1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* WARNING: This implementation is not necessarily the same 4 * as the tcp_cubic.c. The purpose is mainly for testing 5 * the kernel BPF logic. 6 * 7 * Highlights: 8 * 1. CONFIG_HZ .kconfig map is used. 9 * 2. In bictcp_update(), calculation is changed to use usec 10 * resolution (i.e. USEC_PER_JIFFY) instead of using jiffies. 11 * Thus, usecs_to_jiffies() is not used in the bpf_cubic.c. 12 * 3. In bitctcp_update() [under tcp_friendliness], the original 13 * "while (ca->ack_cnt > delta)" loop is changed to the equivalent 14 * "ca->ack_cnt / delta" operation. 15 */ 16 17 #include "bpf_tracing_net.h" 18 #include <bpf/bpf_tracing.h> 19 20 char _license[] SEC("license") = "GPL"; 21 22 #define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi) 23 24 extern __u32 tcp_slow_start(struct tcp_sock *tp, __u32 acked) __ksym; 25 extern void tcp_cong_avoid_ai(struct tcp_sock *tp, __u32 w, __u32 acked) __ksym; 26 27 #define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation 28 * max_cwnd = snd_cwnd * beta 29 */ 30 #define BICTCP_HZ 10 /* BIC HZ 2^10 = 1024 */ 31 32 /* Two methods of hybrid slow start */ 33 #define HYSTART_ACK_TRAIN 0x1 34 #define HYSTART_DELAY 0x2 35 36 /* Number of delay samples for detecting the increase of delay */ 37 #define HYSTART_MIN_SAMPLES 8 38 #define HYSTART_DELAY_MIN (4000U) /* 4ms */ 39 #define HYSTART_DELAY_MAX (16000U) /* 16 ms */ 40 #define HYSTART_DELAY_THRESH(x) clamp(x, HYSTART_DELAY_MIN, HYSTART_DELAY_MAX) 41 42 static int fast_convergence = 1; 43 static const int beta = 717; /* = 717/1024 (BICTCP_BETA_SCALE) */ 44 static int initial_ssthresh; 45 static const int bic_scale = 41; 46 static int tcp_friendliness = 1; 47 48 static int hystart = 1; 49 static int hystart_detect = HYSTART_ACK_TRAIN | HYSTART_DELAY; 50 static int hystart_low_window = 16; 51 static int hystart_ack_delta_us = 2000; 52 53 static const __u32 cube_rtt_scale = (bic_scale * 10); /* 1024*c/rtt */ 54 static const __u32 beta_scale = 8*(BICTCP_BETA_SCALE+beta) / 3 55 / (BICTCP_BETA_SCALE - beta); 56 /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3 57 * so K = cubic_root( (wmax-cwnd)*rtt/c ) 58 * the unit of K is bictcp_HZ=2^10, not HZ 59 * 60 * c = bic_scale >> 10 61 * rtt = 100ms 62 * 63 * the following code has been designed and tested for 64 * cwnd < 1 million packets 65 * RTT < 100 seconds 66 * HZ < 1,000,00 (corresponding to 10 nano-second) 67 */ 68 69 /* 1/c * 2^2*bictcp_HZ * srtt, 2^40 */ 70 static const __u64 cube_factor = (__u64)(1ull << (10+3*BICTCP_HZ)) 71 / (bic_scale * 10); 72 73 /* BIC TCP Parameters */ 74 struct bpf_bictcp { 75 __u32 cnt; /* increase cwnd by 1 after ACKs */ 76 __u32 last_max_cwnd; /* last maximum snd_cwnd */ 77 __u32 last_cwnd; /* the last snd_cwnd */ 78 __u32 last_time; /* time when updated last_cwnd */ 79 __u32 bic_origin_point;/* origin point of bic function */ 80 __u32 bic_K; /* time to origin point 81 from the beginning of the current epoch */ 82 __u32 delay_min; /* min delay (usec) */ 83 __u32 epoch_start; /* beginning of an epoch */ 84 __u32 ack_cnt; /* number of acks */ 85 __u32 tcp_cwnd; /* estimated tcp cwnd */ 86 __u16 unused; 87 __u8 sample_cnt; /* number of samples to decide curr_rtt */ 88 __u8 found; /* the exit point is found? */ 89 __u32 round_start; /* beginning of each round */ 90 __u32 end_seq; /* end_seq of the round */ 91 __u32 last_ack; /* last time when the ACK spacing is close */ 92 __u32 curr_rtt; /* the minimum rtt of current round */ 93 }; 94 95 static void bictcp_reset(struct bpf_bictcp *ca) 96 { 97 ca->cnt = 0; 98 ca->last_max_cwnd = 0; 99 ca->last_cwnd = 0; 100 ca->last_time = 0; 101 ca->bic_origin_point = 0; 102 ca->bic_K = 0; 103 ca->delay_min = 0; 104 ca->epoch_start = 0; 105 ca->ack_cnt = 0; 106 ca->tcp_cwnd = 0; 107 ca->found = 0; 108 } 109 110 extern unsigned long CONFIG_HZ __kconfig; 111 #define HZ CONFIG_HZ 112 #define USEC_PER_MSEC 1000UL 113 #define USEC_PER_SEC 1000000UL 114 #define USEC_PER_JIFFY (USEC_PER_SEC / HZ) 115 116 static __u64 div64_u64(__u64 dividend, __u64 divisor) 117 { 118 return dividend / divisor; 119 } 120 121 #define div64_ul div64_u64 122 123 #define BITS_PER_U64 (sizeof(__u64) * 8) 124 static int fls64(__u64 x) 125 { 126 int num = BITS_PER_U64 - 1; 127 128 if (x == 0) 129 return 0; 130 131 if (!(x & (~0ull << (BITS_PER_U64-32)))) { 132 num -= 32; 133 x <<= 32; 134 } 135 if (!(x & (~0ull << (BITS_PER_U64-16)))) { 136 num -= 16; 137 x <<= 16; 138 } 139 if (!(x & (~0ull << (BITS_PER_U64-8)))) { 140 num -= 8; 141 x <<= 8; 142 } 143 if (!(x & (~0ull << (BITS_PER_U64-4)))) { 144 num -= 4; 145 x <<= 4; 146 } 147 if (!(x & (~0ull << (BITS_PER_U64-2)))) { 148 num -= 2; 149 x <<= 2; 150 } 151 if (!(x & (~0ull << (BITS_PER_U64-1)))) 152 num -= 1; 153 154 return num + 1; 155 } 156 157 static __u32 bictcp_clock_us(const struct sock *sk) 158 { 159 return tcp_sk(sk)->tcp_mstamp; 160 } 161 162 static void bictcp_hystart_reset(struct sock *sk) 163 { 164 struct tcp_sock *tp = tcp_sk(sk); 165 struct bpf_bictcp *ca = inet_csk_ca(sk); 166 167 ca->round_start = ca->last_ack = bictcp_clock_us(sk); 168 ca->end_seq = tp->snd_nxt; 169 ca->curr_rtt = ~0U; 170 ca->sample_cnt = 0; 171 } 172 173 SEC("struct_ops") 174 void BPF_PROG(bpf_cubic_init, struct sock *sk) 175 { 176 struct bpf_bictcp *ca = inet_csk_ca(sk); 177 178 bictcp_reset(ca); 179 180 if (hystart) 181 bictcp_hystart_reset(sk); 182 183 if (!hystart && initial_ssthresh) 184 tcp_sk(sk)->snd_ssthresh = initial_ssthresh; 185 } 186 187 SEC("struct_ops") 188 void BPF_PROG(bpf_cubic_cwnd_event, struct sock *sk, enum tcp_ca_event event) 189 { 190 if (event == CA_EVENT_TX_START) { 191 struct bpf_bictcp *ca = inet_csk_ca(sk); 192 __u32 now = tcp_jiffies32; 193 __s32 delta; 194 195 delta = now - tcp_sk(sk)->lsndtime; 196 197 /* We were application limited (idle) for a while. 198 * Shift epoch_start to keep cwnd growth to cubic curve. 199 */ 200 if (ca->epoch_start && delta > 0) { 201 ca->epoch_start += delta; 202 if (after(ca->epoch_start, now)) 203 ca->epoch_start = now; 204 } 205 return; 206 } 207 } 208 209 /* 210 * cbrt(x) MSB values for x MSB values in [0..63]. 211 * Precomputed then refined by hand - Willy Tarreau 212 * 213 * For x in [0..63], 214 * v = cbrt(x << 18) - 1 215 * cbrt(x) = (v[x] + 10) >> 6 216 */ 217 static const __u8 v[] = { 218 /* 0x00 */ 0, 54, 54, 54, 118, 118, 118, 118, 219 /* 0x08 */ 123, 129, 134, 138, 143, 147, 151, 156, 220 /* 0x10 */ 157, 161, 164, 168, 170, 173, 176, 179, 221 /* 0x18 */ 181, 185, 187, 190, 192, 194, 197, 199, 222 /* 0x20 */ 200, 202, 204, 206, 209, 211, 213, 215, 223 /* 0x28 */ 217, 219, 221, 222, 224, 225, 227, 229, 224 /* 0x30 */ 231, 232, 234, 236, 237, 239, 240, 242, 225 /* 0x38 */ 244, 245, 246, 248, 250, 251, 252, 254, 226 }; 227 228 /* calculate the cubic root of x using a table lookup followed by one 229 * Newton-Raphson iteration. 230 * Avg err ~= 0.195% 231 */ 232 static __u32 cubic_root(__u64 a) 233 { 234 __u32 x, b, shift; 235 236 if (a < 64) { 237 /* a in [0..63] */ 238 return ((__u32)v[(__u32)a] + 35) >> 6; 239 } 240 241 b = fls64(a); 242 b = ((b * 84) >> 8) - 1; 243 shift = (a >> (b * 3)); 244 245 /* it is needed for verifier's bound check on v */ 246 if (shift >= 64) 247 return 0; 248 249 x = ((__u32)(((__u32)v[shift] + 10) << b)) >> 6; 250 251 /* 252 * Newton-Raphson iteration 253 * 2 254 * x = ( 2 * x + a / x ) / 3 255 * k+1 k k 256 */ 257 x = (2 * x + (__u32)div64_u64(a, (__u64)x * (__u64)(x - 1))); 258 x = ((x * 341) >> 10); 259 return x; 260 } 261 262 /* 263 * Compute congestion window to use. 264 */ 265 static void bictcp_update(struct bpf_bictcp *ca, __u32 cwnd, __u32 acked) 266 { 267 __u32 delta, bic_target, max_cnt; 268 __u64 offs, t; 269 270 ca->ack_cnt += acked; /* count the number of ACKed packets */ 271 272 if (ca->last_cwnd == cwnd && 273 (__s32)(tcp_jiffies32 - ca->last_time) <= HZ / 32) 274 return; 275 276 /* The CUBIC function can update ca->cnt at most once per jiffy. 277 * On all cwnd reduction events, ca->epoch_start is set to 0, 278 * which will force a recalculation of ca->cnt. 279 */ 280 if (ca->epoch_start && tcp_jiffies32 == ca->last_time) 281 goto tcp_friendliness; 282 283 ca->last_cwnd = cwnd; 284 ca->last_time = tcp_jiffies32; 285 286 if (ca->epoch_start == 0) { 287 ca->epoch_start = tcp_jiffies32; /* record beginning */ 288 ca->ack_cnt = acked; /* start counting */ 289 ca->tcp_cwnd = cwnd; /* syn with cubic */ 290 291 if (ca->last_max_cwnd <= cwnd) { 292 ca->bic_K = 0; 293 ca->bic_origin_point = cwnd; 294 } else { 295 /* Compute new K based on 296 * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ) 297 */ 298 ca->bic_K = cubic_root(cube_factor 299 * (ca->last_max_cwnd - cwnd)); 300 ca->bic_origin_point = ca->last_max_cwnd; 301 } 302 } 303 304 /* cubic function - calc*/ 305 /* calculate c * time^3 / rtt, 306 * while considering overflow in calculation of time^3 307 * (so time^3 is done by using 64 bit) 308 * and without the support of division of 64bit numbers 309 * (so all divisions are done by using 32 bit) 310 * also NOTE the unit of those variables 311 * time = (t - K) / 2^bictcp_HZ 312 * c = bic_scale >> 10 313 * rtt = (srtt >> 3) / HZ 314 * !!! The following code does not have overflow problems, 315 * if the cwnd < 1 million packets !!! 316 */ 317 318 t = (__s32)(tcp_jiffies32 - ca->epoch_start) * USEC_PER_JIFFY; 319 t += ca->delay_min; 320 /* change the unit from usec to bictcp_HZ */ 321 t <<= BICTCP_HZ; 322 t /= USEC_PER_SEC; 323 324 if (t < ca->bic_K) /* t - K */ 325 offs = ca->bic_K - t; 326 else 327 offs = t - ca->bic_K; 328 329 /* c/rtt * (t-K)^3 */ 330 delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ); 331 if (t < ca->bic_K) /* below origin*/ 332 bic_target = ca->bic_origin_point - delta; 333 else /* above origin*/ 334 bic_target = ca->bic_origin_point + delta; 335 336 /* cubic function - calc bictcp_cnt*/ 337 if (bic_target > cwnd) { 338 ca->cnt = cwnd / (bic_target - cwnd); 339 } else { 340 ca->cnt = 100 * cwnd; /* very small increment*/ 341 } 342 343 /* 344 * The initial growth of cubic function may be too conservative 345 * when the available bandwidth is still unknown. 346 */ 347 if (ca->last_max_cwnd == 0 && ca->cnt > 20) 348 ca->cnt = 20; /* increase cwnd 5% per RTT */ 349 350 tcp_friendliness: 351 /* TCP Friendly */ 352 if (tcp_friendliness) { 353 __u32 scale = beta_scale; 354 __u32 n; 355 356 /* update tcp cwnd */ 357 delta = (cwnd * scale) >> 3; 358 if (ca->ack_cnt > delta && delta) { 359 n = ca->ack_cnt / delta; 360 ca->ack_cnt -= n * delta; 361 ca->tcp_cwnd += n; 362 } 363 364 if (ca->tcp_cwnd > cwnd) { /* if bic is slower than tcp */ 365 delta = ca->tcp_cwnd - cwnd; 366 max_cnt = cwnd / delta; 367 if (ca->cnt > max_cnt) 368 ca->cnt = max_cnt; 369 } 370 } 371 372 /* The maximum rate of cwnd increase CUBIC allows is 1 packet per 373 * 2 packets ACKed, meaning cwnd grows at 1.5x per RTT. 374 */ 375 ca->cnt = max(ca->cnt, 2U); 376 } 377 378 SEC("struct_ops") 379 void BPF_PROG(bpf_cubic_cong_avoid, struct sock *sk, __u32 ack, __u32 acked) 380 { 381 struct tcp_sock *tp = tcp_sk(sk); 382 struct bpf_bictcp *ca = inet_csk_ca(sk); 383 384 if (!tcp_is_cwnd_limited(sk)) 385 return; 386 387 if (tcp_in_slow_start(tp)) { 388 if (hystart && after(ack, ca->end_seq)) 389 bictcp_hystart_reset(sk); 390 acked = tcp_slow_start(tp, acked); 391 if (!acked) 392 return; 393 } 394 bictcp_update(ca, tp->snd_cwnd, acked); 395 tcp_cong_avoid_ai(tp, ca->cnt, acked); 396 } 397 398 SEC("struct_ops") 399 __u32 BPF_PROG(bpf_cubic_recalc_ssthresh, struct sock *sk) 400 { 401 const struct tcp_sock *tp = tcp_sk(sk); 402 struct bpf_bictcp *ca = inet_csk_ca(sk); 403 404 ca->epoch_start = 0; /* end of epoch */ 405 406 /* Wmax and fast convergence */ 407 if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence) 408 ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta)) 409 / (2 * BICTCP_BETA_SCALE); 410 else 411 ca->last_max_cwnd = tp->snd_cwnd; 412 413 return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U); 414 } 415 416 SEC("struct_ops") 417 void BPF_PROG(bpf_cubic_state, struct sock *sk, __u8 new_state) 418 { 419 if (new_state == TCP_CA_Loss) { 420 bictcp_reset(inet_csk_ca(sk)); 421 bictcp_hystart_reset(sk); 422 } 423 } 424 425 #define GSO_MAX_SIZE 65536 426 427 /* Account for TSO/GRO delays. 428 * Otherwise short RTT flows could get too small ssthresh, since during 429 * slow start we begin with small TSO packets and ca->delay_min would 430 * not account for long aggregation delay when TSO packets get bigger. 431 * Ideally even with a very small RTT we would like to have at least one 432 * TSO packet being sent and received by GRO, and another one in qdisc layer. 433 * We apply another 100% factor because @rate is doubled at this point. 434 * We cap the cushion to 1ms. 435 */ 436 static __u32 hystart_ack_delay(struct sock *sk) 437 { 438 unsigned long rate; 439 440 rate = sk->sk_pacing_rate; 441 if (!rate) 442 return 0; 443 return min((__u64)USEC_PER_MSEC, 444 div64_ul((__u64)GSO_MAX_SIZE * 4 * USEC_PER_SEC, rate)); 445 } 446 447 static void hystart_update(struct sock *sk, __u32 delay) 448 { 449 struct tcp_sock *tp = tcp_sk(sk); 450 struct bpf_bictcp *ca = inet_csk_ca(sk); 451 __u32 threshold; 452 453 if (hystart_detect & HYSTART_ACK_TRAIN) { 454 __u32 now = bictcp_clock_us(sk); 455 456 /* first detection parameter - ack-train detection */ 457 if ((__s32)(now - ca->last_ack) <= hystart_ack_delta_us) { 458 ca->last_ack = now; 459 460 threshold = ca->delay_min + hystart_ack_delay(sk); 461 462 /* Hystart ack train triggers if we get ack past 463 * ca->delay_min/2. 464 * Pacing might have delayed packets up to RTT/2 465 * during slow start. 466 */ 467 if (sk->sk_pacing_status == SK_PACING_NONE) 468 threshold >>= 1; 469 470 if ((__s32)(now - ca->round_start) > threshold) { 471 ca->found = 1; 472 tp->snd_ssthresh = tp->snd_cwnd; 473 } 474 } 475 } 476 477 if (hystart_detect & HYSTART_DELAY) { 478 /* obtain the minimum delay of more than sampling packets */ 479 if (ca->curr_rtt > delay) 480 ca->curr_rtt = delay; 481 if (ca->sample_cnt < HYSTART_MIN_SAMPLES) { 482 ca->sample_cnt++; 483 } else { 484 if (ca->curr_rtt > ca->delay_min + 485 HYSTART_DELAY_THRESH(ca->delay_min >> 3)) { 486 ca->found = 1; 487 tp->snd_ssthresh = tp->snd_cwnd; 488 } 489 } 490 } 491 } 492 493 int bpf_cubic_acked_called = 0; 494 495 SEC("struct_ops") 496 void BPF_PROG(bpf_cubic_acked, struct sock *sk, const struct ack_sample *sample) 497 { 498 const struct tcp_sock *tp = tcp_sk(sk); 499 struct bpf_bictcp *ca = inet_csk_ca(sk); 500 __u32 delay; 501 502 bpf_cubic_acked_called = 1; 503 /* Some calls are for duplicates without timestamps */ 504 if (sample->rtt_us < 0) 505 return; 506 507 /* Discard delay samples right after fast recovery */ 508 if (ca->epoch_start && (__s32)(tcp_jiffies32 - ca->epoch_start) < HZ) 509 return; 510 511 delay = sample->rtt_us; 512 if (delay == 0) 513 delay = 1; 514 515 /* first time call or link delay decreases */ 516 if (ca->delay_min == 0 || ca->delay_min > delay) 517 ca->delay_min = delay; 518 519 /* hystart triggers when cwnd is larger than some threshold */ 520 if (!ca->found && tcp_in_slow_start(tp) && hystart && 521 tp->snd_cwnd >= hystart_low_window) 522 hystart_update(sk, delay); 523 } 524 525 extern __u32 tcp_reno_undo_cwnd(struct sock *sk) __ksym; 526 527 SEC("struct_ops") 528 __u32 BPF_PROG(bpf_cubic_undo_cwnd, struct sock *sk) 529 { 530 return tcp_reno_undo_cwnd(sk); 531 } 532 533 SEC(".struct_ops") 534 struct tcp_congestion_ops cubic = { 535 .init = (void *)bpf_cubic_init, 536 .ssthresh = (void *)bpf_cubic_recalc_ssthresh, 537 .cong_avoid = (void *)bpf_cubic_cong_avoid, 538 .set_state = (void *)bpf_cubic_state, 539 .undo_cwnd = (void *)bpf_cubic_undo_cwnd, 540 .cwnd_event = (void *)bpf_cubic_cwnd_event, 541 .pkts_acked = (void *)bpf_cubic_acked, 542 .name = "bpf_cubic", 543 }; 544