1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Volume Management Device driver
4 * Copyright (c) 2015, Intel Corporation.
5 */
6
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/msi.h>
13 #include <linux/pci.h>
14 #include <linux/pci-acpi.h>
15 #include <linux/pci-ecam.h>
16 #include <linux/srcu.h>
17 #include <linux/rculist.h>
18 #include <linux/rcupdate.h>
19
20 #include <asm/irqdomain.h>
21
22 #define VMD_CFGBAR 0
23 #define VMD_MEMBAR1 2
24 #define VMD_MEMBAR2 4
25
26 #define PCI_REG_VMCAP 0x40
27 #define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1)
28 #define PCI_REG_VMCONFIG 0x44
29 #define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3)
30 #define VMCONFIG_MSI_REMAP 0x2
31 #define PCI_REG_VMLOCK 0x70
32 #define MB2_SHADOW_EN(vmlock) (vmlock & 0x2)
33
34 #define MB2_SHADOW_OFFSET 0x2000
35 #define MB2_SHADOW_SIZE 16
36
37 enum vmd_features {
38 /*
39 * Device may contain registers which hint the physical location of the
40 * membars, in order to allow proper address translation during
41 * resource assignment to enable guest virtualization
42 */
43 VMD_FEAT_HAS_MEMBAR_SHADOW = (1 << 0),
44
45 /*
46 * Device may provide root port configuration information which limits
47 * bus numbering
48 */
49 VMD_FEAT_HAS_BUS_RESTRICTIONS = (1 << 1),
50
51 /*
52 * Device contains physical location shadow registers in
53 * vendor-specific capability space
54 */
55 VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP = (1 << 2),
56
57 /*
58 * Device may use MSI-X vector 0 for software triggering and will not
59 * be used for MSI remapping
60 */
61 VMD_FEAT_OFFSET_FIRST_VECTOR = (1 << 3),
62
63 /*
64 * Device can bypass remapping MSI-X transactions into its MSI-X table,
65 * avoiding the requirement of a VMD MSI domain for child device
66 * interrupt handling.
67 */
68 VMD_FEAT_CAN_BYPASS_MSI_REMAP = (1 << 4),
69
70 /*
71 * Enable ASPM on the PCIE root ports and set the default LTR of the
72 * storage devices on platforms where these values are not configured by
73 * BIOS. This is needed for laptops, which require these settings for
74 * proper power management of the SoC.
75 */
76 VMD_FEAT_BIOS_PM_QUIRK = (1 << 5),
77 };
78
79 #define VMD_BIOS_PM_QUIRK_LTR 0x1003 /* 3145728 ns */
80
81 #define VMD_FEATS_CLIENT (VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP | \
82 VMD_FEAT_HAS_BUS_RESTRICTIONS | \
83 VMD_FEAT_OFFSET_FIRST_VECTOR | \
84 VMD_FEAT_BIOS_PM_QUIRK)
85
86 static DEFINE_IDA(vmd_instance_ida);
87
88 /*
89 * Lock for manipulating VMD IRQ lists.
90 */
91 static DEFINE_RAW_SPINLOCK(list_lock);
92
93 /**
94 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
95 * @node: list item for parent traversal.
96 * @irq: back pointer to parent.
97 * @enabled: true if driver enabled IRQ
98 * @virq: the virtual IRQ value provided to the requesting driver.
99 *
100 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
101 * a VMD IRQ using this structure.
102 */
103 struct vmd_irq {
104 struct list_head node;
105 struct vmd_irq_list *irq;
106 bool enabled;
107 unsigned int virq;
108 };
109
110 /**
111 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
112 * @irq_list: the list of irq's the VMD one demuxes to.
113 * @srcu: SRCU struct for local synchronization.
114 * @count: number of child IRQs assigned to this vector; used to track
115 * sharing.
116 * @virq: The underlying VMD Linux interrupt number
117 */
118 struct vmd_irq_list {
119 struct list_head irq_list;
120 struct srcu_struct srcu;
121 unsigned int count;
122 unsigned int virq;
123 };
124
125 struct vmd_dev {
126 struct pci_dev *dev;
127
128 spinlock_t cfg_lock;
129 void __iomem *cfgbar;
130
131 int msix_count;
132 struct vmd_irq_list *irqs;
133
134 struct pci_sysdata sysdata;
135 struct resource resources[3];
136 struct irq_domain *irq_domain;
137 struct pci_bus *bus;
138 u8 busn_start;
139 u8 first_vec;
140 char *name;
141 int instance;
142 };
143
vmd_from_bus(struct pci_bus * bus)144 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
145 {
146 return container_of(bus->sysdata, struct vmd_dev, sysdata);
147 }
148
index_from_irqs(struct vmd_dev * vmd,struct vmd_irq_list * irqs)149 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
150 struct vmd_irq_list *irqs)
151 {
152 return irqs - vmd->irqs;
153 }
154
155 /*
156 * Drivers managing a device in a VMD domain allocate their own IRQs as before,
157 * but the MSI entry for the hardware it's driving will be programmed with a
158 * destination ID for the VMD MSI-X table. The VMD muxes interrupts in its
159 * domain into one of its own, and the VMD driver de-muxes these for the
160 * handlers sharing that VMD IRQ. The vmd irq_domain provides the operations
161 * and irq_chip to set this up.
162 */
vmd_compose_msi_msg(struct irq_data * data,struct msi_msg * msg)163 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
164 {
165 struct vmd_irq *vmdirq = data->chip_data;
166 struct vmd_irq_list *irq = vmdirq->irq;
167 struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
168
169 memset(msg, 0, sizeof(*msg));
170 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
171 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
172 msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq);
173 }
174
175 /*
176 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
177 */
vmd_irq_enable(struct irq_data * data)178 static void vmd_irq_enable(struct irq_data *data)
179 {
180 struct vmd_irq *vmdirq = data->chip_data;
181 unsigned long flags;
182
183 raw_spin_lock_irqsave(&list_lock, flags);
184 WARN_ON(vmdirq->enabled);
185 list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
186 vmdirq->enabled = true;
187 raw_spin_unlock_irqrestore(&list_lock, flags);
188
189 data->chip->irq_unmask(data);
190 }
191
vmd_irq_disable(struct irq_data * data)192 static void vmd_irq_disable(struct irq_data *data)
193 {
194 struct vmd_irq *vmdirq = data->chip_data;
195 unsigned long flags;
196
197 data->chip->irq_mask(data);
198
199 raw_spin_lock_irqsave(&list_lock, flags);
200 if (vmdirq->enabled) {
201 list_del_rcu(&vmdirq->node);
202 vmdirq->enabled = false;
203 }
204 raw_spin_unlock_irqrestore(&list_lock, flags);
205 }
206
207 static struct irq_chip vmd_msi_controller = {
208 .name = "VMD-MSI",
209 .irq_enable = vmd_irq_enable,
210 .irq_disable = vmd_irq_disable,
211 .irq_compose_msi_msg = vmd_compose_msi_msg,
212 };
213
vmd_get_hwirq(struct msi_domain_info * info,msi_alloc_info_t * arg)214 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
215 msi_alloc_info_t *arg)
216 {
217 return 0;
218 }
219
220 /*
221 * XXX: We can be even smarter selecting the best IRQ once we solve the
222 * affinity problem.
223 */
vmd_next_irq(struct vmd_dev * vmd,struct msi_desc * desc)224 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
225 {
226 unsigned long flags;
227 int i, best;
228
229 if (vmd->msix_count == 1 + vmd->first_vec)
230 return &vmd->irqs[vmd->first_vec];
231
232 /*
233 * White list for fast-interrupt handlers. All others will share the
234 * "slow" interrupt vector.
235 */
236 switch (msi_desc_to_pci_dev(desc)->class) {
237 case PCI_CLASS_STORAGE_EXPRESS:
238 break;
239 default:
240 return &vmd->irqs[vmd->first_vec];
241 }
242
243 raw_spin_lock_irqsave(&list_lock, flags);
244 best = vmd->first_vec + 1;
245 for (i = best; i < vmd->msix_count; i++)
246 if (vmd->irqs[i].count < vmd->irqs[best].count)
247 best = i;
248 vmd->irqs[best].count++;
249 raw_spin_unlock_irqrestore(&list_lock, flags);
250
251 return &vmd->irqs[best];
252 }
253
vmd_msi_init(struct irq_domain * domain,struct msi_domain_info * info,unsigned int virq,irq_hw_number_t hwirq,msi_alloc_info_t * arg)254 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
255 unsigned int virq, irq_hw_number_t hwirq,
256 msi_alloc_info_t *arg)
257 {
258 struct msi_desc *desc = arg->desc;
259 struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
260 struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
261
262 if (!vmdirq)
263 return -ENOMEM;
264
265 INIT_LIST_HEAD(&vmdirq->node);
266 vmdirq->irq = vmd_next_irq(vmd, desc);
267 vmdirq->virq = virq;
268
269 irq_domain_set_info(domain, virq, vmdirq->irq->virq, info->chip, vmdirq,
270 handle_untracked_irq, vmd, NULL);
271 return 0;
272 }
273
vmd_msi_free(struct irq_domain * domain,struct msi_domain_info * info,unsigned int virq)274 static void vmd_msi_free(struct irq_domain *domain,
275 struct msi_domain_info *info, unsigned int virq)
276 {
277 struct vmd_irq *vmdirq = irq_get_chip_data(virq);
278 unsigned long flags;
279
280 synchronize_srcu(&vmdirq->irq->srcu);
281
282 /* XXX: Potential optimization to rebalance */
283 raw_spin_lock_irqsave(&list_lock, flags);
284 vmdirq->irq->count--;
285 raw_spin_unlock_irqrestore(&list_lock, flags);
286
287 kfree(vmdirq);
288 }
289
vmd_msi_prepare(struct irq_domain * domain,struct device * dev,int nvec,msi_alloc_info_t * arg)290 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
291 int nvec, msi_alloc_info_t *arg)
292 {
293 struct pci_dev *pdev = to_pci_dev(dev);
294 struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
295
296 if (nvec > vmd->msix_count)
297 return vmd->msix_count;
298
299 memset(arg, 0, sizeof(*arg));
300 return 0;
301 }
302
vmd_set_desc(msi_alloc_info_t * arg,struct msi_desc * desc)303 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
304 {
305 arg->desc = desc;
306 }
307
308 static struct msi_domain_ops vmd_msi_domain_ops = {
309 .get_hwirq = vmd_get_hwirq,
310 .msi_init = vmd_msi_init,
311 .msi_free = vmd_msi_free,
312 .msi_prepare = vmd_msi_prepare,
313 .set_desc = vmd_set_desc,
314 };
315
316 static struct msi_domain_info vmd_msi_domain_info = {
317 .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
318 MSI_FLAG_NO_AFFINITY | MSI_FLAG_PCI_MSIX,
319 .ops = &vmd_msi_domain_ops,
320 .chip = &vmd_msi_controller,
321 };
322
vmd_set_msi_remapping(struct vmd_dev * vmd,bool enable)323 static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable)
324 {
325 u16 reg;
326
327 pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, ®);
328 reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) :
329 (reg | VMCONFIG_MSI_REMAP);
330 pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg);
331 }
332
vmd_create_irq_domain(struct vmd_dev * vmd)333 static int vmd_create_irq_domain(struct vmd_dev *vmd)
334 {
335 struct fwnode_handle *fn;
336
337 fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
338 if (!fn)
339 return -ENODEV;
340
341 vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL);
342 if (!vmd->irq_domain) {
343 irq_domain_free_fwnode(fn);
344 return -ENODEV;
345 }
346
347 return 0;
348 }
349
vmd_remove_irq_domain(struct vmd_dev * vmd)350 static void vmd_remove_irq_domain(struct vmd_dev *vmd)
351 {
352 /*
353 * Some production BIOS won't enable remapping between soft reboots.
354 * Ensure remapping is restored before unloading the driver.
355 */
356 if (!vmd->msix_count)
357 vmd_set_msi_remapping(vmd, true);
358
359 if (vmd->irq_domain) {
360 struct fwnode_handle *fn = vmd->irq_domain->fwnode;
361
362 irq_domain_remove(vmd->irq_domain);
363 irq_domain_free_fwnode(fn);
364 }
365 }
366
vmd_cfg_addr(struct vmd_dev * vmd,struct pci_bus * bus,unsigned int devfn,int reg,int len)367 static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
368 unsigned int devfn, int reg, int len)
369 {
370 unsigned int busnr_ecam = bus->number - vmd->busn_start;
371 u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg);
372
373 if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR]))
374 return NULL;
375
376 return vmd->cfgbar + offset;
377 }
378
379 /*
380 * CPU may deadlock if config space is not serialized on some versions of this
381 * hardware, so all config space access is done under a spinlock.
382 */
vmd_pci_read(struct pci_bus * bus,unsigned int devfn,int reg,int len,u32 * value)383 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
384 int len, u32 *value)
385 {
386 struct vmd_dev *vmd = vmd_from_bus(bus);
387 void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
388 unsigned long flags;
389 int ret = 0;
390
391 if (!addr)
392 return -EFAULT;
393
394 spin_lock_irqsave(&vmd->cfg_lock, flags);
395 switch (len) {
396 case 1:
397 *value = readb(addr);
398 break;
399 case 2:
400 *value = readw(addr);
401 break;
402 case 4:
403 *value = readl(addr);
404 break;
405 default:
406 ret = -EINVAL;
407 break;
408 }
409 spin_unlock_irqrestore(&vmd->cfg_lock, flags);
410 return ret;
411 }
412
413 /*
414 * VMD h/w converts non-posted config writes to posted memory writes. The
415 * read-back in this function forces the completion so it returns only after
416 * the config space was written, as expected.
417 */
vmd_pci_write(struct pci_bus * bus,unsigned int devfn,int reg,int len,u32 value)418 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
419 int len, u32 value)
420 {
421 struct vmd_dev *vmd = vmd_from_bus(bus);
422 void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
423 unsigned long flags;
424 int ret = 0;
425
426 if (!addr)
427 return -EFAULT;
428
429 spin_lock_irqsave(&vmd->cfg_lock, flags);
430 switch (len) {
431 case 1:
432 writeb(value, addr);
433 readb(addr);
434 break;
435 case 2:
436 writew(value, addr);
437 readw(addr);
438 break;
439 case 4:
440 writel(value, addr);
441 readl(addr);
442 break;
443 default:
444 ret = -EINVAL;
445 break;
446 }
447 spin_unlock_irqrestore(&vmd->cfg_lock, flags);
448 return ret;
449 }
450
451 static struct pci_ops vmd_ops = {
452 .read = vmd_pci_read,
453 .write = vmd_pci_write,
454 };
455
456 #ifdef CONFIG_ACPI
vmd_acpi_find_companion(struct pci_dev * pci_dev)457 static struct acpi_device *vmd_acpi_find_companion(struct pci_dev *pci_dev)
458 {
459 struct pci_host_bridge *bridge;
460 u32 busnr, addr;
461
462 if (pci_dev->bus->ops != &vmd_ops)
463 return NULL;
464
465 bridge = pci_find_host_bridge(pci_dev->bus);
466 busnr = pci_dev->bus->number - bridge->bus->number;
467 /*
468 * The address computation below is only applicable to relative bus
469 * numbers below 32.
470 */
471 if (busnr > 31)
472 return NULL;
473
474 addr = (busnr << 24) | ((u32)pci_dev->devfn << 16) | 0x8000FFFFU;
475
476 dev_dbg(&pci_dev->dev, "Looking for ACPI companion (address 0x%x)\n",
477 addr);
478
479 return acpi_find_child_device(ACPI_COMPANION(bridge->dev.parent), addr,
480 false);
481 }
482
483 static bool hook_installed;
484
vmd_acpi_begin(void)485 static void vmd_acpi_begin(void)
486 {
487 if (pci_acpi_set_companion_lookup_hook(vmd_acpi_find_companion))
488 return;
489
490 hook_installed = true;
491 }
492
vmd_acpi_end(void)493 static void vmd_acpi_end(void)
494 {
495 if (!hook_installed)
496 return;
497
498 pci_acpi_clear_companion_lookup_hook();
499 hook_installed = false;
500 }
501 #else
vmd_acpi_begin(void)502 static inline void vmd_acpi_begin(void) { }
vmd_acpi_end(void)503 static inline void vmd_acpi_end(void) { }
504 #endif /* CONFIG_ACPI */
505
vmd_domain_reset(struct vmd_dev * vmd)506 static void vmd_domain_reset(struct vmd_dev *vmd)
507 {
508 u16 bus, max_buses = resource_size(&vmd->resources[0]);
509 u8 dev, functions, fn, hdr_type;
510 char __iomem *base;
511
512 for (bus = 0; bus < max_buses; bus++) {
513 for (dev = 0; dev < 32; dev++) {
514 base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
515 PCI_DEVFN(dev, 0), 0);
516
517 hdr_type = readb(base + PCI_HEADER_TYPE);
518
519 functions = (hdr_type & PCI_HEADER_TYPE_MFD) ? 8 : 1;
520 for (fn = 0; fn < functions; fn++) {
521 base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
522 PCI_DEVFN(dev, fn), 0);
523
524 hdr_type = readb(base + PCI_HEADER_TYPE) &
525 PCI_HEADER_TYPE_MASK;
526
527 if (hdr_type != PCI_HEADER_TYPE_BRIDGE ||
528 (readw(base + PCI_CLASS_DEVICE) !=
529 PCI_CLASS_BRIDGE_PCI))
530 continue;
531
532 /*
533 * Temporarily disable the I/O range before updating
534 * PCI_IO_BASE.
535 */
536 writel(0x0000ffff, base + PCI_IO_BASE_UPPER16);
537 /* Update lower 16 bits of I/O base/limit */
538 writew(0x00f0, base + PCI_IO_BASE);
539 /* Update upper 16 bits of I/O base/limit */
540 writel(0, base + PCI_IO_BASE_UPPER16);
541
542 /* MMIO Base/Limit */
543 writel(0x0000fff0, base + PCI_MEMORY_BASE);
544
545 /* Prefetchable MMIO Base/Limit */
546 writel(0, base + PCI_PREF_LIMIT_UPPER32);
547 writel(0x0000fff0, base + PCI_PREF_MEMORY_BASE);
548 writel(0xffffffff, base + PCI_PREF_BASE_UPPER32);
549 }
550 }
551 }
552 }
553
vmd_attach_resources(struct vmd_dev * vmd)554 static void vmd_attach_resources(struct vmd_dev *vmd)
555 {
556 vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
557 vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
558 }
559
vmd_detach_resources(struct vmd_dev * vmd)560 static void vmd_detach_resources(struct vmd_dev *vmd)
561 {
562 vmd->dev->resource[VMD_MEMBAR1].child = NULL;
563 vmd->dev->resource[VMD_MEMBAR2].child = NULL;
564 }
565
566 /*
567 * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
568 * Per ACPI r6.0, sec 6.5.6, _SEG returns an integer, of which the lower
569 * 16 bits are the PCI Segment Group (domain) number. Other bits are
570 * currently reserved.
571 */
vmd_find_free_domain(void)572 static int vmd_find_free_domain(void)
573 {
574 int domain = 0xffff;
575 struct pci_bus *bus = NULL;
576
577 while ((bus = pci_find_next_bus(bus)) != NULL)
578 domain = max_t(int, domain, pci_domain_nr(bus));
579 return domain + 1;
580 }
581
vmd_get_phys_offsets(struct vmd_dev * vmd,bool native_hint,resource_size_t * offset1,resource_size_t * offset2)582 static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint,
583 resource_size_t *offset1,
584 resource_size_t *offset2)
585 {
586 struct pci_dev *dev = vmd->dev;
587 u64 phys1, phys2;
588
589 if (native_hint) {
590 u32 vmlock;
591 int ret;
592
593 ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock);
594 if (ret || PCI_POSSIBLE_ERROR(vmlock))
595 return -ENODEV;
596
597 if (MB2_SHADOW_EN(vmlock)) {
598 void __iomem *membar2;
599
600 membar2 = pci_iomap(dev, VMD_MEMBAR2, 0);
601 if (!membar2)
602 return -ENOMEM;
603 phys1 = readq(membar2 + MB2_SHADOW_OFFSET);
604 phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8);
605 pci_iounmap(dev, membar2);
606 } else
607 return 0;
608 } else {
609 /* Hypervisor-Emulated Vendor-Specific Capability */
610 int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR);
611 u32 reg, regu;
612
613 pci_read_config_dword(dev, pos + 4, ®);
614
615 /* "SHDW" */
616 if (pos && reg == 0x53484457) {
617 pci_read_config_dword(dev, pos + 8, ®);
618 pci_read_config_dword(dev, pos + 12, ®u);
619 phys1 = (u64) regu << 32 | reg;
620
621 pci_read_config_dword(dev, pos + 16, ®);
622 pci_read_config_dword(dev, pos + 20, ®u);
623 phys2 = (u64) regu << 32 | reg;
624 } else
625 return 0;
626 }
627
628 *offset1 = dev->resource[VMD_MEMBAR1].start -
629 (phys1 & PCI_BASE_ADDRESS_MEM_MASK);
630 *offset2 = dev->resource[VMD_MEMBAR2].start -
631 (phys2 & PCI_BASE_ADDRESS_MEM_MASK);
632
633 return 0;
634 }
635
vmd_get_bus_number_start(struct vmd_dev * vmd)636 static int vmd_get_bus_number_start(struct vmd_dev *vmd)
637 {
638 struct pci_dev *dev = vmd->dev;
639 u16 reg;
640
641 pci_read_config_word(dev, PCI_REG_VMCAP, ®);
642 if (BUS_RESTRICT_CAP(reg)) {
643 pci_read_config_word(dev, PCI_REG_VMCONFIG, ®);
644
645 switch (BUS_RESTRICT_CFG(reg)) {
646 case 0:
647 vmd->busn_start = 0;
648 break;
649 case 1:
650 vmd->busn_start = 128;
651 break;
652 case 2:
653 vmd->busn_start = 224;
654 break;
655 default:
656 pci_err(dev, "Unknown Bus Offset Setting (%d)\n",
657 BUS_RESTRICT_CFG(reg));
658 return -ENODEV;
659 }
660 }
661
662 return 0;
663 }
664
vmd_irq(int irq,void * data)665 static irqreturn_t vmd_irq(int irq, void *data)
666 {
667 struct vmd_irq_list *irqs = data;
668 struct vmd_irq *vmdirq;
669 int idx;
670
671 idx = srcu_read_lock(&irqs->srcu);
672 list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
673 generic_handle_irq(vmdirq->virq);
674 srcu_read_unlock(&irqs->srcu, idx);
675
676 return IRQ_HANDLED;
677 }
678
vmd_alloc_irqs(struct vmd_dev * vmd)679 static int vmd_alloc_irqs(struct vmd_dev *vmd)
680 {
681 struct pci_dev *dev = vmd->dev;
682 int i, err;
683
684 vmd->msix_count = pci_msix_vec_count(dev);
685 if (vmd->msix_count < 0)
686 return -ENODEV;
687
688 vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1,
689 vmd->msix_count, PCI_IRQ_MSIX);
690 if (vmd->msix_count < 0)
691 return vmd->msix_count;
692
693 vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
694 GFP_KERNEL);
695 if (!vmd->irqs)
696 return -ENOMEM;
697
698 for (i = 0; i < vmd->msix_count; i++) {
699 err = init_srcu_struct(&vmd->irqs[i].srcu);
700 if (err)
701 return err;
702
703 INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
704 vmd->irqs[i].virq = pci_irq_vector(dev, i);
705 err = devm_request_irq(&dev->dev, vmd->irqs[i].virq,
706 vmd_irq, IRQF_NO_THREAD,
707 vmd->name, &vmd->irqs[i]);
708 if (err)
709 return err;
710 }
711
712 return 0;
713 }
714
715 /*
716 * Since VMD is an aperture to regular PCIe root ports, only allow it to
717 * control features that the OS is allowed to control on the physical PCI bus.
718 */
vmd_copy_host_bridge_flags(struct pci_host_bridge * root_bridge,struct pci_host_bridge * vmd_bridge)719 static void vmd_copy_host_bridge_flags(struct pci_host_bridge *root_bridge,
720 struct pci_host_bridge *vmd_bridge)
721 {
722 vmd_bridge->native_pcie_hotplug = root_bridge->native_pcie_hotplug;
723 vmd_bridge->native_shpc_hotplug = root_bridge->native_shpc_hotplug;
724 vmd_bridge->native_aer = root_bridge->native_aer;
725 vmd_bridge->native_pme = root_bridge->native_pme;
726 vmd_bridge->native_ltr = root_bridge->native_ltr;
727 vmd_bridge->native_dpc = root_bridge->native_dpc;
728 }
729
730 /*
731 * Enable ASPM and LTR settings on devices that aren't configured by BIOS.
732 */
vmd_pm_enable_quirk(struct pci_dev * pdev,void * userdata)733 static int vmd_pm_enable_quirk(struct pci_dev *pdev, void *userdata)
734 {
735 unsigned long features = *(unsigned long *)userdata;
736 u16 ltr = VMD_BIOS_PM_QUIRK_LTR;
737 u32 ltr_reg;
738 int pos;
739
740 if (!(features & VMD_FEAT_BIOS_PM_QUIRK))
741 return 0;
742
743 pci_enable_link_state_locked(pdev, PCIE_LINK_STATE_ALL);
744
745 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_LTR);
746 if (!pos)
747 return 0;
748
749 /*
750 * Skip if the max snoop LTR is non-zero, indicating BIOS has set it
751 * so the LTR quirk is not needed.
752 */
753 pci_read_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, <r_reg);
754 if (!!(ltr_reg & (PCI_LTR_VALUE_MASK | PCI_LTR_SCALE_MASK)))
755 return 0;
756
757 /*
758 * Set the default values to the maximum required by the platform to
759 * allow the deepest power management savings. Write as a DWORD where
760 * the lower word is the max snoop latency and the upper word is the
761 * max non-snoop latency.
762 */
763 ltr_reg = (ltr << 16) | ltr;
764 pci_write_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, ltr_reg);
765 pci_info(pdev, "VMD: Default LTR value set by driver\n");
766
767 return 0;
768 }
769
vmd_enable_domain(struct vmd_dev * vmd,unsigned long features)770 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
771 {
772 struct pci_sysdata *sd = &vmd->sysdata;
773 struct resource *res;
774 u32 upper_bits;
775 unsigned long flags;
776 LIST_HEAD(resources);
777 resource_size_t offset[2] = {0};
778 resource_size_t membar2_offset = 0x2000;
779 struct pci_bus *child;
780 struct pci_dev *dev;
781 int ret;
782
783 /*
784 * Shadow registers may exist in certain VMD device ids which allow
785 * guests to correctly assign host physical addresses to the root ports
786 * and child devices. These registers will either return the host value
787 * or 0, depending on an enable bit in the VMD device.
788 */
789 if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
790 membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
791 ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]);
792 if (ret)
793 return ret;
794 } else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
795 ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]);
796 if (ret)
797 return ret;
798 }
799
800 /*
801 * Certain VMD devices may have a root port configuration option which
802 * limits the bus range to between 0-127, 128-255, or 224-255
803 */
804 if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
805 ret = vmd_get_bus_number_start(vmd);
806 if (ret)
807 return ret;
808 }
809
810 res = &vmd->dev->resource[VMD_CFGBAR];
811 vmd->resources[0] = (struct resource) {
812 .name = "VMD CFGBAR",
813 .start = vmd->busn_start,
814 .end = vmd->busn_start + (resource_size(res) >> 20) - 1,
815 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
816 };
817
818 /*
819 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
820 * put 32-bit resources in the window.
821 *
822 * There's no hardware reason why a 64-bit window *couldn't*
823 * contain a 32-bit resource, but pbus_size_mem() computes the
824 * bridge window size assuming a 64-bit window will contain no
825 * 32-bit resources. __pci_assign_resource() enforces that
826 * artificial restriction to make sure everything will fit.
827 *
828 * The only way we could use a 64-bit non-prefetchable MEMBAR is
829 * if its address is <4GB so that we can convert it to a 32-bit
830 * resource. To be visible to the host OS, all VMD endpoints must
831 * be initially configured by platform BIOS, which includes setting
832 * up these resources. We can assume the device is configured
833 * according to the platform needs.
834 */
835 res = &vmd->dev->resource[VMD_MEMBAR1];
836 upper_bits = upper_32_bits(res->end);
837 flags = res->flags & ~IORESOURCE_SIZEALIGN;
838 if (!upper_bits)
839 flags &= ~IORESOURCE_MEM_64;
840 vmd->resources[1] = (struct resource) {
841 .name = "VMD MEMBAR1",
842 .start = res->start,
843 .end = res->end,
844 .flags = flags,
845 .parent = res,
846 };
847
848 res = &vmd->dev->resource[VMD_MEMBAR2];
849 upper_bits = upper_32_bits(res->end);
850 flags = res->flags & ~IORESOURCE_SIZEALIGN;
851 if (!upper_bits)
852 flags &= ~IORESOURCE_MEM_64;
853 vmd->resources[2] = (struct resource) {
854 .name = "VMD MEMBAR2",
855 .start = res->start + membar2_offset,
856 .end = res->end,
857 .flags = flags,
858 .parent = res,
859 };
860
861 sd->vmd_dev = vmd->dev;
862 sd->domain = vmd_find_free_domain();
863 if (sd->domain < 0)
864 return sd->domain;
865
866 sd->node = pcibus_to_node(vmd->dev->bus);
867
868 /*
869 * Currently MSI remapping must be enabled in guest passthrough mode
870 * due to some missing interrupt remapping plumbing. This is probably
871 * acceptable because the guest is usually CPU-limited and MSI
872 * remapping doesn't become a performance bottleneck.
873 */
874 if (!(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) ||
875 offset[0] || offset[1]) {
876 ret = vmd_alloc_irqs(vmd);
877 if (ret)
878 return ret;
879
880 vmd_set_msi_remapping(vmd, true);
881
882 ret = vmd_create_irq_domain(vmd);
883 if (ret)
884 return ret;
885
886 /*
887 * Override the IRQ domain bus token so the domain can be
888 * distinguished from a regular PCI/MSI domain.
889 */
890 irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI);
891 } else {
892 vmd_set_msi_remapping(vmd, false);
893 }
894
895 pci_add_resource(&resources, &vmd->resources[0]);
896 pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
897 pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
898
899 vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
900 &vmd_ops, sd, &resources);
901 if (!vmd->bus) {
902 pci_free_resource_list(&resources);
903 vmd_remove_irq_domain(vmd);
904 return -ENODEV;
905 }
906
907 vmd_copy_host_bridge_flags(pci_find_host_bridge(vmd->dev->bus),
908 to_pci_host_bridge(vmd->bus->bridge));
909
910 vmd_attach_resources(vmd);
911 if (vmd->irq_domain)
912 dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
913 else
914 dev_set_msi_domain(&vmd->bus->dev,
915 dev_get_msi_domain(&vmd->dev->dev));
916
917 WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
918 "domain"), "Can't create symlink to domain\n");
919
920 vmd_acpi_begin();
921
922 pci_scan_child_bus(vmd->bus);
923 vmd_domain_reset(vmd);
924
925 /* When Intel VMD is enabled, the OS does not discover the Root Ports
926 * owned by Intel VMD within the MMCFG space. pci_reset_bus() applies
927 * a reset to the parent of the PCI device supplied as argument. This
928 * is why we pass a child device, so the reset can be triggered at
929 * the Intel bridge level and propagated to all the children in the
930 * hierarchy.
931 */
932 list_for_each_entry(child, &vmd->bus->children, node) {
933 if (!list_empty(&child->devices)) {
934 dev = list_first_entry(&child->devices,
935 struct pci_dev, bus_list);
936 ret = pci_reset_bus(dev);
937 if (ret)
938 pci_warn(dev, "can't reset device: %d\n", ret);
939
940 break;
941 }
942 }
943
944 pci_assign_unassigned_bus_resources(vmd->bus);
945
946 pci_walk_bus(vmd->bus, vmd_pm_enable_quirk, &features);
947
948 /*
949 * VMD root buses are virtual and don't return true on pci_is_pcie()
950 * and will fail pcie_bus_configure_settings() early. It can instead be
951 * run on each of the real root ports.
952 */
953 list_for_each_entry(child, &vmd->bus->children, node)
954 pcie_bus_configure_settings(child);
955
956 pci_bus_add_devices(vmd->bus);
957
958 vmd_acpi_end();
959 return 0;
960 }
961
vmd_probe(struct pci_dev * dev,const struct pci_device_id * id)962 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
963 {
964 unsigned long features = (unsigned long) id->driver_data;
965 struct vmd_dev *vmd;
966 int err;
967
968 if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
969 return -ENOMEM;
970
971 vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
972 if (!vmd)
973 return -ENOMEM;
974
975 vmd->dev = dev;
976 vmd->instance = ida_alloc(&vmd_instance_ida, GFP_KERNEL);
977 if (vmd->instance < 0)
978 return vmd->instance;
979
980 vmd->name = devm_kasprintf(&dev->dev, GFP_KERNEL, "vmd%d",
981 vmd->instance);
982 if (!vmd->name) {
983 err = -ENOMEM;
984 goto out_release_instance;
985 }
986
987 err = pcim_enable_device(dev);
988 if (err < 0)
989 goto out_release_instance;
990
991 vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
992 if (!vmd->cfgbar) {
993 err = -ENOMEM;
994 goto out_release_instance;
995 }
996
997 pci_set_master(dev);
998 if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
999 dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32))) {
1000 err = -ENODEV;
1001 goto out_release_instance;
1002 }
1003
1004 if (features & VMD_FEAT_OFFSET_FIRST_VECTOR)
1005 vmd->first_vec = 1;
1006
1007 spin_lock_init(&vmd->cfg_lock);
1008 pci_set_drvdata(dev, vmd);
1009 err = vmd_enable_domain(vmd, features);
1010 if (err)
1011 goto out_release_instance;
1012
1013 dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
1014 vmd->sysdata.domain);
1015 return 0;
1016
1017 out_release_instance:
1018 ida_free(&vmd_instance_ida, vmd->instance);
1019 return err;
1020 }
1021
vmd_cleanup_srcu(struct vmd_dev * vmd)1022 static void vmd_cleanup_srcu(struct vmd_dev *vmd)
1023 {
1024 int i;
1025
1026 for (i = 0; i < vmd->msix_count; i++)
1027 cleanup_srcu_struct(&vmd->irqs[i].srcu);
1028 }
1029
vmd_remove(struct pci_dev * dev)1030 static void vmd_remove(struct pci_dev *dev)
1031 {
1032 struct vmd_dev *vmd = pci_get_drvdata(dev);
1033
1034 pci_stop_root_bus(vmd->bus);
1035 sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
1036 pci_remove_root_bus(vmd->bus);
1037 vmd_cleanup_srcu(vmd);
1038 vmd_detach_resources(vmd);
1039 vmd_remove_irq_domain(vmd);
1040 ida_free(&vmd_instance_ida, vmd->instance);
1041 }
1042
vmd_shutdown(struct pci_dev * dev)1043 static void vmd_shutdown(struct pci_dev *dev)
1044 {
1045 struct vmd_dev *vmd = pci_get_drvdata(dev);
1046
1047 vmd_remove_irq_domain(vmd);
1048 }
1049
1050 #ifdef CONFIG_PM_SLEEP
vmd_suspend(struct device * dev)1051 static int vmd_suspend(struct device *dev)
1052 {
1053 struct pci_dev *pdev = to_pci_dev(dev);
1054 struct vmd_dev *vmd = pci_get_drvdata(pdev);
1055 int i;
1056
1057 for (i = 0; i < vmd->msix_count; i++)
1058 devm_free_irq(dev, vmd->irqs[i].virq, &vmd->irqs[i]);
1059
1060 return 0;
1061 }
1062
vmd_resume(struct device * dev)1063 static int vmd_resume(struct device *dev)
1064 {
1065 struct pci_dev *pdev = to_pci_dev(dev);
1066 struct vmd_dev *vmd = pci_get_drvdata(pdev);
1067 int err, i;
1068
1069 vmd_set_msi_remapping(vmd, !!vmd->irq_domain);
1070
1071 for (i = 0; i < vmd->msix_count; i++) {
1072 err = devm_request_irq(dev, vmd->irqs[i].virq,
1073 vmd_irq, IRQF_NO_THREAD,
1074 vmd->name, &vmd->irqs[i]);
1075 if (err)
1076 return err;
1077 }
1078
1079 return 0;
1080 }
1081 #endif
1082 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
1083
1084 static const struct pci_device_id vmd_ids[] = {
1085 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
1086 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
1087 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
1088 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
1089 VMD_FEAT_HAS_BUS_RESTRICTIONS |
1090 VMD_FEAT_CAN_BYPASS_MSI_REMAP,},
1091 {PCI_VDEVICE(INTEL, 0x467f),
1092 .driver_data = VMD_FEATS_CLIENT,},
1093 {PCI_VDEVICE(INTEL, 0x4c3d),
1094 .driver_data = VMD_FEATS_CLIENT,},
1095 {PCI_VDEVICE(INTEL, 0xa77f),
1096 .driver_data = VMD_FEATS_CLIENT,},
1097 {PCI_VDEVICE(INTEL, 0x7d0b),
1098 .driver_data = VMD_FEATS_CLIENT,},
1099 {PCI_VDEVICE(INTEL, 0xad0b),
1100 .driver_data = VMD_FEATS_CLIENT,},
1101 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
1102 .driver_data = VMD_FEATS_CLIENT,},
1103 {0,}
1104 };
1105 MODULE_DEVICE_TABLE(pci, vmd_ids);
1106
1107 static struct pci_driver vmd_drv = {
1108 .name = "vmd",
1109 .id_table = vmd_ids,
1110 .probe = vmd_probe,
1111 .remove = vmd_remove,
1112 .shutdown = vmd_shutdown,
1113 .driver = {
1114 .pm = &vmd_dev_pm_ops,
1115 },
1116 };
1117 module_pci_driver(vmd_drv);
1118
1119 MODULE_AUTHOR("Intel Corporation");
1120 MODULE_DESCRIPTION("Volume Management Device driver");
1121 MODULE_LICENSE("GPL v2");
1122 MODULE_VERSION("0.6");
1123