELINE_PADDING(_pad2_);
1005 
1006 	/*
1007 	 * When free pages are below this point, additional steps are taken
1008 	 * when reading the number of free pages to avoid per-cpu counter
1009 	 * drift allowing watermarks to be breached
1010 	 */
1011 	unsigned long percpu_drift_mark;
1012 
1013 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
1014 	/* pfn where compaction free scanner should start */
1015 	unsigned long		compact_cached_free_pfn;
1016 	/* pfn where compaction migration scanner should start */
1017 	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC];
1018 	unsigned long		compact_init_migrate_pfn;
1019 	unsigned long		compact_init_free_pfn;
1020 #endif
1021 
1022 #ifdef CONFIG_COMPACTION
1023 	/*
1024 	 * On compaction failure, 1<<compact_defer_shift compactions
1025 	 * are skipped before trying again. The number attempted since
1026 	 * last failure is tracked with compact_considered.
1027 	 * compact_order_failed is the minimum compaction failed order.
1028 	 */
1029 	unsigned int		compact_considered;
1030 	unsigned int		compact_defer_shift;
1031 	int			compact_order_failed;
1032 #endif
1033 
1034 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
1035 	/* Set to true when the PG_migrate_skip bits should be cleared */
1036 	bool			compact_blockskip_flush;
1037 #endif
1038 
1039 	bool			contiguous;
1040 
1041 	CACHELINE_PADDING(_pad3_);
1042 	/* Zone statistics */
1043 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
1044 	atomic_long_t		vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
1045 } ____cacheline_internodealigned_in_smp;
1046 
1047 enum pgdat_flags {
1048 	PGDAT_DIRTY,			/* reclaim scanning has recently found
1049 					 * many dirty file pages at the tail
1050 					 * of the LRU.
1051 					 */
1052 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
1053 					 * many pages under writeback
1054 					 */
1055 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
1056 };
1057 
1058 enum zone_flags {
1059 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
1060 					 * Cleared when kswapd is woken.
1061 					 */
1062 	ZONE_RECLAIM_ACTIVE,		/* kswapd may be scanning the zone. */
1063 	ZONE_BELOW_HIGH,		/* zone is below high watermark. */
1064 };
1065 
1066 static inline unsigned long wmark_pages(const struct zone *z,
1067 					enum zone_watermarks w)
1068 {
1069 	return z->_watermark[w] + z->watermark_boost;
1070 }
1071 
1072 static inline unsigned long min_wmark_pages(const struct zone *z)
1073 {
1074 	return wmark_pages(z, WMARK_MIN);
1075 }
1076 
1077 static inline unsigned long low_wmark_pages(const struct zone *z)
1078 {
1079 	return wmark_pages(z, WMARK_LOW);
1080 }
1081 
1082 static inline unsigned long high_wmark_pages(const struct zone *z)
1083 {
1084 	return wmark_pages(z, WMARK_HIGH);
1085 }
1086 
1087 static inline unsigned long promo_wmark_pages(const struct zone *z)
1088 {
1089 	return wmark_pages(z, WMARK_PROMO);
1090 }
1091 
1092 static inline unsigned long zone_managed_pages(struct zone *zone)
1093 {
1094 	return (unsigned long)atomic_long_read(&zone->managed_pages);
1095 }
1096 
1097 static inline unsigned long zone_cma_pages(struct zone *zone)
1098 {
1099 #ifdef CONFIG_CMA
1100 	return zone->cma_pages;
1101 #else
1102 	return 0;
1103 #endif
1104 }
1105 
1106 static inline unsigned long zone_end_pfn(const struct zone *zone)
1107 {
1108 	return zone->zone_start_pfn + zone->spanned_pages;
1109 }
1110 
1111 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1112 {
1113 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1114 }
1115 
1116 static inline bool zone_is_initialized(struct zone *zone)
1117 {
1118 	return zone->initialized;
1119 }
1120 
1121 static inline bool zone_is_empty(struct zone *zone)
1122 {
1123 	return zone->spanned_pages == 0;
1124 }
1125 
1126 #ifndef BUILD_VDSO32_64
1127 /*
1128  * The zone field is never updated after free_area_init_core()
1129  * sets it, so none of the operations on it need to be atomic.
1130  */
1131 
1132 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1133 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1134 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1135 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1136 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1137 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1138 #define LRU_GEN_PGOFF		(KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1139 #define LRU_REFS_PGOFF		(LRU_GEN_PGOFF - LRU_REFS_WIDTH)
1140 
1141 /*
1142  * Define the bit shifts to access each section.  For non-existent
1143  * sections we define the shift as 0; that plus a 0 mask ensures
1144  * the compiler will optimise away reference to them.
1145  */
1146 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1147 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1148 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1149 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1150 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1151 
1152 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1153 #ifdef NODE_NOT_IN_PAGE_FLAGS
1154 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1155 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1156 						SECTIONS_PGOFF : ZONES_PGOFF)
1157 #else
1158 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1159 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF) ? \
1160 						NODES_PGOFF : ZONES_PGOFF)
1161 #endif
1162 
1163 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1164 
1165 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1166 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1167 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1168 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1169 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1170 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1171 
1172 static inline enum zone_type page_zonenum(const struct page *page)
1173 {
1174 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1175 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1176 }
1177 
1178 static inline enum zone_type folio_zonenum(const struct folio *folio)
1179 {
1180 	return page_zonenum(&folio->page);
1181 }
1182 
1183 #ifdef CONFIG_ZONE_DEVICE
1184 static inline bool is_zone_device_page(const struct page *page)
1185 {
1186 	return page_zonenum(page) == ZONE_DEVICE;
1187 }
1188 
1189 static inline struct dev_pagemap *page_pgmap(const struct page *page)
1190 {
1191 	VM_WARN_ON_ONCE_PAGE(!is_zone_device_page(page), page);
1192 	return page_folio(page)->pgmap;
1193 }
1194 
1195 /*
1196  * Consecutive zone device pages should not be merged into the same sgl
1197  * or bvec segment with other types of pages or if they belong to different
1198  * pgmaps. Otherwise getting the pgmap of a given segment is not possible
1199  * without scanning the entire segment. This helper returns true either if
1200  * both pages are not zone device pages or both pages are zone device pages
1201  * with the same pgmap.
1202  */
1203 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1204 						     const struct page *b)
1205 {
1206 	if (is_zone_device_page(a) != is_zone_device_page(b))
1207 		return false;
1208 	if (!is_zone_device_page(a))
1209 		return true;
1210 	return page_pgmap(a) == page_pgmap(b);
1211 }
1212 
1213 extern void memmap_init_zone_device(struct zone *, unsigned long,
1214 				    unsigned long, struct dev_pagemap *);
1215 #else
1216 static inline bool is_zone_device_page(const struct page *page)
1217 {
1218 	return false;
1219 }
1220 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1221 						     const struct page *b)
1222 {
1223 	return true;
1224 }
1225 static inline struct dev_pagemap *page_pgmap(const struct page *page)
1226 {
1227 	return NULL;
1228 }
1229 #endif
1230 
1231 static inline bool folio_is_zone_device(const struct folio *folio)
1232 {
1233 	return is_zone_device_page(&folio->page);
1234 }
1235 
1236 static inline bool is_zone_movable_page(const struct page *page)
1237 {
1238 	return page_zonenum(page) == ZONE_MOVABLE;
1239 }
1240 
1241 static inline bool folio_is_zone_movable(const struct folio *folio)
1242 {
1243 	return folio_zonenum(folio) == ZONE_MOVABLE;
1244 }
1245 #endif
1246 
1247 /*
1248  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1249  * intersection with the given zone
1250  */
1251 static inline bool zone_intersects(struct zone *zone,
1252 		unsigned long start_pfn, unsigned long nr_pages)
1253 {
1254 	if (zone_is_empty(zone))
1255 		return false;
1256 	if (start_pfn >= zone_end_pfn(zone) ||
1257 	    start_pfn + nr_pages <= zone->zone_start_pfn)
1258 		return false;
1259 
1260 	return true;
1261 }
1262 
1263 /*
1264  * The "priority" of VM scanning is how much of the queues we will scan in one
1265  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1266  * queues ("queue_length >> 12") during an aging round.
1267  */
1268 #define DEF_PRIORITY 12
1269 
1270 /* Maximum number of zones on a zonelist */
1271 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1272 
1273 enum {
1274 	ZONELIST_FALLBACK,	/* zonelist with fallback */
1275 #ifdef CONFIG_NUMA
1276 	/*
1277 	 * The NUMA zonelists are doubled because we need zonelists that
1278 	 * restrict the allocations to a single node for __GFP_THISNODE.
1279 	 */
1280 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
1281 #endif
1282 	MAX_ZONELISTS
1283 };
1284 
1285 /*
1286  * This struct contains information about a zone in a zonelist. It is stored
1287  * here to avoid dereferences into large structures and lookups of tables
1288  */
1289 struct zoneref {
1290 	struct zone *zone;	/* Pointer to actual zone */
1291 	int zone_idx;		/* zone_idx(zoneref->zone) */
1292 };
1293 
1294 /*
1295  * One allocation request operates on a zonelist. A zonelist
1296  * is a list of zones, the first one is the 'goal' of the
1297  * allocation, the other zones are fallback zones, in decreasing
1298  * priority.
1299  *
1300  * To speed the reading of the zonelist, the zonerefs contain the zone index
1301  * of the entry being read. Helper functions to access information given
1302  * a struct zoneref are
1303  *
1304  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
1305  * zonelist_zone_idx()	- Return the index of the zone for an entry
1306  * zonelist_node_idx()	- Return the index of the node for an entry
1307  */
1308 struct zonelist {
1309 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1310 };
1311 
1312 /*
1313  * The array of struct pages for flatmem.
1314  * It must be declared for SPARSEMEM as well because there are configurations
1315  * that rely on that.
1316  */
1317 extern struct page *mem_map;
1318 
1319 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1320 struct deferred_split {
1321 	spinlock_t split_queue_lock;
1322 	struct list_head split_queue;
1323 	unsigned long split_queue_len;
1324 };
1325 #endif
1326 
1327 #ifdef CONFIG_MEMORY_FAILURE
1328 /*
1329  * Per NUMA node memory failure handling statistics.
1330  */
1331 struct memory_failure_stats {
1332 	/*
1333 	 * Number of raw pages poisoned.
1334 	 * Cases not accounted: memory outside kernel control, offline page,
1335 	 * arch-specific memory_failure (SGX), hwpoison_filter() filtered
1336 	 * error events, and unpoison actions from hwpoison_unpoison.
1337 	 */
1338 	unsigned long total;
1339 	/*
1340 	 * Recovery results of poisoned raw pages handled by memory_failure,
1341 	 * in sync with mf_result.
1342 	 * total = ignored + failed + delayed + recovered.
1343 	 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
1344 	 */
1345 	unsigned long ignored;
1346 	unsigned long failed;
1347 	unsigned long delayed;
1348 	unsigned long recovered;
1349 };
1350 #endif
1351 
1352 /*
1353  * On NUMA machines, each NUMA node would have a pg_data_t to describe
1354  * it's memory layout. On UMA machines there is a single pglist_data which
1355  * describes the whole memory.
1356  *
1357  * Memory statistics and page replacement data structures are maintained on a
1358  * per-zone basis.
1359  */
1360 typedef struct pglist_data {
1361 	/*
1362 	 * node_zones contains just the zones for THIS node. Not all of the
1363 	 * zones may be populated, but it is the full list. It is referenced by
1364 	 * this node's node_zonelists as well as other node's node_zonelists.
1365 	 */
1366 	struct zone node_zones[MAX_NR_ZONES];
1367 
1368 	/*
1369 	 * node_zonelists contains references to all zones in all nodes.
1370 	 * Generally the first zones will be references to this node's
1371 	 * node_zones.
1372 	 */
1373 	struct zonelist node_zonelists[MAX_ZONELISTS];
1374 
1375 	int nr_zones; /* number of populated zones in this node */
1376 #ifdef CONFIG_FLATMEM	/* means !SPARSEMEM */
1377 	struct page *node_mem_map;
1378 #ifdef CONFIG_PAGE_EXTENSION
1379 	struct page_ext *node_page_ext;
1380 #endif
1381 #endif
1382 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
1383 	/*
1384 	 * Must be held any time you expect node_start_pfn,
1385 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
1386 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1387 	 * init.
1388 	 *
1389 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
1390 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1391 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
1392 	 *
1393 	 * Nests above zone->lock and zone->span_seqlock
1394 	 */
1395 	spinlock_t node_size_lock;
1396 #endif
1397 	unsigned long node_start_pfn;
1398 	unsigned long node_present_pages; /* total number of physical pages */
1399 	unsigned long node_spanned_pages; /* total size of physical page
1400 					     range, including holes */
1401 	int node_id;
1402 	wait_queue_head_t kswapd_wait;
1403 	wait_queue_head_t pfmemalloc_wait;
1404 
1405 	/* workqueues for throttling reclaim for different reasons. */
1406 	wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1407 
1408 	atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1409 	unsigned long nr_reclaim_start;	/* nr pages written while throttled
1410 					 * when throttling started. */
1411 #ifdef CONFIG_MEMORY_HOTPLUG
1412 	struct mutex kswapd_lock;
1413 #endif
1414 	struct task_struct *kswapd;	/* Protected by kswapd_lock */
1415 	int kswapd_order;
1416 	enum zone_type kswapd_highest_zoneidx;
1417 
1418 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
1419 
1420 #ifdef CONFIG_COMPACTION
1421 	int kcompactd_max_order;
1422 	enum zone_type kcompactd_highest_zoneidx;
1423 	wait_queue_head_t kcompactd_wait;
1424 	struct task_struct *kcompactd;
1425 	bool proactive_compact_trigger;
1426 #endif
1427 	/*
1428 	 * This is a per-node reserve of pages that are not available
1429 	 * to userspace allocations.
1430 	 */
1431 	unsigned long		totalreserve_pages;
1432 
1433 #ifdef CONFIG_NUMA
1434 	/*
1435 	 * node reclaim becomes active if more unmapped pages exist.
1436 	 */
1437 	unsigned long		min_unmapped_pages;
1438 	unsigned long		min_slab_pages;
1439 #endif /* CONFIG_NUMA */
1440 
1441 	/* Write-intensive fields used by page reclaim */
1442 	CACHELINE_PADDING(_pad1_);
1443 
1444 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1445 	/*
1446 	 * If memory initialisation on large machines is deferred then this
1447 	 * is the first PFN that needs to be initialised.
1448 	 */
1449 	unsigned long first_deferred_pfn;
1450 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1451 
1452 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1453 	struct deferred_split deferred_split_queue;
1454 #endif
1455 
1456 #ifdef CONFIG_NUMA_BALANCING
1457 	/* start time in ms of current promote rate limit period */
1458 	unsigned int nbp_rl_start;
1459 	/* number of promote candidate pages at start time of current rate limit period */
1460 	unsigned long nbp_rl_nr_cand;
1461 	/* promote threshold in ms */
1462 	unsigned int nbp_threshold;
1463 	/* start time in ms of current promote threshold adjustment period */
1464 	unsigned int nbp_th_start;
1465 	/*
1466 	 * number of promote candidate pages at start time of current promote
1467 	 * threshold adjustment period
1468 	 */
1469 	unsigned long nbp_th_nr_cand;
1470 #endif
1471 	/* Fields commonly accessed by the page reclaim scanner */
1472 
1473 	/*
1474 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1475 	 *
1476 	 * Use mem_cgroup_lruvec() to look up lruvecs.
1477 	 */
1478 	struct lruvec		__lruvec;
1479 
1480 	unsigned long		flags;
1481 
1482 #ifdef CONFIG_LRU_GEN
1483 	/* kswap mm walk data */
1484 	struct lru_gen_mm_walk mm_walk;
1485 	/* lru_gen_folio list */
1486 	struct lru_gen_memcg memcg_lru;
1487 #endif
1488 
1489 	CACHELINE_PADDING(_pad2_);
1490 
1491 	/* Per-node vmstats */
1492 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1493 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
1494 #ifdef CONFIG_NUMA
1495 	struct memory_tier __rcu *memtier;
1496 #endif
1497 #ifdef CONFIG_MEMORY_FAILURE
1498 	struct memory_failure_stats mf_stats;
1499 #endif
1500 } pg_data_t;
1501 
1502 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
1503 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
1504 
1505 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
1506 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1507 
1508 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1509 {
1510 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1511 }
1512 
1513 #include <linux/memory_hotplug.h>
1514 
1515 void build_all_zonelists(pg_data_t *pgdat);
1516 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1517 		   enum zone_type highest_zoneidx);
1518 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1519 			 int highest_zoneidx, unsigned int alloc_flags,
1520 			 long free_pages);
1521 bool zone_watermark_ok(struct zone *z, unsigned int order,
1522 		unsigned long mark, int highest_zoneidx,
1523 		unsigned int alloc_flags);
1524 /*
1525  * Memory initialization context, use to differentiate memory added by
1526  * the platform statically or via memory hotplug interface.
1527  */
1528 enum meminit_context {
1529 	MEMINIT_EARLY,
1530 	MEMINIT_HOTPLUG,
1531 };
1532 
1533 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1534 				     unsigned long size);
1535 
1536 extern void lruvec_init(struct lruvec *lruvec);
1537 
1538 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1539 {
1540 #ifdef CONFIG_MEMCG
1541 	return lruvec->pgdat;
1542 #else
1543 	return container_of(lruvec, struct pglist_data, __lruvec);
1544 #endif
1545 }
1546 
1547 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
1548 int local_memory_node(int node_id);
1549 #else
1550 static inline int local_memory_node(int node_id) { return node_id; };
1551 #endif
1552 
1553 /*
1554  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1555  */
1556 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
1557 
1558 #ifdef CONFIG_ZONE_DEVICE
1559 static inline bool zone_is_zone_device(struct zone *zone)
1560 {
1561 	return zone_idx(zone) == ZONE_DEVICE;
1562 }
1563 #else
1564 static inline bool zone_is_zone_device(struct zone *zone)
1565 {
1566 	return false;
1567 }
1568 #endif
1569 
1570 /*
1571  * Returns true if a zone has pages managed by the buddy allocator.
1572  * All the reclaim decisions have to use this function rather than
1573  * populated_zone(). If the whole zone is reserved then we can easily
1574  * end up with populated_zone() && !managed_zone().
1575  */
1576 static inline bool managed_zone(struct zone *zone)
1577 {
1578 	return zone_managed_pages(zone);
1579 }
1580 
1581 /* Returns true if a zone has memory */
1582 static inline bool populated_zone(struct zone *zone)
1583 {
1584 	return zone->present_pages;
1585 }
1586 
1587 #ifdef CONFIG_NUMA
1588 static inline int zone_to_nid(struct zone *zone)
1589 {
1590 	return zone->node;
1591 }
1592 
1593 static inline void zone_set_nid(struct zone *zone, int nid)
1594 {
1595 	zone->node = nid;
1596 }
1597 #else
1598 static inline int zone_to_nid(struct zone *zone)
1599 {
1600 	return 0;
1601 }
1602 
1603 static inline void zone_set_nid(struct zone *zone, int nid) {}
1604 #endif
1605 
1606 extern int movable_zone;
1607 
1608 static inline int is_highmem_idx(enum zone_type idx)
1609 {
1610 #ifdef CONFIG_HIGHMEM
1611 	return (idx == ZONE_HIGHMEM ||
1612 		(idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1613 #else
1614 	return 0;
1615 #endif
1616 }
1617 
1618 /**
1619  * is_highmem - helper function to quickly check if a struct zone is a
1620  *              highmem zone or not.  This is an attempt to keep references
1621  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1622  * @zone: pointer to struct zone variable
1623  * Return: 1 for a highmem zone, 0 otherwise
1624  */
1625 static inline int is_highmem(struct zone *zone)
1626 {
1627 	return is_highmem_idx(zone_idx(zone));
1628 }
1629 
1630 #ifdef CONFIG_ZONE_DMA
1631 bool has_managed_dma(void);
1632 #else
1633 static inline bool has_managed_dma(void)
1634 {
1635 	return false;
1636 }
1637 #endif
1638 
1639 
1640 #ifndef CONFIG_NUMA
1641 
1642 extern struct pglist_data contig_page_data;
1643 static inline struct pglist_data *NODE_DATA(int nid)
1644 {
1645 	return &contig_page_data;
1646 }
1647 
1648 #else /* CONFIG_NUMA */
1649 
1650 #include <asm/mmzone.h>
1651 
1652 #endif /* !CONFIG_NUMA */
1653 
1654 extern struct pglist_data *first_online_pgdat(void);
1655 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1656 extern struct zone *next_zone(struct zone *zone);
1657 
1658 /**
1659  * for_each_online_pgdat - helper macro to iterate over all online nodes
1660  * @pgdat: pointer to a pg_data_t variable
1661  */
1662 #define for_each_online_pgdat(pgdat)			\
1663 	for (pgdat = first_online_pgdat();		\
1664 	     pgdat;					\
1665 	     pgdat = next_online_pgdat(pgdat))
1666 /**
1667  * for_each_zone - helper macro to iterate over all memory zones
1668  * @zone: pointer to struct zone variable
1669  *
1670  * The user only needs to declare the zone variable, for_each_zone
1671  * fills it in.
1672  */
1673 #define for_each_zone(zone)			        \
1674 	for (zone = (first_online_pgdat())->node_zones; \
1675 	     zone;					\
1676 	     zone = next_zone(zone))
1677 
1678 #define for_each_populated_zone(zone)		        \
1679 	for (zone = (first_online_pgdat())->node_zones; \
1680 	     zone;					\
1681 	     zone = next_zone(zone))			\
1682 		if (!populated_zone(zone))		\
1683 			; /* do nothing */		\
1684 		else
1685 
1686 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1687 {
1688 	return zoneref->zone;
1689 }
1690 
1691 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1692 {
1693 	return zoneref->zone_idx;
1694 }
1695 
1696 static inline int zonelist_node_idx(struct zoneref *zoneref)
1697 {
1698 	return zone_to_nid(zoneref->zone);
1699 }
1700 
1701 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1702 					enum zone_type highest_zoneidx,
1703 					nodemask_t *nodes);
1704 
1705 /**
1706  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1707  * @z: The cursor used as a starting point for the search
1708  * @highest_zoneidx: The zone index of the highest zone to return
1709  * @nodes: An optional nodemask to filter the zonelist with
1710  *
1711  * This function returns the next zone at or below a given zone index that is
1712  * within the allowed nodemask using a cursor as the starting point for the
1713  * search. The zoneref returned is a cursor that represents the current zone
1714  * being examined. It should be advanced by one before calling
1715  * next_zones_zonelist again.
1716  *
1717  * Return: the next zone at or below highest_zoneidx within the allowed
1718  * nodemask using a cursor within a zonelist as a starting point
1719  */
1720 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1721 					enum zone_type highest_zoneidx,
1722 					nodemask_t *nodes)
1723 {
1724 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1725 		return z;
1726 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1727 }
1728 
1729 /**
1730  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1731  * @zonelist: The zonelist to search for a suitable zone
1732  * @highest_zoneidx: The zone index of the highest zone to return
1733  * @nodes: An optional nodemask to filter the zonelist with
1734  *
1735  * This function returns the first zone at or below a given zone index that is
1736  * within the allowed nodemask. The zoneref returned is a cursor that can be
1737  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1738  * one before calling.
1739  *
1740  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1741  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1742  * update due to cpuset modification.
1743  *
1744  * Return: Zoneref pointer for the first suitable zone found
1745  */
1746 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1747 					enum zone_type highest_zoneidx,
1748 					nodemask_t *nodes)
1749 {
1750 	return next_zones_zonelist(zonelist->_zonerefs,
1751 							highest_zoneidx, nodes);
1752 }
1753 
1754 /**
1755  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1756  * @zone: The current zone in the iterator
1757  * @z: The current pointer within zonelist->_zonerefs being iterated
1758  * @zlist: The zonelist being iterated
1759  * @highidx: The zone index of the highest zone to return
1760  * @nodemask: Nodemask allowed by the allocator
1761  *
1762  * This iterator iterates though all zones at or below a given zone index and
1763  * within a given nodemask
1764  */
1765 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1766 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1767 		zone;							\
1768 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1769 			zone = zonelist_zone(z))
1770 
1771 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1772 	for (zone = zonelist_zone(z);	\
1773 		zone;							\
1774 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1775 			zone = zonelist_zone(z))
1776 
1777 
1778 /**
1779  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1780  * @zone: The current zone in the iterator
1781  * @z: The current pointer within zonelist->zones being iterated
1782  * @zlist: The zonelist being iterated
1783  * @highidx: The zone index of the highest zone to return
1784  *
1785  * This iterator iterates though all zones at or below a given zone index.
1786  */
1787 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1788 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1789 
1790 /* Whether the 'nodes' are all movable nodes */
1791 static inline bool movable_only_nodes(nodemask_t *nodes)
1792 {
1793 	struct zonelist *zonelist;
1794 	struct zoneref *z;
1795 	int nid;
1796 
1797 	if (nodes_empty(*nodes))
1798 		return false;
1799 
1800 	/*
1801 	 * We can chose arbitrary node from the nodemask to get a
1802 	 * zonelist as they are interlinked. We just need to find
1803 	 * at least one zone that can satisfy kernel allocations.
1804 	 */
1805 	nid = first_node(*nodes);
1806 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1807 	z = first_zones_zonelist(zonelist, ZONE_NORMAL,	nodes);
1808 	return (!zonelist_zone(z)) ? true : false;
1809 }
1810 
1811 
1812 #ifdef CONFIG_SPARSEMEM
1813 #include <asm/sparsemem.h>
1814 #endif
1815 
1816 #ifdef CONFIG_FLATMEM
1817 #define pfn_to_nid(pfn)		(0)
1818 #endif
1819 
1820 #ifdef CONFIG_SPARSEMEM
1821 
1822 /*
1823  * PA_SECTION_SHIFT		physical address to/from section number
1824  * PFN_SECTION_SHIFT		pfn to/from section number
1825  */
1826 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1827 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1828 
1829 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1830 
1831 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1832 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1833 
1834 #define SECTION_BLOCKFLAGS_BITS \
1835 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1836 
1837 #if (MAX_PAGE_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS
1838 #error Allocator MAX_PAGE_ORDER exceeds SECTION_SIZE
1839 #endif
1840 
1841 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1842 {
1843 	return pfn >> PFN_SECTION_SHIFT;
1844 }
1845 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1846 {
1847 	return sec << PFN_SECTION_SHIFT;
1848 }
1849 
1850 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1851 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1852 
1853 #define SUBSECTION_SHIFT 21
1854 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1855 
1856 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1857 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1858 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1859 
1860 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1861 #error Subsection size exceeds section size
1862 #else
1863 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1864 #endif
1865 
1866 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1867 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1868 
1869 struct mem_section_usage {
1870 	struct rcu_head rcu;
1871 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1872 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1873 #endif
1874 	/* See declaration of similar field in struct zone */
1875 	unsigned long pageblock_flags[0];
1876 };
1877 
1878 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1879 
1880 struct page;
1881 struct page_ext;
1882 struct mem_section {
1883 	/*
1884 	 * This is, logically, a pointer to an array of struct
1885 	 * pages.  However, it is stored with some other magic.
1886 	 * (see sparse.c::sparse_init_one_section())
1887 	 *
1888 	 * Additionally during early boot we encode node id of
1889 	 * the location of the section here to guide allocation.
1890 	 * (see sparse.c::memory_present())
1891 	 *
1892 	 * Making it a UL at least makes someone do a cast
1893 	 * before using it wrong.
1894 	 */
1895 	unsigned long section_mem_map;
1896 
1897 	struct mem_section_usage *usage;
1898 #ifdef CONFIG_PAGE_EXTENSION
1899 	/*
1900 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1901 	 * section. (see page_ext.h about this.)
1902 	 */
1903 	struct page_ext *page_ext;
1904 	unsigned long pad;
1905 #endif
1906 	/*
1907 	 * WARNING: mem_section must be a power-of-2 in size for the
1908 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1909 	 */
1910 };
1911 
1912 #ifdef CONFIG_SPARSEMEM_EXTREME
1913 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1914 #else
1915 #define SECTIONS_PER_ROOT	1
1916 #endif
1917 
1918 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1919 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1920 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1921 
1922 #ifdef CONFIG_SPARSEMEM_EXTREME
1923 extern struct mem_section **mem_section;
1924 #else
1925 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1926 #endif
1927 
1928 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1929 {
1930 	return ms->usage->pageblock_flags;
1931 }
1932 
1933 static inline struct mem_section *__nr_to_section(unsigned long nr)
1934 {
1935 	unsigned long root = SECTION_NR_TO_ROOT(nr);
1936 
1937 	if (unlikely(root >= NR_SECTION_ROOTS))
1938 		return NULL;
1939 
1940 #ifdef CONFIG_SPARSEMEM_EXTREME
1941 	if (!mem_section || !mem_section[root])
1942 		return NULL;
1943 #endif
1944 	return &mem_section[root][nr & SECTION_ROOT_MASK];
1945 }
1946 extern size_t mem_section_usage_size(void);
1947 
1948 /*
1949  * We use the lower bits of the mem_map pointer to store
1950  * a little bit of information.  The pointer is calculated
1951  * as mem_map - section_nr_to_pfn(pnum).  The result is
1952  * aligned to the minimum alignment of the two values:
1953  *   1. All mem_map arrays are page-aligned.
1954  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1955  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1956  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1957  *      worst combination is powerpc with 256k pages,
1958  *      which results in PFN_SECTION_SHIFT equal 6.
1959  * To sum it up, at least 6 bits are available on all architectures.
1960  * However, we can exceed 6 bits on some other architectures except
1961  * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1962  * with the worst case of 64K pages on arm64) if we make sure the
1963  * exceeded bit is not applicable to powerpc.
1964  */
1965 enum {
1966 	SECTION_MARKED_PRESENT_BIT,
1967 	SECTION_HAS_MEM_MAP_BIT,
1968 	SECTION_IS_ONLINE_BIT,
1969 	SECTION_IS_EARLY_BIT,
1970 #ifdef CONFIG_ZONE_DEVICE
1971 	SECTION_TAINT_ZONE_DEVICE_BIT,
1972 #endif
1973 #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT
1974 	SECTION_IS_VMEMMAP_PREINIT_BIT,
1975 #endif
1976 	SECTION_MAP_LAST_BIT,
1977 };
1978 
1979 #define SECTION_MARKED_PRESENT		BIT(SECTION_MARKED_PRESENT_BIT)
1980 #define SECTION_HAS_MEM_MAP		BIT(SECTION_HAS_MEM_MAP_BIT)
1981 #define SECTION_IS_ONLINE		BIT(SECTION_IS_ONLINE_BIT)
1982 #define SECTION_IS_EARLY		BIT(SECTION_IS_EARLY_BIT)
1983 #ifdef CONFIG_ZONE_DEVICE
1984 #define SECTION_TAINT_ZONE_DEVICE	BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1985 #endif
1986 #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT
1987 #define SECTION_IS_VMEMMAP_PREINIT	BIT(SECTION_IS_VMEMMAP_PREINIT_BIT)
1988 #endif
1989 #define SECTION_MAP_MASK		(~(BIT(SECTION_MAP_LAST_BIT) - 1))
1990 #define SECTION_NID_SHIFT		SECTION_MAP_LAST_BIT
1991 
1992 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1993 {
1994 	unsigned long map = section->section_mem_map;
1995 	map &= SECTION_MAP_MASK;
1996 	return (struct page *)map;
1997 }
1998 
1999 static inline int present_section(struct mem_section *section)
2000 {
2001 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
2002 }
2003 
2004 static inline int present_section_nr(unsigned long nr)
2005 {
2006 	return present_section(__nr_to_section(nr));
2007 }
2008 
2009 static inline int valid_section(struct mem_section *section)
2010 {
2011 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
2012 }
2013 
2014 static inline int early_section(struct mem_section *section)
2015 {
2016 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
2017 }
2018 
2019 static inline int valid_section_nr(unsigned long nr)
2020 {
2021 	return valid_section(__nr_to_section(nr));
2022 }
2023 
2024 static inline int online_section(struct mem_section *section)
2025 {
2026 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
2027 }
2028 
2029 #ifdef CONFIG_ZONE_DEVICE
2030 static inline int online_device_section(struct mem_section *section)
2031 {
2032 	unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
2033 
2034 	return section && ((section->section_mem_map & flags) == flags);
2035 }
2036 #else
2037 static inline int online_device_section(struct mem_section *section)
2038 {
2039 	return 0;
2040 }
2041 #endif
2042 
2043 #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT
2044 static inline int preinited_vmemmap_section(struct mem_section *section)
2045 {
2046 	return (section &&
2047 		(section->section_mem_map & SECTION_IS_VMEMMAP_PREINIT));
2048 }
2049 
2050 void sparse_vmemmap_init_nid_early(int nid);
2051 void sparse_vmemmap_init_nid_late(int nid);
2052 
2053 #else
2054 static inline int preinited_vmemmap_section(struct mem_section *section)
2055 {
2056 	return 0;
2057 }
2058 static inline void sparse_vmemmap_init_nid_early(int nid)
2059 {
2060 }
2061 
2062 static inline void sparse_vmemmap_init_nid_late(int nid)
2063 {
2064 }
2065 #endif
2066 
2067 static inline int online_section_nr(unsigned long nr)
2068 {
2069 	return online_section(__nr_to_section(nr));
2070 }
2071 
2072 #ifdef CONFIG_MEMORY_HOTPLUG
2073 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
2074 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
2075 #endif
2076 
2077 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
2078 {
2079 	return __nr_to_section(pfn_to_section_nr(pfn));
2080 }
2081 
2082 extern unsigned long __highest_present_section_nr;
2083 
2084 static inline int subsection_map_index(unsigned long pfn)
2085 {
2086 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
2087 }
2088 
2089 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2090 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2091 {
2092 	int idx = subsection_map_index(pfn);
2093 	struct mem_section_usage *usage = READ_ONCE(ms->usage);
2094 
2095 	return usage ? test_bit(idx, usage->subsection_map) : 0;
2096 }
2097 
2098 static inline bool pfn_section_first_valid(struct mem_section *ms, unsigned long *pfn)
2099 {
2100 	struct mem_section_usage *usage = READ_ONCE(ms->usage);
2101 	int idx = subsection_map_index(*pfn);
2102 	unsigned long bit;
2103 
2104 	if (!usage)
2105 		return false;
2106 
2107 	if (test_bit(idx, usage->subsection_map))
2108 		return true;
2109 
2110 	/* Find the next subsection that exists */
2111 	bit = find_next_bit(usage->subsection_map, SUBSECTIONS_PER_SECTION, idx);
2112 	if (bit == SUBSECTIONS_PER_SECTION)
2113 		return false;
2114 
2115 	*pfn = (*pfn & PAGE_SECTION_MASK) + (bit * PAGES_PER_SUBSECTION);
2116 	return true;
2117 }
2118 #else
2119 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2120 {
2121 	return 1;
2122 }
2123 
2124 static inline bool pfn_section_first_valid(struct mem_section *ms, unsigned long *pfn)
2125 {
2126 	return true;
2127 }
2128 #endif
2129 
2130 void sparse_init_early_section(int nid, struct page *map, unsigned long pnum,
2131 			       unsigned long flags);
2132 
2133 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
2134 /**
2135  * pfn_valid - check if there is a valid memory map entry for a PFN
2136  * @pfn: the page frame number to check
2137  *
2138  * Check if there is a valid memory map entry aka struct page for the @pfn.
2139  * Note, that availability of the memory map entry does not imply that
2140  * there is actual usable memory at that @pfn. The struct page may
2141  * represent a hole or an unusable page frame.
2142  *
2143  * Return: 1 for PFNs that have memory map entries and 0 otherwise
2144  */
2145 static inline int pfn_valid(unsigned long pfn)
2146 {
2147 	struct mem_section *ms;
2148 	int ret;
2149 
2150 	/*
2151 	 * Ensure the upper PAGE_SHIFT bits are clear in the
2152 	 * pfn. Else it might lead to false positives when
2153 	 * some of the upper bits are set, but the lower bits
2154 	 * match a valid pfn.
2155 	 */
2156 	if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
2157 		return 0;
2158 
2159 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2160 		return 0;
2161 	ms = __pfn_to_section(pfn);
2162 	rcu_read_lock_sched();
2163 	if (!valid_section(ms)) {
2164 		rcu_read_unlock_sched();
2165 		return 0;
2166 	}
2167 	/*
2168 	 * Traditionally early sections always returned pfn_valid() for
2169 	 * the entire section-sized span.
2170 	 */
2171 	ret = early_section(ms) || pfn_section_valid(ms, pfn);
2172 	rcu_read_unlock_sched();
2173 
2174 	return ret;
2175 }
2176 
2177 /* Returns end_pfn or higher if no valid PFN remaining in range */
2178 static inline unsigned long first_valid_pfn(unsigned long pfn, unsigned long end_pfn)
2179 {
2180 	unsigned long nr = pfn_to_section_nr(pfn);
2181 
2182 	rcu_read_lock_sched();
2183 
2184 	while (nr <= __highest_present_section_nr && pfn < end_pfn) {
2185 		struct mem_section *ms = __pfn_to_section(pfn);
2186 
2187 		if (valid_section(ms) &&
2188 		    (early_section(ms) || pfn_section_first_valid(ms, &pfn))) {
2189 			rcu_read_unlock_sched();
2190 			return pfn;
2191 		}
2192 
2193 		/* Nothing left in this section? Skip to next section */
2194 		nr++;
2195 		pfn = section_nr_to_pfn(nr);
2196 	}
2197 
2198 	rcu_read_unlock_sched();
2199 	return end_pfn;
2200 }
2201 
2202 static inline unsigned long next_valid_pfn(unsigned long pfn, unsigned long end_pfn)
2203 {
2204 	pfn++;
2205 
2206 	if (pfn >= end_pfn)
2207 		return end_pfn;
2208 
2209 	/*
2210 	 * Either every PFN within the section (or subsection for VMEMMAP) is
2211 	 * valid, or none of them are. So there's no point repeating the check
2212 	 * for every PFN; only call first_valid_pfn() again when crossing a
2213 	 * (sub)section boundary (i.e. !(pfn & ~PAGE_{SUB,}SECTION_MASK)).
2214 	 */
2215 	if (pfn & ~(IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP) ?
2216 		   PAGE_SUBSECTION_MASK : PAGE_SECTION_MASK))
2217 		return pfn;
2218 
2219 	return first_valid_pfn(pfn, end_pfn);
2220 }
2221 
2222 
2223 #define for_each_valid_pfn(_pfn, _start_pfn, _end_pfn)			\
2224 	for ((_pfn) = first_valid_pfn((_start_pfn), (_end_pfn));	\
2225 	     (_pfn) < (_end_pfn);					\
2226 	     (_pfn) = next_valid_pfn((_pfn), (_end_pfn)))
2227 
2228 #endif
2229 
2230 static inline int pfn_in_present_section(unsigned long pfn)
2231 {
2232 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2233 		return 0;
2234 	return present_section(__pfn_to_section(pfn));
2235 }
2236 
2237 static inline unsigned long next_present_section_nr(unsigned long section_nr)
2238 {
2239 	while (++section_nr <= __highest_present_section_nr) {
2240 		if (present_section_nr(section_nr))
2241 			return section_nr;
2242 	}
2243 
2244 	return -1;
2245 }
2246 
2247 #define for_each_present_section_nr(start, section_nr)		\
2248 	for (section_nr = next_present_section_nr(start - 1);	\
2249 	     section_nr != -1;					\
2250 	     section_nr = next_present_section_nr(section_nr))
2251 
2252 /*
2253  * These are _only_ used during initialisation, therefore they
2254  * can use __initdata ...  They could have names to indicate
2255  * this restriction.
2256  */
2257 #ifdef CONFIG_NUMA
2258 #define pfn_to_nid(pfn)							\
2259 ({									\
2260 	unsigned long __pfn_to_nid_pfn = (pfn);				\
2261 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
2262 })
2263 #else
2264 #define pfn_to_nid(pfn)		(0)
2265 #endif
2266 
2267 void sparse_init(void);
2268 #else
2269 #define sparse_init()	do {} while (0)
2270 #define sparse_index_init(_sec, _nid)  do {} while (0)
2271 #define sparse_vmemmap_init_nid_early(_nid, _use) do {} while (0)
2272 #define sparse_vmemmap_init_nid_late(_nid) do {} while (0)
2273 #define pfn_in_present_section pfn_valid
2274 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
2275 #endif /* CONFIG_SPARSEMEM */
2276 
2277 /*
2278  * Fallback case for when the architecture provides its own pfn_valid() but
2279  * not a corresponding for_each_valid_pfn().
2280  */
2281 #ifndef for_each_valid_pfn
2282 #define for_each_valid_pfn(_pfn, _start_pfn, _end_pfn)			\
2283 	for ((_pfn) = (_start_pfn); (_pfn) < (_end_pfn); (_pfn)++)	\
2284 		if (pfn_valid(_pfn))
2285 #endif
2286 
2287 #endif /* !__GENERATING_BOUNDS.H */
2288 #endif /* !__ASSEMBLY__ */
2289 #endif /* _LINUX_MMZONE_H */
2290