xref: /linux/drivers/md/dm-vdo/slab-depot.h (revision 79790b6818e96c58fe2bffee1b418c16e64e7b80)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright 2023 Red Hat
4  */
5 
6 #ifndef VDO_SLAB_DEPOT_H
7 #define VDO_SLAB_DEPOT_H
8 
9 #include <linux/atomic.h>
10 #include <linux/dm-kcopyd.h>
11 #include <linux/list.h>
12 
13 #include "numeric.h"
14 
15 #include "admin-state.h"
16 #include "completion.h"
17 #include "data-vio.h"
18 #include "encodings.h"
19 #include "physical-zone.h"
20 #include "priority-table.h"
21 #include "recovery-journal.h"
22 #include "statistics.h"
23 #include "types.h"
24 #include "vio.h"
25 #include "wait-queue.h"
26 
27 /*
28  * A slab_depot is responsible for managing all of the slabs and block allocators of a VDO. It has
29  * a single array of slabs in order to eliminate the need for additional math in order to compute
30  * which physical zone a PBN is in. It also has a block_allocator per zone.
31  *
32  * Each physical zone has a single dedicated queue and thread for performing all updates to the
33  * slabs assigned to that zone. The concurrency guarantees of this single-threaded model allow the
34  * code to omit more fine-grained locking for the various slab structures. Each physical zone
35  * maintains a separate copy of the slab summary to remove the need for explicit locking on that
36  * structure as well.
37  *
38  * Load operations must be performed on the admin thread. Normal operations, such as allocations
39  * and reference count updates, must be performed on the appropriate physical zone thread. Requests
40  * from the recovery journal to commit slab journal tail blocks must be scheduled from the recovery
41  * journal thread to run on the appropriate physical zone thread. Save operations must be launched
42  * from the same admin thread as the original load operation.
43  */
44 
45 enum {
46 	/* The number of vios in the vio pool is proportional to the throughput of the VDO. */
47 	BLOCK_ALLOCATOR_VIO_POOL_SIZE = 128,
48 };
49 
50 /*
51  * Represents the possible status of a block.
52  */
53 enum reference_status {
54 	RS_FREE, /* this block is free */
55 	RS_SINGLE, /* this block is singly-referenced */
56 	RS_SHARED, /* this block is shared */
57 	RS_PROVISIONAL /* this block is provisionally allocated */
58 };
59 
60 struct vdo_slab;
61 
62 struct journal_lock {
63 	u16 count;
64 	sequence_number_t recovery_start;
65 };
66 
67 struct slab_journal {
68 	/* A waiter object for getting a VIO pool entry */
69 	struct vdo_waiter resource_waiter;
70 	/* A waiter object for updating the slab summary */
71 	struct vdo_waiter slab_summary_waiter;
72 	/* A waiter object for getting a vio with which to flush */
73 	struct vdo_waiter flush_waiter;
74 	/* The queue of VIOs waiting to make an entry */
75 	struct vdo_wait_queue entry_waiters;
76 	/* The parent slab reference of this journal */
77 	struct vdo_slab *slab;
78 
79 	/* Whether a tail block commit is pending */
80 	bool waiting_to_commit;
81 	/* Whether the journal is updating the slab summary */
82 	bool updating_slab_summary;
83 	/* Whether the journal is adding entries from the entry_waiters queue */
84 	bool adding_entries;
85 	/* Whether a partial write is in progress */
86 	bool partial_write_in_progress;
87 
88 	/* The oldest block in the journal on disk */
89 	sequence_number_t head;
90 	/* The oldest block in the journal which may not be reaped */
91 	sequence_number_t unreapable;
92 	/* The end of the half-open interval of the active journal */
93 	sequence_number_t tail;
94 	/* The next journal block to be committed */
95 	sequence_number_t next_commit;
96 	/* The tail sequence number that is written in the slab summary */
97 	sequence_number_t summarized;
98 	/* The tail sequence number that was last summarized in slab summary */
99 	sequence_number_t last_summarized;
100 
101 	/* The sequence number of the recovery journal lock */
102 	sequence_number_t recovery_lock;
103 
104 	/*
105 	 * The number of entries which fit in a single block. Can't use the constant because unit
106 	 * tests change this number.
107 	 */
108 	journal_entry_count_t entries_per_block;
109 	/*
110 	 * The number of full entries which fit in a single block. Can't use the constant because
111 	 * unit tests change this number.
112 	 */
113 	journal_entry_count_t full_entries_per_block;
114 
115 	/* The recovery journal of the VDO (slab journal holds locks on it) */
116 	struct recovery_journal *recovery_journal;
117 
118 	/* The statistics shared by all slab journals in our physical zone */
119 	struct slab_journal_statistics *events;
120 	/* A list of the VIO pool entries for outstanding journal block writes */
121 	struct list_head uncommitted_blocks;
122 
123 	/*
124 	 * The current tail block header state. This will be packed into the block just before it
125 	 * is written.
126 	 */
127 	struct slab_journal_block_header tail_header;
128 	/* A pointer to a block-sized buffer holding the packed block data */
129 	struct packed_slab_journal_block *block;
130 
131 	/* The number of blocks in the on-disk journal */
132 	block_count_t size;
133 	/* The number of blocks at which to start pushing reference blocks */
134 	block_count_t flushing_threshold;
135 	/* The number of blocks at which all reference blocks should be writing */
136 	block_count_t flushing_deadline;
137 	/* The number of blocks at which to wait for reference blocks to write */
138 	block_count_t blocking_threshold;
139 	/* The number of blocks at which to scrub the slab before coming online */
140 	block_count_t scrubbing_threshold;
141 
142 	/* This list entry is for block_allocator to keep a queue of dirty journals */
143 	struct list_head dirty_entry;
144 
145 	/* The lock for the oldest unreaped block of the journal */
146 	struct journal_lock *reap_lock;
147 	/* The locks for each on disk block */
148 	struct journal_lock *locks;
149 };
150 
151 /*
152  * Reference_block structure
153  *
154  * Blocks are used as a proxy, permitting saves of partial refcounts.
155  */
156 struct reference_block {
157 	/* This block waits on the ref_counts to tell it to write */
158 	struct vdo_waiter waiter;
159 	/* The slab to which this reference_block belongs */
160 	struct vdo_slab *slab;
161 	/* The number of references in this block that represent allocations */
162 	block_size_t allocated_count;
163 	/* The slab journal block on which this block must hold a lock */
164 	sequence_number_t slab_journal_lock;
165 	/* The slab journal block which should be released when this block is committed */
166 	sequence_number_t slab_journal_lock_to_release;
167 	/* The point up to which each sector is accurate on disk */
168 	struct journal_point commit_points[VDO_SECTORS_PER_BLOCK];
169 	/* Whether this block has been modified since it was written to disk */
170 	bool is_dirty;
171 	/* Whether this block is currently writing */
172 	bool is_writing;
173 };
174 
175 /* The search_cursor represents the saved position of a free block search. */
176 struct search_cursor {
177 	/* The reference block containing the current search index */
178 	struct reference_block *block;
179 	/* The position at which to start searching for the next free counter */
180 	slab_block_number index;
181 	/* The position just past the last valid counter in the current block */
182 	slab_block_number end_index;
183 
184 	/* A pointer to the first reference block in the slab */
185 	struct reference_block *first_block;
186 	/* A pointer to the last reference block in the slab */
187 	struct reference_block *last_block;
188 };
189 
190 enum slab_rebuild_status {
191 	VDO_SLAB_REBUILT,
192 	VDO_SLAB_REPLAYING,
193 	VDO_SLAB_REQUIRES_SCRUBBING,
194 	VDO_SLAB_REQUIRES_HIGH_PRIORITY_SCRUBBING,
195 	VDO_SLAB_REBUILDING,
196 };
197 
198 /*
199  * This is the type declaration for the vdo_slab type. A vdo_slab currently consists of a run of
200  * 2^23 data blocks, but that will soon change to dedicate a small number of those blocks for
201  * metadata storage for the reference counts and slab journal for the slab.
202  *
203  * A reference count is maintained for each physical block number. The vast majority of blocks have
204  * a very small reference count (usually 0 or 1). For references less than or equal to MAXIMUM_REFS
205  * (254) the reference count is stored in counters[pbn].
206  */
207 struct vdo_slab {
208 	/* A list entry to queue this slab in a block_allocator list */
209 	struct list_head allocq_entry;
210 
211 	/* The struct block_allocator that owns this slab */
212 	struct block_allocator *allocator;
213 
214 	/* The journal for this slab */
215 	struct slab_journal journal;
216 
217 	/* The slab number of this slab */
218 	slab_count_t slab_number;
219 	/* The offset in the allocator partition of the first block in this slab */
220 	physical_block_number_t start;
221 	/* The offset of the first block past the end of this slab */
222 	physical_block_number_t end;
223 	/* The starting translated PBN of the slab journal */
224 	physical_block_number_t journal_origin;
225 	/* The starting translated PBN of the reference counts */
226 	physical_block_number_t ref_counts_origin;
227 
228 	/* The administrative state of the slab */
229 	struct admin_state state;
230 	/* The status of the slab */
231 	enum slab_rebuild_status status;
232 	/* Whether the slab was ever queued for scrubbing */
233 	bool was_queued_for_scrubbing;
234 
235 	/* The priority at which this slab has been queued for allocation */
236 	u8 priority;
237 
238 	/* Fields beyond this point are the reference counts for the data blocks in this slab. */
239 	/* The size of the counters array */
240 	u32 block_count;
241 	/* The number of free blocks */
242 	u32 free_blocks;
243 	/* The array of reference counts */
244 	vdo_refcount_t *counters; /* use vdo_allocate() to align data ptr */
245 
246 	/* The saved block pointer and array indexes for the free block search */
247 	struct search_cursor search_cursor;
248 
249 	/* A list of the dirty blocks waiting to be written out */
250 	struct vdo_wait_queue dirty_blocks;
251 	/* The number of blocks which are currently writing */
252 	size_t active_count;
253 
254 	/* A waiter object for updating the slab summary */
255 	struct vdo_waiter summary_waiter;
256 
257 	/* The latest slab journal for which there has been a reference count update */
258 	struct journal_point slab_journal_point;
259 
260 	/* The number of reference count blocks */
261 	u32 reference_block_count;
262 	/* reference count block array */
263 	struct reference_block *reference_blocks;
264 };
265 
266 enum block_allocator_drain_step {
267 	VDO_DRAIN_ALLOCATOR_START,
268 	VDO_DRAIN_ALLOCATOR_STEP_SCRUBBER,
269 	VDO_DRAIN_ALLOCATOR_STEP_SLABS,
270 	VDO_DRAIN_ALLOCATOR_STEP_SUMMARY,
271 	VDO_DRAIN_ALLOCATOR_STEP_FINISHED,
272 };
273 
274 struct slab_scrubber {
275 	/* The queue of slabs to scrub first */
276 	struct list_head high_priority_slabs;
277 	/* The queue of slabs to scrub once there are no high_priority_slabs */
278 	struct list_head slabs;
279 	/* The queue of VIOs waiting for a slab to be scrubbed */
280 	struct vdo_wait_queue waiters;
281 
282 	/*
283 	 * The number of slabs that are unrecovered or being scrubbed. This field is modified by
284 	 * the physical zone thread, but is queried by other threads.
285 	 */
286 	slab_count_t slab_count;
287 
288 	/* The administrative state of the scrubber */
289 	struct admin_state admin_state;
290 	/* Whether to only scrub high-priority slabs */
291 	bool high_priority_only;
292 	/* The slab currently being scrubbed */
293 	struct vdo_slab *slab;
294 	/* The vio for loading slab journal blocks */
295 	struct vio vio;
296 };
297 
298 /* A sub-structure for applying actions in parallel to all an allocator's slabs. */
299 struct slab_actor {
300 	/* The number of slabs performing a slab action */
301 	slab_count_t slab_action_count;
302 	/* The method to call when a slab action has been completed by all slabs */
303 	vdo_action_fn callback;
304 };
305 
306 /* A slab_iterator is a structure for iterating over a set of slabs. */
307 struct slab_iterator {
308 	struct vdo_slab **slabs;
309 	struct vdo_slab *next;
310 	slab_count_t end;
311 	slab_count_t stride;
312 };
313 
314 /*
315  * The slab_summary provides hints during load and recovery about the state of the slabs in order
316  * to avoid the need to read the slab journals in their entirety before a VDO can come online.
317  *
318  * The information in the summary for each slab includes the rough number of free blocks (which is
319  * used to prioritize scrubbing), the cleanliness of a slab (so that clean slabs containing free
320  * space will be used on restart), and the location of the tail block of the slab's journal.
321  *
322  * The slab_summary has its own partition at the end of the volume which is sized to allow for a
323  * complete copy of the summary for each of up to 16 physical zones.
324  *
325  * During resize, the slab_summary moves its backing partition and is saved once moved; the
326  * slab_summary is not permitted to overwrite the previous recovery journal space.
327  *
328  * The slab_summary does not have its own version information, but relies on the VDO volume version
329  * number.
330  */
331 
332 /*
333  * A slab status is a very small structure for use in determining the ordering of slabs in the
334  * scrubbing process.
335  */
336 struct slab_status {
337 	slab_count_t slab_number;
338 	bool is_clean;
339 	u8 emptiness;
340 };
341 
342 struct slab_summary_block {
343 	/* The block_allocator to which this block belongs */
344 	struct block_allocator *allocator;
345 	/* The index of this block in its zone's summary */
346 	block_count_t index;
347 	/* Whether this block has a write outstanding */
348 	bool writing;
349 	/* Ring of updates waiting on the outstanding write */
350 	struct vdo_wait_queue current_update_waiters;
351 	/* Ring of updates waiting on the next write */
352 	struct vdo_wait_queue next_update_waiters;
353 	/* The active slab_summary_entry array for this block */
354 	struct slab_summary_entry *entries;
355 	/* The vio used to write this block */
356 	struct vio vio;
357 	/* The packed entries, one block long, backing the vio */
358 	char *outgoing_entries;
359 };
360 
361 /*
362  * The statistics for all the slab summary zones owned by this slab summary. These fields are all
363  * mutated only by their physical zone threads, but are read by other threads when gathering
364  * statistics for the entire depot.
365  */
366 struct atomic_slab_summary_statistics {
367 	/* Number of blocks written */
368 	atomic64_t blocks_written;
369 };
370 
371 struct block_allocator {
372 	struct vdo_completion completion;
373 	/* The slab depot for this allocator */
374 	struct slab_depot *depot;
375 	/* The nonce of the VDO */
376 	nonce_t nonce;
377 	/* The physical zone number of this allocator */
378 	zone_count_t zone_number;
379 	/* The thread ID for this allocator's physical zone */
380 	thread_id_t thread_id;
381 	/* The number of slabs in this allocator */
382 	slab_count_t slab_count;
383 	/* The number of the last slab owned by this allocator */
384 	slab_count_t last_slab;
385 	/* The reduced priority level used to preserve unopened slabs */
386 	unsigned int unopened_slab_priority;
387 	/* The state of this allocator */
388 	struct admin_state state;
389 	/* The actor for applying an action to all slabs */
390 	struct slab_actor slab_actor;
391 
392 	/* The slab from which blocks are currently being allocated */
393 	struct vdo_slab *open_slab;
394 	/* A priority queue containing all slabs available for allocation */
395 	struct priority_table *prioritized_slabs;
396 	/* The slab scrubber */
397 	struct slab_scrubber scrubber;
398 	/* What phase of the close operation the allocator is to perform */
399 	enum block_allocator_drain_step drain_step;
400 
401 	/*
402 	 * These statistics are all mutated only by the physical zone thread, but are read by other
403 	 * threads when gathering statistics for the entire depot.
404 	 */
405 	/*
406 	 * The count of allocated blocks in this zone. Not in block_allocator_statistics for
407 	 * historical reasons.
408 	 */
409 	u64 allocated_blocks;
410 	/* Statistics for this block allocator */
411 	struct block_allocator_statistics statistics;
412 	/* Cumulative statistics for the slab journals in this zone */
413 	struct slab_journal_statistics slab_journal_statistics;
414 	/* Cumulative statistics for the reference counters in this zone */
415 	struct ref_counts_statistics ref_counts_statistics;
416 
417 	/*
418 	 * This is the head of a queue of slab journals which have entries in their tail blocks
419 	 * which have not yet started to commit. When the recovery journal is under space pressure,
420 	 * slab journals which have uncommitted entries holding a lock on the recovery journal head
421 	 * are forced to commit their blocks early. This list is kept in order, with the tail
422 	 * containing the slab journal holding the most recent recovery journal lock.
423 	 */
424 	struct list_head dirty_slab_journals;
425 
426 	/* The vio pool for reading and writing block allocator metadata */
427 	struct vio_pool *vio_pool;
428 	/* The dm_kcopyd client for erasing slab journals */
429 	struct dm_kcopyd_client *eraser;
430 	/* Iterator over the slabs to be erased */
431 	struct slab_iterator slabs_to_erase;
432 
433 	/* The portion of the slab summary managed by this allocator */
434 	/* The state of the slab summary */
435 	struct admin_state summary_state;
436 	/* The number of outstanding summary writes */
437 	block_count_t summary_write_count;
438 	/* The array (owned by the blocks) of all entries */
439 	struct slab_summary_entry *summary_entries;
440 	/* The array of slab_summary_blocks */
441 	struct slab_summary_block *summary_blocks;
442 };
443 
444 enum slab_depot_load_type {
445 	VDO_SLAB_DEPOT_NORMAL_LOAD,
446 	VDO_SLAB_DEPOT_RECOVERY_LOAD,
447 	VDO_SLAB_DEPOT_REBUILD_LOAD
448 };
449 
450 struct slab_depot {
451 	zone_count_t zone_count;
452 	zone_count_t old_zone_count;
453 	struct vdo *vdo;
454 	struct slab_config slab_config;
455 	struct action_manager *action_manager;
456 
457 	physical_block_number_t first_block;
458 	physical_block_number_t last_block;
459 	physical_block_number_t origin;
460 
461 	/* slab_size == (1 << slab_size_shift) */
462 	unsigned int slab_size_shift;
463 
464 	/* Determines how slabs should be queued during load */
465 	enum slab_depot_load_type load_type;
466 
467 	/* The state for notifying slab journals to release recovery journal */
468 	sequence_number_t active_release_request;
469 	sequence_number_t new_release_request;
470 
471 	/* State variables for scrubbing complete handling */
472 	atomic_t zones_to_scrub;
473 
474 	/* Array of pointers to individually allocated slabs */
475 	struct vdo_slab **slabs;
476 	/* The number of slabs currently allocated and stored in 'slabs' */
477 	slab_count_t slab_count;
478 
479 	/* Array of pointers to a larger set of slabs (used during resize) */
480 	struct vdo_slab **new_slabs;
481 	/* The number of slabs currently allocated and stored in 'new_slabs' */
482 	slab_count_t new_slab_count;
483 	/* The size that 'new_slabs' was allocated for */
484 	block_count_t new_size;
485 
486 	/* The last block before resize, for rollback */
487 	physical_block_number_t old_last_block;
488 	/* The last block after resize, for resize */
489 	physical_block_number_t new_last_block;
490 
491 	/* The statistics for the slab summary */
492 	struct atomic_slab_summary_statistics summary_statistics;
493 	/* The start of the slab summary partition */
494 	physical_block_number_t summary_origin;
495 	/* The number of bits to shift to get a 7-bit fullness hint */
496 	unsigned int hint_shift;
497 	/* The slab summary entries for all of the zones the partition can hold */
498 	struct slab_summary_entry *summary_entries;
499 
500 	/* The block allocators for this depot */
501 	struct block_allocator allocators[];
502 };
503 
504 struct reference_updater;
505 
506 bool __must_check vdo_attempt_replay_into_slab(struct vdo_slab *slab,
507 					       physical_block_number_t pbn,
508 					       enum journal_operation operation,
509 					       bool increment,
510 					       struct journal_point *recovery_point,
511 					       struct vdo_completion *parent);
512 
513 int __must_check vdo_adjust_reference_count_for_rebuild(struct slab_depot *depot,
514 							physical_block_number_t pbn,
515 							enum journal_operation operation);
516 
vdo_as_block_allocator(struct vdo_completion * completion)517 static inline struct block_allocator *vdo_as_block_allocator(struct vdo_completion *completion)
518 {
519 	vdo_assert_completion_type(completion, VDO_BLOCK_ALLOCATOR_COMPLETION);
520 	return container_of(completion, struct block_allocator, completion);
521 }
522 
523 int __must_check vdo_acquire_provisional_reference(struct vdo_slab *slab,
524 						   physical_block_number_t pbn,
525 						   struct pbn_lock *lock);
526 
527 int __must_check vdo_allocate_block(struct block_allocator *allocator,
528 				    physical_block_number_t *block_number_ptr);
529 
530 int vdo_enqueue_clean_slab_waiter(struct block_allocator *allocator,
531 				  struct vdo_waiter *waiter);
532 
533 void vdo_modify_reference_count(struct vdo_completion *completion,
534 				struct reference_updater *updater);
535 
536 int __must_check vdo_release_block_reference(struct block_allocator *allocator,
537 					     physical_block_number_t pbn);
538 
539 void vdo_notify_slab_journals_are_recovered(struct vdo_completion *completion);
540 
541 void vdo_dump_block_allocator(const struct block_allocator *allocator);
542 
543 int __must_check vdo_decode_slab_depot(struct slab_depot_state_2_0 state,
544 				       struct vdo *vdo,
545 				       struct partition *summary_partition,
546 				       struct slab_depot **depot_ptr);
547 
548 void vdo_free_slab_depot(struct slab_depot *depot);
549 
550 struct slab_depot_state_2_0 __must_check vdo_record_slab_depot(const struct slab_depot *depot);
551 
552 int __must_check vdo_allocate_reference_counters(struct slab_depot *depot);
553 
554 struct vdo_slab * __must_check vdo_get_slab(const struct slab_depot *depot,
555 					    physical_block_number_t pbn);
556 
557 u8 __must_check vdo_get_increment_limit(struct slab_depot *depot,
558 					physical_block_number_t pbn);
559 
560 bool __must_check vdo_is_physical_data_block(const struct slab_depot *depot,
561 					     physical_block_number_t pbn);
562 
563 block_count_t __must_check vdo_get_slab_depot_allocated_blocks(const struct slab_depot *depot);
564 
565 block_count_t __must_check vdo_get_slab_depot_data_blocks(const struct slab_depot *depot);
566 
567 void vdo_get_slab_depot_statistics(const struct slab_depot *depot,
568 				   struct vdo_statistics *stats);
569 
570 void vdo_load_slab_depot(struct slab_depot *depot,
571 			 const struct admin_state_code *operation,
572 			 struct vdo_completion *parent, void *context);
573 
574 void vdo_prepare_slab_depot_to_allocate(struct slab_depot *depot,
575 					enum slab_depot_load_type load_type,
576 					struct vdo_completion *parent);
577 
578 void vdo_update_slab_depot_size(struct slab_depot *depot);
579 
580 int __must_check vdo_prepare_to_grow_slab_depot(struct slab_depot *depot,
581 						const struct partition *partition);
582 
583 void vdo_use_new_slabs(struct slab_depot *depot, struct vdo_completion *parent);
584 
585 void vdo_abandon_new_slabs(struct slab_depot *depot);
586 
587 void vdo_drain_slab_depot(struct slab_depot *depot,
588 			  const struct admin_state_code *operation,
589 			  struct vdo_completion *parent);
590 
591 void vdo_resume_slab_depot(struct slab_depot *depot, struct vdo_completion *parent);
592 
593 void vdo_commit_oldest_slab_journal_tail_blocks(struct slab_depot *depot,
594 						sequence_number_t recovery_block_number);
595 
596 void vdo_scrub_all_unrecovered_slabs(struct slab_depot *depot,
597 				     struct vdo_completion *parent);
598 
599 void vdo_dump_slab_depot(const struct slab_depot *depot);
600 
601 #endif /* VDO_SLAB_DEPOT_H */
602