1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Implementation of [`Box`]. 4 5 #[allow(unused_imports)] // Used in doc comments. 6 use super::allocator::{KVmalloc, Kmalloc, Vmalloc}; 7 use super::{AllocError, Allocator, Flags}; 8 use core::alloc::Layout; 9 use core::fmt; 10 use core::marker::PhantomData; 11 use core::mem::ManuallyDrop; 12 use core::mem::MaybeUninit; 13 use core::ops::{Deref, DerefMut}; 14 use core::pin::Pin; 15 use core::ptr::NonNull; 16 use core::result::Result; 17 18 use crate::init::InPlaceInit; 19 use crate::types::ForeignOwnable; 20 use pin_init::{InPlaceWrite, Init, PinInit, ZeroableOption}; 21 22 /// The kernel's [`Box`] type -- a heap allocation for a single value of type `T`. 23 /// 24 /// This is the kernel's version of the Rust stdlib's `Box`. There are several differences, 25 /// for example no `noalias` attribute is emitted and partially moving out of a `Box` is not 26 /// supported. There are also several API differences, e.g. `Box` always requires an [`Allocator`] 27 /// implementation to be passed as generic, page [`Flags`] when allocating memory and all functions 28 /// that may allocate memory are fallible. 29 /// 30 /// `Box` works with any of the kernel's allocators, e.g. [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`]. 31 /// There are aliases for `Box` with these allocators ([`KBox`], [`VBox`], [`KVBox`]). 32 /// 33 /// When dropping a [`Box`], the value is also dropped and the heap memory is automatically freed. 34 /// 35 /// # Examples 36 /// 37 /// ``` 38 /// let b = KBox::<u64>::new(24_u64, GFP_KERNEL)?; 39 /// 40 /// assert_eq!(*b, 24_u64); 41 /// # Ok::<(), Error>(()) 42 /// ``` 43 /// 44 /// ``` 45 /// # use kernel::bindings; 46 /// const SIZE: usize = bindings::KMALLOC_MAX_SIZE as usize + 1; 47 /// struct Huge([u8; SIZE]); 48 /// 49 /// assert!(KBox::<Huge>::new_uninit(GFP_KERNEL | __GFP_NOWARN).is_err()); 50 /// ``` 51 /// 52 /// ``` 53 /// # use kernel::bindings; 54 /// const SIZE: usize = bindings::KMALLOC_MAX_SIZE as usize + 1; 55 /// struct Huge([u8; SIZE]); 56 /// 57 /// assert!(KVBox::<Huge>::new_uninit(GFP_KERNEL).is_ok()); 58 /// ``` 59 /// 60 /// [`Box`]es can also be used to store trait objects by coercing their type: 61 /// 62 /// ``` 63 /// trait FooTrait {} 64 /// 65 /// struct FooStruct; 66 /// impl FooTrait for FooStruct {} 67 /// 68 /// let _ = KBox::new(FooStruct, GFP_KERNEL)? as KBox<dyn FooTrait>; 69 /// # Ok::<(), Error>(()) 70 /// ``` 71 /// 72 /// # Invariants 73 /// 74 /// `self.0` is always properly aligned and either points to memory allocated with `A` or, for 75 /// zero-sized types, is a dangling, well aligned pointer. 76 #[repr(transparent)] 77 #[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))] 78 pub struct Box<#[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, pointee)] T: ?Sized, A: Allocator>( 79 NonNull<T>, 80 PhantomData<A>, 81 ); 82 83 // This is to allow coercion from `Box<T, A>` to `Box<U, A>` if `T` can be converted to the 84 // dynamically-sized type (DST) `U`. 85 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] 86 impl<T, U, A> core::ops::CoerceUnsized<Box<U, A>> for Box<T, A> 87 where 88 T: ?Sized + core::marker::Unsize<U>, 89 U: ?Sized, 90 A: Allocator, 91 { 92 } 93 94 // This is to allow `Box<U, A>` to be dispatched on when `Box<T, A>` can be coerced into `Box<U, 95 // A>`. 96 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] 97 impl<T, U, A> core::ops::DispatchFromDyn<Box<U, A>> for Box<T, A> 98 where 99 T: ?Sized + core::marker::Unsize<U>, 100 U: ?Sized, 101 A: Allocator, 102 { 103 } 104 105 /// Type alias for [`Box`] with a [`Kmalloc`] allocator. 106 /// 107 /// # Examples 108 /// 109 /// ``` 110 /// let b = KBox::new(24_u64, GFP_KERNEL)?; 111 /// 112 /// assert_eq!(*b, 24_u64); 113 /// # Ok::<(), Error>(()) 114 /// ``` 115 pub type KBox<T> = Box<T, super::allocator::Kmalloc>; 116 117 /// Type alias for [`Box`] with a [`Vmalloc`] allocator. 118 /// 119 /// # Examples 120 /// 121 /// ``` 122 /// let b = VBox::new(24_u64, GFP_KERNEL)?; 123 /// 124 /// assert_eq!(*b, 24_u64); 125 /// # Ok::<(), Error>(()) 126 /// ``` 127 pub type VBox<T> = Box<T, super::allocator::Vmalloc>; 128 129 /// Type alias for [`Box`] with a [`KVmalloc`] allocator. 130 /// 131 /// # Examples 132 /// 133 /// ``` 134 /// let b = KVBox::new(24_u64, GFP_KERNEL)?; 135 /// 136 /// assert_eq!(*b, 24_u64); 137 /// # Ok::<(), Error>(()) 138 /// ``` 139 pub type KVBox<T> = Box<T, super::allocator::KVmalloc>; 140 141 // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee: 142 // <https://doc.rust-lang.org/stable/std/option/index.html#representation>). 143 unsafe impl<T, A: Allocator> ZeroableOption for Box<T, A> {} 144 145 // SAFETY: `Box` is `Send` if `T` is `Send` because the `Box` owns a `T`. 146 unsafe impl<T, A> Send for Box<T, A> 147 where 148 T: Send + ?Sized, 149 A: Allocator, 150 { 151 } 152 153 // SAFETY: `Box` is `Sync` if `T` is `Sync` because the `Box` owns a `T`. 154 unsafe impl<T, A> Sync for Box<T, A> 155 where 156 T: Sync + ?Sized, 157 A: Allocator, 158 { 159 } 160 161 impl<T, A> Box<T, A> 162 where 163 T: ?Sized, 164 A: Allocator, 165 { 166 /// Creates a new `Box<T, A>` from a raw pointer. 167 /// 168 /// # Safety 169 /// 170 /// For non-ZSTs, `raw` must point at an allocation allocated with `A` that is sufficiently 171 /// aligned for and holds a valid `T`. The caller passes ownership of the allocation to the 172 /// `Box`. 173 /// 174 /// For ZSTs, `raw` must be a dangling, well aligned pointer. 175 #[inline] from_raw(raw: *mut T) -> Self176 pub const unsafe fn from_raw(raw: *mut T) -> Self { 177 // INVARIANT: Validity of `raw` is guaranteed by the safety preconditions of this function. 178 // SAFETY: By the safety preconditions of this function, `raw` is not a NULL pointer. 179 Self(unsafe { NonNull::new_unchecked(raw) }, PhantomData) 180 } 181 182 /// Consumes the `Box<T, A>` and returns a raw pointer. 183 /// 184 /// This will not run the destructor of `T` and for non-ZSTs the allocation will stay alive 185 /// indefinitely. Use [`Box::from_raw`] to recover the [`Box`], drop the value and free the 186 /// allocation, if any. 187 /// 188 /// # Examples 189 /// 190 /// ``` 191 /// let x = KBox::new(24, GFP_KERNEL)?; 192 /// let ptr = KBox::into_raw(x); 193 /// // SAFETY: `ptr` comes from a previous call to `KBox::into_raw`. 194 /// let x = unsafe { KBox::from_raw(ptr) }; 195 /// 196 /// assert_eq!(*x, 24); 197 /// # Ok::<(), Error>(()) 198 /// ``` 199 #[inline] into_raw(b: Self) -> *mut T200 pub fn into_raw(b: Self) -> *mut T { 201 ManuallyDrop::new(b).0.as_ptr() 202 } 203 204 /// Consumes and leaks the `Box<T, A>` and returns a mutable reference. 205 /// 206 /// See [`Box::into_raw`] for more details. 207 #[inline] leak<'a>(b: Self) -> &'a mut T208 pub fn leak<'a>(b: Self) -> &'a mut T { 209 // SAFETY: `Box::into_raw` always returns a properly aligned and dereferenceable pointer 210 // which points to an initialized instance of `T`. 211 unsafe { &mut *Box::into_raw(b) } 212 } 213 } 214 215 impl<T, A> Box<MaybeUninit<T>, A> 216 where 217 A: Allocator, 218 { 219 /// Converts a `Box<MaybeUninit<T>, A>` to a `Box<T, A>`. 220 /// 221 /// It is undefined behavior to call this function while the value inside of `b` is not yet 222 /// fully initialized. 223 /// 224 /// # Safety 225 /// 226 /// Callers must ensure that the value inside of `b` is in an initialized state. assume_init(self) -> Box<T, A>227 pub unsafe fn assume_init(self) -> Box<T, A> { 228 let raw = Self::into_raw(self); 229 230 // SAFETY: `raw` comes from a previous call to `Box::into_raw`. By the safety requirements 231 // of this function, the value inside the `Box` is in an initialized state. Hence, it is 232 // safe to reconstruct the `Box` as `Box<T, A>`. 233 unsafe { Box::from_raw(raw.cast()) } 234 } 235 236 /// Writes the value and converts to `Box<T, A>`. write(mut self, value: T) -> Box<T, A>237 pub fn write(mut self, value: T) -> Box<T, A> { 238 (*self).write(value); 239 240 // SAFETY: We've just initialized `b`'s value. 241 unsafe { self.assume_init() } 242 } 243 } 244 245 impl<T, A> Box<T, A> 246 where 247 A: Allocator, 248 { 249 /// Creates a new `Box<T, A>` and initializes its contents with `x`. 250 /// 251 /// New memory is allocated with `A`. The allocation may fail, in which case an error is 252 /// returned. For ZSTs no memory is allocated. new(x: T, flags: Flags) -> Result<Self, AllocError>253 pub fn new(x: T, flags: Flags) -> Result<Self, AllocError> { 254 let b = Self::new_uninit(flags)?; 255 Ok(Box::write(b, x)) 256 } 257 258 /// Creates a new `Box<T, A>` with uninitialized contents. 259 /// 260 /// New memory is allocated with `A`. The allocation may fail, in which case an error is 261 /// returned. For ZSTs no memory is allocated. 262 /// 263 /// # Examples 264 /// 265 /// ``` 266 /// let b = KBox::<u64>::new_uninit(GFP_KERNEL)?; 267 /// let b = KBox::write(b, 24); 268 /// 269 /// assert_eq!(*b, 24_u64); 270 /// # Ok::<(), Error>(()) 271 /// ``` new_uninit(flags: Flags) -> Result<Box<MaybeUninit<T>, A>, AllocError>272 pub fn new_uninit(flags: Flags) -> Result<Box<MaybeUninit<T>, A>, AllocError> { 273 let layout = Layout::new::<MaybeUninit<T>>(); 274 let ptr = A::alloc(layout, flags)?; 275 276 // INVARIANT: `ptr` is either a dangling pointer or points to memory allocated with `A`, 277 // which is sufficient in size and alignment for storing a `T`. 278 Ok(Box(ptr.cast(), PhantomData)) 279 } 280 281 /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then `x` will be 282 /// pinned in memory and can't be moved. 283 #[inline] pin(x: T, flags: Flags) -> Result<Pin<Box<T, A>>, AllocError> where A: 'static,284 pub fn pin(x: T, flags: Flags) -> Result<Pin<Box<T, A>>, AllocError> 285 where 286 A: 'static, 287 { 288 Ok(Self::new(x, flags)?.into()) 289 } 290 291 /// Convert a [`Box<T,A>`] to a [`Pin<Box<T,A>>`]. If `T` does not implement 292 /// [`Unpin`], then `x` will be pinned in memory and can't be moved. into_pin(this: Self) -> Pin<Self>293 pub fn into_pin(this: Self) -> Pin<Self> { 294 this.into() 295 } 296 297 /// Forgets the contents (does not run the destructor), but keeps the allocation. forget_contents(this: Self) -> Box<MaybeUninit<T>, A>298 fn forget_contents(this: Self) -> Box<MaybeUninit<T>, A> { 299 let ptr = Self::into_raw(this); 300 301 // SAFETY: `ptr` is valid, because it came from `Box::into_raw`. 302 unsafe { Box::from_raw(ptr.cast()) } 303 } 304 305 /// Drops the contents, but keeps the allocation. 306 /// 307 /// # Examples 308 /// 309 /// ``` 310 /// let value = KBox::new([0; 32], GFP_KERNEL)?; 311 /// assert_eq!(*value, [0; 32]); 312 /// let value = KBox::drop_contents(value); 313 /// // Now we can re-use `value`: 314 /// let value = KBox::write(value, [1; 32]); 315 /// assert_eq!(*value, [1; 32]); 316 /// # Ok::<(), Error>(()) 317 /// ``` drop_contents(this: Self) -> Box<MaybeUninit<T>, A>318 pub fn drop_contents(this: Self) -> Box<MaybeUninit<T>, A> { 319 let ptr = this.0.as_ptr(); 320 321 // SAFETY: `ptr` is valid, because it came from `this`. After this call we never access the 322 // value stored in `this` again. 323 unsafe { core::ptr::drop_in_place(ptr) }; 324 325 Self::forget_contents(this) 326 } 327 328 /// Moves the `Box`'s value out of the `Box` and consumes the `Box`. into_inner(b: Self) -> T329 pub fn into_inner(b: Self) -> T { 330 // SAFETY: By the type invariant `&*b` is valid for `read`. 331 let value = unsafe { core::ptr::read(&*b) }; 332 let _ = Self::forget_contents(b); 333 value 334 } 335 } 336 337 impl<T, A> From<Box<T, A>> for Pin<Box<T, A>> 338 where 339 T: ?Sized, 340 A: Allocator, 341 { 342 /// Converts a `Box<T, A>` into a `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then 343 /// `*b` will be pinned in memory and can't be moved. 344 /// 345 /// This moves `b` into `Pin` without moving `*b` or allocating and copying any memory. from(b: Box<T, A>) -> Self346 fn from(b: Box<T, A>) -> Self { 347 // SAFETY: The value wrapped inside a `Pin<Box<T, A>>` cannot be moved or replaced as long 348 // as `T` does not implement `Unpin`. 349 unsafe { Pin::new_unchecked(b) } 350 } 351 } 352 353 impl<T, A> InPlaceWrite<T> for Box<MaybeUninit<T>, A> 354 where 355 A: Allocator + 'static, 356 { 357 type Initialized = Box<T, A>; 358 write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E>359 fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> { 360 let slot = self.as_mut_ptr(); 361 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 362 // slot is valid. 363 unsafe { init.__init(slot)? }; 364 // SAFETY: All fields have been initialized. 365 Ok(unsafe { Box::assume_init(self) }) 366 } 367 write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E>368 fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> { 369 let slot = self.as_mut_ptr(); 370 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 371 // slot is valid and will not be moved, because we pin it later. 372 unsafe { init.__pinned_init(slot)? }; 373 // SAFETY: All fields have been initialized. 374 Ok(unsafe { Box::assume_init(self) }.into()) 375 } 376 } 377 378 impl<T, A> InPlaceInit<T> for Box<T, A> 379 where 380 A: Allocator + 'static, 381 { 382 type PinnedSelf = Pin<Self>; 383 384 #[inline] try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Pin<Self>, E> where E: From<AllocError>,385 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Pin<Self>, E> 386 where 387 E: From<AllocError>, 388 { 389 Box::<_, A>::new_uninit(flags)?.write_pin_init(init) 390 } 391 392 #[inline] try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> where E: From<AllocError>,393 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 394 where 395 E: From<AllocError>, 396 { 397 Box::<_, A>::new_uninit(flags)?.write_init(init) 398 } 399 } 400 401 // SAFETY: The `into_foreign` function returns a pointer that is well-aligned. 402 unsafe impl<T: 'static, A> ForeignOwnable for Box<T, A> 403 where 404 A: Allocator, 405 { 406 type PointedTo = T; 407 type Borrowed<'a> = &'a T; 408 type BorrowedMut<'a> = &'a mut T; 409 into_foreign(self) -> *mut Self::PointedTo410 fn into_foreign(self) -> *mut Self::PointedTo { 411 Box::into_raw(self) 412 } 413 from_foreign(ptr: *mut Self::PointedTo) -> Self414 unsafe fn from_foreign(ptr: *mut Self::PointedTo) -> Self { 415 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous 416 // call to `Self::into_foreign`. 417 unsafe { Box::from_raw(ptr) } 418 } 419 borrow<'a>(ptr: *mut Self::PointedTo) -> &'a T420 unsafe fn borrow<'a>(ptr: *mut Self::PointedTo) -> &'a T { 421 // SAFETY: The safety requirements of this method ensure that the object remains alive and 422 // immutable for the duration of 'a. 423 unsafe { &*ptr } 424 } 425 borrow_mut<'a>(ptr: *mut Self::PointedTo) -> &'a mut T426 unsafe fn borrow_mut<'a>(ptr: *mut Self::PointedTo) -> &'a mut T { 427 // SAFETY: The safety requirements of this method ensure that the pointer is valid and that 428 // nothing else will access the value for the duration of 'a. 429 unsafe { &mut *ptr } 430 } 431 } 432 433 // SAFETY: The `into_foreign` function returns a pointer that is well-aligned. 434 unsafe impl<T: 'static, A> ForeignOwnable for Pin<Box<T, A>> 435 where 436 A: Allocator, 437 { 438 type PointedTo = T; 439 type Borrowed<'a> = Pin<&'a T>; 440 type BorrowedMut<'a> = Pin<&'a mut T>; 441 into_foreign(self) -> *mut Self::PointedTo442 fn into_foreign(self) -> *mut Self::PointedTo { 443 // SAFETY: We are still treating the box as pinned. 444 Box::into_raw(unsafe { Pin::into_inner_unchecked(self) }) 445 } 446 from_foreign(ptr: *mut Self::PointedTo) -> Self447 unsafe fn from_foreign(ptr: *mut Self::PointedTo) -> Self { 448 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous 449 // call to `Self::into_foreign`. 450 unsafe { Pin::new_unchecked(Box::from_raw(ptr)) } 451 } 452 borrow<'a>(ptr: *mut Self::PointedTo) -> Pin<&'a T>453 unsafe fn borrow<'a>(ptr: *mut Self::PointedTo) -> Pin<&'a T> { 454 // SAFETY: The safety requirements for this function ensure that the object is still alive, 455 // so it is safe to dereference the raw pointer. 456 // The safety requirements of `from_foreign` also ensure that the object remains alive for 457 // the lifetime of the returned value. 458 let r = unsafe { &*ptr }; 459 460 // SAFETY: This pointer originates from a `Pin<Box<T>>`. 461 unsafe { Pin::new_unchecked(r) } 462 } 463 borrow_mut<'a>(ptr: *mut Self::PointedTo) -> Pin<&'a mut T>464 unsafe fn borrow_mut<'a>(ptr: *mut Self::PointedTo) -> Pin<&'a mut T> { 465 // SAFETY: The safety requirements for this function ensure that the object is still alive, 466 // so it is safe to dereference the raw pointer. 467 // The safety requirements of `from_foreign` also ensure that the object remains alive for 468 // the lifetime of the returned value. 469 let r = unsafe { &mut *ptr }; 470 471 // SAFETY: This pointer originates from a `Pin<Box<T>>`. 472 unsafe { Pin::new_unchecked(r) } 473 } 474 } 475 476 impl<T, A> Deref for Box<T, A> 477 where 478 T: ?Sized, 479 A: Allocator, 480 { 481 type Target = T; 482 deref(&self) -> &T483 fn deref(&self) -> &T { 484 // SAFETY: `self.0` is always properly aligned, dereferenceable and points to an initialized 485 // instance of `T`. 486 unsafe { self.0.as_ref() } 487 } 488 } 489 490 impl<T, A> DerefMut for Box<T, A> 491 where 492 T: ?Sized, 493 A: Allocator, 494 { deref_mut(&mut self) -> &mut T495 fn deref_mut(&mut self) -> &mut T { 496 // SAFETY: `self.0` is always properly aligned, dereferenceable and points to an initialized 497 // instance of `T`. 498 unsafe { self.0.as_mut() } 499 } 500 } 501 502 impl<T, A> fmt::Display for Box<T, A> 503 where 504 T: ?Sized + fmt::Display, 505 A: Allocator, 506 { fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result507 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 508 <T as fmt::Display>::fmt(&**self, f) 509 } 510 } 511 512 impl<T, A> fmt::Debug for Box<T, A> 513 where 514 T: ?Sized + fmt::Debug, 515 A: Allocator, 516 { fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result517 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 518 <T as fmt::Debug>::fmt(&**self, f) 519 } 520 } 521 522 impl<T, A> Drop for Box<T, A> 523 where 524 T: ?Sized, 525 A: Allocator, 526 { drop(&mut self)527 fn drop(&mut self) { 528 let layout = Layout::for_value::<T>(self); 529 530 // SAFETY: The pointer in `self.0` is guaranteed to be valid by the type invariant. 531 unsafe { core::ptr::drop_in_place::<T>(self.deref_mut()) }; 532 533 // SAFETY: 534 // - `self.0` was previously allocated with `A`. 535 // - `layout` is equal to the `Layout´ `self.0` was allocated with. 536 unsafe { A::free(self.0.cast(), layout) }; 537 } 538 } 539