1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * AMD SVM support
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Yaniv Kamay <yaniv@qumranet.com>
12 * Avi Kivity <avi@qumranet.com>
13 */
14
15 #ifndef __SVM_SVM_H
16 #define __SVM_SVM_H
17
18 #include <linux/kvm_types.h>
19 #include <linux/kvm_host.h>
20 #include <linux/bits.h>
21
22 #include <asm/svm.h>
23 #include <asm/sev-common.h>
24
25 #include "cpuid.h"
26 #include "kvm_cache_regs.h"
27
28 /*
29 * Helpers to convert to/from physical addresses for pages whose address is
30 * consumed directly by hardware. Even though it's a physical address, SVM
31 * often restricts the address to the natural width, hence 'unsigned long'
32 * instead of 'hpa_t'.
33 */
__sme_page_pa(struct page * page)34 static inline unsigned long __sme_page_pa(struct page *page)
35 {
36 return __sme_set(page_to_pfn(page) << PAGE_SHIFT);
37 }
38
__sme_pa_to_page(unsigned long pa)39 static inline struct page *__sme_pa_to_page(unsigned long pa)
40 {
41 return pfn_to_page(__sme_clr(pa) >> PAGE_SHIFT);
42 }
43
44 #define IOPM_SIZE PAGE_SIZE * 3
45 #define MSRPM_SIZE PAGE_SIZE * 2
46
47 extern bool npt_enabled;
48 extern int nrips;
49 extern int vgif;
50 extern bool intercept_smi;
51 extern bool vnmi;
52 extern int lbrv;
53
54 extern int tsc_aux_uret_slot __ro_after_init;
55
56 extern struct kvm_x86_ops svm_x86_ops __initdata;
57
58 /*
59 * Clean bits in VMCB.
60 * VMCB_ALL_CLEAN_MASK might also need to
61 * be updated if this enum is modified.
62 */
63 enum {
64 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
65 pause filter count */
66 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
67 VMCB_ASID, /* ASID */
68 VMCB_INTR, /* int_ctl, int_vector */
69 VMCB_NPT, /* npt_en, nCR3, gPAT */
70 VMCB_CR, /* CR0, CR3, CR4, EFER */
71 VMCB_DR, /* DR6, DR7 */
72 VMCB_DT, /* GDT, IDT */
73 VMCB_SEG, /* CS, DS, SS, ES, CPL */
74 VMCB_CR2, /* CR2 only */
75 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
76 VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
77 * AVIC PHYSICAL_TABLE pointer,
78 * AVIC LOGICAL_TABLE pointer
79 */
80 VMCB_CET, /* S_CET, SSP, ISST_ADDR */
81 VMCB_SW = 31, /* Reserved for hypervisor/software use */
82 };
83
84 #define VMCB_ALL_CLEAN_MASK ( \
85 (1U << VMCB_INTERCEPTS) | (1U << VMCB_PERM_MAP) | \
86 (1U << VMCB_ASID) | (1U << VMCB_INTR) | \
87 (1U << VMCB_NPT) | (1U << VMCB_CR) | (1U << VMCB_DR) | \
88 (1U << VMCB_DT) | (1U << VMCB_SEG) | (1U << VMCB_CR2) | \
89 (1U << VMCB_LBR) | (1U << VMCB_AVIC) | (1U << VMCB_CET) | \
90 (1U << VMCB_SW))
91
92 /* TPR and CR2 are always written before VMRUN */
93 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
94
95 struct kvm_sev_info {
96 bool active; /* SEV enabled guest */
97 bool es_active; /* SEV-ES enabled guest */
98 bool need_init; /* waiting for SEV_INIT2 */
99 unsigned int asid; /* ASID used for this guest */
100 unsigned int handle; /* SEV firmware handle */
101 int fd; /* SEV device fd */
102 unsigned long policy;
103 unsigned long pages_locked; /* Number of pages locked */
104 struct list_head regions_list; /* List of registered regions */
105 u64 ap_jump_table; /* SEV-ES AP Jump Table address */
106 u64 vmsa_features;
107 u16 ghcb_version; /* Highest guest GHCB protocol version allowed */
108 struct kvm *enc_context_owner; /* Owner of copied encryption context */
109 struct list_head mirror_vms; /* List of VMs mirroring */
110 struct list_head mirror_entry; /* Use as a list entry of mirrors */
111 struct misc_cg *misc_cg; /* For misc cgroup accounting */
112 atomic_t migration_in_progress;
113 void *snp_context; /* SNP guest context page */
114 void *guest_req_buf; /* Bounce buffer for SNP Guest Request input */
115 void *guest_resp_buf; /* Bounce buffer for SNP Guest Request output */
116 struct mutex guest_req_mutex; /* Must acquire before using bounce buffers */
117 cpumask_var_t have_run_cpus; /* CPUs that have done VMRUN for this VM. */
118 };
119
120 #define SEV_POLICY_NODBG BIT_ULL(0)
121 #define SNP_POLICY_DEBUG BIT_ULL(19)
122
123 struct kvm_svm {
124 struct kvm kvm;
125
126 /* Struct members for AVIC */
127 u32 avic_vm_id;
128 u32 *avic_logical_id_table;
129 u64 *avic_physical_id_table;
130 struct hlist_node hnode;
131
132 struct kvm_sev_info sev_info;
133 };
134
135 struct kvm_vcpu;
136
137 struct kvm_vmcb_info {
138 struct vmcb *ptr;
139 unsigned long pa;
140 int cpu;
141 uint64_t asid_generation;
142 };
143
144 struct vmcb_save_area_cached {
145 u64 efer;
146 u64 cr4;
147 u64 cr3;
148 u64 cr0;
149 u64 dr7;
150 u64 dr6;
151 };
152
153 struct vmcb_ctrl_area_cached {
154 u32 intercepts[MAX_INTERCEPT];
155 u16 pause_filter_thresh;
156 u16 pause_filter_count;
157 u64 iopm_base_pa;
158 u64 msrpm_base_pa;
159 u64 tsc_offset;
160 u32 asid;
161 u8 tlb_ctl;
162 u32 int_ctl;
163 u32 int_vector;
164 u32 int_state;
165 u32 exit_code;
166 u32 exit_code_hi;
167 u64 exit_info_1;
168 u64 exit_info_2;
169 u32 exit_int_info;
170 u32 exit_int_info_err;
171 u64 nested_ctl;
172 u32 event_inj;
173 u32 event_inj_err;
174 u64 next_rip;
175 u64 nested_cr3;
176 u64 virt_ext;
177 u32 clean;
178 u64 bus_lock_rip;
179 union {
180 #if IS_ENABLED(CONFIG_HYPERV) || IS_ENABLED(CONFIG_KVM_HYPERV)
181 struct hv_vmcb_enlightenments hv_enlightenments;
182 #endif
183 u8 reserved_sw[32];
184 };
185 };
186
187 struct svm_nested_state {
188 struct kvm_vmcb_info vmcb02;
189 u64 hsave_msr;
190 u64 vm_cr_msr;
191 u64 vmcb12_gpa;
192 u64 last_vmcb12_gpa;
193
194 /*
195 * The MSR permissions map used for vmcb02, which is the merge result
196 * of vmcb01 and vmcb12
197 */
198 void *msrpm;
199
200 /* A VMRUN has started but has not yet been performed, so
201 * we cannot inject a nested vmexit yet. */
202 bool nested_run_pending;
203
204 /* cache for control fields of the guest */
205 struct vmcb_ctrl_area_cached ctl;
206
207 /*
208 * Note: this struct is not kept up-to-date while L2 runs; it is only
209 * valid within nested_svm_vmrun.
210 */
211 struct vmcb_save_area_cached save;
212
213 bool initialized;
214
215 /*
216 * Indicates whether MSR bitmap for L2 needs to be rebuilt due to
217 * changes in MSR bitmap for L1 or switching to a different L2. Note,
218 * this flag can only be used reliably in conjunction with a paravirt L1
219 * which informs L0 whether any changes to MSR bitmap for L2 were done
220 * on its side.
221 */
222 bool force_msr_bitmap_recalc;
223 };
224
225 struct vcpu_sev_es_state {
226 /* SEV-ES support */
227 struct sev_es_save_area *vmsa;
228 struct ghcb *ghcb;
229 u8 valid_bitmap[16];
230 struct kvm_host_map ghcb_map;
231 bool received_first_sipi;
232 unsigned int ap_reset_hold_type;
233
234 /* SEV-ES scratch area support */
235 u64 sw_scratch;
236 void *ghcb_sa;
237 u32 ghcb_sa_len;
238 bool ghcb_sa_sync;
239 bool ghcb_sa_free;
240
241 /* SNP Page-State-Change buffer entries currently being processed */
242 u16 psc_idx;
243 u16 psc_inflight;
244 bool psc_2m;
245
246 u64 ghcb_registered_gpa;
247
248 struct mutex snp_vmsa_mutex; /* Used to handle concurrent updates of VMSA. */
249 gpa_t snp_vmsa_gpa;
250 bool snp_ap_waiting_for_reset;
251 bool snp_has_guest_vmsa;
252 };
253
254 struct vcpu_svm {
255 struct kvm_vcpu vcpu;
256 /* vmcb always points at current_vmcb->ptr, it's purely a shorthand. */
257 struct vmcb *vmcb;
258 struct kvm_vmcb_info vmcb01;
259 struct kvm_vmcb_info *current_vmcb;
260 u32 asid;
261 u32 sysenter_esp_hi;
262 u32 sysenter_eip_hi;
263 uint64_t tsc_aux;
264
265 u64 msr_decfg;
266
267 u64 next_rip;
268
269 u64 spec_ctrl;
270
271 u64 tsc_ratio_msr;
272 /*
273 * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
274 * translated into the appropriate L2_CFG bits on the host to
275 * perform speculative control.
276 */
277 u64 virt_spec_ctrl;
278
279 void *msrpm;
280
281 ulong nmi_iret_rip;
282
283 struct svm_nested_state nested;
284
285 /* NMI mask value, used when vNMI is not enabled */
286 bool nmi_masked;
287
288 /*
289 * True when NMIs are still masked but guest IRET was just intercepted
290 * and KVM is waiting for RIP to change, which will signal that the
291 * intercepted IRET was retired and thus NMI can be unmasked.
292 */
293 bool awaiting_iret_completion;
294
295 /*
296 * Set when KVM is awaiting IRET completion and needs to inject NMIs as
297 * soon as the IRET completes (e.g. NMI is pending injection). KVM
298 * temporarily steals RFLAGS.TF to single-step the guest in this case
299 * in order to regain control as soon as the NMI-blocking condition
300 * goes away.
301 */
302 bool nmi_singlestep;
303 u64 nmi_singlestep_guest_rflags;
304
305 bool nmi_l1_to_l2;
306
307 unsigned long soft_int_csbase;
308 unsigned long soft_int_old_rip;
309 unsigned long soft_int_next_rip;
310 bool soft_int_injected;
311
312 u32 ldr_reg;
313 u32 dfr_reg;
314
315 /* This is essentially a shadow of the vCPU's actual entry in the
316 * Physical ID table that is programmed into the VMCB, i.e. that is
317 * seen by the CPU. If IPI virtualization is disabled, IsRunning is
318 * only ever set in the shadow, i.e. is never propagated to the "real"
319 * table, so that hardware never sees IsRunning=1.
320 */
321 u64 avic_physical_id_entry;
322
323 /*
324 * Per-vCPU list of irqfds that are eligible to post IRQs directly to
325 * the vCPU (a.k.a. device posted IRQs, a.k.a. IRQ bypass). The list
326 * is used to reconfigure IRTEs when the vCPU is loaded/put (to set the
327 * target pCPU), when AVIC is toggled on/off (to (de)activate bypass),
328 * and if the irqfd becomes ineligible for posting (to put the IRTE
329 * back into remapped mode).
330 */
331 struct list_head ir_list;
332 raw_spinlock_t ir_list_lock;
333
334 struct vcpu_sev_es_state sev_es;
335
336 bool guest_state_loaded;
337
338 bool x2avic_msrs_intercepted;
339 bool lbr_msrs_intercepted;
340
341 /* Guest GIF value, used when vGIF is not enabled */
342 bool guest_gif;
343 };
344
345 struct svm_cpu_data {
346 u64 asid_generation;
347 u32 max_asid;
348 u32 next_asid;
349 u32 min_asid;
350
351 bool bp_spec_reduce_set;
352
353 struct vmcb *save_area;
354 unsigned long save_area_pa;
355
356 /* index = sev_asid, value = vmcb pointer */
357 struct vmcb **sev_vmcbs;
358 };
359
360 DECLARE_PER_CPU(struct svm_cpu_data, svm_data);
361
362 void recalc_intercepts(struct vcpu_svm *svm);
363
to_kvm_svm(struct kvm * kvm)364 static __always_inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
365 {
366 return container_of(kvm, struct kvm_svm, kvm);
367 }
368
to_kvm_sev_info(struct kvm * kvm)369 static __always_inline struct kvm_sev_info *to_kvm_sev_info(struct kvm *kvm)
370 {
371 return &to_kvm_svm(kvm)->sev_info;
372 }
373
374 #ifdef CONFIG_KVM_AMD_SEV
sev_guest(struct kvm * kvm)375 static __always_inline bool sev_guest(struct kvm *kvm)
376 {
377 return to_kvm_sev_info(kvm)->active;
378 }
sev_es_guest(struct kvm * kvm)379 static __always_inline bool sev_es_guest(struct kvm *kvm)
380 {
381 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
382
383 return sev->es_active && !WARN_ON_ONCE(!sev->active);
384 }
385
sev_snp_guest(struct kvm * kvm)386 static __always_inline bool sev_snp_guest(struct kvm *kvm)
387 {
388 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
389
390 return (sev->vmsa_features & SVM_SEV_FEAT_SNP_ACTIVE) &&
391 !WARN_ON_ONCE(!sev_es_guest(kvm));
392 }
393 #else
394 #define sev_guest(kvm) false
395 #define sev_es_guest(kvm) false
396 #define sev_snp_guest(kvm) false
397 #endif
398
ghcb_gpa_is_registered(struct vcpu_svm * svm,u64 val)399 static inline bool ghcb_gpa_is_registered(struct vcpu_svm *svm, u64 val)
400 {
401 return svm->sev_es.ghcb_registered_gpa == val;
402 }
403
vmcb_mark_all_dirty(struct vmcb * vmcb)404 static inline void vmcb_mark_all_dirty(struct vmcb *vmcb)
405 {
406 vmcb->control.clean = 0;
407 }
408
vmcb_mark_all_clean(struct vmcb * vmcb)409 static inline void vmcb_mark_all_clean(struct vmcb *vmcb)
410 {
411 vmcb->control.clean = VMCB_ALL_CLEAN_MASK
412 & ~VMCB_ALWAYS_DIRTY_MASK;
413 }
414
vmcb_mark_dirty(struct vmcb * vmcb,int bit)415 static inline void vmcb_mark_dirty(struct vmcb *vmcb, int bit)
416 {
417 vmcb->control.clean &= ~(1 << bit);
418 }
419
vmcb_is_dirty(struct vmcb * vmcb,int bit)420 static inline bool vmcb_is_dirty(struct vmcb *vmcb, int bit)
421 {
422 return !test_bit(bit, (unsigned long *)&vmcb->control.clean);
423 }
424
to_svm(struct kvm_vcpu * vcpu)425 static __always_inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
426 {
427 return container_of(vcpu, struct vcpu_svm, vcpu);
428 }
429
430 /*
431 * Only the PDPTRs are loaded on demand into the shadow MMU. All other
432 * fields are synchronized on VM-Exit, because accessing the VMCB is cheap.
433 *
434 * CR3 might be out of date in the VMCB but it is not marked dirty; instead,
435 * KVM_REQ_LOAD_MMU_PGD is always requested when the cached vcpu->arch.cr3
436 * is changed. svm_load_mmu_pgd() then syncs the new CR3 value into the VMCB.
437 */
438 #define SVM_REGS_LAZY_LOAD_SET (1 << VCPU_EXREG_PDPTR)
439
vmcb_set_intercept(struct vmcb_control_area * control,u32 bit)440 static inline void vmcb_set_intercept(struct vmcb_control_area *control, u32 bit)
441 {
442 WARN_ON_ONCE(bit >= 32 * MAX_INTERCEPT);
443 __set_bit(bit, (unsigned long *)&control->intercepts);
444 }
445
vmcb_clr_intercept(struct vmcb_control_area * control,u32 bit)446 static inline void vmcb_clr_intercept(struct vmcb_control_area *control, u32 bit)
447 {
448 WARN_ON_ONCE(bit >= 32 * MAX_INTERCEPT);
449 __clear_bit(bit, (unsigned long *)&control->intercepts);
450 }
451
vmcb_is_intercept(struct vmcb_control_area * control,u32 bit)452 static inline bool vmcb_is_intercept(struct vmcb_control_area *control, u32 bit)
453 {
454 WARN_ON_ONCE(bit >= 32 * MAX_INTERCEPT);
455 return test_bit(bit, (unsigned long *)&control->intercepts);
456 }
457
vmcb12_is_intercept(struct vmcb_ctrl_area_cached * control,u32 bit)458 static inline bool vmcb12_is_intercept(struct vmcb_ctrl_area_cached *control, u32 bit)
459 {
460 WARN_ON_ONCE(bit >= 32 * MAX_INTERCEPT);
461 return test_bit(bit, (unsigned long *)&control->intercepts);
462 }
463
set_exception_intercept(struct vcpu_svm * svm,u32 bit)464 static inline void set_exception_intercept(struct vcpu_svm *svm, u32 bit)
465 {
466 struct vmcb *vmcb = svm->vmcb01.ptr;
467
468 WARN_ON_ONCE(bit >= 32);
469 vmcb_set_intercept(&vmcb->control, INTERCEPT_EXCEPTION_OFFSET + bit);
470
471 recalc_intercepts(svm);
472 }
473
clr_exception_intercept(struct vcpu_svm * svm,u32 bit)474 static inline void clr_exception_intercept(struct vcpu_svm *svm, u32 bit)
475 {
476 struct vmcb *vmcb = svm->vmcb01.ptr;
477
478 WARN_ON_ONCE(bit >= 32);
479 vmcb_clr_intercept(&vmcb->control, INTERCEPT_EXCEPTION_OFFSET + bit);
480
481 recalc_intercepts(svm);
482 }
483
svm_set_intercept(struct vcpu_svm * svm,int bit)484 static inline void svm_set_intercept(struct vcpu_svm *svm, int bit)
485 {
486 struct vmcb *vmcb = svm->vmcb01.ptr;
487
488 vmcb_set_intercept(&vmcb->control, bit);
489
490 recalc_intercepts(svm);
491 }
492
svm_clr_intercept(struct vcpu_svm * svm,int bit)493 static inline void svm_clr_intercept(struct vcpu_svm *svm, int bit)
494 {
495 struct vmcb *vmcb = svm->vmcb01.ptr;
496
497 vmcb_clr_intercept(&vmcb->control, bit);
498
499 recalc_intercepts(svm);
500 }
501
svm_is_intercept(struct vcpu_svm * svm,int bit)502 static inline bool svm_is_intercept(struct vcpu_svm *svm, int bit)
503 {
504 return vmcb_is_intercept(&svm->vmcb->control, bit);
505 }
506
nested_vgif_enabled(struct vcpu_svm * svm)507 static inline bool nested_vgif_enabled(struct vcpu_svm *svm)
508 {
509 return guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_VGIF) &&
510 (svm->nested.ctl.int_ctl & V_GIF_ENABLE_MASK);
511 }
512
get_vgif_vmcb(struct vcpu_svm * svm)513 static inline struct vmcb *get_vgif_vmcb(struct vcpu_svm *svm)
514 {
515 if (!vgif)
516 return NULL;
517
518 if (is_guest_mode(&svm->vcpu) && !nested_vgif_enabled(svm))
519 return svm->nested.vmcb02.ptr;
520 else
521 return svm->vmcb01.ptr;
522 }
523
enable_gif(struct vcpu_svm * svm)524 static inline void enable_gif(struct vcpu_svm *svm)
525 {
526 struct vmcb *vmcb = get_vgif_vmcb(svm);
527
528 if (vmcb)
529 vmcb->control.int_ctl |= V_GIF_MASK;
530 else
531 svm->guest_gif = true;
532 }
533
disable_gif(struct vcpu_svm * svm)534 static inline void disable_gif(struct vcpu_svm *svm)
535 {
536 struct vmcb *vmcb = get_vgif_vmcb(svm);
537
538 if (vmcb)
539 vmcb->control.int_ctl &= ~V_GIF_MASK;
540 else
541 svm->guest_gif = false;
542 }
543
gif_set(struct vcpu_svm * svm)544 static inline bool gif_set(struct vcpu_svm *svm)
545 {
546 struct vmcb *vmcb = get_vgif_vmcb(svm);
547
548 if (vmcb)
549 return !!(vmcb->control.int_ctl & V_GIF_MASK);
550 else
551 return svm->guest_gif;
552 }
553
nested_npt_enabled(struct vcpu_svm * svm)554 static inline bool nested_npt_enabled(struct vcpu_svm *svm)
555 {
556 return svm->nested.ctl.nested_ctl & SVM_NESTED_CTL_NP_ENABLE;
557 }
558
nested_vnmi_enabled(struct vcpu_svm * svm)559 static inline bool nested_vnmi_enabled(struct vcpu_svm *svm)
560 {
561 return guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_VNMI) &&
562 (svm->nested.ctl.int_ctl & V_NMI_ENABLE_MASK);
563 }
564
is_x2apic_msrpm_offset(u32 offset)565 static inline bool is_x2apic_msrpm_offset(u32 offset)
566 {
567 /* 4 msrs per u8, and 4 u8 in u32 */
568 u32 msr = offset * 16;
569
570 return (msr >= APIC_BASE_MSR) &&
571 (msr < (APIC_BASE_MSR + 0x100));
572 }
573
get_vnmi_vmcb_l1(struct vcpu_svm * svm)574 static inline struct vmcb *get_vnmi_vmcb_l1(struct vcpu_svm *svm)
575 {
576 if (!vnmi)
577 return NULL;
578
579 if (is_guest_mode(&svm->vcpu))
580 return NULL;
581 else
582 return svm->vmcb01.ptr;
583 }
584
is_vnmi_enabled(struct vcpu_svm * svm)585 static inline bool is_vnmi_enabled(struct vcpu_svm *svm)
586 {
587 struct vmcb *vmcb = get_vnmi_vmcb_l1(svm);
588
589 if (vmcb)
590 return !!(vmcb->control.int_ctl & V_NMI_ENABLE_MASK);
591 else
592 return false;
593 }
594
svm_vmgexit_set_return_code(struct vcpu_svm * svm,u64 response,u64 data)595 static inline void svm_vmgexit_set_return_code(struct vcpu_svm *svm,
596 u64 response, u64 data)
597 {
598 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, response);
599 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, data);
600 }
601
svm_vmgexit_inject_exception(struct vcpu_svm * svm,u8 vector)602 static inline void svm_vmgexit_inject_exception(struct vcpu_svm *svm, u8 vector)
603 {
604 u64 data = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT | vector;
605
606 svm_vmgexit_set_return_code(svm, GHCB_HV_RESP_ISSUE_EXCEPTION, data);
607 }
608
svm_vmgexit_bad_input(struct vcpu_svm * svm,u64 suberror)609 static inline void svm_vmgexit_bad_input(struct vcpu_svm *svm, u64 suberror)
610 {
611 svm_vmgexit_set_return_code(svm, GHCB_HV_RESP_MALFORMED_INPUT, suberror);
612 }
613
svm_vmgexit_success(struct vcpu_svm * svm,u64 data)614 static inline void svm_vmgexit_success(struct vcpu_svm *svm, u64 data)
615 {
616 svm_vmgexit_set_return_code(svm, GHCB_HV_RESP_NO_ACTION, data);
617 }
618
svm_vmgexit_no_action(struct vcpu_svm * svm,u64 data)619 static inline void svm_vmgexit_no_action(struct vcpu_svm *svm, u64 data)
620 {
621 svm_vmgexit_set_return_code(svm, GHCB_HV_RESP_NO_ACTION, data);
622 }
623
624 /*
625 * The MSRPM is 8KiB in size, divided into four 2KiB ranges (the fourth range
626 * is reserved). Each MSR within a range is covered by two bits, one each for
627 * read (bit 0) and write (bit 1), where a bit value of '1' means intercepted.
628 */
629 #define SVM_MSRPM_BYTES_PER_RANGE 2048
630 #define SVM_BITS_PER_MSR 2
631 #define SVM_MSRS_PER_BYTE (BITS_PER_BYTE / SVM_BITS_PER_MSR)
632 #define SVM_MSRS_PER_RANGE (SVM_MSRPM_BYTES_PER_RANGE * SVM_MSRS_PER_BYTE)
633 static_assert(SVM_MSRS_PER_RANGE == 8192);
634 #define SVM_MSRPM_OFFSET_MASK (SVM_MSRS_PER_RANGE - 1)
635
svm_msrpm_bit_nr(u32 msr)636 static __always_inline int svm_msrpm_bit_nr(u32 msr)
637 {
638 int range_nr;
639
640 switch (msr & ~SVM_MSRPM_OFFSET_MASK) {
641 case 0:
642 range_nr = 0;
643 break;
644 case 0xc0000000:
645 range_nr = 1;
646 break;
647 case 0xc0010000:
648 range_nr = 2;
649 break;
650 default:
651 return -EINVAL;
652 }
653
654 return range_nr * SVM_MSRPM_BYTES_PER_RANGE * BITS_PER_BYTE +
655 (msr & SVM_MSRPM_OFFSET_MASK) * SVM_BITS_PER_MSR;
656 }
657
658 #define __BUILD_SVM_MSR_BITMAP_HELPER(rtype, action, bitop, access, bit_rw) \
659 static inline rtype svm_##action##_msr_bitmap_##access(unsigned long *bitmap, \
660 u32 msr) \
661 { \
662 int bit_nr; \
663 \
664 bit_nr = svm_msrpm_bit_nr(msr); \
665 if (bit_nr < 0) \
666 return (rtype)true; \
667 \
668 return bitop##_bit(bit_nr + bit_rw, bitmap); \
669 }
670
671 #define BUILD_SVM_MSR_BITMAP_HELPERS(ret_type, action, bitop) \
672 __BUILD_SVM_MSR_BITMAP_HELPER(ret_type, action, bitop, read, 0) \
673 __BUILD_SVM_MSR_BITMAP_HELPER(ret_type, action, bitop, write, 1)
674
675 BUILD_SVM_MSR_BITMAP_HELPERS(bool, test, test)
676 BUILD_SVM_MSR_BITMAP_HELPERS(void, clear, __clear)
677 BUILD_SVM_MSR_BITMAP_HELPERS(void, set, __set)
678
679 #define DEBUGCTL_RESERVED_BITS (~DEBUGCTLMSR_LBR)
680
681 /* svm.c */
682 extern bool dump_invalid_vmcb;
683
684 void *svm_alloc_permissions_map(unsigned long size, gfp_t gfp_mask);
685
svm_vcpu_alloc_msrpm(void)686 static inline void *svm_vcpu_alloc_msrpm(void)
687 {
688 return svm_alloc_permissions_map(MSRPM_SIZE, GFP_KERNEL_ACCOUNT);
689 }
690
691 void svm_vcpu_free_msrpm(void *msrpm);
692 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb);
693 void svm_enable_lbrv(struct kvm_vcpu *vcpu);
694 void svm_update_lbrv(struct kvm_vcpu *vcpu);
695
696 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer);
697 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
698 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
699 void disable_nmi_singlestep(struct vcpu_svm *svm);
700 bool svm_smi_blocked(struct kvm_vcpu *vcpu);
701 bool svm_nmi_blocked(struct kvm_vcpu *vcpu);
702 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu);
703 void svm_set_gif(struct vcpu_svm *svm, bool value);
704 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code);
705 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
706 int read, int write);
707 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
708 int trig_mode, int vec);
709
710 void svm_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type, bool set);
711
svm_disable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)712 static inline void svm_disable_intercept_for_msr(struct kvm_vcpu *vcpu,
713 u32 msr, int type)
714 {
715 svm_set_intercept_for_msr(vcpu, msr, type, false);
716 }
717
svm_enable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)718 static inline void svm_enable_intercept_for_msr(struct kvm_vcpu *vcpu,
719 u32 msr, int type)
720 {
721 svm_set_intercept_for_msr(vcpu, msr, type, true);
722 }
723
724 /* nested.c */
725
726 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
727 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
728 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
729
nested_svm_virtualize_tpr(struct kvm_vcpu * vcpu)730 static inline bool nested_svm_virtualize_tpr(struct kvm_vcpu *vcpu)
731 {
732 struct vcpu_svm *svm = to_svm(vcpu);
733
734 return is_guest_mode(vcpu) && (svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK);
735 }
736
nested_exit_on_smi(struct vcpu_svm * svm)737 static inline bool nested_exit_on_smi(struct vcpu_svm *svm)
738 {
739 return vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SMI);
740 }
741
nested_exit_on_intr(struct vcpu_svm * svm)742 static inline bool nested_exit_on_intr(struct vcpu_svm *svm)
743 {
744 return vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_INTR);
745 }
746
nested_exit_on_nmi(struct vcpu_svm * svm)747 static inline bool nested_exit_on_nmi(struct vcpu_svm *svm)
748 {
749 return vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_NMI);
750 }
751
752 int __init nested_svm_init_msrpm_merge_offsets(void);
753
754 int enter_svm_guest_mode(struct kvm_vcpu *vcpu,
755 u64 vmcb_gpa, struct vmcb *vmcb12, bool from_vmrun);
756 void svm_leave_nested(struct kvm_vcpu *vcpu);
757 void svm_free_nested(struct vcpu_svm *svm);
758 int svm_allocate_nested(struct vcpu_svm *svm);
759 int nested_svm_vmrun(struct kvm_vcpu *vcpu);
760 void svm_copy_vmrun_state(struct vmcb_save_area *to_save,
761 struct vmcb_save_area *from_save);
762 void svm_copy_vmloadsave_state(struct vmcb *to_vmcb, struct vmcb *from_vmcb);
763 int nested_svm_vmexit(struct vcpu_svm *svm);
764
nested_svm_simple_vmexit(struct vcpu_svm * svm,u32 exit_code)765 static inline int nested_svm_simple_vmexit(struct vcpu_svm *svm, u32 exit_code)
766 {
767 svm->vmcb->control.exit_code = exit_code;
768 svm->vmcb->control.exit_info_1 = 0;
769 svm->vmcb->control.exit_info_2 = 0;
770 return nested_svm_vmexit(svm);
771 }
772
773 int nested_svm_exit_handled(struct vcpu_svm *svm);
774 int nested_svm_check_permissions(struct kvm_vcpu *vcpu);
775 int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
776 bool has_error_code, u32 error_code);
777 int nested_svm_exit_special(struct vcpu_svm *svm);
778 void nested_svm_update_tsc_ratio_msr(struct kvm_vcpu *vcpu);
779 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu);
780 void nested_copy_vmcb_control_to_cache(struct vcpu_svm *svm,
781 struct vmcb_control_area *control);
782 void nested_copy_vmcb_save_to_cache(struct vcpu_svm *svm,
783 struct vmcb_save_area *save);
784 void nested_sync_control_from_vmcb02(struct vcpu_svm *svm);
785 void nested_vmcb02_compute_g_pat(struct vcpu_svm *svm);
786 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb);
787
788 extern struct kvm_x86_nested_ops svm_nested_ops;
789
790 /* avic.c */
791 #define AVIC_REQUIRED_APICV_INHIBITS \
792 ( \
793 BIT(APICV_INHIBIT_REASON_DISABLED) | \
794 BIT(APICV_INHIBIT_REASON_ABSENT) | \
795 BIT(APICV_INHIBIT_REASON_HYPERV) | \
796 BIT(APICV_INHIBIT_REASON_NESTED) | \
797 BIT(APICV_INHIBIT_REASON_IRQWIN) | \
798 BIT(APICV_INHIBIT_REASON_PIT_REINJ) | \
799 BIT(APICV_INHIBIT_REASON_BLOCKIRQ) | \
800 BIT(APICV_INHIBIT_REASON_SEV) | \
801 BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) | \
802 BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) | \
803 BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED) | \
804 BIT(APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED) | \
805 BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_TOO_BIG) \
806 )
807
808 bool __init avic_hardware_setup(void);
809 void avic_hardware_unsetup(void);
810 void avic_vm_destroy(struct kvm *kvm);
811 int avic_vm_init(struct kvm *kvm);
812 void avic_init_vmcb(struct vcpu_svm *svm, struct vmcb *vmcb);
813 int avic_incomplete_ipi_interception(struct kvm_vcpu *vcpu);
814 int avic_unaccelerated_access_interception(struct kvm_vcpu *vcpu);
815 int avic_init_vcpu(struct vcpu_svm *svm);
816 void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
817 void avic_vcpu_put(struct kvm_vcpu *vcpu);
818 void avic_apicv_post_state_restore(struct kvm_vcpu *vcpu);
819 void avic_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu);
820 int avic_pi_update_irte(struct kvm_kernel_irqfd *irqfd, struct kvm *kvm,
821 unsigned int host_irq, uint32_t guest_irq,
822 struct kvm_vcpu *vcpu, u32 vector);
823 void avic_vcpu_blocking(struct kvm_vcpu *vcpu);
824 void avic_vcpu_unblocking(struct kvm_vcpu *vcpu);
825 void avic_ring_doorbell(struct kvm_vcpu *vcpu);
826 unsigned long avic_vcpu_get_apicv_inhibit_reasons(struct kvm_vcpu *vcpu);
827 void avic_refresh_virtual_apic_mode(struct kvm_vcpu *vcpu);
828
829
830 /* sev.c */
831
832 int pre_sev_run(struct vcpu_svm *svm, int cpu);
833 void sev_init_vmcb(struct vcpu_svm *svm, bool init_event);
834 void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm);
835 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in);
836 void sev_es_recalc_msr_intercepts(struct kvm_vcpu *vcpu);
837 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
838 void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_area *hostsa);
839 void sev_es_unmap_ghcb(struct vcpu_svm *svm);
840
841 #ifdef CONFIG_KVM_AMD_SEV
842 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp);
843 int sev_mem_enc_register_region(struct kvm *kvm,
844 struct kvm_enc_region *range);
845 int sev_mem_enc_unregister_region(struct kvm *kvm,
846 struct kvm_enc_region *range);
847 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd);
848 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd);
849 void sev_guest_memory_reclaimed(struct kvm *kvm);
850 int sev_handle_vmgexit(struct kvm_vcpu *vcpu);
851
852 /* These symbols are used in common code and are stubbed below. */
853
854 struct page *snp_safe_alloc_page_node(int node, gfp_t gfp);
snp_safe_alloc_page(void)855 static inline struct page *snp_safe_alloc_page(void)
856 {
857 return snp_safe_alloc_page_node(numa_node_id(), GFP_KERNEL_ACCOUNT);
858 }
859
860 int sev_vcpu_create(struct kvm_vcpu *vcpu);
861 void sev_free_vcpu(struct kvm_vcpu *vcpu);
862 void sev_vm_destroy(struct kvm *kvm);
863 void __init sev_set_cpu_caps(void);
864 void __init sev_hardware_setup(void);
865 void sev_hardware_unsetup(void);
866 int sev_cpu_init(struct svm_cpu_data *sd);
867 int sev_dev_get_attr(u32 group, u64 attr, u64 *val);
868 extern unsigned int max_sev_asid;
869 void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code);
870 int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order);
871 void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end);
872 int sev_gmem_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn, bool is_private);
873 struct vmcb_save_area *sev_decrypt_vmsa(struct kvm_vcpu *vcpu);
874 void sev_free_decrypted_vmsa(struct kvm_vcpu *vcpu, struct vmcb_save_area *vmsa);
875 #else
snp_safe_alloc_page_node(int node,gfp_t gfp)876 static inline struct page *snp_safe_alloc_page_node(int node, gfp_t gfp)
877 {
878 return alloc_pages_node(node, gfp | __GFP_ZERO, 0);
879 }
880
snp_safe_alloc_page(void)881 static inline struct page *snp_safe_alloc_page(void)
882 {
883 return snp_safe_alloc_page_node(numa_node_id(), GFP_KERNEL_ACCOUNT);
884 }
885
sev_vcpu_create(struct kvm_vcpu * vcpu)886 static inline int sev_vcpu_create(struct kvm_vcpu *vcpu) { return 0; }
sev_free_vcpu(struct kvm_vcpu * vcpu)887 static inline void sev_free_vcpu(struct kvm_vcpu *vcpu) {}
sev_vm_destroy(struct kvm * kvm)888 static inline void sev_vm_destroy(struct kvm *kvm) {}
sev_set_cpu_caps(void)889 static inline void __init sev_set_cpu_caps(void) {}
sev_hardware_setup(void)890 static inline void __init sev_hardware_setup(void) {}
sev_hardware_unsetup(void)891 static inline void sev_hardware_unsetup(void) {}
sev_cpu_init(struct svm_cpu_data * sd)892 static inline int sev_cpu_init(struct svm_cpu_data *sd) { return 0; }
sev_dev_get_attr(u32 group,u64 attr,u64 * val)893 static inline int sev_dev_get_attr(u32 group, u64 attr, u64 *val) { return -ENXIO; }
894 #define max_sev_asid 0
sev_handle_rmp_fault(struct kvm_vcpu * vcpu,gpa_t gpa,u64 error_code)895 static inline void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code) {}
sev_gmem_prepare(struct kvm * kvm,kvm_pfn_t pfn,gfn_t gfn,int max_order)896 static inline int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order)
897 {
898 return 0;
899 }
sev_gmem_invalidate(kvm_pfn_t start,kvm_pfn_t end)900 static inline void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end) {}
sev_gmem_max_mapping_level(struct kvm * kvm,kvm_pfn_t pfn,bool is_private)901 static inline int sev_gmem_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn, bool is_private)
902 {
903 return 0;
904 }
905
sev_decrypt_vmsa(struct kvm_vcpu * vcpu)906 static inline struct vmcb_save_area *sev_decrypt_vmsa(struct kvm_vcpu *vcpu)
907 {
908 return NULL;
909 }
sev_free_decrypted_vmsa(struct kvm_vcpu * vcpu,struct vmcb_save_area * vmsa)910 static inline void sev_free_decrypted_vmsa(struct kvm_vcpu *vcpu, struct vmcb_save_area *vmsa) {}
911 #endif
912
913 /* vmenter.S */
914
915 void __svm_sev_es_vcpu_run(struct vcpu_svm *svm, bool spec_ctrl_intercepted,
916 struct sev_es_save_area *hostsa);
917 void __svm_vcpu_run(struct vcpu_svm *svm, bool spec_ctrl_intercepted);
918
919 #define DEFINE_KVM_GHCB_ACCESSORS(field) \
920 static __always_inline u64 kvm_ghcb_get_##field(struct vcpu_svm *svm) \
921 { \
922 return READ_ONCE(svm->sev_es.ghcb->save.field); \
923 } \
924 \
925 static __always_inline bool kvm_ghcb_##field##_is_valid(const struct vcpu_svm *svm) \
926 { \
927 return test_bit(GHCB_BITMAP_IDX(field), \
928 (unsigned long *)&svm->sev_es.valid_bitmap); \
929 } \
930 \
931 static __always_inline u64 kvm_ghcb_get_##field##_if_valid(struct vcpu_svm *svm) \
932 { \
933 return kvm_ghcb_##field##_is_valid(svm) ? kvm_ghcb_get_##field(svm) : 0; \
934 }
935
936 DEFINE_KVM_GHCB_ACCESSORS(cpl)
937 DEFINE_KVM_GHCB_ACCESSORS(rax)
938 DEFINE_KVM_GHCB_ACCESSORS(rcx)
939 DEFINE_KVM_GHCB_ACCESSORS(rdx)
940 DEFINE_KVM_GHCB_ACCESSORS(rbx)
941 DEFINE_KVM_GHCB_ACCESSORS(rsi)
942 DEFINE_KVM_GHCB_ACCESSORS(sw_exit_code)
943 DEFINE_KVM_GHCB_ACCESSORS(sw_exit_info_1)
944 DEFINE_KVM_GHCB_ACCESSORS(sw_exit_info_2)
945 DEFINE_KVM_GHCB_ACCESSORS(sw_scratch)
946 DEFINE_KVM_GHCB_ACCESSORS(xcr0)
947 DEFINE_KVM_GHCB_ACCESSORS(xss)
948
949 #endif
950