xref: /linux/include/uapi/linux/vfio.h (revision c279e83953d937470f8a6e69b69f62608714f13f)
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 /*
3  * VFIO API definition
4  *
5  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
6  *     Author: Alex Williamson <alex.williamson@redhat.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #ifndef _UAPIVFIO_H
13 #define _UAPIVFIO_H
14 
15 #include <linux/types.h>
16 #include <linux/ioctl.h>
17 #include <linux/stddef.h>
18 
19 #define VFIO_API_VERSION	0
20 
21 
22 /* Kernel & User level defines for VFIO IOCTLs. */
23 
24 /* Extensions */
25 
26 #define VFIO_TYPE1_IOMMU		1
27 #define VFIO_SPAPR_TCE_IOMMU		2
28 #define VFIO_TYPE1v2_IOMMU		3
29 /*
30  * IOMMU enforces DMA cache coherence (ex. PCIe NoSnoop stripping).  This
31  * capability is subject to change as groups are added or removed.
32  */
33 #define VFIO_DMA_CC_IOMMU		4
34 
35 /* Check if EEH is supported */
36 #define VFIO_EEH			5
37 
38 /* Two-stage IOMMU */
39 #define __VFIO_RESERVED_TYPE1_NESTING_IOMMU	6	/* Implies v2 */
40 
41 #define VFIO_SPAPR_TCE_v2_IOMMU		7
42 
43 /*
44  * The No-IOMMU IOMMU offers no translation or isolation for devices and
45  * supports no ioctls outside of VFIO_CHECK_EXTENSION.  Use of VFIO's No-IOMMU
46  * code will taint the host kernel and should be used with extreme caution.
47  */
48 #define VFIO_NOIOMMU_IOMMU		8
49 
50 /* Supports VFIO_DMA_UNMAP_FLAG_ALL */
51 #define VFIO_UNMAP_ALL			9
52 
53 /*
54  * Supports the vaddr flag for DMA map and unmap.  Not supported for mediated
55  * devices, so this capability is subject to change as groups are added or
56  * removed.
57  */
58 #define VFIO_UPDATE_VADDR		10
59 
60 /*
61  * The IOCTL interface is designed for extensibility by embedding the
62  * structure length (argsz) and flags into structures passed between
63  * kernel and userspace.  We therefore use the _IO() macro for these
64  * defines to avoid implicitly embedding a size into the ioctl request.
65  * As structure fields are added, argsz will increase to match and flag
66  * bits will be defined to indicate additional fields with valid data.
67  * It's *always* the caller's responsibility to indicate the size of
68  * the structure passed by setting argsz appropriately.
69  */
70 
71 #define VFIO_TYPE	(';')
72 #define VFIO_BASE	100
73 
74 /*
75  * For extension of INFO ioctls, VFIO makes use of a capability chain
76  * designed after PCI/e capabilities.  A flag bit indicates whether
77  * this capability chain is supported and a field defined in the fixed
78  * structure defines the offset of the first capability in the chain.
79  * This field is only valid when the corresponding bit in the flags
80  * bitmap is set.  This offset field is relative to the start of the
81  * INFO buffer, as is the next field within each capability header.
82  * The id within the header is a shared address space per INFO ioctl,
83  * while the version field is specific to the capability id.  The
84  * contents following the header are specific to the capability id.
85  */
86 struct vfio_info_cap_header {
87 	__u16	id;		/* Identifies capability */
88 	__u16	version;	/* Version specific to the capability ID */
89 	__u32	next;		/* Offset of next capability */
90 };
91 
92 /*
93  * Callers of INFO ioctls passing insufficiently sized buffers will see
94  * the capability chain flag bit set, a zero value for the first capability
95  * offset (if available within the provided argsz), and argsz will be
96  * updated to report the necessary buffer size.  For compatibility, the
97  * INFO ioctl will not report error in this case, but the capability chain
98  * will not be available.
99  */
100 
101 /* -------- IOCTLs for VFIO file descriptor (/dev/vfio/vfio) -------- */
102 
103 /**
104  * VFIO_GET_API_VERSION - _IO(VFIO_TYPE, VFIO_BASE + 0)
105  *
106  * Report the version of the VFIO API.  This allows us to bump the entire
107  * API version should we later need to add or change features in incompatible
108  * ways.
109  * Return: VFIO_API_VERSION
110  * Availability: Always
111  */
112 #define VFIO_GET_API_VERSION		_IO(VFIO_TYPE, VFIO_BASE + 0)
113 
114 /**
115  * VFIO_CHECK_EXTENSION - _IOW(VFIO_TYPE, VFIO_BASE + 1, __u32)
116  *
117  * Check whether an extension is supported.
118  * Return: 0 if not supported, 1 (or some other positive integer) if supported.
119  * Availability: Always
120  */
121 #define VFIO_CHECK_EXTENSION		_IO(VFIO_TYPE, VFIO_BASE + 1)
122 
123 /**
124  * VFIO_SET_IOMMU - _IOW(VFIO_TYPE, VFIO_BASE + 2, __s32)
125  *
126  * Set the iommu to the given type.  The type must be supported by an
127  * iommu driver as verified by calling CHECK_EXTENSION using the same
128  * type.  A group must be set to this file descriptor before this
129  * ioctl is available.  The IOMMU interfaces enabled by this call are
130  * specific to the value set.
131  * Return: 0 on success, -errno on failure
132  * Availability: When VFIO group attached
133  */
134 #define VFIO_SET_IOMMU			_IO(VFIO_TYPE, VFIO_BASE + 2)
135 
136 /* -------- IOCTLs for GROUP file descriptors (/dev/vfio/$GROUP) -------- */
137 
138 /**
139  * VFIO_GROUP_GET_STATUS - _IOR(VFIO_TYPE, VFIO_BASE + 3,
140  *						struct vfio_group_status)
141  *
142  * Retrieve information about the group.  Fills in provided
143  * struct vfio_group_info.  Caller sets argsz.
144  * Return: 0 on succes, -errno on failure.
145  * Availability: Always
146  */
147 struct vfio_group_status {
148 	__u32	argsz;
149 	__u32	flags;
150 #define VFIO_GROUP_FLAGS_VIABLE		(1 << 0)
151 #define VFIO_GROUP_FLAGS_CONTAINER_SET	(1 << 1)
152 };
153 #define VFIO_GROUP_GET_STATUS		_IO(VFIO_TYPE, VFIO_BASE + 3)
154 
155 /**
156  * VFIO_GROUP_SET_CONTAINER - _IOW(VFIO_TYPE, VFIO_BASE + 4, __s32)
157  *
158  * Set the container for the VFIO group to the open VFIO file
159  * descriptor provided.  Groups may only belong to a single
160  * container.  Containers may, at their discretion, support multiple
161  * groups.  Only when a container is set are all of the interfaces
162  * of the VFIO file descriptor and the VFIO group file descriptor
163  * available to the user.
164  * Return: 0 on success, -errno on failure.
165  * Availability: Always
166  */
167 #define VFIO_GROUP_SET_CONTAINER	_IO(VFIO_TYPE, VFIO_BASE + 4)
168 
169 /**
170  * VFIO_GROUP_UNSET_CONTAINER - _IO(VFIO_TYPE, VFIO_BASE + 5)
171  *
172  * Remove the group from the attached container.  This is the
173  * opposite of the SET_CONTAINER call and returns the group to
174  * an initial state.  All device file descriptors must be released
175  * prior to calling this interface.  When removing the last group
176  * from a container, the IOMMU will be disabled and all state lost,
177  * effectively also returning the VFIO file descriptor to an initial
178  * state.
179  * Return: 0 on success, -errno on failure.
180  * Availability: When attached to container
181  */
182 #define VFIO_GROUP_UNSET_CONTAINER	_IO(VFIO_TYPE, VFIO_BASE + 5)
183 
184 /**
185  * VFIO_GROUP_GET_DEVICE_FD - _IOW(VFIO_TYPE, VFIO_BASE + 6, char)
186  *
187  * Return a new file descriptor for the device object described by
188  * the provided string.  The string should match a device listed in
189  * the devices subdirectory of the IOMMU group sysfs entry.  The
190  * group containing the device must already be added to this context.
191  * Return: new file descriptor on success, -errno on failure.
192  * Availability: When attached to container
193  */
194 #define VFIO_GROUP_GET_DEVICE_FD	_IO(VFIO_TYPE, VFIO_BASE + 6)
195 
196 /* --------------- IOCTLs for DEVICE file descriptors --------------- */
197 
198 /**
199  * VFIO_DEVICE_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 7,
200  *						struct vfio_device_info)
201  *
202  * Retrieve information about the device.  Fills in provided
203  * struct vfio_device_info.  Caller sets argsz.
204  * Return: 0 on success, -errno on failure.
205  */
206 struct vfio_device_info {
207 	__u32	argsz;
208 	__u32	flags;
209 #define VFIO_DEVICE_FLAGS_RESET	(1 << 0)	/* Device supports reset */
210 #define VFIO_DEVICE_FLAGS_PCI	(1 << 1)	/* vfio-pci device */
211 #define VFIO_DEVICE_FLAGS_PLATFORM (1 << 2)	/* vfio-platform device */
212 #define VFIO_DEVICE_FLAGS_AMBA  (1 << 3)	/* vfio-amba device */
213 #define VFIO_DEVICE_FLAGS_CCW	(1 << 4)	/* vfio-ccw device */
214 #define VFIO_DEVICE_FLAGS_AP	(1 << 5)	/* vfio-ap device */
215 #define VFIO_DEVICE_FLAGS_FSL_MC (1 << 6)	/* vfio-fsl-mc device */
216 #define VFIO_DEVICE_FLAGS_CAPS	(1 << 7)	/* Info supports caps */
217 #define VFIO_DEVICE_FLAGS_CDX	(1 << 8)	/* vfio-cdx device */
218 	__u32	num_regions;	/* Max region index + 1 */
219 	__u32	num_irqs;	/* Max IRQ index + 1 */
220 	__u32   cap_offset;	/* Offset within info struct of first cap */
221 	__u32   pad;
222 };
223 #define VFIO_DEVICE_GET_INFO		_IO(VFIO_TYPE, VFIO_BASE + 7)
224 
225 /*
226  * Vendor driver using Mediated device framework should provide device_api
227  * attribute in supported type attribute groups. Device API string should be one
228  * of the following corresponding to device flags in vfio_device_info structure.
229  */
230 
231 #define VFIO_DEVICE_API_PCI_STRING		"vfio-pci"
232 #define VFIO_DEVICE_API_PLATFORM_STRING		"vfio-platform"
233 #define VFIO_DEVICE_API_AMBA_STRING		"vfio-amba"
234 #define VFIO_DEVICE_API_CCW_STRING		"vfio-ccw"
235 #define VFIO_DEVICE_API_AP_STRING		"vfio-ap"
236 
237 /*
238  * The following capabilities are unique to s390 zPCI devices.  Their contents
239  * are further-defined in vfio_zdev.h
240  */
241 #define VFIO_DEVICE_INFO_CAP_ZPCI_BASE		1
242 #define VFIO_DEVICE_INFO_CAP_ZPCI_GROUP		2
243 #define VFIO_DEVICE_INFO_CAP_ZPCI_UTIL		3
244 #define VFIO_DEVICE_INFO_CAP_ZPCI_PFIP		4
245 
246 /*
247  * The following VFIO_DEVICE_INFO capability reports support for PCIe AtomicOp
248  * completion to the root bus with supported widths provided via flags.
249  */
250 #define VFIO_DEVICE_INFO_CAP_PCI_ATOMIC_COMP	5
251 struct vfio_device_info_cap_pci_atomic_comp {
252 	struct vfio_info_cap_header header;
253 	__u32 flags;
254 #define VFIO_PCI_ATOMIC_COMP32	(1 << 0)
255 #define VFIO_PCI_ATOMIC_COMP64	(1 << 1)
256 #define VFIO_PCI_ATOMIC_COMP128	(1 << 2)
257 	__u32 reserved;
258 };
259 
260 /**
261  * VFIO_DEVICE_GET_REGION_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 8,
262  *				       struct vfio_region_info)
263  *
264  * Retrieve information about a device region.  Caller provides
265  * struct vfio_region_info with index value set.  Caller sets argsz.
266  * Implementation of region mapping is bus driver specific.  This is
267  * intended to describe MMIO, I/O port, as well as bus specific
268  * regions (ex. PCI config space).  Zero sized regions may be used
269  * to describe unimplemented regions (ex. unimplemented PCI BARs).
270  * Return: 0 on success, -errno on failure.
271  */
272 struct vfio_region_info {
273 	__u32	argsz;
274 	__u32	flags;
275 #define VFIO_REGION_INFO_FLAG_READ	(1 << 0) /* Region supports read */
276 #define VFIO_REGION_INFO_FLAG_WRITE	(1 << 1) /* Region supports write */
277 #define VFIO_REGION_INFO_FLAG_MMAP	(1 << 2) /* Region supports mmap */
278 #define VFIO_REGION_INFO_FLAG_CAPS	(1 << 3) /* Info supports caps */
279 	__u32	index;		/* Region index */
280 	__u32	cap_offset;	/* Offset within info struct of first cap */
281 	__aligned_u64	size;	/* Region size (bytes) */
282 	__aligned_u64	offset;	/* Region offset from start of device fd */
283 };
284 #define VFIO_DEVICE_GET_REGION_INFO	_IO(VFIO_TYPE, VFIO_BASE + 8)
285 
286 /*
287  * The sparse mmap capability allows finer granularity of specifying areas
288  * within a region with mmap support.  When specified, the user should only
289  * mmap the offset ranges specified by the areas array.  mmaps outside of the
290  * areas specified may fail (such as the range covering a PCI MSI-X table) or
291  * may result in improper device behavior.
292  *
293  * The structures below define version 1 of this capability.
294  */
295 #define VFIO_REGION_INFO_CAP_SPARSE_MMAP	1
296 
297 struct vfio_region_sparse_mmap_area {
298 	__aligned_u64	offset;	/* Offset of mmap'able area within region */
299 	__aligned_u64	size;	/* Size of mmap'able area */
300 };
301 
302 struct vfio_region_info_cap_sparse_mmap {
303 	struct vfio_info_cap_header header;
304 	__u32	nr_areas;
305 	__u32	reserved;
306 	struct vfio_region_sparse_mmap_area areas[];
307 };
308 
309 /*
310  * The device specific type capability allows regions unique to a specific
311  * device or class of devices to be exposed.  This helps solve the problem for
312  * vfio bus drivers of defining which region indexes correspond to which region
313  * on the device, without needing to resort to static indexes, as done by
314  * vfio-pci.  For instance, if we were to go back in time, we might remove
315  * VFIO_PCI_VGA_REGION_INDEX and let vfio-pci simply define that all indexes
316  * greater than or equal to VFIO_PCI_NUM_REGIONS are device specific and we'd
317  * make a "VGA" device specific type to describe the VGA access space.  This
318  * means that non-VGA devices wouldn't need to waste this index, and thus the
319  * address space associated with it due to implementation of device file
320  * descriptor offsets in vfio-pci.
321  *
322  * The current implementation is now part of the user ABI, so we can't use this
323  * for VGA, but there are other upcoming use cases, such as opregions for Intel
324  * IGD devices and framebuffers for vGPU devices.  We missed VGA, but we'll
325  * use this for future additions.
326  *
327  * The structure below defines version 1 of this capability.
328  */
329 #define VFIO_REGION_INFO_CAP_TYPE	2
330 
331 struct vfio_region_info_cap_type {
332 	struct vfio_info_cap_header header;
333 	__u32 type;	/* global per bus driver */
334 	__u32 subtype;	/* type specific */
335 };
336 
337 /*
338  * List of region types, global per bus driver.
339  * If you introduce a new type, please add it here.
340  */
341 
342 /* PCI region type containing a PCI vendor part */
343 #define VFIO_REGION_TYPE_PCI_VENDOR_TYPE	(1 << 31)
344 #define VFIO_REGION_TYPE_PCI_VENDOR_MASK	(0xffff)
345 #define VFIO_REGION_TYPE_GFX                    (1)
346 #define VFIO_REGION_TYPE_CCW			(2)
347 #define VFIO_REGION_TYPE_MIGRATION_DEPRECATED   (3)
348 
349 /* sub-types for VFIO_REGION_TYPE_PCI_* */
350 
351 /* 8086 vendor PCI sub-types */
352 #define VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION	(1)
353 #define VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG	(2)
354 #define VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG	(3)
355 
356 /* 10de vendor PCI sub-types */
357 /*
358  * NVIDIA GPU NVlink2 RAM is coherent RAM mapped onto the host address space.
359  *
360  * Deprecated, region no longer provided
361  */
362 #define VFIO_REGION_SUBTYPE_NVIDIA_NVLINK2_RAM	(1)
363 
364 /* 1014 vendor PCI sub-types */
365 /*
366  * IBM NPU NVlink2 ATSD (Address Translation Shootdown) register of NPU
367  * to do TLB invalidation on a GPU.
368  *
369  * Deprecated, region no longer provided
370  */
371 #define VFIO_REGION_SUBTYPE_IBM_NVLINK2_ATSD	(1)
372 
373 /* sub-types for VFIO_REGION_TYPE_GFX */
374 #define VFIO_REGION_SUBTYPE_GFX_EDID            (1)
375 
376 /**
377  * struct vfio_region_gfx_edid - EDID region layout.
378  *
379  * Set display link state and EDID blob.
380  *
381  * The EDID blob has monitor information such as brand, name, serial
382  * number, physical size, supported video modes and more.
383  *
384  * This special region allows userspace (typically qemu) set a virtual
385  * EDID for the virtual monitor, which allows a flexible display
386  * configuration.
387  *
388  * For the edid blob spec look here:
389  *    https://en.wikipedia.org/wiki/Extended_Display_Identification_Data
390  *
391  * On linux systems you can find the EDID blob in sysfs:
392  *    /sys/class/drm/${card}/${connector}/edid
393  *
394  * You can use the edid-decode ulility (comes with xorg-x11-utils) to
395  * decode the EDID blob.
396  *
397  * @edid_offset: location of the edid blob, relative to the
398  *               start of the region (readonly).
399  * @edid_max_size: max size of the edid blob (readonly).
400  * @edid_size: actual edid size (read/write).
401  * @link_state: display link state (read/write).
402  * VFIO_DEVICE_GFX_LINK_STATE_UP: Monitor is turned on.
403  * VFIO_DEVICE_GFX_LINK_STATE_DOWN: Monitor is turned off.
404  * @max_xres: max display width (0 == no limitation, readonly).
405  * @max_yres: max display height (0 == no limitation, readonly).
406  *
407  * EDID update protocol:
408  *   (1) set link-state to down.
409  *   (2) update edid blob and size.
410  *   (3) set link-state to up.
411  */
412 struct vfio_region_gfx_edid {
413 	__u32 edid_offset;
414 	__u32 edid_max_size;
415 	__u32 edid_size;
416 	__u32 max_xres;
417 	__u32 max_yres;
418 	__u32 link_state;
419 #define VFIO_DEVICE_GFX_LINK_STATE_UP    1
420 #define VFIO_DEVICE_GFX_LINK_STATE_DOWN  2
421 };
422 
423 /* sub-types for VFIO_REGION_TYPE_CCW */
424 #define VFIO_REGION_SUBTYPE_CCW_ASYNC_CMD	(1)
425 #define VFIO_REGION_SUBTYPE_CCW_SCHIB		(2)
426 #define VFIO_REGION_SUBTYPE_CCW_CRW		(3)
427 
428 /* sub-types for VFIO_REGION_TYPE_MIGRATION */
429 #define VFIO_REGION_SUBTYPE_MIGRATION_DEPRECATED (1)
430 
431 struct vfio_device_migration_info {
432 	__u32 device_state;         /* VFIO device state */
433 #define VFIO_DEVICE_STATE_V1_STOP      (0)
434 #define VFIO_DEVICE_STATE_V1_RUNNING   (1 << 0)
435 #define VFIO_DEVICE_STATE_V1_SAVING    (1 << 1)
436 #define VFIO_DEVICE_STATE_V1_RESUMING  (1 << 2)
437 #define VFIO_DEVICE_STATE_MASK      (VFIO_DEVICE_STATE_V1_RUNNING | \
438 				     VFIO_DEVICE_STATE_V1_SAVING |  \
439 				     VFIO_DEVICE_STATE_V1_RESUMING)
440 
441 #define VFIO_DEVICE_STATE_VALID(state) \
442 	(state & VFIO_DEVICE_STATE_V1_RESUMING ? \
443 	(state & VFIO_DEVICE_STATE_MASK) == VFIO_DEVICE_STATE_V1_RESUMING : 1)
444 
445 #define VFIO_DEVICE_STATE_IS_ERROR(state) \
446 	((state & VFIO_DEVICE_STATE_MASK) == (VFIO_DEVICE_STATE_V1_SAVING | \
447 					      VFIO_DEVICE_STATE_V1_RESUMING))
448 
449 #define VFIO_DEVICE_STATE_SET_ERROR(state) \
450 	((state & ~VFIO_DEVICE_STATE_MASK) | VFIO_DEVICE_STATE_V1_SAVING | \
451 					     VFIO_DEVICE_STATE_V1_RESUMING)
452 
453 	__u32 reserved;
454 	__aligned_u64 pending_bytes;
455 	__aligned_u64 data_offset;
456 	__aligned_u64 data_size;
457 };
458 
459 /*
460  * The MSIX mappable capability informs that MSIX data of a BAR can be mmapped
461  * which allows direct access to non-MSIX registers which happened to be within
462  * the same system page.
463  *
464  * Even though the userspace gets direct access to the MSIX data, the existing
465  * VFIO_DEVICE_SET_IRQS interface must still be used for MSIX configuration.
466  */
467 #define VFIO_REGION_INFO_CAP_MSIX_MAPPABLE	3
468 
469 /*
470  * Capability with compressed real address (aka SSA - small system address)
471  * where GPU RAM is mapped on a system bus. Used by a GPU for DMA routing
472  * and by the userspace to associate a NVLink bridge with a GPU.
473  *
474  * Deprecated, capability no longer provided
475  */
476 #define VFIO_REGION_INFO_CAP_NVLINK2_SSATGT	4
477 
478 struct vfio_region_info_cap_nvlink2_ssatgt {
479 	struct vfio_info_cap_header header;
480 	__aligned_u64 tgt;
481 };
482 
483 /*
484  * Capability with an NVLink link speed. The value is read by
485  * the NVlink2 bridge driver from the bridge's "ibm,nvlink-speed"
486  * property in the device tree. The value is fixed in the hardware
487  * and failing to provide the correct value results in the link
488  * not working with no indication from the driver why.
489  *
490  * Deprecated, capability no longer provided
491  */
492 #define VFIO_REGION_INFO_CAP_NVLINK2_LNKSPD	5
493 
494 struct vfio_region_info_cap_nvlink2_lnkspd {
495 	struct vfio_info_cap_header header;
496 	__u32 link_speed;
497 	__u32 __pad;
498 };
499 
500 /**
501  * VFIO_DEVICE_GET_IRQ_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 9,
502  *				    struct vfio_irq_info)
503  *
504  * Retrieve information about a device IRQ.  Caller provides
505  * struct vfio_irq_info with index value set.  Caller sets argsz.
506  * Implementation of IRQ mapping is bus driver specific.  Indexes
507  * using multiple IRQs are primarily intended to support MSI-like
508  * interrupt blocks.  Zero count irq blocks may be used to describe
509  * unimplemented interrupt types.
510  *
511  * The EVENTFD flag indicates the interrupt index supports eventfd based
512  * signaling.
513  *
514  * The MASKABLE flags indicates the index supports MASK and UNMASK
515  * actions described below.
516  *
517  * AUTOMASKED indicates that after signaling, the interrupt line is
518  * automatically masked by VFIO and the user needs to unmask the line
519  * to receive new interrupts.  This is primarily intended to distinguish
520  * level triggered interrupts.
521  *
522  * The NORESIZE flag indicates that the interrupt lines within the index
523  * are setup as a set and new subindexes cannot be enabled without first
524  * disabling the entire index.  This is used for interrupts like PCI MSI
525  * and MSI-X where the driver may only use a subset of the available
526  * indexes, but VFIO needs to enable a specific number of vectors
527  * upfront.  In the case of MSI-X, where the user can enable MSI-X and
528  * then add and unmask vectors, it's up to userspace to make the decision
529  * whether to allocate the maximum supported number of vectors or tear
530  * down setup and incrementally increase the vectors as each is enabled.
531  * Absence of the NORESIZE flag indicates that vectors can be enabled
532  * and disabled dynamically without impacting other vectors within the
533  * index.
534  */
535 struct vfio_irq_info {
536 	__u32	argsz;
537 	__u32	flags;
538 #define VFIO_IRQ_INFO_EVENTFD		(1 << 0)
539 #define VFIO_IRQ_INFO_MASKABLE		(1 << 1)
540 #define VFIO_IRQ_INFO_AUTOMASKED	(1 << 2)
541 #define VFIO_IRQ_INFO_NORESIZE		(1 << 3)
542 	__u32	index;		/* IRQ index */
543 	__u32	count;		/* Number of IRQs within this index */
544 };
545 #define VFIO_DEVICE_GET_IRQ_INFO	_IO(VFIO_TYPE, VFIO_BASE + 9)
546 
547 /**
548  * VFIO_DEVICE_SET_IRQS - _IOW(VFIO_TYPE, VFIO_BASE + 10, struct vfio_irq_set)
549  *
550  * Set signaling, masking, and unmasking of interrupts.  Caller provides
551  * struct vfio_irq_set with all fields set.  'start' and 'count' indicate
552  * the range of subindexes being specified.
553  *
554  * The DATA flags specify the type of data provided.  If DATA_NONE, the
555  * operation performs the specified action immediately on the specified
556  * interrupt(s).  For example, to unmask AUTOMASKED interrupt [0,0]:
557  * flags = (DATA_NONE|ACTION_UNMASK), index = 0, start = 0, count = 1.
558  *
559  * DATA_BOOL allows sparse support for the same on arrays of interrupts.
560  * For example, to mask interrupts [0,1] and [0,3] (but not [0,2]):
561  * flags = (DATA_BOOL|ACTION_MASK), index = 0, start = 1, count = 3,
562  * data = {1,0,1}
563  *
564  * DATA_EVENTFD binds the specified ACTION to the provided __s32 eventfd.
565  * A value of -1 can be used to either de-assign interrupts if already
566  * assigned or skip un-assigned interrupts.  For example, to set an eventfd
567  * to be trigger for interrupts [0,0] and [0,2]:
568  * flags = (DATA_EVENTFD|ACTION_TRIGGER), index = 0, start = 0, count = 3,
569  * data = {fd1, -1, fd2}
570  * If index [0,1] is previously set, two count = 1 ioctls calls would be
571  * required to set [0,0] and [0,2] without changing [0,1].
572  *
573  * Once a signaling mechanism is set, DATA_BOOL or DATA_NONE can be used
574  * with ACTION_TRIGGER to perform kernel level interrupt loopback testing
575  * from userspace (ie. simulate hardware triggering).
576  *
577  * Setting of an event triggering mechanism to userspace for ACTION_TRIGGER
578  * enables the interrupt index for the device.  Individual subindex interrupts
579  * can be disabled using the -1 value for DATA_EVENTFD or the index can be
580  * disabled as a whole with: flags = (DATA_NONE|ACTION_TRIGGER), count = 0.
581  *
582  * Note that ACTION_[UN]MASK specify user->kernel signaling (irqfds) while
583  * ACTION_TRIGGER specifies kernel->user signaling.
584  */
585 struct vfio_irq_set {
586 	__u32	argsz;
587 	__u32	flags;
588 #define VFIO_IRQ_SET_DATA_NONE		(1 << 0) /* Data not present */
589 #define VFIO_IRQ_SET_DATA_BOOL		(1 << 1) /* Data is bool (u8) */
590 #define VFIO_IRQ_SET_DATA_EVENTFD	(1 << 2) /* Data is eventfd (s32) */
591 #define VFIO_IRQ_SET_ACTION_MASK	(1 << 3) /* Mask interrupt */
592 #define VFIO_IRQ_SET_ACTION_UNMASK	(1 << 4) /* Unmask interrupt */
593 #define VFIO_IRQ_SET_ACTION_TRIGGER	(1 << 5) /* Trigger interrupt */
594 	__u32	index;
595 	__u32	start;
596 	__u32	count;
597 	__u8	data[];
598 };
599 #define VFIO_DEVICE_SET_IRQS		_IO(VFIO_TYPE, VFIO_BASE + 10)
600 
601 #define VFIO_IRQ_SET_DATA_TYPE_MASK	(VFIO_IRQ_SET_DATA_NONE | \
602 					 VFIO_IRQ_SET_DATA_BOOL | \
603 					 VFIO_IRQ_SET_DATA_EVENTFD)
604 #define VFIO_IRQ_SET_ACTION_TYPE_MASK	(VFIO_IRQ_SET_ACTION_MASK | \
605 					 VFIO_IRQ_SET_ACTION_UNMASK | \
606 					 VFIO_IRQ_SET_ACTION_TRIGGER)
607 /**
608  * VFIO_DEVICE_RESET - _IO(VFIO_TYPE, VFIO_BASE + 11)
609  *
610  * Reset a device.
611  */
612 #define VFIO_DEVICE_RESET		_IO(VFIO_TYPE, VFIO_BASE + 11)
613 
614 /*
615  * The VFIO-PCI bus driver makes use of the following fixed region and
616  * IRQ index mapping.  Unimplemented regions return a size of zero.
617  * Unimplemented IRQ types return a count of zero.
618  */
619 
620 enum {
621 	VFIO_PCI_BAR0_REGION_INDEX,
622 	VFIO_PCI_BAR1_REGION_INDEX,
623 	VFIO_PCI_BAR2_REGION_INDEX,
624 	VFIO_PCI_BAR3_REGION_INDEX,
625 	VFIO_PCI_BAR4_REGION_INDEX,
626 	VFIO_PCI_BAR5_REGION_INDEX,
627 	VFIO_PCI_ROM_REGION_INDEX,
628 	VFIO_PCI_CONFIG_REGION_INDEX,
629 	/*
630 	 * Expose VGA regions defined for PCI base class 03, subclass 00.
631 	 * This includes I/O port ranges 0x3b0 to 0x3bb and 0x3c0 to 0x3df
632 	 * as well as the MMIO range 0xa0000 to 0xbffff.  Each implemented
633 	 * range is found at it's identity mapped offset from the region
634 	 * offset, for example 0x3b0 is region_info.offset + 0x3b0.  Areas
635 	 * between described ranges are unimplemented.
636 	 */
637 	VFIO_PCI_VGA_REGION_INDEX,
638 	VFIO_PCI_NUM_REGIONS = 9 /* Fixed user ABI, region indexes >=9 use */
639 				 /* device specific cap to define content. */
640 };
641 
642 enum {
643 	VFIO_PCI_INTX_IRQ_INDEX,
644 	VFIO_PCI_MSI_IRQ_INDEX,
645 	VFIO_PCI_MSIX_IRQ_INDEX,
646 	VFIO_PCI_ERR_IRQ_INDEX,
647 	VFIO_PCI_REQ_IRQ_INDEX,
648 	VFIO_PCI_NUM_IRQS
649 };
650 
651 /*
652  * The vfio-ccw bus driver makes use of the following fixed region and
653  * IRQ index mapping. Unimplemented regions return a size of zero.
654  * Unimplemented IRQ types return a count of zero.
655  */
656 
657 enum {
658 	VFIO_CCW_CONFIG_REGION_INDEX,
659 	VFIO_CCW_NUM_REGIONS
660 };
661 
662 enum {
663 	VFIO_CCW_IO_IRQ_INDEX,
664 	VFIO_CCW_CRW_IRQ_INDEX,
665 	VFIO_CCW_REQ_IRQ_INDEX,
666 	VFIO_CCW_NUM_IRQS
667 };
668 
669 /*
670  * The vfio-ap bus driver makes use of the following IRQ index mapping.
671  * Unimplemented IRQ types return a count of zero.
672  */
673 enum {
674 	VFIO_AP_REQ_IRQ_INDEX,
675 	VFIO_AP_CFG_CHG_IRQ_INDEX,
676 	VFIO_AP_NUM_IRQS
677 };
678 
679 /**
680  * VFIO_DEVICE_GET_PCI_HOT_RESET_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 12,
681  *					      struct vfio_pci_hot_reset_info)
682  *
683  * This command is used to query the affected devices in the hot reset for
684  * a given device.
685  *
686  * This command always reports the segment, bus, and devfn information for
687  * each affected device, and selectively reports the group_id or devid per
688  * the way how the calling device is opened.
689  *
690  *	- If the calling device is opened via the traditional group/container
691  *	  API, group_id is reported.  User should check if it has owned all
692  *	  the affected devices and provides a set of group fds to prove the
693  *	  ownership in VFIO_DEVICE_PCI_HOT_RESET ioctl.
694  *
695  *	- If the calling device is opened as a cdev, devid is reported.
696  *	  Flag VFIO_PCI_HOT_RESET_FLAG_DEV_ID is set to indicate this
697  *	  data type.  All the affected devices should be represented in
698  *	  the dev_set, ex. bound to a vfio driver, and also be owned by
699  *	  this interface which is determined by the following conditions:
700  *	  1) Has a valid devid within the iommufd_ctx of the calling device.
701  *	     Ownership cannot be determined across separate iommufd_ctx and
702  *	     the cdev calling conventions do not support a proof-of-ownership
703  *	     model as provided in the legacy group interface.  In this case
704  *	     valid devid with value greater than zero is provided in the return
705  *	     structure.
706  *	  2) Does not have a valid devid within the iommufd_ctx of the calling
707  *	     device, but belongs to the same IOMMU group as the calling device
708  *	     or another opened device that has a valid devid within the
709  *	     iommufd_ctx of the calling device.  This provides implicit ownership
710  *	     for devices within the same DMA isolation context.  In this case
711  *	     the devid value of VFIO_PCI_DEVID_OWNED is provided in the return
712  *	     structure.
713  *
714  *	  A devid value of VFIO_PCI_DEVID_NOT_OWNED is provided in the return
715  *	  structure for affected devices where device is NOT represented in the
716  *	  dev_set or ownership is not available.  Such devices prevent the use
717  *	  of VFIO_DEVICE_PCI_HOT_RESET ioctl outside of the proof-of-ownership
718  *	  calling conventions (ie. via legacy group accessed devices).  Flag
719  *	  VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED would be set when all the
720  *	  affected devices are represented in the dev_set and also owned by
721  *	  the user.  This flag is available only when
722  *	  flag VFIO_PCI_HOT_RESET_FLAG_DEV_ID is set, otherwise reserved.
723  *	  When set, user could invoke VFIO_DEVICE_PCI_HOT_RESET with a zero
724  *	  length fd array on the calling device as the ownership is validated
725  *	  by iommufd_ctx.
726  *
727  * Return: 0 on success, -errno on failure:
728  *	-enospc = insufficient buffer, -enodev = unsupported for device.
729  */
730 struct vfio_pci_dependent_device {
731 	union {
732 		__u32   group_id;
733 		__u32	devid;
734 #define VFIO_PCI_DEVID_OWNED		0
735 #define VFIO_PCI_DEVID_NOT_OWNED	-1
736 	};
737 	__u16	segment;
738 	__u8	bus;
739 	__u8	devfn; /* Use PCI_SLOT/PCI_FUNC */
740 };
741 
742 struct vfio_pci_hot_reset_info {
743 	__u32	argsz;
744 	__u32	flags;
745 #define VFIO_PCI_HOT_RESET_FLAG_DEV_ID		(1 << 0)
746 #define VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED	(1 << 1)
747 	__u32	count;
748 	struct vfio_pci_dependent_device	devices[];
749 };
750 
751 #define VFIO_DEVICE_GET_PCI_HOT_RESET_INFO	_IO(VFIO_TYPE, VFIO_BASE + 12)
752 
753 /**
754  * VFIO_DEVICE_PCI_HOT_RESET - _IOW(VFIO_TYPE, VFIO_BASE + 13,
755  *				    struct vfio_pci_hot_reset)
756  *
757  * A PCI hot reset results in either a bus or slot reset which may affect
758  * other devices sharing the bus/slot.  The calling user must have
759  * ownership of the full set of affected devices as determined by the
760  * VFIO_DEVICE_GET_PCI_HOT_RESET_INFO ioctl.
761  *
762  * When called on a device file descriptor acquired through the vfio
763  * group interface, the user is required to provide proof of ownership
764  * of those affected devices via the group_fds array in struct
765  * vfio_pci_hot_reset.
766  *
767  * When called on a direct cdev opened vfio device, the flags field of
768  * struct vfio_pci_hot_reset_info reports the ownership status of the
769  * affected devices and this ioctl must be called with an empty group_fds
770  * array.  See above INFO ioctl definition for ownership requirements.
771  *
772  * Mixed usage of legacy groups and cdevs across the set of affected
773  * devices is not supported.
774  *
775  * Return: 0 on success, -errno on failure.
776  */
777 struct vfio_pci_hot_reset {
778 	__u32	argsz;
779 	__u32	flags;
780 	__u32	count;
781 	__s32	group_fds[];
782 };
783 
784 #define VFIO_DEVICE_PCI_HOT_RESET	_IO(VFIO_TYPE, VFIO_BASE + 13)
785 
786 /**
787  * VFIO_DEVICE_QUERY_GFX_PLANE - _IOW(VFIO_TYPE, VFIO_BASE + 14,
788  *                                    struct vfio_device_query_gfx_plane)
789  *
790  * Set the drm_plane_type and flags, then retrieve the gfx plane info.
791  *
792  * flags supported:
793  * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_DMABUF are set
794  *   to ask if the mdev supports dma-buf. 0 on support, -EINVAL on no
795  *   support for dma-buf.
796  * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_REGION are set
797  *   to ask if the mdev supports region. 0 on support, -EINVAL on no
798  *   support for region.
799  * - VFIO_GFX_PLANE_TYPE_DMABUF or VFIO_GFX_PLANE_TYPE_REGION is set
800  *   with each call to query the plane info.
801  * - Others are invalid and return -EINVAL.
802  *
803  * Note:
804  * 1. Plane could be disabled by guest. In that case, success will be
805  *    returned with zero-initialized drm_format, size, width and height
806  *    fields.
807  * 2. x_hot/y_hot is set to 0xFFFFFFFF if no hotspot information available
808  *
809  * Return: 0 on success, -errno on other failure.
810  */
811 struct vfio_device_gfx_plane_info {
812 	__u32 argsz;
813 	__u32 flags;
814 #define VFIO_GFX_PLANE_TYPE_PROBE (1 << 0)
815 #define VFIO_GFX_PLANE_TYPE_DMABUF (1 << 1)
816 #define VFIO_GFX_PLANE_TYPE_REGION (1 << 2)
817 	/* in */
818 	__u32 drm_plane_type;	/* type of plane: DRM_PLANE_TYPE_* */
819 	/* out */
820 	__u32 drm_format;	/* drm format of plane */
821 	__aligned_u64 drm_format_mod;   /* tiled mode */
822 	__u32 width;	/* width of plane */
823 	__u32 height;	/* height of plane */
824 	__u32 stride;	/* stride of plane */
825 	__u32 size;	/* size of plane in bytes, align on page*/
826 	__u32 x_pos;	/* horizontal position of cursor plane */
827 	__u32 y_pos;	/* vertical position of cursor plane*/
828 	__u32 x_hot;    /* horizontal position of cursor hotspot */
829 	__u32 y_hot;    /* vertical position of cursor hotspot */
830 	union {
831 		__u32 region_index;	/* region index */
832 		__u32 dmabuf_id;	/* dma-buf id */
833 	};
834 	__u32 reserved;
835 };
836 
837 #define VFIO_DEVICE_QUERY_GFX_PLANE _IO(VFIO_TYPE, VFIO_BASE + 14)
838 
839 /**
840  * VFIO_DEVICE_GET_GFX_DMABUF - _IOW(VFIO_TYPE, VFIO_BASE + 15, __u32)
841  *
842  * Return a new dma-buf file descriptor for an exposed guest framebuffer
843  * described by the provided dmabuf_id. The dmabuf_id is returned from VFIO_
844  * DEVICE_QUERY_GFX_PLANE as a token of the exposed guest framebuffer.
845  */
846 
847 #define VFIO_DEVICE_GET_GFX_DMABUF _IO(VFIO_TYPE, VFIO_BASE + 15)
848 
849 /**
850  * VFIO_DEVICE_IOEVENTFD - _IOW(VFIO_TYPE, VFIO_BASE + 16,
851  *                              struct vfio_device_ioeventfd)
852  *
853  * Perform a write to the device at the specified device fd offset, with
854  * the specified data and width when the provided eventfd is triggered.
855  * vfio bus drivers may not support this for all regions, for all widths,
856  * or at all.  vfio-pci currently only enables support for BAR regions,
857  * excluding the MSI-X vector table.
858  *
859  * Return: 0 on success, -errno on failure.
860  */
861 struct vfio_device_ioeventfd {
862 	__u32	argsz;
863 	__u32	flags;
864 #define VFIO_DEVICE_IOEVENTFD_8		(1 << 0) /* 1-byte write */
865 #define VFIO_DEVICE_IOEVENTFD_16	(1 << 1) /* 2-byte write */
866 #define VFIO_DEVICE_IOEVENTFD_32	(1 << 2) /* 4-byte write */
867 #define VFIO_DEVICE_IOEVENTFD_64	(1 << 3) /* 8-byte write */
868 #define VFIO_DEVICE_IOEVENTFD_SIZE_MASK	(0xf)
869 	__aligned_u64	offset;		/* device fd offset of write */
870 	__aligned_u64	data;		/* data to be written */
871 	__s32	fd;			/* -1 for de-assignment */
872 	__u32	reserved;
873 };
874 
875 #define VFIO_DEVICE_IOEVENTFD		_IO(VFIO_TYPE, VFIO_BASE + 16)
876 
877 /**
878  * VFIO_DEVICE_FEATURE - _IOWR(VFIO_TYPE, VFIO_BASE + 17,
879  *			       struct vfio_device_feature)
880  *
881  * Get, set, or probe feature data of the device.  The feature is selected
882  * using the FEATURE_MASK portion of the flags field.  Support for a feature
883  * can be probed by setting both the FEATURE_MASK and PROBE bits.  A probe
884  * may optionally include the GET and/or SET bits to determine read vs write
885  * access of the feature respectively.  Probing a feature will return success
886  * if the feature is supported and all of the optionally indicated GET/SET
887  * methods are supported.  The format of the data portion of the structure is
888  * specific to the given feature.  The data portion is not required for
889  * probing.  GET and SET are mutually exclusive, except for use with PROBE.
890  *
891  * Return 0 on success, -errno on failure.
892  */
893 struct vfio_device_feature {
894 	__u32	argsz;
895 	__u32	flags;
896 #define VFIO_DEVICE_FEATURE_MASK	(0xffff) /* 16-bit feature index */
897 #define VFIO_DEVICE_FEATURE_GET		(1 << 16) /* Get feature into data[] */
898 #define VFIO_DEVICE_FEATURE_SET		(1 << 17) /* Set feature from data[] */
899 #define VFIO_DEVICE_FEATURE_PROBE	(1 << 18) /* Probe feature support */
900 	__u8	data[];
901 };
902 
903 #define VFIO_DEVICE_FEATURE		_IO(VFIO_TYPE, VFIO_BASE + 17)
904 
905 /*
906  * VFIO_DEVICE_BIND_IOMMUFD - _IOR(VFIO_TYPE, VFIO_BASE + 18,
907  *				   struct vfio_device_bind_iommufd)
908  * @argsz:	 User filled size of this data.
909  * @flags:	 Must be 0 or a bit flags of VFIO_DEVICE_BIND_*
910  * @iommufd:	 iommufd to bind.
911  * @out_devid:	 The device id generated by this bind. devid is a handle for
912  *		 this device/iommufd bond and can be used in IOMMUFD commands.
913  * @token_uuid_ptr: Valid if VFIO_DEVICE_BIND_FLAG_TOKEN. Points to a 16 byte
914  *                  UUID in the same format as VFIO_DEVICE_FEATURE_PCI_VF_TOKEN.
915  *
916  * Bind a vfio_device to the specified iommufd.
917  *
918  * User is restricted from accessing the device before the binding operation
919  * is completed.  Only allowed on cdev fds.
920  *
921  * Unbind is automatically conducted when device fd is closed.
922  *
923  * A token is sometimes required to open the device, unless this is known to be
924  * needed VFIO_DEVICE_BIND_FLAG_TOKEN should not be set and token_uuid_ptr is
925  * ignored. The only case today is a PF/VF relationship where the VF bind must
926  * be provided the same token as VFIO_DEVICE_FEATURE_PCI_VF_TOKEN provided to
927  * the PF.
928  *
929  * Return: 0 on success, -errno on failure.
930  */
931 struct vfio_device_bind_iommufd {
932 	__u32		argsz;
933 	__u32		flags;
934 #define VFIO_DEVICE_BIND_FLAG_TOKEN (1 << 0)
935 	__s32		iommufd;
936 	__u32		out_devid;
937 	__aligned_u64	token_uuid_ptr;
938 };
939 
940 #define VFIO_DEVICE_BIND_IOMMUFD	_IO(VFIO_TYPE, VFIO_BASE + 18)
941 
942 /*
943  * VFIO_DEVICE_ATTACH_IOMMUFD_PT - _IOW(VFIO_TYPE, VFIO_BASE + 19,
944  *					struct vfio_device_attach_iommufd_pt)
945  * @argsz:	User filled size of this data.
946  * @flags:	Flags for attach.
947  * @pt_id:	Input the target id which can represent an ioas or a hwpt
948  *		allocated via iommufd subsystem.
949  *		Output the input ioas id or the attached hwpt id which could
950  *		be the specified hwpt itself or a hwpt automatically created
951  *		for the specified ioas by kernel during the attachment.
952  * @pasid:	The pasid to be attached, only meaningful when
953  *		VFIO_DEVICE_ATTACH_PASID is set in @flags
954  *
955  * Associate the device with an address space within the bound iommufd.
956  * Undo by VFIO_DEVICE_DETACH_IOMMUFD_PT or device fd close.  This is only
957  * allowed on cdev fds.
958  *
959  * If a vfio device or a pasid of this device is currently attached to a valid
960  * hw_pagetable (hwpt), without doing a VFIO_DEVICE_DETACH_IOMMUFD_PT, a second
961  * VFIO_DEVICE_ATTACH_IOMMUFD_PT ioctl passing in another hwpt id is allowed.
962  * This action, also known as a hw_pagetable replacement, will replace the
963  * currently attached hwpt of the device or the pasid of this device with a new
964  * hwpt corresponding to the given pt_id.
965  *
966  * Return: 0 on success, -errno on failure.
967  *
968  * When a device is resetting, -EBUSY will be returned to reject any concurrent
969  * attachment to the resetting device itself or any sibling device in the IOMMU
970  * group having the resetting device.
971  */
972 struct vfio_device_attach_iommufd_pt {
973 	__u32	argsz;
974 	__u32	flags;
975 #define VFIO_DEVICE_ATTACH_PASID	(1 << 0)
976 	__u32	pt_id;
977 	__u32	pasid;
978 };
979 
980 #define VFIO_DEVICE_ATTACH_IOMMUFD_PT		_IO(VFIO_TYPE, VFIO_BASE + 19)
981 
982 /*
983  * VFIO_DEVICE_DETACH_IOMMUFD_PT - _IOW(VFIO_TYPE, VFIO_BASE + 20,
984  *					struct vfio_device_detach_iommufd_pt)
985  * @argsz:	User filled size of this data.
986  * @flags:	Flags for detach.
987  * @pasid:	The pasid to be detached, only meaningful when
988  *		VFIO_DEVICE_DETACH_PASID is set in @flags
989  *
990  * Remove the association of the device or a pasid of the device and its current
991  * associated address space.  After it, the device or the pasid should be in a
992  * blocking DMA state.  This is only allowed on cdev fds.
993  *
994  * Return: 0 on success, -errno on failure.
995  */
996 struct vfio_device_detach_iommufd_pt {
997 	__u32	argsz;
998 	__u32	flags;
999 #define VFIO_DEVICE_DETACH_PASID	(1 << 0)
1000 	__u32	pasid;
1001 };
1002 
1003 #define VFIO_DEVICE_DETACH_IOMMUFD_PT		_IO(VFIO_TYPE, VFIO_BASE + 20)
1004 
1005 /*
1006  * Provide support for setting a PCI VF Token, which is used as a shared
1007  * secret between PF and VF drivers.  This feature may only be set on a
1008  * PCI SR-IOV PF when SR-IOV is enabled on the PF and there are no existing
1009  * open VFs.  Data provided when setting this feature is a 16-byte array
1010  * (__u8 b[16]), representing a UUID.
1011  */
1012 #define VFIO_DEVICE_FEATURE_PCI_VF_TOKEN	(0)
1013 
1014 /*
1015  * Indicates the device can support the migration API through
1016  * VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE. If this GET succeeds, the RUNNING and
1017  * ERROR states are always supported. Support for additional states is
1018  * indicated via the flags field; at least VFIO_MIGRATION_STOP_COPY must be
1019  * set.
1020  *
1021  * VFIO_MIGRATION_STOP_COPY means that STOP, STOP_COPY and
1022  * RESUMING are supported.
1023  *
1024  * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P means that RUNNING_P2P
1025  * is supported in addition to the STOP_COPY states.
1026  *
1027  * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_PRE_COPY means that
1028  * PRE_COPY is supported in addition to the STOP_COPY states.
1029  *
1030  * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P | VFIO_MIGRATION_PRE_COPY
1031  * means that RUNNING_P2P, PRE_COPY and PRE_COPY_P2P are supported
1032  * in addition to the STOP_COPY states.
1033  *
1034  * Other combinations of flags have behavior to be defined in the future.
1035  */
1036 struct vfio_device_feature_migration {
1037 	__aligned_u64 flags;
1038 #define VFIO_MIGRATION_STOP_COPY	(1 << 0)
1039 #define VFIO_MIGRATION_P2P		(1 << 1)
1040 #define VFIO_MIGRATION_PRE_COPY		(1 << 2)
1041 };
1042 #define VFIO_DEVICE_FEATURE_MIGRATION 1
1043 
1044 /*
1045  * Upon VFIO_DEVICE_FEATURE_SET, execute a migration state change on the VFIO
1046  * device. The new state is supplied in device_state, see enum
1047  * vfio_device_mig_state for details
1048  *
1049  * The kernel migration driver must fully transition the device to the new state
1050  * value before the operation returns to the user.
1051  *
1052  * The kernel migration driver must not generate asynchronous device state
1053  * transitions outside of manipulation by the user or the VFIO_DEVICE_RESET
1054  * ioctl as described above.
1055  *
1056  * If this function fails then current device_state may be the original
1057  * operating state or some other state along the combination transition path.
1058  * The user can then decide if it should execute a VFIO_DEVICE_RESET, attempt
1059  * to return to the original state, or attempt to return to some other state
1060  * such as RUNNING or STOP.
1061  *
1062  * If the new_state starts a new data transfer session then the FD associated
1063  * with that session is returned in data_fd. The user is responsible to close
1064  * this FD when it is finished. The user must consider the migration data stream
1065  * carried over the FD to be opaque and must preserve the byte order of the
1066  * stream. The user is not required to preserve buffer segmentation when writing
1067  * the data stream during the RESUMING operation.
1068  *
1069  * Upon VFIO_DEVICE_FEATURE_GET, get the current migration state of the VFIO
1070  * device, data_fd will be -1.
1071  */
1072 struct vfio_device_feature_mig_state {
1073 	__u32 device_state; /* From enum vfio_device_mig_state */
1074 	__s32 data_fd;
1075 };
1076 #define VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE 2
1077 
1078 /*
1079  * The device migration Finite State Machine is described by the enum
1080  * vfio_device_mig_state. Some of the FSM arcs will create a migration data
1081  * transfer session by returning a FD, in this case the migration data will
1082  * flow over the FD using read() and write() as discussed below.
1083  *
1084  * There are 5 states to support VFIO_MIGRATION_STOP_COPY:
1085  *  RUNNING - The device is running normally
1086  *  STOP - The device does not change the internal or external state
1087  *  STOP_COPY - The device internal state can be read out
1088  *  RESUMING - The device is stopped and is loading a new internal state
1089  *  ERROR - The device has failed and must be reset
1090  *
1091  * And optional states to support VFIO_MIGRATION_P2P:
1092  *  RUNNING_P2P - RUNNING, except the device cannot do peer to peer DMA
1093  * And VFIO_MIGRATION_PRE_COPY:
1094  *  PRE_COPY - The device is running normally but tracking internal state
1095  *             changes
1096  * And VFIO_MIGRATION_P2P | VFIO_MIGRATION_PRE_COPY:
1097  *  PRE_COPY_P2P - PRE_COPY, except the device cannot do peer to peer DMA
1098  *
1099  * The FSM takes actions on the arcs between FSM states. The driver implements
1100  * the following behavior for the FSM arcs:
1101  *
1102  * RUNNING_P2P -> STOP
1103  * STOP_COPY -> STOP
1104  *   While in STOP the device must stop the operation of the device. The device
1105  *   must not generate interrupts, DMA, or any other change to external state.
1106  *   It must not change its internal state. When stopped the device and kernel
1107  *   migration driver must accept and respond to interaction to support external
1108  *   subsystems in the STOP state, for example PCI MSI-X and PCI config space.
1109  *   Failure by the user to restrict device access while in STOP must not result
1110  *   in error conditions outside the user context (ex. host system faults).
1111  *
1112  *   The STOP_COPY arc will terminate a data transfer session.
1113  *
1114  * RESUMING -> STOP
1115  *   Leaving RESUMING terminates a data transfer session and indicates the
1116  *   device should complete processing of the data delivered by write(). The
1117  *   kernel migration driver should complete the incorporation of data written
1118  *   to the data transfer FD into the device internal state and perform
1119  *   final validity and consistency checking of the new device state. If the
1120  *   user provided data is found to be incomplete, inconsistent, or otherwise
1121  *   invalid, the migration driver must fail the SET_STATE ioctl and
1122  *   optionally go to the ERROR state as described below.
1123  *
1124  *   While in STOP the device has the same behavior as other STOP states
1125  *   described above.
1126  *
1127  *   To abort a RESUMING session the device must be reset.
1128  *
1129  * PRE_COPY -> RUNNING
1130  * RUNNING_P2P -> RUNNING
1131  *   While in RUNNING the device is fully operational, the device may generate
1132  *   interrupts, DMA, respond to MMIO, all vfio device regions are functional,
1133  *   and the device may advance its internal state.
1134  *
1135  *   The PRE_COPY arc will terminate a data transfer session.
1136  *
1137  * PRE_COPY_P2P -> RUNNING_P2P
1138  * RUNNING -> RUNNING_P2P
1139  * STOP -> RUNNING_P2P
1140  *   While in RUNNING_P2P the device is partially running in the P2P quiescent
1141  *   state defined below.
1142  *
1143  *   The PRE_COPY_P2P arc will terminate a data transfer session.
1144  *
1145  * RUNNING -> PRE_COPY
1146  * RUNNING_P2P -> PRE_COPY_P2P
1147  * STOP -> STOP_COPY
1148  *   PRE_COPY, PRE_COPY_P2P and STOP_COPY form the "saving group" of states
1149  *   which share a data transfer session. Moving between these states alters
1150  *   what is streamed in session, but does not terminate or otherwise affect
1151  *   the associated fd.
1152  *
1153  *   These arcs begin the process of saving the device state and will return a
1154  *   new data_fd. The migration driver may perform actions such as enabling
1155  *   dirty logging of device state when entering PRE_COPY or PER_COPY_P2P.
1156  *
1157  *   Each arc does not change the device operation, the device remains
1158  *   RUNNING, P2P quiesced or in STOP. The STOP_COPY state is described below
1159  *   in PRE_COPY_P2P -> STOP_COPY.
1160  *
1161  * PRE_COPY -> PRE_COPY_P2P
1162  *   Entering PRE_COPY_P2P continues all the behaviors of PRE_COPY above.
1163  *   However, while in the PRE_COPY_P2P state, the device is partially running
1164  *   in the P2P quiescent state defined below, like RUNNING_P2P.
1165  *
1166  * PRE_COPY_P2P -> PRE_COPY
1167  *   This arc allows returning the device to a full RUNNING behavior while
1168  *   continuing all the behaviors of PRE_COPY.
1169  *
1170  * PRE_COPY_P2P -> STOP_COPY
1171  *   While in the STOP_COPY state the device has the same behavior as STOP
1172  *   with the addition that the data transfers session continues to stream the
1173  *   migration state. End of stream on the FD indicates the entire device
1174  *   state has been transferred.
1175  *
1176  *   The user should take steps to restrict access to vfio device regions while
1177  *   the device is in STOP_COPY or risk corruption of the device migration data
1178  *   stream.
1179  *
1180  * STOP -> RESUMING
1181  *   Entering the RESUMING state starts a process of restoring the device state
1182  *   and will return a new data_fd. The data stream fed into the data_fd should
1183  *   be taken from the data transfer output of a single FD during saving from
1184  *   a compatible device. The migration driver may alter/reset the internal
1185  *   device state for this arc if required to prepare the device to receive the
1186  *   migration data.
1187  *
1188  * STOP_COPY -> PRE_COPY
1189  * STOP_COPY -> PRE_COPY_P2P
1190  *   These arcs are not permitted and return error if requested. Future
1191  *   revisions of this API may define behaviors for these arcs, in this case
1192  *   support will be discoverable by a new flag in
1193  *   VFIO_DEVICE_FEATURE_MIGRATION.
1194  *
1195  * any -> ERROR
1196  *   ERROR cannot be specified as a device state, however any transition request
1197  *   can be failed with an errno return and may then move the device_state into
1198  *   ERROR. In this case the device was unable to execute the requested arc and
1199  *   was also unable to restore the device to any valid device_state.
1200  *   To recover from ERROR VFIO_DEVICE_RESET must be used to return the
1201  *   device_state back to RUNNING.
1202  *
1203  * The optional peer to peer (P2P) quiescent state is intended to be a quiescent
1204  * state for the device for the purposes of managing multiple devices within a
1205  * user context where peer-to-peer DMA between devices may be active. The
1206  * RUNNING_P2P and PRE_COPY_P2P states must prevent the device from initiating
1207  * any new P2P DMA transactions. If the device can identify P2P transactions
1208  * then it can stop only P2P DMA, otherwise it must stop all DMA. The migration
1209  * driver must complete any such outstanding operations prior to completing the
1210  * FSM arc into a P2P state. For the purpose of specification the states
1211  * behave as though the device was fully running if not supported. Like while in
1212  * STOP or STOP_COPY the user must not touch the device, otherwise the state
1213  * can be exited.
1214  *
1215  * The remaining possible transitions are interpreted as combinations of the
1216  * above FSM arcs. As there are multiple paths through the FSM arcs the path
1217  * should be selected based on the following rules:
1218  *   - Select the shortest path.
1219  *   - The path cannot have saving group states as interior arcs, only
1220  *     starting/end states.
1221  * Refer to vfio_mig_get_next_state() for the result of the algorithm.
1222  *
1223  * The automatic transit through the FSM arcs that make up the combination
1224  * transition is invisible to the user. When working with combination arcs the
1225  * user may see any step along the path in the device_state if SET_STATE
1226  * fails. When handling these types of errors users should anticipate future
1227  * revisions of this protocol using new states and those states becoming
1228  * visible in this case.
1229  *
1230  * The optional states cannot be used with SET_STATE if the device does not
1231  * support them. The user can discover if these states are supported by using
1232  * VFIO_DEVICE_FEATURE_MIGRATION. By using combination transitions the user can
1233  * avoid knowing about these optional states if the kernel driver supports them.
1234  *
1235  * Arcs touching PRE_COPY and PRE_COPY_P2P are removed if support for PRE_COPY
1236  * is not present.
1237  */
1238 enum vfio_device_mig_state {
1239 	VFIO_DEVICE_STATE_ERROR = 0,
1240 	VFIO_DEVICE_STATE_STOP = 1,
1241 	VFIO_DEVICE_STATE_RUNNING = 2,
1242 	VFIO_DEVICE_STATE_STOP_COPY = 3,
1243 	VFIO_DEVICE_STATE_RESUMING = 4,
1244 	VFIO_DEVICE_STATE_RUNNING_P2P = 5,
1245 	VFIO_DEVICE_STATE_PRE_COPY = 6,
1246 	VFIO_DEVICE_STATE_PRE_COPY_P2P = 7,
1247 	VFIO_DEVICE_STATE_NR,
1248 };
1249 
1250 /**
1251  * VFIO_MIG_GET_PRECOPY_INFO - _IO(VFIO_TYPE, VFIO_BASE + 21)
1252  *
1253  * This ioctl is used on the migration data FD in the precopy phase of the
1254  * migration data transfer. It returns an estimate of the current data sizes
1255  * remaining to be transferred. It allows the user to judge when it is
1256  * appropriate to leave PRE_COPY for STOP_COPY.
1257  *
1258  * This ioctl is valid only in PRE_COPY states and kernel driver should
1259  * return -EINVAL from any other migration state.
1260  *
1261  * The vfio_precopy_info data structure returned by this ioctl provides
1262  * estimates of data available from the device during the PRE_COPY states.
1263  * This estimate is split into two categories, initial_bytes and
1264  * dirty_bytes.
1265  *
1266  * The initial_bytes field indicates the amount of initial precopy
1267  * data available from the device. This field should have a non-zero initial
1268  * value and decrease as migration data is read from the device.
1269  * It is recommended to leave PRE_COPY for STOP_COPY only after this field
1270  * reaches zero. Leaving PRE_COPY earlier might make things slower.
1271  *
1272  * The dirty_bytes field tracks device state changes relative to data
1273  * previously retrieved.  This field starts at zero and may increase as
1274  * the internal device state is modified or decrease as that modified
1275  * state is read from the device.
1276  *
1277  * Userspace may use the combination of these fields to estimate the
1278  * potential data size available during the PRE_COPY phases, as well as
1279  * trends relative to the rate the device is dirtying its internal
1280  * state, but these fields are not required to have any bearing relative
1281  * to the data size available during the STOP_COPY phase.
1282  *
1283  * Drivers have a lot of flexibility in when and what they transfer during the
1284  * PRE_COPY phase, and how they report this from VFIO_MIG_GET_PRECOPY_INFO.
1285  *
1286  * During pre-copy the migration data FD has a temporary "end of stream" that is
1287  * reached when both initial_bytes and dirty_byte are zero. For instance, this
1288  * may indicate that the device is idle and not currently dirtying any internal
1289  * state. When read() is done on this temporary end of stream the kernel driver
1290  * should return ENOMSG from read(). Userspace can wait for more data (which may
1291  * never come) by using poll.
1292  *
1293  * Once in STOP_COPY the migration data FD has a permanent end of stream
1294  * signaled in the usual way by read() always returning 0 and poll always
1295  * returning readable. ENOMSG may not be returned in STOP_COPY.
1296  * Support for this ioctl is mandatory if a driver claims to support
1297  * VFIO_MIGRATION_PRE_COPY.
1298  *
1299  * Return: 0 on success, -1 and errno set on failure.
1300  */
1301 struct vfio_precopy_info {
1302 	__u32 argsz;
1303 	__u32 flags;
1304 	__aligned_u64 initial_bytes;
1305 	__aligned_u64 dirty_bytes;
1306 };
1307 
1308 #define VFIO_MIG_GET_PRECOPY_INFO _IO(VFIO_TYPE, VFIO_BASE + 21)
1309 
1310 /*
1311  * Upon VFIO_DEVICE_FEATURE_SET, allow the device to be moved into a low power
1312  * state with the platform-based power management.  Device use of lower power
1313  * states depends on factors managed by the runtime power management core,
1314  * including system level support and coordinating support among dependent
1315  * devices.  Enabling device low power entry does not guarantee lower power
1316  * usage by the device, nor is a mechanism provided through this feature to
1317  * know the current power state of the device.  If any device access happens
1318  * (either from the host or through the vfio uAPI) when the device is in the
1319  * low power state, then the host will move the device out of the low power
1320  * state as necessary prior to the access.  Once the access is completed, the
1321  * device may re-enter the low power state.  For single shot low power support
1322  * with wake-up notification, see
1323  * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP below.  Access to mmap'd
1324  * device regions is disabled on LOW_POWER_ENTRY and may only be resumed after
1325  * calling LOW_POWER_EXIT.
1326  */
1327 #define VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY 3
1328 
1329 /*
1330  * This device feature has the same behavior as
1331  * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY with the exception that the user
1332  * provides an eventfd for wake-up notification.  When the device moves out of
1333  * the low power state for the wake-up, the host will not allow the device to
1334  * re-enter a low power state without a subsequent user call to one of the low
1335  * power entry device feature IOCTLs.  Access to mmap'd device regions is
1336  * disabled on LOW_POWER_ENTRY_WITH_WAKEUP and may only be resumed after the
1337  * low power exit.  The low power exit can happen either through LOW_POWER_EXIT
1338  * or through any other access (where the wake-up notification has been
1339  * generated).  The access to mmap'd device regions will not trigger low power
1340  * exit.
1341  *
1342  * The notification through the provided eventfd will be generated only when
1343  * the device has entered and is resumed from a low power state after
1344  * calling this device feature IOCTL.  A device that has not entered low power
1345  * state, as managed through the runtime power management core, will not
1346  * generate a notification through the provided eventfd on access.  Calling the
1347  * LOW_POWER_EXIT feature is optional in the case where notification has been
1348  * signaled on the provided eventfd that a resume from low power has occurred.
1349  */
1350 struct vfio_device_low_power_entry_with_wakeup {
1351 	__s32 wakeup_eventfd;
1352 	__u32 reserved;
1353 };
1354 
1355 #define VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP 4
1356 
1357 /*
1358  * Upon VFIO_DEVICE_FEATURE_SET, disallow use of device low power states as
1359  * previously enabled via VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY or
1360  * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP device features.
1361  * This device feature IOCTL may itself generate a wakeup eventfd notification
1362  * in the latter case if the device had previously entered a low power state.
1363  */
1364 #define VFIO_DEVICE_FEATURE_LOW_POWER_EXIT 5
1365 
1366 /*
1367  * Upon VFIO_DEVICE_FEATURE_SET start/stop device DMA logging.
1368  * VFIO_DEVICE_FEATURE_PROBE can be used to detect if the device supports
1369  * DMA logging.
1370  *
1371  * DMA logging allows a device to internally record what DMAs the device is
1372  * initiating and report them back to userspace. It is part of the VFIO
1373  * migration infrastructure that allows implementing dirty page tracking
1374  * during the pre copy phase of live migration. Only DMA WRITEs are logged,
1375  * and this API is not connected to VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE.
1376  *
1377  * When DMA logging is started a range of IOVAs to monitor is provided and the
1378  * device can optimize its logging to cover only the IOVA range given. Each
1379  * DMA that the device initiates inside the range will be logged by the device
1380  * for later retrieval.
1381  *
1382  * page_size is an input that hints what tracking granularity the device
1383  * should try to achieve. If the device cannot do the hinted page size then
1384  * it's the driver choice which page size to pick based on its support.
1385  * On output the device will return the page size it selected.
1386  *
1387  * ranges is a pointer to an array of
1388  * struct vfio_device_feature_dma_logging_range.
1389  *
1390  * The core kernel code guarantees to support by minimum num_ranges that fit
1391  * into a single kernel page. User space can try higher values but should give
1392  * up if the above can't be achieved as of some driver limitations.
1393  *
1394  * A single call to start device DMA logging can be issued and a matching stop
1395  * should follow at the end. Another start is not allowed in the meantime.
1396  */
1397 struct vfio_device_feature_dma_logging_control {
1398 	__aligned_u64 page_size;
1399 	__u32 num_ranges;
1400 	__u32 __reserved;
1401 	__aligned_u64 ranges;
1402 };
1403 
1404 struct vfio_device_feature_dma_logging_range {
1405 	__aligned_u64 iova;
1406 	__aligned_u64 length;
1407 };
1408 
1409 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_START 6
1410 
1411 /*
1412  * Upon VFIO_DEVICE_FEATURE_SET stop device DMA logging that was started
1413  * by VFIO_DEVICE_FEATURE_DMA_LOGGING_START
1414  */
1415 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_STOP 7
1416 
1417 /*
1418  * Upon VFIO_DEVICE_FEATURE_GET read back and clear the device DMA log
1419  *
1420  * Query the device's DMA log for written pages within the given IOVA range.
1421  * During querying the log is cleared for the IOVA range.
1422  *
1423  * bitmap is a pointer to an array of u64s that will hold the output bitmap
1424  * with 1 bit reporting a page_size unit of IOVA. The mapping of IOVA to bits
1425  * is given by:
1426  *  bitmap[(addr - iova)/page_size] & (1ULL << (addr % 64))
1427  *
1428  * The input page_size can be any power of two value and does not have to
1429  * match the value given to VFIO_DEVICE_FEATURE_DMA_LOGGING_START. The driver
1430  * will format its internal logging to match the reporting page size, possibly
1431  * by replicating bits if the internal page size is lower than requested.
1432  *
1433  * The LOGGING_REPORT will only set bits in the bitmap and never clear or
1434  * perform any initialization of the user provided bitmap.
1435  *
1436  * If any error is returned userspace should assume that the dirty log is
1437  * corrupted. Error recovery is to consider all memory dirty and try to
1438  * restart the dirty tracking, or to abort/restart the whole migration.
1439  *
1440  * If DMA logging is not enabled, an error will be returned.
1441  *
1442  */
1443 struct vfio_device_feature_dma_logging_report {
1444 	__aligned_u64 iova;
1445 	__aligned_u64 length;
1446 	__aligned_u64 page_size;
1447 	__aligned_u64 bitmap;
1448 };
1449 
1450 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_REPORT 8
1451 
1452 /*
1453  * Upon VFIO_DEVICE_FEATURE_GET read back the estimated data length that will
1454  * be required to complete stop copy.
1455  *
1456  * Note: Can be called on each device state.
1457  */
1458 
1459 struct vfio_device_feature_mig_data_size {
1460 	__aligned_u64 stop_copy_length;
1461 };
1462 
1463 #define VFIO_DEVICE_FEATURE_MIG_DATA_SIZE 9
1464 
1465 /**
1466  * Upon VFIO_DEVICE_FEATURE_SET, set or clear the BUS mastering for the device
1467  * based on the operation specified in op flag.
1468  *
1469  * The functionality is incorporated for devices that needs bus master control,
1470  * but the in-band device interface lacks the support. Consequently, it is not
1471  * applicable to PCI devices, as bus master control for PCI devices is managed
1472  * in-band through the configuration space. At present, this feature is supported
1473  * only for CDX devices.
1474  * When the device's BUS MASTER setting is configured as CLEAR, it will result in
1475  * blocking all incoming DMA requests from the device. On the other hand, configuring
1476  * the device's BUS MASTER setting as SET (enable) will grant the device the
1477  * capability to perform DMA to the host memory.
1478  */
1479 struct vfio_device_feature_bus_master {
1480 	__u32 op;
1481 #define		VFIO_DEVICE_FEATURE_CLEAR_MASTER	0	/* Clear Bus Master */
1482 #define		VFIO_DEVICE_FEATURE_SET_MASTER		1	/* Set Bus Master */
1483 };
1484 #define VFIO_DEVICE_FEATURE_BUS_MASTER 10
1485 
1486 /**
1487  * Upon VFIO_DEVICE_FEATURE_GET create a dma_buf fd for the
1488  * regions selected.
1489  *
1490  * open_flags are the typical flags passed to open(2), eg O_RDWR, O_CLOEXEC,
1491  * etc. offset/length specify a slice of the region to create the dmabuf from.
1492  * nr_ranges is the total number of (P2P DMA) ranges that comprise the dmabuf.
1493  *
1494  * flags should be 0.
1495  *
1496  * Return: The fd number on success, -1 and errno is set on failure.
1497  */
1498 #define VFIO_DEVICE_FEATURE_DMA_BUF 11
1499 
1500 struct vfio_region_dma_range {
1501 	__u64 offset;
1502 	__u64 length;
1503 };
1504 
1505 struct vfio_device_feature_dma_buf {
1506 	__u32	region_index;
1507 	__u32	open_flags;
1508 	__u32   flags;
1509 	__u32   nr_ranges;
1510 	struct vfio_region_dma_range dma_ranges[] __counted_by(nr_ranges);
1511 };
1512 
1513 /* -------- API for Type1 VFIO IOMMU -------- */
1514 
1515 /**
1516  * VFIO_IOMMU_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 12, struct vfio_iommu_info)
1517  *
1518  * Retrieve information about the IOMMU object. Fills in provided
1519  * struct vfio_iommu_info. Caller sets argsz.
1520  *
1521  * XXX Should we do these by CHECK_EXTENSION too?
1522  */
1523 struct vfio_iommu_type1_info {
1524 	__u32	argsz;
1525 	__u32	flags;
1526 #define VFIO_IOMMU_INFO_PGSIZES (1 << 0)	/* supported page sizes info */
1527 #define VFIO_IOMMU_INFO_CAPS	(1 << 1)	/* Info supports caps */
1528 	__aligned_u64	iova_pgsizes;		/* Bitmap of supported page sizes */
1529 	__u32   cap_offset;	/* Offset within info struct of first cap */
1530 	__u32   pad;
1531 };
1532 
1533 /*
1534  * The IOVA capability allows to report the valid IOVA range(s)
1535  * excluding any non-relaxable reserved regions exposed by
1536  * devices attached to the container. Any DMA map attempt
1537  * outside the valid iova range will return error.
1538  *
1539  * The structures below define version 1 of this capability.
1540  */
1541 #define VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE  1
1542 
1543 struct vfio_iova_range {
1544 	__u64	start;
1545 	__u64	end;
1546 };
1547 
1548 struct vfio_iommu_type1_info_cap_iova_range {
1549 	struct	vfio_info_cap_header header;
1550 	__u32	nr_iovas;
1551 	__u32	reserved;
1552 	struct	vfio_iova_range iova_ranges[];
1553 };
1554 
1555 /*
1556  * The migration capability allows to report supported features for migration.
1557  *
1558  * The structures below define version 1 of this capability.
1559  *
1560  * The existence of this capability indicates that IOMMU kernel driver supports
1561  * dirty page logging.
1562  *
1563  * pgsize_bitmap: Kernel driver returns bitmap of supported page sizes for dirty
1564  * page logging.
1565  * max_dirty_bitmap_size: Kernel driver returns maximum supported dirty bitmap
1566  * size in bytes that can be used by user applications when getting the dirty
1567  * bitmap.
1568  */
1569 #define VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION  2
1570 
1571 struct vfio_iommu_type1_info_cap_migration {
1572 	struct	vfio_info_cap_header header;
1573 	__u32	flags;
1574 	__u64	pgsize_bitmap;
1575 	__u64	max_dirty_bitmap_size;		/* in bytes */
1576 };
1577 
1578 /*
1579  * The DMA available capability allows to report the current number of
1580  * simultaneously outstanding DMA mappings that are allowed.
1581  *
1582  * The structure below defines version 1 of this capability.
1583  *
1584  * avail: specifies the current number of outstanding DMA mappings allowed.
1585  */
1586 #define VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL 3
1587 
1588 struct vfio_iommu_type1_info_dma_avail {
1589 	struct	vfio_info_cap_header header;
1590 	__u32	avail;
1591 };
1592 
1593 #define VFIO_IOMMU_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12)
1594 
1595 /**
1596  * VFIO_IOMMU_MAP_DMA - _IOW(VFIO_TYPE, VFIO_BASE + 13, struct vfio_dma_map)
1597  *
1598  * Map process virtual addresses to IO virtual addresses using the
1599  * provided struct vfio_dma_map. Caller sets argsz. READ &/ WRITE required.
1600  *
1601  * If flags & VFIO_DMA_MAP_FLAG_VADDR, update the base vaddr for iova. The vaddr
1602  * must have previously been invalidated with VFIO_DMA_UNMAP_FLAG_VADDR.  To
1603  * maintain memory consistency within the user application, the updated vaddr
1604  * must address the same memory object as originally mapped.  Failure to do so
1605  * will result in user memory corruption and/or device misbehavior.  iova and
1606  * size must match those in the original MAP_DMA call.  Protection is not
1607  * changed, and the READ & WRITE flags must be 0.
1608  */
1609 struct vfio_iommu_type1_dma_map {
1610 	__u32	argsz;
1611 	__u32	flags;
1612 #define VFIO_DMA_MAP_FLAG_READ (1 << 0)		/* readable from device */
1613 #define VFIO_DMA_MAP_FLAG_WRITE (1 << 1)	/* writable from device */
1614 #define VFIO_DMA_MAP_FLAG_VADDR (1 << 2)
1615 	__u64	vaddr;				/* Process virtual address */
1616 	__u64	iova;				/* IO virtual address */
1617 	__u64	size;				/* Size of mapping (bytes) */
1618 };
1619 
1620 #define VFIO_IOMMU_MAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 13)
1621 
1622 struct vfio_bitmap {
1623 	__u64        pgsize;	/* page size for bitmap in bytes */
1624 	__u64        size;	/* in bytes */
1625 	__u64 __user *data;	/* one bit per page */
1626 };
1627 
1628 /**
1629  * VFIO_IOMMU_UNMAP_DMA - _IOWR(VFIO_TYPE, VFIO_BASE + 14,
1630  *							struct vfio_dma_unmap)
1631  *
1632  * Unmap IO virtual addresses using the provided struct vfio_dma_unmap.
1633  * Caller sets argsz.  The actual unmapped size is returned in the size
1634  * field.  No guarantee is made to the user that arbitrary unmaps of iova
1635  * or size different from those used in the original mapping call will
1636  * succeed.
1637  *
1638  * VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP should be set to get the dirty bitmap
1639  * before unmapping IO virtual addresses. When this flag is set, the user must
1640  * provide a struct vfio_bitmap in data[]. User must provide zero-allocated
1641  * memory via vfio_bitmap.data and its size in the vfio_bitmap.size field.
1642  * A bit in the bitmap represents one page, of user provided page size in
1643  * vfio_bitmap.pgsize field, consecutively starting from iova offset. Bit set
1644  * indicates that the page at that offset from iova is dirty. A Bitmap of the
1645  * pages in the range of unmapped size is returned in the user-provided
1646  * vfio_bitmap.data.
1647  *
1648  * If flags & VFIO_DMA_UNMAP_FLAG_ALL, unmap all addresses.  iova and size
1649  * must be 0.  This cannot be combined with the get-dirty-bitmap flag.
1650  *
1651  * If flags & VFIO_DMA_UNMAP_FLAG_VADDR, do not unmap, but invalidate host
1652  * virtual addresses in the iova range.  DMA to already-mapped pages continues.
1653  * Groups may not be added to the container while any addresses are invalid.
1654  * This cannot be combined with the get-dirty-bitmap flag.
1655  */
1656 struct vfio_iommu_type1_dma_unmap {
1657 	__u32	argsz;
1658 	__u32	flags;
1659 #define VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP (1 << 0)
1660 #define VFIO_DMA_UNMAP_FLAG_ALL		     (1 << 1)
1661 #define VFIO_DMA_UNMAP_FLAG_VADDR	     (1 << 2)
1662 	__u64	iova;				/* IO virtual address */
1663 	__u64	size;				/* Size of mapping (bytes) */
1664 	__u8    data[];
1665 };
1666 
1667 #define VFIO_IOMMU_UNMAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 14)
1668 
1669 /*
1670  * IOCTLs to enable/disable IOMMU container usage.
1671  * No parameters are supported.
1672  */
1673 #define VFIO_IOMMU_ENABLE	_IO(VFIO_TYPE, VFIO_BASE + 15)
1674 #define VFIO_IOMMU_DISABLE	_IO(VFIO_TYPE, VFIO_BASE + 16)
1675 
1676 /**
1677  * VFIO_IOMMU_DIRTY_PAGES - _IOWR(VFIO_TYPE, VFIO_BASE + 17,
1678  *                                     struct vfio_iommu_type1_dirty_bitmap)
1679  * IOCTL is used for dirty pages logging.
1680  * Caller should set flag depending on which operation to perform, details as
1681  * below:
1682  *
1683  * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_START flag set, instructs
1684  * the IOMMU driver to log pages that are dirtied or potentially dirtied by
1685  * the device; designed to be used when a migration is in progress. Dirty pages
1686  * are logged until logging is disabled by user application by calling the IOCTL
1687  * with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag.
1688  *
1689  * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag set, instructs
1690  * the IOMMU driver to stop logging dirtied pages.
1691  *
1692  * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP flag set
1693  * returns the dirty pages bitmap for IOMMU container for a given IOVA range.
1694  * The user must specify the IOVA range and the pgsize through the structure
1695  * vfio_iommu_type1_dirty_bitmap_get in the data[] portion. This interface
1696  * supports getting a bitmap of the smallest supported pgsize only and can be
1697  * modified in future to get a bitmap of any specified supported pgsize. The
1698  * user must provide a zeroed memory area for the bitmap memory and specify its
1699  * size in bitmap.size. One bit is used to represent one page consecutively
1700  * starting from iova offset. The user should provide page size in bitmap.pgsize
1701  * field. A bit set in the bitmap indicates that the page at that offset from
1702  * iova is dirty. The caller must set argsz to a value including the size of
1703  * structure vfio_iommu_type1_dirty_bitmap_get, but excluding the size of the
1704  * actual bitmap. If dirty pages logging is not enabled, an error will be
1705  * returned.
1706  *
1707  * Only one of the flags _START, _STOP and _GET may be specified at a time.
1708  *
1709  */
1710 struct vfio_iommu_type1_dirty_bitmap {
1711 	__u32        argsz;
1712 	__u32        flags;
1713 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_START	(1 << 0)
1714 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP	(1 << 1)
1715 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP	(1 << 2)
1716 	__u8         data[];
1717 };
1718 
1719 struct vfio_iommu_type1_dirty_bitmap_get {
1720 	__u64              iova;	/* IO virtual address */
1721 	__u64              size;	/* Size of iova range */
1722 	struct vfio_bitmap bitmap;
1723 };
1724 
1725 #define VFIO_IOMMU_DIRTY_PAGES             _IO(VFIO_TYPE, VFIO_BASE + 17)
1726 
1727 /* -------- Additional API for SPAPR TCE (Server POWERPC) IOMMU -------- */
1728 
1729 /*
1730  * The SPAPR TCE DDW info struct provides the information about
1731  * the details of Dynamic DMA window capability.
1732  *
1733  * @pgsizes contains a page size bitmask, 4K/64K/16M are supported.
1734  * @max_dynamic_windows_supported tells the maximum number of windows
1735  * which the platform can create.
1736  * @levels tells the maximum number of levels in multi-level IOMMU tables;
1737  * this allows splitting a table into smaller chunks which reduces
1738  * the amount of physically contiguous memory required for the table.
1739  */
1740 struct vfio_iommu_spapr_tce_ddw_info {
1741 	__u64 pgsizes;			/* Bitmap of supported page sizes */
1742 	__u32 max_dynamic_windows_supported;
1743 	__u32 levels;
1744 };
1745 
1746 /*
1747  * The SPAPR TCE info struct provides the information about the PCI bus
1748  * address ranges available for DMA, these values are programmed into
1749  * the hardware so the guest has to know that information.
1750  *
1751  * The DMA 32 bit window start is an absolute PCI bus address.
1752  * The IOVA address passed via map/unmap ioctls are absolute PCI bus
1753  * addresses too so the window works as a filter rather than an offset
1754  * for IOVA addresses.
1755  *
1756  * Flags supported:
1757  * - VFIO_IOMMU_SPAPR_INFO_DDW: informs the userspace that dynamic DMA windows
1758  *   (DDW) support is present. @ddw is only supported when DDW is present.
1759  */
1760 struct vfio_iommu_spapr_tce_info {
1761 	__u32 argsz;
1762 	__u32 flags;
1763 #define VFIO_IOMMU_SPAPR_INFO_DDW	(1 << 0)	/* DDW supported */
1764 	__u32 dma32_window_start;	/* 32 bit window start (bytes) */
1765 	__u32 dma32_window_size;	/* 32 bit window size (bytes) */
1766 	struct vfio_iommu_spapr_tce_ddw_info ddw;
1767 };
1768 
1769 #define VFIO_IOMMU_SPAPR_TCE_GET_INFO	_IO(VFIO_TYPE, VFIO_BASE + 12)
1770 
1771 /*
1772  * EEH PE operation struct provides ways to:
1773  * - enable/disable EEH functionality;
1774  * - unfreeze IO/DMA for frozen PE;
1775  * - read PE state;
1776  * - reset PE;
1777  * - configure PE;
1778  * - inject EEH error.
1779  */
1780 struct vfio_eeh_pe_err {
1781 	__u32 type;
1782 	__u32 func;
1783 	__u64 addr;
1784 	__u64 mask;
1785 };
1786 
1787 struct vfio_eeh_pe_op {
1788 	__u32 argsz;
1789 	__u32 flags;
1790 	__u32 op;
1791 	union {
1792 		struct vfio_eeh_pe_err err;
1793 	};
1794 };
1795 
1796 #define VFIO_EEH_PE_DISABLE		0	/* Disable EEH functionality */
1797 #define VFIO_EEH_PE_ENABLE		1	/* Enable EEH functionality  */
1798 #define VFIO_EEH_PE_UNFREEZE_IO		2	/* Enable IO for frozen PE   */
1799 #define VFIO_EEH_PE_UNFREEZE_DMA	3	/* Enable DMA for frozen PE  */
1800 #define VFIO_EEH_PE_GET_STATE		4	/* PE state retrieval        */
1801 #define  VFIO_EEH_PE_STATE_NORMAL	0	/* PE in functional state    */
1802 #define  VFIO_EEH_PE_STATE_RESET	1	/* PE reset in progress      */
1803 #define  VFIO_EEH_PE_STATE_STOPPED	2	/* Stopped DMA and IO        */
1804 #define  VFIO_EEH_PE_STATE_STOPPED_DMA	4	/* Stopped DMA only          */
1805 #define  VFIO_EEH_PE_STATE_UNAVAIL	5	/* State unavailable         */
1806 #define VFIO_EEH_PE_RESET_DEACTIVATE	5	/* Deassert PE reset         */
1807 #define VFIO_EEH_PE_RESET_HOT		6	/* Assert hot reset          */
1808 #define VFIO_EEH_PE_RESET_FUNDAMENTAL	7	/* Assert fundamental reset  */
1809 #define VFIO_EEH_PE_CONFIGURE		8	/* PE configuration          */
1810 #define VFIO_EEH_PE_INJECT_ERR		9	/* Inject EEH error          */
1811 
1812 #define VFIO_EEH_PE_OP			_IO(VFIO_TYPE, VFIO_BASE + 21)
1813 
1814 /**
1815  * VFIO_IOMMU_SPAPR_REGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 17, struct vfio_iommu_spapr_register_memory)
1816  *
1817  * Registers user space memory where DMA is allowed. It pins
1818  * user pages and does the locked memory accounting so
1819  * subsequent VFIO_IOMMU_MAP_DMA/VFIO_IOMMU_UNMAP_DMA calls
1820  * get faster.
1821  */
1822 struct vfio_iommu_spapr_register_memory {
1823 	__u32	argsz;
1824 	__u32	flags;
1825 	__u64	vaddr;				/* Process virtual address */
1826 	__u64	size;				/* Size of mapping (bytes) */
1827 };
1828 #define VFIO_IOMMU_SPAPR_REGISTER_MEMORY	_IO(VFIO_TYPE, VFIO_BASE + 17)
1829 
1830 /**
1831  * VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 18, struct vfio_iommu_spapr_register_memory)
1832  *
1833  * Unregisters user space memory registered with
1834  * VFIO_IOMMU_SPAPR_REGISTER_MEMORY.
1835  * Uses vfio_iommu_spapr_register_memory for parameters.
1836  */
1837 #define VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY	_IO(VFIO_TYPE, VFIO_BASE + 18)
1838 
1839 /**
1840  * VFIO_IOMMU_SPAPR_TCE_CREATE - _IOWR(VFIO_TYPE, VFIO_BASE + 19, struct vfio_iommu_spapr_tce_create)
1841  *
1842  * Creates an additional TCE table and programs it (sets a new DMA window)
1843  * to every IOMMU group in the container. It receives page shift, window
1844  * size and number of levels in the TCE table being created.
1845  *
1846  * It allocates and returns an offset on a PCI bus of the new DMA window.
1847  */
1848 struct vfio_iommu_spapr_tce_create {
1849 	__u32 argsz;
1850 	__u32 flags;
1851 	/* in */
1852 	__u32 page_shift;
1853 	__u32 __resv1;
1854 	__u64 window_size;
1855 	__u32 levels;
1856 	__u32 __resv2;
1857 	/* out */
1858 	__u64 start_addr;
1859 };
1860 #define VFIO_IOMMU_SPAPR_TCE_CREATE	_IO(VFIO_TYPE, VFIO_BASE + 19)
1861 
1862 /**
1863  * VFIO_IOMMU_SPAPR_TCE_REMOVE - _IOW(VFIO_TYPE, VFIO_BASE + 20, struct vfio_iommu_spapr_tce_remove)
1864  *
1865  * Unprograms a TCE table from all groups in the container and destroys it.
1866  * It receives a PCI bus offset as a window id.
1867  */
1868 struct vfio_iommu_spapr_tce_remove {
1869 	__u32 argsz;
1870 	__u32 flags;
1871 	/* in */
1872 	__u64 start_addr;
1873 };
1874 #define VFIO_IOMMU_SPAPR_TCE_REMOVE	_IO(VFIO_TYPE, VFIO_BASE + 20)
1875 
1876 /* ***************************************************************** */
1877 
1878 #endif /* _UAPIVFIO_H */
1879