xref: /linux/include/linux/usb.h (revision c6006b8ca14dcc604567be99fc4863e6e11ab6e3)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_USB_H
3 #define __LINUX_USB_H
4 
5 #include <linux/mod_devicetable.h>
6 #include <linux/usb/ch9.h>
7 
8 #define USB_MAJOR			180
9 #define USB_DEVICE_MAJOR		189
10 
11 
12 #ifdef __KERNEL__
13 
14 #include <linux/errno.h>        /* for -ENODEV */
15 #include <linux/delay.h>	/* for mdelay() */
16 #include <linux/interrupt.h>	/* for in_interrupt() */
17 #include <linux/list.h>		/* for struct list_head */
18 #include <linux/kref.h>		/* for struct kref */
19 #include <linux/device.h>	/* for struct device */
20 #include <linux/fs.h>		/* for struct file_operations */
21 #include <linux/completion.h>	/* for struct completion */
22 #include <linux/sched.h>	/* for current && schedule_timeout */
23 #include <linux/mutex.h>	/* for struct mutex */
24 #include <linux/pm_runtime.h>	/* for runtime PM */
25 
26 struct usb_device;
27 struct usb_driver;
28 
29 /*-------------------------------------------------------------------------*/
30 
31 /*
32  * Host-side wrappers for standard USB descriptors ... these are parsed
33  * from the data provided by devices.  Parsing turns them from a flat
34  * sequence of descriptors into a hierarchy:
35  *
36  *  - devices have one (usually) or more configs;
37  *  - configs have one (often) or more interfaces;
38  *  - interfaces have one (usually) or more settings;
39  *  - each interface setting has zero or (usually) more endpoints.
40  *  - a SuperSpeed endpoint has a companion descriptor
41  *
42  * And there might be other descriptors mixed in with those.
43  *
44  * Devices may also have class-specific or vendor-specific descriptors.
45  */
46 
47 struct ep_device;
48 
49 /**
50  * struct usb_host_endpoint - host-side endpoint descriptor and queue
51  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52  * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53  * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
54  * @eusb2_isoc_ep_comp: eUSB2 isoc companion descriptor for this endpoint
55  * @urb_list: urbs queued to this endpoint; maintained by usbcore
56  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
57  *	with one or more transfer descriptors (TDs) per urb
58  * @ep_dev: ep_device for sysfs info
59  * @extra: descriptors following this endpoint in the configuration
60  * @extralen: how many bytes of "extra" are valid
61  * @enabled: URBs may be submitted to this endpoint
62  * @streams: number of USB-3 streams allocated on the endpoint
63  *
64  * USB requests are always queued to a given endpoint, identified by a
65  * descriptor within an active interface in a given USB configuration.
66  */
67 struct usb_host_endpoint {
68 	struct usb_endpoint_descriptor			desc;
69 	struct usb_ss_ep_comp_descriptor		ss_ep_comp;
70 	struct usb_ssp_isoc_ep_comp_descriptor		ssp_isoc_ep_comp;
71 	struct usb_eusb2_isoc_ep_comp_descriptor	eusb2_isoc_ep_comp;
72 	struct list_head		urb_list;
73 	void				*hcpriv;
74 	struct ep_device		*ep_dev;	/* For sysfs info */
75 
76 	unsigned char *extra;   /* Extra descriptors */
77 	int extralen;
78 	int enabled;
79 	int streams;
80 };
81 
82 /* host-side wrapper for one interface setting's parsed descriptors */
83 struct usb_host_interface {
84 	struct usb_interface_descriptor	desc;
85 
86 	int extralen;
87 	unsigned char *extra;   /* Extra descriptors */
88 
89 	/* array of desc.bNumEndpoints endpoints associated with this
90 	 * interface setting.  these will be in no particular order.
91 	 */
92 	struct usb_host_endpoint *endpoint;
93 
94 	char *string;		/* iInterface string, if present */
95 };
96 
97 enum usb_interface_condition {
98 	USB_INTERFACE_UNBOUND = 0,
99 	USB_INTERFACE_BINDING,
100 	USB_INTERFACE_BOUND,
101 	USB_INTERFACE_UNBINDING,
102 };
103 
104 int __must_check
105 usb_find_common_endpoints(struct usb_host_interface *alt,
106 		struct usb_endpoint_descriptor **bulk_in,
107 		struct usb_endpoint_descriptor **bulk_out,
108 		struct usb_endpoint_descriptor **int_in,
109 		struct usb_endpoint_descriptor **int_out);
110 
111 int __must_check
112 usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
113 		struct usb_endpoint_descriptor **bulk_in,
114 		struct usb_endpoint_descriptor **bulk_out,
115 		struct usb_endpoint_descriptor **int_in,
116 		struct usb_endpoint_descriptor **int_out);
117 
118 static inline int __must_check
119 usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
120 		struct usb_endpoint_descriptor **bulk_in)
121 {
122 	return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
123 }
124 
125 static inline int __must_check
126 usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
127 		struct usb_endpoint_descriptor **bulk_out)
128 {
129 	return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
130 }
131 
132 static inline int __must_check
133 usb_find_int_in_endpoint(struct usb_host_interface *alt,
134 		struct usb_endpoint_descriptor **int_in)
135 {
136 	return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
137 }
138 
139 static inline int __must_check
140 usb_find_int_out_endpoint(struct usb_host_interface *alt,
141 		struct usb_endpoint_descriptor **int_out)
142 {
143 	return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
144 }
145 
146 static inline int __must_check
147 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
148 		struct usb_endpoint_descriptor **bulk_in)
149 {
150 	return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
151 }
152 
153 static inline int __must_check
154 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
155 		struct usb_endpoint_descriptor **bulk_out)
156 {
157 	return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
158 }
159 
160 static inline int __must_check
161 usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
162 		struct usb_endpoint_descriptor **int_in)
163 {
164 	return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
165 }
166 
167 static inline int __must_check
168 usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
169 		struct usb_endpoint_descriptor **int_out)
170 {
171 	return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
172 }
173 
174 enum usb_wireless_status {
175 	USB_WIRELESS_STATUS_NA = 0,
176 	USB_WIRELESS_STATUS_DISCONNECTED,
177 	USB_WIRELESS_STATUS_CONNECTED,
178 };
179 
180 /**
181  * struct usb_interface - what usb device drivers talk to
182  * @altsetting: array of interface structures, one for each alternate
183  *	setting that may be selected.  Each one includes a set of
184  *	endpoint configurations.  They will be in no particular order.
185  * @cur_altsetting: the current altsetting.
186  * @num_altsetting: number of altsettings defined.
187  * @intf_assoc: interface association descriptor
188  * @minor: the minor number assigned to this interface, if this
189  *	interface is bound to a driver that uses the USB major number.
190  *	If this interface does not use the USB major, this field should
191  *	be unused.  The driver should set this value in the probe()
192  *	function of the driver, after it has been assigned a minor
193  *	number from the USB core by calling usb_register_dev().
194  * @condition: binding state of the interface: not bound, binding
195  *	(in probe()), bound to a driver, or unbinding (in disconnect())
196  * @sysfs_files_created: sysfs attributes exist
197  * @ep_devs_created: endpoint child pseudo-devices exist
198  * @unregistering: flag set when the interface is being unregistered
199  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
200  *	capability during autosuspend.
201  * @needs_altsetting0: flag set when a set-interface request for altsetting 0
202  *	has been deferred.
203  * @needs_binding: flag set when the driver should be re-probed or unbound
204  *	following a reset or suspend operation it doesn't support.
205  * @authorized: This allows to (de)authorize individual interfaces instead
206  *	a whole device in contrast to the device authorization.
207  * @wireless_status: if the USB device uses a receiver/emitter combo, whether
208  *	the emitter is connected.
209  * @wireless_status_work: Used for scheduling wireless status changes
210  *	from atomic context.
211  * @dev: driver model's view of this device
212  * @usb_dev: if an interface is bound to the USB major, this will point
213  *	to the sysfs representation for that device.
214  * @reset_ws: Used for scheduling resets from atomic context.
215  * @resetting_device: USB core reset the device, so use alt setting 0 as
216  *	current; needs bandwidth alloc after reset.
217  *
218  * USB device drivers attach to interfaces on a physical device.  Each
219  * interface encapsulates a single high level function, such as feeding
220  * an audio stream to a speaker or reporting a change in a volume control.
221  * Many USB devices only have one interface.  The protocol used to talk to
222  * an interface's endpoints can be defined in a usb "class" specification,
223  * or by a product's vendor.  The (default) control endpoint is part of
224  * every interface, but is never listed among the interface's descriptors.
225  *
226  * The driver that is bound to the interface can use standard driver model
227  * calls such as dev_get_drvdata() on the dev member of this structure.
228  *
229  * Each interface may have alternate settings.  The initial configuration
230  * of a device sets altsetting 0, but the device driver can change
231  * that setting using usb_set_interface().  Alternate settings are often
232  * used to control the use of periodic endpoints, such as by having
233  * different endpoints use different amounts of reserved USB bandwidth.
234  * All standards-conformant USB devices that use isochronous endpoints
235  * will use them in non-default settings.
236  *
237  * The USB specification says that alternate setting numbers must run from
238  * 0 to one less than the total number of alternate settings.  But some
239  * devices manage to mess this up, and the structures aren't necessarily
240  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
241  * look up an alternate setting in the altsetting array based on its number.
242  */
243 struct usb_interface {
244 	/* array of alternate settings for this interface,
245 	 * stored in no particular order */
246 	struct usb_host_interface *altsetting;
247 
248 	struct usb_host_interface *cur_altsetting;	/* the currently
249 					 * active alternate setting */
250 	unsigned num_altsetting;	/* number of alternate settings */
251 
252 	/* If there is an interface association descriptor then it will list
253 	 * the associated interfaces */
254 	struct usb_interface_assoc_descriptor *intf_assoc;
255 
256 	int minor;			/* minor number this interface is
257 					 * bound to */
258 	enum usb_interface_condition condition;		/* state of binding */
259 	unsigned sysfs_files_created:1;	/* the sysfs attributes exist */
260 	unsigned ep_devs_created:1;	/* endpoint "devices" exist */
261 	unsigned unregistering:1;	/* unregistration is in progress */
262 	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
263 	unsigned needs_altsetting0:1;	/* switch to altsetting 0 is pending */
264 	unsigned needs_binding:1;	/* needs delayed unbind/rebind */
265 	unsigned resetting_device:1;	/* true: bandwidth alloc after reset */
266 	unsigned authorized:1;		/* used for interface authorization */
267 	enum usb_wireless_status wireless_status;
268 	struct work_struct wireless_status_work;
269 
270 	struct device dev;		/* interface specific device info */
271 	struct device *usb_dev;
272 	struct work_struct reset_ws;	/* for resets in atomic context */
273 };
274 
275 #define to_usb_interface(__dev)	container_of_const(__dev, struct usb_interface, dev)
276 
277 static inline void *usb_get_intfdata(struct usb_interface *intf)
278 {
279 	return dev_get_drvdata(&intf->dev);
280 }
281 
282 /**
283  * usb_set_intfdata() - associate driver-specific data with an interface
284  * @intf: USB interface
285  * @data: driver data
286  *
287  * Drivers can use this function in their probe() callbacks to associate
288  * driver-specific data with an interface.
289  *
290  * Note that there is generally no need to clear the driver-data pointer even
291  * if some drivers do so for historical or implementation-specific reasons.
292  */
293 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
294 {
295 	dev_set_drvdata(&intf->dev, data);
296 }
297 
298 struct usb_interface *usb_get_intf(struct usb_interface *intf);
299 void usb_put_intf(struct usb_interface *intf);
300 
301 /* Hard limit */
302 #define USB_MAXENDPOINTS	30
303 /* this maximum is arbitrary */
304 #define USB_MAXINTERFACES	32
305 #define USB_MAXIADS		(USB_MAXINTERFACES/2)
306 
307 bool usb_check_bulk_endpoints(
308 		const struct usb_interface *intf, const u8 *ep_addrs);
309 bool usb_check_int_endpoints(
310 		const struct usb_interface *intf, const u8 *ep_addrs);
311 
312 /*
313  * USB Resume Timer: Every Host controller driver should drive the resume
314  * signalling on the bus for the amount of time defined by this macro.
315  *
316  * That way we will have a 'stable' behavior among all HCDs supported by Linux.
317  *
318  * Note that the USB Specification states we should drive resume for *at least*
319  * 20 ms, but it doesn't give an upper bound. This creates two possible
320  * situations which we want to avoid:
321  *
322  * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
323  * us to fail USB Electrical Tests, thus failing Certification
324  *
325  * (b) Some (many) devices actually need more than 20 ms of resume signalling,
326  * and while we can argue that's against the USB Specification, we don't have
327  * control over which devices a certification laboratory will be using for
328  * certification. If CertLab uses a device which was tested against Windows and
329  * that happens to have relaxed resume signalling rules, we might fall into
330  * situations where we fail interoperability and electrical tests.
331  *
332  * In order to avoid both conditions, we're using a 40 ms resume timeout, which
333  * should cope with both LPJ calibration errors and devices not following every
334  * detail of the USB Specification.
335  */
336 #define USB_RESUME_TIMEOUT	40 /* ms */
337 
338 /**
339  * struct usb_interface_cache - long-term representation of a device interface
340  * @num_altsetting: number of altsettings defined.
341  * @ref: reference counter.
342  * @altsetting: variable-length array of interface structures, one for
343  *	each alternate setting that may be selected.  Each one includes a
344  *	set of endpoint configurations.  They will be in no particular order.
345  *
346  * These structures persist for the lifetime of a usb_device, unlike
347  * struct usb_interface (which persists only as long as its configuration
348  * is installed).  The altsetting arrays can be accessed through these
349  * structures at any time, permitting comparison of configurations and
350  * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
351  */
352 struct usb_interface_cache {
353 	unsigned num_altsetting;	/* number of alternate settings */
354 	struct kref ref;		/* reference counter */
355 
356 	/* variable-length array of alternate settings for this interface,
357 	 * stored in no particular order */
358 	struct usb_host_interface altsetting[];
359 };
360 #define	ref_to_usb_interface_cache(r) \
361 		container_of(r, struct usb_interface_cache, ref)
362 #define	altsetting_to_usb_interface_cache(a) \
363 		container_of(a, struct usb_interface_cache, altsetting[0])
364 
365 /**
366  * struct usb_host_config - representation of a device's configuration
367  * @desc: the device's configuration descriptor.
368  * @string: pointer to the cached version of the iConfiguration string, if
369  *	present for this configuration.
370  * @intf_assoc: list of any interface association descriptors in this config
371  * @interface: array of pointers to usb_interface structures, one for each
372  *	interface in the configuration.  The number of interfaces is stored
373  *	in desc.bNumInterfaces.  These pointers are valid only while the
374  *	configuration is active.
375  * @intf_cache: array of pointers to usb_interface_cache structures, one
376  *	for each interface in the configuration.  These structures exist
377  *	for the entire life of the device.
378  * @extra: pointer to buffer containing all extra descriptors associated
379  *	with this configuration (those preceding the first interface
380  *	descriptor).
381  * @extralen: length of the extra descriptors buffer.
382  *
383  * USB devices may have multiple configurations, but only one can be active
384  * at any time.  Each encapsulates a different operational environment;
385  * for example, a dual-speed device would have separate configurations for
386  * full-speed and high-speed operation.  The number of configurations
387  * available is stored in the device descriptor as bNumConfigurations.
388  *
389  * A configuration can contain multiple interfaces.  Each corresponds to
390  * a different function of the USB device, and all are available whenever
391  * the configuration is active.  The USB standard says that interfaces
392  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
393  * of devices get this wrong.  In addition, the interface array is not
394  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
395  * look up an interface entry based on its number.
396  *
397  * Device drivers should not attempt to activate configurations.  The choice
398  * of which configuration to install is a policy decision based on such
399  * considerations as available power, functionality provided, and the user's
400  * desires (expressed through userspace tools).  However, drivers can call
401  * usb_reset_configuration() to reinitialize the current configuration and
402  * all its interfaces.
403  */
404 struct usb_host_config {
405 	struct usb_config_descriptor	desc;
406 
407 	char *string;		/* iConfiguration string, if present */
408 
409 	/* List of any Interface Association Descriptors in this
410 	 * configuration. */
411 	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
412 
413 	/* the interfaces associated with this configuration,
414 	 * stored in no particular order */
415 	struct usb_interface *interface[USB_MAXINTERFACES];
416 
417 	/* Interface information available even when this is not the
418 	 * active configuration */
419 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
420 
421 	unsigned char *extra;   /* Extra descriptors */
422 	int extralen;
423 };
424 
425 /* USB2.0 and USB3.0 device BOS descriptor set */
426 struct usb_host_bos {
427 	struct usb_bos_descriptor	*desc;
428 
429 	struct usb_ext_cap_descriptor	*ext_cap;
430 	struct usb_ss_cap_descriptor	*ss_cap;
431 	struct usb_ssp_cap_descriptor	*ssp_cap;
432 	struct usb_ss_container_id_descriptor	*ss_id;
433 	struct usb_ptm_cap_descriptor	*ptm_cap;
434 };
435 
436 int __usb_get_extra_descriptor(char *buffer, unsigned size,
437 	unsigned char type, void **ptr, size_t min);
438 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
439 				__usb_get_extra_descriptor((ifpoint)->extra, \
440 				(ifpoint)->extralen, \
441 				type, (void **)ptr, sizeof(**(ptr)))
442 
443 /* ----------------------------------------------------------------------- */
444 
445 /*
446  * Allocated per bus (tree of devices) we have:
447  */
448 struct usb_bus {
449 	struct device *controller;	/* host side hardware */
450 	struct device *sysdev;		/* as seen from firmware or bus */
451 	int busnum;			/* Bus number (in order of reg) */
452 	const char *bus_name;		/* stable id (PCI slot_name etc) */
453 	u8 uses_pio_for_control;	/*
454 					 * Does the host controller use PIO
455 					 * for control transfers?
456 					 */
457 	u8 otg_port;			/* 0, or number of OTG/HNP port */
458 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
459 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
460 	unsigned no_stop_on_short:1;    /*
461 					 * Quirk: some controllers don't stop
462 					 * the ep queue on a short transfer
463 					 * with the URB_SHORT_NOT_OK flag set.
464 					 */
465 	unsigned no_sg_constraint:1;	/* no sg constraint */
466 	unsigned sg_tablesize;		/* 0 or largest number of sg list entries */
467 
468 	int devnum_next;		/* Next open device number in
469 					 * round-robin allocation */
470 	struct mutex devnum_next_mutex; /* devnum_next mutex */
471 
472 	DECLARE_BITMAP(devmap, 128);	/* USB device number allocation bitmap */
473 	struct usb_device *root_hub;	/* Root hub */
474 	struct usb_bus *hs_companion;	/* Companion EHCI bus, if any */
475 
476 	int bandwidth_allocated;	/* on this bus: how much of the time
477 					 * reserved for periodic (intr/iso)
478 					 * requests is used, on average?
479 					 * Units: microseconds/frame.
480 					 * Limits: Full/low speed reserve 90%,
481 					 * while high speed reserves 80%.
482 					 */
483 	int bandwidth_int_reqs;		/* number of Interrupt requests */
484 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
485 
486 	unsigned resuming_ports;	/* bit array: resuming root-hub ports */
487 
488 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
489 	struct mon_bus *mon_bus;	/* non-null when associated */
490 	int monitored;			/* non-zero when monitored */
491 #endif
492 };
493 
494 struct usb_dev_state;
495 
496 /* ----------------------------------------------------------------------- */
497 
498 struct usb_tt;
499 
500 enum usb_link_tunnel_mode {
501 	USB_LINK_UNKNOWN = 0,
502 	USB_LINK_NATIVE,
503 	USB_LINK_TUNNELED,
504 };
505 
506 enum usb_port_connect_type {
507 	USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
508 	USB_PORT_CONNECT_TYPE_HOT_PLUG,
509 	USB_PORT_CONNECT_TYPE_HARD_WIRED,
510 	USB_PORT_NOT_USED,
511 };
512 
513 /*
514  * USB port quirks.
515  */
516 
517 /* For the given port, prefer the old (faster) enumeration scheme. */
518 #define USB_PORT_QUIRK_OLD_SCHEME	BIT(0)
519 
520 /* Decrease TRSTRCY to 10ms during device enumeration. */
521 #define USB_PORT_QUIRK_FAST_ENUM	BIT(1)
522 
523 /*
524  * USB 2.0 Link Power Management (LPM) parameters.
525  */
526 struct usb2_lpm_parameters {
527 	/* Best effort service latency indicate how long the host will drive
528 	 * resume on an exit from L1.
529 	 */
530 	unsigned int besl;
531 
532 	/* Timeout value in microseconds for the L1 inactivity (LPM) timer.
533 	 * When the timer counts to zero, the parent hub will initiate a LPM
534 	 * transition to L1.
535 	 */
536 	int timeout;
537 };
538 
539 /*
540  * USB 3.0 Link Power Management (LPM) parameters.
541  *
542  * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
543  * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
544  * All three are stored in nanoseconds.
545  */
546 struct usb3_lpm_parameters {
547 	/*
548 	 * Maximum exit latency (MEL) for the host to send a packet to the
549 	 * device (either a Ping for isoc endpoints, or a data packet for
550 	 * interrupt endpoints), the hubs to decode the packet, and for all hubs
551 	 * in the path to transition the links to U0.
552 	 */
553 	unsigned int mel;
554 	/*
555 	 * Maximum exit latency for a device-initiated LPM transition to bring
556 	 * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
557 	 * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
558 	 */
559 	unsigned int pel;
560 
561 	/*
562 	 * The System Exit Latency (SEL) includes PEL, and three other
563 	 * latencies.  After a device initiates a U0 transition, it will take
564 	 * some time from when the device sends the ERDY to when it will finally
565 	 * receive the data packet.  Basically, SEL should be the worse-case
566 	 * latency from when a device starts initiating a U0 transition to when
567 	 * it will get data.
568 	 */
569 	unsigned int sel;
570 	/*
571 	 * The idle timeout value that is currently programmed into the parent
572 	 * hub for this device.  When the timer counts to zero, the parent hub
573 	 * will initiate an LPM transition to either U1 or U2.
574 	 */
575 	int timeout;
576 };
577 
578 /**
579  * struct usb_device - kernel's representation of a USB device
580  * @devnum: device number; address on a USB bus
581  * @devpath: device ID string for use in messages (e.g., /port/...)
582  * @route: tree topology hex string for use with xHCI
583  * @state: device state: configured, not attached, etc.
584  * @speed: device speed: high/full/low (or error)
585  * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
586  * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
587  * @ssp_rate: SuperSpeed Plus phy signaling rate and lane count
588  * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
589  * @ttport: device port on that tt hub
590  * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
591  * @parent: our hub, unless we're the root
592  * @bus: bus we're part of
593  * @ep0: endpoint 0 data (default control pipe)
594  * @dev: generic device interface
595  * @descriptor: USB device descriptor
596  * @bos: USB device BOS descriptor set
597  * @config: all of the device's configs
598  * @actconfig: the active configuration
599  * @ep_in: array of IN endpoints
600  * @ep_out: array of OUT endpoints
601  * @rawdescriptors: raw descriptors for each config
602  * @bus_mA: Current available from the bus
603  * @portnum: parent port number (origin 1)
604  * @level: number of USB hub ancestors
605  * @devaddr: device address, XHCI: assigned by HW, others: same as devnum
606  * @can_submit: URBs may be submitted
607  * @persist_enabled:  USB_PERSIST enabled for this device
608  * @reset_in_progress: the device is being reset
609  * @have_langid: whether string_langid is valid
610  * @authorized: policy has said we can use it;
611  *	(user space) policy determines if we authorize this device to be
612  *	used or not. By default, wired USB devices are authorized.
613  *	WUSB devices are not, until we authorize them from user space.
614  *	FIXME -- complete doc
615  * @authenticated: Crypto authentication passed
616  * @tunnel_mode: Connection native or tunneled over USB4
617  * @usb4_link: device link to the USB4 host interface
618  * @lpm_capable: device supports LPM
619  * @lpm_devinit_allow: Allow USB3 device initiated LPM, exit latency is in range
620  * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
621  * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
622  * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
623  * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
624  * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
625  * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
626  * @string_langid: language ID for strings
627  * @product: iProduct string, if present (static)
628  * @manufacturer: iManufacturer string, if present (static)
629  * @serial: iSerialNumber string, if present (static)
630  * @filelist: usbfs files that are open to this device
631  * @maxchild: number of ports if hub
632  * @quirks: quirks of the whole device
633  * @urbnum: number of URBs submitted for the whole device
634  * @active_duration: total time device is not suspended
635  * @connect_time: time device was first connected
636  * @do_remote_wakeup:  remote wakeup should be enabled
637  * @reset_resume: needs reset instead of resume
638  * @port_is_suspended: the upstream port is suspended (L2 or U3)
639  * @offload_at_suspend: offload activities during suspend is enabled.
640  * @offload_usage: number of offload activities happening on this usb device.
641  * @slot_id: Slot ID assigned by xHCI
642  * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
643  * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
644  * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
645  * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
646  *	to keep track of the number of functions that require USB 3.0 Link Power
647  *	Management to be disabled for this usb_device.  This count should only
648  *	be manipulated by those functions, with the bandwidth_mutex is held.
649  * @hub_delay: cached value consisting of:
650  *	parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
651  *	Will be used as wValue for SetIsochDelay requests.
652  * @use_generic_driver: ask driver core to reprobe using the generic driver.
653  *
654  * Notes:
655  * Usbcore drivers should not set usbdev->state directly.  Instead use
656  * usb_set_device_state().
657  */
658 struct usb_device {
659 	int		devnum;
660 	char		devpath[16];
661 	u32		route;
662 	enum usb_device_state	state;
663 	enum usb_device_speed	speed;
664 	unsigned int		rx_lanes;
665 	unsigned int		tx_lanes;
666 	enum usb_ssp_rate	ssp_rate;
667 
668 	struct usb_tt	*tt;
669 	int		ttport;
670 
671 	unsigned int toggle[2];
672 
673 	struct usb_device *parent;
674 	struct usb_bus *bus;
675 	struct usb_host_endpoint ep0;
676 
677 	struct device dev;
678 
679 	struct usb_device_descriptor descriptor;
680 	struct usb_host_bos *bos;
681 	struct usb_host_config *config;
682 
683 	struct usb_host_config *actconfig;
684 	struct usb_host_endpoint *ep_in[16];
685 	struct usb_host_endpoint *ep_out[16];
686 
687 	char **rawdescriptors;
688 
689 	unsigned short bus_mA;
690 	u8 portnum;
691 	u8 level;
692 	u8 devaddr;
693 
694 	unsigned can_submit:1;
695 	unsigned persist_enabled:1;
696 	unsigned reset_in_progress:1;
697 	unsigned have_langid:1;
698 	unsigned authorized:1;
699 	unsigned authenticated:1;
700 	unsigned lpm_capable:1;
701 	unsigned lpm_devinit_allow:1;
702 	unsigned usb2_hw_lpm_capable:1;
703 	unsigned usb2_hw_lpm_besl_capable:1;
704 	unsigned usb2_hw_lpm_enabled:1;
705 	unsigned usb2_hw_lpm_allowed:1;
706 	unsigned usb3_lpm_u1_enabled:1;
707 	unsigned usb3_lpm_u2_enabled:1;
708 	int string_langid;
709 
710 	/* static strings from the device */
711 	char *product;
712 	char *manufacturer;
713 	char *serial;
714 
715 	struct list_head filelist;
716 
717 	int maxchild;
718 
719 	u32 quirks;
720 	atomic_t urbnum;
721 
722 	unsigned long active_duration;
723 
724 	unsigned long connect_time;
725 
726 	unsigned do_remote_wakeup:1;
727 	unsigned reset_resume:1;
728 	unsigned port_is_suspended:1;
729 	unsigned offload_at_suspend:1;
730 	int offload_usage;
731 	enum usb_link_tunnel_mode tunnel_mode;
732 	struct device_link *usb4_link;
733 
734 	int slot_id;
735 	struct usb2_lpm_parameters l1_params;
736 	struct usb3_lpm_parameters u1_params;
737 	struct usb3_lpm_parameters u2_params;
738 	unsigned lpm_disable_count;
739 
740 	u16 hub_delay;
741 	unsigned use_generic_driver:1;
742 };
743 
744 #define to_usb_device(__dev)	container_of_const(__dev, struct usb_device, dev)
745 
746 static inline struct usb_device *__intf_to_usbdev(struct usb_interface *intf)
747 {
748 	return to_usb_device(intf->dev.parent);
749 }
750 static inline const struct usb_device *__intf_to_usbdev_const(const struct usb_interface *intf)
751 {
752 	return to_usb_device((const struct device *)intf->dev.parent);
753 }
754 
755 #define interface_to_usbdev(intf)					\
756 	_Generic((intf),						\
757 		 const struct usb_interface *: __intf_to_usbdev_const,	\
758 		 struct usb_interface *: __intf_to_usbdev)(intf)
759 
760 extern struct usb_device *usb_get_dev(struct usb_device *dev);
761 extern void usb_put_dev(struct usb_device *dev);
762 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
763 	int port1);
764 
765 /**
766  * usb_hub_for_each_child - iterate over all child devices on the hub
767  * @hdev:  USB device belonging to the usb hub
768  * @port1: portnum associated with child device
769  * @child: child device pointer
770  */
771 #define usb_hub_for_each_child(hdev, port1, child) \
772 	for (port1 = 1,	child =	usb_hub_find_child(hdev, port1); \
773 			port1 <= hdev->maxchild; \
774 			child = usb_hub_find_child(hdev, ++port1)) \
775 		if (!child) continue; else
776 
777 /* USB device locking */
778 #define usb_lock_device(udev)			device_lock(&(udev)->dev)
779 #define usb_unlock_device(udev)			device_unlock(&(udev)->dev)
780 #define usb_lock_device_interruptible(udev)	device_lock_interruptible(&(udev)->dev)
781 #define usb_trylock_device(udev)		device_trylock(&(udev)->dev)
782 extern int usb_lock_device_for_reset(struct usb_device *udev,
783 				     const struct usb_interface *iface);
784 
785 /* USB port reset for device reinitialization */
786 extern int usb_reset_device(struct usb_device *dev);
787 extern void usb_queue_reset_device(struct usb_interface *dev);
788 
789 extern struct device *usb_intf_get_dma_device(struct usb_interface *intf);
790 
791 #ifdef CONFIG_ACPI
792 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
793 	bool enable);
794 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
795 extern int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index);
796 #else
797 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
798 	bool enable) { return 0; }
799 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
800 	{ return true; }
801 static inline int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index)
802 	{ return 0; }
803 #endif
804 
805 /* USB autosuspend and autoresume */
806 #ifdef CONFIG_PM
807 extern void usb_enable_autosuspend(struct usb_device *udev);
808 extern void usb_disable_autosuspend(struct usb_device *udev);
809 
810 extern int usb_autopm_get_interface(struct usb_interface *intf);
811 extern void usb_autopm_put_interface(struct usb_interface *intf);
812 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
813 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
814 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
815 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
816 
817 static inline void usb_mark_last_busy(struct usb_device *udev)
818 {
819 	pm_runtime_mark_last_busy(&udev->dev);
820 }
821 
822 #else
823 
824 static inline void usb_enable_autosuspend(struct usb_device *udev)
825 { }
826 static inline void usb_disable_autosuspend(struct usb_device *udev)
827 { }
828 
829 static inline int usb_autopm_get_interface(struct usb_interface *intf)
830 { return 0; }
831 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
832 { return 0; }
833 
834 static inline void usb_autopm_put_interface(struct usb_interface *intf)
835 { }
836 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
837 { }
838 static inline void usb_autopm_get_interface_no_resume(
839 		struct usb_interface *intf)
840 { }
841 static inline void usb_autopm_put_interface_no_suspend(
842 		struct usb_interface *intf)
843 { }
844 static inline void usb_mark_last_busy(struct usb_device *udev)
845 { }
846 #endif
847 
848 #if IS_ENABLED(CONFIG_USB_XHCI_SIDEBAND)
849 int usb_offload_get(struct usb_device *udev);
850 int usb_offload_put(struct usb_device *udev);
851 bool usb_offload_check(struct usb_device *udev);
852 #else
853 
854 static inline int usb_offload_get(struct usb_device *udev)
855 { return 0; }
856 static inline int usb_offload_put(struct usb_device *udev)
857 { return 0; }
858 static inline bool usb_offload_check(struct usb_device *udev)
859 { return false; }
860 #endif
861 
862 extern int usb_disable_lpm(struct usb_device *udev);
863 extern void usb_enable_lpm(struct usb_device *udev);
864 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
865 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
866 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
867 
868 extern int usb_disable_ltm(struct usb_device *udev);
869 extern void usb_enable_ltm(struct usb_device *udev);
870 
871 static inline bool usb_device_supports_ltm(struct usb_device *udev)
872 {
873 	if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
874 		return false;
875 	return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
876 }
877 
878 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
879 {
880 	return udev && udev->bus && udev->bus->no_sg_constraint;
881 }
882 
883 
884 /*-------------------------------------------------------------------------*/
885 
886 /* for drivers using iso endpoints */
887 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
888 
889 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
890 extern int usb_alloc_streams(struct usb_interface *interface,
891 		struct usb_host_endpoint **eps, unsigned int num_eps,
892 		unsigned int num_streams, gfp_t mem_flags);
893 
894 /* Reverts a group of bulk endpoints back to not using stream IDs. */
895 extern int usb_free_streams(struct usb_interface *interface,
896 		struct usb_host_endpoint **eps, unsigned int num_eps,
897 		gfp_t mem_flags);
898 
899 /* used these for multi-interface device registration */
900 extern int usb_driver_claim_interface(struct usb_driver *driver,
901 			struct usb_interface *iface, void *data);
902 
903 /**
904  * usb_interface_claimed - returns true iff an interface is claimed
905  * @iface: the interface being checked
906  *
907  * Return: %true (nonzero) iff the interface is claimed, else %false
908  * (zero).
909  *
910  * Note:
911  * Callers must own the driver model's usb bus readlock.  So driver
912  * probe() entries don't need extra locking, but other call contexts
913  * may need to explicitly claim that lock.
914  *
915  */
916 static inline int usb_interface_claimed(struct usb_interface *iface)
917 {
918 	return (iface->dev.driver != NULL);
919 }
920 
921 extern void usb_driver_release_interface(struct usb_driver *driver,
922 			struct usb_interface *iface);
923 
924 int usb_set_wireless_status(struct usb_interface *iface,
925 			enum usb_wireless_status status);
926 
927 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
928 					 const struct usb_device_id *id);
929 extern int usb_match_one_id(struct usb_interface *interface,
930 			    const struct usb_device_id *id);
931 
932 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
933 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
934 		int minor);
935 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
936 		unsigned ifnum);
937 extern struct usb_host_interface *usb_altnum_to_altsetting(
938 		const struct usb_interface *intf, unsigned int altnum);
939 extern struct usb_host_interface *usb_find_alt_setting(
940 		struct usb_host_config *config,
941 		unsigned int iface_num,
942 		unsigned int alt_num);
943 
944 /* port claiming functions */
945 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
946 		struct usb_dev_state *owner);
947 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
948 		struct usb_dev_state *owner);
949 
950 /**
951  * usb_make_path - returns stable device path in the usb tree
952  * @dev: the device whose path is being constructed
953  * @buf: where to put the string
954  * @size: how big is "buf"?
955  *
956  * Return: Length of the string (> 0) or negative if size was too small.
957  *
958  * Note:
959  * This identifier is intended to be "stable", reflecting physical paths in
960  * hardware such as physical bus addresses for host controllers or ports on
961  * USB hubs.  That makes it stay the same until systems are physically
962  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
963  * controllers.  Adding and removing devices, including virtual root hubs
964  * in host controller driver modules, does not change these path identifiers;
965  * neither does rebooting or re-enumerating.  These are more useful identifiers
966  * than changeable ("unstable") ones like bus numbers or device addresses.
967  *
968  * With a partial exception for devices connected to USB 2.0 root hubs, these
969  * identifiers are also predictable.  So long as the device tree isn't changed,
970  * plugging any USB device into a given hub port always gives it the same path.
971  * Because of the use of "companion" controllers, devices connected to ports on
972  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
973  * high speed, and a different one if they are full or low speed.
974  */
975 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
976 {
977 	int actual;
978 	actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
979 			  dev->devpath);
980 	return (actual >= (int)size) ? -1 : actual;
981 }
982 
983 /*-------------------------------------------------------------------------*/
984 
985 #define USB_DEVICE_ID_MATCH_DEVICE \
986 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
987 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
988 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
989 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
990 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
991 #define USB_DEVICE_ID_MATCH_DEV_INFO \
992 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
993 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
994 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
995 #define USB_DEVICE_ID_MATCH_INT_INFO \
996 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
997 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
998 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
999 
1000 /**
1001  * USB_DEVICE - macro used to describe a specific usb device
1002  * @vend: the 16 bit USB Vendor ID
1003  * @prod: the 16 bit USB Product ID
1004  *
1005  * This macro is used to create a struct usb_device_id that matches a
1006  * specific device.
1007  */
1008 #define USB_DEVICE(vend, prod) \
1009 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
1010 	.idVendor = (vend), \
1011 	.idProduct = (prod)
1012 /**
1013  * USB_DEVICE_VER - describe a specific usb device with a version range
1014  * @vend: the 16 bit USB Vendor ID
1015  * @prod: the 16 bit USB Product ID
1016  * @lo: the bcdDevice_lo value
1017  * @hi: the bcdDevice_hi value
1018  *
1019  * This macro is used to create a struct usb_device_id that matches a
1020  * specific device, with a version range.
1021  */
1022 #define USB_DEVICE_VER(vend, prod, lo, hi) \
1023 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
1024 	.idVendor = (vend), \
1025 	.idProduct = (prod), \
1026 	.bcdDevice_lo = (lo), \
1027 	.bcdDevice_hi = (hi)
1028 
1029 /**
1030  * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
1031  * @vend: the 16 bit USB Vendor ID
1032  * @prod: the 16 bit USB Product ID
1033  * @cl: bInterfaceClass value
1034  *
1035  * This macro is used to create a struct usb_device_id that matches a
1036  * specific interface class of devices.
1037  */
1038 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
1039 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1040 		       USB_DEVICE_ID_MATCH_INT_CLASS, \
1041 	.idVendor = (vend), \
1042 	.idProduct = (prod), \
1043 	.bInterfaceClass = (cl)
1044 
1045 /**
1046  * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
1047  * @vend: the 16 bit USB Vendor ID
1048  * @prod: the 16 bit USB Product ID
1049  * @pr: bInterfaceProtocol value
1050  *
1051  * This macro is used to create a struct usb_device_id that matches a
1052  * specific interface protocol of devices.
1053  */
1054 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
1055 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1056 		       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
1057 	.idVendor = (vend), \
1058 	.idProduct = (prod), \
1059 	.bInterfaceProtocol = (pr)
1060 
1061 /**
1062  * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
1063  * @vend: the 16 bit USB Vendor ID
1064  * @prod: the 16 bit USB Product ID
1065  * @num: bInterfaceNumber value
1066  *
1067  * This macro is used to create a struct usb_device_id that matches a
1068  * specific interface number of devices.
1069  */
1070 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
1071 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1072 		       USB_DEVICE_ID_MATCH_INT_NUMBER, \
1073 	.idVendor = (vend), \
1074 	.idProduct = (prod), \
1075 	.bInterfaceNumber = (num)
1076 
1077 /**
1078  * USB_DEVICE_INFO - macro used to describe a class of usb devices
1079  * @cl: bDeviceClass value
1080  * @sc: bDeviceSubClass value
1081  * @pr: bDeviceProtocol value
1082  *
1083  * This macro is used to create a struct usb_device_id that matches a
1084  * specific class of devices.
1085  */
1086 #define USB_DEVICE_INFO(cl, sc, pr) \
1087 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1088 	.bDeviceClass = (cl), \
1089 	.bDeviceSubClass = (sc), \
1090 	.bDeviceProtocol = (pr)
1091 
1092 /**
1093  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1094  * @cl: bInterfaceClass value
1095  * @sc: bInterfaceSubClass value
1096  * @pr: bInterfaceProtocol value
1097  *
1098  * This macro is used to create a struct usb_device_id that matches a
1099  * specific class of interfaces.
1100  */
1101 #define USB_INTERFACE_INFO(cl, sc, pr) \
1102 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1103 	.bInterfaceClass = (cl), \
1104 	.bInterfaceSubClass = (sc), \
1105 	.bInterfaceProtocol = (pr)
1106 
1107 /**
1108  * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1109  * @vend: the 16 bit USB Vendor ID
1110  * @prod: the 16 bit USB Product ID
1111  * @cl: bInterfaceClass value
1112  * @sc: bInterfaceSubClass value
1113  * @pr: bInterfaceProtocol value
1114  *
1115  * This macro is used to create a struct usb_device_id that matches a
1116  * specific device with a specific class of interfaces.
1117  *
1118  * This is especially useful when explicitly matching devices that have
1119  * vendor specific bDeviceClass values, but standards-compliant interfaces.
1120  */
1121 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1122 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1123 		| USB_DEVICE_ID_MATCH_DEVICE, \
1124 	.idVendor = (vend), \
1125 	.idProduct = (prod), \
1126 	.bInterfaceClass = (cl), \
1127 	.bInterfaceSubClass = (sc), \
1128 	.bInterfaceProtocol = (pr)
1129 
1130 /**
1131  * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1132  * @vend: the 16 bit USB Vendor ID
1133  * @cl: bInterfaceClass value
1134  * @sc: bInterfaceSubClass value
1135  * @pr: bInterfaceProtocol value
1136  *
1137  * This macro is used to create a struct usb_device_id that matches a
1138  * specific vendor with a specific class of interfaces.
1139  *
1140  * This is especially useful when explicitly matching devices that have
1141  * vendor specific bDeviceClass values, but standards-compliant interfaces.
1142  */
1143 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1144 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1145 		| USB_DEVICE_ID_MATCH_VENDOR, \
1146 	.idVendor = (vend), \
1147 	.bInterfaceClass = (cl), \
1148 	.bInterfaceSubClass = (sc), \
1149 	.bInterfaceProtocol = (pr)
1150 
1151 /* ----------------------------------------------------------------------- */
1152 
1153 /* Stuff for dynamic usb ids */
1154 extern struct mutex usb_dynids_lock;
1155 struct usb_dynids {
1156 	struct list_head list;
1157 };
1158 
1159 struct usb_dynid {
1160 	struct list_head node;
1161 	struct usb_device_id id;
1162 };
1163 
1164 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1165 				const struct usb_device_id *id_table,
1166 				struct device_driver *driver,
1167 				const char *buf, size_t count);
1168 
1169 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1170 
1171 /**
1172  * struct usb_driver - identifies USB interface driver to usbcore
1173  * @name: The driver name should be unique among USB drivers,
1174  *	and should normally be the same as the module name.
1175  * @probe: Called to see if the driver is willing to manage a particular
1176  *	interface on a device.  If it is, probe returns zero and uses
1177  *	usb_set_intfdata() to associate driver-specific data with the
1178  *	interface.  It may also use usb_set_interface() to specify the
1179  *	appropriate altsetting.  If unwilling to manage the interface,
1180  *	return -ENODEV, if genuine IO errors occurred, an appropriate
1181  *	negative errno value.
1182  * @disconnect: Called when the interface is no longer accessible, usually
1183  *	because its device has been (or is being) disconnected or the
1184  *	driver module is being unloaded.
1185  * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1186  *	the "usbfs" filesystem.  This lets devices provide ways to
1187  *	expose information to user space regardless of where they
1188  *	do (or don't) show up otherwise in the filesystem.
1189  * @suspend: Called when the device is going to be suspended by the
1190  *	system either from system sleep or runtime suspend context. The
1191  *	return value will be ignored in system sleep context, so do NOT
1192  *	try to continue using the device if suspend fails in this case.
1193  *	Instead, let the resume or reset-resume routine recover from
1194  *	the failure.
1195  * @resume: Called when the device is being resumed by the system.
1196  * @reset_resume: Called when the suspended device has been reset instead
1197  *	of being resumed.
1198  * @pre_reset: Called by usb_reset_device() when the device is about to be
1199  *	reset.  This routine must not return until the driver has no active
1200  *	URBs for the device, and no more URBs may be submitted until the
1201  *	post_reset method is called.
1202  * @post_reset: Called by usb_reset_device() after the device
1203  *	has been reset
1204  * @shutdown: Called at shut-down time to quiesce the device.
1205  * @id_table: USB drivers use ID table to support hotplugging.
1206  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1207  *	or your driver's probe function will never get called.
1208  * @dev_groups: Attributes attached to the device that will be created once it
1209  *	is bound to the driver.
1210  * @dynids: used internally to hold the list of dynamically added device
1211  *	ids for this driver.
1212  * @driver: The driver-model core driver structure.
1213  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1214  *	added to this driver by preventing the sysfs file from being created.
1215  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1216  *	for interfaces bound to this driver.
1217  * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1218  *	endpoints before calling the driver's disconnect method.
1219  * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1220  *	to initiate lower power link state transitions when an idle timeout
1221  *	occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1222  *
1223  * USB interface drivers must provide a name, probe() and disconnect()
1224  * methods, and an id_table.  Other driver fields are optional.
1225  *
1226  * The id_table is used in hotplugging.  It holds a set of descriptors,
1227  * and specialized data may be associated with each entry.  That table
1228  * is used by both user and kernel mode hotplugging support.
1229  *
1230  * The probe() and disconnect() methods are called in a context where
1231  * they can sleep, but they should avoid abusing the privilege.  Most
1232  * work to connect to a device should be done when the device is opened,
1233  * and undone at the last close.  The disconnect code needs to address
1234  * concurrency issues with respect to open() and close() methods, as
1235  * well as forcing all pending I/O requests to complete (by unlinking
1236  * them as necessary, and blocking until the unlinks complete).
1237  */
1238 struct usb_driver {
1239 	const char *name;
1240 
1241 	int (*probe) (struct usb_interface *intf,
1242 		      const struct usb_device_id *id);
1243 
1244 	void (*disconnect) (struct usb_interface *intf);
1245 
1246 	int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1247 			void *buf);
1248 
1249 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
1250 	int (*resume) (struct usb_interface *intf);
1251 	int (*reset_resume)(struct usb_interface *intf);
1252 
1253 	int (*pre_reset)(struct usb_interface *intf);
1254 	int (*post_reset)(struct usb_interface *intf);
1255 
1256 	void (*shutdown)(struct usb_interface *intf);
1257 
1258 	const struct usb_device_id *id_table;
1259 	const struct attribute_group **dev_groups;
1260 
1261 	struct usb_dynids dynids;
1262 	struct device_driver driver;
1263 	unsigned int no_dynamic_id:1;
1264 	unsigned int supports_autosuspend:1;
1265 	unsigned int disable_hub_initiated_lpm:1;
1266 	unsigned int soft_unbind:1;
1267 };
1268 #define	to_usb_driver(d) container_of_const(d, struct usb_driver, driver)
1269 
1270 /**
1271  * struct usb_device_driver - identifies USB device driver to usbcore
1272  * @name: The driver name should be unique among USB drivers,
1273  *	and should normally be the same as the module name.
1274  * @match: If set, used for better device/driver matching.
1275  * @probe: Called to see if the driver is willing to manage a particular
1276  *	device.  If it is, probe returns zero and uses dev_set_drvdata()
1277  *	to associate driver-specific data with the device.  If unwilling
1278  *	to manage the device, return a negative errno value.
1279  * @disconnect: Called when the device is no longer accessible, usually
1280  *	because it has been (or is being) disconnected or the driver's
1281  *	module is being unloaded.
1282  * @suspend: Called when the device is going to be suspended by the system.
1283  * @resume: Called when the device is being resumed by the system.
1284  * @choose_configuration: If non-NULL, called instead of the default
1285  *	usb_choose_configuration(). If this returns an error then we'll go
1286  *	on to call the normal usb_choose_configuration().
1287  * @dev_groups: Attributes attached to the device that will be created once it
1288  *	is bound to the driver.
1289  * @driver: The driver-model core driver structure.
1290  * @id_table: used with @match() to select better matching driver at
1291  * 	probe() time.
1292  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1293  *	for devices bound to this driver.
1294  * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect,
1295  *	resume and suspend functions will be called in addition to the driver's
1296  *	own, so this part of the setup does not need to be replicated.
1297  *
1298  * USB drivers must provide all the fields listed above except driver,
1299  * match, and id_table.
1300  */
1301 struct usb_device_driver {
1302 	const char *name;
1303 
1304 	bool (*match) (struct usb_device *udev);
1305 	int (*probe) (struct usb_device *udev);
1306 	void (*disconnect) (struct usb_device *udev);
1307 
1308 	int (*suspend) (struct usb_device *udev, pm_message_t message);
1309 	int (*resume) (struct usb_device *udev, pm_message_t message);
1310 
1311 	int (*choose_configuration) (struct usb_device *udev);
1312 
1313 	const struct attribute_group **dev_groups;
1314 	struct device_driver driver;
1315 	const struct usb_device_id *id_table;
1316 	unsigned int supports_autosuspend:1;
1317 	unsigned int generic_subclass:1;
1318 };
1319 #define	to_usb_device_driver(d) container_of_const(d, struct usb_device_driver, driver)
1320 
1321 /**
1322  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1323  * @name: the usb class device name for this driver.  Will show up in sysfs.
1324  * @devnode: Callback to provide a naming hint for a possible
1325  *	device node to create.
1326  * @fops: pointer to the struct file_operations of this driver.
1327  * @minor_base: the start of the minor range for this driver.
1328  *
1329  * This structure is used for the usb_register_dev() and
1330  * usb_deregister_dev() functions, to consolidate a number of the
1331  * parameters used for them.
1332  */
1333 struct usb_class_driver {
1334 	char *name;
1335 	char *(*devnode)(const struct device *dev, umode_t *mode);
1336 	const struct file_operations *fops;
1337 	int minor_base;
1338 };
1339 
1340 /*
1341  * use these in module_init()/module_exit()
1342  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1343  */
1344 extern int usb_register_driver(struct usb_driver *, struct module *,
1345 			       const char *);
1346 
1347 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1348 #define usb_register(driver) \
1349 	usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1350 
1351 extern void usb_deregister(struct usb_driver *);
1352 
1353 /**
1354  * module_usb_driver() - Helper macro for registering a USB driver
1355  * @__usb_driver: usb_driver struct
1356  *
1357  * Helper macro for USB drivers which do not do anything special in module
1358  * init/exit. This eliminates a lot of boilerplate. Each module may only
1359  * use this macro once, and calling it replaces module_init() and module_exit()
1360  */
1361 #define module_usb_driver(__usb_driver) \
1362 	module_driver(__usb_driver, usb_register, \
1363 		       usb_deregister)
1364 
1365 extern int usb_register_device_driver(struct usb_device_driver *,
1366 			struct module *);
1367 extern void usb_deregister_device_driver(struct usb_device_driver *);
1368 
1369 extern int usb_register_dev(struct usb_interface *intf,
1370 			    struct usb_class_driver *class_driver);
1371 extern void usb_deregister_dev(struct usb_interface *intf,
1372 			       struct usb_class_driver *class_driver);
1373 
1374 extern int usb_disabled(void);
1375 
1376 /* ----------------------------------------------------------------------- */
1377 
1378 /*
1379  * URB support, for asynchronous request completions
1380  */
1381 
1382 /*
1383  * urb->transfer_flags:
1384  *
1385  * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1386  */
1387 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
1388 #define URB_ISO_ASAP		0x0002	/* iso-only; use the first unexpired
1389 					 * slot in the schedule */
1390 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
1391 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
1392 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
1393 					 * needed */
1394 #define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
1395 
1396 /* The following flags are used internally by usbcore and HCDs */
1397 #define URB_DIR_IN		0x0200	/* Transfer from device to host */
1398 #define URB_DIR_OUT		0
1399 #define URB_DIR_MASK		URB_DIR_IN
1400 
1401 #define URB_DMA_MAP_SINGLE	0x00010000	/* Non-scatter-gather mapping */
1402 #define URB_DMA_MAP_PAGE	0x00020000	/* HCD-unsupported S-G */
1403 #define URB_DMA_MAP_SG		0x00040000	/* HCD-supported S-G */
1404 #define URB_MAP_LOCAL		0x00080000	/* HCD-local-memory mapping */
1405 #define URB_SETUP_MAP_SINGLE	0x00100000	/* Setup packet DMA mapped */
1406 #define URB_SETUP_MAP_LOCAL	0x00200000	/* HCD-local setup packet */
1407 #define URB_DMA_SG_COMBINED	0x00400000	/* S-G entries were combined */
1408 #define URB_ALIGNED_TEMP_BUFFER	0x00800000	/* Temp buffer was alloc'd */
1409 
1410 struct usb_iso_packet_descriptor {
1411 	unsigned int offset;
1412 	unsigned int length;		/* expected length */
1413 	unsigned int actual_length;
1414 	int status;
1415 };
1416 
1417 struct urb;
1418 
1419 struct usb_anchor {
1420 	struct list_head urb_list;
1421 	wait_queue_head_t wait;
1422 	spinlock_t lock;
1423 	atomic_t suspend_wakeups;
1424 	unsigned int poisoned:1;
1425 };
1426 
1427 static inline void init_usb_anchor(struct usb_anchor *anchor)
1428 {
1429 	memset(anchor, 0, sizeof(*anchor));
1430 	INIT_LIST_HEAD(&anchor->urb_list);
1431 	init_waitqueue_head(&anchor->wait);
1432 	spin_lock_init(&anchor->lock);
1433 }
1434 
1435 typedef void (*usb_complete_t)(struct urb *);
1436 
1437 /**
1438  * struct urb - USB Request Block
1439  * @urb_list: For use by current owner of the URB.
1440  * @anchor_list: membership in the list of an anchor
1441  * @anchor: to anchor URBs to a common mooring
1442  * @ep: Points to the endpoint's data structure.  Will eventually
1443  *	replace @pipe.
1444  * @pipe: Holds endpoint number, direction, type, and more.
1445  *	Create these values with the eight macros available;
1446  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1447  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
1448  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1449  *	numbers range from zero to fifteen.  Note that "in" endpoint two
1450  *	is a different endpoint (and pipe) from "out" endpoint two.
1451  *	The current configuration controls the existence, type, and
1452  *	maximum packet size of any given endpoint.
1453  * @stream_id: the endpoint's stream ID for bulk streams
1454  * @dev: Identifies the USB device to perform the request.
1455  * @status: This is read in non-iso completion functions to get the
1456  *	status of the particular request.  ISO requests only use it
1457  *	to tell whether the URB was unlinked; detailed status for
1458  *	each frame is in the fields of the iso_frame-desc.
1459  * @transfer_flags: A variety of flags may be used to affect how URB
1460  *	submission, unlinking, or operation are handled.  Different
1461  *	kinds of URB can use different flags.
1462  * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1463  *	request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1464  *	(however, do not leave garbage in transfer_buffer even then).
1465  *	This buffer must be suitable for DMA; allocate it with
1466  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1467  *	of this buffer will be modified.  This buffer is used for the data
1468  *	stage of control transfers.
1469  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1470  *	the device driver is saying that it provided this DMA address,
1471  *	which the host controller driver should use in preference to the
1472  *	transfer_buffer.
1473  * @sg: scatter gather buffer list, the buffer size of each element in
1474  * 	the list (except the last) must be divisible by the endpoint's
1475  * 	max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1476  * @sgt: used to hold a scatter gather table returned by usb_alloc_noncoherent(),
1477  *      which describes the allocated non-coherent and possibly non-contiguous
1478  *      memory and is guaranteed to have 1 single DMA mapped segment. The
1479  *      allocated memory needs to be freed by usb_free_noncoherent().
1480  * @num_mapped_sgs: (internal) number of mapped sg entries
1481  * @num_sgs: number of entries in the sg list
1482  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1483  *	be broken up into chunks according to the current maximum packet
1484  *	size for the endpoint, which is a function of the configuration
1485  *	and is encoded in the pipe.  When the length is zero, neither
1486  *	transfer_buffer nor transfer_dma is used.
1487  * @actual_length: This is read in non-iso completion functions, and
1488  *	it tells how many bytes (out of transfer_buffer_length) were
1489  *	transferred.  It will normally be the same as requested, unless
1490  *	either an error was reported or a short read was performed.
1491  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1492  *	short reads be reported as errors.
1493  * @setup_packet: Only used for control transfers, this points to eight bytes
1494  *	of setup data.  Control transfers always start by sending this data
1495  *	to the device.  Then transfer_buffer is read or written, if needed.
1496  * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1497  *	this field; setup_packet must point to a valid buffer.
1498  * @start_frame: Returns the initial frame for isochronous transfers.
1499  * @number_of_packets: Lists the number of ISO transfer buffers.
1500  * @interval: Specifies the polling interval for interrupt or isochronous
1501  *	transfers.  The units are frames (milliseconds) for full and low
1502  *	speed devices, and microframes (1/8 millisecond) for highspeed
1503  *	and SuperSpeed devices.
1504  * @error_count: Returns the number of ISO transfers that reported errors.
1505  * @context: For use in completion functions.  This normally points to
1506  *	request-specific driver context.
1507  * @complete: Completion handler. This URB is passed as the parameter to the
1508  *	completion function.  The completion function may then do what
1509  *	it likes with the URB, including resubmitting or freeing it.
1510  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1511  *	collect the transfer status for each buffer.
1512  *
1513  * This structure identifies USB transfer requests.  URBs must be allocated by
1514  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1515  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1516  * are submitted using usb_submit_urb(), and pending requests may be canceled
1517  * using usb_unlink_urb() or usb_kill_urb().
1518  *
1519  * Data Transfer Buffers:
1520  *
1521  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1522  * taken from the general page pool.  That is provided by transfer_buffer
1523  * (control requests also use setup_packet), and host controller drivers
1524  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1525  * mapping operations can be expensive on some platforms (perhaps using a dma
1526  * bounce buffer or talking to an IOMMU),
1527  * although they're cheap on commodity x86 and ppc hardware.
1528  *
1529  * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1530  * which tells the host controller driver that no such mapping is needed for
1531  * the transfer_buffer since
1532  * the device driver is DMA-aware.  For example, a device driver might
1533  * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1534  * When this transfer flag is provided, host controller drivers will
1535  * attempt to use the dma address found in the transfer_dma
1536  * field rather than determining a dma address themselves.
1537  *
1538  * Note that transfer_buffer must still be set if the controller
1539  * does not support DMA (as indicated by hcd_uses_dma()) and when talking
1540  * to root hub. If you have to transfer between highmem zone and the device
1541  * on such controller, create a bounce buffer or bail out with an error.
1542  * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1543  * capable, assign NULL to it, so that usbmon knows not to use the value.
1544  * The setup_packet must always be set, so it cannot be located in highmem.
1545  *
1546  * Initialization:
1547  *
1548  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1549  * zero), and complete fields.  All URBs must also initialize
1550  * transfer_buffer and transfer_buffer_length.  They may provide the
1551  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1552  * to be treated as errors; that flag is invalid for write requests.
1553  *
1554  * Bulk URBs may
1555  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1556  * should always terminate with a short packet, even if it means adding an
1557  * extra zero length packet.
1558  *
1559  * Control URBs must provide a valid pointer in the setup_packet field.
1560  * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1561  * beforehand.
1562  *
1563  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1564  * or, for highspeed devices, 125 microsecond units)
1565  * to poll for transfers.  After the URB has been submitted, the interval
1566  * field reflects how the transfer was actually scheduled.
1567  * The polling interval may be more frequent than requested.
1568  * For example, some controllers have a maximum interval of 32 milliseconds,
1569  * while others support intervals of up to 1024 milliseconds.
1570  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1571  * endpoints, as well as high speed interrupt endpoints, the encoding of
1572  * the transfer interval in the endpoint descriptor is logarithmic.
1573  * Device drivers must convert that value to linear units themselves.)
1574  *
1575  * If an isochronous endpoint queue isn't already running, the host
1576  * controller will schedule a new URB to start as soon as bandwidth
1577  * utilization allows.  If the queue is running then a new URB will be
1578  * scheduled to start in the first transfer slot following the end of the
1579  * preceding URB, if that slot has not already expired.  If the slot has
1580  * expired (which can happen when IRQ delivery is delayed for a long time),
1581  * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1582  * is clear then the URB will be scheduled to start in the expired slot,
1583  * implying that some of its packets will not be transferred; if the flag
1584  * is set then the URB will be scheduled in the first unexpired slot,
1585  * breaking the queue's synchronization.  Upon URB completion, the
1586  * start_frame field will be set to the (micro)frame number in which the
1587  * transfer was scheduled.  Ranges for frame counter values are HC-specific
1588  * and can go from as low as 256 to as high as 65536 frames.
1589  *
1590  * Isochronous URBs have a different data transfer model, in part because
1591  * the quality of service is only "best effort".  Callers provide specially
1592  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1593  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1594  * URBs are normally queued, submitted by drivers to arrange that
1595  * transfers are at least double buffered, and then explicitly resubmitted
1596  * in completion handlers, so
1597  * that data (such as audio or video) streams at as constant a rate as the
1598  * host controller scheduler can support.
1599  *
1600  * Completion Callbacks:
1601  *
1602  * The completion callback is made in_interrupt(), and one of the first
1603  * things that a completion handler should do is check the status field.
1604  * The status field is provided for all URBs.  It is used to report
1605  * unlinked URBs, and status for all non-ISO transfers.  It should not
1606  * be examined before the URB is returned to the completion handler.
1607  *
1608  * The context field is normally used to link URBs back to the relevant
1609  * driver or request state.
1610  *
1611  * When the completion callback is invoked for non-isochronous URBs, the
1612  * actual_length field tells how many bytes were transferred.  This field
1613  * is updated even when the URB terminated with an error or was unlinked.
1614  *
1615  * ISO transfer status is reported in the status and actual_length fields
1616  * of the iso_frame_desc array, and the number of errors is reported in
1617  * error_count.  Completion callbacks for ISO transfers will normally
1618  * (re)submit URBs to ensure a constant transfer rate.
1619  *
1620  * Note that even fields marked "public" should not be touched by the driver
1621  * when the urb is owned by the hcd, that is, since the call to
1622  * usb_submit_urb() till the entry into the completion routine.
1623  */
1624 struct urb {
1625 	/* private: usb core and host controller only fields in the urb */
1626 	struct kref kref;		/* reference count of the URB */
1627 	int unlinked;			/* unlink error code */
1628 	void *hcpriv;			/* private data for host controller */
1629 	atomic_t use_count;		/* concurrent submissions counter */
1630 	atomic_t reject;		/* submissions will fail */
1631 
1632 	/* public: documented fields in the urb that can be used by drivers */
1633 	struct list_head urb_list;	/* list head for use by the urb's
1634 					 * current owner */
1635 	struct list_head anchor_list;	/* the URB may be anchored */
1636 	struct usb_anchor *anchor;
1637 	struct usb_device *dev;		/* (in) pointer to associated device */
1638 	struct usb_host_endpoint *ep;	/* (internal) pointer to endpoint */
1639 	unsigned int pipe;		/* (in) pipe information */
1640 	unsigned int stream_id;		/* (in) stream ID */
1641 	int status;			/* (return) non-ISO status */
1642 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1643 	void *transfer_buffer;		/* (in) associated data buffer */
1644 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1645 	struct scatterlist *sg;		/* (in) scatter gather buffer list */
1646 	struct sg_table *sgt;		/* (in) scatter gather table for noncoherent buffer */
1647 	int num_mapped_sgs;		/* (internal) mapped sg entries */
1648 	int num_sgs;			/* (in) number of entries in the sg list */
1649 	u32 transfer_buffer_length;	/* (in) data buffer length */
1650 	u32 actual_length;		/* (return) actual transfer length */
1651 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1652 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1653 	int start_frame;		/* (modify) start frame (ISO) */
1654 	int number_of_packets;		/* (in) number of ISO packets */
1655 	int interval;			/* (modify) transfer interval
1656 					 * (INT/ISO) */
1657 	int error_count;		/* (return) number of ISO errors */
1658 	void *context;			/* (in) context for completion */
1659 	usb_complete_t complete;	/* (in) completion routine */
1660 	struct usb_iso_packet_descriptor iso_frame_desc[];
1661 					/* (in) ISO ONLY */
1662 };
1663 
1664 /* ----------------------------------------------------------------------- */
1665 
1666 /**
1667  * usb_fill_control_urb - initializes a control urb
1668  * @urb: pointer to the urb to initialize.
1669  * @dev: pointer to the struct usb_device for this urb.
1670  * @pipe: the endpoint pipe
1671  * @setup_packet: pointer to the setup_packet buffer. The buffer must be
1672  *	suitable for DMA.
1673  * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1674  *	suitable for DMA.
1675  * @buffer_length: length of the transfer buffer
1676  * @complete_fn: pointer to the usb_complete_t function
1677  * @context: what to set the urb context to.
1678  *
1679  * Initializes a control urb with the proper information needed to submit
1680  * it to a device.
1681  *
1682  * The transfer buffer and the setup_packet buffer will most likely be filled
1683  * or read via DMA. The simplest way to get a buffer that can be DMAed to is
1684  * allocating it via kmalloc() or equivalent, even for very small buffers.
1685  * If the buffers are embedded in a bigger structure, there is a risk that
1686  * the buffer itself, the previous fields and/or the next fields are corrupted
1687  * due to cache incoherencies; or slowed down if they are evicted from the
1688  * cache. For more information, check &struct urb.
1689  *
1690  */
1691 static inline void usb_fill_control_urb(struct urb *urb,
1692 					struct usb_device *dev,
1693 					unsigned int pipe,
1694 					unsigned char *setup_packet,
1695 					void *transfer_buffer,
1696 					int buffer_length,
1697 					usb_complete_t complete_fn,
1698 					void *context)
1699 {
1700 	urb->dev = dev;
1701 	urb->pipe = pipe;
1702 	urb->setup_packet = setup_packet;
1703 	urb->transfer_buffer = transfer_buffer;
1704 	urb->transfer_buffer_length = buffer_length;
1705 	urb->complete = complete_fn;
1706 	urb->context = context;
1707 }
1708 
1709 /**
1710  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1711  * @urb: pointer to the urb to initialize.
1712  * @dev: pointer to the struct usb_device for this urb.
1713  * @pipe: the endpoint pipe
1714  * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1715  *	suitable for DMA.
1716  * @buffer_length: length of the transfer buffer
1717  * @complete_fn: pointer to the usb_complete_t function
1718  * @context: what to set the urb context to.
1719  *
1720  * Initializes a bulk urb with the proper information needed to submit it
1721  * to a device.
1722  *
1723  * Refer to usb_fill_control_urb() for a description of the requirements for
1724  * transfer_buffer.
1725  */
1726 static inline void usb_fill_bulk_urb(struct urb *urb,
1727 				     struct usb_device *dev,
1728 				     unsigned int pipe,
1729 				     void *transfer_buffer,
1730 				     int buffer_length,
1731 				     usb_complete_t complete_fn,
1732 				     void *context)
1733 {
1734 	urb->dev = dev;
1735 	urb->pipe = pipe;
1736 	urb->transfer_buffer = transfer_buffer;
1737 	urb->transfer_buffer_length = buffer_length;
1738 	urb->complete = complete_fn;
1739 	urb->context = context;
1740 }
1741 
1742 /**
1743  * usb_fill_int_urb - macro to help initialize a interrupt urb
1744  * @urb: pointer to the urb to initialize.
1745  * @dev: pointer to the struct usb_device for this urb.
1746  * @pipe: the endpoint pipe
1747  * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1748  *	suitable for DMA.
1749  * @buffer_length: length of the transfer buffer
1750  * @complete_fn: pointer to the usb_complete_t function
1751  * @context: what to set the urb context to.
1752  * @interval: what to set the urb interval to, encoded like
1753  *	the endpoint descriptor's bInterval value.
1754  *
1755  * Initializes a interrupt urb with the proper information needed to submit
1756  * it to a device.
1757  *
1758  * Refer to usb_fill_control_urb() for a description of the requirements for
1759  * transfer_buffer.
1760  *
1761  * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1762  * encoding of the endpoint interval, and express polling intervals in
1763  * microframes (eight per millisecond) rather than in frames (one per
1764  * millisecond).
1765  */
1766 static inline void usb_fill_int_urb(struct urb *urb,
1767 				    struct usb_device *dev,
1768 				    unsigned int pipe,
1769 				    void *transfer_buffer,
1770 				    int buffer_length,
1771 				    usb_complete_t complete_fn,
1772 				    void *context,
1773 				    int interval)
1774 {
1775 	urb->dev = dev;
1776 	urb->pipe = pipe;
1777 	urb->transfer_buffer = transfer_buffer;
1778 	urb->transfer_buffer_length = buffer_length;
1779 	urb->complete = complete_fn;
1780 	urb->context = context;
1781 
1782 	if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1783 		/* make sure interval is within allowed range */
1784 		interval = clamp(interval, 1, 16);
1785 
1786 		urb->interval = 1 << (interval - 1);
1787 	} else {
1788 		urb->interval = interval;
1789 	}
1790 
1791 	urb->start_frame = -1;
1792 }
1793 
1794 extern void usb_init_urb(struct urb *urb);
1795 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1796 extern void usb_free_urb(struct urb *urb);
1797 #define usb_put_urb usb_free_urb
1798 extern struct urb *usb_get_urb(struct urb *urb);
1799 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1800 extern int usb_unlink_urb(struct urb *urb);
1801 extern void usb_kill_urb(struct urb *urb);
1802 extern void usb_poison_urb(struct urb *urb);
1803 extern void usb_unpoison_urb(struct urb *urb);
1804 extern void usb_block_urb(struct urb *urb);
1805 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1806 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1807 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1808 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1809 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1810 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1811 extern void usb_unanchor_urb(struct urb *urb);
1812 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1813 					 unsigned int timeout);
1814 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1815 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1816 extern int usb_anchor_empty(struct usb_anchor *anchor);
1817 
1818 #define usb_unblock_urb	usb_unpoison_urb
1819 
1820 /**
1821  * usb_urb_dir_in - check if an URB describes an IN transfer
1822  * @urb: URB to be checked
1823  *
1824  * Return: 1 if @urb describes an IN transfer (device-to-host),
1825  * otherwise 0.
1826  */
1827 static inline int usb_urb_dir_in(struct urb *urb)
1828 {
1829 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1830 }
1831 
1832 /**
1833  * usb_urb_dir_out - check if an URB describes an OUT transfer
1834  * @urb: URB to be checked
1835  *
1836  * Return: 1 if @urb describes an OUT transfer (host-to-device),
1837  * otherwise 0.
1838  */
1839 static inline int usb_urb_dir_out(struct urb *urb)
1840 {
1841 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1842 }
1843 
1844 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe);
1845 int usb_urb_ep_type_check(const struct urb *urb);
1846 
1847 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1848 	gfp_t mem_flags, dma_addr_t *dma);
1849 void usb_free_coherent(struct usb_device *dev, size_t size,
1850 	void *addr, dma_addr_t dma);
1851 
1852 enum dma_data_direction;
1853 
1854 void *usb_alloc_noncoherent(struct usb_device *dev, size_t size,
1855 			    gfp_t mem_flags, dma_addr_t *dma,
1856 			    enum dma_data_direction dir,
1857 			    struct sg_table **table);
1858 void usb_free_noncoherent(struct usb_device *dev, size_t size,
1859 			  void *addr, enum dma_data_direction dir,
1860 			  struct sg_table *table);
1861 
1862 /*-------------------------------------------------------------------*
1863  *                         SYNCHRONOUS CALL SUPPORT                  *
1864  *-------------------------------------------------------------------*/
1865 
1866 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1867 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1868 	void *data, __u16 size, int timeout);
1869 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1870 	void *data, int len, int *actual_length, int timeout);
1871 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1872 	void *data, int len, int *actual_length,
1873 	int timeout);
1874 
1875 /* wrappers around usb_control_msg() for the most common standard requests */
1876 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
1877 			 __u8 requesttype, __u16 value, __u16 index,
1878 			 const void *data, __u16 size, int timeout,
1879 			 gfp_t memflags);
1880 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
1881 			 __u8 requesttype, __u16 value, __u16 index,
1882 			 void *data, __u16 size, int timeout,
1883 			 gfp_t memflags);
1884 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1885 	unsigned char descindex, void *buf, int size);
1886 extern int usb_get_status(struct usb_device *dev,
1887 	int recip, int type, int target, void *data);
1888 
1889 static inline int usb_get_std_status(struct usb_device *dev,
1890 	int recip, int target, void *data)
1891 {
1892 	return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1893 		data);
1894 }
1895 
1896 static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1897 {
1898 	return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1899 		0, data);
1900 }
1901 
1902 extern int usb_string(struct usb_device *dev, int index,
1903 	char *buf, size_t size);
1904 extern char *usb_cache_string(struct usb_device *udev, int index);
1905 
1906 /* wrappers that also update important state inside usbcore */
1907 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1908 extern int usb_reset_configuration(struct usb_device *dev);
1909 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1910 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1911 
1912 /* this request isn't really synchronous, but it belongs with the others */
1913 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1914 
1915 /* choose and set configuration for device */
1916 extern int usb_choose_configuration(struct usb_device *udev);
1917 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1918 
1919 /*
1920  * timeouts, in milliseconds, used for sending/receiving control messages
1921  * they typically complete within a few frames (msec) after they're issued
1922  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1923  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1924  */
1925 #define USB_CTRL_GET_TIMEOUT	5000
1926 #define USB_CTRL_SET_TIMEOUT	5000
1927 
1928 
1929 /**
1930  * struct usb_sg_request - support for scatter/gather I/O
1931  * @status: zero indicates success, else negative errno
1932  * @bytes: counts bytes transferred.
1933  *
1934  * These requests are initialized using usb_sg_init(), and then are used
1935  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1936  * members of the request object aren't for driver access.
1937  *
1938  * The status and bytecount values are valid only after usb_sg_wait()
1939  * returns.  If the status is zero, then the bytecount matches the total
1940  * from the request.
1941  *
1942  * After an error completion, drivers may need to clear a halt condition
1943  * on the endpoint.
1944  */
1945 struct usb_sg_request {
1946 	int			status;
1947 	size_t			bytes;
1948 
1949 	/* private:
1950 	 * members below are private to usbcore,
1951 	 * and are not provided for driver access!
1952 	 */
1953 	spinlock_t		lock;
1954 
1955 	struct usb_device	*dev;
1956 	int			pipe;
1957 
1958 	int			entries;
1959 	struct urb		**urbs;
1960 
1961 	int			count;
1962 	struct completion	complete;
1963 };
1964 
1965 int usb_sg_init(
1966 	struct usb_sg_request	*io,
1967 	struct usb_device	*dev,
1968 	unsigned		pipe,
1969 	unsigned		period,
1970 	struct scatterlist	*sg,
1971 	int			nents,
1972 	size_t			length,
1973 	gfp_t			mem_flags
1974 );
1975 void usb_sg_cancel(struct usb_sg_request *io);
1976 void usb_sg_wait(struct usb_sg_request *io);
1977 
1978 
1979 /* ----------------------------------------------------------------------- */
1980 
1981 /*
1982  * For various legacy reasons, Linux has a small cookie that's paired with
1983  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1984  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1985  * an unsigned int encoded as:
1986  *
1987  *  - direction:	bit 7		(0 = Host-to-Device [Out],
1988  *					 1 = Device-to-Host [In] ...
1989  *					like endpoint bEndpointAddress)
1990  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1991  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1992  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1993  *					 10 = control, 11 = bulk)
1994  *
1995  * Given the device address and endpoint descriptor, pipes are redundant.
1996  */
1997 
1998 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1999 /* (yet ... they're the values used by usbfs) */
2000 #define PIPE_ISOCHRONOUS		0
2001 #define PIPE_INTERRUPT			1
2002 #define PIPE_CONTROL			2
2003 #define PIPE_BULK			3
2004 
2005 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
2006 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
2007 
2008 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
2009 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
2010 
2011 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
2012 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
2013 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
2014 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
2015 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
2016 
2017 static inline unsigned int __create_pipe(struct usb_device *dev,
2018 		unsigned int endpoint)
2019 {
2020 	return (dev->devnum << 8) | (endpoint << 15);
2021 }
2022 
2023 /* Create various pipes... */
2024 #define usb_sndctrlpipe(dev, endpoint)	\
2025 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
2026 #define usb_rcvctrlpipe(dev, endpoint)	\
2027 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2028 #define usb_sndisocpipe(dev, endpoint)	\
2029 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
2030 #define usb_rcvisocpipe(dev, endpoint)	\
2031 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2032 #define usb_sndbulkpipe(dev, endpoint)	\
2033 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
2034 #define usb_rcvbulkpipe(dev, endpoint)	\
2035 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2036 #define usb_sndintpipe(dev, endpoint)	\
2037 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
2038 #define usb_rcvintpipe(dev, endpoint)	\
2039 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2040 
2041 static inline struct usb_host_endpoint *
2042 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
2043 {
2044 	struct usb_host_endpoint **eps;
2045 	eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
2046 	return eps[usb_pipeendpoint(pipe)];
2047 }
2048 
2049 static inline u16 usb_maxpacket(struct usb_device *udev, int pipe)
2050 {
2051 	struct usb_host_endpoint *ep = usb_pipe_endpoint(udev, pipe);
2052 
2053 	if (!ep)
2054 		return 0;
2055 
2056 	/* NOTE:  only 0x07ff bits are for packet size... */
2057 	return usb_endpoint_maxp(&ep->desc);
2058 }
2059 
2060 u32 usb_endpoint_max_periodic_payload(struct usb_device *udev,
2061 				      const struct usb_host_endpoint *ep);
2062 
2063 bool usb_endpoint_is_hs_isoc_double(struct usb_device *udev,
2064 				    const struct usb_host_endpoint *ep);
2065 
2066 /* translate USB error codes to codes user space understands */
2067 static inline int usb_translate_errors(int error_code)
2068 {
2069 	switch (error_code) {
2070 	case 0:
2071 	case -ENOMEM:
2072 	case -ENODEV:
2073 	case -EOPNOTSUPP:
2074 		return error_code;
2075 	default:
2076 		return -EIO;
2077 	}
2078 }
2079 
2080 /* Events from the usb core */
2081 #define USB_DEVICE_ADD		0x0001
2082 #define USB_DEVICE_REMOVE	0x0002
2083 #define USB_BUS_ADD		0x0003
2084 #define USB_BUS_REMOVE		0x0004
2085 extern void usb_register_notify(struct notifier_block *nb);
2086 extern void usb_unregister_notify(struct notifier_block *nb);
2087 
2088 /* debugfs stuff */
2089 extern struct dentry *usb_debug_root;
2090 
2091 /* LED triggers */
2092 enum usb_led_event {
2093 	USB_LED_EVENT_HOST = 0,
2094 	USB_LED_EVENT_GADGET = 1,
2095 };
2096 
2097 #ifdef CONFIG_USB_LED_TRIG
2098 extern void usb_led_activity(enum usb_led_event ev);
2099 #else
2100 static inline void usb_led_activity(enum usb_led_event ev) {}
2101 #endif
2102 
2103 #endif  /* __KERNEL__ */
2104 
2105 #endif
2106