1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 *
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5 *
6 */
7
8 #include <linux/blkdev.h>
9 #include <linux/fs.h>
10 #include <linux/random.h>
11 #include <linux/slab.h>
12
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16
17 /*
18 * LOG FILE structs
19 */
20
21 // clang-format off
22
23 #define MaxLogFileSize 0x100000000ull
24 #define DefaultLogPageSize 4096
25 #define MinLogRecordPages 0x30
26
27 struct RESTART_HDR {
28 struct NTFS_RECORD_HEADER rhdr; // 'RSTR'
29 __le32 sys_page_size; // 0x10: Page size of the system which initialized the log.
30 __le32 page_size; // 0x14: Log page size used for this log file.
31 __le16 ra_off; // 0x18:
32 __le16 minor_ver; // 0x1A:
33 __le16 major_ver; // 0x1C:
34 __le16 fixups[];
35 };
36
37 #define LFS_NO_CLIENT 0xffff
38 #define LFS_NO_CLIENT_LE cpu_to_le16(0xffff)
39
40 struct CLIENT_REC {
41 __le64 oldest_lsn;
42 __le64 restart_lsn; // 0x08:
43 __le16 prev_client; // 0x10:
44 __le16 next_client; // 0x12:
45 __le16 seq_num; // 0x14:
46 u8 align[6]; // 0x16:
47 __le32 name_bytes; // 0x1C: In bytes.
48 __le16 name[32]; // 0x20: Name of client.
49 };
50
51 static_assert(sizeof(struct CLIENT_REC) == 0x60);
52
53 /* Two copies of these will exist at the beginning of the log file */
54 struct RESTART_AREA {
55 __le64 current_lsn; // 0x00: Current logical end of log file.
56 __le16 log_clients; // 0x08: Maximum number of clients.
57 __le16 client_idx[2]; // 0x0A: Free/use index into the client record arrays.
58 __le16 flags; // 0x0E: See RESTART_SINGLE_PAGE_IO.
59 __le32 seq_num_bits; // 0x10: The number of bits in sequence number.
60 __le16 ra_len; // 0x14:
61 __le16 client_off; // 0x16:
62 __le64 l_size; // 0x18: Usable log file size.
63 __le32 last_lsn_data_len; // 0x20:
64 __le16 rec_hdr_len; // 0x24: Log page data offset.
65 __le16 data_off; // 0x26: Log page data length.
66 __le32 open_log_count; // 0x28:
67 __le32 align[5]; // 0x2C:
68 struct CLIENT_REC clients[]; // 0x40:
69 };
70
71 struct LOG_REC_HDR {
72 __le16 redo_op; // 0x00: NTFS_LOG_OPERATION
73 __le16 undo_op; // 0x02: NTFS_LOG_OPERATION
74 __le16 redo_off; // 0x04: Offset to Redo record.
75 __le16 redo_len; // 0x06: Redo length.
76 __le16 undo_off; // 0x08: Offset to Undo record.
77 __le16 undo_len; // 0x0A: Undo length.
78 __le16 target_attr; // 0x0C:
79 __le16 lcns_follow; // 0x0E:
80 __le16 record_off; // 0x10:
81 __le16 attr_off; // 0x12:
82 __le16 cluster_off; // 0x14:
83 __le16 reserved; // 0x16:
84 __le64 target_vcn; // 0x18:
85 __le64 page_lcns[]; // 0x20:
86 };
87
88 static_assert(sizeof(struct LOG_REC_HDR) == 0x20);
89
90 #define RESTART_ENTRY_ALLOCATED 0xFFFFFFFF
91 #define RESTART_ENTRY_ALLOCATED_LE cpu_to_le32(0xFFFFFFFF)
92
93 struct RESTART_TABLE {
94 __le16 size; // 0x00: In bytes
95 __le16 used; // 0x02: Entries
96 __le16 total; // 0x04: Entries
97 __le16 res[3]; // 0x06:
98 __le32 free_goal; // 0x0C:
99 __le32 first_free; // 0x10:
100 __le32 last_free; // 0x14:
101
102 };
103
104 static_assert(sizeof(struct RESTART_TABLE) == 0x18);
105
106 struct ATTR_NAME_ENTRY {
107 __le16 off; // Offset in the Open attribute Table.
108 __le16 name_bytes;
109 __le16 name[];
110 };
111
112 struct OPEN_ATTR_ENRTY {
113 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated
114 __le32 bytes_per_index; // 0x04:
115 enum ATTR_TYPE type; // 0x08:
116 u8 is_dirty_pages; // 0x0C:
117 u8 is_attr_name; // 0x0B: Faked field to manage 'ptr'
118 u8 name_len; // 0x0C: Faked field to manage 'ptr'
119 u8 res;
120 struct MFT_REF ref; // 0x10: File Reference of file containing attribute
121 __le64 open_record_lsn; // 0x18:
122 void *ptr; // 0x20:
123 };
124
125 /* 32 bit version of 'struct OPEN_ATTR_ENRTY' */
126 struct OPEN_ATTR_ENRTY_32 {
127 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated
128 __le32 ptr; // 0x04:
129 struct MFT_REF ref; // 0x08:
130 __le64 open_record_lsn; // 0x10:
131 u8 is_dirty_pages; // 0x18:
132 u8 is_attr_name; // 0x19:
133 u8 res1[2];
134 enum ATTR_TYPE type; // 0x1C:
135 u8 name_len; // 0x20: In wchar
136 u8 res2[3];
137 __le32 AttributeName; // 0x24:
138 __le32 bytes_per_index; // 0x28:
139 };
140
141 #define SIZEOF_OPENATTRIBUTEENTRY0 0x2c
142 // static_assert( 0x2C == sizeof(struct OPEN_ATTR_ENRTY_32) );
143 static_assert(sizeof(struct OPEN_ATTR_ENRTY) < SIZEOF_OPENATTRIBUTEENTRY0);
144
145 /*
146 * One entry exists in the Dirty Pages Table for each page which is dirty at
147 * the time the Restart Area is written.
148 */
149 struct DIR_PAGE_ENTRY {
150 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated
151 __le32 target_attr; // 0x04: Index into the Open attribute Table
152 __le32 transfer_len; // 0x08:
153 __le32 lcns_follow; // 0x0C:
154 __le64 vcn; // 0x10: Vcn of dirty page
155 __le64 oldest_lsn; // 0x18:
156 __le64 page_lcns[]; // 0x20:
157 };
158
159 static_assert(sizeof(struct DIR_PAGE_ENTRY) == 0x20);
160
161 /* 32 bit version of 'struct DIR_PAGE_ENTRY' */
162 struct DIR_PAGE_ENTRY_32 {
163 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated
164 __le32 target_attr; // 0x04: Index into the Open attribute Table
165 __le32 transfer_len; // 0x08:
166 __le32 lcns_follow; // 0x0C:
167 __le32 reserved; // 0x10:
168 __le32 vcn_low; // 0x14: Vcn of dirty page
169 __le32 vcn_hi; // 0x18: Vcn of dirty page
170 __le32 oldest_lsn_low; // 0x1C:
171 __le32 oldest_lsn_hi; // 0x1C:
172 __le32 page_lcns_low; // 0x24:
173 __le32 page_lcns_hi; // 0x24:
174 };
175
176 static_assert(offsetof(struct DIR_PAGE_ENTRY_32, vcn_low) == 0x14);
177 static_assert(sizeof(struct DIR_PAGE_ENTRY_32) == 0x2c);
178
179 enum transact_state {
180 TransactionUninitialized = 0,
181 TransactionActive,
182 TransactionPrepared,
183 TransactionCommitted
184 };
185
186 struct TRANSACTION_ENTRY {
187 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated
188 u8 transact_state; // 0x04:
189 u8 reserved[3]; // 0x05:
190 __le64 first_lsn; // 0x08:
191 __le64 prev_lsn; // 0x10:
192 __le64 undo_next_lsn; // 0x18:
193 __le32 undo_records; // 0x20: Number of undo log records pending abort
194 __le32 undo_len; // 0x24: Total undo size
195 };
196
197 static_assert(sizeof(struct TRANSACTION_ENTRY) == 0x28);
198
199 struct NTFS_RESTART {
200 __le32 major_ver; // 0x00:
201 __le32 minor_ver; // 0x04:
202 __le64 check_point_start; // 0x08:
203 __le64 open_attr_table_lsn; // 0x10:
204 __le64 attr_names_lsn; // 0x18:
205 __le64 dirty_pages_table_lsn; // 0x20:
206 __le64 transact_table_lsn; // 0x28:
207 __le32 open_attr_len; // 0x30: In bytes
208 __le32 attr_names_len; // 0x34: In bytes
209 __le32 dirty_pages_len; // 0x38: In bytes
210 __le32 transact_table_len; // 0x3C: In bytes
211 };
212
213 static_assert(sizeof(struct NTFS_RESTART) == 0x40);
214
215 struct NEW_ATTRIBUTE_SIZES {
216 __le64 alloc_size;
217 __le64 valid_size;
218 __le64 data_size;
219 __le64 total_size;
220 };
221
222 struct BITMAP_RANGE {
223 __le32 bitmap_off;
224 __le32 bits;
225 };
226
227 struct LCN_RANGE {
228 __le64 lcn;
229 __le64 len;
230 };
231
232 /* The following type defines the different log record types. */
233 #define LfsClientRecord cpu_to_le32(1)
234 #define LfsClientRestart cpu_to_le32(2)
235
236 /* This is used to uniquely identify a client for a particular log file. */
237 struct CLIENT_ID {
238 __le16 seq_num;
239 __le16 client_idx;
240 };
241
242 /* This is the header that begins every Log Record in the log file. */
243 struct LFS_RECORD_HDR {
244 __le64 this_lsn; // 0x00:
245 __le64 client_prev_lsn; // 0x08:
246 __le64 client_undo_next_lsn; // 0x10:
247 __le32 client_data_len; // 0x18:
248 struct CLIENT_ID client; // 0x1C: Owner of this log record.
249 __le32 record_type; // 0x20: LfsClientRecord or LfsClientRestart.
250 __le32 transact_id; // 0x24:
251 __le16 flags; // 0x28: LOG_RECORD_MULTI_PAGE
252 u8 align[6]; // 0x2A:
253 };
254
255 #define LOG_RECORD_MULTI_PAGE cpu_to_le16(1)
256
257 static_assert(sizeof(struct LFS_RECORD_HDR) == 0x30);
258
259 struct LFS_RECORD {
260 __le16 next_record_off; // 0x00: Offset of the free space in the page,
261 u8 align[6]; // 0x02:
262 __le64 last_end_lsn; // 0x08: lsn for the last log record which ends on the page,
263 };
264
265 static_assert(sizeof(struct LFS_RECORD) == 0x10);
266
267 struct RECORD_PAGE_HDR {
268 struct NTFS_RECORD_HEADER rhdr; // 'RCRD'
269 __le32 rflags; // 0x10: See LOG_PAGE_LOG_RECORD_END
270 __le16 page_count; // 0x14:
271 __le16 page_pos; // 0x16:
272 struct LFS_RECORD record_hdr; // 0x18:
273 __le16 fixups[10]; // 0x28:
274 __le32 file_off; // 0x3c: Used when major version >= 2
275 };
276
277 // clang-format on
278
279 // Page contains the end of a log record.
280 #define LOG_PAGE_LOG_RECORD_END cpu_to_le32(0x00000001)
281
is_log_record_end(const struct RECORD_PAGE_HDR * hdr)282 static inline bool is_log_record_end(const struct RECORD_PAGE_HDR *hdr)
283 {
284 return hdr->rflags & LOG_PAGE_LOG_RECORD_END;
285 }
286
287 static_assert(offsetof(struct RECORD_PAGE_HDR, file_off) == 0x3c);
288
289 /*
290 * END of NTFS LOG structures
291 */
292
293 /* Define some tuning parameters to keep the restart tables a reasonable size. */
294 #define INITIAL_NUMBER_TRANSACTIONS 5
295
296 enum NTFS_LOG_OPERATION {
297
298 Noop = 0x00,
299 CompensationLogRecord = 0x01,
300 InitializeFileRecordSegment = 0x02,
301 DeallocateFileRecordSegment = 0x03,
302 WriteEndOfFileRecordSegment = 0x04,
303 CreateAttribute = 0x05,
304 DeleteAttribute = 0x06,
305 UpdateResidentValue = 0x07,
306 UpdateNonresidentValue = 0x08,
307 UpdateMappingPairs = 0x09,
308 DeleteDirtyClusters = 0x0A,
309 SetNewAttributeSizes = 0x0B,
310 AddIndexEntryRoot = 0x0C,
311 DeleteIndexEntryRoot = 0x0D,
312 AddIndexEntryAllocation = 0x0E,
313 DeleteIndexEntryAllocation = 0x0F,
314 WriteEndOfIndexBuffer = 0x10,
315 SetIndexEntryVcnRoot = 0x11,
316 SetIndexEntryVcnAllocation = 0x12,
317 UpdateFileNameRoot = 0x13,
318 UpdateFileNameAllocation = 0x14,
319 SetBitsInNonresidentBitMap = 0x15,
320 ClearBitsInNonresidentBitMap = 0x16,
321 HotFix = 0x17,
322 EndTopLevelAction = 0x18,
323 PrepareTransaction = 0x19,
324 CommitTransaction = 0x1A,
325 ForgetTransaction = 0x1B,
326 OpenNonresidentAttribute = 0x1C,
327 OpenAttributeTableDump = 0x1D,
328 AttributeNamesDump = 0x1E,
329 DirtyPageTableDump = 0x1F,
330 TransactionTableDump = 0x20,
331 UpdateRecordDataRoot = 0x21,
332 UpdateRecordDataAllocation = 0x22,
333
334 UpdateRelativeDataInIndex =
335 0x23, // NtOfsRestartUpdateRelativeDataInIndex
336 UpdateRelativeDataInIndex2 = 0x24,
337 ZeroEndOfFileRecord = 0x25,
338 };
339
340 /*
341 * Array for log records which require a target attribute.
342 * A true indicates that the corresponding restart operation
343 * requires a target attribute.
344 */
345 static const u8 AttributeRequired[] = {
346 0xFC, 0xFB, 0xFF, 0x10, 0x06,
347 };
348
is_target_required(u16 op)349 static inline bool is_target_required(u16 op)
350 {
351 bool ret = op <= UpdateRecordDataAllocation &&
352 (AttributeRequired[op >> 3] >> (op & 7) & 1);
353 return ret;
354 }
355
can_skip_action(enum NTFS_LOG_OPERATION op)356 static inline bool can_skip_action(enum NTFS_LOG_OPERATION op)
357 {
358 switch (op) {
359 case Noop:
360 case DeleteDirtyClusters:
361 case HotFix:
362 case EndTopLevelAction:
363 case PrepareTransaction:
364 case CommitTransaction:
365 case ForgetTransaction:
366 case CompensationLogRecord:
367 case OpenNonresidentAttribute:
368 case OpenAttributeTableDump:
369 case AttributeNamesDump:
370 case DirtyPageTableDump:
371 case TransactionTableDump:
372 return true;
373 default:
374 return false;
375 }
376 }
377
378 enum { lcb_ctx_undo_next, lcb_ctx_prev, lcb_ctx_next };
379
380 /* Bytes per restart table. */
bytes_per_rt(const struct RESTART_TABLE * rt)381 static inline u32 bytes_per_rt(const struct RESTART_TABLE *rt)
382 {
383 return le16_to_cpu(rt->used) * le16_to_cpu(rt->size) +
384 sizeof(struct RESTART_TABLE);
385 }
386
387 /* Log record length. */
lrh_length(const struct LOG_REC_HDR * lr)388 static inline u32 lrh_length(const struct LOG_REC_HDR *lr)
389 {
390 u16 t16 = le16_to_cpu(lr->lcns_follow);
391
392 return struct_size(lr, page_lcns, max_t(u16, 1, t16));
393 }
394
395 struct lcb {
396 struct LFS_RECORD_HDR *lrh; // Log record header of the current lsn.
397 struct LOG_REC_HDR *log_rec;
398 u32 ctx_mode; // lcb_ctx_undo_next/lcb_ctx_prev/lcb_ctx_next
399 struct CLIENT_ID client;
400 bool alloc; // If true the we should deallocate 'log_rec'.
401 };
402
lcb_put(struct lcb * lcb)403 static void lcb_put(struct lcb *lcb)
404 {
405 if (lcb->alloc)
406 kfree(lcb->log_rec);
407 kfree(lcb->lrh);
408 kfree(lcb);
409 }
410
411 /* Find the oldest lsn from active clients. */
oldest_client_lsn(const struct CLIENT_REC * ca,__le16 next_client,u64 * oldest_lsn)412 static inline void oldest_client_lsn(const struct CLIENT_REC *ca,
413 __le16 next_client, u64 *oldest_lsn)
414 {
415 while (next_client != LFS_NO_CLIENT_LE) {
416 const struct CLIENT_REC *cr = ca + le16_to_cpu(next_client);
417 u64 lsn = le64_to_cpu(cr->oldest_lsn);
418
419 /* Ignore this block if it's oldest lsn is 0. */
420 if (lsn && lsn < *oldest_lsn)
421 *oldest_lsn = lsn;
422
423 next_client = cr->next_client;
424 }
425 }
426
is_rst_page_hdr_valid(u32 file_off,const struct RESTART_HDR * rhdr)427 static inline bool is_rst_page_hdr_valid(u32 file_off,
428 const struct RESTART_HDR *rhdr)
429 {
430 u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
431 u32 page_size = le32_to_cpu(rhdr->page_size);
432 u32 end_usa;
433 u16 ro;
434
435 if (sys_page < SECTOR_SIZE || page_size < SECTOR_SIZE ||
436 sys_page & (sys_page - 1) || page_size & (page_size - 1)) {
437 return false;
438 }
439
440 /* Check that if the file offset isn't 0, it is the system page size. */
441 if (file_off && file_off != sys_page)
442 return false;
443
444 /* Check support version 1.1+. */
445 if (le16_to_cpu(rhdr->major_ver) <= 1 && !rhdr->minor_ver)
446 return false;
447
448 if (le16_to_cpu(rhdr->major_ver) > 2)
449 return false;
450
451 ro = le16_to_cpu(rhdr->ra_off);
452 if (!IS_ALIGNED(ro, 8) || ro > sys_page)
453 return false;
454
455 end_usa = ((sys_page >> SECTOR_SHIFT) + 1) * sizeof(short);
456 end_usa += le16_to_cpu(rhdr->rhdr.fix_off);
457
458 if (ro < end_usa)
459 return false;
460
461 return true;
462 }
463
is_rst_area_valid(const struct RESTART_HDR * rhdr)464 static inline bool is_rst_area_valid(const struct RESTART_HDR *rhdr)
465 {
466 const struct RESTART_AREA *ra;
467 u16 cl, fl, ul;
468 u32 off, l_size, seq_bits;
469 u16 ro = le16_to_cpu(rhdr->ra_off);
470 u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
471
472 if (ro + offsetof(struct RESTART_AREA, l_size) >
473 SECTOR_SIZE - sizeof(short))
474 return false;
475
476 ra = Add2Ptr(rhdr, ro);
477 cl = le16_to_cpu(ra->log_clients);
478
479 if (cl > 1)
480 return false;
481
482 off = le16_to_cpu(ra->client_off);
483
484 if (!IS_ALIGNED(off, 8) || ro + off > SECTOR_SIZE - sizeof(short))
485 return false;
486
487 off += cl * sizeof(struct CLIENT_REC);
488
489 if (off > sys_page)
490 return false;
491
492 /*
493 * Check the restart length field and whether the entire
494 * restart area is contained that length.
495 */
496 if (le16_to_cpu(rhdr->ra_off) + le16_to_cpu(ra->ra_len) > sys_page ||
497 off > le16_to_cpu(ra->ra_len)) {
498 return false;
499 }
500
501 /*
502 * As a final check make sure that the use list and the free list
503 * are either empty or point to a valid client.
504 */
505 fl = le16_to_cpu(ra->client_idx[0]);
506 ul = le16_to_cpu(ra->client_idx[1]);
507 if ((fl != LFS_NO_CLIENT && fl >= cl) ||
508 (ul != LFS_NO_CLIENT && ul >= cl))
509 return false;
510
511 /* Make sure the sequence number bits match the log file size. */
512 l_size = le64_to_cpu(ra->l_size);
513
514 seq_bits = sizeof(u64) * 8 + 3;
515 while (l_size) {
516 l_size >>= 1;
517 seq_bits -= 1;
518 }
519
520 if (seq_bits != le32_to_cpu(ra->seq_num_bits))
521 return false;
522
523 /* The log page data offset and record header length must be quad-aligned. */
524 if (!IS_ALIGNED(le16_to_cpu(ra->data_off), 8) ||
525 !IS_ALIGNED(le16_to_cpu(ra->rec_hdr_len), 8))
526 return false;
527
528 return true;
529 }
530
is_client_area_valid(const struct RESTART_HDR * rhdr,bool usa_error)531 static inline bool is_client_area_valid(const struct RESTART_HDR *rhdr,
532 bool usa_error)
533 {
534 u16 ro = le16_to_cpu(rhdr->ra_off);
535 const struct RESTART_AREA *ra = Add2Ptr(rhdr, ro);
536 u16 ra_len = le16_to_cpu(ra->ra_len);
537 const struct CLIENT_REC *ca;
538 u32 i;
539
540 if (usa_error && ra_len + ro > SECTOR_SIZE - sizeof(short))
541 return false;
542
543 /* Find the start of the client array. */
544 ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
545
546 /*
547 * Start with the free list.
548 * Check that all the clients are valid and that there isn't a cycle.
549 * Do the in-use list on the second pass.
550 */
551 for (i = 0; i < 2; i++) {
552 u16 client_idx = le16_to_cpu(ra->client_idx[i]);
553 bool first_client = true;
554 u16 clients = le16_to_cpu(ra->log_clients);
555
556 while (client_idx != LFS_NO_CLIENT) {
557 const struct CLIENT_REC *cr;
558
559 if (!clients ||
560 client_idx >= le16_to_cpu(ra->log_clients))
561 return false;
562
563 clients -= 1;
564 cr = ca + client_idx;
565
566 client_idx = le16_to_cpu(cr->next_client);
567
568 if (first_client) {
569 first_client = false;
570 if (cr->prev_client != LFS_NO_CLIENT_LE)
571 return false;
572 }
573 }
574 }
575
576 return true;
577 }
578
579 /*
580 * remove_client
581 *
582 * Remove a client record from a client record list an restart area.
583 */
remove_client(struct CLIENT_REC * ca,const struct CLIENT_REC * cr,__le16 * head)584 static inline void remove_client(struct CLIENT_REC *ca,
585 const struct CLIENT_REC *cr, __le16 *head)
586 {
587 if (cr->prev_client == LFS_NO_CLIENT_LE)
588 *head = cr->next_client;
589 else
590 ca[le16_to_cpu(cr->prev_client)].next_client = cr->next_client;
591
592 if (cr->next_client != LFS_NO_CLIENT_LE)
593 ca[le16_to_cpu(cr->next_client)].prev_client = cr->prev_client;
594 }
595
596 /*
597 * add_client - Add a client record to the start of a list.
598 */
add_client(struct CLIENT_REC * ca,u16 index,__le16 * head)599 static inline void add_client(struct CLIENT_REC *ca, u16 index, __le16 *head)
600 {
601 struct CLIENT_REC *cr = ca + index;
602
603 cr->prev_client = LFS_NO_CLIENT_LE;
604 cr->next_client = *head;
605
606 if (*head != LFS_NO_CLIENT_LE)
607 ca[le16_to_cpu(*head)].prev_client = cpu_to_le16(index);
608
609 *head = cpu_to_le16(index);
610 }
611
612 /*
613 * Enumerate restart table.
614 *
615 * @t - table to enumerate.
616 * @c - current enumerated element.
617 *
618 * enumeration starts with @c == NULL
619 * returns next element or NULL
620 */
enum_rstbl(struct RESTART_TABLE * t,void * c)621 static inline void *enum_rstbl(struct RESTART_TABLE *t, void *c)
622 {
623 __le32 *e;
624 u32 bprt;
625 u16 rsize;
626
627 if (!t)
628 return NULL;
629
630 rsize = le16_to_cpu(t->size);
631
632 if (!c) {
633 /* start enumeration. */
634 if (!t->total)
635 return NULL;
636 e = Add2Ptr(t, sizeof(struct RESTART_TABLE));
637 } else {
638 e = Add2Ptr(c, rsize);
639 }
640
641 /* Loop until we hit the first one allocated, or the end of the list. */
642 for (bprt = bytes_per_rt(t); PtrOffset(t, e) < bprt;
643 e = Add2Ptr(e, rsize)) {
644 if (*e == RESTART_ENTRY_ALLOCATED_LE)
645 return e;
646 }
647 return NULL;
648 }
649
650 /*
651 * find_dp - Search for a @vcn in Dirty Page Table.
652 */
find_dp(struct RESTART_TABLE * dptbl,u32 target_attr,u64 vcn)653 static inline struct DIR_PAGE_ENTRY *find_dp(struct RESTART_TABLE *dptbl,
654 u32 target_attr, u64 vcn)
655 {
656 __le32 ta = cpu_to_le32(target_attr);
657 struct DIR_PAGE_ENTRY *dp = NULL;
658
659 while ((dp = enum_rstbl(dptbl, dp))) {
660 u64 dp_vcn = le64_to_cpu(dp->vcn);
661
662 if (dp->target_attr == ta && vcn >= dp_vcn &&
663 vcn < dp_vcn + le32_to_cpu(dp->lcns_follow)) {
664 return dp;
665 }
666 }
667 return NULL;
668 }
669
norm_file_page(u32 page_size,u32 * l_size,bool use_default)670 static inline u32 norm_file_page(u32 page_size, u32 *l_size, bool use_default)
671 {
672 if (use_default)
673 page_size = DefaultLogPageSize;
674
675 /* Round the file size down to a system page boundary. */
676 *l_size &= ~(page_size - 1);
677
678 /* File should contain at least 2 restart pages and MinLogRecordPages pages. */
679 if (*l_size < (MinLogRecordPages + 2) * page_size)
680 return 0;
681
682 return page_size;
683 }
684
check_log_rec(const struct LOG_REC_HDR * lr,u32 bytes,u32 tr,u32 bytes_per_attr_entry)685 static bool check_log_rec(const struct LOG_REC_HDR *lr, u32 bytes, u32 tr,
686 u32 bytes_per_attr_entry)
687 {
688 u16 t16;
689
690 if (bytes < sizeof(struct LOG_REC_HDR))
691 return false;
692 if (!tr)
693 return false;
694
695 if ((tr - sizeof(struct RESTART_TABLE)) %
696 sizeof(struct TRANSACTION_ENTRY))
697 return false;
698
699 if (le16_to_cpu(lr->redo_off) & 7)
700 return false;
701
702 if (le16_to_cpu(lr->undo_off) & 7)
703 return false;
704
705 if (lr->target_attr)
706 goto check_lcns;
707
708 if (is_target_required(le16_to_cpu(lr->redo_op)))
709 return false;
710
711 if (is_target_required(le16_to_cpu(lr->undo_op)))
712 return false;
713
714 check_lcns:
715 if (!lr->lcns_follow)
716 goto check_length;
717
718 t16 = le16_to_cpu(lr->target_attr);
719 if ((t16 - sizeof(struct RESTART_TABLE)) % bytes_per_attr_entry)
720 return false;
721
722 check_length:
723 if (bytes < lrh_length(lr))
724 return false;
725
726 return true;
727 }
728
check_rstbl(const struct RESTART_TABLE * rt,size_t bytes)729 static bool check_rstbl(const struct RESTART_TABLE *rt, size_t bytes)
730 {
731 u32 ts;
732 u32 i, off;
733 u16 rsize = le16_to_cpu(rt->size);
734 u16 ne = le16_to_cpu(rt->used);
735 u32 ff = le32_to_cpu(rt->first_free);
736 u32 lf = le32_to_cpu(rt->last_free);
737
738 ts = rsize * ne + sizeof(struct RESTART_TABLE);
739
740 if (!rsize || rsize > bytes ||
741 rsize + sizeof(struct RESTART_TABLE) > bytes || bytes < ts ||
742 le16_to_cpu(rt->total) > ne || ff > ts - sizeof(__le32) ||
743 lf > ts - sizeof(__le32) ||
744 (ff && ff < sizeof(struct RESTART_TABLE)) ||
745 (lf && lf < sizeof(struct RESTART_TABLE))) {
746 return false;
747 }
748
749 /*
750 * Verify each entry is either allocated or points
751 * to a valid offset the table.
752 */
753 for (i = 0; i < ne; i++) {
754 off = le32_to_cpu(*(__le32 *)Add2Ptr(
755 rt, i * rsize + sizeof(struct RESTART_TABLE)));
756
757 if (off != RESTART_ENTRY_ALLOCATED && off &&
758 (off < sizeof(struct RESTART_TABLE) ||
759 ((off - sizeof(struct RESTART_TABLE)) % rsize))) {
760 return false;
761 }
762 }
763
764 /*
765 * Walk through the list headed by the first entry to make
766 * sure none of the entries are currently being used.
767 */
768 for (off = ff; off;) {
769 if (off == RESTART_ENTRY_ALLOCATED)
770 return false;
771
772 off = le32_to_cpu(*(__le32 *)Add2Ptr(rt, off));
773
774 if (off > ts - sizeof(__le32))
775 return false;
776 }
777
778 return true;
779 }
780
781 /*
782 * free_rsttbl_idx - Free a previously allocated index a Restart Table.
783 */
free_rsttbl_idx(struct RESTART_TABLE * rt,u32 off)784 static inline void free_rsttbl_idx(struct RESTART_TABLE *rt, u32 off)
785 {
786 __le32 *e;
787 u32 lf = le32_to_cpu(rt->last_free);
788 __le32 off_le = cpu_to_le32(off);
789
790 e = Add2Ptr(rt, off);
791
792 if (off < le32_to_cpu(rt->free_goal)) {
793 *e = rt->first_free;
794 rt->first_free = off_le;
795 if (!lf)
796 rt->last_free = off_le;
797 } else {
798 if (lf)
799 *(__le32 *)Add2Ptr(rt, lf) = off_le;
800 else
801 rt->first_free = off_le;
802
803 rt->last_free = off_le;
804 *e = 0;
805 }
806
807 le16_sub_cpu(&rt->total, 1);
808 }
809
init_rsttbl(u16 esize,u16 used)810 static inline struct RESTART_TABLE *init_rsttbl(u16 esize, u16 used)
811 {
812 __le32 *e, *last_free;
813 u32 off;
814 u32 bytes = esize * used + sizeof(struct RESTART_TABLE);
815 u32 lf = sizeof(struct RESTART_TABLE) + (used - 1) * esize;
816 struct RESTART_TABLE *t = kzalloc(bytes, GFP_NOFS);
817
818 if (!t)
819 return NULL;
820
821 t->size = cpu_to_le16(esize);
822 t->used = cpu_to_le16(used);
823 t->free_goal = cpu_to_le32(~0u);
824 t->first_free = cpu_to_le32(sizeof(struct RESTART_TABLE));
825 t->last_free = cpu_to_le32(lf);
826
827 e = (__le32 *)(t + 1);
828 last_free = Add2Ptr(t, lf);
829
830 for (off = sizeof(struct RESTART_TABLE) + esize; e < last_free;
831 e = Add2Ptr(e, esize), off += esize) {
832 *e = cpu_to_le32(off);
833 }
834 return t;
835 }
836
extend_rsttbl(struct RESTART_TABLE * tbl,u32 add,u32 free_goal)837 static inline struct RESTART_TABLE *extend_rsttbl(struct RESTART_TABLE *tbl,
838 u32 add, u32 free_goal)
839 {
840 u16 esize = le16_to_cpu(tbl->size);
841 __le32 osize = cpu_to_le32(bytes_per_rt(tbl));
842 u32 used = le16_to_cpu(tbl->used);
843 struct RESTART_TABLE *rt;
844
845 rt = init_rsttbl(esize, used + add);
846 if (!rt)
847 return NULL;
848
849 memcpy(rt + 1, tbl + 1, esize * used);
850
851 rt->free_goal = free_goal == ~0u ?
852 cpu_to_le32(~0u) :
853 cpu_to_le32(sizeof(struct RESTART_TABLE) +
854 free_goal * esize);
855
856 if (tbl->first_free) {
857 rt->first_free = tbl->first_free;
858 *(__le32 *)Add2Ptr(rt, le32_to_cpu(tbl->last_free)) = osize;
859 } else {
860 rt->first_free = osize;
861 }
862
863 rt->total = tbl->total;
864
865 kfree(tbl);
866 return rt;
867 }
868
869 /*
870 * alloc_rsttbl_idx
871 *
872 * Allocate an index from within a previously initialized Restart Table.
873 */
alloc_rsttbl_idx(struct RESTART_TABLE ** tbl)874 static inline void *alloc_rsttbl_idx(struct RESTART_TABLE **tbl)
875 {
876 u32 off;
877 __le32 *e;
878 struct RESTART_TABLE *t = *tbl;
879
880 if (!t->first_free) {
881 *tbl = t = extend_rsttbl(t, 16, ~0u);
882 if (!t)
883 return NULL;
884 }
885
886 off = le32_to_cpu(t->first_free);
887
888 /* Dequeue this entry and zero it. */
889 e = Add2Ptr(t, off);
890
891 t->first_free = *e;
892
893 memset(e, 0, le16_to_cpu(t->size));
894
895 *e = RESTART_ENTRY_ALLOCATED_LE;
896
897 /* If list is going empty, then we fix the last_free as well. */
898 if (!t->first_free)
899 t->last_free = 0;
900
901 le16_add_cpu(&t->total, 1);
902
903 return Add2Ptr(t, off);
904 }
905
906 /*
907 * alloc_rsttbl_from_idx
908 *
909 * Allocate a specific index from within a previously initialized Restart Table.
910 */
alloc_rsttbl_from_idx(struct RESTART_TABLE ** tbl,u32 vbo)911 static inline void *alloc_rsttbl_from_idx(struct RESTART_TABLE **tbl, u32 vbo)
912 {
913 u32 off;
914 __le32 *e;
915 struct RESTART_TABLE *rt = *tbl;
916 u32 bytes = bytes_per_rt(rt);
917 u16 esize = le16_to_cpu(rt->size);
918
919 /* If the entry is not the table, we will have to extend the table. */
920 if (vbo >= bytes) {
921 /*
922 * Extend the size by computing the number of entries between
923 * the existing size and the desired index and adding 1 to that.
924 */
925 u32 bytes2idx = vbo - bytes;
926
927 /*
928 * There should always be an integral number of entries
929 * being added. Now extend the table.
930 */
931 *tbl = rt = extend_rsttbl(rt, bytes2idx / esize + 1, bytes);
932 if (!rt)
933 return NULL;
934 }
935
936 /* See if the entry is already allocated, and just return if it is. */
937 e = Add2Ptr(rt, vbo);
938
939 if (*e == RESTART_ENTRY_ALLOCATED_LE)
940 return e;
941
942 /*
943 * Walk through the table, looking for the entry we're
944 * interested and the previous entry.
945 */
946 off = le32_to_cpu(rt->first_free);
947 e = Add2Ptr(rt, off);
948
949 if (off == vbo) {
950 /* this is a match */
951 rt->first_free = *e;
952 goto skip_looking;
953 }
954
955 /*
956 * Need to walk through the list looking for the predecessor
957 * of our entry.
958 */
959 for (;;) {
960 /* Remember the entry just found */
961 u32 last_off = off;
962 __le32 *last_e = e;
963
964 /* Should never run of entries. */
965
966 /* Lookup up the next entry the list. */
967 off = le32_to_cpu(*last_e);
968 e = Add2Ptr(rt, off);
969
970 /* If this is our match we are done. */
971 if (off == vbo) {
972 *last_e = *e;
973
974 /*
975 * If this was the last entry, we update that
976 * table as well.
977 */
978 if (le32_to_cpu(rt->last_free) == off)
979 rt->last_free = cpu_to_le32(last_off);
980 break;
981 }
982 }
983
984 skip_looking:
985 /* If the list is now empty, we fix the last_free as well. */
986 if (!rt->first_free)
987 rt->last_free = 0;
988
989 /* Zero this entry. */
990 memset(e, 0, esize);
991 *e = RESTART_ENTRY_ALLOCATED_LE;
992
993 le16_add_cpu(&rt->total, 1);
994
995 return e;
996 }
997
998 struct restart_info {
999 u64 last_lsn;
1000 struct RESTART_HDR *r_page;
1001 u32 vbo;
1002 bool chkdsk_was_run;
1003 bool valid_page;
1004 bool initialized;
1005 bool restart;
1006 };
1007
1008 #define RESTART_SINGLE_PAGE_IO cpu_to_le16(0x0001)
1009
1010 #define NTFSLOG_WRAPPED 0x00000001
1011 #define NTFSLOG_MULTIPLE_PAGE_IO 0x00000002
1012 #define NTFSLOG_NO_LAST_LSN 0x00000004
1013 #define NTFSLOG_REUSE_TAIL 0x00000010
1014 #define NTFSLOG_NO_OLDEST_LSN 0x00000020
1015
1016 /* Helper struct to work with NTFS $LogFile. */
1017 struct ntfs_log {
1018 struct ntfs_inode *ni;
1019
1020 u32 l_size;
1021 u32 orig_file_size;
1022 u32 sys_page_size;
1023 u32 sys_page_mask;
1024 u32 page_size;
1025 u32 page_mask; // page_size - 1
1026 u8 page_bits;
1027 struct RECORD_PAGE_HDR *one_page_buf;
1028
1029 struct RESTART_TABLE *open_attr_tbl;
1030 u32 transaction_id;
1031 u32 clst_per_page;
1032
1033 u32 first_page;
1034 u32 next_page;
1035 u32 ra_off;
1036 u32 data_off;
1037 u32 restart_size;
1038 u32 data_size;
1039 u16 record_header_len;
1040 u64 seq_num;
1041 u32 seq_num_bits;
1042 u32 file_data_bits;
1043 u32 seq_num_mask; /* (1 << file_data_bits) - 1 */
1044
1045 struct RESTART_AREA *ra; /* In-memory image of the next restart area. */
1046 u32 ra_size; /* The usable size of the restart area. */
1047
1048 /*
1049 * If true, then the in-memory restart area is to be written
1050 * to the first position on the disk.
1051 */
1052 bool init_ra;
1053 bool set_dirty; /* True if we need to set dirty flag. */
1054
1055 u64 oldest_lsn;
1056
1057 u32 oldest_lsn_off;
1058 u64 last_lsn;
1059
1060 u32 total_avail;
1061 u32 total_avail_pages;
1062 u32 total_undo_commit;
1063 u32 max_current_avail;
1064 u32 current_avail;
1065 u32 reserved;
1066
1067 short major_ver;
1068 short minor_ver;
1069
1070 u32 l_flags; /* See NTFSLOG_XXX */
1071 u32 current_openlog_count; /* On-disk value for open_log_count. */
1072
1073 struct CLIENT_ID client_id;
1074 u32 client_undo_commit;
1075
1076 struct restart_info rst_info, rst_info2;
1077
1078 struct file_ra_state read_ahead;
1079 };
1080
lsn_to_vbo(struct ntfs_log * log,const u64 lsn)1081 static inline u32 lsn_to_vbo(struct ntfs_log *log, const u64 lsn)
1082 {
1083 u32 vbo = (lsn << log->seq_num_bits) >> (log->seq_num_bits - 3);
1084
1085 return vbo;
1086 }
1087
1088 /* Compute the offset in the log file of the next log page. */
next_page_off(struct ntfs_log * log,u32 off)1089 static inline u32 next_page_off(struct ntfs_log *log, u32 off)
1090 {
1091 off = (off & ~log->sys_page_mask) + log->page_size;
1092 return off >= log->l_size ? log->first_page : off;
1093 }
1094
lsn_to_page_off(struct ntfs_log * log,u64 lsn)1095 static inline u32 lsn_to_page_off(struct ntfs_log *log, u64 lsn)
1096 {
1097 return (((u32)lsn) << 3) & log->page_mask;
1098 }
1099
vbo_to_lsn(struct ntfs_log * log,u32 off,u64 Seq)1100 static inline u64 vbo_to_lsn(struct ntfs_log *log, u32 off, u64 Seq)
1101 {
1102 return (off >> 3) + (Seq << log->file_data_bits);
1103 }
1104
is_lsn_in_file(struct ntfs_log * log,u64 lsn)1105 static inline bool is_lsn_in_file(struct ntfs_log *log, u64 lsn)
1106 {
1107 return lsn >= log->oldest_lsn &&
1108 lsn <= le64_to_cpu(log->ra->current_lsn);
1109 }
1110
hdr_file_off(struct ntfs_log * log,struct RECORD_PAGE_HDR * hdr)1111 static inline u32 hdr_file_off(struct ntfs_log *log,
1112 struct RECORD_PAGE_HDR *hdr)
1113 {
1114 if (log->major_ver < 2)
1115 return le64_to_cpu(hdr->rhdr.lsn);
1116
1117 return le32_to_cpu(hdr->file_off);
1118 }
1119
base_lsn(struct ntfs_log * log,const struct RECORD_PAGE_HDR * hdr,u64 lsn)1120 static inline u64 base_lsn(struct ntfs_log *log,
1121 const struct RECORD_PAGE_HDR *hdr, u64 lsn)
1122 {
1123 u64 h_lsn = le64_to_cpu(hdr->rhdr.lsn);
1124 u64 ret = (((h_lsn >> log->file_data_bits) +
1125 (lsn < (lsn_to_vbo(log, h_lsn) & ~log->page_mask) ? 1 : 0))
1126 << log->file_data_bits) +
1127 ((((is_log_record_end(hdr) &&
1128 h_lsn <= le64_to_cpu(hdr->record_hdr.last_end_lsn)) ?
1129 le16_to_cpu(hdr->record_hdr.next_record_off) :
1130 log->page_size) +
1131 lsn) >>
1132 3);
1133
1134 return ret;
1135 }
1136
verify_client_lsn(struct ntfs_log * log,const struct CLIENT_REC * client,u64 lsn)1137 static inline bool verify_client_lsn(struct ntfs_log *log,
1138 const struct CLIENT_REC *client, u64 lsn)
1139 {
1140 return lsn >= le64_to_cpu(client->oldest_lsn) &&
1141 lsn <= le64_to_cpu(log->ra->current_lsn) && lsn;
1142 }
1143
read_log_page(struct ntfs_log * log,u32 vbo,struct RECORD_PAGE_HDR ** buffer,bool * usa_error)1144 static int read_log_page(struct ntfs_log *log, u32 vbo,
1145 struct RECORD_PAGE_HDR **buffer, bool *usa_error)
1146 {
1147 int err = 0;
1148 u32 page_idx = vbo >> log->page_bits;
1149 u32 page_off = vbo & log->page_mask;
1150 u32 bytes = log->page_size - page_off;
1151 void *to_free = NULL;
1152 u32 page_vbo = page_idx << log->page_bits;
1153 struct RECORD_PAGE_HDR *page_buf;
1154 struct ntfs_inode *ni = log->ni;
1155 bool bBAAD;
1156
1157 if (vbo >= log->l_size)
1158 return -EINVAL;
1159
1160 if (!*buffer) {
1161 to_free = kmalloc(log->page_size, GFP_NOFS);
1162 if (!to_free)
1163 return -ENOMEM;
1164 *buffer = to_free;
1165 }
1166
1167 page_buf = page_off ? log->one_page_buf : *buffer;
1168
1169 err = ntfs_read_run_nb_ra(ni->mi.sbi, &ni->file.run, page_vbo, page_buf,
1170 log->page_size, NULL, &log->read_ahead);
1171 if (err)
1172 goto out;
1173
1174 if (page_buf->rhdr.sign != NTFS_FFFF_SIGNATURE)
1175 ntfs_fix_post_read(&page_buf->rhdr, PAGE_SIZE, false);
1176
1177 if (page_buf != *buffer)
1178 memcpy(*buffer, Add2Ptr(page_buf, page_off), bytes);
1179
1180 bBAAD = page_buf->rhdr.sign == NTFS_BAAD_SIGNATURE;
1181
1182 if (usa_error)
1183 *usa_error = bBAAD;
1184 /* Check that the update sequence array for this page is valid */
1185 /* If we don't allow errors, raise an error status */
1186 else if (bBAAD)
1187 err = -EINVAL;
1188
1189 out:
1190 if (err && to_free) {
1191 kfree(to_free);
1192 *buffer = NULL;
1193 }
1194
1195 return err;
1196 }
1197
1198 /*
1199 * log_read_rst
1200 *
1201 * It walks through 512 blocks of the file looking for a valid
1202 * restart page header. It will stop the first time we find a
1203 * valid page header.
1204 */
log_read_rst(struct ntfs_log * log,bool first,struct restart_info * info)1205 static int log_read_rst(struct ntfs_log *log, bool first,
1206 struct restart_info *info)
1207 {
1208 u32 skip;
1209 u64 vbo;
1210 struct RESTART_HDR *r_page = NULL;
1211
1212 /* Determine which restart area we are looking for. */
1213 if (first) {
1214 vbo = 0;
1215 skip = 512;
1216 } else {
1217 vbo = 512;
1218 skip = 0;
1219 }
1220
1221 /* Loop continuously until we succeed. */
1222 for (; vbo < log->l_size; vbo = 2 * vbo + skip, skip = 0) {
1223 bool usa_error;
1224 bool brst, bchk;
1225 struct RESTART_AREA *ra;
1226
1227 /* Read a page header at the current offset. */
1228 if (read_log_page(log, vbo, (struct RECORD_PAGE_HDR **)&r_page,
1229 &usa_error)) {
1230 /* Ignore any errors. */
1231 continue;
1232 }
1233
1234 /* Exit if the signature is a log record page. */
1235 if (r_page->rhdr.sign == NTFS_RCRD_SIGNATURE) {
1236 info->initialized = true;
1237 break;
1238 }
1239
1240 brst = r_page->rhdr.sign == NTFS_RSTR_SIGNATURE;
1241 bchk = r_page->rhdr.sign == NTFS_CHKD_SIGNATURE;
1242
1243 if (!bchk && !brst) {
1244 if (r_page->rhdr.sign != NTFS_FFFF_SIGNATURE) {
1245 /*
1246 * Remember if the signature does not
1247 * indicate uninitialized file.
1248 */
1249 info->initialized = true;
1250 }
1251 continue;
1252 }
1253
1254 ra = NULL;
1255 info->valid_page = false;
1256 info->initialized = true;
1257 info->vbo = vbo;
1258
1259 /* Let's check the restart area if this is a valid page. */
1260 if (!is_rst_page_hdr_valid(vbo, r_page))
1261 goto check_result;
1262 ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1263
1264 if (!is_rst_area_valid(r_page))
1265 goto check_result;
1266
1267 /*
1268 * We have a valid restart page header and restart area.
1269 * If chkdsk was run or we have no clients then we have
1270 * no more checking to do.
1271 */
1272 if (bchk || ra->client_idx[1] == LFS_NO_CLIENT_LE) {
1273 info->valid_page = true;
1274 goto check_result;
1275 }
1276
1277 if (is_client_area_valid(r_page, usa_error)) {
1278 info->valid_page = true;
1279 ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1280 }
1281
1282 check_result:
1283 /*
1284 * If chkdsk was run then update the caller's
1285 * values and return.
1286 */
1287 if (r_page->rhdr.sign == NTFS_CHKD_SIGNATURE) {
1288 info->chkdsk_was_run = true;
1289 info->last_lsn = le64_to_cpu(r_page->rhdr.lsn);
1290 info->restart = true;
1291 info->r_page = r_page;
1292 return 0;
1293 }
1294
1295 /*
1296 * If we have a valid page then copy the values
1297 * we need from it.
1298 */
1299 if (info->valid_page) {
1300 info->last_lsn = le64_to_cpu(ra->current_lsn);
1301 info->restart = true;
1302 info->r_page = r_page;
1303 return 0;
1304 }
1305 }
1306
1307 kfree(r_page);
1308
1309 return 0;
1310 }
1311
1312 /*
1313 * Ilog_init_pg_hdr - Init @log from restart page header.
1314 */
log_init_pg_hdr(struct ntfs_log * log,u16 major_ver,u16 minor_ver)1315 static void log_init_pg_hdr(struct ntfs_log *log, u16 major_ver, u16 minor_ver)
1316 {
1317 log->sys_page_size = log->page_size;
1318 log->sys_page_mask = log->page_mask;
1319
1320 log->clst_per_page = log->page_size >> log->ni->mi.sbi->cluster_bits;
1321 if (!log->clst_per_page)
1322 log->clst_per_page = 1;
1323
1324 log->first_page = major_ver >= 2 ? 0x22 * log->page_size :
1325 4 * log->page_size;
1326 log->major_ver = major_ver;
1327 log->minor_ver = minor_ver;
1328 }
1329
1330 /*
1331 * log_create - Init @log in cases when we don't have a restart area to use.
1332 */
log_create(struct ntfs_log * log,const u64 last_lsn,u32 open_log_count,bool wrapped,bool use_multi_page)1333 static void log_create(struct ntfs_log *log, const u64 last_lsn,
1334 u32 open_log_count, bool wrapped, bool use_multi_page)
1335 {
1336 /* All file offsets must be quadword aligned. */
1337 log->file_data_bits = blksize_bits(log->l_size) - 3;
1338 log->seq_num_mask = (8 << log->file_data_bits) - 1;
1339 log->seq_num_bits = sizeof(u64) * 8 - log->file_data_bits;
1340 log->seq_num = (last_lsn >> log->file_data_bits) + 2;
1341 log->next_page = log->first_page;
1342 log->oldest_lsn = log->seq_num << log->file_data_bits;
1343 log->oldest_lsn_off = 0;
1344 log->last_lsn = log->oldest_lsn;
1345
1346 log->l_flags |= NTFSLOG_NO_LAST_LSN | NTFSLOG_NO_OLDEST_LSN;
1347
1348 /* Set the correct flags for the I/O and indicate if we have wrapped. */
1349 if (wrapped)
1350 log->l_flags |= NTFSLOG_WRAPPED;
1351
1352 if (use_multi_page)
1353 log->l_flags |= NTFSLOG_MULTIPLE_PAGE_IO;
1354
1355 /* Compute the log page values. */
1356 log->data_off = ALIGN(
1357 offsetof(struct RECORD_PAGE_HDR, fixups) +
1358 sizeof(short) * ((log->page_size >> SECTOR_SHIFT) + 1),
1359 8);
1360 log->data_size = log->page_size - log->data_off;
1361 log->record_header_len = sizeof(struct LFS_RECORD_HDR);
1362
1363 /* Remember the different page sizes for reservation. */
1364 log->reserved = log->data_size - log->record_header_len;
1365
1366 /* Compute the restart page values. */
1367 log->ra_off = ALIGN(
1368 offsetof(struct RESTART_HDR, fixups) +
1369 sizeof(short) *
1370 ((log->sys_page_size >> SECTOR_SHIFT) + 1),
1371 8);
1372 log->restart_size = log->sys_page_size - log->ra_off;
1373 log->ra_size = struct_size(log->ra, clients, 1);
1374 log->current_openlog_count = open_log_count;
1375
1376 /*
1377 * The total available log file space is the number of
1378 * log file pages times the space available on each page.
1379 */
1380 log->total_avail_pages = log->l_size - log->first_page;
1381 log->total_avail = log->total_avail_pages >> log->page_bits;
1382
1383 /*
1384 * We assume that we can't use the end of the page less than
1385 * the file record size.
1386 * Then we won't need to reserve more than the caller asks for.
1387 */
1388 log->max_current_avail = log->total_avail * log->reserved;
1389 log->total_avail = log->total_avail * log->data_size;
1390 log->current_avail = log->max_current_avail;
1391 }
1392
1393 /*
1394 * log_create_ra - Fill a restart area from the values stored in @log.
1395 */
log_create_ra(struct ntfs_log * log)1396 static struct RESTART_AREA *log_create_ra(struct ntfs_log *log)
1397 {
1398 struct CLIENT_REC *cr;
1399 struct RESTART_AREA *ra = kzalloc(log->restart_size, GFP_NOFS);
1400
1401 if (!ra)
1402 return NULL;
1403
1404 ra->current_lsn = cpu_to_le64(log->last_lsn);
1405 ra->log_clients = cpu_to_le16(1);
1406 ra->client_idx[1] = LFS_NO_CLIENT_LE;
1407 if (log->l_flags & NTFSLOG_MULTIPLE_PAGE_IO)
1408 ra->flags = RESTART_SINGLE_PAGE_IO;
1409 ra->seq_num_bits = cpu_to_le32(log->seq_num_bits);
1410 ra->ra_len = cpu_to_le16(log->ra_size);
1411 ra->client_off = cpu_to_le16(offsetof(struct RESTART_AREA, clients));
1412 ra->l_size = cpu_to_le64(log->l_size);
1413 ra->rec_hdr_len = cpu_to_le16(log->record_header_len);
1414 ra->data_off = cpu_to_le16(log->data_off);
1415 ra->open_log_count = cpu_to_le32(log->current_openlog_count + 1);
1416
1417 cr = ra->clients;
1418
1419 cr->prev_client = LFS_NO_CLIENT_LE;
1420 cr->next_client = LFS_NO_CLIENT_LE;
1421
1422 return ra;
1423 }
1424
final_log_off(struct ntfs_log * log,u64 lsn,u32 data_len)1425 static u32 final_log_off(struct ntfs_log *log, u64 lsn, u32 data_len)
1426 {
1427 u32 base_vbo = lsn << 3;
1428 u32 final_log_off = (base_vbo & log->seq_num_mask) & ~log->page_mask;
1429 u32 page_off = base_vbo & log->page_mask;
1430 u32 tail = log->page_size - page_off;
1431
1432 page_off -= 1;
1433
1434 /* Add the length of the header. */
1435 data_len += log->record_header_len;
1436
1437 /*
1438 * If this lsn is contained this log page we are done.
1439 * Otherwise we need to walk through several log pages.
1440 */
1441 if (data_len > tail) {
1442 data_len -= tail;
1443 tail = log->data_size;
1444 page_off = log->data_off - 1;
1445
1446 for (;;) {
1447 final_log_off = next_page_off(log, final_log_off);
1448
1449 /*
1450 * We are done if the remaining bytes
1451 * fit on this page.
1452 */
1453 if (data_len <= tail)
1454 break;
1455 data_len -= tail;
1456 }
1457 }
1458
1459 /*
1460 * We add the remaining bytes to our starting position on this page
1461 * and then add that value to the file offset of this log page.
1462 */
1463 return final_log_off + data_len + page_off;
1464 }
1465
next_log_lsn(struct ntfs_log * log,const struct LFS_RECORD_HDR * rh,u64 * lsn)1466 static int next_log_lsn(struct ntfs_log *log, const struct LFS_RECORD_HDR *rh,
1467 u64 *lsn)
1468 {
1469 int err;
1470 u64 this_lsn = le64_to_cpu(rh->this_lsn);
1471 u32 vbo = lsn_to_vbo(log, this_lsn);
1472 u32 end =
1473 final_log_off(log, this_lsn, le32_to_cpu(rh->client_data_len));
1474 u32 hdr_off = end & ~log->sys_page_mask;
1475 u64 seq = this_lsn >> log->file_data_bits;
1476 struct RECORD_PAGE_HDR *page = NULL;
1477
1478 /* Remember if we wrapped. */
1479 if (end <= vbo)
1480 seq += 1;
1481
1482 /* Log page header for this page. */
1483 err = read_log_page(log, hdr_off, &page, NULL);
1484 if (err)
1485 return err;
1486
1487 /*
1488 * If the lsn we were given was not the last lsn on this page,
1489 * then the starting offset for the next lsn is on a quad word
1490 * boundary following the last file offset for the current lsn.
1491 * Otherwise the file offset is the start of the data on the next page.
1492 */
1493 if (this_lsn == le64_to_cpu(page->rhdr.lsn)) {
1494 /* If we wrapped, we need to increment the sequence number. */
1495 hdr_off = next_page_off(log, hdr_off);
1496 if (hdr_off == log->first_page)
1497 seq += 1;
1498
1499 vbo = hdr_off + log->data_off;
1500 } else {
1501 vbo = ALIGN(end, 8);
1502 }
1503
1504 /* Compute the lsn based on the file offset and the sequence count. */
1505 *lsn = vbo_to_lsn(log, vbo, seq);
1506
1507 /*
1508 * If this lsn is within the legal range for the file, we return true.
1509 * Otherwise false indicates that there are no more lsn's.
1510 */
1511 if (!is_lsn_in_file(log, *lsn))
1512 *lsn = 0;
1513
1514 kfree(page);
1515
1516 return 0;
1517 }
1518
1519 /*
1520 * current_log_avail - Calculate the number of bytes available for log records.
1521 */
current_log_avail(struct ntfs_log * log)1522 static u32 current_log_avail(struct ntfs_log *log)
1523 {
1524 u32 oldest_off, next_free_off, free_bytes;
1525
1526 if (log->l_flags & NTFSLOG_NO_LAST_LSN) {
1527 /* The entire file is available. */
1528 return log->max_current_avail;
1529 }
1530
1531 /*
1532 * If there is a last lsn the restart area then we know that we will
1533 * have to compute the free range.
1534 * If there is no oldest lsn then start at the first page of the file.
1535 */
1536 oldest_off = (log->l_flags & NTFSLOG_NO_OLDEST_LSN) ?
1537 log->first_page :
1538 (log->oldest_lsn_off & ~log->sys_page_mask);
1539
1540 /*
1541 * We will use the next log page offset to compute the next free page.
1542 * If we are going to reuse this page go to the next page.
1543 * If we are at the first page then use the end of the file.
1544 */
1545 next_free_off = (log->l_flags & NTFSLOG_REUSE_TAIL) ?
1546 log->next_page + log->page_size :
1547 log->next_page == log->first_page ? log->l_size :
1548 log->next_page;
1549
1550 /* If the two offsets are the same then there is no available space. */
1551 if (oldest_off == next_free_off)
1552 return 0;
1553 /*
1554 * If the free offset follows the oldest offset then subtract
1555 * this range from the total available pages.
1556 */
1557 free_bytes =
1558 oldest_off < next_free_off ?
1559 log->total_avail_pages - (next_free_off - oldest_off) :
1560 oldest_off - next_free_off;
1561
1562 free_bytes >>= log->page_bits;
1563 return free_bytes * log->reserved;
1564 }
1565
check_subseq_log_page(struct ntfs_log * log,const struct RECORD_PAGE_HDR * rp,u32 vbo,u64 seq)1566 static bool check_subseq_log_page(struct ntfs_log *log,
1567 const struct RECORD_PAGE_HDR *rp, u32 vbo,
1568 u64 seq)
1569 {
1570 u64 lsn_seq;
1571 const struct NTFS_RECORD_HEADER *rhdr = &rp->rhdr;
1572 u64 lsn = le64_to_cpu(rhdr->lsn);
1573
1574 if (rhdr->sign == NTFS_FFFF_SIGNATURE || !rhdr->sign)
1575 return false;
1576
1577 /*
1578 * If the last lsn on the page occurs was written after the page
1579 * that caused the original error then we have a fatal error.
1580 */
1581 lsn_seq = lsn >> log->file_data_bits;
1582
1583 /*
1584 * If the sequence number for the lsn the page is equal or greater
1585 * than lsn we expect, then this is a subsequent write.
1586 */
1587 return lsn_seq >= seq ||
1588 (lsn_seq == seq - 1 && log->first_page == vbo &&
1589 vbo != (lsn_to_vbo(log, lsn) & ~log->page_mask));
1590 }
1591
1592 /*
1593 * last_log_lsn
1594 *
1595 * Walks through the log pages for a file, searching for the
1596 * last log page written to the file.
1597 */
last_log_lsn(struct ntfs_log * log)1598 static int last_log_lsn(struct ntfs_log *log)
1599 {
1600 int err;
1601 bool usa_error = false;
1602 bool replace_page = false;
1603 bool reuse_page = log->l_flags & NTFSLOG_REUSE_TAIL;
1604 bool wrapped_file, wrapped;
1605
1606 u32 page_cnt = 1, page_pos = 1;
1607 u32 page_off = 0, page_off1 = 0, saved_off = 0;
1608 u32 final_off, second_off, final_off_prev = 0, second_off_prev = 0;
1609 u32 first_file_off = 0, second_file_off = 0;
1610 u32 part_io_count = 0;
1611 u32 tails = 0;
1612 u32 this_off, curpage_off, nextpage_off, remain_pages;
1613
1614 u64 expected_seq, seq_base = 0, lsn_base = 0;
1615 u64 best_lsn, best_lsn1, best_lsn2;
1616 u64 lsn_cur, lsn1, lsn2;
1617 u64 last_ok_lsn = reuse_page ? log->last_lsn : 0;
1618
1619 u16 cur_pos, best_page_pos;
1620
1621 struct RECORD_PAGE_HDR *page = NULL;
1622 struct RECORD_PAGE_HDR *tst_page = NULL;
1623 struct RECORD_PAGE_HDR *first_tail = NULL;
1624 struct RECORD_PAGE_HDR *second_tail = NULL;
1625 struct RECORD_PAGE_HDR *tail_page = NULL;
1626 struct RECORD_PAGE_HDR *second_tail_prev = NULL;
1627 struct RECORD_PAGE_HDR *first_tail_prev = NULL;
1628 struct RECORD_PAGE_HDR *page_bufs = NULL;
1629 struct RECORD_PAGE_HDR *best_page;
1630
1631 if (log->major_ver >= 2) {
1632 final_off = 0x02 * log->page_size;
1633 second_off = 0x12 * log->page_size;
1634
1635 // 0x10 == 0x12 - 0x2
1636 page_bufs = kmalloc(log->page_size * 0x10, GFP_NOFS);
1637 if (!page_bufs)
1638 return -ENOMEM;
1639 } else {
1640 second_off = log->first_page - log->page_size;
1641 final_off = second_off - log->page_size;
1642 }
1643
1644 next_tail:
1645 /* Read second tail page (at pos 3/0x12000). */
1646 if (read_log_page(log, second_off, &second_tail, &usa_error) ||
1647 usa_error || second_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1648 kfree(second_tail);
1649 second_tail = NULL;
1650 second_file_off = 0;
1651 lsn2 = 0;
1652 } else {
1653 second_file_off = hdr_file_off(log, second_tail);
1654 lsn2 = le64_to_cpu(second_tail->record_hdr.last_end_lsn);
1655 }
1656
1657 /* Read first tail page (at pos 2/0x2000). */
1658 if (read_log_page(log, final_off, &first_tail, &usa_error) ||
1659 usa_error || first_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1660 kfree(first_tail);
1661 first_tail = NULL;
1662 first_file_off = 0;
1663 lsn1 = 0;
1664 } else {
1665 first_file_off = hdr_file_off(log, first_tail);
1666 lsn1 = le64_to_cpu(first_tail->record_hdr.last_end_lsn);
1667 }
1668
1669 if (log->major_ver < 2) {
1670 int best_page;
1671
1672 first_tail_prev = first_tail;
1673 final_off_prev = first_file_off;
1674 second_tail_prev = second_tail;
1675 second_off_prev = second_file_off;
1676 tails = 1;
1677
1678 if (!first_tail && !second_tail)
1679 goto tail_read;
1680
1681 if (first_tail && second_tail)
1682 best_page = lsn1 < lsn2 ? 1 : 0;
1683 else if (first_tail)
1684 best_page = 0;
1685 else
1686 best_page = 1;
1687
1688 page_off = best_page ? second_file_off : first_file_off;
1689 seq_base = (best_page ? lsn2 : lsn1) >> log->file_data_bits;
1690 goto tail_read;
1691 }
1692
1693 best_lsn1 = first_tail ? base_lsn(log, first_tail, first_file_off) : 0;
1694 best_lsn2 = second_tail ? base_lsn(log, second_tail, second_file_off) :
1695 0;
1696
1697 if (first_tail && second_tail) {
1698 if (best_lsn1 > best_lsn2) {
1699 best_lsn = best_lsn1;
1700 best_page = first_tail;
1701 this_off = first_file_off;
1702 } else {
1703 best_lsn = best_lsn2;
1704 best_page = second_tail;
1705 this_off = second_file_off;
1706 }
1707 } else if (first_tail) {
1708 best_lsn = best_lsn1;
1709 best_page = first_tail;
1710 this_off = first_file_off;
1711 } else if (second_tail) {
1712 best_lsn = best_lsn2;
1713 best_page = second_tail;
1714 this_off = second_file_off;
1715 } else {
1716 goto tail_read;
1717 }
1718
1719 best_page_pos = le16_to_cpu(best_page->page_pos);
1720
1721 if (!tails) {
1722 if (best_page_pos == page_pos) {
1723 seq_base = best_lsn >> log->file_data_bits;
1724 saved_off = page_off = le32_to_cpu(best_page->file_off);
1725 lsn_base = best_lsn;
1726
1727 memmove(page_bufs, best_page, log->page_size);
1728
1729 page_cnt = le16_to_cpu(best_page->page_count);
1730 if (page_cnt > 1)
1731 page_pos += 1;
1732
1733 tails = 1;
1734 }
1735 } else if (seq_base == (best_lsn >> log->file_data_bits) &&
1736 saved_off + log->page_size == this_off &&
1737 lsn_base < best_lsn &&
1738 (page_pos != page_cnt || best_page_pos == page_pos ||
1739 best_page_pos == 1) &&
1740 (page_pos >= page_cnt || best_page_pos == page_pos)) {
1741 u16 bppc = le16_to_cpu(best_page->page_count);
1742
1743 saved_off += log->page_size;
1744 lsn_base = best_lsn;
1745
1746 memmove(Add2Ptr(page_bufs, tails * log->page_size), best_page,
1747 log->page_size);
1748
1749 tails += 1;
1750
1751 if (best_page_pos != bppc) {
1752 page_cnt = bppc;
1753 page_pos = best_page_pos;
1754
1755 if (page_cnt > 1)
1756 page_pos += 1;
1757 } else {
1758 page_pos = page_cnt = 1;
1759 }
1760 } else {
1761 kfree(first_tail);
1762 kfree(second_tail);
1763 goto tail_read;
1764 }
1765
1766 kfree(first_tail_prev);
1767 first_tail_prev = first_tail;
1768 final_off_prev = first_file_off;
1769 first_tail = NULL;
1770
1771 kfree(second_tail_prev);
1772 second_tail_prev = second_tail;
1773 second_off_prev = second_file_off;
1774 second_tail = NULL;
1775
1776 final_off += log->page_size;
1777 second_off += log->page_size;
1778
1779 if (tails < 0x10)
1780 goto next_tail;
1781 tail_read:
1782 first_tail = first_tail_prev;
1783 final_off = final_off_prev;
1784
1785 second_tail = second_tail_prev;
1786 second_off = second_off_prev;
1787
1788 page_cnt = page_pos = 1;
1789
1790 curpage_off = seq_base == log->seq_num ? min(log->next_page, page_off) :
1791 log->next_page;
1792
1793 wrapped_file =
1794 curpage_off == log->first_page &&
1795 !(log->l_flags & (NTFSLOG_NO_LAST_LSN | NTFSLOG_REUSE_TAIL));
1796
1797 expected_seq = wrapped_file ? (log->seq_num + 1) : log->seq_num;
1798
1799 nextpage_off = curpage_off;
1800
1801 next_page:
1802 tail_page = NULL;
1803 /* Read the next log page. */
1804 err = read_log_page(log, curpage_off, &page, &usa_error);
1805
1806 /* Compute the next log page offset the file. */
1807 nextpage_off = next_page_off(log, curpage_off);
1808 wrapped = nextpage_off == log->first_page;
1809
1810 if (tails > 1) {
1811 struct RECORD_PAGE_HDR *cur_page =
1812 Add2Ptr(page_bufs, curpage_off - page_off);
1813
1814 if (curpage_off == saved_off) {
1815 tail_page = cur_page;
1816 goto use_tail_page;
1817 }
1818
1819 if (page_off > curpage_off || curpage_off >= saved_off)
1820 goto use_tail_page;
1821
1822 if (page_off1)
1823 goto use_cur_page;
1824
1825 if (!err && !usa_error &&
1826 page->rhdr.sign == NTFS_RCRD_SIGNATURE &&
1827 cur_page->rhdr.lsn == page->rhdr.lsn &&
1828 cur_page->record_hdr.next_record_off ==
1829 page->record_hdr.next_record_off &&
1830 ((page_pos == page_cnt &&
1831 le16_to_cpu(page->page_pos) == 1) ||
1832 (page_pos != page_cnt &&
1833 le16_to_cpu(page->page_pos) == page_pos + 1 &&
1834 le16_to_cpu(page->page_count) == page_cnt))) {
1835 cur_page = NULL;
1836 goto use_tail_page;
1837 }
1838
1839 page_off1 = page_off;
1840
1841 use_cur_page:
1842
1843 lsn_cur = le64_to_cpu(cur_page->rhdr.lsn);
1844
1845 if (last_ok_lsn !=
1846 le64_to_cpu(cur_page->record_hdr.last_end_lsn) &&
1847 ((lsn_cur >> log->file_data_bits) +
1848 ((curpage_off <
1849 (lsn_to_vbo(log, lsn_cur) & ~log->page_mask)) ?
1850 1 :
1851 0)) != expected_seq) {
1852 goto check_tail;
1853 }
1854
1855 if (!is_log_record_end(cur_page)) {
1856 tail_page = NULL;
1857 last_ok_lsn = lsn_cur;
1858 goto next_page_1;
1859 }
1860
1861 log->seq_num = expected_seq;
1862 log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
1863 log->last_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1864 log->ra->current_lsn = cur_page->record_hdr.last_end_lsn;
1865
1866 if (log->record_header_len <=
1867 log->page_size -
1868 le16_to_cpu(cur_page->record_hdr.next_record_off)) {
1869 log->l_flags |= NTFSLOG_REUSE_TAIL;
1870 log->next_page = curpage_off;
1871 } else {
1872 log->l_flags &= ~NTFSLOG_REUSE_TAIL;
1873 log->next_page = nextpage_off;
1874 }
1875
1876 if (wrapped_file)
1877 log->l_flags |= NTFSLOG_WRAPPED;
1878
1879 last_ok_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1880 goto next_page_1;
1881 }
1882
1883 /*
1884 * If we are at the expected first page of a transfer check to see
1885 * if either tail copy is at this offset.
1886 * If this page is the last page of a transfer, check if we wrote
1887 * a subsequent tail copy.
1888 */
1889 if (page_cnt == page_pos || page_cnt == page_pos + 1) {
1890 /*
1891 * Check if the offset matches either the first or second
1892 * tail copy. It is possible it will match both.
1893 */
1894 if (curpage_off == final_off)
1895 tail_page = first_tail;
1896
1897 /*
1898 * If we already matched on the first page then
1899 * check the ending lsn's.
1900 */
1901 if (curpage_off == second_off) {
1902 if (!tail_page ||
1903 (second_tail &&
1904 le64_to_cpu(second_tail->record_hdr.last_end_lsn) >
1905 le64_to_cpu(first_tail->record_hdr
1906 .last_end_lsn))) {
1907 tail_page = second_tail;
1908 }
1909 }
1910 }
1911
1912 use_tail_page:
1913 if (tail_page) {
1914 /* We have a candidate for a tail copy. */
1915 lsn_cur = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
1916
1917 if (last_ok_lsn < lsn_cur) {
1918 /*
1919 * If the sequence number is not expected,
1920 * then don't use the tail copy.
1921 */
1922 if (expected_seq != (lsn_cur >> log->file_data_bits))
1923 tail_page = NULL;
1924 } else if (last_ok_lsn > lsn_cur) {
1925 /*
1926 * If the last lsn is greater than the one on
1927 * this page then forget this tail.
1928 */
1929 tail_page = NULL;
1930 }
1931 }
1932
1933 /*
1934 *If we have an error on the current page,
1935 * we will break of this loop.
1936 */
1937 if (err || usa_error)
1938 goto check_tail;
1939
1940 /*
1941 * Done if the last lsn on this page doesn't match the previous known
1942 * last lsn or the sequence number is not expected.
1943 */
1944 lsn_cur = le64_to_cpu(page->rhdr.lsn);
1945 if (last_ok_lsn != lsn_cur &&
1946 expected_seq != (lsn_cur >> log->file_data_bits)) {
1947 goto check_tail;
1948 }
1949
1950 /*
1951 * Check that the page position and page count values are correct.
1952 * If this is the first page of a transfer the position must be 1
1953 * and the count will be unknown.
1954 */
1955 if (page_cnt == page_pos) {
1956 if (page->page_pos != cpu_to_le16(1) &&
1957 (!reuse_page || page->page_pos != page->page_count)) {
1958 /*
1959 * If the current page is the first page we are
1960 * looking at and we are reusing this page then
1961 * it can be either the first or last page of a
1962 * transfer. Otherwise it can only be the first.
1963 */
1964 goto check_tail;
1965 }
1966 } else if (le16_to_cpu(page->page_count) != page_cnt ||
1967 le16_to_cpu(page->page_pos) != page_pos + 1) {
1968 /*
1969 * The page position better be 1 more than the last page
1970 * position and the page count better match.
1971 */
1972 goto check_tail;
1973 }
1974
1975 /*
1976 * We have a valid page the file and may have a valid page
1977 * the tail copy area.
1978 * If the tail page was written after the page the file then
1979 * break of the loop.
1980 */
1981 if (tail_page &&
1982 le64_to_cpu(tail_page->record_hdr.last_end_lsn) > lsn_cur) {
1983 /* Remember if we will replace the page. */
1984 replace_page = true;
1985 goto check_tail;
1986 }
1987
1988 tail_page = NULL;
1989
1990 if (is_log_record_end(page)) {
1991 /*
1992 * Since we have read this page we know the sequence number
1993 * is the same as our expected value.
1994 */
1995 log->seq_num = expected_seq;
1996 log->last_lsn = le64_to_cpu(page->record_hdr.last_end_lsn);
1997 log->ra->current_lsn = page->record_hdr.last_end_lsn;
1998 log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
1999
2000 /*
2001 * If there is room on this page for another header then
2002 * remember we want to reuse the page.
2003 */
2004 if (log->record_header_len <=
2005 log->page_size -
2006 le16_to_cpu(page->record_hdr.next_record_off)) {
2007 log->l_flags |= NTFSLOG_REUSE_TAIL;
2008 log->next_page = curpage_off;
2009 } else {
2010 log->l_flags &= ~NTFSLOG_REUSE_TAIL;
2011 log->next_page = nextpage_off;
2012 }
2013
2014 /* Remember if we wrapped the log file. */
2015 if (wrapped_file)
2016 log->l_flags |= NTFSLOG_WRAPPED;
2017 }
2018
2019 /*
2020 * Remember the last page count and position.
2021 * Also remember the last known lsn.
2022 */
2023 page_cnt = le16_to_cpu(page->page_count);
2024 page_pos = le16_to_cpu(page->page_pos);
2025 last_ok_lsn = le64_to_cpu(page->rhdr.lsn);
2026
2027 next_page_1:
2028
2029 if (wrapped) {
2030 expected_seq += 1;
2031 wrapped_file = 1;
2032 }
2033
2034 curpage_off = nextpage_off;
2035 kfree(page);
2036 page = NULL;
2037 reuse_page = 0;
2038 goto next_page;
2039
2040 check_tail:
2041 if (tail_page) {
2042 log->seq_num = expected_seq;
2043 log->last_lsn = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
2044 log->ra->current_lsn = tail_page->record_hdr.last_end_lsn;
2045 log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
2046
2047 if (log->page_size -
2048 le16_to_cpu(
2049 tail_page->record_hdr.next_record_off) >=
2050 log->record_header_len) {
2051 log->l_flags |= NTFSLOG_REUSE_TAIL;
2052 log->next_page = curpage_off;
2053 } else {
2054 log->l_flags &= ~NTFSLOG_REUSE_TAIL;
2055 log->next_page = nextpage_off;
2056 }
2057
2058 if (wrapped)
2059 log->l_flags |= NTFSLOG_WRAPPED;
2060 }
2061
2062 /* Remember that the partial IO will start at the next page. */
2063 second_off = nextpage_off;
2064
2065 /*
2066 * If the next page is the first page of the file then update
2067 * the sequence number for log records which begon the next page.
2068 */
2069 if (wrapped)
2070 expected_seq += 1;
2071
2072 /*
2073 * If we have a tail copy or are performing single page I/O we can
2074 * immediately look at the next page.
2075 */
2076 if (replace_page || (log->ra->flags & RESTART_SINGLE_PAGE_IO)) {
2077 page_cnt = 2;
2078 page_pos = 1;
2079 goto check_valid;
2080 }
2081
2082 if (page_pos != page_cnt)
2083 goto check_valid;
2084 /*
2085 * If the next page causes us to wrap to the beginning of the log
2086 * file then we know which page to check next.
2087 */
2088 if (wrapped) {
2089 page_cnt = 2;
2090 page_pos = 1;
2091 goto check_valid;
2092 }
2093
2094 cur_pos = 2;
2095
2096 next_test_page:
2097 kfree(tst_page);
2098 tst_page = NULL;
2099
2100 /* Walk through the file, reading log pages. */
2101 err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2102
2103 /*
2104 * If we get a USA error then assume that we correctly found
2105 * the end of the original transfer.
2106 */
2107 if (usa_error)
2108 goto file_is_valid;
2109
2110 /*
2111 * If we were able to read the page, we examine it to see if it
2112 * is the same or different Io block.
2113 */
2114 if (err)
2115 goto next_test_page_1;
2116
2117 if (le16_to_cpu(tst_page->page_pos) == cur_pos &&
2118 check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2119 page_cnt = le16_to_cpu(tst_page->page_count) + 1;
2120 page_pos = le16_to_cpu(tst_page->page_pos);
2121 goto check_valid;
2122 } else {
2123 goto file_is_valid;
2124 }
2125
2126 next_test_page_1:
2127
2128 nextpage_off = next_page_off(log, curpage_off);
2129 wrapped = nextpage_off == log->first_page;
2130
2131 if (wrapped) {
2132 expected_seq += 1;
2133 page_cnt = 2;
2134 page_pos = 1;
2135 }
2136
2137 cur_pos += 1;
2138 part_io_count += 1;
2139 if (!wrapped)
2140 goto next_test_page;
2141
2142 check_valid:
2143 /* Skip over the remaining pages this transfer. */
2144 remain_pages = page_cnt - page_pos - 1;
2145 part_io_count += remain_pages;
2146
2147 while (remain_pages--) {
2148 nextpage_off = next_page_off(log, curpage_off);
2149 wrapped = nextpage_off == log->first_page;
2150
2151 if (wrapped)
2152 expected_seq += 1;
2153 }
2154
2155 /* Call our routine to check this log page. */
2156 kfree(tst_page);
2157 tst_page = NULL;
2158
2159 err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2160 if (!err && !usa_error &&
2161 check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2162 err = -EINVAL;
2163 goto out;
2164 }
2165
2166 file_is_valid:
2167
2168 /* We have a valid file. */
2169 if (page_off1 || tail_page) {
2170 struct RECORD_PAGE_HDR *tmp_page;
2171
2172 if (sb_rdonly(log->ni->mi.sbi->sb)) {
2173 err = -EROFS;
2174 goto out;
2175 }
2176
2177 if (page_off1) {
2178 tmp_page = Add2Ptr(page_bufs, page_off1 - page_off);
2179 tails -= (page_off1 - page_off) / log->page_size;
2180 if (!tail_page)
2181 tails -= 1;
2182 } else {
2183 tmp_page = tail_page;
2184 tails = 1;
2185 }
2186
2187 while (tails--) {
2188 u64 off = hdr_file_off(log, tmp_page);
2189
2190 if (!page) {
2191 page = kmalloc(log->page_size, GFP_NOFS);
2192 if (!page) {
2193 err = -ENOMEM;
2194 goto out;
2195 }
2196 }
2197
2198 /*
2199 * Correct page and copy the data from this page
2200 * into it and flush it to disk.
2201 */
2202 memcpy(page, tmp_page, log->page_size);
2203
2204 /* Fill last flushed lsn value flush the page. */
2205 if (log->major_ver < 2)
2206 page->rhdr.lsn = page->record_hdr.last_end_lsn;
2207 else
2208 page->file_off = 0;
2209
2210 page->page_pos = page->page_count = cpu_to_le16(1);
2211
2212 ntfs_fix_pre_write(&page->rhdr, log->page_size);
2213
2214 err = ntfs_sb_write_run(log->ni->mi.sbi,
2215 &log->ni->file.run, off, page,
2216 log->page_size, 0);
2217
2218 if (err)
2219 goto out;
2220
2221 if (part_io_count && second_off == off) {
2222 second_off += log->page_size;
2223 part_io_count -= 1;
2224 }
2225
2226 tmp_page = Add2Ptr(tmp_page, log->page_size);
2227 }
2228 }
2229
2230 if (part_io_count) {
2231 if (sb_rdonly(log->ni->mi.sbi->sb)) {
2232 err = -EROFS;
2233 goto out;
2234 }
2235 }
2236
2237 out:
2238 kfree(second_tail);
2239 kfree(first_tail);
2240 kfree(page);
2241 kfree(tst_page);
2242 kfree(page_bufs);
2243
2244 return err;
2245 }
2246
2247 /*
2248 * read_log_rec_buf - Copy a log record from the file to a buffer.
2249 *
2250 * The log record may span several log pages and may even wrap the file.
2251 */
read_log_rec_buf(struct ntfs_log * log,const struct LFS_RECORD_HDR * rh,void * buffer)2252 static int read_log_rec_buf(struct ntfs_log *log,
2253 const struct LFS_RECORD_HDR *rh, void *buffer)
2254 {
2255 int err;
2256 struct RECORD_PAGE_HDR *ph = NULL;
2257 u64 lsn = le64_to_cpu(rh->this_lsn);
2258 u32 vbo = lsn_to_vbo(log, lsn) & ~log->page_mask;
2259 u32 off = lsn_to_page_off(log, lsn) + log->record_header_len;
2260 u32 data_len = le32_to_cpu(rh->client_data_len);
2261
2262 /*
2263 * While there are more bytes to transfer,
2264 * we continue to attempt to perform the read.
2265 */
2266 for (;;) {
2267 bool usa_error;
2268 u32 tail = log->page_size - off;
2269
2270 if (tail >= data_len)
2271 tail = data_len;
2272
2273 data_len -= tail;
2274
2275 err = read_log_page(log, vbo, &ph, &usa_error);
2276 if (err)
2277 goto out;
2278
2279 /*
2280 * The last lsn on this page better be greater or equal
2281 * to the lsn we are copying.
2282 */
2283 if (lsn > le64_to_cpu(ph->rhdr.lsn)) {
2284 err = -EINVAL;
2285 goto out;
2286 }
2287
2288 memcpy(buffer, Add2Ptr(ph, off), tail);
2289
2290 /* If there are no more bytes to transfer, we exit the loop. */
2291 if (!data_len) {
2292 if (!is_log_record_end(ph) ||
2293 lsn > le64_to_cpu(ph->record_hdr.last_end_lsn)) {
2294 err = -EINVAL;
2295 goto out;
2296 }
2297 break;
2298 }
2299
2300 if (ph->rhdr.lsn == ph->record_hdr.last_end_lsn ||
2301 lsn > le64_to_cpu(ph->rhdr.lsn)) {
2302 err = -EINVAL;
2303 goto out;
2304 }
2305
2306 vbo = next_page_off(log, vbo);
2307 off = log->data_off;
2308
2309 /*
2310 * Adjust our pointer the user's buffer to transfer
2311 * the next block to.
2312 */
2313 buffer = Add2Ptr(buffer, tail);
2314 }
2315
2316 out:
2317 kfree(ph);
2318 return err;
2319 }
2320
read_rst_area(struct ntfs_log * log,struct NTFS_RESTART ** rst_,u64 * lsn)2321 static int read_rst_area(struct ntfs_log *log, struct NTFS_RESTART **rst_,
2322 u64 *lsn)
2323 {
2324 int err;
2325 struct LFS_RECORD_HDR *rh = NULL;
2326 const struct CLIENT_REC *cr =
2327 Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2328 u64 lsnr, lsnc = le64_to_cpu(cr->restart_lsn);
2329 u32 len;
2330 struct NTFS_RESTART *rst;
2331
2332 *lsn = 0;
2333 *rst_ = NULL;
2334
2335 /* If the client doesn't have a restart area, go ahead and exit now. */
2336 if (!lsnc)
2337 return 0;
2338
2339 err = read_log_page(log, lsn_to_vbo(log, lsnc),
2340 (struct RECORD_PAGE_HDR **)&rh, NULL);
2341 if (err)
2342 return err;
2343
2344 rst = NULL;
2345 lsnr = le64_to_cpu(rh->this_lsn);
2346
2347 if (lsnc != lsnr) {
2348 /* If the lsn values don't match, then the disk is corrupt. */
2349 err = -EINVAL;
2350 goto out;
2351 }
2352
2353 *lsn = lsnr;
2354 len = le32_to_cpu(rh->client_data_len);
2355
2356 if (!len) {
2357 err = 0;
2358 goto out;
2359 }
2360
2361 if (len < sizeof(struct NTFS_RESTART)) {
2362 err = -EINVAL;
2363 goto out;
2364 }
2365
2366 rst = kmalloc(len, GFP_NOFS);
2367 if (!rst) {
2368 err = -ENOMEM;
2369 goto out;
2370 }
2371
2372 /* Copy the data into the 'rst' buffer. */
2373 err = read_log_rec_buf(log, rh, rst);
2374 if (err)
2375 goto out;
2376
2377 *rst_ = rst;
2378 rst = NULL;
2379
2380 out:
2381 kfree(rh);
2382 kfree(rst);
2383
2384 return err;
2385 }
2386
find_log_rec(struct ntfs_log * log,u64 lsn,struct lcb * lcb)2387 static int find_log_rec(struct ntfs_log *log, u64 lsn, struct lcb *lcb)
2388 {
2389 int err;
2390 struct LFS_RECORD_HDR *rh = lcb->lrh;
2391 u32 rec_len, len;
2392
2393 /* Read the record header for this lsn. */
2394 if (!rh) {
2395 err = read_log_page(log, lsn_to_vbo(log, lsn),
2396 (struct RECORD_PAGE_HDR **)&rh, NULL);
2397
2398 lcb->lrh = rh;
2399 if (err)
2400 return err;
2401 }
2402
2403 /*
2404 * If the lsn the log record doesn't match the desired
2405 * lsn then the disk is corrupt.
2406 */
2407 if (lsn != le64_to_cpu(rh->this_lsn))
2408 return -EINVAL;
2409
2410 len = le32_to_cpu(rh->client_data_len);
2411
2412 /*
2413 * Check that the length field isn't greater than the total
2414 * available space the log file.
2415 */
2416 rec_len = len + log->record_header_len;
2417 if (rec_len >= log->total_avail)
2418 return -EINVAL;
2419
2420 /*
2421 * If the entire log record is on this log page,
2422 * put a pointer to the log record the context block.
2423 */
2424 if (rh->flags & LOG_RECORD_MULTI_PAGE) {
2425 void *lr = kmalloc(len, GFP_NOFS);
2426
2427 if (!lr)
2428 return -ENOMEM;
2429
2430 lcb->log_rec = lr;
2431 lcb->alloc = true;
2432
2433 /* Copy the data into the buffer returned. */
2434 err = read_log_rec_buf(log, rh, lr);
2435 if (err)
2436 return err;
2437 } else {
2438 /* If beyond the end of the current page -> an error. */
2439 u32 page_off = lsn_to_page_off(log, lsn);
2440
2441 if (page_off + len + log->record_header_len > log->page_size)
2442 return -EINVAL;
2443
2444 lcb->log_rec = Add2Ptr(rh, sizeof(struct LFS_RECORD_HDR));
2445 lcb->alloc = false;
2446 }
2447
2448 return 0;
2449 }
2450
2451 /*
2452 * read_log_rec_lcb - Init the query operation.
2453 */
read_log_rec_lcb(struct ntfs_log * log,u64 lsn,u32 ctx_mode,struct lcb ** lcb_)2454 static int read_log_rec_lcb(struct ntfs_log *log, u64 lsn, u32 ctx_mode,
2455 struct lcb **lcb_)
2456 {
2457 int err;
2458 const struct CLIENT_REC *cr;
2459 struct lcb *lcb;
2460
2461 switch (ctx_mode) {
2462 case lcb_ctx_undo_next:
2463 case lcb_ctx_prev:
2464 case lcb_ctx_next:
2465 break;
2466 default:
2467 return -EINVAL;
2468 }
2469
2470 /* Check that the given lsn is the legal range for this client. */
2471 cr = Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2472
2473 if (!verify_client_lsn(log, cr, lsn))
2474 return -EINVAL;
2475
2476 lcb = kzalloc_obj(struct lcb, GFP_NOFS);
2477 if (!lcb)
2478 return -ENOMEM;
2479 lcb->client = log->client_id;
2480 lcb->ctx_mode = ctx_mode;
2481
2482 /* Find the log record indicated by the given lsn. */
2483 err = find_log_rec(log, lsn, lcb);
2484 if (err)
2485 goto out;
2486
2487 *lcb_ = lcb;
2488 return 0;
2489
2490 out:
2491 lcb_put(lcb);
2492 *lcb_ = NULL;
2493 return err;
2494 }
2495
2496 /*
2497 * find_client_next_lsn
2498 *
2499 * Attempt to find the next lsn to return to a client based on the context mode.
2500 */
find_client_next_lsn(struct ntfs_log * log,struct lcb * lcb,u64 * lsn)2501 static int find_client_next_lsn(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2502 {
2503 int err;
2504 u64 next_lsn;
2505 struct LFS_RECORD_HDR *hdr;
2506
2507 hdr = lcb->lrh;
2508 *lsn = 0;
2509
2510 if (lcb_ctx_next != lcb->ctx_mode)
2511 goto check_undo_next;
2512
2513 /* Loop as long as another lsn can be found. */
2514 for (;;) {
2515 u64 current_lsn;
2516
2517 err = next_log_lsn(log, hdr, ¤t_lsn);
2518 if (err)
2519 goto out;
2520
2521 if (!current_lsn)
2522 break;
2523
2524 if (hdr != lcb->lrh)
2525 kfree(hdr);
2526
2527 hdr = NULL;
2528 err = read_log_page(log, lsn_to_vbo(log, current_lsn),
2529 (struct RECORD_PAGE_HDR **)&hdr, NULL);
2530 if (err)
2531 goto out;
2532
2533 if (memcmp(&hdr->client, &lcb->client,
2534 sizeof(struct CLIENT_ID))) {
2535 /*err = -EINVAL; */
2536 } else if (LfsClientRecord == hdr->record_type) {
2537 kfree(lcb->lrh);
2538 lcb->lrh = hdr;
2539 *lsn = current_lsn;
2540 return 0;
2541 }
2542 }
2543
2544 out:
2545 if (hdr != lcb->lrh)
2546 kfree(hdr);
2547 return err;
2548
2549 check_undo_next:
2550 if (lcb_ctx_undo_next == lcb->ctx_mode)
2551 next_lsn = le64_to_cpu(hdr->client_undo_next_lsn);
2552 else if (lcb_ctx_prev == lcb->ctx_mode)
2553 next_lsn = le64_to_cpu(hdr->client_prev_lsn);
2554 else
2555 return 0;
2556
2557 if (!next_lsn)
2558 return 0;
2559
2560 if (!verify_client_lsn(
2561 log, Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)),
2562 next_lsn))
2563 return 0;
2564
2565 hdr = NULL;
2566 err = read_log_page(log, lsn_to_vbo(log, next_lsn),
2567 (struct RECORD_PAGE_HDR **)&hdr, NULL);
2568 if (err)
2569 return err;
2570 kfree(lcb->lrh);
2571 lcb->lrh = hdr;
2572
2573 *lsn = next_lsn;
2574
2575 return 0;
2576 }
2577
read_next_log_rec(struct ntfs_log * log,struct lcb * lcb,u64 * lsn)2578 static int read_next_log_rec(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2579 {
2580 int err;
2581
2582 err = find_client_next_lsn(log, lcb, lsn);
2583 if (err)
2584 return err;
2585
2586 if (!*lsn)
2587 return 0;
2588
2589 if (lcb->alloc)
2590 kfree(lcb->log_rec);
2591
2592 lcb->log_rec = NULL;
2593 lcb->alloc = false;
2594 kfree(lcb->lrh);
2595 lcb->lrh = NULL;
2596
2597 return find_log_rec(log, *lsn, lcb);
2598 }
2599
check_index_header(const struct INDEX_HDR * hdr,size_t bytes)2600 bool check_index_header(const struct INDEX_HDR *hdr, size_t bytes)
2601 {
2602 __le16 mask;
2603 u32 min_de, de_off, used, total;
2604 const struct NTFS_DE *e;
2605
2606 if (hdr_has_subnode(hdr)) {
2607 min_de = sizeof(struct NTFS_DE) + sizeof(u64);
2608 mask = NTFS_IE_HAS_SUBNODES;
2609 } else {
2610 min_de = sizeof(struct NTFS_DE);
2611 mask = 0;
2612 }
2613
2614 de_off = le32_to_cpu(hdr->de_off);
2615 used = le32_to_cpu(hdr->used);
2616 total = le32_to_cpu(hdr->total);
2617
2618 if (de_off > bytes - min_de || used > bytes || total > bytes ||
2619 de_off + min_de > used || used > total) {
2620 return false;
2621 }
2622
2623 e = Add2Ptr(hdr, de_off);
2624 for (;;) {
2625 u16 esize = le16_to_cpu(e->size);
2626 struct NTFS_DE *next = Add2Ptr(e, esize);
2627
2628 if (esize < min_de || PtrOffset(hdr, next) > used ||
2629 (e->flags & NTFS_IE_HAS_SUBNODES) != mask) {
2630 return false;
2631 }
2632
2633 if (de_is_last(e))
2634 break;
2635
2636 e = next;
2637 }
2638
2639 return true;
2640 }
2641
check_index_buffer(const struct INDEX_BUFFER * ib,u32 bytes)2642 static inline bool check_index_buffer(const struct INDEX_BUFFER *ib, u32 bytes)
2643 {
2644 u16 fo;
2645 const struct NTFS_RECORD_HEADER *r = &ib->rhdr;
2646
2647 if (r->sign != NTFS_INDX_SIGNATURE)
2648 return false;
2649
2650 fo = (SECTOR_SIZE - ((bytes >> SECTOR_SHIFT) + 1) * sizeof(short));
2651
2652 if (le16_to_cpu(r->fix_off) > fo)
2653 return false;
2654
2655 if ((le16_to_cpu(r->fix_num) - 1) * SECTOR_SIZE != bytes)
2656 return false;
2657
2658 return check_index_header(&ib->ihdr,
2659 bytes - offsetof(struct INDEX_BUFFER, ihdr));
2660 }
2661
check_index_root(const struct ATTRIB * attr,struct ntfs_sb_info * sbi)2662 static inline bool check_index_root(const struct ATTRIB *attr,
2663 struct ntfs_sb_info *sbi)
2664 {
2665 bool ret;
2666 const struct INDEX_ROOT *root = resident_data(attr);
2667 u8 index_bits = le32_to_cpu(root->index_block_size) >=
2668 sbi->cluster_size ?
2669 sbi->cluster_bits :
2670 SECTOR_SHIFT;
2671 u8 block_clst = root->index_block_clst;
2672
2673 if (le32_to_cpu(attr->res.data_size) < sizeof(struct INDEX_ROOT) ||
2674 (root->type != ATTR_NAME && root->type != ATTR_ZERO) ||
2675 (root->type == ATTR_NAME &&
2676 root->rule != NTFS_COLLATION_TYPE_FILENAME) ||
2677 (le32_to_cpu(root->index_block_size) !=
2678 (block_clst << index_bits)) ||
2679 (block_clst != 1 && block_clst != 2 && block_clst != 4 &&
2680 block_clst != 8 && block_clst != 0x10 && block_clst != 0x20 &&
2681 block_clst != 0x40 && block_clst != 0x80)) {
2682 return false;
2683 }
2684
2685 ret = check_index_header(&root->ihdr,
2686 le32_to_cpu(attr->res.data_size) -
2687 offsetof(struct INDEX_ROOT, ihdr));
2688 return ret;
2689 }
2690
check_attr(const struct MFT_REC * rec,const struct ATTRIB * attr,struct ntfs_sb_info * sbi)2691 static inline bool check_attr(const struct MFT_REC *rec,
2692 const struct ATTRIB *attr,
2693 struct ntfs_sb_info *sbi)
2694 {
2695 u32 asize = le32_to_cpu(attr->size);
2696 u32 rsize = 0;
2697 u64 dsize, svcn, evcn;
2698 u16 run_off;
2699
2700 /* Check the fixed part of the attribute record header. */
2701 if (asize >= sbi->record_size ||
2702 asize + PtrOffset(rec, attr) >= sbi->record_size ||
2703 (attr->name_len &&
2704 le16_to_cpu(attr->name_off) + attr->name_len * sizeof(short) >
2705 asize)) {
2706 return false;
2707 }
2708
2709 /* Check the attribute fields. */
2710 switch (attr->non_res) {
2711 case 0:
2712 rsize = le32_to_cpu(attr->res.data_size);
2713 if (rsize >= asize ||
2714 le16_to_cpu(attr->res.data_off) + rsize > asize) {
2715 return false;
2716 }
2717 break;
2718
2719 case 1:
2720 dsize = le64_to_cpu(attr->nres.data_size);
2721 svcn = le64_to_cpu(attr->nres.svcn);
2722 evcn = le64_to_cpu(attr->nres.evcn);
2723 run_off = le16_to_cpu(attr->nres.run_off);
2724
2725 if (svcn > evcn + 1 || run_off >= asize ||
2726 le64_to_cpu(attr->nres.valid_size) > dsize ||
2727 dsize > le64_to_cpu(attr->nres.alloc_size)) {
2728 return false;
2729 }
2730
2731 if (run_off > asize)
2732 return false;
2733
2734 if (run_unpack(NULL, sbi, 0, svcn, evcn, svcn,
2735 Add2Ptr(attr, run_off), asize - run_off) < 0) {
2736 return false;
2737 }
2738
2739 return true;
2740
2741 default:
2742 return false;
2743 }
2744
2745 switch (attr->type) {
2746 case ATTR_NAME:
2747 if (fname_full_size(Add2Ptr(
2748 attr, le16_to_cpu(attr->res.data_off))) > asize) {
2749 return false;
2750 }
2751 break;
2752
2753 case ATTR_ROOT:
2754 return check_index_root(attr, sbi);
2755
2756 case ATTR_STD:
2757 if (rsize < sizeof(struct ATTR_STD_INFO5) &&
2758 rsize != sizeof(struct ATTR_STD_INFO)) {
2759 return false;
2760 }
2761 break;
2762
2763 case ATTR_LIST:
2764 case ATTR_ID:
2765 case ATTR_SECURE:
2766 case ATTR_LABEL:
2767 case ATTR_VOL_INFO:
2768 case ATTR_DATA:
2769 case ATTR_ALLOC:
2770 case ATTR_BITMAP:
2771 case ATTR_REPARSE:
2772 case ATTR_EA_INFO:
2773 case ATTR_EA:
2774 case ATTR_PROPERTYSET:
2775 case ATTR_LOGGED_UTILITY_STREAM:
2776 break;
2777
2778 default:
2779 return false;
2780 }
2781
2782 return true;
2783 }
2784
check_file_record(const struct MFT_REC * rec,const struct MFT_REC * rec2,struct ntfs_sb_info * sbi)2785 static inline bool check_file_record(const struct MFT_REC *rec,
2786 const struct MFT_REC *rec2,
2787 struct ntfs_sb_info *sbi)
2788 {
2789 const struct ATTRIB *attr;
2790 u16 fo = le16_to_cpu(rec->rhdr.fix_off);
2791 u16 fn = le16_to_cpu(rec->rhdr.fix_num);
2792 u16 ao = le16_to_cpu(rec->attr_off);
2793 u32 rs = sbi->record_size;
2794
2795 /* Check the file record header for consistency. */
2796 if (rec->rhdr.sign != NTFS_FILE_SIGNATURE ||
2797 fo > (SECTOR_SIZE - ((rs >> SECTOR_SHIFT) + 1) * sizeof(short)) ||
2798 (fn - 1) * SECTOR_SIZE != rs || ao < MFTRECORD_FIXUP_OFFSET_1 ||
2799 ao > sbi->record_size - SIZEOF_RESIDENT || !is_rec_inuse(rec) ||
2800 le32_to_cpu(rec->total) != rs) {
2801 return false;
2802 }
2803
2804 /* Loop to check all of the attributes. */
2805 for (attr = Add2Ptr(rec, ao); attr->type != ATTR_END;
2806 attr = Add2Ptr(attr, le32_to_cpu(attr->size))) {
2807 if (check_attr(rec, attr, sbi))
2808 continue;
2809 return false;
2810 }
2811
2812 return true;
2813 }
2814
check_lsn(const struct NTFS_RECORD_HEADER * hdr,const u64 * rlsn)2815 static inline int check_lsn(const struct NTFS_RECORD_HEADER *hdr,
2816 const u64 *rlsn)
2817 {
2818 u64 lsn;
2819
2820 if (!rlsn)
2821 return true;
2822
2823 lsn = le64_to_cpu(hdr->lsn);
2824
2825 if (hdr->sign == NTFS_HOLE_SIGNATURE)
2826 return false;
2827
2828 if (*rlsn > lsn)
2829 return true;
2830
2831 return false;
2832 }
2833
check_if_attr(const struct MFT_REC * rec,const struct LOG_REC_HDR * lrh)2834 static inline bool check_if_attr(const struct MFT_REC *rec,
2835 const struct LOG_REC_HDR *lrh)
2836 {
2837 u16 ro = le16_to_cpu(lrh->record_off);
2838 u16 o = le16_to_cpu(rec->attr_off);
2839 const struct ATTRIB *attr = Add2Ptr(rec, o);
2840
2841 while (o < ro) {
2842 u32 asize;
2843
2844 if (attr->type == ATTR_END)
2845 break;
2846
2847 asize = le32_to_cpu(attr->size);
2848 if (!asize)
2849 break;
2850
2851 o += asize;
2852 attr = Add2Ptr(attr, asize);
2853 }
2854
2855 return o == ro;
2856 }
2857
check_if_index_root(const struct MFT_REC * rec,const struct LOG_REC_HDR * lrh)2858 static inline bool check_if_index_root(const struct MFT_REC *rec,
2859 const struct LOG_REC_HDR *lrh)
2860 {
2861 u16 ro = le16_to_cpu(lrh->record_off);
2862 u16 o = le16_to_cpu(rec->attr_off);
2863 const struct ATTRIB *attr = Add2Ptr(rec, o);
2864
2865 while (o < ro) {
2866 u32 asize;
2867
2868 if (attr->type == ATTR_END)
2869 break;
2870
2871 asize = le32_to_cpu(attr->size);
2872 if (!asize)
2873 break;
2874
2875 o += asize;
2876 attr = Add2Ptr(attr, asize);
2877 }
2878
2879 return o == ro && attr->type == ATTR_ROOT;
2880 }
2881
check_if_root_index(const struct ATTRIB * attr,const struct INDEX_HDR * hdr,const struct LOG_REC_HDR * lrh)2882 static inline bool check_if_root_index(const struct ATTRIB *attr,
2883 const struct INDEX_HDR *hdr,
2884 const struct LOG_REC_HDR *lrh)
2885 {
2886 u16 ao = le16_to_cpu(lrh->attr_off);
2887 u32 de_off = le32_to_cpu(hdr->de_off);
2888 u32 o = PtrOffset(attr, hdr) + de_off;
2889 const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2890 u32 asize = le32_to_cpu(attr->size);
2891
2892 while (o < ao) {
2893 u16 esize;
2894
2895 if (o >= asize)
2896 break;
2897
2898 esize = le16_to_cpu(e->size);
2899 if (!esize)
2900 break;
2901
2902 o += esize;
2903 e = Add2Ptr(e, esize);
2904 }
2905
2906 return o == ao;
2907 }
2908
check_if_alloc_index(const struct INDEX_HDR * hdr,u32 attr_off)2909 static inline bool check_if_alloc_index(const struct INDEX_HDR *hdr,
2910 u32 attr_off)
2911 {
2912 u32 de_off = le32_to_cpu(hdr->de_off);
2913 u32 o = offsetof(struct INDEX_BUFFER, ihdr) + de_off;
2914 const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2915 u32 used = le32_to_cpu(hdr->used);
2916
2917 while (o < attr_off) {
2918 u16 esize;
2919
2920 if (de_off >= used)
2921 break;
2922
2923 esize = le16_to_cpu(e->size);
2924 if (!esize)
2925 break;
2926
2927 o += esize;
2928 de_off += esize;
2929 e = Add2Ptr(e, esize);
2930 }
2931
2932 return o == attr_off;
2933 }
2934
change_attr_size(struct MFT_REC * rec,struct ATTRIB * attr,u32 nsize)2935 static inline void change_attr_size(struct MFT_REC *rec, struct ATTRIB *attr,
2936 u32 nsize)
2937 {
2938 u32 asize = le32_to_cpu(attr->size);
2939 int dsize = nsize - asize;
2940 u8 *next = Add2Ptr(attr, asize);
2941 u32 used = le32_to_cpu(rec->used);
2942
2943 memmove(Add2Ptr(attr, nsize), next, used - PtrOffset(rec, next));
2944
2945 rec->used = cpu_to_le32(used + dsize);
2946 attr->size = cpu_to_le32(nsize);
2947 }
2948
2949 struct OpenAttr {
2950 struct ATTRIB *attr;
2951 struct runs_tree *run1;
2952 struct runs_tree run0;
2953 struct ntfs_inode *ni;
2954 // CLST rno;
2955 };
2956
2957 /*
2958 * cmp_type_and_name
2959 *
2960 * Return: 0 if 'attr' has the same type and name.
2961 */
cmp_type_and_name(const struct ATTRIB * a1,const struct ATTRIB * a2)2962 static inline int cmp_type_and_name(const struct ATTRIB *a1,
2963 const struct ATTRIB *a2)
2964 {
2965 return a1->type != a2->type || a1->name_len != a2->name_len ||
2966 (a1->name_len && memcmp(attr_name(a1), attr_name(a2),
2967 a1->name_len * sizeof(short)));
2968 }
2969
find_loaded_attr(struct ntfs_log * log,const struct ATTRIB * attr,CLST rno)2970 static struct OpenAttr *find_loaded_attr(struct ntfs_log *log,
2971 const struct ATTRIB *attr, CLST rno)
2972 {
2973 struct OPEN_ATTR_ENRTY *oe = NULL;
2974
2975 while ((oe = enum_rstbl(log->open_attr_tbl, oe))) {
2976 struct OpenAttr *op_attr;
2977
2978 if (ino_get(&oe->ref) != rno)
2979 continue;
2980
2981 op_attr = (struct OpenAttr *)oe->ptr;
2982 if (!cmp_type_and_name(op_attr->attr, attr))
2983 return op_attr;
2984 }
2985 return NULL;
2986 }
2987
attr_create_nonres_log(struct ntfs_sb_info * sbi,enum ATTR_TYPE type,u64 size,const u16 * name,size_t name_len,__le16 flags)2988 static struct ATTRIB *attr_create_nonres_log(struct ntfs_sb_info *sbi,
2989 enum ATTR_TYPE type, u64 size,
2990 const u16 *name, size_t name_len,
2991 __le16 flags)
2992 {
2993 struct ATTRIB *attr;
2994 u32 name_size = ALIGN(name_len * sizeof(short), 8);
2995 bool is_ext = flags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED);
2996 u32 asize = name_size +
2997 (is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT);
2998
2999 attr = kzalloc(asize, GFP_NOFS);
3000 if (!attr)
3001 return NULL;
3002
3003 attr->type = type;
3004 attr->size = cpu_to_le32(asize);
3005 attr->flags = flags;
3006 attr->non_res = 1;
3007 attr->name_len = name_len;
3008
3009 attr->nres.evcn = cpu_to_le64((u64)bytes_to_cluster(sbi, size) - 1);
3010 attr->nres.alloc_size = cpu_to_le64(ntfs_up_cluster(sbi, size));
3011 attr->nres.data_size = cpu_to_le64(size);
3012 attr->nres.valid_size = attr->nres.data_size;
3013 if (is_ext) {
3014 attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
3015 if (is_attr_compressed(attr))
3016 attr->nres.c_unit = NTFS_LZNT_CUNIT;
3017
3018 attr->nres.run_off =
3019 cpu_to_le16(SIZEOF_NONRESIDENT_EX + name_size);
3020 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT_EX), name,
3021 name_len * sizeof(short));
3022 } else {
3023 attr->name_off = SIZEOF_NONRESIDENT_LE;
3024 attr->nres.run_off =
3025 cpu_to_le16(SIZEOF_NONRESIDENT + name_size);
3026 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT), name,
3027 name_len * sizeof(short));
3028 }
3029
3030 return attr;
3031 }
3032
3033 /*
3034 * update_oa_attr - Synchronize OpenAttr's attribute pointer with modified attribute
3035 * @oa2: OpenAttr structure in memory that needs to be updated
3036 * @attr: Modified attribute from MFT record to duplicate
3037 *
3038 * Returns true on success, false on allocation failure.
3039 */
update_oa_attr(struct OpenAttr * oa2,struct ATTRIB * attr)3040 static bool update_oa_attr(struct OpenAttr *oa2, struct ATTRIB *attr)
3041 {
3042 void *p2;
3043
3044 p2 = kmemdup(attr, le32_to_cpu(attr->size), GFP_NOFS);
3045 if (p2) {
3046 kfree(oa2->attr);
3047 oa2->attr = p2;
3048 return true;
3049 }
3050 return false;
3051 }
3052
3053 /*
3054 * do_action - Common routine for the Redo and Undo Passes.
3055 * @rlsn: If it is NULL then undo.
3056 */
do_action(struct ntfs_log * log,struct OPEN_ATTR_ENRTY * oe,const struct LOG_REC_HDR * lrh,u32 op,void * data,u32 dlen,u32 rec_len,const u64 * rlsn)3057 static int do_action(struct ntfs_log *log, struct OPEN_ATTR_ENRTY *oe,
3058 const struct LOG_REC_HDR *lrh, u32 op, void *data,
3059 u32 dlen, u32 rec_len, const u64 *rlsn)
3060 {
3061 int err = 0;
3062 struct ntfs_sb_info *sbi = log->ni->mi.sbi;
3063 struct inode *inode = NULL, *inode_parent;
3064 struct mft_inode *mi = NULL, *mi2_child = NULL;
3065 CLST rno = 0, rno_base = 0;
3066 struct INDEX_BUFFER *ib = NULL;
3067 struct MFT_REC *rec = NULL;
3068 struct ATTRIB *attr = NULL, *attr2;
3069 struct INDEX_HDR *hdr;
3070 struct INDEX_ROOT *root;
3071 struct NTFS_DE *e, *e1, *e2;
3072 struct NEW_ATTRIBUTE_SIZES *new_sz;
3073 struct ATTR_FILE_NAME *fname;
3074 struct OpenAttr *oa, *oa2;
3075 u32 nsize, t32, asize, used, esize, off, bits;
3076 u16 id, id2;
3077 u32 record_size = sbi->record_size;
3078 u64 t64;
3079 u16 roff = le16_to_cpu(lrh->record_off);
3080 u16 aoff = le16_to_cpu(lrh->attr_off);
3081 u64 lco = 0;
3082 u64 cbo = (u64)le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
3083 u64 tvo = le64_to_cpu(lrh->target_vcn) << sbi->cluster_bits;
3084 u64 vbo = cbo + tvo;
3085 void *buffer_le = NULL;
3086 u32 bytes = 0;
3087 bool a_dirty = false;
3088 u16 data_off;
3089
3090 oa = oe->ptr;
3091
3092 /* Big switch to prepare. */
3093 switch (op) {
3094 /* ============================================================
3095 * Process MFT records, as described by the current log record.
3096 * ============================================================
3097 */
3098 case InitializeFileRecordSegment:
3099 case DeallocateFileRecordSegment:
3100 case WriteEndOfFileRecordSegment:
3101 case CreateAttribute:
3102 case DeleteAttribute:
3103 case UpdateResidentValue:
3104 case UpdateMappingPairs:
3105 case SetNewAttributeSizes:
3106 case AddIndexEntryRoot:
3107 case DeleteIndexEntryRoot:
3108 case SetIndexEntryVcnRoot:
3109 case UpdateFileNameRoot:
3110 case UpdateRecordDataRoot:
3111 case ZeroEndOfFileRecord:
3112 rno = vbo >> sbi->record_bits;
3113 inode = ilookup(sbi->sb, rno);
3114 if (inode) {
3115 mi = &ntfs_i(inode)->mi;
3116 } else {
3117 /* Read from disk. */
3118 err = mi_get(sbi, rno, &mi);
3119 if (err && op == InitializeFileRecordSegment) {
3120 mi = kzalloc_obj(struct mft_inode, GFP_NOFS);
3121 if (!mi)
3122 return -ENOMEM;
3123 err = mi_format_new(mi, sbi, rno, 0, false);
3124 }
3125 if (err)
3126 return err;
3127 }
3128 rec = mi->mrec;
3129
3130 if (op == DeallocateFileRecordSegment)
3131 goto skip_load_parent;
3132
3133 if (rec->rhdr.sign == NTFS_BAAD_SIGNATURE)
3134 goto dirty_vol;
3135 if (!check_lsn(&rec->rhdr, rlsn))
3136 goto out;
3137 if (!check_file_record(rec, NULL, sbi))
3138 goto dirty_vol;
3139 attr = Add2Ptr(rec, roff);
3140
3141 if (is_rec_base(rec) || InitializeFileRecordSegment == op) {
3142 rno_base = rno;
3143 goto skip_load_parent;
3144 }
3145
3146 rno_base = ino_get(&rec->parent_ref);
3147 inode_parent = ntfs_iget5(sbi->sb, &rec->parent_ref, NULL);
3148 if (IS_ERR(inode_parent))
3149 goto skip_load_parent;
3150
3151 if (is_bad_inode(inode_parent)) {
3152 iput(inode_parent);
3153 goto skip_load_parent;
3154 }
3155
3156 if (ni_load_mi_ex(ntfs_i(inode_parent), rno, &mi2_child)) {
3157 iput(inode_parent);
3158 } else {
3159 if (mi2_child->mrec != mi->mrec)
3160 memcpy(mi2_child->mrec, mi->mrec,
3161 sbi->record_size);
3162
3163 if (inode)
3164 iput(inode);
3165 else
3166 mi_put(mi);
3167
3168 inode = inode_parent;
3169 mi = mi2_child;
3170 rec = mi2_child->mrec;
3171 attr = Add2Ptr(rec, roff);
3172 }
3173
3174 skip_load_parent:
3175 inode_parent = NULL;
3176 break;
3177
3178 /*
3179 * Process attributes, as described by the current log record.
3180 */
3181 case UpdateNonresidentValue:
3182 case AddIndexEntryAllocation:
3183 case DeleteIndexEntryAllocation:
3184 case WriteEndOfIndexBuffer:
3185 case SetIndexEntryVcnAllocation:
3186 case UpdateFileNameAllocation:
3187 case SetBitsInNonresidentBitMap:
3188 case ClearBitsInNonresidentBitMap:
3189 case UpdateRecordDataAllocation:
3190 attr = oa->attr;
3191 bytes = UpdateNonresidentValue == op ? dlen : 0;
3192 lco = (u64)le16_to_cpu(lrh->lcns_follow) << sbi->cluster_bits;
3193
3194 if (attr->type == ATTR_ALLOC) {
3195 t32 = le32_to_cpu(oe->bytes_per_index);
3196 if (bytes < t32)
3197 bytes = t32;
3198 }
3199
3200 if (!bytes)
3201 bytes = lco - cbo;
3202
3203 bytes += roff;
3204 if (attr->type == ATTR_ALLOC)
3205 bytes = (bytes + 511) & ~511; // align
3206
3207 buffer_le = kmalloc(bytes, GFP_NOFS);
3208 if (!buffer_le)
3209 return -ENOMEM;
3210
3211 err = ntfs_read_run_nb(sbi, oa->run1, vbo, buffer_le, bytes,
3212 NULL);
3213 if (err)
3214 goto out;
3215
3216 if (attr->type == ATTR_ALLOC && *(int *)buffer_le)
3217 ntfs_fix_post_read(buffer_le, bytes, false);
3218 break;
3219
3220 default:
3221 WARN_ON(1);
3222 }
3223
3224 /* Big switch to do operation. */
3225 switch (op) {
3226 case InitializeFileRecordSegment:
3227 if (roff + dlen > record_size)
3228 goto dirty_vol;
3229
3230 memcpy(Add2Ptr(rec, roff), data, dlen);
3231 mi->dirty = true;
3232 break;
3233
3234 case DeallocateFileRecordSegment:
3235 clear_rec_inuse(rec);
3236 le16_add_cpu(&rec->seq, 1);
3237 mi->dirty = true;
3238 break;
3239
3240 case WriteEndOfFileRecordSegment:
3241 attr2 = (struct ATTRIB *)data;
3242 if (!check_if_attr(rec, lrh) || roff + dlen > record_size)
3243 goto dirty_vol;
3244
3245 memmove(attr, attr2, dlen);
3246 rec->used = cpu_to_le32(ALIGN(roff + dlen, 8));
3247
3248 mi->dirty = true;
3249 break;
3250
3251 case CreateAttribute:
3252 attr2 = (struct ATTRIB *)data;
3253 asize = le32_to_cpu(attr2->size);
3254 used = le32_to_cpu(rec->used);
3255
3256 if (!check_if_attr(rec, lrh) || dlen < SIZEOF_RESIDENT ||
3257 !IS_ALIGNED(asize, 8) ||
3258 Add2Ptr(attr2, asize) > Add2Ptr(lrh, rec_len) ||
3259 dlen > record_size - used) {
3260 goto dirty_vol;
3261 }
3262
3263 memmove(Add2Ptr(attr, asize), attr, used - roff);
3264 memcpy(attr, attr2, asize);
3265
3266 rec->used = cpu_to_le32(used + asize);
3267 id = le16_to_cpu(rec->next_attr_id);
3268 id2 = le16_to_cpu(attr2->id);
3269 if (id <= id2)
3270 rec->next_attr_id = cpu_to_le16(id2 + 1);
3271 if (is_attr_indexed(attr))
3272 le16_add_cpu(&rec->hard_links, 1);
3273
3274 oa2 = find_loaded_attr(log, attr, rno_base);
3275 if (oa2)
3276 update_oa_attr(oa2, attr);
3277
3278 mi->dirty = true;
3279 break;
3280
3281 case DeleteAttribute:
3282 asize = le32_to_cpu(attr->size);
3283 used = le32_to_cpu(rec->used);
3284
3285 if (!check_if_attr(rec, lrh))
3286 goto dirty_vol;
3287
3288 rec->used = cpu_to_le32(used - asize);
3289 if (is_attr_indexed(attr))
3290 le16_add_cpu(&rec->hard_links, -1);
3291
3292 memmove(attr, Add2Ptr(attr, asize), used - asize - roff);
3293
3294 mi->dirty = true;
3295 break;
3296
3297 case UpdateResidentValue:
3298 nsize = aoff + dlen;
3299
3300 if (!check_if_attr(rec, lrh))
3301 goto dirty_vol;
3302
3303 asize = le32_to_cpu(attr->size);
3304 used = le32_to_cpu(rec->used);
3305
3306 if (lrh->redo_len == lrh->undo_len) {
3307 if (nsize > asize)
3308 goto dirty_vol;
3309 goto move_data;
3310 }
3311
3312 if (nsize > asize && nsize - asize > record_size - used)
3313 goto dirty_vol;
3314
3315 nsize = ALIGN(nsize, 8);
3316 data_off = le16_to_cpu(attr->res.data_off);
3317
3318 if (nsize < asize) {
3319 memmove(Add2Ptr(attr, aoff), data, dlen);
3320 data = NULL; // To skip below memmove().
3321 }
3322
3323 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3324 used - le16_to_cpu(lrh->record_off) - asize);
3325
3326 rec->used = cpu_to_le32(used + nsize - asize);
3327 attr->size = cpu_to_le32(nsize);
3328 attr->res.data_size = cpu_to_le32(aoff + dlen - data_off);
3329
3330 move_data:
3331 if (data)
3332 memmove(Add2Ptr(attr, aoff), data, dlen);
3333
3334 oa2 = find_loaded_attr(log, attr, rno_base);
3335 if (oa2 && update_oa_attr(oa2, attr))
3336 oa2->run1 = &oa2->run0;
3337
3338 mi->dirty = true;
3339 break;
3340
3341 case UpdateMappingPairs:
3342 nsize = aoff + dlen;
3343 asize = le32_to_cpu(attr->size);
3344 used = le32_to_cpu(rec->used);
3345
3346 if (!check_if_attr(rec, lrh) || !attr->non_res ||
3347 aoff < le16_to_cpu(attr->nres.run_off) || aoff > asize ||
3348 (nsize > asize && nsize - asize > record_size - used)) {
3349 goto dirty_vol;
3350 }
3351
3352 nsize = ALIGN(nsize, 8);
3353
3354 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3355 used - le16_to_cpu(lrh->record_off) - asize);
3356 rec->used = cpu_to_le32(used + nsize - asize);
3357 attr->size = cpu_to_le32(nsize);
3358 memmove(Add2Ptr(attr, aoff), data, dlen);
3359
3360 if (run_get_highest_vcn(le64_to_cpu(attr->nres.svcn),
3361 attr_run(attr), &t64)) {
3362 goto dirty_vol;
3363 }
3364
3365 attr->nres.evcn = cpu_to_le64(t64);
3366 oa2 = find_loaded_attr(log, attr, rno_base);
3367 if (oa2 && oa2->attr->non_res)
3368 oa2->attr->nres.evcn = attr->nres.evcn;
3369
3370 mi->dirty = true;
3371 break;
3372
3373 case SetNewAttributeSizes:
3374 new_sz = data;
3375 if (!check_if_attr(rec, lrh) || !attr->non_res)
3376 goto dirty_vol;
3377
3378 attr->nres.alloc_size = new_sz->alloc_size;
3379 attr->nres.data_size = new_sz->data_size;
3380 attr->nres.valid_size = new_sz->valid_size;
3381
3382 if (dlen >= sizeof(struct NEW_ATTRIBUTE_SIZES))
3383 attr->nres.total_size = new_sz->total_size;
3384
3385 oa2 = find_loaded_attr(log, attr, rno_base);
3386 if (oa2)
3387 update_oa_attr(oa2, attr);
3388
3389 mi->dirty = true;
3390 break;
3391
3392 case AddIndexEntryRoot:
3393 e = (struct NTFS_DE *)data;
3394 esize = le16_to_cpu(e->size);
3395 root = resident_data(attr);
3396 hdr = &root->ihdr;
3397 used = le32_to_cpu(hdr->used);
3398
3399 if (!check_if_index_root(rec, lrh) ||
3400 !check_if_root_index(attr, hdr, lrh) ||
3401 Add2Ptr(data, esize) > Add2Ptr(lrh, rec_len) ||
3402 esize > le32_to_cpu(rec->total) - le32_to_cpu(rec->used)) {
3403 goto dirty_vol;
3404 }
3405
3406 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3407
3408 change_attr_size(rec, attr, le32_to_cpu(attr->size) + esize);
3409
3410 memmove(Add2Ptr(e1, esize), e1,
3411 PtrOffset(e1, Add2Ptr(hdr, used)));
3412 memmove(e1, e, esize);
3413
3414 le32_add_cpu(&attr->res.data_size, esize);
3415 hdr->used = cpu_to_le32(used + esize);
3416 le32_add_cpu(&hdr->total, esize);
3417
3418 mi->dirty = true;
3419 break;
3420
3421 case DeleteIndexEntryRoot:
3422 root = resident_data(attr);
3423 hdr = &root->ihdr;
3424 used = le32_to_cpu(hdr->used);
3425
3426 if (!check_if_index_root(rec, lrh) ||
3427 !check_if_root_index(attr, hdr, lrh)) {
3428 goto dirty_vol;
3429 }
3430
3431 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3432 esize = le16_to_cpu(e1->size);
3433 if (PtrOffset(e1, Add2Ptr(hdr, used)) < esize)
3434 goto dirty_vol;
3435
3436 e2 = Add2Ptr(e1, esize);
3437
3438 memmove(e1, e2, PtrOffset(e2, Add2Ptr(hdr, used)));
3439
3440 le32_sub_cpu(&attr->res.data_size, esize);
3441 hdr->used = cpu_to_le32(used - esize);
3442 le32_sub_cpu(&hdr->total, esize);
3443
3444 change_attr_size(rec, attr, le32_to_cpu(attr->size) - esize);
3445
3446 mi->dirty = true;
3447 break;
3448
3449 case SetIndexEntryVcnRoot:
3450 root = resident_data(attr);
3451 hdr = &root->ihdr;
3452
3453 if (!check_if_index_root(rec, lrh) ||
3454 !check_if_root_index(attr, hdr, lrh)) {
3455 goto dirty_vol;
3456 }
3457
3458 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3459
3460 de_set_vbn_le(e, *(__le64 *)data);
3461 mi->dirty = true;
3462 break;
3463
3464 case UpdateFileNameRoot:
3465 root = resident_data(attr);
3466 hdr = &root->ihdr;
3467
3468 if (!check_if_index_root(rec, lrh) ||
3469 !check_if_root_index(attr, hdr, lrh)) {
3470 goto dirty_vol;
3471 }
3472
3473 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3474 fname = (struct ATTR_FILE_NAME *)(e + 1);
3475 memmove(&fname->dup, data, sizeof(fname->dup)); //
3476 mi->dirty = true;
3477 break;
3478
3479 case UpdateRecordDataRoot:
3480 root = resident_data(attr);
3481 hdr = &root->ihdr;
3482
3483 if (!check_if_index_root(rec, lrh) ||
3484 !check_if_root_index(attr, hdr, lrh)) {
3485 goto dirty_vol;
3486 }
3487
3488 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3489
3490 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3491
3492 mi->dirty = true;
3493 break;
3494
3495 case ZeroEndOfFileRecord:
3496 if (roff + dlen > record_size)
3497 goto dirty_vol;
3498
3499 memset(attr, 0, dlen);
3500 mi->dirty = true;
3501 break;
3502
3503 case UpdateNonresidentValue:
3504 if (lco < cbo + roff + dlen)
3505 goto dirty_vol;
3506
3507 memcpy(Add2Ptr(buffer_le, roff), data, dlen);
3508
3509 a_dirty = true;
3510 if (attr->type == ATTR_ALLOC)
3511 ntfs_fix_pre_write(buffer_le, bytes);
3512 break;
3513
3514 case AddIndexEntryAllocation:
3515 ib = Add2Ptr(buffer_le, roff);
3516 hdr = &ib->ihdr;
3517 e = data;
3518 esize = le16_to_cpu(e->size);
3519 e1 = Add2Ptr(ib, aoff);
3520
3521 if (is_baad(&ib->rhdr))
3522 goto dirty_vol;
3523 if (!check_lsn(&ib->rhdr, rlsn))
3524 goto out;
3525
3526 used = le32_to_cpu(hdr->used);
3527
3528 if (!check_index_buffer(ib, bytes) ||
3529 !check_if_alloc_index(hdr, aoff) ||
3530 Add2Ptr(e, esize) > Add2Ptr(lrh, rec_len) ||
3531 used + esize > le32_to_cpu(hdr->total)) {
3532 goto dirty_vol;
3533 }
3534
3535 memmove(Add2Ptr(e1, esize), e1,
3536 PtrOffset(e1, Add2Ptr(hdr, used)));
3537 memcpy(e1, e, esize);
3538
3539 hdr->used = cpu_to_le32(used + esize);
3540
3541 a_dirty = true;
3542
3543 ntfs_fix_pre_write(&ib->rhdr, bytes);
3544 break;
3545
3546 case DeleteIndexEntryAllocation:
3547 ib = Add2Ptr(buffer_le, roff);
3548 hdr = &ib->ihdr;
3549 e = Add2Ptr(ib, aoff);
3550 esize = le16_to_cpu(e->size);
3551
3552 if (is_baad(&ib->rhdr))
3553 goto dirty_vol;
3554 if (!check_lsn(&ib->rhdr, rlsn))
3555 goto out;
3556
3557 if (!check_index_buffer(ib, bytes) ||
3558 !check_if_alloc_index(hdr, aoff)) {
3559 goto dirty_vol;
3560 }
3561
3562 e1 = Add2Ptr(e, esize);
3563 nsize = esize;
3564 used = le32_to_cpu(hdr->used);
3565
3566 memmove(e, e1, PtrOffset(e1, Add2Ptr(hdr, used)));
3567
3568 hdr->used = cpu_to_le32(used - nsize);
3569
3570 a_dirty = true;
3571
3572 ntfs_fix_pre_write(&ib->rhdr, bytes);
3573 break;
3574
3575 case WriteEndOfIndexBuffer:
3576 ib = Add2Ptr(buffer_le, roff);
3577 hdr = &ib->ihdr;
3578 e = Add2Ptr(ib, aoff);
3579
3580 if (is_baad(&ib->rhdr))
3581 goto dirty_vol;
3582 if (!check_lsn(&ib->rhdr, rlsn))
3583 goto out;
3584 if (!check_index_buffer(ib, bytes) ||
3585 !check_if_alloc_index(hdr, aoff) ||
3586 aoff + dlen > offsetof(struct INDEX_BUFFER, ihdr) +
3587 le32_to_cpu(hdr->total)) {
3588 goto dirty_vol;
3589 }
3590
3591 hdr->used = cpu_to_le32(dlen + PtrOffset(hdr, e));
3592 memmove(e, data, dlen);
3593
3594 a_dirty = true;
3595 ntfs_fix_pre_write(&ib->rhdr, bytes);
3596 break;
3597
3598 case SetIndexEntryVcnAllocation:
3599 ib = Add2Ptr(buffer_le, roff);
3600 hdr = &ib->ihdr;
3601 e = Add2Ptr(ib, aoff);
3602
3603 if (is_baad(&ib->rhdr))
3604 goto dirty_vol;
3605
3606 if (!check_lsn(&ib->rhdr, rlsn))
3607 goto out;
3608 if (!check_index_buffer(ib, bytes) ||
3609 !check_if_alloc_index(hdr, aoff)) {
3610 goto dirty_vol;
3611 }
3612
3613 de_set_vbn_le(e, *(__le64 *)data);
3614
3615 a_dirty = true;
3616 ntfs_fix_pre_write(&ib->rhdr, bytes);
3617 break;
3618
3619 case UpdateFileNameAllocation:
3620 ib = Add2Ptr(buffer_le, roff);
3621 hdr = &ib->ihdr;
3622 e = Add2Ptr(ib, aoff);
3623
3624 if (is_baad(&ib->rhdr))
3625 goto dirty_vol;
3626
3627 if (!check_lsn(&ib->rhdr, rlsn))
3628 goto out;
3629 if (!check_index_buffer(ib, bytes) ||
3630 !check_if_alloc_index(hdr, aoff)) {
3631 goto dirty_vol;
3632 }
3633
3634 fname = (struct ATTR_FILE_NAME *)(e + 1);
3635 memmove(&fname->dup, data, sizeof(fname->dup));
3636
3637 a_dirty = true;
3638 ntfs_fix_pre_write(&ib->rhdr, bytes);
3639 break;
3640
3641 case SetBitsInNonresidentBitMap:
3642 off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3643 bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3644
3645 if (cbo + (off + 7) / 8 > lco ||
3646 cbo + ((off + bits + 7) / 8) > lco) {
3647 goto dirty_vol;
3648 }
3649
3650 ntfs_bitmap_set_le(Add2Ptr(buffer_le, roff), off, bits);
3651 a_dirty = true;
3652 break;
3653
3654 case ClearBitsInNonresidentBitMap:
3655 off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3656 bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3657
3658 if (cbo + (off + 7) / 8 > lco ||
3659 cbo + ((off + bits + 7) / 8) > lco) {
3660 goto dirty_vol;
3661 }
3662
3663 ntfs_bitmap_clear_le(Add2Ptr(buffer_le, roff), off, bits);
3664 a_dirty = true;
3665 break;
3666
3667 case UpdateRecordDataAllocation:
3668 ib = Add2Ptr(buffer_le, roff);
3669 hdr = &ib->ihdr;
3670 e = Add2Ptr(ib, aoff);
3671
3672 if (is_baad(&ib->rhdr))
3673 goto dirty_vol;
3674
3675 if (!check_lsn(&ib->rhdr, rlsn))
3676 goto out;
3677 if (!check_index_buffer(ib, bytes) ||
3678 !check_if_alloc_index(hdr, aoff)) {
3679 goto dirty_vol;
3680 }
3681
3682 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3683
3684 a_dirty = true;
3685 ntfs_fix_pre_write(&ib->rhdr, bytes);
3686 break;
3687
3688 default:
3689 WARN_ON(1);
3690 }
3691
3692 if (rlsn) {
3693 __le64 t64 = cpu_to_le64(*rlsn);
3694
3695 if (rec)
3696 rec->rhdr.lsn = t64;
3697 if (ib)
3698 ib->rhdr.lsn = t64;
3699 }
3700
3701 if (mi && mi->dirty) {
3702 err = mi_write(mi, 0);
3703 if (err)
3704 goto out;
3705 }
3706
3707 if (a_dirty) {
3708 attr = oa->attr;
3709 err = ntfs_sb_write_run(sbi, oa->run1, vbo, buffer_le, bytes,
3710 0);
3711 if (err)
3712 goto out;
3713 }
3714
3715 out:
3716
3717 if (inode)
3718 iput(inode);
3719 else if (mi != mi2_child)
3720 mi_put(mi);
3721
3722 kfree(buffer_le);
3723
3724 return err;
3725
3726 dirty_vol:
3727 log->set_dirty = true;
3728 goto out;
3729 }
3730
3731 /*
3732 * log_replay - Replays log and empties it.
3733 *
3734 * This function is called during mount operation.
3735 * It replays log and empties it.
3736 * Initialized is set false if logfile contains '-1'.
3737 */
log_replay(struct ntfs_inode * ni,bool * initialized)3738 int log_replay(struct ntfs_inode *ni, bool *initialized)
3739 {
3740 int err;
3741 struct ntfs_sb_info *sbi = ni->mi.sbi;
3742 struct ntfs_log *log;
3743
3744 u64 rec_lsn, checkpt_lsn = 0, rlsn = 0;
3745 struct ATTR_NAME_ENTRY *attr_names = NULL;
3746 u32 attr_names_bytes = 0;
3747 u32 oatbl_bytes = 0;
3748 struct RESTART_TABLE *dptbl = NULL;
3749 struct RESTART_TABLE *trtbl = NULL;
3750 const struct RESTART_TABLE *rt;
3751 struct RESTART_TABLE *oatbl = NULL;
3752 struct inode *inode;
3753 struct OpenAttr *oa;
3754 struct ntfs_inode *ni_oe;
3755 struct ATTRIB *attr = NULL;
3756 u64 size, vcn, undo_next_lsn;
3757 CLST rno, lcn, lcn0, len0, clen;
3758 void *data;
3759 struct NTFS_RESTART *rst = NULL;
3760 struct lcb *lcb = NULL;
3761 struct OPEN_ATTR_ENRTY *oe;
3762 struct ATTR_NAME_ENTRY *ane;
3763 struct TRANSACTION_ENTRY *tr;
3764 struct DIR_PAGE_ENTRY *dp;
3765 u32 i, bytes_per_attr_entry;
3766 u32 vbo, tail, off, dlen;
3767 u32 saved_len, rec_len, transact_id;
3768 bool use_second_page;
3769 struct RESTART_AREA *ra2, *ra = NULL;
3770 struct CLIENT_REC *ca, *cr;
3771 __le16 client;
3772 struct RESTART_HDR *rh;
3773 const struct LFS_RECORD_HDR *frh;
3774 const struct LOG_REC_HDR *lrh;
3775 bool is_mapped;
3776 bool is_ro = sb_rdonly(sbi->sb);
3777 u64 t64;
3778 u16 t16;
3779 u32 t32;
3780
3781 log = kzalloc_obj(struct ntfs_log, GFP_NOFS);
3782 if (!log)
3783 return -ENOMEM;
3784
3785 log->ni = ni;
3786 log->l_size = log->orig_file_size = ni->vfs_inode.i_size;
3787
3788 /* Get the size of page. NOTE: To replay we can use default page. */
3789 #if PAGE_SIZE >= DefaultLogPageSize && PAGE_SIZE <= DefaultLogPageSize * 2
3790 log->page_size = norm_file_page(PAGE_SIZE, &log->l_size, true);
3791 #else
3792 log->page_size = norm_file_page(PAGE_SIZE, &log->l_size, false);
3793 #endif
3794 if (!log->page_size) {
3795 err = -EINVAL;
3796 goto out;
3797 }
3798
3799 log->one_page_buf = kmalloc(log->page_size, GFP_NOFS);
3800 if (!log->one_page_buf) {
3801 err = -ENOMEM;
3802 goto out;
3803 }
3804
3805 log->page_mask = log->page_size - 1;
3806 log->page_bits = blksize_bits(log->page_size);
3807
3808 /* Look for a restart area on the disk. */
3809 err = log_read_rst(log, true, &log->rst_info);
3810 if (err)
3811 goto out;
3812
3813 /* remember 'initialized' */
3814 *initialized = log->rst_info.initialized;
3815
3816 if (!log->rst_info.restart) {
3817 if (log->rst_info.initialized) {
3818 /* No restart area but the file is not initialized. */
3819 err = -EINVAL;
3820 goto out;
3821 }
3822
3823 log_init_pg_hdr(log, 1, 1);
3824 log_create(log, 0, get_random_u32(), false, false);
3825
3826 ra = log_create_ra(log);
3827 if (!ra) {
3828 err = -ENOMEM;
3829 goto out;
3830 }
3831 log->ra = ra;
3832 log->init_ra = true;
3833
3834 goto process_log;
3835 }
3836
3837 /*
3838 * If the restart offset above wasn't zero then we won't
3839 * look for a second restart.
3840 */
3841 if (log->rst_info.vbo)
3842 goto check_restart_area;
3843
3844 err = log_read_rst(log, false, &log->rst_info2);
3845 if (err)
3846 goto out;
3847
3848 /* Determine which restart area to use. */
3849 if (!log->rst_info2.restart ||
3850 log->rst_info2.last_lsn <= log->rst_info.last_lsn)
3851 goto use_first_page;
3852
3853 use_second_page = true;
3854
3855 if (log->rst_info.chkdsk_was_run &&
3856 log->page_size != log->rst_info.vbo) {
3857 struct RECORD_PAGE_HDR *sp = NULL;
3858 bool usa_error;
3859
3860 if (!read_log_page(log, log->page_size, &sp, &usa_error) &&
3861 sp->rhdr.sign == NTFS_CHKD_SIGNATURE) {
3862 use_second_page = false;
3863 }
3864 kfree(sp);
3865 }
3866
3867 if (use_second_page) {
3868 kfree(log->rst_info.r_page);
3869 memcpy(&log->rst_info, &log->rst_info2,
3870 sizeof(struct restart_info));
3871 log->rst_info2.r_page = NULL;
3872 }
3873
3874 use_first_page:
3875 kfree(log->rst_info2.r_page);
3876
3877 check_restart_area:
3878 /*
3879 * If the restart area is at offset 0, we want
3880 * to write the second restart area first.
3881 */
3882 log->init_ra = !!log->rst_info.vbo;
3883
3884 /* If we have a valid page then grab a pointer to the restart area. */
3885 ra2 = log->rst_info.valid_page ?
3886 Add2Ptr(log->rst_info.r_page,
3887 le16_to_cpu(log->rst_info.r_page->ra_off)) :
3888 NULL;
3889
3890 if (log->rst_info.chkdsk_was_run ||
3891 (ra2 && ra2->client_idx[1] == LFS_NO_CLIENT_LE)) {
3892 bool wrapped = false;
3893 bool use_multi_page = false;
3894 u32 open_log_count;
3895
3896 /* Do some checks based on whether we have a valid log page. */
3897 open_log_count = log->rst_info.valid_page ?
3898 le32_to_cpu(ra2->open_log_count) :
3899 get_random_u32();
3900
3901 log_init_pg_hdr(log, 1, 1);
3902
3903 log_create(log, log->rst_info.last_lsn, open_log_count, wrapped,
3904 use_multi_page);
3905
3906 ra = log_create_ra(log);
3907 if (!ra) {
3908 err = -ENOMEM;
3909 goto out;
3910 }
3911 log->ra = ra;
3912
3913 /* Put the restart areas and initialize
3914 * the log file as required.
3915 */
3916 goto process_log;
3917 }
3918
3919 if (!ra2) {
3920 err = -EINVAL;
3921 goto out;
3922 }
3923
3924 /*
3925 * If the log page or the system page sizes have changed, we can't
3926 * use the log file. We must use the system page size instead of the
3927 * default size if there is not a clean shutdown.
3928 */
3929 t32 = le32_to_cpu(log->rst_info.r_page->sys_page_size);
3930 if (log->page_size != t32) {
3931 log->l_size = log->orig_file_size;
3932 log->page_size = norm_file_page(t32, &log->l_size,
3933 t32 == DefaultLogPageSize);
3934 }
3935
3936 if (log->page_size != t32 ||
3937 log->page_size != le32_to_cpu(log->rst_info.r_page->page_size)) {
3938 err = -EINVAL;
3939 goto out;
3940 }
3941
3942 log->page_mask = log->page_size - 1;
3943 log->page_bits = blksize_bits(log->page_size);
3944
3945 /* If the file size has shrunk then we won't mount it. */
3946 if (log->l_size < le64_to_cpu(ra2->l_size)) {
3947 err = -EINVAL;
3948 goto out;
3949 }
3950
3951 log_init_pg_hdr(log, le16_to_cpu(log->rst_info.r_page->major_ver),
3952 le16_to_cpu(log->rst_info.r_page->minor_ver));
3953
3954 log->l_size = le64_to_cpu(ra2->l_size);
3955 log->seq_num_bits = le32_to_cpu(ra2->seq_num_bits);
3956 log->file_data_bits = sizeof(u64) * 8 - log->seq_num_bits;
3957 log->seq_num_mask = (8 << log->file_data_bits) - 1;
3958 log->last_lsn = le64_to_cpu(ra2->current_lsn);
3959 log->seq_num = log->last_lsn >> log->file_data_bits;
3960 log->ra_off = le16_to_cpu(log->rst_info.r_page->ra_off);
3961 log->restart_size = log->sys_page_size - log->ra_off;
3962 log->record_header_len = le16_to_cpu(ra2->rec_hdr_len);
3963 log->ra_size = le16_to_cpu(ra2->ra_len);
3964 log->data_off = le16_to_cpu(ra2->data_off);
3965 log->data_size = log->page_size - log->data_off;
3966 log->reserved = log->data_size - log->record_header_len;
3967
3968 vbo = lsn_to_vbo(log, log->last_lsn);
3969
3970 if (vbo < log->first_page) {
3971 /* This is a pseudo lsn. */
3972 log->l_flags |= NTFSLOG_NO_LAST_LSN;
3973 log->next_page = log->first_page;
3974 goto find_oldest;
3975 }
3976
3977 /* Find the end of this log record. */
3978 off = final_log_off(log, log->last_lsn,
3979 le32_to_cpu(ra2->last_lsn_data_len));
3980
3981 /* If we wrapped the file then increment the sequence number. */
3982 if (off <= vbo) {
3983 log->seq_num += 1;
3984 log->l_flags |= NTFSLOG_WRAPPED;
3985 }
3986
3987 /* Now compute the next log page to use. */
3988 vbo &= ~log->sys_page_mask;
3989 tail = log->page_size - (off & log->page_mask) - 1;
3990
3991 /*
3992 *If we can fit another log record on the page,
3993 * move back a page the log file.
3994 */
3995 if (tail >= log->record_header_len) {
3996 log->l_flags |= NTFSLOG_REUSE_TAIL;
3997 log->next_page = vbo;
3998 } else {
3999 log->next_page = next_page_off(log, vbo);
4000 }
4001
4002 find_oldest:
4003 /*
4004 * Find the oldest client lsn. Use the last
4005 * flushed lsn as a starting point.
4006 */
4007 log->oldest_lsn = log->last_lsn;
4008 oldest_client_lsn(Add2Ptr(ra2, le16_to_cpu(ra2->client_off)),
4009 ra2->client_idx[1], &log->oldest_lsn);
4010 log->oldest_lsn_off = lsn_to_vbo(log, log->oldest_lsn);
4011
4012 if (log->oldest_lsn_off < log->first_page)
4013 log->l_flags |= NTFSLOG_NO_OLDEST_LSN;
4014
4015 if (!(ra2->flags & RESTART_SINGLE_PAGE_IO))
4016 log->l_flags |= NTFSLOG_WRAPPED | NTFSLOG_MULTIPLE_PAGE_IO;
4017
4018 log->current_openlog_count = le32_to_cpu(ra2->open_log_count);
4019 log->total_avail_pages = log->l_size - log->first_page;
4020 log->total_avail = log->total_avail_pages >> log->page_bits;
4021 log->max_current_avail = log->total_avail * log->reserved;
4022 log->total_avail = log->total_avail * log->data_size;
4023
4024 log->current_avail = current_log_avail(log);
4025
4026 ra = kzalloc(log->restart_size, GFP_NOFS);
4027 if (!ra) {
4028 err = -ENOMEM;
4029 goto out;
4030 }
4031 log->ra = ra;
4032
4033 t16 = le16_to_cpu(ra2->client_off);
4034 if (t16 == offsetof(struct RESTART_AREA, clients)) {
4035 memcpy(ra, ra2, log->ra_size);
4036 } else {
4037 memcpy(ra, ra2, offsetof(struct RESTART_AREA, clients));
4038 memcpy(ra->clients, Add2Ptr(ra2, t16),
4039 le16_to_cpu(ra2->ra_len) - t16);
4040
4041 log->current_openlog_count = get_random_u32();
4042 ra->open_log_count = cpu_to_le32(log->current_openlog_count);
4043 log->ra_size = offsetof(struct RESTART_AREA, clients) +
4044 sizeof(struct CLIENT_REC);
4045 ra->client_off =
4046 cpu_to_le16(offsetof(struct RESTART_AREA, clients));
4047 ra->ra_len = cpu_to_le16(log->ra_size);
4048 }
4049
4050 le32_add_cpu(&ra->open_log_count, 1);
4051
4052 /* Now we need to walk through looking for the last lsn. */
4053 err = last_log_lsn(log);
4054 if (err)
4055 goto out;
4056
4057 log->current_avail = current_log_avail(log);
4058
4059 /* Remember which restart area to write first. */
4060 log->init_ra = log->rst_info.vbo;
4061
4062 process_log:
4063 /* 1.0, 1.1, 2.0 log->major_ver/minor_ver - short values. */
4064 switch ((log->major_ver << 16) + log->minor_ver) {
4065 case 0x10000:
4066 case 0x10001:
4067 case 0x20000:
4068 break;
4069 default:
4070 ntfs_warn(sbi->sb, "\x24LogFile version %d.%d is not supported",
4071 log->major_ver, log->minor_ver);
4072 err = -EOPNOTSUPP;
4073 log->set_dirty = true;
4074 goto out;
4075 }
4076
4077 /* One client "NTFS" per logfile. */
4078 ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
4079
4080 for (client = ra->client_idx[1];; client = cr->next_client) {
4081 if (client == LFS_NO_CLIENT_LE) {
4082 /* Insert "NTFS" client LogFile. */
4083 client = ra->client_idx[0];
4084 if (client == LFS_NO_CLIENT_LE) {
4085 err = -EINVAL;
4086 goto out;
4087 }
4088
4089 t16 = le16_to_cpu(client);
4090 cr = ca + t16;
4091
4092 remove_client(ca, cr, &ra->client_idx[0]);
4093
4094 cr->restart_lsn = 0;
4095 cr->oldest_lsn = cpu_to_le64(log->oldest_lsn);
4096 cr->name_bytes = cpu_to_le32(8);
4097 cr->name[0] = cpu_to_le16('N');
4098 cr->name[1] = cpu_to_le16('T');
4099 cr->name[2] = cpu_to_le16('F');
4100 cr->name[3] = cpu_to_le16('S');
4101
4102 add_client(ca, t16, &ra->client_idx[1]);
4103 break;
4104 }
4105
4106 cr = ca + le16_to_cpu(client);
4107
4108 if (cpu_to_le32(8) == cr->name_bytes &&
4109 cpu_to_le16('N') == cr->name[0] &&
4110 cpu_to_le16('T') == cr->name[1] &&
4111 cpu_to_le16('F') == cr->name[2] &&
4112 cpu_to_le16('S') == cr->name[3])
4113 break;
4114 }
4115
4116 /* Update the client handle with the client block information. */
4117 log->client_id.seq_num = cr->seq_num;
4118 log->client_id.client_idx = client;
4119
4120 err = read_rst_area(log, &rst, &checkpt_lsn);
4121 if (err)
4122 goto out;
4123
4124 if (!rst)
4125 goto out;
4126
4127 bytes_per_attr_entry = !rst->major_ver ? 0x2C : 0x28;
4128
4129 if (rst->check_point_start)
4130 checkpt_lsn = le64_to_cpu(rst->check_point_start);
4131
4132 /* Allocate and Read the Transaction Table. */
4133 if (!rst->transact_table_len)
4134 goto check_dirty_page_table; /* reduce tab pressure. */
4135
4136 t64 = le64_to_cpu(rst->transact_table_lsn);
4137 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4138 if (err)
4139 goto out;
4140
4141 lrh = lcb->log_rec;
4142 frh = lcb->lrh;
4143 rec_len = le32_to_cpu(frh->client_data_len);
4144
4145 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4146 bytes_per_attr_entry)) {
4147 err = -EINVAL;
4148 goto out;
4149 }
4150
4151 t16 = le16_to_cpu(lrh->redo_off);
4152
4153 rt = Add2Ptr(lrh, t16);
4154 t32 = rec_len - t16;
4155
4156 /* Now check that this is a valid restart table. */
4157 if (!check_rstbl(rt, t32)) {
4158 err = -EINVAL;
4159 goto out;
4160 }
4161
4162 trtbl = kmemdup(rt, t32, GFP_NOFS);
4163 if (!trtbl) {
4164 err = -ENOMEM;
4165 goto out;
4166 }
4167
4168 lcb_put(lcb);
4169 lcb = NULL;
4170
4171 check_dirty_page_table:
4172 /* The next record back should be the Dirty Pages Table. */
4173 if (!rst->dirty_pages_len)
4174 goto check_attribute_names; /* reduce tab pressure. */
4175
4176 t64 = le64_to_cpu(rst->dirty_pages_table_lsn);
4177 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4178 if (err)
4179 goto out;
4180
4181 lrh = lcb->log_rec;
4182 frh = lcb->lrh;
4183 rec_len = le32_to_cpu(frh->client_data_len);
4184
4185 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4186 bytes_per_attr_entry)) {
4187 err = -EINVAL;
4188 goto out;
4189 }
4190
4191 t16 = le16_to_cpu(lrh->redo_off);
4192
4193 rt = Add2Ptr(lrh, t16);
4194 t32 = rec_len - t16;
4195
4196 /* Now check that this is a valid restart table. */
4197 if (!check_rstbl(rt, t32)) {
4198 err = -EINVAL;
4199 goto out;
4200 }
4201
4202 dptbl = kmemdup(rt, t32, GFP_NOFS);
4203 if (!dptbl) {
4204 err = -ENOMEM;
4205 goto out;
4206 }
4207
4208 /* Convert Ra version '0' into version '1'. */
4209 if (rst->major_ver)
4210 goto end_conv_1; /* reduce tab pressure. */
4211
4212 dp = NULL;
4213 while ((dp = enum_rstbl(dptbl, dp))) {
4214 struct DIR_PAGE_ENTRY_32 *dp0 = (struct DIR_PAGE_ENTRY_32 *)dp;
4215 // NOTE: Danger. Check for of boundary.
4216 memmove(&dp->vcn, &dp0->vcn_low,
4217 2 * sizeof(u64) +
4218 le32_to_cpu(dp->lcns_follow) * sizeof(u64));
4219 }
4220
4221 end_conv_1:
4222 lcb_put(lcb);
4223 lcb = NULL;
4224
4225 /*
4226 * Go through the table and remove the duplicates,
4227 * remembering the oldest lsn values.
4228 */
4229 if (sbi->cluster_size <= log->page_size)
4230 goto trace_dp_table; /* reduce tab pressure. */
4231 dp = NULL;
4232 while ((dp = enum_rstbl(dptbl, dp))) {
4233 struct DIR_PAGE_ENTRY *next = dp;
4234
4235 while ((next = enum_rstbl(dptbl, next))) {
4236 if (next->target_attr == dp->target_attr &&
4237 next->vcn == dp->vcn) {
4238 if (le64_to_cpu(next->oldest_lsn) <
4239 le64_to_cpu(dp->oldest_lsn)) {
4240 dp->oldest_lsn = next->oldest_lsn;
4241 }
4242
4243 free_rsttbl_idx(dptbl, PtrOffset(dptbl, next));
4244 }
4245 }
4246 }
4247 trace_dp_table:
4248 check_attribute_names:
4249 /* The next record should be the Attribute Names. */
4250 if (!rst->attr_names_len)
4251 goto check_attr_table; /* reduce tab pressure. */
4252
4253 t64 = le64_to_cpu(rst->attr_names_lsn);
4254 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4255 if (err)
4256 goto out;
4257
4258 lrh = lcb->log_rec;
4259 frh = lcb->lrh;
4260 rec_len = le32_to_cpu(frh->client_data_len);
4261
4262 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4263 bytes_per_attr_entry)) {
4264 err = -EINVAL;
4265 goto out;
4266 }
4267
4268 t32 = lrh_length(lrh);
4269 attr_names_bytes = rec_len - t32;
4270
4271 attr_names = kmemdup(Add2Ptr(lrh, t32), attr_names_bytes, GFP_NOFS);
4272 if (!attr_names) {
4273 err = -ENOMEM;
4274 goto out;
4275 }
4276
4277 lcb_put(lcb);
4278 lcb = NULL;
4279
4280 check_attr_table:
4281 /* The next record should be the attribute Table. */
4282 if (!rst->open_attr_len)
4283 goto check_attribute_names2; /* reduce tab pressure. */
4284
4285 t64 = le64_to_cpu(rst->open_attr_table_lsn);
4286 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4287 if (err)
4288 goto out;
4289
4290 lrh = lcb->log_rec;
4291 frh = lcb->lrh;
4292 rec_len = le32_to_cpu(frh->client_data_len);
4293
4294 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4295 bytes_per_attr_entry)) {
4296 err = -EINVAL;
4297 goto out;
4298 }
4299
4300 t16 = le16_to_cpu(lrh->redo_off);
4301
4302 rt = Add2Ptr(lrh, t16);
4303 oatbl_bytes = rec_len - t16;
4304
4305 if (!check_rstbl(rt, oatbl_bytes)) {
4306 err = -EINVAL;
4307 goto out;
4308 }
4309
4310 oatbl = kmemdup(rt, oatbl_bytes, GFP_NOFS);
4311 if (!oatbl) {
4312 err = -ENOMEM;
4313 goto out;
4314 }
4315
4316 log->open_attr_tbl = oatbl;
4317
4318 /* Clear all of the Attr pointers. */
4319 oe = NULL;
4320 while ((oe = enum_rstbl(oatbl, oe))) {
4321 if (!rst->major_ver) {
4322 struct OPEN_ATTR_ENRTY_32 oe0;
4323
4324 /* Really 'oe' points to OPEN_ATTR_ENRTY_32. */
4325 memcpy(&oe0, oe, SIZEOF_OPENATTRIBUTEENTRY0);
4326
4327 oe->bytes_per_index = oe0.bytes_per_index;
4328 oe->type = oe0.type;
4329 oe->is_dirty_pages = oe0.is_dirty_pages;
4330 oe->name_len = 0;
4331 oe->ref = oe0.ref;
4332 oe->open_record_lsn = oe0.open_record_lsn;
4333 }
4334
4335 oe->is_attr_name = 0;
4336 oe->ptr = NULL;
4337 }
4338
4339 lcb_put(lcb);
4340 lcb = NULL;
4341
4342 check_attribute_names2:
4343 if (attr_names && oatbl) {
4344 off = 0;
4345 for (;;) {
4346 /* Check we can use attribute name entry 'ane'. */
4347 static_assert(sizeof(*ane) == 4);
4348 if (off + sizeof(*ane) > attr_names_bytes) {
4349 /* just ignore the rest. */
4350 break;
4351 }
4352
4353 ane = Add2Ptr(attr_names, off);
4354 t16 = le16_to_cpu(ane->off);
4355 if (!t16) {
4356 /* this is the only valid exit. */
4357 break;
4358 }
4359
4360 /* Check we can use open attribute entry 'oe'. */
4361 if (t16 + sizeof(*oe) > oatbl_bytes) {
4362 /* just ignore the rest. */
4363 break;
4364 }
4365
4366 /* TODO: Clear table on exit! */
4367 oe = Add2Ptr(oatbl, t16);
4368 t16 = le16_to_cpu(ane->name_bytes);
4369 off += t16 + sizeof(*ane);
4370 if (off > attr_names_bytes) {
4371 /* just ignore the rest. */
4372 break;
4373 }
4374 oe->name_len = t16 / sizeof(short);
4375 oe->ptr = ane->name;
4376 oe->is_attr_name = 2;
4377 }
4378 }
4379
4380 /*
4381 * If the checkpt_lsn is zero, then this is a freshly
4382 * formatted disk and we have no work to do.
4383 */
4384 if (!checkpt_lsn) {
4385 err = 0;
4386 goto out;
4387 }
4388
4389 if (!oatbl) {
4390 oatbl = init_rsttbl(bytes_per_attr_entry, 8);
4391 if (!oatbl) {
4392 err = -ENOMEM;
4393 goto out;
4394 }
4395 }
4396
4397 log->open_attr_tbl = oatbl;
4398
4399 /* Start the analysis pass from the Checkpoint lsn. */
4400 rec_lsn = checkpt_lsn;
4401
4402 /* Read the first lsn. */
4403 err = read_log_rec_lcb(log, checkpt_lsn, lcb_ctx_next, &lcb);
4404 if (err)
4405 goto out;
4406
4407 /* Loop to read all subsequent records to the end of the log file. */
4408 next_log_record_analyze:
4409 err = read_next_log_rec(log, lcb, &rec_lsn);
4410 if (err)
4411 goto out;
4412
4413 if (!rec_lsn)
4414 goto end_log_records_enumerate;
4415
4416 frh = lcb->lrh;
4417 transact_id = le32_to_cpu(frh->transact_id);
4418 rec_len = le32_to_cpu(frh->client_data_len);
4419 lrh = lcb->log_rec;
4420
4421 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4422 err = -EINVAL;
4423 goto out;
4424 }
4425
4426 /*
4427 * The first lsn after the previous lsn remembered
4428 * the checkpoint is the first candidate for the rlsn.
4429 */
4430 if (!rlsn)
4431 rlsn = rec_lsn;
4432
4433 if (LfsClientRecord != frh->record_type)
4434 goto next_log_record_analyze;
4435
4436 /*
4437 * Now update the Transaction Table for this transaction. If there
4438 * is no entry present or it is unallocated we allocate the entry.
4439 */
4440 if (!trtbl) {
4441 trtbl = init_rsttbl(sizeof(struct TRANSACTION_ENTRY),
4442 INITIAL_NUMBER_TRANSACTIONS);
4443 if (!trtbl) {
4444 err = -ENOMEM;
4445 goto out;
4446 }
4447 }
4448
4449 tr = Add2Ptr(trtbl, transact_id);
4450
4451 if (transact_id >= bytes_per_rt(trtbl) ||
4452 tr->next != RESTART_ENTRY_ALLOCATED_LE) {
4453 tr = alloc_rsttbl_from_idx(&trtbl, transact_id);
4454 if (!tr) {
4455 err = -ENOMEM;
4456 goto out;
4457 }
4458 tr->transact_state = TransactionActive;
4459 tr->first_lsn = cpu_to_le64(rec_lsn);
4460 }
4461
4462 tr->prev_lsn = tr->undo_next_lsn = cpu_to_le64(rec_lsn);
4463
4464 /*
4465 * If this is a compensation log record, then change
4466 * the undo_next_lsn to be the undo_next_lsn of this record.
4467 */
4468 if (lrh->undo_op == cpu_to_le16(CompensationLogRecord))
4469 tr->undo_next_lsn = frh->client_undo_next_lsn;
4470
4471 /* Dispatch to handle log record depending on type. */
4472 switch (le16_to_cpu(lrh->redo_op)) {
4473 case InitializeFileRecordSegment:
4474 case DeallocateFileRecordSegment:
4475 case WriteEndOfFileRecordSegment:
4476 case CreateAttribute:
4477 case DeleteAttribute:
4478 case UpdateResidentValue:
4479 case UpdateNonresidentValue:
4480 case UpdateMappingPairs:
4481 case SetNewAttributeSizes:
4482 case AddIndexEntryRoot:
4483 case DeleteIndexEntryRoot:
4484 case AddIndexEntryAllocation:
4485 case DeleteIndexEntryAllocation:
4486 case WriteEndOfIndexBuffer:
4487 case SetIndexEntryVcnRoot:
4488 case SetIndexEntryVcnAllocation:
4489 case UpdateFileNameRoot:
4490 case UpdateFileNameAllocation:
4491 case SetBitsInNonresidentBitMap:
4492 case ClearBitsInNonresidentBitMap:
4493 case UpdateRecordDataRoot:
4494 case UpdateRecordDataAllocation:
4495 case ZeroEndOfFileRecord:
4496 t16 = le16_to_cpu(lrh->target_attr);
4497 t64 = le64_to_cpu(lrh->target_vcn);
4498 dp = find_dp(dptbl, t16, t64);
4499
4500 if (dp)
4501 goto copy_lcns;
4502
4503 /*
4504 * Calculate the number of clusters per page the system
4505 * which wrote the checkpoint, possibly creating the table.
4506 */
4507 if (dptbl) {
4508 t32 = (le16_to_cpu(dptbl->size) -
4509 sizeof(struct DIR_PAGE_ENTRY)) /
4510 sizeof(u64);
4511 } else {
4512 t32 = log->clst_per_page;
4513 kfree(dptbl);
4514 dptbl = init_rsttbl(struct_size(dp, page_lcns, t32),
4515 32);
4516 if (!dptbl) {
4517 err = -ENOMEM;
4518 goto out;
4519 }
4520 }
4521
4522 dp = alloc_rsttbl_idx(&dptbl);
4523 if (!dp) {
4524 err = -ENOMEM;
4525 goto out;
4526 }
4527 dp->target_attr = cpu_to_le32(t16);
4528 dp->transfer_len = cpu_to_le32(t32 << sbi->cluster_bits);
4529 dp->lcns_follow = cpu_to_le32(t32);
4530 dp->vcn = cpu_to_le64(t64 & ~((u64)t32 - 1));
4531 dp->oldest_lsn = cpu_to_le64(rec_lsn);
4532
4533 copy_lcns:
4534 /*
4535 * Copy the Lcns from the log record into the Dirty Page Entry.
4536 * TODO: For different page size support, must somehow make
4537 * whole routine a loop, case Lcns do not fit below.
4538 */
4539 t16 = le16_to_cpu(lrh->lcns_follow);
4540 for (i = 0; i < t16; i++) {
4541 size_t j = (size_t)(le64_to_cpu(lrh->target_vcn) -
4542 le64_to_cpu(dp->vcn));
4543 dp->page_lcns[j + i] = lrh->page_lcns[i];
4544 }
4545
4546 goto next_log_record_analyze;
4547
4548 case DeleteDirtyClusters: {
4549 u32 range_count =
4550 le16_to_cpu(lrh->redo_len) / sizeof(struct LCN_RANGE);
4551 const struct LCN_RANGE *r =
4552 Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4553
4554 /* Loop through all of the Lcn ranges this log record. */
4555 for (i = 0; i < range_count; i++, r++) {
4556 u64 lcn0 = le64_to_cpu(r->lcn);
4557 u64 lcn_e = lcn0 + le64_to_cpu(r->len) - 1;
4558
4559 dp = NULL;
4560 while ((dp = enum_rstbl(dptbl, dp))) {
4561 u32 j;
4562
4563 t32 = le32_to_cpu(dp->lcns_follow);
4564 for (j = 0; j < t32; j++) {
4565 t64 = le64_to_cpu(dp->page_lcns[j]);
4566 if (t64 >= lcn0 && t64 <= lcn_e)
4567 dp->page_lcns[j] = 0;
4568 }
4569 }
4570 }
4571 goto next_log_record_analyze;
4572 }
4573
4574 case OpenNonresidentAttribute:
4575 t16 = le16_to_cpu(lrh->target_attr);
4576 if (t16 >= bytes_per_rt(oatbl)) {
4577 /*
4578 * Compute how big the table needs to be.
4579 * Add 10 extra entries for some cushion.
4580 */
4581 u32 new_e = t16 / le16_to_cpu(oatbl->size);
4582
4583 new_e += 10 - le16_to_cpu(oatbl->used);
4584
4585 oatbl = extend_rsttbl(oatbl, new_e, ~0u);
4586 log->open_attr_tbl = oatbl;
4587 if (!oatbl) {
4588 err = -ENOMEM;
4589 goto out;
4590 }
4591 }
4592
4593 /* Point to the entry being opened. */
4594 oe = alloc_rsttbl_from_idx(&oatbl, t16);
4595 log->open_attr_tbl = oatbl;
4596 if (!oe) {
4597 err = -ENOMEM;
4598 goto out;
4599 }
4600
4601 /* Initialize this entry from the log record. */
4602 t16 = le16_to_cpu(lrh->redo_off);
4603 if (!rst->major_ver) {
4604 /* Convert version '0' into version '1'. */
4605 struct OPEN_ATTR_ENRTY_32 *oe0 = Add2Ptr(lrh, t16);
4606
4607 oe->bytes_per_index = oe0->bytes_per_index;
4608 oe->type = oe0->type;
4609 oe->is_dirty_pages = oe0->is_dirty_pages;
4610 oe->name_len = 0; //oe0.name_len;
4611 oe->ref = oe0->ref;
4612 oe->open_record_lsn = oe0->open_record_lsn;
4613 } else {
4614 memcpy(oe, Add2Ptr(lrh, t16), bytes_per_attr_entry);
4615 }
4616
4617 t16 = le16_to_cpu(lrh->undo_len);
4618 if (t16) {
4619 oe->ptr = kmalloc(t16, GFP_NOFS);
4620 if (!oe->ptr) {
4621 err = -ENOMEM;
4622 goto out;
4623 }
4624 oe->name_len = t16 / sizeof(short);
4625 memcpy(oe->ptr,
4626 Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)), t16);
4627 oe->is_attr_name = 1;
4628 } else {
4629 oe->ptr = NULL;
4630 oe->is_attr_name = 0;
4631 }
4632
4633 goto next_log_record_analyze;
4634
4635 case HotFix:
4636 t16 = le16_to_cpu(lrh->target_attr);
4637 t64 = le64_to_cpu(lrh->target_vcn);
4638 dp = find_dp(dptbl, t16, t64);
4639 if (dp) {
4640 size_t j = le64_to_cpu(lrh->target_vcn) -
4641 le64_to_cpu(dp->vcn);
4642 if (dp->page_lcns[j])
4643 dp->page_lcns[j] = lrh->page_lcns[0];
4644 }
4645 goto next_log_record_analyze;
4646
4647 case EndTopLevelAction:
4648 tr = Add2Ptr(trtbl, transact_id);
4649 tr->prev_lsn = cpu_to_le64(rec_lsn);
4650 tr->undo_next_lsn = frh->client_undo_next_lsn;
4651 goto next_log_record_analyze;
4652
4653 case PrepareTransaction:
4654 tr = Add2Ptr(trtbl, transact_id);
4655 tr->transact_state = TransactionPrepared;
4656 goto next_log_record_analyze;
4657
4658 case CommitTransaction:
4659 tr = Add2Ptr(trtbl, transact_id);
4660 tr->transact_state = TransactionCommitted;
4661 goto next_log_record_analyze;
4662
4663 case ForgetTransaction:
4664 free_rsttbl_idx(trtbl, transact_id);
4665 goto next_log_record_analyze;
4666
4667 case Noop:
4668 case OpenAttributeTableDump:
4669 case AttributeNamesDump:
4670 case DirtyPageTableDump:
4671 case TransactionTableDump:
4672 /* The following cases require no action the Analysis Pass. */
4673 goto next_log_record_analyze;
4674
4675 default:
4676 /*
4677 * All codes will be explicitly handled.
4678 * If we see a code we do not expect, then we are trouble.
4679 */
4680 goto next_log_record_analyze;
4681 }
4682
4683 end_log_records_enumerate:
4684 lcb_put(lcb);
4685 lcb = NULL;
4686
4687 /*
4688 * Scan the Dirty Page Table and Transaction Table for
4689 * the lowest lsn, and return it as the Redo lsn.
4690 */
4691 dp = NULL;
4692 while ((dp = enum_rstbl(dptbl, dp))) {
4693 t64 = le64_to_cpu(dp->oldest_lsn);
4694 if (t64 && t64 < rlsn)
4695 rlsn = t64;
4696 }
4697
4698 tr = NULL;
4699 while ((tr = enum_rstbl(trtbl, tr))) {
4700 t64 = le64_to_cpu(tr->first_lsn);
4701 if (t64 && t64 < rlsn)
4702 rlsn = t64;
4703 }
4704
4705 /*
4706 * Only proceed if the Dirty Page Table or Transaction
4707 * table are not empty.
4708 */
4709 if ((!dptbl || !dptbl->total) && (!trtbl || !trtbl->total))
4710 goto end_replay;
4711
4712 sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
4713 if (is_ro)
4714 goto out;
4715
4716 /* Reopen all of the attributes with dirty pages. */
4717 oe = NULL;
4718 next_open_attribute:
4719
4720 oe = enum_rstbl(oatbl, oe);
4721 if (!oe) {
4722 err = 0;
4723 dp = NULL;
4724 goto next_dirty_page;
4725 }
4726
4727 oa = kzalloc_obj(struct OpenAttr, GFP_NOFS);
4728 if (!oa) {
4729 err = -ENOMEM;
4730 goto out;
4731 }
4732
4733 inode = ntfs_iget5(sbi->sb, &oe->ref, NULL);
4734 if (IS_ERR(inode))
4735 goto fake_attr;
4736
4737 if (is_bad_inode(inode)) {
4738 iput(inode);
4739 fake_attr:
4740 if (oa->ni) {
4741 iput(&oa->ni->vfs_inode);
4742 oa->ni = NULL;
4743 }
4744
4745 attr = attr_create_nonres_log(sbi, oe->type, 0, oe->ptr,
4746 oe->name_len, 0);
4747 if (!attr) {
4748 kfree(oa);
4749 err = -ENOMEM;
4750 goto out;
4751 }
4752 oa->attr = attr;
4753 oa->run1 = &oa->run0;
4754 goto final_oe;
4755 }
4756
4757 ni_oe = ntfs_i(inode);
4758 oa->ni = ni_oe;
4759
4760 attr = ni_find_attr(ni_oe, NULL, NULL, oe->type, oe->ptr, oe->name_len,
4761 NULL, NULL);
4762
4763 if (!attr)
4764 goto fake_attr;
4765
4766 t32 = le32_to_cpu(attr->size);
4767 oa->attr = kmemdup(attr, t32, GFP_NOFS);
4768 if (!oa->attr)
4769 goto fake_attr;
4770
4771 if (!S_ISDIR(inode->i_mode)) {
4772 if (attr->type == ATTR_DATA && !attr->name_len) {
4773 oa->run1 = &ni_oe->file.run;
4774 goto final_oe;
4775 }
4776 } else {
4777 if (attr->type == ATTR_ALLOC &&
4778 attr->name_len == ARRAY_SIZE(I30_NAME) &&
4779 !memcmp(attr_name(attr), I30_NAME, sizeof(I30_NAME))) {
4780 oa->run1 = &ni_oe->dir.alloc_run;
4781 goto final_oe;
4782 }
4783 }
4784
4785 if (attr->non_res) {
4786 u16 roff = le16_to_cpu(attr->nres.run_off);
4787 CLST svcn = le64_to_cpu(attr->nres.svcn);
4788
4789 if (roff > t32) {
4790 kfree(oa->attr);
4791 oa->attr = NULL;
4792 goto fake_attr;
4793 }
4794
4795 err = run_unpack(&oa->run0, sbi, inode->i_ino, svcn,
4796 le64_to_cpu(attr->nres.evcn), svcn,
4797 Add2Ptr(attr, roff), t32 - roff);
4798 if (err < 0) {
4799 kfree(oa->attr);
4800 oa->attr = NULL;
4801 goto fake_attr;
4802 }
4803 err = 0;
4804 }
4805 oa->run1 = &oa->run0;
4806 attr = oa->attr;
4807
4808 final_oe:
4809 if (oe->is_attr_name == 1)
4810 kfree(oe->ptr);
4811 oe->is_attr_name = 0;
4812 oe->ptr = oa;
4813 oe->name_len = attr->name_len;
4814
4815 goto next_open_attribute;
4816
4817 /*
4818 * Now loop through the dirty page table to extract all of the Vcn/Lcn.
4819 * Mapping that we have, and insert it into the appropriate run.
4820 */
4821 next_dirty_page:
4822 dp = enum_rstbl(dptbl, dp);
4823 if (!dp)
4824 goto do_redo_1;
4825
4826 oe = Add2Ptr(oatbl, le32_to_cpu(dp->target_attr));
4827
4828 if (oe->next != RESTART_ENTRY_ALLOCATED_LE)
4829 goto next_dirty_page;
4830
4831 oa = oe->ptr;
4832 if (!oa)
4833 goto next_dirty_page;
4834
4835 i = -1;
4836 next_dirty_page_vcn:
4837 i += 1;
4838 if (i >= le32_to_cpu(dp->lcns_follow))
4839 goto next_dirty_page;
4840
4841 vcn = le64_to_cpu(dp->vcn) + i;
4842 size = (vcn + 1) << sbi->cluster_bits;
4843
4844 if (!dp->page_lcns[i])
4845 goto next_dirty_page_vcn;
4846
4847 rno = ino_get(&oe->ref);
4848 if (rno <= MFT_REC_MIRR &&
4849 size < (MFT_REC_VOL + 1) * sbi->record_size &&
4850 oe->type == ATTR_DATA) {
4851 goto next_dirty_page_vcn;
4852 }
4853
4854 lcn = le64_to_cpu(dp->page_lcns[i]);
4855
4856 if ((!run_lookup_entry(oa->run1, vcn, &lcn0, &len0, NULL) ||
4857 lcn0 != lcn) &&
4858 !run_add_entry(oa->run1, vcn, lcn, 1, false)) {
4859 err = -ENOMEM;
4860 goto out;
4861 }
4862 attr = oa->attr;
4863 if (size > le64_to_cpu(attr->nres.alloc_size)) {
4864 attr->nres.valid_size = attr->nres.data_size =
4865 attr->nres.alloc_size = cpu_to_le64(size);
4866 }
4867 goto next_dirty_page_vcn;
4868
4869 do_redo_1:
4870 /*
4871 * Perform the Redo Pass, to restore all of the dirty pages to the same
4872 * contents that they had immediately before the crash. If the dirty
4873 * page table is empty, then we can skip the entire Redo Pass.
4874 */
4875 if (!dptbl || !dptbl->total)
4876 goto do_undo_action;
4877
4878 rec_lsn = rlsn;
4879
4880 /*
4881 * Read the record at the Redo lsn, before falling
4882 * into common code to handle each record.
4883 */
4884 err = read_log_rec_lcb(log, rlsn, lcb_ctx_next, &lcb);
4885 if (err)
4886 goto out;
4887
4888 /*
4889 * Now loop to read all of our log records forwards, until
4890 * we hit the end of the file, cleaning up at the end.
4891 */
4892 do_action_next:
4893 frh = lcb->lrh;
4894
4895 if (LfsClientRecord != frh->record_type)
4896 goto read_next_log_do_action;
4897
4898 transact_id = le32_to_cpu(frh->transact_id);
4899 rec_len = le32_to_cpu(frh->client_data_len);
4900 lrh = lcb->log_rec;
4901
4902 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4903 err = -EINVAL;
4904 goto out;
4905 }
4906
4907 /* Ignore log records that do not update pages. */
4908 if (lrh->lcns_follow)
4909 goto find_dirty_page;
4910
4911 goto read_next_log_do_action;
4912
4913 find_dirty_page:
4914 t16 = le16_to_cpu(lrh->target_attr);
4915 t64 = le64_to_cpu(lrh->target_vcn);
4916 dp = find_dp(dptbl, t16, t64);
4917
4918 if (!dp)
4919 goto read_next_log_do_action;
4920
4921 if (rec_lsn < le64_to_cpu(dp->oldest_lsn))
4922 goto read_next_log_do_action;
4923
4924 t16 = le16_to_cpu(lrh->target_attr);
4925 if (t16 >= bytes_per_rt(oatbl)) {
4926 err = -EINVAL;
4927 goto out;
4928 }
4929
4930 oe = Add2Ptr(oatbl, t16);
4931
4932 if (oe->next != RESTART_ENTRY_ALLOCATED_LE) {
4933 err = -EINVAL;
4934 goto out;
4935 }
4936
4937 oa = oe->ptr;
4938
4939 if (!oa) {
4940 err = -EINVAL;
4941 goto out;
4942 }
4943 attr = oa->attr;
4944
4945 vcn = le64_to_cpu(lrh->target_vcn);
4946
4947 if (!run_lookup_entry(oa->run1, vcn, &lcn, NULL, NULL) ||
4948 lcn == SPARSE_LCN) {
4949 goto read_next_log_do_action;
4950 }
4951
4952 /* Point to the Redo data and get its length. */
4953 data = Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4954 dlen = le16_to_cpu(lrh->redo_len);
4955
4956 /* Shorten length by any Lcns which were deleted. */
4957 saved_len = dlen;
4958
4959 for (i = le16_to_cpu(lrh->lcns_follow); i; i--) {
4960 size_t j;
4961 u32 alen, voff;
4962
4963 voff = le16_to_cpu(lrh->record_off) +
4964 le16_to_cpu(lrh->attr_off);
4965 voff += le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
4966
4967 /* If the Vcn question is allocated, we can just get out. */
4968 j = le64_to_cpu(lrh->target_vcn) - le64_to_cpu(dp->vcn);
4969 if (dp->page_lcns[j + i - 1])
4970 break;
4971
4972 if (!saved_len)
4973 saved_len = 1;
4974
4975 /*
4976 * Calculate the allocated space left relative to the
4977 * log record Vcn, after removing this unallocated Vcn.
4978 */
4979 alen = (i - 1) << sbi->cluster_bits;
4980
4981 /*
4982 * If the update described this log record goes beyond
4983 * the allocated space, then we will have to reduce the length.
4984 */
4985 if (voff >= alen)
4986 dlen = 0;
4987 else if (voff + dlen > alen)
4988 dlen = alen - voff;
4989 }
4990
4991 /*
4992 * If the resulting dlen from above is now zero,
4993 * we can skip this log record.
4994 */
4995 if (!dlen && saved_len)
4996 goto read_next_log_do_action;
4997
4998 t16 = le16_to_cpu(lrh->redo_op);
4999 if (can_skip_action(t16))
5000 goto read_next_log_do_action;
5001
5002 /* Apply the Redo operation a common routine. */
5003 err = do_action(log, oe, lrh, t16, data, dlen, rec_len, &rec_lsn);
5004 if (err)
5005 goto out;
5006
5007 /* Keep reading and looping back until end of file. */
5008 read_next_log_do_action:
5009 err = read_next_log_rec(log, lcb, &rec_lsn);
5010 if (!err && rec_lsn)
5011 goto do_action_next;
5012
5013 lcb_put(lcb);
5014 lcb = NULL;
5015
5016 do_undo_action:
5017 /* Scan Transaction Table. */
5018 tr = NULL;
5019 transaction_table_next:
5020 tr = enum_rstbl(trtbl, tr);
5021 if (!tr)
5022 goto undo_action_done;
5023
5024 if (TransactionActive != tr->transact_state || !tr->undo_next_lsn) {
5025 free_rsttbl_idx(trtbl, PtrOffset(trtbl, tr));
5026 goto transaction_table_next;
5027 }
5028
5029 log->transaction_id = PtrOffset(trtbl, tr);
5030 undo_next_lsn = le64_to_cpu(tr->undo_next_lsn);
5031
5032 /*
5033 * We only have to do anything if the transaction has
5034 * something its undo_next_lsn field.
5035 */
5036 if (!undo_next_lsn)
5037 goto commit_undo;
5038
5039 /* Read the first record to be undone by this transaction. */
5040 err = read_log_rec_lcb(log, undo_next_lsn, lcb_ctx_undo_next, &lcb);
5041 if (err)
5042 goto out;
5043
5044 /*
5045 * Now loop to read all of our log records forwards,
5046 * until we hit the end of the file, cleaning up at the end.
5047 */
5048 undo_action_next:
5049
5050 lrh = lcb->log_rec;
5051 frh = lcb->lrh;
5052 transact_id = le32_to_cpu(frh->transact_id);
5053 rec_len = le32_to_cpu(frh->client_data_len);
5054
5055 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
5056 err = -EINVAL;
5057 goto out;
5058 }
5059
5060 if (lrh->undo_op == cpu_to_le16(Noop))
5061 goto read_next_log_undo_action;
5062
5063 oe = Add2Ptr(oatbl, le16_to_cpu(lrh->target_attr));
5064 oa = oe->ptr;
5065
5066 t16 = le16_to_cpu(lrh->lcns_follow);
5067 if (!t16)
5068 goto add_allocated_vcns;
5069
5070 is_mapped = run_lookup_entry(oa->run1, le64_to_cpu(lrh->target_vcn),
5071 &lcn, &clen, NULL);
5072
5073 /*
5074 * If the mapping isn't already the table or the mapping
5075 * corresponds to a hole the mapping, we need to make sure
5076 * there is no partial page already memory.
5077 */
5078 if (is_mapped && lcn != SPARSE_LCN && clen >= t16)
5079 goto add_allocated_vcns;
5080
5081 vcn = le64_to_cpu(lrh->target_vcn);
5082 vcn &= ~(u64)(log->clst_per_page - 1);
5083
5084 add_allocated_vcns:
5085 for (i = 0, vcn = le64_to_cpu(lrh->target_vcn),
5086 size = (vcn + 1) << sbi->cluster_bits;
5087 i < t16; i++, vcn += 1, size += sbi->cluster_size) {
5088 attr = oa->attr;
5089 if (!attr->non_res) {
5090 if (size > le32_to_cpu(attr->res.data_size))
5091 attr->res.data_size = cpu_to_le32(size);
5092 } else {
5093 if (size > le64_to_cpu(attr->nres.data_size))
5094 attr->nres.valid_size = attr->nres.data_size =
5095 attr->nres.alloc_size =
5096 cpu_to_le64(size);
5097 }
5098 }
5099
5100 t16 = le16_to_cpu(lrh->undo_op);
5101 if (can_skip_action(t16))
5102 goto read_next_log_undo_action;
5103
5104 /* Point to the Redo data and get its length. */
5105 data = Add2Ptr(lrh, le16_to_cpu(lrh->undo_off));
5106 dlen = le16_to_cpu(lrh->undo_len);
5107
5108 /* It is time to apply the undo action. */
5109 err = do_action(log, oe, lrh, t16, data, dlen, rec_len, NULL);
5110
5111 read_next_log_undo_action:
5112 /*
5113 * Keep reading and looping back until we have read the
5114 * last record for this transaction.
5115 */
5116 err = read_next_log_rec(log, lcb, &rec_lsn);
5117 if (err)
5118 goto out;
5119
5120 if (rec_lsn)
5121 goto undo_action_next;
5122
5123 lcb_put(lcb);
5124 lcb = NULL;
5125
5126 commit_undo:
5127 free_rsttbl_idx(trtbl, log->transaction_id);
5128
5129 log->transaction_id = 0;
5130
5131 goto transaction_table_next;
5132
5133 undo_action_done:
5134
5135 ntfs_update_mftmirr(sbi);
5136
5137 sbi->flags &= ~NTFS_FLAGS_NEED_REPLAY;
5138
5139 end_replay:
5140
5141 err = 0;
5142 if (is_ro)
5143 goto out;
5144
5145 rh = kzalloc(log->page_size, GFP_NOFS);
5146 if (!rh) {
5147 err = -ENOMEM;
5148 goto out;
5149 }
5150
5151 rh->rhdr.sign = NTFS_RSTR_SIGNATURE;
5152 rh->rhdr.fix_off = cpu_to_le16(offsetof(struct RESTART_HDR, fixups));
5153 t16 = (log->page_size >> SECTOR_SHIFT) + 1;
5154 rh->rhdr.fix_num = cpu_to_le16(t16);
5155 rh->sys_page_size = cpu_to_le32(log->page_size);
5156 rh->page_size = cpu_to_le32(log->page_size);
5157
5158 t16 = ALIGN(offsetof(struct RESTART_HDR, fixups) + sizeof(short) * t16,
5159 8);
5160 rh->ra_off = cpu_to_le16(t16);
5161 rh->minor_ver = cpu_to_le16(1); // 0x1A:
5162 rh->major_ver = cpu_to_le16(1); // 0x1C:
5163
5164 ra2 = Add2Ptr(rh, t16);
5165 memcpy(ra2, ra, sizeof(struct RESTART_AREA));
5166
5167 ra2->client_idx[0] = 0;
5168 ra2->client_idx[1] = LFS_NO_CLIENT_LE;
5169 ra2->flags = cpu_to_le16(2);
5170
5171 le32_add_cpu(&ra2->open_log_count, 1);
5172
5173 ntfs_fix_pre_write(&rh->rhdr, log->page_size);
5174
5175 err = ntfs_sb_write_run(sbi, &ni->file.run, 0, rh, log->page_size, 0);
5176 if (!err)
5177 err = ntfs_sb_write_run(sbi, &log->ni->file.run, log->page_size,
5178 rh, log->page_size, 0);
5179
5180 kfree(rh);
5181 if (err)
5182 goto out;
5183
5184 out:
5185 kfree(rst);
5186 if (lcb)
5187 lcb_put(lcb);
5188
5189 /*
5190 * Scan the Open Attribute Table to close all of
5191 * the open attributes.
5192 */
5193 oe = NULL;
5194 while ((oe = enum_rstbl(oatbl, oe))) {
5195 rno = ino_get(&oe->ref);
5196
5197 if (oe->is_attr_name == 1) {
5198 kfree(oe->ptr);
5199 oe->ptr = NULL;
5200 continue;
5201 }
5202
5203 if (oe->is_attr_name)
5204 continue;
5205
5206 oa = oe->ptr;
5207 if (!oa)
5208 continue;
5209
5210 run_close(&oa->run0);
5211 kfree(oa->attr);
5212 if (oa->ni)
5213 iput(&oa->ni->vfs_inode);
5214 kfree(oa);
5215 }
5216
5217 kfree(trtbl);
5218 kfree(oatbl);
5219 kfree(dptbl);
5220 kfree(attr_names);
5221 kfree(log->rst_info.r_page);
5222
5223 kfree(ra);
5224 kfree(log->one_page_buf);
5225
5226 if (err)
5227 sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
5228
5229 if (err == -EROFS)
5230 err = 0;
5231 else if (log->set_dirty)
5232 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
5233
5234 kfree(log);
5235
5236 return err;
5237 }
5238