1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * GICv3 ITS emulation
4 *
5 * Copyright (C) 2015,2016 ARM Ltd.
6 * Author: Andre Przywara <andre.przywara@arm.com>
7 */
8
9 #include <linux/cpu.h>
10 #include <linux/kvm.h>
11 #include <linux/kvm_host.h>
12 #include <linux/interrupt.h>
13 #include <linux/list.h>
14 #include <linux/uaccess.h>
15 #include <linux/list_sort.h>
16
17 #include <linux/irqchip/arm-gic-v3.h>
18
19 #include <asm/kvm_emulate.h>
20 #include <asm/kvm_arm.h>
21 #include <asm/kvm_mmu.h>
22
23 #include "vgic.h"
24 #include "vgic-mmio.h"
25
26 static struct kvm_device_ops kvm_arm_vgic_its_ops;
27
28 static int vgic_its_save_tables_v0(struct vgic_its *its);
29 static int vgic_its_restore_tables_v0(struct vgic_its *its);
30 static int vgic_its_commit_v0(struct vgic_its *its);
31 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
32 struct kvm_vcpu *filter_vcpu, bool needs_inv);
33
34 /*
35 * Creates a new (reference to a) struct vgic_irq for a given LPI.
36 * If this LPI is already mapped on another ITS, we increase its refcount
37 * and return a pointer to the existing structure.
38 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
39 * This function returns a pointer to the _unlocked_ structure.
40 */
vgic_add_lpi(struct kvm * kvm,u32 intid,struct kvm_vcpu * vcpu)41 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
42 struct kvm_vcpu *vcpu)
43 {
44 struct vgic_dist *dist = &kvm->arch.vgic;
45 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
46 unsigned long flags;
47 int ret;
48
49 /* In this case there is no put, since we keep the reference. */
50 if (irq)
51 return irq;
52
53 irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT);
54 if (!irq)
55 return ERR_PTR(-ENOMEM);
56
57 ret = xa_reserve_irq(&dist->lpi_xa, intid, GFP_KERNEL_ACCOUNT);
58 if (ret) {
59 kfree(irq);
60 return ERR_PTR(ret);
61 }
62
63 INIT_LIST_HEAD(&irq->ap_list);
64 raw_spin_lock_init(&irq->irq_lock);
65
66 irq->config = VGIC_CONFIG_EDGE;
67 kref_init(&irq->refcount);
68 irq->intid = intid;
69 irq->target_vcpu = vcpu;
70 irq->group = 1;
71
72 xa_lock_irqsave(&dist->lpi_xa, flags);
73
74 /*
75 * There could be a race with another vgic_add_lpi(), so we need to
76 * check that we don't add a second list entry with the same LPI.
77 */
78 oldirq = xa_load(&dist->lpi_xa, intid);
79 if (vgic_try_get_irq_kref(oldirq)) {
80 /* Someone was faster with adding this LPI, lets use that. */
81 kfree(irq);
82 irq = oldirq;
83
84 goto out_unlock;
85 }
86
87 ret = xa_err(__xa_store(&dist->lpi_xa, intid, irq, 0));
88 if (ret) {
89 xa_release(&dist->lpi_xa, intid);
90 kfree(irq);
91 }
92
93 out_unlock:
94 xa_unlock_irqrestore(&dist->lpi_xa, flags);
95
96 if (ret)
97 return ERR_PTR(ret);
98
99 /*
100 * We "cache" the configuration table entries in our struct vgic_irq's.
101 * However we only have those structs for mapped IRQs, so we read in
102 * the respective config data from memory here upon mapping the LPI.
103 *
104 * Should any of these fail, behave as if we couldn't create the LPI
105 * by dropping the refcount and returning the error.
106 */
107 ret = update_lpi_config(kvm, irq, NULL, false);
108 if (ret) {
109 vgic_put_irq(kvm, irq);
110 return ERR_PTR(ret);
111 }
112
113 ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
114 if (ret) {
115 vgic_put_irq(kvm, irq);
116 return ERR_PTR(ret);
117 }
118
119 return irq;
120 }
121
122 struct its_device {
123 struct list_head dev_list;
124
125 /* the head for the list of ITTEs */
126 struct list_head itt_head;
127 u32 num_eventid_bits;
128 gpa_t itt_addr;
129 u32 device_id;
130 };
131
132 #define COLLECTION_NOT_MAPPED ((u32)~0)
133
134 struct its_collection {
135 struct list_head coll_list;
136
137 u32 collection_id;
138 u32 target_addr;
139 };
140
141 #define its_is_collection_mapped(coll) ((coll) && \
142 ((coll)->target_addr != COLLECTION_NOT_MAPPED))
143
144 struct its_ite {
145 struct list_head ite_list;
146
147 struct vgic_irq *irq;
148 struct its_collection *collection;
149 u32 event_id;
150 };
151
152 /**
153 * struct vgic_its_abi - ITS abi ops and settings
154 * @cte_esz: collection table entry size
155 * @dte_esz: device table entry size
156 * @ite_esz: interrupt translation table entry size
157 * @save_tables: save the ITS tables into guest RAM
158 * @restore_tables: restore the ITS internal structs from tables
159 * stored in guest RAM
160 * @commit: initialize the registers which expose the ABI settings,
161 * especially the entry sizes
162 */
163 struct vgic_its_abi {
164 int cte_esz;
165 int dte_esz;
166 int ite_esz;
167 int (*save_tables)(struct vgic_its *its);
168 int (*restore_tables)(struct vgic_its *its);
169 int (*commit)(struct vgic_its *its);
170 };
171
172 #define ABI_0_ESZ 8
173 #define ESZ_MAX ABI_0_ESZ
174
175 static const struct vgic_its_abi its_table_abi_versions[] = {
176 [0] = {
177 .cte_esz = ABI_0_ESZ,
178 .dte_esz = ABI_0_ESZ,
179 .ite_esz = ABI_0_ESZ,
180 .save_tables = vgic_its_save_tables_v0,
181 .restore_tables = vgic_its_restore_tables_v0,
182 .commit = vgic_its_commit_v0,
183 },
184 };
185
186 #define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions)
187
vgic_its_get_abi(struct vgic_its * its)188 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
189 {
190 return &its_table_abi_versions[its->abi_rev];
191 }
192
vgic_its_set_abi(struct vgic_its * its,u32 rev)193 static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
194 {
195 const struct vgic_its_abi *abi;
196
197 its->abi_rev = rev;
198 abi = vgic_its_get_abi(its);
199 return abi->commit(its);
200 }
201
202 /*
203 * Find and returns a device in the device table for an ITS.
204 * Must be called with the its_lock mutex held.
205 */
find_its_device(struct vgic_its * its,u32 device_id)206 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
207 {
208 struct its_device *device;
209
210 list_for_each_entry(device, &its->device_list, dev_list)
211 if (device_id == device->device_id)
212 return device;
213
214 return NULL;
215 }
216
217 /*
218 * Find and returns an interrupt translation table entry (ITTE) for a given
219 * Device ID/Event ID pair on an ITS.
220 * Must be called with the its_lock mutex held.
221 */
find_ite(struct vgic_its * its,u32 device_id,u32 event_id)222 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
223 u32 event_id)
224 {
225 struct its_device *device;
226 struct its_ite *ite;
227
228 device = find_its_device(its, device_id);
229 if (device == NULL)
230 return NULL;
231
232 list_for_each_entry(ite, &device->itt_head, ite_list)
233 if (ite->event_id == event_id)
234 return ite;
235
236 return NULL;
237 }
238
239 /* To be used as an iterator this macro misses the enclosing parentheses */
240 #define for_each_lpi_its(dev, ite, its) \
241 list_for_each_entry(dev, &(its)->device_list, dev_list) \
242 list_for_each_entry(ite, &(dev)->itt_head, ite_list)
243
244 #define GIC_LPI_OFFSET 8192
245
246 #define VITS_TYPER_IDBITS 16
247 #define VITS_MAX_EVENTID (BIT(VITS_TYPER_IDBITS) - 1)
248 #define VITS_TYPER_DEVBITS 16
249 #define VITS_MAX_DEVID (BIT(VITS_TYPER_DEVBITS) - 1)
250 #define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1)
251 #define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1)
252
253 /*
254 * Finds and returns a collection in the ITS collection table.
255 * Must be called with the its_lock mutex held.
256 */
find_collection(struct vgic_its * its,int coll_id)257 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
258 {
259 struct its_collection *collection;
260
261 list_for_each_entry(collection, &its->collection_list, coll_list) {
262 if (coll_id == collection->collection_id)
263 return collection;
264 }
265
266 return NULL;
267 }
268
269 #define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED)
270 #define LPI_PROP_PRIORITY(p) ((p) & 0xfc)
271
272 /*
273 * Reads the configuration data for a given LPI from guest memory and
274 * updates the fields in struct vgic_irq.
275 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
276 * VCPU. Unconditionally applies if filter_vcpu is NULL.
277 */
update_lpi_config(struct kvm * kvm,struct vgic_irq * irq,struct kvm_vcpu * filter_vcpu,bool needs_inv)278 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
279 struct kvm_vcpu *filter_vcpu, bool needs_inv)
280 {
281 u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
282 u8 prop;
283 int ret;
284 unsigned long flags;
285
286 ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
287 &prop, 1);
288
289 if (ret)
290 return ret;
291
292 raw_spin_lock_irqsave(&irq->irq_lock, flags);
293
294 if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
295 irq->priority = LPI_PROP_PRIORITY(prop);
296 irq->enabled = LPI_PROP_ENABLE_BIT(prop);
297
298 if (!irq->hw) {
299 vgic_queue_irq_unlock(kvm, irq, flags);
300 return 0;
301 }
302 }
303
304 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
305
306 if (irq->hw)
307 return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
308
309 return 0;
310 }
311
update_affinity(struct vgic_irq * irq,struct kvm_vcpu * vcpu)312 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
313 {
314 int ret = 0;
315 unsigned long flags;
316
317 raw_spin_lock_irqsave(&irq->irq_lock, flags);
318 irq->target_vcpu = vcpu;
319 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
320
321 if (irq->hw) {
322 struct its_vlpi_map map;
323
324 ret = its_get_vlpi(irq->host_irq, &map);
325 if (ret)
326 return ret;
327
328 if (map.vpe)
329 atomic_dec(&map.vpe->vlpi_count);
330 map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
331 atomic_inc(&map.vpe->vlpi_count);
332
333 ret = its_map_vlpi(irq->host_irq, &map);
334 }
335
336 return ret;
337 }
338
collection_to_vcpu(struct kvm * kvm,struct its_collection * col)339 static struct kvm_vcpu *collection_to_vcpu(struct kvm *kvm,
340 struct its_collection *col)
341 {
342 return kvm_get_vcpu_by_id(kvm, col->target_addr);
343 }
344
345 /*
346 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
347 * is targeting) to the VGIC's view, which deals with target VCPUs.
348 * Needs to be called whenever either the collection for a LPIs has
349 * changed or the collection itself got retargeted.
350 */
update_affinity_ite(struct kvm * kvm,struct its_ite * ite)351 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
352 {
353 struct kvm_vcpu *vcpu;
354
355 if (!its_is_collection_mapped(ite->collection))
356 return;
357
358 vcpu = collection_to_vcpu(kvm, ite->collection);
359 update_affinity(ite->irq, vcpu);
360 }
361
362 /*
363 * Updates the target VCPU for every LPI targeting this collection.
364 * Must be called with the its_lock mutex held.
365 */
update_affinity_collection(struct kvm * kvm,struct vgic_its * its,struct its_collection * coll)366 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
367 struct its_collection *coll)
368 {
369 struct its_device *device;
370 struct its_ite *ite;
371
372 for_each_lpi_its(device, ite, its) {
373 if (ite->collection != coll)
374 continue;
375
376 update_affinity_ite(kvm, ite);
377 }
378 }
379
max_lpis_propbaser(u64 propbaser)380 static u32 max_lpis_propbaser(u64 propbaser)
381 {
382 int nr_idbits = (propbaser & 0x1f) + 1;
383
384 return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
385 }
386
387 /*
388 * Sync the pending table pending bit of LPIs targeting @vcpu
389 * with our own data structures. This relies on the LPI being
390 * mapped before.
391 */
its_sync_lpi_pending_table(struct kvm_vcpu * vcpu)392 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
393 {
394 gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
395 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
396 unsigned long intid, flags;
397 struct vgic_irq *irq;
398 int last_byte_offset = -1;
399 int ret = 0;
400 u8 pendmask;
401
402 xa_for_each(&dist->lpi_xa, intid, irq) {
403 int byte_offset, bit_nr;
404
405 byte_offset = intid / BITS_PER_BYTE;
406 bit_nr = intid % BITS_PER_BYTE;
407
408 /*
409 * For contiguously allocated LPIs chances are we just read
410 * this very same byte in the last iteration. Reuse that.
411 */
412 if (byte_offset != last_byte_offset) {
413 ret = kvm_read_guest_lock(vcpu->kvm,
414 pendbase + byte_offset,
415 &pendmask, 1);
416 if (ret)
417 return ret;
418
419 last_byte_offset = byte_offset;
420 }
421
422 irq = vgic_get_irq(vcpu->kvm, NULL, intid);
423 if (!irq)
424 continue;
425
426 raw_spin_lock_irqsave(&irq->irq_lock, flags);
427 if (irq->target_vcpu == vcpu)
428 irq->pending_latch = pendmask & (1U << bit_nr);
429 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
430 vgic_put_irq(vcpu->kvm, irq);
431 }
432
433 return ret;
434 }
435
vgic_mmio_read_its_typer(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)436 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
437 struct vgic_its *its,
438 gpa_t addr, unsigned int len)
439 {
440 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
441 u64 reg = GITS_TYPER_PLPIS;
442
443 /*
444 * We use linear CPU numbers for redistributor addressing,
445 * so GITS_TYPER.PTA is 0.
446 * Also we force all PROPBASER registers to be the same, so
447 * CommonLPIAff is 0 as well.
448 * To avoid memory waste in the guest, we keep the number of IDBits and
449 * DevBits low - as least for the time being.
450 */
451 reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
452 reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
453 reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
454
455 return extract_bytes(reg, addr & 7, len);
456 }
457
vgic_mmio_read_its_iidr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)458 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
459 struct vgic_its *its,
460 gpa_t addr, unsigned int len)
461 {
462 u32 val;
463
464 val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
465 val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
466 return val;
467 }
468
vgic_mmio_uaccess_write_its_iidr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)469 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
470 struct vgic_its *its,
471 gpa_t addr, unsigned int len,
472 unsigned long val)
473 {
474 u32 rev = GITS_IIDR_REV(val);
475
476 if (rev >= NR_ITS_ABIS)
477 return -EINVAL;
478 return vgic_its_set_abi(its, rev);
479 }
480
vgic_mmio_read_its_idregs(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)481 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
482 struct vgic_its *its,
483 gpa_t addr, unsigned int len)
484 {
485 switch (addr & 0xffff) {
486 case GITS_PIDR0:
487 return 0x92; /* part number, bits[7:0] */
488 case GITS_PIDR1:
489 return 0xb4; /* part number, bits[11:8] */
490 case GITS_PIDR2:
491 return GIC_PIDR2_ARCH_GICv3 | 0x0b;
492 case GITS_PIDR4:
493 return 0x40; /* This is a 64K software visible page */
494 /* The following are the ID registers for (any) GIC. */
495 case GITS_CIDR0:
496 return 0x0d;
497 case GITS_CIDR1:
498 return 0xf0;
499 case GITS_CIDR2:
500 return 0x05;
501 case GITS_CIDR3:
502 return 0xb1;
503 }
504
505 return 0;
506 }
507
__vgic_doorbell_to_its(struct kvm * kvm,gpa_t db)508 static struct vgic_its *__vgic_doorbell_to_its(struct kvm *kvm, gpa_t db)
509 {
510 struct kvm_io_device *kvm_io_dev;
511 struct vgic_io_device *iodev;
512
513 kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, db);
514 if (!kvm_io_dev)
515 return ERR_PTR(-EINVAL);
516
517 if (kvm_io_dev->ops != &kvm_io_gic_ops)
518 return ERR_PTR(-EINVAL);
519
520 iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
521 if (iodev->iodev_type != IODEV_ITS)
522 return ERR_PTR(-EINVAL);
523
524 return iodev->its;
525 }
526
vgic_its_cache_key(u32 devid,u32 eventid)527 static unsigned long vgic_its_cache_key(u32 devid, u32 eventid)
528 {
529 return (((unsigned long)devid) << VITS_TYPER_IDBITS) | eventid;
530
531 }
532
vgic_its_check_cache(struct kvm * kvm,phys_addr_t db,u32 devid,u32 eventid)533 static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db,
534 u32 devid, u32 eventid)
535 {
536 unsigned long cache_key = vgic_its_cache_key(devid, eventid);
537 struct vgic_its *its;
538 struct vgic_irq *irq;
539
540 if (devid > VITS_MAX_DEVID || eventid > VITS_MAX_EVENTID)
541 return NULL;
542
543 its = __vgic_doorbell_to_its(kvm, db);
544 if (IS_ERR(its))
545 return NULL;
546
547 rcu_read_lock();
548
549 irq = xa_load(&its->translation_cache, cache_key);
550 if (!vgic_try_get_irq_kref(irq))
551 irq = NULL;
552
553 rcu_read_unlock();
554
555 return irq;
556 }
557
vgic_its_cache_translation(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid,struct vgic_irq * irq)558 static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its,
559 u32 devid, u32 eventid,
560 struct vgic_irq *irq)
561 {
562 unsigned long cache_key = vgic_its_cache_key(devid, eventid);
563 struct vgic_irq *old;
564
565 /* Do not cache a directly injected interrupt */
566 if (irq->hw)
567 return;
568
569 /*
570 * The irq refcount is guaranteed to be nonzero while holding the
571 * its_lock, as the ITE (and the reference it holds) cannot be freed.
572 */
573 lockdep_assert_held(&its->its_lock);
574 vgic_get_irq_kref(irq);
575
576 /*
577 * We could have raced with another CPU caching the same
578 * translation behind our back, ensure we don't leak a
579 * reference if that is the case.
580 */
581 old = xa_store(&its->translation_cache, cache_key, irq, GFP_KERNEL_ACCOUNT);
582 if (old)
583 vgic_put_irq(kvm, old);
584 }
585
vgic_its_invalidate_cache(struct vgic_its * its)586 static void vgic_its_invalidate_cache(struct vgic_its *its)
587 {
588 struct kvm *kvm = its->dev->kvm;
589 struct vgic_irq *irq;
590 unsigned long idx;
591
592 xa_for_each(&its->translation_cache, idx, irq) {
593 xa_erase(&its->translation_cache, idx);
594 vgic_put_irq(kvm, irq);
595 }
596 }
597
vgic_its_invalidate_all_caches(struct kvm * kvm)598 void vgic_its_invalidate_all_caches(struct kvm *kvm)
599 {
600 struct kvm_device *dev;
601 struct vgic_its *its;
602
603 rcu_read_lock();
604
605 list_for_each_entry_rcu(dev, &kvm->devices, vm_node) {
606 if (dev->ops != &kvm_arm_vgic_its_ops)
607 continue;
608
609 its = dev->private;
610 vgic_its_invalidate_cache(its);
611 }
612
613 rcu_read_unlock();
614 }
615
vgic_its_resolve_lpi(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid,struct vgic_irq ** irq)616 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
617 u32 devid, u32 eventid, struct vgic_irq **irq)
618 {
619 struct kvm_vcpu *vcpu;
620 struct its_ite *ite;
621
622 if (!its->enabled)
623 return -EBUSY;
624
625 ite = find_ite(its, devid, eventid);
626 if (!ite || !its_is_collection_mapped(ite->collection))
627 return E_ITS_INT_UNMAPPED_INTERRUPT;
628
629 vcpu = collection_to_vcpu(kvm, ite->collection);
630 if (!vcpu)
631 return E_ITS_INT_UNMAPPED_INTERRUPT;
632
633 if (!vgic_lpis_enabled(vcpu))
634 return -EBUSY;
635
636 vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq);
637
638 *irq = ite->irq;
639 return 0;
640 }
641
vgic_msi_to_its(struct kvm * kvm,struct kvm_msi * msi)642 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
643 {
644 u64 address;
645
646 if (!vgic_has_its(kvm))
647 return ERR_PTR(-ENODEV);
648
649 if (!(msi->flags & KVM_MSI_VALID_DEVID))
650 return ERR_PTR(-EINVAL);
651
652 address = (u64)msi->address_hi << 32 | msi->address_lo;
653
654 return __vgic_doorbell_to_its(kvm, address);
655 }
656
657 /*
658 * Find the target VCPU and the LPI number for a given devid/eventid pair
659 * and make this IRQ pending, possibly injecting it.
660 * Must be called with the its_lock mutex held.
661 * Returns 0 on success, a positive error value for any ITS mapping
662 * related errors and negative error values for generic errors.
663 */
vgic_its_trigger_msi(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid)664 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
665 u32 devid, u32 eventid)
666 {
667 struct vgic_irq *irq = NULL;
668 unsigned long flags;
669 int err;
670
671 err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
672 if (err)
673 return err;
674
675 if (irq->hw)
676 return irq_set_irqchip_state(irq->host_irq,
677 IRQCHIP_STATE_PENDING, true);
678
679 raw_spin_lock_irqsave(&irq->irq_lock, flags);
680 irq->pending_latch = true;
681 vgic_queue_irq_unlock(kvm, irq, flags);
682
683 return 0;
684 }
685
vgic_its_inject_cached_translation(struct kvm * kvm,struct kvm_msi * msi)686 int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi)
687 {
688 struct vgic_irq *irq;
689 unsigned long flags;
690 phys_addr_t db;
691
692 db = (u64)msi->address_hi << 32 | msi->address_lo;
693 irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data);
694 if (!irq)
695 return -EWOULDBLOCK;
696
697 raw_spin_lock_irqsave(&irq->irq_lock, flags);
698 irq->pending_latch = true;
699 vgic_queue_irq_unlock(kvm, irq, flags);
700 vgic_put_irq(kvm, irq);
701
702 return 0;
703 }
704
705 /*
706 * Queries the KVM IO bus framework to get the ITS pointer from the given
707 * doorbell address.
708 * We then call vgic_its_trigger_msi() with the decoded data.
709 * According to the KVM_SIGNAL_MSI API description returns 1 on success.
710 */
vgic_its_inject_msi(struct kvm * kvm,struct kvm_msi * msi)711 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
712 {
713 struct vgic_its *its;
714 int ret;
715
716 if (!vgic_its_inject_cached_translation(kvm, msi))
717 return 1;
718
719 its = vgic_msi_to_its(kvm, msi);
720 if (IS_ERR(its))
721 return PTR_ERR(its);
722
723 mutex_lock(&its->its_lock);
724 ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
725 mutex_unlock(&its->its_lock);
726
727 if (ret < 0)
728 return ret;
729
730 /*
731 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
732 * if the guest has blocked the MSI. So we map any LPI mapping
733 * related error to that.
734 */
735 if (ret)
736 return 0;
737 else
738 return 1;
739 }
740
741 /* Requires the its_lock to be held. */
its_free_ite(struct kvm * kvm,struct its_ite * ite)742 static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
743 {
744 list_del(&ite->ite_list);
745
746 /* This put matches the get in vgic_add_lpi. */
747 if (ite->irq) {
748 if (ite->irq->hw)
749 WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
750
751 vgic_put_irq(kvm, ite->irq);
752 }
753
754 kfree(ite);
755 }
756
its_cmd_mask_field(u64 * its_cmd,int word,int shift,int size)757 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
758 {
759 return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
760 }
761
762 #define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8)
763 #define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32)
764 #define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1)
765 #define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32)
766 #define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32)
767 #define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16)
768 #define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8)
769 #define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32)
770 #define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1)
771
772 /*
773 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
774 * Must be called with the its_lock mutex held.
775 */
vgic_its_cmd_handle_discard(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)776 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
777 u64 *its_cmd)
778 {
779 u32 device_id = its_cmd_get_deviceid(its_cmd);
780 u32 event_id = its_cmd_get_id(its_cmd);
781 struct its_ite *ite;
782
783 ite = find_ite(its, device_id, event_id);
784 if (ite && its_is_collection_mapped(ite->collection)) {
785 /*
786 * Though the spec talks about removing the pending state, we
787 * don't bother here since we clear the ITTE anyway and the
788 * pending state is a property of the ITTE struct.
789 */
790 vgic_its_invalidate_cache(its);
791
792 its_free_ite(kvm, ite);
793 return 0;
794 }
795
796 return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
797 }
798
799 /*
800 * The MOVI command moves an ITTE to a different collection.
801 * Must be called with the its_lock mutex held.
802 */
vgic_its_cmd_handle_movi(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)803 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
804 u64 *its_cmd)
805 {
806 u32 device_id = its_cmd_get_deviceid(its_cmd);
807 u32 event_id = its_cmd_get_id(its_cmd);
808 u32 coll_id = its_cmd_get_collection(its_cmd);
809 struct kvm_vcpu *vcpu;
810 struct its_ite *ite;
811 struct its_collection *collection;
812
813 ite = find_ite(its, device_id, event_id);
814 if (!ite)
815 return E_ITS_MOVI_UNMAPPED_INTERRUPT;
816
817 if (!its_is_collection_mapped(ite->collection))
818 return E_ITS_MOVI_UNMAPPED_COLLECTION;
819
820 collection = find_collection(its, coll_id);
821 if (!its_is_collection_mapped(collection))
822 return E_ITS_MOVI_UNMAPPED_COLLECTION;
823
824 ite->collection = collection;
825 vcpu = collection_to_vcpu(kvm, collection);
826
827 vgic_its_invalidate_cache(its);
828
829 return update_affinity(ite->irq, vcpu);
830 }
831
__is_visible_gfn_locked(struct vgic_its * its,gpa_t gpa)832 static bool __is_visible_gfn_locked(struct vgic_its *its, gpa_t gpa)
833 {
834 gfn_t gfn = gpa >> PAGE_SHIFT;
835 int idx;
836 bool ret;
837
838 idx = srcu_read_lock(&its->dev->kvm->srcu);
839 ret = kvm_is_visible_gfn(its->dev->kvm, gfn);
840 srcu_read_unlock(&its->dev->kvm->srcu, idx);
841 return ret;
842 }
843
844 /*
845 * Check whether an ID can be stored into the corresponding guest table.
846 * For a direct table this is pretty easy, but gets a bit nasty for
847 * indirect tables. We check whether the resulting guest physical address
848 * is actually valid (covered by a memslot and guest accessible).
849 * For this we have to read the respective first level entry.
850 */
vgic_its_check_id(struct vgic_its * its,u64 baser,u32 id,gpa_t * eaddr)851 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
852 gpa_t *eaddr)
853 {
854 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
855 u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
856 phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser);
857 int esz = GITS_BASER_ENTRY_SIZE(baser);
858 int index;
859
860 switch (type) {
861 case GITS_BASER_TYPE_DEVICE:
862 if (id > VITS_MAX_DEVID)
863 return false;
864 break;
865 case GITS_BASER_TYPE_COLLECTION:
866 /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
867 if (id >= BIT_ULL(16))
868 return false;
869 break;
870 default:
871 return false;
872 }
873
874 if (!(baser & GITS_BASER_INDIRECT)) {
875 phys_addr_t addr;
876
877 if (id >= (l1_tbl_size / esz))
878 return false;
879
880 addr = base + id * esz;
881
882 if (eaddr)
883 *eaddr = addr;
884
885 return __is_visible_gfn_locked(its, addr);
886 }
887
888 /* calculate and check the index into the 1st level */
889 index = id / (SZ_64K / esz);
890 if (index >= (l1_tbl_size / sizeof(u64)))
891 return false;
892
893 /* Each 1st level entry is represented by a 64-bit value. */
894 if (kvm_read_guest_lock(its->dev->kvm,
895 base + index * sizeof(indirect_ptr),
896 &indirect_ptr, sizeof(indirect_ptr)))
897 return false;
898
899 indirect_ptr = le64_to_cpu(indirect_ptr);
900
901 /* check the valid bit of the first level entry */
902 if (!(indirect_ptr & BIT_ULL(63)))
903 return false;
904
905 /* Mask the guest physical address and calculate the frame number. */
906 indirect_ptr &= GENMASK_ULL(51, 16);
907
908 /* Find the address of the actual entry */
909 index = id % (SZ_64K / esz);
910 indirect_ptr += index * esz;
911
912 if (eaddr)
913 *eaddr = indirect_ptr;
914
915 return __is_visible_gfn_locked(its, indirect_ptr);
916 }
917
918 /*
919 * Check whether an event ID can be stored in the corresponding Interrupt
920 * Translation Table, which starts at device->itt_addr.
921 */
vgic_its_check_event_id(struct vgic_its * its,struct its_device * device,u32 event_id)922 static bool vgic_its_check_event_id(struct vgic_its *its, struct its_device *device,
923 u32 event_id)
924 {
925 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
926 int ite_esz = abi->ite_esz;
927 gpa_t gpa;
928
929 /* max table size is: BIT_ULL(device->num_eventid_bits) * ite_esz */
930 if (event_id >= BIT_ULL(device->num_eventid_bits))
931 return false;
932
933 gpa = device->itt_addr + event_id * ite_esz;
934 return __is_visible_gfn_locked(its, gpa);
935 }
936
937 /*
938 * Add a new collection into the ITS collection table.
939 * Returns 0 on success, and a negative error value for generic errors.
940 */
vgic_its_alloc_collection(struct vgic_its * its,struct its_collection ** colp,u32 coll_id)941 static int vgic_its_alloc_collection(struct vgic_its *its,
942 struct its_collection **colp,
943 u32 coll_id)
944 {
945 struct its_collection *collection;
946
947 collection = kzalloc(sizeof(*collection), GFP_KERNEL_ACCOUNT);
948 if (!collection)
949 return -ENOMEM;
950
951 collection->collection_id = coll_id;
952 collection->target_addr = COLLECTION_NOT_MAPPED;
953
954 list_add_tail(&collection->coll_list, &its->collection_list);
955 *colp = collection;
956
957 return 0;
958 }
959
vgic_its_free_collection(struct vgic_its * its,u32 coll_id)960 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
961 {
962 struct its_collection *collection;
963 struct its_device *device;
964 struct its_ite *ite;
965
966 /*
967 * Clearing the mapping for that collection ID removes the
968 * entry from the list. If there wasn't any before, we can
969 * go home early.
970 */
971 collection = find_collection(its, coll_id);
972 if (!collection)
973 return;
974
975 for_each_lpi_its(device, ite, its)
976 if (ite->collection &&
977 ite->collection->collection_id == coll_id)
978 ite->collection = NULL;
979
980 list_del(&collection->coll_list);
981 kfree(collection);
982 }
983
984 /* Must be called with its_lock mutex held */
vgic_its_alloc_ite(struct its_device * device,struct its_collection * collection,u32 event_id)985 static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
986 struct its_collection *collection,
987 u32 event_id)
988 {
989 struct its_ite *ite;
990
991 ite = kzalloc(sizeof(*ite), GFP_KERNEL_ACCOUNT);
992 if (!ite)
993 return ERR_PTR(-ENOMEM);
994
995 ite->event_id = event_id;
996 ite->collection = collection;
997
998 list_add_tail(&ite->ite_list, &device->itt_head);
999 return ite;
1000 }
1001
1002 /*
1003 * The MAPTI and MAPI commands map LPIs to ITTEs.
1004 * Must be called with its_lock mutex held.
1005 */
vgic_its_cmd_handle_mapi(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1006 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
1007 u64 *its_cmd)
1008 {
1009 u32 device_id = its_cmd_get_deviceid(its_cmd);
1010 u32 event_id = its_cmd_get_id(its_cmd);
1011 u32 coll_id = its_cmd_get_collection(its_cmd);
1012 struct its_ite *ite;
1013 struct kvm_vcpu *vcpu = NULL;
1014 struct its_device *device;
1015 struct its_collection *collection, *new_coll = NULL;
1016 struct vgic_irq *irq;
1017 int lpi_nr;
1018
1019 device = find_its_device(its, device_id);
1020 if (!device)
1021 return E_ITS_MAPTI_UNMAPPED_DEVICE;
1022
1023 if (!vgic_its_check_event_id(its, device, event_id))
1024 return E_ITS_MAPTI_ID_OOR;
1025
1026 if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
1027 lpi_nr = its_cmd_get_physical_id(its_cmd);
1028 else
1029 lpi_nr = event_id;
1030 if (lpi_nr < GIC_LPI_OFFSET ||
1031 lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
1032 return E_ITS_MAPTI_PHYSICALID_OOR;
1033
1034 /* If there is an existing mapping, behavior is UNPREDICTABLE. */
1035 if (find_ite(its, device_id, event_id))
1036 return 0;
1037
1038 collection = find_collection(its, coll_id);
1039 if (!collection) {
1040 int ret;
1041
1042 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
1043 return E_ITS_MAPC_COLLECTION_OOR;
1044
1045 ret = vgic_its_alloc_collection(its, &collection, coll_id);
1046 if (ret)
1047 return ret;
1048 new_coll = collection;
1049 }
1050
1051 ite = vgic_its_alloc_ite(device, collection, event_id);
1052 if (IS_ERR(ite)) {
1053 if (new_coll)
1054 vgic_its_free_collection(its, coll_id);
1055 return PTR_ERR(ite);
1056 }
1057
1058 if (its_is_collection_mapped(collection))
1059 vcpu = collection_to_vcpu(kvm, collection);
1060
1061 irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
1062 if (IS_ERR(irq)) {
1063 if (new_coll)
1064 vgic_its_free_collection(its, coll_id);
1065 its_free_ite(kvm, ite);
1066 return PTR_ERR(irq);
1067 }
1068 ite->irq = irq;
1069
1070 return 0;
1071 }
1072
1073 /* Requires the its_lock to be held. */
vgic_its_free_device(struct kvm * kvm,struct vgic_its * its,struct its_device * device)1074 static void vgic_its_free_device(struct kvm *kvm, struct vgic_its *its,
1075 struct its_device *device)
1076 {
1077 struct its_ite *ite, *temp;
1078
1079 /*
1080 * The spec says that unmapping a device with still valid
1081 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
1082 * since we cannot leave the memory unreferenced.
1083 */
1084 list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
1085 its_free_ite(kvm, ite);
1086
1087 vgic_its_invalidate_cache(its);
1088
1089 list_del(&device->dev_list);
1090 kfree(device);
1091 }
1092
1093 /* its lock must be held */
vgic_its_free_device_list(struct kvm * kvm,struct vgic_its * its)1094 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
1095 {
1096 struct its_device *cur, *temp;
1097
1098 list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
1099 vgic_its_free_device(kvm, its, cur);
1100 }
1101
1102 /* its lock must be held */
vgic_its_free_collection_list(struct kvm * kvm,struct vgic_its * its)1103 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
1104 {
1105 struct its_collection *cur, *temp;
1106
1107 list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
1108 vgic_its_free_collection(its, cur->collection_id);
1109 }
1110
1111 /* Must be called with its_lock mutex held */
vgic_its_alloc_device(struct vgic_its * its,u32 device_id,gpa_t itt_addr,u8 num_eventid_bits)1112 static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
1113 u32 device_id, gpa_t itt_addr,
1114 u8 num_eventid_bits)
1115 {
1116 struct its_device *device;
1117
1118 device = kzalloc(sizeof(*device), GFP_KERNEL_ACCOUNT);
1119 if (!device)
1120 return ERR_PTR(-ENOMEM);
1121
1122 device->device_id = device_id;
1123 device->itt_addr = itt_addr;
1124 device->num_eventid_bits = num_eventid_bits;
1125 INIT_LIST_HEAD(&device->itt_head);
1126
1127 list_add_tail(&device->dev_list, &its->device_list);
1128 return device;
1129 }
1130
1131 /*
1132 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1133 * Must be called with the its_lock mutex held.
1134 */
vgic_its_cmd_handle_mapd(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1135 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1136 u64 *its_cmd)
1137 {
1138 u32 device_id = its_cmd_get_deviceid(its_cmd);
1139 bool valid = its_cmd_get_validbit(its_cmd);
1140 u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1141 gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1142 struct its_device *device;
1143
1144 if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
1145 return E_ITS_MAPD_DEVICE_OOR;
1146
1147 if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1148 return E_ITS_MAPD_ITTSIZE_OOR;
1149
1150 device = find_its_device(its, device_id);
1151
1152 /*
1153 * The spec says that calling MAPD on an already mapped device
1154 * invalidates all cached data for this device. We implement this
1155 * by removing the mapping and re-establishing it.
1156 */
1157 if (device)
1158 vgic_its_free_device(kvm, its, device);
1159
1160 /*
1161 * The spec does not say whether unmapping a not-mapped device
1162 * is an error, so we are done in any case.
1163 */
1164 if (!valid)
1165 return 0;
1166
1167 device = vgic_its_alloc_device(its, device_id, itt_addr,
1168 num_eventid_bits);
1169
1170 return PTR_ERR_OR_ZERO(device);
1171 }
1172
1173 /*
1174 * The MAPC command maps collection IDs to redistributors.
1175 * Must be called with the its_lock mutex held.
1176 */
vgic_its_cmd_handle_mapc(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1177 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1178 u64 *its_cmd)
1179 {
1180 u16 coll_id;
1181 struct its_collection *collection;
1182 bool valid;
1183
1184 valid = its_cmd_get_validbit(its_cmd);
1185 coll_id = its_cmd_get_collection(its_cmd);
1186
1187 if (!valid) {
1188 vgic_its_free_collection(its, coll_id);
1189 vgic_its_invalidate_cache(its);
1190 } else {
1191 struct kvm_vcpu *vcpu;
1192
1193 vcpu = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd));
1194 if (!vcpu)
1195 return E_ITS_MAPC_PROCNUM_OOR;
1196
1197 collection = find_collection(its, coll_id);
1198
1199 if (!collection) {
1200 int ret;
1201
1202 if (!vgic_its_check_id(its, its->baser_coll_table,
1203 coll_id, NULL))
1204 return E_ITS_MAPC_COLLECTION_OOR;
1205
1206 ret = vgic_its_alloc_collection(its, &collection,
1207 coll_id);
1208 if (ret)
1209 return ret;
1210 collection->target_addr = vcpu->vcpu_id;
1211 } else {
1212 collection->target_addr = vcpu->vcpu_id;
1213 update_affinity_collection(kvm, its, collection);
1214 }
1215 }
1216
1217 return 0;
1218 }
1219
1220 /*
1221 * The CLEAR command removes the pending state for a particular LPI.
1222 * Must be called with the its_lock mutex held.
1223 */
vgic_its_cmd_handle_clear(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1224 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1225 u64 *its_cmd)
1226 {
1227 u32 device_id = its_cmd_get_deviceid(its_cmd);
1228 u32 event_id = its_cmd_get_id(its_cmd);
1229 struct its_ite *ite;
1230
1231
1232 ite = find_ite(its, device_id, event_id);
1233 if (!ite)
1234 return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1235
1236 ite->irq->pending_latch = false;
1237
1238 if (ite->irq->hw)
1239 return irq_set_irqchip_state(ite->irq->host_irq,
1240 IRQCHIP_STATE_PENDING, false);
1241
1242 return 0;
1243 }
1244
vgic_its_inv_lpi(struct kvm * kvm,struct vgic_irq * irq)1245 int vgic_its_inv_lpi(struct kvm *kvm, struct vgic_irq *irq)
1246 {
1247 return update_lpi_config(kvm, irq, NULL, true);
1248 }
1249
1250 /*
1251 * The INV command syncs the configuration bits from the memory table.
1252 * Must be called with the its_lock mutex held.
1253 */
vgic_its_cmd_handle_inv(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1254 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1255 u64 *its_cmd)
1256 {
1257 u32 device_id = its_cmd_get_deviceid(its_cmd);
1258 u32 event_id = its_cmd_get_id(its_cmd);
1259 struct its_ite *ite;
1260
1261
1262 ite = find_ite(its, device_id, event_id);
1263 if (!ite)
1264 return E_ITS_INV_UNMAPPED_INTERRUPT;
1265
1266 return vgic_its_inv_lpi(kvm, ite->irq);
1267 }
1268
1269 /**
1270 * vgic_its_invall - invalidate all LPIs targeting a given vcpu
1271 * @vcpu: the vcpu for which the RD is targeted by an invalidation
1272 *
1273 * Contrary to the INVALL command, this targets a RD instead of a
1274 * collection, and we don't need to hold the its_lock, since no ITS is
1275 * involved here.
1276 */
vgic_its_invall(struct kvm_vcpu * vcpu)1277 int vgic_its_invall(struct kvm_vcpu *vcpu)
1278 {
1279 struct kvm *kvm = vcpu->kvm;
1280 struct vgic_dist *dist = &kvm->arch.vgic;
1281 struct vgic_irq *irq;
1282 unsigned long intid;
1283
1284 xa_for_each(&dist->lpi_xa, intid, irq) {
1285 irq = vgic_get_irq(kvm, NULL, intid);
1286 if (!irq)
1287 continue;
1288
1289 update_lpi_config(kvm, irq, vcpu, false);
1290 vgic_put_irq(kvm, irq);
1291 }
1292
1293 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1294 its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1295
1296 return 0;
1297 }
1298
1299 /*
1300 * The INVALL command requests flushing of all IRQ data in this collection.
1301 * Find the VCPU mapped to that collection, then iterate over the VM's list
1302 * of mapped LPIs and update the configuration for each IRQ which targets
1303 * the specified vcpu. The configuration will be read from the in-memory
1304 * configuration table.
1305 * Must be called with the its_lock mutex held.
1306 */
vgic_its_cmd_handle_invall(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1307 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1308 u64 *its_cmd)
1309 {
1310 u32 coll_id = its_cmd_get_collection(its_cmd);
1311 struct its_collection *collection;
1312 struct kvm_vcpu *vcpu;
1313
1314 collection = find_collection(its, coll_id);
1315 if (!its_is_collection_mapped(collection))
1316 return E_ITS_INVALL_UNMAPPED_COLLECTION;
1317
1318 vcpu = collection_to_vcpu(kvm, collection);
1319 vgic_its_invall(vcpu);
1320
1321 return 0;
1322 }
1323
1324 /*
1325 * The MOVALL command moves the pending state of all IRQs targeting one
1326 * redistributor to another. We don't hold the pending state in the VCPUs,
1327 * but in the IRQs instead, so there is really not much to do for us here.
1328 * However the spec says that no IRQ must target the old redistributor
1329 * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1330 * This command affects all LPIs in the system that target that redistributor.
1331 */
vgic_its_cmd_handle_movall(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1332 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1333 u64 *its_cmd)
1334 {
1335 struct vgic_dist *dist = &kvm->arch.vgic;
1336 struct kvm_vcpu *vcpu1, *vcpu2;
1337 struct vgic_irq *irq;
1338 unsigned long intid;
1339
1340 /* We advertise GITS_TYPER.PTA==0, making the address the vcpu ID */
1341 vcpu1 = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd));
1342 vcpu2 = kvm_get_vcpu_by_id(kvm, its_cmd_mask_field(its_cmd, 3, 16, 32));
1343
1344 if (!vcpu1 || !vcpu2)
1345 return E_ITS_MOVALL_PROCNUM_OOR;
1346
1347 if (vcpu1 == vcpu2)
1348 return 0;
1349
1350 xa_for_each(&dist->lpi_xa, intid, irq) {
1351 irq = vgic_get_irq(kvm, NULL, intid);
1352 if (!irq)
1353 continue;
1354
1355 update_affinity(irq, vcpu2);
1356
1357 vgic_put_irq(kvm, irq);
1358 }
1359
1360 vgic_its_invalidate_cache(its);
1361
1362 return 0;
1363 }
1364
1365 /*
1366 * The INT command injects the LPI associated with that DevID/EvID pair.
1367 * Must be called with the its_lock mutex held.
1368 */
vgic_its_cmd_handle_int(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1369 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1370 u64 *its_cmd)
1371 {
1372 u32 msi_data = its_cmd_get_id(its_cmd);
1373 u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1374
1375 return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1376 }
1377
1378 /*
1379 * This function is called with the its_cmd lock held, but the ITS data
1380 * structure lock dropped.
1381 */
vgic_its_handle_command(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1382 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1383 u64 *its_cmd)
1384 {
1385 int ret = -ENODEV;
1386
1387 mutex_lock(&its->its_lock);
1388 switch (its_cmd_get_command(its_cmd)) {
1389 case GITS_CMD_MAPD:
1390 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1391 break;
1392 case GITS_CMD_MAPC:
1393 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1394 break;
1395 case GITS_CMD_MAPI:
1396 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1397 break;
1398 case GITS_CMD_MAPTI:
1399 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1400 break;
1401 case GITS_CMD_MOVI:
1402 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1403 break;
1404 case GITS_CMD_DISCARD:
1405 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1406 break;
1407 case GITS_CMD_CLEAR:
1408 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1409 break;
1410 case GITS_CMD_MOVALL:
1411 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1412 break;
1413 case GITS_CMD_INT:
1414 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1415 break;
1416 case GITS_CMD_INV:
1417 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1418 break;
1419 case GITS_CMD_INVALL:
1420 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1421 break;
1422 case GITS_CMD_SYNC:
1423 /* we ignore this command: we are in sync all of the time */
1424 ret = 0;
1425 break;
1426 }
1427 mutex_unlock(&its->its_lock);
1428
1429 return ret;
1430 }
1431
vgic_sanitise_its_baser(u64 reg)1432 static u64 vgic_sanitise_its_baser(u64 reg)
1433 {
1434 reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1435 GITS_BASER_SHAREABILITY_SHIFT,
1436 vgic_sanitise_shareability);
1437 reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1438 GITS_BASER_INNER_CACHEABILITY_SHIFT,
1439 vgic_sanitise_inner_cacheability);
1440 reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1441 GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1442 vgic_sanitise_outer_cacheability);
1443
1444 /* We support only one (ITS) page size: 64K */
1445 reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1446
1447 return reg;
1448 }
1449
vgic_sanitise_its_cbaser(u64 reg)1450 static u64 vgic_sanitise_its_cbaser(u64 reg)
1451 {
1452 reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1453 GITS_CBASER_SHAREABILITY_SHIFT,
1454 vgic_sanitise_shareability);
1455 reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1456 GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1457 vgic_sanitise_inner_cacheability);
1458 reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1459 GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1460 vgic_sanitise_outer_cacheability);
1461
1462 /* Sanitise the physical address to be 64k aligned. */
1463 reg &= ~GENMASK_ULL(15, 12);
1464
1465 return reg;
1466 }
1467
vgic_mmio_read_its_cbaser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1468 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1469 struct vgic_its *its,
1470 gpa_t addr, unsigned int len)
1471 {
1472 return extract_bytes(its->cbaser, addr & 7, len);
1473 }
1474
vgic_mmio_write_its_cbaser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1475 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1476 gpa_t addr, unsigned int len,
1477 unsigned long val)
1478 {
1479 /* When GITS_CTLR.Enable is 1, this register is RO. */
1480 if (its->enabled)
1481 return;
1482
1483 mutex_lock(&its->cmd_lock);
1484 its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1485 its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1486 its->creadr = 0;
1487 /*
1488 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1489 * it to CREADR to make sure we start with an empty command buffer.
1490 */
1491 its->cwriter = its->creadr;
1492 mutex_unlock(&its->cmd_lock);
1493 }
1494
1495 #define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12)
1496 #define ITS_CMD_SIZE 32
1497 #define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5))
1498
1499 /* Must be called with the cmd_lock held. */
vgic_its_process_commands(struct kvm * kvm,struct vgic_its * its)1500 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1501 {
1502 gpa_t cbaser;
1503 u64 cmd_buf[4];
1504
1505 /* Commands are only processed when the ITS is enabled. */
1506 if (!its->enabled)
1507 return;
1508
1509 cbaser = GITS_CBASER_ADDRESS(its->cbaser);
1510
1511 while (its->cwriter != its->creadr) {
1512 int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1513 cmd_buf, ITS_CMD_SIZE);
1514 /*
1515 * If kvm_read_guest() fails, this could be due to the guest
1516 * programming a bogus value in CBASER or something else going
1517 * wrong from which we cannot easily recover.
1518 * According to section 6.3.2 in the GICv3 spec we can just
1519 * ignore that command then.
1520 */
1521 if (!ret)
1522 vgic_its_handle_command(kvm, its, cmd_buf);
1523
1524 its->creadr += ITS_CMD_SIZE;
1525 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1526 its->creadr = 0;
1527 }
1528 }
1529
1530 /*
1531 * By writing to CWRITER the guest announces new commands to be processed.
1532 * To avoid any races in the first place, we take the its_cmd lock, which
1533 * protects our ring buffer variables, so that there is only one user
1534 * per ITS handling commands at a given time.
1535 */
vgic_mmio_write_its_cwriter(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1536 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1537 gpa_t addr, unsigned int len,
1538 unsigned long val)
1539 {
1540 u64 reg;
1541
1542 if (!its)
1543 return;
1544
1545 mutex_lock(&its->cmd_lock);
1546
1547 reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1548 reg = ITS_CMD_OFFSET(reg);
1549 if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1550 mutex_unlock(&its->cmd_lock);
1551 return;
1552 }
1553 its->cwriter = reg;
1554
1555 vgic_its_process_commands(kvm, its);
1556
1557 mutex_unlock(&its->cmd_lock);
1558 }
1559
vgic_mmio_read_its_cwriter(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1560 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1561 struct vgic_its *its,
1562 gpa_t addr, unsigned int len)
1563 {
1564 return extract_bytes(its->cwriter, addr & 0x7, len);
1565 }
1566
vgic_mmio_read_its_creadr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1567 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1568 struct vgic_its *its,
1569 gpa_t addr, unsigned int len)
1570 {
1571 return extract_bytes(its->creadr, addr & 0x7, len);
1572 }
1573
vgic_mmio_uaccess_write_its_creadr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1574 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1575 struct vgic_its *its,
1576 gpa_t addr, unsigned int len,
1577 unsigned long val)
1578 {
1579 u32 cmd_offset;
1580 int ret = 0;
1581
1582 mutex_lock(&its->cmd_lock);
1583
1584 if (its->enabled) {
1585 ret = -EBUSY;
1586 goto out;
1587 }
1588
1589 cmd_offset = ITS_CMD_OFFSET(val);
1590 if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1591 ret = -EINVAL;
1592 goto out;
1593 }
1594
1595 its->creadr = cmd_offset;
1596 out:
1597 mutex_unlock(&its->cmd_lock);
1598 return ret;
1599 }
1600
1601 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
vgic_mmio_read_its_baser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1602 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1603 struct vgic_its *its,
1604 gpa_t addr, unsigned int len)
1605 {
1606 u64 reg;
1607
1608 switch (BASER_INDEX(addr)) {
1609 case 0:
1610 reg = its->baser_device_table;
1611 break;
1612 case 1:
1613 reg = its->baser_coll_table;
1614 break;
1615 default:
1616 reg = 0;
1617 break;
1618 }
1619
1620 return extract_bytes(reg, addr & 7, len);
1621 }
1622
1623 #define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
vgic_mmio_write_its_baser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1624 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1625 struct vgic_its *its,
1626 gpa_t addr, unsigned int len,
1627 unsigned long val)
1628 {
1629 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1630 u64 entry_size, table_type;
1631 u64 reg, *regptr, clearbits = 0;
1632
1633 /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1634 if (its->enabled)
1635 return;
1636
1637 switch (BASER_INDEX(addr)) {
1638 case 0:
1639 regptr = &its->baser_device_table;
1640 entry_size = abi->dte_esz;
1641 table_type = GITS_BASER_TYPE_DEVICE;
1642 break;
1643 case 1:
1644 regptr = &its->baser_coll_table;
1645 entry_size = abi->cte_esz;
1646 table_type = GITS_BASER_TYPE_COLLECTION;
1647 clearbits = GITS_BASER_INDIRECT;
1648 break;
1649 default:
1650 return;
1651 }
1652
1653 reg = update_64bit_reg(*regptr, addr & 7, len, val);
1654 reg &= ~GITS_BASER_RO_MASK;
1655 reg &= ~clearbits;
1656
1657 reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1658 reg |= table_type << GITS_BASER_TYPE_SHIFT;
1659 reg = vgic_sanitise_its_baser(reg);
1660
1661 *regptr = reg;
1662
1663 if (!(reg & GITS_BASER_VALID)) {
1664 /* Take the its_lock to prevent a race with a save/restore */
1665 mutex_lock(&its->its_lock);
1666 switch (table_type) {
1667 case GITS_BASER_TYPE_DEVICE:
1668 vgic_its_free_device_list(kvm, its);
1669 break;
1670 case GITS_BASER_TYPE_COLLECTION:
1671 vgic_its_free_collection_list(kvm, its);
1672 break;
1673 }
1674 mutex_unlock(&its->its_lock);
1675 }
1676 }
1677
vgic_mmio_read_its_ctlr(struct kvm * vcpu,struct vgic_its * its,gpa_t addr,unsigned int len)1678 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1679 struct vgic_its *its,
1680 gpa_t addr, unsigned int len)
1681 {
1682 u32 reg = 0;
1683
1684 mutex_lock(&its->cmd_lock);
1685 if (its->creadr == its->cwriter)
1686 reg |= GITS_CTLR_QUIESCENT;
1687 if (its->enabled)
1688 reg |= GITS_CTLR_ENABLE;
1689 mutex_unlock(&its->cmd_lock);
1690
1691 return reg;
1692 }
1693
vgic_mmio_write_its_ctlr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1694 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1695 gpa_t addr, unsigned int len,
1696 unsigned long val)
1697 {
1698 mutex_lock(&its->cmd_lock);
1699
1700 /*
1701 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1702 * device/collection BASER are invalid
1703 */
1704 if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1705 (!(its->baser_device_table & GITS_BASER_VALID) ||
1706 !(its->baser_coll_table & GITS_BASER_VALID) ||
1707 !(its->cbaser & GITS_CBASER_VALID)))
1708 goto out;
1709
1710 its->enabled = !!(val & GITS_CTLR_ENABLE);
1711 if (!its->enabled)
1712 vgic_its_invalidate_cache(its);
1713
1714 /*
1715 * Try to process any pending commands. This function bails out early
1716 * if the ITS is disabled or no commands have been queued.
1717 */
1718 vgic_its_process_commands(kvm, its);
1719
1720 out:
1721 mutex_unlock(&its->cmd_lock);
1722 }
1723
1724 #define REGISTER_ITS_DESC(off, rd, wr, length, acc) \
1725 { \
1726 .reg_offset = off, \
1727 .len = length, \
1728 .access_flags = acc, \
1729 .its_read = rd, \
1730 .its_write = wr, \
1731 }
1732
1733 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1734 { \
1735 .reg_offset = off, \
1736 .len = length, \
1737 .access_flags = acc, \
1738 .its_read = rd, \
1739 .its_write = wr, \
1740 .uaccess_its_write = uwr, \
1741 }
1742
its_mmio_write_wi(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1743 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1744 gpa_t addr, unsigned int len, unsigned long val)
1745 {
1746 /* Ignore */
1747 }
1748
1749 static struct vgic_register_region its_registers[] = {
1750 REGISTER_ITS_DESC(GITS_CTLR,
1751 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1752 VGIC_ACCESS_32bit),
1753 REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1754 vgic_mmio_read_its_iidr, its_mmio_write_wi,
1755 vgic_mmio_uaccess_write_its_iidr, 4,
1756 VGIC_ACCESS_32bit),
1757 REGISTER_ITS_DESC(GITS_TYPER,
1758 vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1759 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1760 REGISTER_ITS_DESC(GITS_CBASER,
1761 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1762 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1763 REGISTER_ITS_DESC(GITS_CWRITER,
1764 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1765 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1766 REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1767 vgic_mmio_read_its_creadr, its_mmio_write_wi,
1768 vgic_mmio_uaccess_write_its_creadr, 8,
1769 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1770 REGISTER_ITS_DESC(GITS_BASER,
1771 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1772 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1773 REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1774 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1775 VGIC_ACCESS_32bit),
1776 };
1777
1778 /* This is called on setting the LPI enable bit in the redistributor. */
vgic_enable_lpis(struct kvm_vcpu * vcpu)1779 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1780 {
1781 if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1782 its_sync_lpi_pending_table(vcpu);
1783 }
1784
vgic_register_its_iodev(struct kvm * kvm,struct vgic_its * its,u64 addr)1785 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1786 u64 addr)
1787 {
1788 struct vgic_io_device *iodev = &its->iodev;
1789 int ret;
1790
1791 mutex_lock(&kvm->slots_lock);
1792 if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1793 ret = -EBUSY;
1794 goto out;
1795 }
1796
1797 its->vgic_its_base = addr;
1798 iodev->regions = its_registers;
1799 iodev->nr_regions = ARRAY_SIZE(its_registers);
1800 kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1801
1802 iodev->base_addr = its->vgic_its_base;
1803 iodev->iodev_type = IODEV_ITS;
1804 iodev->its = its;
1805 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1806 KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1807 out:
1808 mutex_unlock(&kvm->slots_lock);
1809
1810 return ret;
1811 }
1812
1813 #define INITIAL_BASER_VALUE \
1814 (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \
1815 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \
1816 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \
1817 GITS_BASER_PAGE_SIZE_64K)
1818
1819 #define INITIAL_PROPBASER_VALUE \
1820 (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \
1821 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \
1822 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1823
vgic_its_create(struct kvm_device * dev,u32 type)1824 static int vgic_its_create(struct kvm_device *dev, u32 type)
1825 {
1826 int ret;
1827 struct vgic_its *its;
1828
1829 if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1830 return -ENODEV;
1831
1832 its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL_ACCOUNT);
1833 if (!its)
1834 return -ENOMEM;
1835
1836 mutex_lock(&dev->kvm->arch.config_lock);
1837
1838 if (vgic_initialized(dev->kvm)) {
1839 ret = vgic_v4_init(dev->kvm);
1840 if (ret < 0) {
1841 mutex_unlock(&dev->kvm->arch.config_lock);
1842 kfree(its);
1843 return ret;
1844 }
1845 }
1846
1847 mutex_init(&its->its_lock);
1848 mutex_init(&its->cmd_lock);
1849
1850 /* Yep, even more trickery for lock ordering... */
1851 #ifdef CONFIG_LOCKDEP
1852 mutex_lock(&its->cmd_lock);
1853 mutex_lock(&its->its_lock);
1854 mutex_unlock(&its->its_lock);
1855 mutex_unlock(&its->cmd_lock);
1856 #endif
1857
1858 its->vgic_its_base = VGIC_ADDR_UNDEF;
1859
1860 INIT_LIST_HEAD(&its->device_list);
1861 INIT_LIST_HEAD(&its->collection_list);
1862 xa_init(&its->translation_cache);
1863
1864 dev->kvm->arch.vgic.msis_require_devid = true;
1865 dev->kvm->arch.vgic.has_its = true;
1866 its->enabled = false;
1867 its->dev = dev;
1868
1869 its->baser_device_table = INITIAL_BASER_VALUE |
1870 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1871 its->baser_coll_table = INITIAL_BASER_VALUE |
1872 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1873 dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1874
1875 dev->private = its;
1876
1877 ret = vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1878
1879 mutex_unlock(&dev->kvm->arch.config_lock);
1880
1881 return ret;
1882 }
1883
vgic_its_destroy(struct kvm_device * kvm_dev)1884 static void vgic_its_destroy(struct kvm_device *kvm_dev)
1885 {
1886 struct kvm *kvm = kvm_dev->kvm;
1887 struct vgic_its *its = kvm_dev->private;
1888
1889 mutex_lock(&its->its_lock);
1890
1891 vgic_its_free_device_list(kvm, its);
1892 vgic_its_free_collection_list(kvm, its);
1893 vgic_its_invalidate_cache(its);
1894 xa_destroy(&its->translation_cache);
1895
1896 mutex_unlock(&its->its_lock);
1897 kfree(its);
1898 kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */
1899 }
1900
vgic_its_has_attr_regs(struct kvm_device * dev,struct kvm_device_attr * attr)1901 static int vgic_its_has_attr_regs(struct kvm_device *dev,
1902 struct kvm_device_attr *attr)
1903 {
1904 const struct vgic_register_region *region;
1905 gpa_t offset = attr->attr;
1906 int align;
1907
1908 align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
1909
1910 if (offset & align)
1911 return -EINVAL;
1912
1913 region = vgic_find_mmio_region(its_registers,
1914 ARRAY_SIZE(its_registers),
1915 offset);
1916 if (!region)
1917 return -ENXIO;
1918
1919 return 0;
1920 }
1921
vgic_its_attr_regs_access(struct kvm_device * dev,struct kvm_device_attr * attr,u64 * reg,bool is_write)1922 static int vgic_its_attr_regs_access(struct kvm_device *dev,
1923 struct kvm_device_attr *attr,
1924 u64 *reg, bool is_write)
1925 {
1926 const struct vgic_register_region *region;
1927 struct vgic_its *its;
1928 gpa_t addr, offset;
1929 unsigned int len;
1930 int align, ret = 0;
1931
1932 its = dev->private;
1933 offset = attr->attr;
1934
1935 /*
1936 * Although the spec supports upper/lower 32-bit accesses to
1937 * 64-bit ITS registers, the userspace ABI requires 64-bit
1938 * accesses to all 64-bit wide registers. We therefore only
1939 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1940 * registers
1941 */
1942 if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
1943 align = 0x3;
1944 else
1945 align = 0x7;
1946
1947 if (offset & align)
1948 return -EINVAL;
1949
1950 mutex_lock(&dev->kvm->lock);
1951
1952 if (!lock_all_vcpus(dev->kvm)) {
1953 mutex_unlock(&dev->kvm->lock);
1954 return -EBUSY;
1955 }
1956
1957 mutex_lock(&dev->kvm->arch.config_lock);
1958
1959 if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1960 ret = -ENXIO;
1961 goto out;
1962 }
1963
1964 region = vgic_find_mmio_region(its_registers,
1965 ARRAY_SIZE(its_registers),
1966 offset);
1967 if (!region) {
1968 ret = -ENXIO;
1969 goto out;
1970 }
1971
1972 addr = its->vgic_its_base + offset;
1973
1974 len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
1975
1976 if (is_write) {
1977 if (region->uaccess_its_write)
1978 ret = region->uaccess_its_write(dev->kvm, its, addr,
1979 len, *reg);
1980 else
1981 region->its_write(dev->kvm, its, addr, len, *reg);
1982 } else {
1983 *reg = region->its_read(dev->kvm, its, addr, len);
1984 }
1985 out:
1986 mutex_unlock(&dev->kvm->arch.config_lock);
1987 unlock_all_vcpus(dev->kvm);
1988 mutex_unlock(&dev->kvm->lock);
1989 return ret;
1990 }
1991
compute_next_devid_offset(struct list_head * h,struct its_device * dev)1992 static u32 compute_next_devid_offset(struct list_head *h,
1993 struct its_device *dev)
1994 {
1995 struct its_device *next;
1996 u32 next_offset;
1997
1998 if (list_is_last(&dev->dev_list, h))
1999 return 0;
2000 next = list_next_entry(dev, dev_list);
2001 next_offset = next->device_id - dev->device_id;
2002
2003 return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
2004 }
2005
compute_next_eventid_offset(struct list_head * h,struct its_ite * ite)2006 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
2007 {
2008 struct its_ite *next;
2009 u32 next_offset;
2010
2011 if (list_is_last(&ite->ite_list, h))
2012 return 0;
2013 next = list_next_entry(ite, ite_list);
2014 next_offset = next->event_id - ite->event_id;
2015
2016 return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
2017 }
2018
2019 /**
2020 * typedef entry_fn_t - Callback called on a table entry restore path
2021 * @its: its handle
2022 * @id: id of the entry
2023 * @entry: pointer to the entry
2024 * @opaque: pointer to an opaque data
2025 *
2026 * Return: < 0 on error, 0 if last element was identified, id offset to next
2027 * element otherwise
2028 */
2029 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
2030 void *opaque);
2031
2032 /**
2033 * scan_its_table - Scan a contiguous table in guest RAM and applies a function
2034 * to each entry
2035 *
2036 * @its: its handle
2037 * @base: base gpa of the table
2038 * @size: size of the table in bytes
2039 * @esz: entry size in bytes
2040 * @start_id: the ID of the first entry in the table
2041 * (non zero for 2d level tables)
2042 * @fn: function to apply on each entry
2043 * @opaque: pointer to opaque data
2044 *
2045 * Return: < 0 on error, 0 if last element was identified, 1 otherwise
2046 * (the last element may not be found on second level tables)
2047 */
scan_its_table(struct vgic_its * its,gpa_t base,int size,u32 esz,int start_id,entry_fn_t fn,void * opaque)2048 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
2049 int start_id, entry_fn_t fn, void *opaque)
2050 {
2051 struct kvm *kvm = its->dev->kvm;
2052 unsigned long len = size;
2053 int id = start_id;
2054 gpa_t gpa = base;
2055 char entry[ESZ_MAX];
2056 int ret;
2057
2058 memset(entry, 0, esz);
2059
2060 while (true) {
2061 int next_offset;
2062 size_t byte_offset;
2063
2064 ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
2065 if (ret)
2066 return ret;
2067
2068 next_offset = fn(its, id, entry, opaque);
2069 if (next_offset <= 0)
2070 return next_offset;
2071
2072 byte_offset = next_offset * esz;
2073 if (byte_offset >= len)
2074 break;
2075
2076 id += next_offset;
2077 gpa += byte_offset;
2078 len -= byte_offset;
2079 }
2080 return 1;
2081 }
2082
2083 /*
2084 * vgic_its_save_ite - Save an interrupt translation entry at @gpa
2085 */
vgic_its_save_ite(struct vgic_its * its,struct its_device * dev,struct its_ite * ite,gpa_t gpa,int ite_esz)2086 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
2087 struct its_ite *ite, gpa_t gpa, int ite_esz)
2088 {
2089 struct kvm *kvm = its->dev->kvm;
2090 u32 next_offset;
2091 u64 val;
2092
2093 next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
2094 val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
2095 ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
2096 ite->collection->collection_id;
2097 val = cpu_to_le64(val);
2098 return vgic_write_guest_lock(kvm, gpa, &val, ite_esz);
2099 }
2100
2101 /**
2102 * vgic_its_restore_ite - restore an interrupt translation entry
2103 *
2104 * @its: its handle
2105 * @event_id: id used for indexing
2106 * @ptr: pointer to the ITE entry
2107 * @opaque: pointer to the its_device
2108 */
vgic_its_restore_ite(struct vgic_its * its,u32 event_id,void * ptr,void * opaque)2109 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
2110 void *ptr, void *opaque)
2111 {
2112 struct its_device *dev = opaque;
2113 struct its_collection *collection;
2114 struct kvm *kvm = its->dev->kvm;
2115 struct kvm_vcpu *vcpu = NULL;
2116 u64 val;
2117 u64 *p = (u64 *)ptr;
2118 struct vgic_irq *irq;
2119 u32 coll_id, lpi_id;
2120 struct its_ite *ite;
2121 u32 offset;
2122
2123 val = *p;
2124
2125 val = le64_to_cpu(val);
2126
2127 coll_id = val & KVM_ITS_ITE_ICID_MASK;
2128 lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
2129
2130 if (!lpi_id)
2131 return 1; /* invalid entry, no choice but to scan next entry */
2132
2133 if (lpi_id < VGIC_MIN_LPI)
2134 return -EINVAL;
2135
2136 offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
2137 if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
2138 return -EINVAL;
2139
2140 collection = find_collection(its, coll_id);
2141 if (!collection)
2142 return -EINVAL;
2143
2144 if (!vgic_its_check_event_id(its, dev, event_id))
2145 return -EINVAL;
2146
2147 ite = vgic_its_alloc_ite(dev, collection, event_id);
2148 if (IS_ERR(ite))
2149 return PTR_ERR(ite);
2150
2151 if (its_is_collection_mapped(collection))
2152 vcpu = kvm_get_vcpu_by_id(kvm, collection->target_addr);
2153
2154 irq = vgic_add_lpi(kvm, lpi_id, vcpu);
2155 if (IS_ERR(irq)) {
2156 its_free_ite(kvm, ite);
2157 return PTR_ERR(irq);
2158 }
2159 ite->irq = irq;
2160
2161 return offset;
2162 }
2163
vgic_its_ite_cmp(void * priv,const struct list_head * a,const struct list_head * b)2164 static int vgic_its_ite_cmp(void *priv, const struct list_head *a,
2165 const struct list_head *b)
2166 {
2167 struct its_ite *itea = container_of(a, struct its_ite, ite_list);
2168 struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
2169
2170 if (itea->event_id < iteb->event_id)
2171 return -1;
2172 else
2173 return 1;
2174 }
2175
vgic_its_save_itt(struct vgic_its * its,struct its_device * device)2176 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2177 {
2178 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2179 gpa_t base = device->itt_addr;
2180 struct its_ite *ite;
2181 int ret;
2182 int ite_esz = abi->ite_esz;
2183
2184 list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2185
2186 list_for_each_entry(ite, &device->itt_head, ite_list) {
2187 gpa_t gpa = base + ite->event_id * ite_esz;
2188
2189 /*
2190 * If an LPI carries the HW bit, this means that this
2191 * interrupt is controlled by GICv4, and we do not
2192 * have direct access to that state without GICv4.1.
2193 * Let's simply fail the save operation...
2194 */
2195 if (ite->irq->hw && !kvm_vgic_global_state.has_gicv4_1)
2196 return -EACCES;
2197
2198 ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
2199 if (ret)
2200 return ret;
2201 }
2202 return 0;
2203 }
2204
2205 /**
2206 * vgic_its_restore_itt - restore the ITT of a device
2207 *
2208 * @its: its handle
2209 * @dev: device handle
2210 *
2211 * Return 0 on success, < 0 on error
2212 */
vgic_its_restore_itt(struct vgic_its * its,struct its_device * dev)2213 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2214 {
2215 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2216 gpa_t base = dev->itt_addr;
2217 int ret;
2218 int ite_esz = abi->ite_esz;
2219 size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2220
2221 ret = scan_its_table(its, base, max_size, ite_esz, 0,
2222 vgic_its_restore_ite, dev);
2223
2224 /* scan_its_table returns +1 if all ITEs are invalid */
2225 if (ret > 0)
2226 ret = 0;
2227
2228 return ret;
2229 }
2230
2231 /**
2232 * vgic_its_save_dte - Save a device table entry at a given GPA
2233 *
2234 * @its: ITS handle
2235 * @dev: ITS device
2236 * @ptr: GPA
2237 * @dte_esz: device table entry size
2238 */
vgic_its_save_dte(struct vgic_its * its,struct its_device * dev,gpa_t ptr,int dte_esz)2239 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2240 gpa_t ptr, int dte_esz)
2241 {
2242 struct kvm *kvm = its->dev->kvm;
2243 u64 val, itt_addr_field;
2244 u32 next_offset;
2245
2246 itt_addr_field = dev->itt_addr >> 8;
2247 next_offset = compute_next_devid_offset(&its->device_list, dev);
2248 val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2249 ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2250 (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2251 (dev->num_eventid_bits - 1));
2252 val = cpu_to_le64(val);
2253 return vgic_write_guest_lock(kvm, ptr, &val, dte_esz);
2254 }
2255
2256 /**
2257 * vgic_its_restore_dte - restore a device table entry
2258 *
2259 * @its: its handle
2260 * @id: device id the DTE corresponds to
2261 * @ptr: kernel VA where the 8 byte DTE is located
2262 * @opaque: unused
2263 *
2264 * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2265 * next dte otherwise
2266 */
vgic_its_restore_dte(struct vgic_its * its,u32 id,void * ptr,void * opaque)2267 static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2268 void *ptr, void *opaque)
2269 {
2270 struct its_device *dev;
2271 u64 baser = its->baser_device_table;
2272 gpa_t itt_addr;
2273 u8 num_eventid_bits;
2274 u64 entry = *(u64 *)ptr;
2275 bool valid;
2276 u32 offset;
2277 int ret;
2278
2279 entry = le64_to_cpu(entry);
2280
2281 valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2282 num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2283 itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2284 >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2285
2286 if (!valid)
2287 return 1;
2288
2289 /* dte entry is valid */
2290 offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2291
2292 if (!vgic_its_check_id(its, baser, id, NULL))
2293 return -EINVAL;
2294
2295 dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2296 if (IS_ERR(dev))
2297 return PTR_ERR(dev);
2298
2299 ret = vgic_its_restore_itt(its, dev);
2300 if (ret) {
2301 vgic_its_free_device(its->dev->kvm, its, dev);
2302 return ret;
2303 }
2304
2305 return offset;
2306 }
2307
vgic_its_device_cmp(void * priv,const struct list_head * a,const struct list_head * b)2308 static int vgic_its_device_cmp(void *priv, const struct list_head *a,
2309 const struct list_head *b)
2310 {
2311 struct its_device *deva = container_of(a, struct its_device, dev_list);
2312 struct its_device *devb = container_of(b, struct its_device, dev_list);
2313
2314 if (deva->device_id < devb->device_id)
2315 return -1;
2316 else
2317 return 1;
2318 }
2319
2320 /*
2321 * vgic_its_save_device_tables - Save the device table and all ITT
2322 * into guest RAM
2323 *
2324 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2325 * returns the GPA of the device entry
2326 */
vgic_its_save_device_tables(struct vgic_its * its)2327 static int vgic_its_save_device_tables(struct vgic_its *its)
2328 {
2329 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2330 u64 baser = its->baser_device_table;
2331 struct its_device *dev;
2332 int dte_esz = abi->dte_esz;
2333
2334 if (!(baser & GITS_BASER_VALID))
2335 return 0;
2336
2337 list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2338
2339 list_for_each_entry(dev, &its->device_list, dev_list) {
2340 int ret;
2341 gpa_t eaddr;
2342
2343 if (!vgic_its_check_id(its, baser,
2344 dev->device_id, &eaddr))
2345 return -EINVAL;
2346
2347 ret = vgic_its_save_itt(its, dev);
2348 if (ret)
2349 return ret;
2350
2351 ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2352 if (ret)
2353 return ret;
2354 }
2355 return 0;
2356 }
2357
2358 /**
2359 * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2360 *
2361 * @its: its handle
2362 * @id: index of the entry in the L1 table
2363 * @addr: kernel VA
2364 * @opaque: unused
2365 *
2366 * L1 table entries are scanned by steps of 1 entry
2367 * Return < 0 if error, 0 if last dte was found when scanning the L2
2368 * table, +1 otherwise (meaning next L1 entry must be scanned)
2369 */
handle_l1_dte(struct vgic_its * its,u32 id,void * addr,void * opaque)2370 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2371 void *opaque)
2372 {
2373 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2374 int l2_start_id = id * (SZ_64K / abi->dte_esz);
2375 u64 entry = *(u64 *)addr;
2376 int dte_esz = abi->dte_esz;
2377 gpa_t gpa;
2378 int ret;
2379
2380 entry = le64_to_cpu(entry);
2381
2382 if (!(entry & KVM_ITS_L1E_VALID_MASK))
2383 return 1;
2384
2385 gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2386
2387 ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2388 l2_start_id, vgic_its_restore_dte, NULL);
2389
2390 return ret;
2391 }
2392
2393 /*
2394 * vgic_its_restore_device_tables - Restore the device table and all ITT
2395 * from guest RAM to internal data structs
2396 */
vgic_its_restore_device_tables(struct vgic_its * its)2397 static int vgic_its_restore_device_tables(struct vgic_its *its)
2398 {
2399 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2400 u64 baser = its->baser_device_table;
2401 int l1_esz, ret;
2402 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2403 gpa_t l1_gpa;
2404
2405 if (!(baser & GITS_BASER_VALID))
2406 return 0;
2407
2408 l1_gpa = GITS_BASER_ADDR_48_to_52(baser);
2409
2410 if (baser & GITS_BASER_INDIRECT) {
2411 l1_esz = GITS_LVL1_ENTRY_SIZE;
2412 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2413 handle_l1_dte, NULL);
2414 } else {
2415 l1_esz = abi->dte_esz;
2416 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2417 vgic_its_restore_dte, NULL);
2418 }
2419
2420 /* scan_its_table returns +1 if all entries are invalid */
2421 if (ret > 0)
2422 ret = 0;
2423
2424 if (ret < 0)
2425 vgic_its_free_device_list(its->dev->kvm, its);
2426
2427 return ret;
2428 }
2429
vgic_its_save_cte(struct vgic_its * its,struct its_collection * collection,gpa_t gpa,int esz)2430 static int vgic_its_save_cte(struct vgic_its *its,
2431 struct its_collection *collection,
2432 gpa_t gpa, int esz)
2433 {
2434 u64 val;
2435
2436 val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2437 ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2438 collection->collection_id);
2439 val = cpu_to_le64(val);
2440 return vgic_write_guest_lock(its->dev->kvm, gpa, &val, esz);
2441 }
2442
2443 /*
2444 * Restore a collection entry into the ITS collection table.
2445 * Return +1 on success, 0 if the entry was invalid (which should be
2446 * interpreted as end-of-table), and a negative error value for generic errors.
2447 */
vgic_its_restore_cte(struct vgic_its * its,gpa_t gpa,int esz)2448 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2449 {
2450 struct its_collection *collection;
2451 struct kvm *kvm = its->dev->kvm;
2452 u32 target_addr, coll_id;
2453 u64 val;
2454 int ret;
2455
2456 BUG_ON(esz > sizeof(val));
2457 ret = kvm_read_guest_lock(kvm, gpa, &val, esz);
2458 if (ret)
2459 return ret;
2460 val = le64_to_cpu(val);
2461 if (!(val & KVM_ITS_CTE_VALID_MASK))
2462 return 0;
2463
2464 target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2465 coll_id = val & KVM_ITS_CTE_ICID_MASK;
2466
2467 if (target_addr != COLLECTION_NOT_MAPPED &&
2468 !kvm_get_vcpu_by_id(kvm, target_addr))
2469 return -EINVAL;
2470
2471 collection = find_collection(its, coll_id);
2472 if (collection)
2473 return -EEXIST;
2474
2475 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
2476 return -EINVAL;
2477
2478 ret = vgic_its_alloc_collection(its, &collection, coll_id);
2479 if (ret)
2480 return ret;
2481 collection->target_addr = target_addr;
2482 return 1;
2483 }
2484
2485 /*
2486 * vgic_its_save_collection_table - Save the collection table into
2487 * guest RAM
2488 */
vgic_its_save_collection_table(struct vgic_its * its)2489 static int vgic_its_save_collection_table(struct vgic_its *its)
2490 {
2491 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2492 u64 baser = its->baser_coll_table;
2493 gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser);
2494 struct its_collection *collection;
2495 u64 val;
2496 size_t max_size, filled = 0;
2497 int ret, cte_esz = abi->cte_esz;
2498
2499 if (!(baser & GITS_BASER_VALID))
2500 return 0;
2501
2502 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2503
2504 list_for_each_entry(collection, &its->collection_list, coll_list) {
2505 ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2506 if (ret)
2507 return ret;
2508 gpa += cte_esz;
2509 filled += cte_esz;
2510 }
2511
2512 if (filled == max_size)
2513 return 0;
2514
2515 /*
2516 * table is not fully filled, add a last dummy element
2517 * with valid bit unset
2518 */
2519 val = 0;
2520 BUG_ON(cte_esz > sizeof(val));
2521 ret = vgic_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz);
2522 return ret;
2523 }
2524
2525 /*
2526 * vgic_its_restore_collection_table - reads the collection table
2527 * in guest memory and restores the ITS internal state. Requires the
2528 * BASER registers to be restored before.
2529 */
vgic_its_restore_collection_table(struct vgic_its * its)2530 static int vgic_its_restore_collection_table(struct vgic_its *its)
2531 {
2532 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2533 u64 baser = its->baser_coll_table;
2534 int cte_esz = abi->cte_esz;
2535 size_t max_size, read = 0;
2536 gpa_t gpa;
2537 int ret;
2538
2539 if (!(baser & GITS_BASER_VALID))
2540 return 0;
2541
2542 gpa = GITS_BASER_ADDR_48_to_52(baser);
2543
2544 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2545
2546 while (read < max_size) {
2547 ret = vgic_its_restore_cte(its, gpa, cte_esz);
2548 if (ret <= 0)
2549 break;
2550 gpa += cte_esz;
2551 read += cte_esz;
2552 }
2553
2554 if (ret > 0)
2555 return 0;
2556
2557 if (ret < 0)
2558 vgic_its_free_collection_list(its->dev->kvm, its);
2559
2560 return ret;
2561 }
2562
2563 /*
2564 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2565 * according to v0 ABI
2566 */
vgic_its_save_tables_v0(struct vgic_its * its)2567 static int vgic_its_save_tables_v0(struct vgic_its *its)
2568 {
2569 int ret;
2570
2571 ret = vgic_its_save_device_tables(its);
2572 if (ret)
2573 return ret;
2574
2575 return vgic_its_save_collection_table(its);
2576 }
2577
2578 /*
2579 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2580 * to internal data structs according to V0 ABI
2581 *
2582 */
vgic_its_restore_tables_v0(struct vgic_its * its)2583 static int vgic_its_restore_tables_v0(struct vgic_its *its)
2584 {
2585 int ret;
2586
2587 ret = vgic_its_restore_collection_table(its);
2588 if (ret)
2589 return ret;
2590
2591 ret = vgic_its_restore_device_tables(its);
2592 if (ret)
2593 vgic_its_free_collection_list(its->dev->kvm, its);
2594 return ret;
2595 }
2596
vgic_its_commit_v0(struct vgic_its * its)2597 static int vgic_its_commit_v0(struct vgic_its *its)
2598 {
2599 const struct vgic_its_abi *abi;
2600
2601 abi = vgic_its_get_abi(its);
2602 its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2603 its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2604
2605 its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2606 << GITS_BASER_ENTRY_SIZE_SHIFT);
2607
2608 its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2609 << GITS_BASER_ENTRY_SIZE_SHIFT);
2610 return 0;
2611 }
2612
vgic_its_reset(struct kvm * kvm,struct vgic_its * its)2613 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2614 {
2615 /* We need to keep the ABI specific field values */
2616 its->baser_coll_table &= ~GITS_BASER_VALID;
2617 its->baser_device_table &= ~GITS_BASER_VALID;
2618 its->cbaser = 0;
2619 its->creadr = 0;
2620 its->cwriter = 0;
2621 its->enabled = 0;
2622 vgic_its_free_device_list(kvm, its);
2623 vgic_its_free_collection_list(kvm, its);
2624 }
2625
vgic_its_has_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2626 static int vgic_its_has_attr(struct kvm_device *dev,
2627 struct kvm_device_attr *attr)
2628 {
2629 switch (attr->group) {
2630 case KVM_DEV_ARM_VGIC_GRP_ADDR:
2631 switch (attr->attr) {
2632 case KVM_VGIC_ITS_ADDR_TYPE:
2633 return 0;
2634 }
2635 break;
2636 case KVM_DEV_ARM_VGIC_GRP_CTRL:
2637 switch (attr->attr) {
2638 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2639 return 0;
2640 case KVM_DEV_ARM_ITS_CTRL_RESET:
2641 return 0;
2642 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2643 return 0;
2644 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2645 return 0;
2646 }
2647 break;
2648 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2649 return vgic_its_has_attr_regs(dev, attr);
2650 }
2651 return -ENXIO;
2652 }
2653
vgic_its_ctrl(struct kvm * kvm,struct vgic_its * its,u64 attr)2654 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2655 {
2656 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2657 int ret = 0;
2658
2659 if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2660 return 0;
2661
2662 mutex_lock(&kvm->lock);
2663
2664 if (!lock_all_vcpus(kvm)) {
2665 mutex_unlock(&kvm->lock);
2666 return -EBUSY;
2667 }
2668
2669 mutex_lock(&kvm->arch.config_lock);
2670 mutex_lock(&its->its_lock);
2671
2672 switch (attr) {
2673 case KVM_DEV_ARM_ITS_CTRL_RESET:
2674 vgic_its_reset(kvm, its);
2675 break;
2676 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2677 ret = abi->save_tables(its);
2678 break;
2679 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2680 ret = abi->restore_tables(its);
2681 break;
2682 }
2683
2684 mutex_unlock(&its->its_lock);
2685 mutex_unlock(&kvm->arch.config_lock);
2686 unlock_all_vcpus(kvm);
2687 mutex_unlock(&kvm->lock);
2688 return ret;
2689 }
2690
2691 /*
2692 * kvm_arch_allow_write_without_running_vcpu - allow writing guest memory
2693 * without the running VCPU when dirty ring is enabled.
2694 *
2695 * The running VCPU is required to track dirty guest pages when dirty ring
2696 * is enabled. Otherwise, the backup bitmap should be used to track the
2697 * dirty guest pages. When vgic/its tables are being saved, the backup
2698 * bitmap is used to track the dirty guest pages due to the missed running
2699 * VCPU in the period.
2700 */
kvm_arch_allow_write_without_running_vcpu(struct kvm * kvm)2701 bool kvm_arch_allow_write_without_running_vcpu(struct kvm *kvm)
2702 {
2703 struct vgic_dist *dist = &kvm->arch.vgic;
2704
2705 return dist->table_write_in_progress;
2706 }
2707
vgic_its_set_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2708 static int vgic_its_set_attr(struct kvm_device *dev,
2709 struct kvm_device_attr *attr)
2710 {
2711 struct vgic_its *its = dev->private;
2712 int ret;
2713
2714 switch (attr->group) {
2715 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2716 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2717 unsigned long type = (unsigned long)attr->attr;
2718 u64 addr;
2719
2720 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2721 return -ENODEV;
2722
2723 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2724 return -EFAULT;
2725
2726 ret = vgic_check_iorange(dev->kvm, its->vgic_its_base,
2727 addr, SZ_64K, KVM_VGIC_V3_ITS_SIZE);
2728 if (ret)
2729 return ret;
2730
2731 return vgic_register_its_iodev(dev->kvm, its, addr);
2732 }
2733 case KVM_DEV_ARM_VGIC_GRP_CTRL:
2734 return vgic_its_ctrl(dev->kvm, its, attr->attr);
2735 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2736 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2737 u64 reg;
2738
2739 if (get_user(reg, uaddr))
2740 return -EFAULT;
2741
2742 return vgic_its_attr_regs_access(dev, attr, ®, true);
2743 }
2744 }
2745 return -ENXIO;
2746 }
2747
vgic_its_get_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2748 static int vgic_its_get_attr(struct kvm_device *dev,
2749 struct kvm_device_attr *attr)
2750 {
2751 switch (attr->group) {
2752 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2753 struct vgic_its *its = dev->private;
2754 u64 addr = its->vgic_its_base;
2755 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2756 unsigned long type = (unsigned long)attr->attr;
2757
2758 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2759 return -ENODEV;
2760
2761 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2762 return -EFAULT;
2763 break;
2764 }
2765 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2766 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2767 u64 reg;
2768 int ret;
2769
2770 ret = vgic_its_attr_regs_access(dev, attr, ®, false);
2771 if (ret)
2772 return ret;
2773 return put_user(reg, uaddr);
2774 }
2775 default:
2776 return -ENXIO;
2777 }
2778
2779 return 0;
2780 }
2781
2782 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2783 .name = "kvm-arm-vgic-its",
2784 .create = vgic_its_create,
2785 .destroy = vgic_its_destroy,
2786 .set_attr = vgic_its_set_attr,
2787 .get_attr = vgic_its_get_attr,
2788 .has_attr = vgic_its_has_attr,
2789 };
2790
kvm_vgic_register_its_device(void)2791 int kvm_vgic_register_its_device(void)
2792 {
2793 return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2794 KVM_DEV_TYPE_ARM_VGIC_ITS);
2795 }
2796