1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * User-space Probes (UProbes)
4 *
5 * Copyright (C) IBM Corporation, 2008-2012
6 * Authors:
7 * Srikar Dronamraju
8 * Jim Keniston
9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h> /* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/export.h>
19 #include <linux/rmap.h> /* anon_vma_prepare */
20 #include <linux/mmu_notifier.h>
21 #include <linux/swap.h> /* folio_free_swap */
22 #include <linux/ptrace.h> /* user_enable_single_step */
23 #include <linux/kdebug.h> /* notifier mechanism */
24 #include <linux/percpu-rwsem.h>
25 #include <linux/task_work.h>
26 #include <linux/shmem_fs.h>
27 #include <linux/khugepaged.h>
28 #include <linux/rcupdate_trace.h>
29 #include <linux/workqueue.h>
30 #include <linux/srcu.h>
31 #include <linux/oom.h> /* check_stable_address_space */
32 #include <linux/pagewalk.h>
33
34 #include <linux/uprobes.h>
35
36 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
37 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
38
39 static struct rb_root uprobes_tree = RB_ROOT;
40 /*
41 * allows us to skip the uprobe_mmap if there are no uprobe events active
42 * at this time. Probably a fine grained per inode count is better?
43 */
44 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
45
46 static DEFINE_RWLOCK(uprobes_treelock); /* serialize rbtree access */
47 static seqcount_rwlock_t uprobes_seqcount = SEQCNT_RWLOCK_ZERO(uprobes_seqcount, &uprobes_treelock);
48
49 #define UPROBES_HASH_SZ 13
50 /* serialize uprobe->pending_list */
51 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
52 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
53
54 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
55
56 /* Covers return_instance's uprobe lifetime. */
57 DEFINE_STATIC_SRCU(uretprobes_srcu);
58
59 /* Have a copy of original instruction */
60 #define UPROBE_COPY_INSN 0
61
62 struct uprobe {
63 struct rb_node rb_node; /* node in the rb tree */
64 refcount_t ref;
65 struct rw_semaphore register_rwsem;
66 struct rw_semaphore consumer_rwsem;
67 struct list_head pending_list;
68 struct list_head consumers;
69 struct inode *inode; /* Also hold a ref to inode */
70 union {
71 struct rcu_head rcu;
72 struct work_struct work;
73 };
74 loff_t offset;
75 loff_t ref_ctr_offset;
76 unsigned long flags; /* "unsigned long" so bitops work */
77
78 /*
79 * The generic code assumes that it has two members of unknown type
80 * owned by the arch-specific code:
81 *
82 * insn - copy_insn() saves the original instruction here for
83 * arch_uprobe_analyze_insn().
84 *
85 * ixol - potentially modified instruction to execute out of
86 * line, copied to xol_area by xol_get_insn_slot().
87 */
88 struct arch_uprobe arch;
89 };
90
91 struct delayed_uprobe {
92 struct list_head list;
93 struct uprobe *uprobe;
94 struct mm_struct *mm;
95 };
96
97 static DEFINE_MUTEX(delayed_uprobe_lock);
98 static LIST_HEAD(delayed_uprobe_list);
99
100 /*
101 * Execute out of line area: anonymous executable mapping installed
102 * by the probed task to execute the copy of the original instruction
103 * mangled by set_swbp().
104 *
105 * On a breakpoint hit, thread contests for a slot. It frees the
106 * slot after singlestep. Currently a fixed number of slots are
107 * allocated.
108 */
109 struct xol_area {
110 wait_queue_head_t wq; /* if all slots are busy */
111 unsigned long *bitmap; /* 0 = free slot */
112
113 struct page *page;
114 /*
115 * We keep the vma's vm_start rather than a pointer to the vma
116 * itself. The probed process or a naughty kernel module could make
117 * the vma go away, and we must handle that reasonably gracefully.
118 */
119 unsigned long vaddr; /* Page(s) of instruction slots */
120 };
121
uprobe_warn(struct task_struct * t,const char * msg)122 static void uprobe_warn(struct task_struct *t, const char *msg)
123 {
124 pr_warn("uprobe: %s:%d failed to %s\n", current->comm, current->pid, msg);
125 }
126
127 /*
128 * valid_vma: Verify if the specified vma is an executable vma
129 * Relax restrictions while unregistering: vm_flags might have
130 * changed after breakpoint was inserted.
131 * - is_register: indicates if we are in register context.
132 * - Return 1 if the specified virtual address is in an
133 * executable vma.
134 */
valid_vma(struct vm_area_struct * vma,bool is_register)135 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
136 {
137 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
138
139 if (is_register)
140 flags |= VM_WRITE;
141
142 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
143 }
144
offset_to_vaddr(struct vm_area_struct * vma,loff_t offset)145 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
146 {
147 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
148 }
149
vaddr_to_offset(struct vm_area_struct * vma,unsigned long vaddr)150 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
151 {
152 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
153 }
154
155 /**
156 * is_swbp_insn - check if instruction is breakpoint instruction.
157 * @insn: instruction to be checked.
158 * Default implementation of is_swbp_insn
159 * Returns true if @insn is a breakpoint instruction.
160 */
is_swbp_insn(uprobe_opcode_t * insn)161 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
162 {
163 return *insn == UPROBE_SWBP_INSN;
164 }
165
166 /**
167 * is_trap_insn - check if instruction is breakpoint instruction.
168 * @insn: instruction to be checked.
169 * Default implementation of is_trap_insn
170 * Returns true if @insn is a breakpoint instruction.
171 *
172 * This function is needed for the case where an architecture has multiple
173 * trap instructions (like powerpc).
174 */
is_trap_insn(uprobe_opcode_t * insn)175 bool __weak is_trap_insn(uprobe_opcode_t *insn)
176 {
177 return is_swbp_insn(insn);
178 }
179
copy_from_page(struct page * page,unsigned long vaddr,void * dst,int len)180 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
181 {
182 void *kaddr = kmap_atomic(page);
183 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
184 kunmap_atomic(kaddr);
185 }
186
copy_to_page(struct page * page,unsigned long vaddr,const void * src,int len)187 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
188 {
189 void *kaddr = kmap_atomic(page);
190 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
191 kunmap_atomic(kaddr);
192 }
193
verify_opcode(struct page * page,unsigned long vaddr,uprobe_opcode_t * new_opcode)194 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
195 {
196 uprobe_opcode_t old_opcode;
197 bool is_swbp;
198
199 /*
200 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
201 * We do not check if it is any other 'trap variant' which could
202 * be conditional trap instruction such as the one powerpc supports.
203 *
204 * The logic is that we do not care if the underlying instruction
205 * is a trap variant; uprobes always wins over any other (gdb)
206 * breakpoint.
207 */
208 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
209 is_swbp = is_swbp_insn(&old_opcode);
210
211 if (is_swbp_insn(new_opcode)) {
212 if (is_swbp) /* register: already installed? */
213 return 0;
214 } else {
215 if (!is_swbp) /* unregister: was it changed by us? */
216 return 0;
217 }
218
219 return 1;
220 }
221
222 static struct delayed_uprobe *
delayed_uprobe_check(struct uprobe * uprobe,struct mm_struct * mm)223 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
224 {
225 struct delayed_uprobe *du;
226
227 list_for_each_entry(du, &delayed_uprobe_list, list)
228 if (du->uprobe == uprobe && du->mm == mm)
229 return du;
230 return NULL;
231 }
232
delayed_uprobe_add(struct uprobe * uprobe,struct mm_struct * mm)233 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
234 {
235 struct delayed_uprobe *du;
236
237 if (delayed_uprobe_check(uprobe, mm))
238 return 0;
239
240 du = kzalloc(sizeof(*du), GFP_KERNEL);
241 if (!du)
242 return -ENOMEM;
243
244 du->uprobe = uprobe;
245 du->mm = mm;
246 list_add(&du->list, &delayed_uprobe_list);
247 return 0;
248 }
249
delayed_uprobe_delete(struct delayed_uprobe * du)250 static void delayed_uprobe_delete(struct delayed_uprobe *du)
251 {
252 if (WARN_ON(!du))
253 return;
254 list_del(&du->list);
255 kfree(du);
256 }
257
delayed_uprobe_remove(struct uprobe * uprobe,struct mm_struct * mm)258 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
259 {
260 struct list_head *pos, *q;
261 struct delayed_uprobe *du;
262
263 if (!uprobe && !mm)
264 return;
265
266 list_for_each_safe(pos, q, &delayed_uprobe_list) {
267 du = list_entry(pos, struct delayed_uprobe, list);
268
269 if (uprobe && du->uprobe != uprobe)
270 continue;
271 if (mm && du->mm != mm)
272 continue;
273
274 delayed_uprobe_delete(du);
275 }
276 }
277
valid_ref_ctr_vma(struct uprobe * uprobe,struct vm_area_struct * vma)278 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
279 struct vm_area_struct *vma)
280 {
281 unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
282
283 return uprobe->ref_ctr_offset &&
284 vma->vm_file &&
285 file_inode(vma->vm_file) == uprobe->inode &&
286 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
287 vma->vm_start <= vaddr &&
288 vma->vm_end > vaddr;
289 }
290
291 static struct vm_area_struct *
find_ref_ctr_vma(struct uprobe * uprobe,struct mm_struct * mm)292 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
293 {
294 VMA_ITERATOR(vmi, mm, 0);
295 struct vm_area_struct *tmp;
296
297 for_each_vma(vmi, tmp)
298 if (valid_ref_ctr_vma(uprobe, tmp))
299 return tmp;
300
301 return NULL;
302 }
303
304 static int
__update_ref_ctr(struct mm_struct * mm,unsigned long vaddr,short d)305 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
306 {
307 void *kaddr;
308 struct page *page;
309 int ret;
310 short *ptr;
311
312 if (!vaddr || !d)
313 return -EINVAL;
314
315 ret = get_user_pages_remote(mm, vaddr, 1,
316 FOLL_WRITE, &page, NULL);
317 if (unlikely(ret <= 0)) {
318 /*
319 * We are asking for 1 page. If get_user_pages_remote() fails,
320 * it may return 0, in that case we have to return error.
321 */
322 return ret == 0 ? -EBUSY : ret;
323 }
324
325 kaddr = kmap_atomic(page);
326 ptr = kaddr + (vaddr & ~PAGE_MASK);
327
328 if (unlikely(*ptr + d < 0)) {
329 pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
330 "curr val: %d, delta: %d\n", vaddr, *ptr, d);
331 ret = -EINVAL;
332 goto out;
333 }
334
335 *ptr += d;
336 ret = 0;
337 out:
338 kunmap_atomic(kaddr);
339 put_page(page);
340 return ret;
341 }
342
update_ref_ctr_warn(struct uprobe * uprobe,struct mm_struct * mm,short d)343 static void update_ref_ctr_warn(struct uprobe *uprobe,
344 struct mm_struct *mm, short d)
345 {
346 pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
347 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%p\n",
348 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
349 (unsigned long long) uprobe->offset,
350 (unsigned long long) uprobe->ref_ctr_offset, mm);
351 }
352
update_ref_ctr(struct uprobe * uprobe,struct mm_struct * mm,short d)353 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
354 short d)
355 {
356 struct vm_area_struct *rc_vma;
357 unsigned long rc_vaddr;
358 int ret = 0;
359
360 rc_vma = find_ref_ctr_vma(uprobe, mm);
361
362 if (rc_vma) {
363 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
364 ret = __update_ref_ctr(mm, rc_vaddr, d);
365 if (ret)
366 update_ref_ctr_warn(uprobe, mm, d);
367
368 if (d > 0)
369 return ret;
370 }
371
372 mutex_lock(&delayed_uprobe_lock);
373 if (d > 0)
374 ret = delayed_uprobe_add(uprobe, mm);
375 else
376 delayed_uprobe_remove(uprobe, mm);
377 mutex_unlock(&delayed_uprobe_lock);
378
379 return ret;
380 }
381
orig_page_is_identical(struct vm_area_struct * vma,unsigned long vaddr,struct page * page,bool * pmd_mappable)382 static bool orig_page_is_identical(struct vm_area_struct *vma,
383 unsigned long vaddr, struct page *page, bool *pmd_mappable)
384 {
385 const pgoff_t index = vaddr_to_offset(vma, vaddr) >> PAGE_SHIFT;
386 struct folio *orig_folio = filemap_get_folio(vma->vm_file->f_mapping,
387 index);
388 struct page *orig_page;
389 bool identical;
390
391 if (IS_ERR(orig_folio))
392 return false;
393 orig_page = folio_file_page(orig_folio, index);
394
395 *pmd_mappable = folio_test_pmd_mappable(orig_folio);
396 identical = folio_test_uptodate(orig_folio) &&
397 pages_identical(page, orig_page);
398 folio_put(orig_folio);
399 return identical;
400 }
401
__uprobe_write_opcode(struct vm_area_struct * vma,struct folio_walk * fw,struct folio * folio,unsigned long opcode_vaddr,uprobe_opcode_t opcode)402 static int __uprobe_write_opcode(struct vm_area_struct *vma,
403 struct folio_walk *fw, struct folio *folio,
404 unsigned long opcode_vaddr, uprobe_opcode_t opcode)
405 {
406 const unsigned long vaddr = opcode_vaddr & PAGE_MASK;
407 const bool is_register = !!is_swbp_insn(&opcode);
408 bool pmd_mappable;
409
410 /* For now, we'll only handle PTE-mapped folios. */
411 if (fw->level != FW_LEVEL_PTE)
412 return -EFAULT;
413
414 /*
415 * See can_follow_write_pte(): we'd actually prefer a writable PTE here,
416 * but the VMA might not be writable.
417 */
418 if (!pte_write(fw->pte)) {
419 if (!PageAnonExclusive(fw->page))
420 return -EFAULT;
421 if (unlikely(userfaultfd_pte_wp(vma, fw->pte)))
422 return -EFAULT;
423 /* SOFTDIRTY is handled via pte_mkdirty() below. */
424 }
425
426 /*
427 * We'll temporarily unmap the page and flush the TLB, such that we can
428 * modify the page atomically.
429 */
430 flush_cache_page(vma, vaddr, pte_pfn(fw->pte));
431 fw->pte = ptep_clear_flush(vma, vaddr, fw->ptep);
432 copy_to_page(fw->page, opcode_vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
433
434 /*
435 * When unregistering, we may only zap a PTE if uffd is disabled and
436 * there are no unexpected folio references ...
437 */
438 if (is_register || userfaultfd_missing(vma) ||
439 (folio_ref_count(folio) != folio_expected_ref_count(folio) + 1))
440 goto remap;
441
442 /*
443 * ... and the mapped page is identical to the original page that
444 * would get faulted in on next access.
445 */
446 if (!orig_page_is_identical(vma, vaddr, fw->page, &pmd_mappable))
447 goto remap;
448
449 dec_mm_counter(vma->vm_mm, MM_ANONPAGES);
450 folio_remove_rmap_pte(folio, fw->page, vma);
451 if (!folio_mapped(folio) && folio_test_swapcache(folio) &&
452 folio_trylock(folio)) {
453 folio_free_swap(folio);
454 folio_unlock(folio);
455 }
456 folio_put(folio);
457
458 return pmd_mappable;
459 remap:
460 /*
461 * Make sure that our copy_to_page() changes become visible before the
462 * set_pte_at() write.
463 */
464 smp_wmb();
465 /* We modified the page. Make sure to mark the PTE dirty. */
466 set_pte_at(vma->vm_mm, vaddr, fw->ptep, pte_mkdirty(fw->pte));
467 return 0;
468 }
469
470 /*
471 * NOTE:
472 * Expect the breakpoint instruction to be the smallest size instruction for
473 * the architecture. If an arch has variable length instruction and the
474 * breakpoint instruction is not of the smallest length instruction
475 * supported by that architecture then we need to modify is_trap_at_addr and
476 * uprobe_write_opcode accordingly. This would never be a problem for archs
477 * that have fixed length instructions.
478 *
479 * uprobe_write_opcode - write the opcode at a given virtual address.
480 * @auprobe: arch specific probepoint information.
481 * @vma: the probed virtual memory area.
482 * @opcode_vaddr: the virtual address to store the opcode.
483 * @opcode: opcode to be written at @opcode_vaddr.
484 *
485 * Called with mm->mmap_lock held for read or write.
486 * Return 0 (success) or a negative errno.
487 */
uprobe_write_opcode(struct arch_uprobe * auprobe,struct vm_area_struct * vma,const unsigned long opcode_vaddr,uprobe_opcode_t opcode)488 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct vm_area_struct *vma,
489 const unsigned long opcode_vaddr, uprobe_opcode_t opcode)
490 {
491 const unsigned long vaddr = opcode_vaddr & PAGE_MASK;
492 struct mm_struct *mm = vma->vm_mm;
493 struct uprobe *uprobe;
494 int ret, is_register, ref_ctr_updated = 0;
495 unsigned int gup_flags = FOLL_FORCE;
496 struct mmu_notifier_range range;
497 struct folio_walk fw;
498 struct folio *folio;
499 struct page *page;
500
501 is_register = is_swbp_insn(&opcode);
502 uprobe = container_of(auprobe, struct uprobe, arch);
503
504 if (WARN_ON_ONCE(!is_cow_mapping(vma->vm_flags)))
505 return -EINVAL;
506
507 /*
508 * When registering, we have to break COW to get an exclusive anonymous
509 * page that we can safely modify. Use FOLL_WRITE to trigger a write
510 * fault if required. When unregistering, we might be lucky and the
511 * anon page is already gone. So defer write faults until really
512 * required. Use FOLL_SPLIT_PMD, because __uprobe_write_opcode()
513 * cannot deal with PMDs yet.
514 */
515 if (is_register)
516 gup_flags |= FOLL_WRITE | FOLL_SPLIT_PMD;
517
518 retry:
519 ret = get_user_pages_remote(mm, vaddr, 1, gup_flags, &page, NULL);
520 if (ret <= 0)
521 goto out;
522 folio = page_folio(page);
523
524 ret = verify_opcode(page, opcode_vaddr, &opcode);
525 if (ret <= 0) {
526 folio_put(folio);
527 goto out;
528 }
529
530 /* We are going to replace instruction, update ref_ctr. */
531 if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
532 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
533 if (ret) {
534 folio_put(folio);
535 goto out;
536 }
537
538 ref_ctr_updated = 1;
539 }
540
541 ret = 0;
542 if (unlikely(!folio_test_anon(folio) || folio_is_zone_device(folio))) {
543 VM_WARN_ON_ONCE(is_register);
544 folio_put(folio);
545 goto out;
546 }
547
548 if (!is_register) {
549 /*
550 * In the common case, we'll be able to zap the page when
551 * unregistering. So trigger MMU notifiers now, as we won't
552 * be able to do it under PTL.
553 */
554 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
555 vaddr, vaddr + PAGE_SIZE);
556 mmu_notifier_invalidate_range_start(&range);
557 }
558
559 ret = -EAGAIN;
560 /* Walk the page tables again, to perform the actual update. */
561 if (folio_walk_start(&fw, vma, vaddr, 0)) {
562 if (fw.page == page)
563 ret = __uprobe_write_opcode(vma, &fw, folio, opcode_vaddr, opcode);
564 folio_walk_end(&fw, vma);
565 }
566
567 if (!is_register)
568 mmu_notifier_invalidate_range_end(&range);
569
570 folio_put(folio);
571 switch (ret) {
572 case -EFAULT:
573 gup_flags |= FOLL_WRITE | FOLL_SPLIT_PMD;
574 fallthrough;
575 case -EAGAIN:
576 goto retry;
577 default:
578 break;
579 }
580
581 out:
582 /* Revert back reference counter if instruction update failed. */
583 if (ret < 0 && ref_ctr_updated)
584 update_ref_ctr(uprobe, mm, is_register ? -1 : 1);
585
586 /* try collapse pmd for compound page */
587 if (ret > 0)
588 collapse_pte_mapped_thp(mm, vaddr, false);
589
590 return ret < 0 ? ret : 0;
591 }
592
593 /**
594 * set_swbp - store breakpoint at a given address.
595 * @auprobe: arch specific probepoint information.
596 * @vma: the probed virtual memory area.
597 * @vaddr: the virtual address to insert the opcode.
598 *
599 * For mm @mm, store the breakpoint instruction at @vaddr.
600 * Return 0 (success) or a negative errno.
601 */
set_swbp(struct arch_uprobe * auprobe,struct vm_area_struct * vma,unsigned long vaddr)602 int __weak set_swbp(struct arch_uprobe *auprobe, struct vm_area_struct *vma,
603 unsigned long vaddr)
604 {
605 return uprobe_write_opcode(auprobe, vma, vaddr, UPROBE_SWBP_INSN);
606 }
607
608 /**
609 * set_orig_insn - Restore the original instruction.
610 * @vma: the probed virtual memory area.
611 * @auprobe: arch specific probepoint information.
612 * @vaddr: the virtual address to insert the opcode.
613 *
614 * For mm @mm, restore the original opcode (opcode) at @vaddr.
615 * Return 0 (success) or a negative errno.
616 */
set_orig_insn(struct arch_uprobe * auprobe,struct vm_area_struct * vma,unsigned long vaddr)617 int __weak set_orig_insn(struct arch_uprobe *auprobe,
618 struct vm_area_struct *vma, unsigned long vaddr)
619 {
620 return uprobe_write_opcode(auprobe, vma, vaddr,
621 *(uprobe_opcode_t *)&auprobe->insn);
622 }
623
624 /* uprobe should have guaranteed positive refcount */
get_uprobe(struct uprobe * uprobe)625 static struct uprobe *get_uprobe(struct uprobe *uprobe)
626 {
627 refcount_inc(&uprobe->ref);
628 return uprobe;
629 }
630
631 /*
632 * uprobe should have guaranteed lifetime, which can be either of:
633 * - caller already has refcount taken (and wants an extra one);
634 * - uprobe is RCU protected and won't be freed until after grace period;
635 * - we are holding uprobes_treelock (for read or write, doesn't matter).
636 */
try_get_uprobe(struct uprobe * uprobe)637 static struct uprobe *try_get_uprobe(struct uprobe *uprobe)
638 {
639 if (refcount_inc_not_zero(&uprobe->ref))
640 return uprobe;
641 return NULL;
642 }
643
uprobe_is_active(struct uprobe * uprobe)644 static inline bool uprobe_is_active(struct uprobe *uprobe)
645 {
646 return !RB_EMPTY_NODE(&uprobe->rb_node);
647 }
648
uprobe_free_rcu_tasks_trace(struct rcu_head * rcu)649 static void uprobe_free_rcu_tasks_trace(struct rcu_head *rcu)
650 {
651 struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu);
652
653 kfree(uprobe);
654 }
655
uprobe_free_srcu(struct rcu_head * rcu)656 static void uprobe_free_srcu(struct rcu_head *rcu)
657 {
658 struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu);
659
660 call_rcu_tasks_trace(&uprobe->rcu, uprobe_free_rcu_tasks_trace);
661 }
662
uprobe_free_deferred(struct work_struct * work)663 static void uprobe_free_deferred(struct work_struct *work)
664 {
665 struct uprobe *uprobe = container_of(work, struct uprobe, work);
666
667 write_lock(&uprobes_treelock);
668
669 if (uprobe_is_active(uprobe)) {
670 write_seqcount_begin(&uprobes_seqcount);
671 rb_erase(&uprobe->rb_node, &uprobes_tree);
672 write_seqcount_end(&uprobes_seqcount);
673 }
674
675 write_unlock(&uprobes_treelock);
676
677 /*
678 * If application munmap(exec_vma) before uprobe_unregister()
679 * gets called, we don't get a chance to remove uprobe from
680 * delayed_uprobe_list from remove_breakpoint(). Do it here.
681 */
682 mutex_lock(&delayed_uprobe_lock);
683 delayed_uprobe_remove(uprobe, NULL);
684 mutex_unlock(&delayed_uprobe_lock);
685
686 /* start srcu -> rcu_tasks_trace -> kfree chain */
687 call_srcu(&uretprobes_srcu, &uprobe->rcu, uprobe_free_srcu);
688 }
689
put_uprobe(struct uprobe * uprobe)690 static void put_uprobe(struct uprobe *uprobe)
691 {
692 if (!refcount_dec_and_test(&uprobe->ref))
693 return;
694
695 INIT_WORK(&uprobe->work, uprobe_free_deferred);
696 schedule_work(&uprobe->work);
697 }
698
699 /* Initialize hprobe as SRCU-protected "leased" uprobe */
hprobe_init_leased(struct hprobe * hprobe,struct uprobe * uprobe,int srcu_idx)700 static void hprobe_init_leased(struct hprobe *hprobe, struct uprobe *uprobe, int srcu_idx)
701 {
702 WARN_ON(!uprobe);
703 hprobe->state = HPROBE_LEASED;
704 hprobe->uprobe = uprobe;
705 hprobe->srcu_idx = srcu_idx;
706 }
707
708 /* Initialize hprobe as refcounted ("stable") uprobe (uprobe can be NULL). */
hprobe_init_stable(struct hprobe * hprobe,struct uprobe * uprobe)709 static void hprobe_init_stable(struct hprobe *hprobe, struct uprobe *uprobe)
710 {
711 hprobe->state = uprobe ? HPROBE_STABLE : HPROBE_GONE;
712 hprobe->uprobe = uprobe;
713 hprobe->srcu_idx = -1;
714 }
715
716 /*
717 * hprobe_consume() fetches hprobe's underlying uprobe and detects whether
718 * uprobe is SRCU protected or is refcounted. hprobe_consume() can be
719 * used only once for a given hprobe.
720 *
721 * Caller has to call hprobe_finalize() and pass previous hprobe_state, so
722 * that hprobe_finalize() can perform SRCU unlock or put uprobe, whichever
723 * is appropriate.
724 */
hprobe_consume(struct hprobe * hprobe,enum hprobe_state * hstate)725 static inline struct uprobe *hprobe_consume(struct hprobe *hprobe, enum hprobe_state *hstate)
726 {
727 *hstate = xchg(&hprobe->state, HPROBE_CONSUMED);
728 switch (*hstate) {
729 case HPROBE_LEASED:
730 case HPROBE_STABLE:
731 return hprobe->uprobe;
732 case HPROBE_GONE: /* uprobe is NULL, no SRCU */
733 case HPROBE_CONSUMED: /* uprobe was finalized already, do nothing */
734 return NULL;
735 default:
736 WARN(1, "hprobe invalid state %d", *hstate);
737 return NULL;
738 }
739 }
740
741 /*
742 * Reset hprobe state and, if hprobe was LEASED, release SRCU lock.
743 * hprobe_finalize() can only be used from current context after
744 * hprobe_consume() call (which determines uprobe and hstate value).
745 */
hprobe_finalize(struct hprobe * hprobe,enum hprobe_state hstate)746 static void hprobe_finalize(struct hprobe *hprobe, enum hprobe_state hstate)
747 {
748 switch (hstate) {
749 case HPROBE_LEASED:
750 __srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx);
751 break;
752 case HPROBE_STABLE:
753 put_uprobe(hprobe->uprobe);
754 break;
755 case HPROBE_GONE:
756 case HPROBE_CONSUMED:
757 break;
758 default:
759 WARN(1, "hprobe invalid state %d", hstate);
760 break;
761 }
762 }
763
764 /*
765 * Attempt to switch (atomically) uprobe from being SRCU protected (LEASED)
766 * to refcounted (STABLE) state. Competes with hprobe_consume(); only one of
767 * them can win the race to perform SRCU unlocking. Whoever wins must perform
768 * SRCU unlock.
769 *
770 * Returns underlying valid uprobe or NULL, if there was no underlying uprobe
771 * to begin with or we failed to bump its refcount and it's going away.
772 *
773 * Returned non-NULL uprobe can be still safely used within an ongoing SRCU
774 * locked region. If `get` is true, it's guaranteed that non-NULL uprobe has
775 * an extra refcount for caller to assume and use. Otherwise, it's not
776 * guaranteed that returned uprobe has a positive refcount, so caller has to
777 * attempt try_get_uprobe(), if it needs to preserve uprobe beyond current
778 * SRCU lock region. See dup_utask().
779 */
hprobe_expire(struct hprobe * hprobe,bool get)780 static struct uprobe *hprobe_expire(struct hprobe *hprobe, bool get)
781 {
782 enum hprobe_state hstate;
783
784 /*
785 * Caller should guarantee that return_instance is not going to be
786 * freed from under us. This can be achieved either through holding
787 * rcu_read_lock() or by owning return_instance in the first place.
788 *
789 * Underlying uprobe is itself protected from reuse by SRCU, so ensure
790 * SRCU lock is held properly.
791 */
792 lockdep_assert(srcu_read_lock_held(&uretprobes_srcu));
793
794 hstate = READ_ONCE(hprobe->state);
795 switch (hstate) {
796 case HPROBE_STABLE:
797 /* uprobe has positive refcount, bump refcount, if necessary */
798 return get ? get_uprobe(hprobe->uprobe) : hprobe->uprobe;
799 case HPROBE_GONE:
800 /*
801 * SRCU was unlocked earlier and we didn't manage to take
802 * uprobe refcnt, so it's effectively NULL
803 */
804 return NULL;
805 case HPROBE_CONSUMED:
806 /*
807 * uprobe was consumed, so it's effectively NULL as far as
808 * uretprobe processing logic is concerned
809 */
810 return NULL;
811 case HPROBE_LEASED: {
812 struct uprobe *uprobe = try_get_uprobe(hprobe->uprobe);
813 /*
814 * Try to switch hprobe state, guarding against
815 * hprobe_consume() or another hprobe_expire() racing with us.
816 * Note, if we failed to get uprobe refcount, we use special
817 * HPROBE_GONE state to signal that hprobe->uprobe shouldn't
818 * be used as it will be freed after SRCU is unlocked.
819 */
820 if (try_cmpxchg(&hprobe->state, &hstate, uprobe ? HPROBE_STABLE : HPROBE_GONE)) {
821 /* We won the race, we are the ones to unlock SRCU */
822 __srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx);
823 return get ? get_uprobe(uprobe) : uprobe;
824 }
825
826 /*
827 * We lost the race, undo refcount bump (if it ever happened),
828 * unless caller would like an extra refcount anyways.
829 */
830 if (uprobe && !get)
831 put_uprobe(uprobe);
832 /*
833 * Even if hprobe_consume() or another hprobe_expire() wins
834 * the state update race and unlocks SRCU from under us, we
835 * still have a guarantee that underyling uprobe won't be
836 * freed due to ongoing caller's SRCU lock region, so we can
837 * return it regardless. Also, if `get` was true, we also have
838 * an extra ref for the caller to own. This is used in dup_utask().
839 */
840 return uprobe;
841 }
842 default:
843 WARN(1, "unknown hprobe state %d", hstate);
844 return NULL;
845 }
846 }
847
848 static __always_inline
uprobe_cmp(const struct inode * l_inode,const loff_t l_offset,const struct uprobe * r)849 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset,
850 const struct uprobe *r)
851 {
852 if (l_inode < r->inode)
853 return -1;
854
855 if (l_inode > r->inode)
856 return 1;
857
858 if (l_offset < r->offset)
859 return -1;
860
861 if (l_offset > r->offset)
862 return 1;
863
864 return 0;
865 }
866
867 #define __node_2_uprobe(node) \
868 rb_entry((node), struct uprobe, rb_node)
869
870 struct __uprobe_key {
871 struct inode *inode;
872 loff_t offset;
873 };
874
__uprobe_cmp_key(const void * key,const struct rb_node * b)875 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b)
876 {
877 const struct __uprobe_key *a = key;
878 return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b));
879 }
880
__uprobe_cmp(struct rb_node * a,const struct rb_node * b)881 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b)
882 {
883 struct uprobe *u = __node_2_uprobe(a);
884 return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b));
885 }
886
887 /*
888 * Assumes being inside RCU protected region.
889 * No refcount is taken on returned uprobe.
890 */
find_uprobe_rcu(struct inode * inode,loff_t offset)891 static struct uprobe *find_uprobe_rcu(struct inode *inode, loff_t offset)
892 {
893 struct __uprobe_key key = {
894 .inode = inode,
895 .offset = offset,
896 };
897 struct rb_node *node;
898 unsigned int seq;
899
900 lockdep_assert(rcu_read_lock_trace_held());
901
902 do {
903 seq = read_seqcount_begin(&uprobes_seqcount);
904 node = rb_find_rcu(&key, &uprobes_tree, __uprobe_cmp_key);
905 /*
906 * Lockless RB-tree lookups can result only in false negatives.
907 * If the element is found, it is correct and can be returned
908 * under RCU protection. If we find nothing, we need to
909 * validate that seqcount didn't change. If it did, we have to
910 * try again as we might have missed the element (false
911 * negative). If seqcount is unchanged, search truly failed.
912 */
913 if (node)
914 return __node_2_uprobe(node);
915 } while (read_seqcount_retry(&uprobes_seqcount, seq));
916
917 return NULL;
918 }
919
920 /*
921 * Attempt to insert a new uprobe into uprobes_tree.
922 *
923 * If uprobe already exists (for given inode+offset), we just increment
924 * refcount of previously existing uprobe.
925 *
926 * If not, a provided new instance of uprobe is inserted into the tree (with
927 * assumed initial refcount == 1).
928 *
929 * In any case, we return a uprobe instance that ends up being in uprobes_tree.
930 * Caller has to clean up new uprobe instance, if it ended up not being
931 * inserted into the tree.
932 *
933 * We assume that uprobes_treelock is held for writing.
934 */
__insert_uprobe(struct uprobe * uprobe)935 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
936 {
937 struct rb_node *node;
938 again:
939 node = rb_find_add_rcu(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp);
940 if (node) {
941 struct uprobe *u = __node_2_uprobe(node);
942
943 if (!try_get_uprobe(u)) {
944 rb_erase(node, &uprobes_tree);
945 RB_CLEAR_NODE(&u->rb_node);
946 goto again;
947 }
948
949 return u;
950 }
951
952 return uprobe;
953 }
954
955 /*
956 * Acquire uprobes_treelock and insert uprobe into uprobes_tree
957 * (or reuse existing one, see __insert_uprobe() comments above).
958 */
insert_uprobe(struct uprobe * uprobe)959 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
960 {
961 struct uprobe *u;
962
963 write_lock(&uprobes_treelock);
964 write_seqcount_begin(&uprobes_seqcount);
965 u = __insert_uprobe(uprobe);
966 write_seqcount_end(&uprobes_seqcount);
967 write_unlock(&uprobes_treelock);
968
969 return u;
970 }
971
972 static void
ref_ctr_mismatch_warn(struct uprobe * cur_uprobe,struct uprobe * uprobe)973 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
974 {
975 pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
976 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
977 uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
978 (unsigned long long) cur_uprobe->ref_ctr_offset,
979 (unsigned long long) uprobe->ref_ctr_offset);
980 }
981
alloc_uprobe(struct inode * inode,loff_t offset,loff_t ref_ctr_offset)982 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
983 loff_t ref_ctr_offset)
984 {
985 struct uprobe *uprobe, *cur_uprobe;
986
987 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
988 if (!uprobe)
989 return ERR_PTR(-ENOMEM);
990
991 uprobe->inode = inode;
992 uprobe->offset = offset;
993 uprobe->ref_ctr_offset = ref_ctr_offset;
994 INIT_LIST_HEAD(&uprobe->consumers);
995 init_rwsem(&uprobe->register_rwsem);
996 init_rwsem(&uprobe->consumer_rwsem);
997 RB_CLEAR_NODE(&uprobe->rb_node);
998 refcount_set(&uprobe->ref, 1);
999
1000 /* add to uprobes_tree, sorted on inode:offset */
1001 cur_uprobe = insert_uprobe(uprobe);
1002 /* a uprobe exists for this inode:offset combination */
1003 if (cur_uprobe != uprobe) {
1004 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
1005 ref_ctr_mismatch_warn(cur_uprobe, uprobe);
1006 put_uprobe(cur_uprobe);
1007 kfree(uprobe);
1008 return ERR_PTR(-EINVAL);
1009 }
1010 kfree(uprobe);
1011 uprobe = cur_uprobe;
1012 }
1013
1014 return uprobe;
1015 }
1016
consumer_add(struct uprobe * uprobe,struct uprobe_consumer * uc)1017 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
1018 {
1019 static atomic64_t id;
1020
1021 down_write(&uprobe->consumer_rwsem);
1022 list_add_rcu(&uc->cons_node, &uprobe->consumers);
1023 uc->id = (__u64) atomic64_inc_return(&id);
1024 up_write(&uprobe->consumer_rwsem);
1025 }
1026
1027 /*
1028 * For uprobe @uprobe, delete the consumer @uc.
1029 * Should never be called with consumer that's not part of @uprobe->consumers.
1030 */
consumer_del(struct uprobe * uprobe,struct uprobe_consumer * uc)1031 static void consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
1032 {
1033 down_write(&uprobe->consumer_rwsem);
1034 list_del_rcu(&uc->cons_node);
1035 up_write(&uprobe->consumer_rwsem);
1036 }
1037
__copy_insn(struct address_space * mapping,struct file * filp,void * insn,int nbytes,loff_t offset)1038 static int __copy_insn(struct address_space *mapping, struct file *filp,
1039 void *insn, int nbytes, loff_t offset)
1040 {
1041 struct page *page;
1042 /*
1043 * Ensure that the page that has the original instruction is populated
1044 * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(),
1045 * see uprobe_register().
1046 */
1047 if (mapping->a_ops->read_folio)
1048 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
1049 else
1050 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
1051 if (IS_ERR(page))
1052 return PTR_ERR(page);
1053
1054 copy_from_page(page, offset, insn, nbytes);
1055 put_page(page);
1056
1057 return 0;
1058 }
1059
copy_insn(struct uprobe * uprobe,struct file * filp)1060 static int copy_insn(struct uprobe *uprobe, struct file *filp)
1061 {
1062 struct address_space *mapping = uprobe->inode->i_mapping;
1063 loff_t offs = uprobe->offset;
1064 void *insn = &uprobe->arch.insn;
1065 int size = sizeof(uprobe->arch.insn);
1066 int len, err = -EIO;
1067
1068 /* Copy only available bytes, -EIO if nothing was read */
1069 do {
1070 if (offs >= i_size_read(uprobe->inode))
1071 break;
1072
1073 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
1074 err = __copy_insn(mapping, filp, insn, len, offs);
1075 if (err)
1076 break;
1077
1078 insn += len;
1079 offs += len;
1080 size -= len;
1081 } while (size);
1082
1083 return err;
1084 }
1085
prepare_uprobe(struct uprobe * uprobe,struct file * file,struct mm_struct * mm,unsigned long vaddr)1086 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
1087 struct mm_struct *mm, unsigned long vaddr)
1088 {
1089 int ret = 0;
1090
1091 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
1092 return ret;
1093
1094 /* TODO: move this into _register, until then we abuse this sem. */
1095 down_write(&uprobe->consumer_rwsem);
1096 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
1097 goto out;
1098
1099 ret = copy_insn(uprobe, file);
1100 if (ret)
1101 goto out;
1102
1103 ret = -ENOTSUPP;
1104 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
1105 goto out;
1106
1107 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
1108 if (ret)
1109 goto out;
1110
1111 smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
1112 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
1113
1114 out:
1115 up_write(&uprobe->consumer_rwsem);
1116
1117 return ret;
1118 }
1119
consumer_filter(struct uprobe_consumer * uc,struct mm_struct * mm)1120 static inline bool consumer_filter(struct uprobe_consumer *uc, struct mm_struct *mm)
1121 {
1122 return !uc->filter || uc->filter(uc, mm);
1123 }
1124
filter_chain(struct uprobe * uprobe,struct mm_struct * mm)1125 static bool filter_chain(struct uprobe *uprobe, struct mm_struct *mm)
1126 {
1127 struct uprobe_consumer *uc;
1128 bool ret = false;
1129
1130 down_read(&uprobe->consumer_rwsem);
1131 list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
1132 ret = consumer_filter(uc, mm);
1133 if (ret)
1134 break;
1135 }
1136 up_read(&uprobe->consumer_rwsem);
1137
1138 return ret;
1139 }
1140
install_breakpoint(struct uprobe * uprobe,struct vm_area_struct * vma,unsigned long vaddr)1141 static int install_breakpoint(struct uprobe *uprobe, struct vm_area_struct *vma,
1142 unsigned long vaddr)
1143 {
1144 struct mm_struct *mm = vma->vm_mm;
1145 bool first_uprobe;
1146 int ret;
1147
1148 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
1149 if (ret)
1150 return ret;
1151
1152 /*
1153 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
1154 * the task can hit this breakpoint right after __replace_page().
1155 */
1156 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
1157 if (first_uprobe)
1158 set_bit(MMF_HAS_UPROBES, &mm->flags);
1159
1160 ret = set_swbp(&uprobe->arch, vma, vaddr);
1161 if (!ret)
1162 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
1163 else if (first_uprobe)
1164 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1165
1166 return ret;
1167 }
1168
remove_breakpoint(struct uprobe * uprobe,struct vm_area_struct * vma,unsigned long vaddr)1169 static int remove_breakpoint(struct uprobe *uprobe, struct vm_area_struct *vma,
1170 unsigned long vaddr)
1171 {
1172 struct mm_struct *mm = vma->vm_mm;
1173
1174 set_bit(MMF_RECALC_UPROBES, &mm->flags);
1175 return set_orig_insn(&uprobe->arch, vma, vaddr);
1176 }
1177
1178 struct map_info {
1179 struct map_info *next;
1180 struct mm_struct *mm;
1181 unsigned long vaddr;
1182 };
1183
free_map_info(struct map_info * info)1184 static inline struct map_info *free_map_info(struct map_info *info)
1185 {
1186 struct map_info *next = info->next;
1187 kfree(info);
1188 return next;
1189 }
1190
1191 static struct map_info *
build_map_info(struct address_space * mapping,loff_t offset,bool is_register)1192 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
1193 {
1194 unsigned long pgoff = offset >> PAGE_SHIFT;
1195 struct vm_area_struct *vma;
1196 struct map_info *curr = NULL;
1197 struct map_info *prev = NULL;
1198 struct map_info *info;
1199 int more = 0;
1200
1201 again:
1202 i_mmap_lock_read(mapping);
1203 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1204 if (!valid_vma(vma, is_register))
1205 continue;
1206
1207 if (!prev && !more) {
1208 /*
1209 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
1210 * reclaim. This is optimistic, no harm done if it fails.
1211 */
1212 prev = kmalloc(sizeof(struct map_info),
1213 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
1214 if (prev)
1215 prev->next = NULL;
1216 }
1217 if (!prev) {
1218 more++;
1219 continue;
1220 }
1221
1222 if (!mmget_not_zero(vma->vm_mm))
1223 continue;
1224
1225 info = prev;
1226 prev = prev->next;
1227 info->next = curr;
1228 curr = info;
1229
1230 info->mm = vma->vm_mm;
1231 info->vaddr = offset_to_vaddr(vma, offset);
1232 }
1233 i_mmap_unlock_read(mapping);
1234
1235 if (!more)
1236 goto out;
1237
1238 prev = curr;
1239 while (curr) {
1240 mmput(curr->mm);
1241 curr = curr->next;
1242 }
1243
1244 do {
1245 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1246 if (!info) {
1247 curr = ERR_PTR(-ENOMEM);
1248 goto out;
1249 }
1250 info->next = prev;
1251 prev = info;
1252 } while (--more);
1253
1254 goto again;
1255 out:
1256 while (prev)
1257 prev = free_map_info(prev);
1258 return curr;
1259 }
1260
1261 static int
register_for_each_vma(struct uprobe * uprobe,struct uprobe_consumer * new)1262 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1263 {
1264 bool is_register = !!new;
1265 struct map_info *info;
1266 int err = 0;
1267
1268 percpu_down_write(&dup_mmap_sem);
1269 info = build_map_info(uprobe->inode->i_mapping,
1270 uprobe->offset, is_register);
1271 if (IS_ERR(info)) {
1272 err = PTR_ERR(info);
1273 goto out;
1274 }
1275
1276 while (info) {
1277 struct mm_struct *mm = info->mm;
1278 struct vm_area_struct *vma;
1279
1280 if (err && is_register)
1281 goto free;
1282 /*
1283 * We take mmap_lock for writing to avoid the race with
1284 * find_active_uprobe_rcu() which takes mmap_lock for reading.
1285 * Thus this install_breakpoint() can not make
1286 * is_trap_at_addr() true right after find_uprobe_rcu()
1287 * returns NULL in find_active_uprobe_rcu().
1288 */
1289 mmap_write_lock(mm);
1290 if (check_stable_address_space(mm))
1291 goto unlock;
1292
1293 vma = find_vma(mm, info->vaddr);
1294 if (!vma || !valid_vma(vma, is_register) ||
1295 file_inode(vma->vm_file) != uprobe->inode)
1296 goto unlock;
1297
1298 if (vma->vm_start > info->vaddr ||
1299 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1300 goto unlock;
1301
1302 if (is_register) {
1303 /* consult only the "caller", new consumer. */
1304 if (consumer_filter(new, mm))
1305 err = install_breakpoint(uprobe, vma, info->vaddr);
1306 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1307 if (!filter_chain(uprobe, mm))
1308 err |= remove_breakpoint(uprobe, vma, info->vaddr);
1309 }
1310
1311 unlock:
1312 mmap_write_unlock(mm);
1313 free:
1314 mmput(mm);
1315 info = free_map_info(info);
1316 }
1317 out:
1318 percpu_up_write(&dup_mmap_sem);
1319 return err;
1320 }
1321
1322 /**
1323 * uprobe_unregister_nosync - unregister an already registered probe.
1324 * @uprobe: uprobe to remove
1325 * @uc: identify which probe if multiple probes are colocated.
1326 */
uprobe_unregister_nosync(struct uprobe * uprobe,struct uprobe_consumer * uc)1327 void uprobe_unregister_nosync(struct uprobe *uprobe, struct uprobe_consumer *uc)
1328 {
1329 int err;
1330
1331 down_write(&uprobe->register_rwsem);
1332 consumer_del(uprobe, uc);
1333 err = register_for_each_vma(uprobe, NULL);
1334 up_write(&uprobe->register_rwsem);
1335
1336 /* TODO : cant unregister? schedule a worker thread */
1337 if (unlikely(err)) {
1338 uprobe_warn(current, "unregister, leaking uprobe");
1339 return;
1340 }
1341
1342 put_uprobe(uprobe);
1343 }
1344 EXPORT_SYMBOL_GPL(uprobe_unregister_nosync);
1345
uprobe_unregister_sync(void)1346 void uprobe_unregister_sync(void)
1347 {
1348 /*
1349 * Now that handler_chain() and handle_uretprobe_chain() iterate over
1350 * uprobe->consumers list under RCU protection without holding
1351 * uprobe->register_rwsem, we need to wait for RCU grace period to
1352 * make sure that we can't call into just unregistered
1353 * uprobe_consumer's callbacks anymore. If we don't do that, fast and
1354 * unlucky enough caller can free consumer's memory and cause
1355 * handler_chain() or handle_uretprobe_chain() to do an use-after-free.
1356 */
1357 synchronize_rcu_tasks_trace();
1358 synchronize_srcu(&uretprobes_srcu);
1359 }
1360 EXPORT_SYMBOL_GPL(uprobe_unregister_sync);
1361
1362 /**
1363 * uprobe_register - register a probe
1364 * @inode: the file in which the probe has to be placed.
1365 * @offset: offset from the start of the file.
1366 * @ref_ctr_offset: offset of SDT marker / reference counter
1367 * @uc: information on howto handle the probe..
1368 *
1369 * Apart from the access refcount, uprobe_register() takes a creation
1370 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1371 * inserted into the rbtree (i.e first consumer for a @inode:@offset
1372 * tuple). Creation refcount stops uprobe_unregister from freeing the
1373 * @uprobe even before the register operation is complete. Creation
1374 * refcount is released when the last @uc for the @uprobe
1375 * unregisters. Caller of uprobe_register() is required to keep @inode
1376 * (and the containing mount) referenced.
1377 *
1378 * Return: pointer to the new uprobe on success or an ERR_PTR on failure.
1379 */
uprobe_register(struct inode * inode,loff_t offset,loff_t ref_ctr_offset,struct uprobe_consumer * uc)1380 struct uprobe *uprobe_register(struct inode *inode,
1381 loff_t offset, loff_t ref_ctr_offset,
1382 struct uprobe_consumer *uc)
1383 {
1384 struct uprobe *uprobe;
1385 int ret;
1386
1387 /* Uprobe must have at least one set consumer */
1388 if (!uc->handler && !uc->ret_handler)
1389 return ERR_PTR(-EINVAL);
1390
1391 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1392 if (!inode->i_mapping->a_ops->read_folio &&
1393 !shmem_mapping(inode->i_mapping))
1394 return ERR_PTR(-EIO);
1395 /* Racy, just to catch the obvious mistakes */
1396 if (offset > i_size_read(inode))
1397 return ERR_PTR(-EINVAL);
1398
1399 /*
1400 * This ensures that copy_from_page(), copy_to_page() and
1401 * __update_ref_ctr() can't cross page boundary.
1402 */
1403 if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1404 return ERR_PTR(-EINVAL);
1405 if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1406 return ERR_PTR(-EINVAL);
1407
1408 uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1409 if (IS_ERR(uprobe))
1410 return uprobe;
1411
1412 down_write(&uprobe->register_rwsem);
1413 consumer_add(uprobe, uc);
1414 ret = register_for_each_vma(uprobe, uc);
1415 up_write(&uprobe->register_rwsem);
1416
1417 if (ret) {
1418 uprobe_unregister_nosync(uprobe, uc);
1419 /*
1420 * Registration might have partially succeeded, so we can have
1421 * this consumer being called right at this time. We need to
1422 * sync here. It's ok, it's unlikely slow path.
1423 */
1424 uprobe_unregister_sync();
1425 return ERR_PTR(ret);
1426 }
1427
1428 return uprobe;
1429 }
1430 EXPORT_SYMBOL_GPL(uprobe_register);
1431
1432 /**
1433 * uprobe_apply - add or remove the breakpoints according to @uc->filter
1434 * @uprobe: uprobe which "owns" the breakpoint
1435 * @uc: consumer which wants to add more or remove some breakpoints
1436 * @add: add or remove the breakpoints
1437 * Return: 0 on success or negative error code.
1438 */
uprobe_apply(struct uprobe * uprobe,struct uprobe_consumer * uc,bool add)1439 int uprobe_apply(struct uprobe *uprobe, struct uprobe_consumer *uc, bool add)
1440 {
1441 struct uprobe_consumer *con;
1442 int ret = -ENOENT;
1443
1444 down_write(&uprobe->register_rwsem);
1445
1446 rcu_read_lock_trace();
1447 list_for_each_entry_rcu(con, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
1448 if (con == uc) {
1449 ret = register_for_each_vma(uprobe, add ? uc : NULL);
1450 break;
1451 }
1452 }
1453 rcu_read_unlock_trace();
1454
1455 up_write(&uprobe->register_rwsem);
1456
1457 return ret;
1458 }
1459
unapply_uprobe(struct uprobe * uprobe,struct mm_struct * mm)1460 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1461 {
1462 VMA_ITERATOR(vmi, mm, 0);
1463 struct vm_area_struct *vma;
1464 int err = 0;
1465
1466 mmap_read_lock(mm);
1467 for_each_vma(vmi, vma) {
1468 unsigned long vaddr;
1469 loff_t offset;
1470
1471 if (!valid_vma(vma, false) ||
1472 file_inode(vma->vm_file) != uprobe->inode)
1473 continue;
1474
1475 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1476 if (uprobe->offset < offset ||
1477 uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1478 continue;
1479
1480 vaddr = offset_to_vaddr(vma, uprobe->offset);
1481 err |= remove_breakpoint(uprobe, vma, vaddr);
1482 }
1483 mmap_read_unlock(mm);
1484
1485 return err;
1486 }
1487
1488 static struct rb_node *
find_node_in_range(struct inode * inode,loff_t min,loff_t max)1489 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1490 {
1491 struct rb_node *n = uprobes_tree.rb_node;
1492
1493 while (n) {
1494 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1495
1496 if (inode < u->inode) {
1497 n = n->rb_left;
1498 } else if (inode > u->inode) {
1499 n = n->rb_right;
1500 } else {
1501 if (max < u->offset)
1502 n = n->rb_left;
1503 else if (min > u->offset)
1504 n = n->rb_right;
1505 else
1506 break;
1507 }
1508 }
1509
1510 return n;
1511 }
1512
1513 /*
1514 * For a given range in vma, build a list of probes that need to be inserted.
1515 */
build_probe_list(struct inode * inode,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * head)1516 static void build_probe_list(struct inode *inode,
1517 struct vm_area_struct *vma,
1518 unsigned long start, unsigned long end,
1519 struct list_head *head)
1520 {
1521 loff_t min, max;
1522 struct rb_node *n, *t;
1523 struct uprobe *u;
1524
1525 INIT_LIST_HEAD(head);
1526 min = vaddr_to_offset(vma, start);
1527 max = min + (end - start) - 1;
1528
1529 read_lock(&uprobes_treelock);
1530 n = find_node_in_range(inode, min, max);
1531 if (n) {
1532 for (t = n; t; t = rb_prev(t)) {
1533 u = rb_entry(t, struct uprobe, rb_node);
1534 if (u->inode != inode || u->offset < min)
1535 break;
1536 /* if uprobe went away, it's safe to ignore it */
1537 if (try_get_uprobe(u))
1538 list_add(&u->pending_list, head);
1539 }
1540 for (t = n; (t = rb_next(t)); ) {
1541 u = rb_entry(t, struct uprobe, rb_node);
1542 if (u->inode != inode || u->offset > max)
1543 break;
1544 /* if uprobe went away, it's safe to ignore it */
1545 if (try_get_uprobe(u))
1546 list_add(&u->pending_list, head);
1547 }
1548 }
1549 read_unlock(&uprobes_treelock);
1550 }
1551
1552 /* @vma contains reference counter, not the probed instruction. */
delayed_ref_ctr_inc(struct vm_area_struct * vma)1553 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1554 {
1555 struct list_head *pos, *q;
1556 struct delayed_uprobe *du;
1557 unsigned long vaddr;
1558 int ret = 0, err = 0;
1559
1560 mutex_lock(&delayed_uprobe_lock);
1561 list_for_each_safe(pos, q, &delayed_uprobe_list) {
1562 du = list_entry(pos, struct delayed_uprobe, list);
1563
1564 if (du->mm != vma->vm_mm ||
1565 !valid_ref_ctr_vma(du->uprobe, vma))
1566 continue;
1567
1568 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1569 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1570 if (ret) {
1571 update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1572 if (!err)
1573 err = ret;
1574 }
1575 delayed_uprobe_delete(du);
1576 }
1577 mutex_unlock(&delayed_uprobe_lock);
1578 return err;
1579 }
1580
1581 /*
1582 * Called from mmap_region/vma_merge with mm->mmap_lock acquired.
1583 *
1584 * Currently we ignore all errors and always return 0, the callers
1585 * can't handle the failure anyway.
1586 */
uprobe_mmap(struct vm_area_struct * vma)1587 int uprobe_mmap(struct vm_area_struct *vma)
1588 {
1589 struct list_head tmp_list;
1590 struct uprobe *uprobe, *u;
1591 struct inode *inode;
1592
1593 if (no_uprobe_events())
1594 return 0;
1595
1596 if (vma->vm_file &&
1597 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1598 test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1599 delayed_ref_ctr_inc(vma);
1600
1601 if (!valid_vma(vma, true))
1602 return 0;
1603
1604 inode = file_inode(vma->vm_file);
1605 if (!inode)
1606 return 0;
1607
1608 mutex_lock(uprobes_mmap_hash(inode));
1609 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1610 /*
1611 * We can race with uprobe_unregister(), this uprobe can be already
1612 * removed. But in this case filter_chain() must return false, all
1613 * consumers have gone away.
1614 */
1615 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1616 if (!fatal_signal_pending(current) &&
1617 filter_chain(uprobe, vma->vm_mm)) {
1618 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1619 install_breakpoint(uprobe, vma, vaddr);
1620 }
1621 put_uprobe(uprobe);
1622 }
1623 mutex_unlock(uprobes_mmap_hash(inode));
1624
1625 return 0;
1626 }
1627
1628 static bool
vma_has_uprobes(struct vm_area_struct * vma,unsigned long start,unsigned long end)1629 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1630 {
1631 loff_t min, max;
1632 struct inode *inode;
1633 struct rb_node *n;
1634
1635 inode = file_inode(vma->vm_file);
1636
1637 min = vaddr_to_offset(vma, start);
1638 max = min + (end - start) - 1;
1639
1640 read_lock(&uprobes_treelock);
1641 n = find_node_in_range(inode, min, max);
1642 read_unlock(&uprobes_treelock);
1643
1644 return !!n;
1645 }
1646
1647 /*
1648 * Called in context of a munmap of a vma.
1649 */
uprobe_munmap(struct vm_area_struct * vma,unsigned long start,unsigned long end)1650 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1651 {
1652 if (no_uprobe_events() || !valid_vma(vma, false))
1653 return;
1654
1655 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1656 return;
1657
1658 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1659 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1660 return;
1661
1662 if (vma_has_uprobes(vma, start, end))
1663 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1664 }
1665
xol_fault(const struct vm_special_mapping * sm,struct vm_area_struct * vma,struct vm_fault * vmf)1666 static vm_fault_t xol_fault(const struct vm_special_mapping *sm,
1667 struct vm_area_struct *vma, struct vm_fault *vmf)
1668 {
1669 struct xol_area *area = vma->vm_mm->uprobes_state.xol_area;
1670
1671 vmf->page = area->page;
1672 get_page(vmf->page);
1673 return 0;
1674 }
1675
xol_mremap(const struct vm_special_mapping * sm,struct vm_area_struct * new_vma)1676 static int xol_mremap(const struct vm_special_mapping *sm, struct vm_area_struct *new_vma)
1677 {
1678 return -EPERM;
1679 }
1680
1681 static const struct vm_special_mapping xol_mapping = {
1682 .name = "[uprobes]",
1683 .fault = xol_fault,
1684 .mremap = xol_mremap,
1685 };
1686
1687 /* Slot allocation for XOL */
xol_add_vma(struct mm_struct * mm,struct xol_area * area)1688 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1689 {
1690 struct vm_area_struct *vma;
1691 int ret;
1692
1693 if (mmap_write_lock_killable(mm))
1694 return -EINTR;
1695
1696 if (mm->uprobes_state.xol_area) {
1697 ret = -EALREADY;
1698 goto fail;
1699 }
1700
1701 if (!area->vaddr) {
1702 /* Try to map as high as possible, this is only a hint. */
1703 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1704 PAGE_SIZE, 0, 0);
1705 if (IS_ERR_VALUE(area->vaddr)) {
1706 ret = area->vaddr;
1707 goto fail;
1708 }
1709 }
1710
1711 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1712 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO|
1713 VM_SEALED_SYSMAP,
1714 &xol_mapping);
1715 if (IS_ERR(vma)) {
1716 ret = PTR_ERR(vma);
1717 goto fail;
1718 }
1719
1720 ret = 0;
1721 /* pairs with get_xol_area() */
1722 smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1723 fail:
1724 mmap_write_unlock(mm);
1725
1726 return ret;
1727 }
1728
arch_uprobe_trampoline(unsigned long * psize)1729 void * __weak arch_uprobe_trampoline(unsigned long *psize)
1730 {
1731 static uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1732
1733 *psize = UPROBE_SWBP_INSN_SIZE;
1734 return &insn;
1735 }
1736
__create_xol_area(unsigned long vaddr)1737 static struct xol_area *__create_xol_area(unsigned long vaddr)
1738 {
1739 struct mm_struct *mm = current->mm;
1740 unsigned long insns_size;
1741 struct xol_area *area;
1742 void *insns;
1743
1744 area = kzalloc(sizeof(*area), GFP_KERNEL);
1745 if (unlikely(!area))
1746 goto out;
1747
1748 area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1749 GFP_KERNEL);
1750 if (!area->bitmap)
1751 goto free_area;
1752
1753 area->page = alloc_page(GFP_HIGHUSER | __GFP_ZERO);
1754 if (!area->page)
1755 goto free_bitmap;
1756
1757 area->vaddr = vaddr;
1758 init_waitqueue_head(&area->wq);
1759 /* Reserve the 1st slot for get_trampoline_vaddr() */
1760 set_bit(0, area->bitmap);
1761 insns = arch_uprobe_trampoline(&insns_size);
1762 arch_uprobe_copy_ixol(area->page, 0, insns, insns_size);
1763
1764 if (!xol_add_vma(mm, area))
1765 return area;
1766
1767 __free_page(area->page);
1768 free_bitmap:
1769 kfree(area->bitmap);
1770 free_area:
1771 kfree(area);
1772 out:
1773 return NULL;
1774 }
1775
1776 /*
1777 * get_xol_area - Allocate process's xol_area if necessary.
1778 * This area will be used for storing instructions for execution out of line.
1779 *
1780 * Returns the allocated area or NULL.
1781 */
get_xol_area(void)1782 static struct xol_area *get_xol_area(void)
1783 {
1784 struct mm_struct *mm = current->mm;
1785 struct xol_area *area;
1786
1787 if (!mm->uprobes_state.xol_area)
1788 __create_xol_area(0);
1789
1790 /* Pairs with xol_add_vma() smp_store_release() */
1791 area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1792 return area;
1793 }
1794
1795 /*
1796 * uprobe_clear_state - Free the area allocated for slots.
1797 */
uprobe_clear_state(struct mm_struct * mm)1798 void uprobe_clear_state(struct mm_struct *mm)
1799 {
1800 struct xol_area *area = mm->uprobes_state.xol_area;
1801
1802 mutex_lock(&delayed_uprobe_lock);
1803 delayed_uprobe_remove(NULL, mm);
1804 mutex_unlock(&delayed_uprobe_lock);
1805
1806 if (!area)
1807 return;
1808
1809 put_page(area->page);
1810 kfree(area->bitmap);
1811 kfree(area);
1812 }
1813
uprobe_start_dup_mmap(void)1814 void uprobe_start_dup_mmap(void)
1815 {
1816 percpu_down_read(&dup_mmap_sem);
1817 }
1818
uprobe_end_dup_mmap(void)1819 void uprobe_end_dup_mmap(void)
1820 {
1821 percpu_up_read(&dup_mmap_sem);
1822 }
1823
uprobe_dup_mmap(struct mm_struct * oldmm,struct mm_struct * newmm)1824 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1825 {
1826 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1827 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1828 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1829 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1830 }
1831 }
1832
xol_get_slot_nr(struct xol_area * area)1833 static unsigned long xol_get_slot_nr(struct xol_area *area)
1834 {
1835 unsigned long slot_nr;
1836
1837 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1838 if (slot_nr < UINSNS_PER_PAGE) {
1839 if (!test_and_set_bit(slot_nr, area->bitmap))
1840 return slot_nr;
1841 }
1842
1843 return UINSNS_PER_PAGE;
1844 }
1845
1846 /*
1847 * xol_get_insn_slot - allocate a slot for xol.
1848 */
xol_get_insn_slot(struct uprobe * uprobe,struct uprobe_task * utask)1849 static bool xol_get_insn_slot(struct uprobe *uprobe, struct uprobe_task *utask)
1850 {
1851 struct xol_area *area = get_xol_area();
1852 unsigned long slot_nr;
1853
1854 if (!area)
1855 return false;
1856
1857 wait_event(area->wq, (slot_nr = xol_get_slot_nr(area)) < UINSNS_PER_PAGE);
1858
1859 utask->xol_vaddr = area->vaddr + slot_nr * UPROBE_XOL_SLOT_BYTES;
1860 arch_uprobe_copy_ixol(area->page, utask->xol_vaddr,
1861 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1862 return true;
1863 }
1864
1865 /*
1866 * xol_free_insn_slot - free the slot allocated by xol_get_insn_slot()
1867 */
xol_free_insn_slot(struct uprobe_task * utask)1868 static void xol_free_insn_slot(struct uprobe_task *utask)
1869 {
1870 struct xol_area *area = current->mm->uprobes_state.xol_area;
1871 unsigned long offset = utask->xol_vaddr - area->vaddr;
1872 unsigned int slot_nr;
1873
1874 utask->xol_vaddr = 0;
1875 /* xol_vaddr must fit into [area->vaddr, area->vaddr + PAGE_SIZE) */
1876 if (WARN_ON_ONCE(offset >= PAGE_SIZE))
1877 return;
1878
1879 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1880 clear_bit(slot_nr, area->bitmap);
1881 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1882 if (waitqueue_active(&area->wq))
1883 wake_up(&area->wq);
1884 }
1885
arch_uprobe_copy_ixol(struct page * page,unsigned long vaddr,void * src,unsigned long len)1886 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1887 void *src, unsigned long len)
1888 {
1889 /* Initialize the slot */
1890 copy_to_page(page, vaddr, src, len);
1891
1892 /*
1893 * We probably need flush_icache_user_page() but it needs vma.
1894 * This should work on most of architectures by default. If
1895 * architecture needs to do something different it can define
1896 * its own version of the function.
1897 */
1898 flush_dcache_page(page);
1899 }
1900
1901 /**
1902 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1903 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1904 * instruction.
1905 * Return the address of the breakpoint instruction.
1906 */
uprobe_get_swbp_addr(struct pt_regs * regs)1907 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1908 {
1909 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1910 }
1911
uprobe_get_trap_addr(struct pt_regs * regs)1912 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1913 {
1914 struct uprobe_task *utask = current->utask;
1915
1916 if (unlikely(utask && utask->active_uprobe))
1917 return utask->vaddr;
1918
1919 return instruction_pointer(regs);
1920 }
1921
ri_pool_push(struct uprobe_task * utask,struct return_instance * ri)1922 static void ri_pool_push(struct uprobe_task *utask, struct return_instance *ri)
1923 {
1924 ri->cons_cnt = 0;
1925 ri->next = utask->ri_pool;
1926 utask->ri_pool = ri;
1927 }
1928
ri_pool_pop(struct uprobe_task * utask)1929 static struct return_instance *ri_pool_pop(struct uprobe_task *utask)
1930 {
1931 struct return_instance *ri = utask->ri_pool;
1932
1933 if (likely(ri))
1934 utask->ri_pool = ri->next;
1935
1936 return ri;
1937 }
1938
ri_free(struct return_instance * ri)1939 static void ri_free(struct return_instance *ri)
1940 {
1941 kfree(ri->extra_consumers);
1942 kfree_rcu(ri, rcu);
1943 }
1944
free_ret_instance(struct uprobe_task * utask,struct return_instance * ri,bool cleanup_hprobe)1945 static void free_ret_instance(struct uprobe_task *utask,
1946 struct return_instance *ri, bool cleanup_hprobe)
1947 {
1948 unsigned seq;
1949
1950 if (cleanup_hprobe) {
1951 enum hprobe_state hstate;
1952
1953 (void)hprobe_consume(&ri->hprobe, &hstate);
1954 hprobe_finalize(&ri->hprobe, hstate);
1955 }
1956
1957 /*
1958 * At this point return_instance is unlinked from utask's
1959 * return_instances list and this has become visible to ri_timer().
1960 * If seqcount now indicates that ri_timer's return instance
1961 * processing loop isn't active, we can return ri into the pool of
1962 * to-be-reused return instances for future uretprobes. If ri_timer()
1963 * happens to be running right now, though, we fallback to safety and
1964 * just perform RCU-delated freeing of ri.
1965 * Admittedly, this is a rather simple use of seqcount, but it nicely
1966 * abstracts away all the necessary memory barriers, so we use
1967 * a well-supported kernel primitive here.
1968 */
1969 if (raw_seqcount_try_begin(&utask->ri_seqcount, seq)) {
1970 /* immediate reuse of ri without RCU GP is OK */
1971 ri_pool_push(utask, ri);
1972 } else {
1973 /* we might be racing with ri_timer(), so play it safe */
1974 ri_free(ri);
1975 }
1976 }
1977
1978 /*
1979 * Called with no locks held.
1980 * Called in context of an exiting or an exec-ing thread.
1981 */
uprobe_free_utask(struct task_struct * t)1982 void uprobe_free_utask(struct task_struct *t)
1983 {
1984 struct uprobe_task *utask = t->utask;
1985 struct return_instance *ri, *ri_next;
1986
1987 if (!utask)
1988 return;
1989
1990 t->utask = NULL;
1991 WARN_ON_ONCE(utask->active_uprobe || utask->xol_vaddr);
1992
1993 timer_delete_sync(&utask->ri_timer);
1994
1995 ri = utask->return_instances;
1996 while (ri) {
1997 ri_next = ri->next;
1998 free_ret_instance(utask, ri, true /* cleanup_hprobe */);
1999 ri = ri_next;
2000 }
2001
2002 /* free_ret_instance() above might add to ri_pool, so this loop should come last */
2003 ri = utask->ri_pool;
2004 while (ri) {
2005 ri_next = ri->next;
2006 ri_free(ri);
2007 ri = ri_next;
2008 }
2009
2010 kfree(utask);
2011 }
2012
2013 #define RI_TIMER_PERIOD (HZ / 10) /* 100 ms */
2014
2015 #define for_each_ret_instance_rcu(pos, head) \
2016 for (pos = rcu_dereference_raw(head); pos; pos = rcu_dereference_raw(pos->next))
2017
ri_timer(struct timer_list * timer)2018 static void ri_timer(struct timer_list *timer)
2019 {
2020 struct uprobe_task *utask = container_of(timer, struct uprobe_task, ri_timer);
2021 struct return_instance *ri;
2022
2023 /* SRCU protects uprobe from reuse for the cmpxchg() inside hprobe_expire(). */
2024 guard(srcu)(&uretprobes_srcu);
2025 /* RCU protects return_instance from freeing. */
2026 guard(rcu)();
2027
2028 /*
2029 * See free_ret_instance() for notes on seqcount use.
2030 * We also employ raw API variants to avoid lockdep false-positive
2031 * warning complaining about enabled preemption. The timer can only be
2032 * invoked once for a uprobe_task. Therefore there can only be one
2033 * writer. The reader does not require an even sequence count to make
2034 * progress, so it is OK to remain preemptible on PREEMPT_RT.
2035 */
2036 raw_write_seqcount_begin(&utask->ri_seqcount);
2037
2038 for_each_ret_instance_rcu(ri, utask->return_instances)
2039 hprobe_expire(&ri->hprobe, false);
2040
2041 raw_write_seqcount_end(&utask->ri_seqcount);
2042 }
2043
alloc_utask(void)2044 static struct uprobe_task *alloc_utask(void)
2045 {
2046 struct uprobe_task *utask;
2047
2048 utask = kzalloc(sizeof(*utask), GFP_KERNEL);
2049 if (!utask)
2050 return NULL;
2051
2052 timer_setup(&utask->ri_timer, ri_timer, 0);
2053 seqcount_init(&utask->ri_seqcount);
2054
2055 return utask;
2056 }
2057
2058 /*
2059 * Allocate a uprobe_task object for the task if necessary.
2060 * Called when the thread hits a breakpoint.
2061 *
2062 * Returns:
2063 * - pointer to new uprobe_task on success
2064 * - NULL otherwise
2065 */
get_utask(void)2066 static struct uprobe_task *get_utask(void)
2067 {
2068 if (!current->utask)
2069 current->utask = alloc_utask();
2070 return current->utask;
2071 }
2072
alloc_return_instance(struct uprobe_task * utask)2073 static struct return_instance *alloc_return_instance(struct uprobe_task *utask)
2074 {
2075 struct return_instance *ri;
2076
2077 ri = ri_pool_pop(utask);
2078 if (ri)
2079 return ri;
2080
2081 ri = kzalloc(sizeof(*ri), GFP_KERNEL);
2082 if (!ri)
2083 return ZERO_SIZE_PTR;
2084
2085 return ri;
2086 }
2087
dup_return_instance(struct return_instance * old)2088 static struct return_instance *dup_return_instance(struct return_instance *old)
2089 {
2090 struct return_instance *ri;
2091
2092 ri = kmemdup(old, sizeof(*ri), GFP_KERNEL);
2093 if (!ri)
2094 return NULL;
2095
2096 if (unlikely(old->cons_cnt > 1)) {
2097 ri->extra_consumers = kmemdup(old->extra_consumers,
2098 sizeof(ri->extra_consumers[0]) * (old->cons_cnt - 1),
2099 GFP_KERNEL);
2100 if (!ri->extra_consumers) {
2101 kfree(ri);
2102 return NULL;
2103 }
2104 }
2105
2106 return ri;
2107 }
2108
dup_utask(struct task_struct * t,struct uprobe_task * o_utask)2109 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
2110 {
2111 struct uprobe_task *n_utask;
2112 struct return_instance **p, *o, *n;
2113 struct uprobe *uprobe;
2114
2115 n_utask = alloc_utask();
2116 if (!n_utask)
2117 return -ENOMEM;
2118 t->utask = n_utask;
2119
2120 /* protect uprobes from freeing, we'll need try_get_uprobe() them */
2121 guard(srcu)(&uretprobes_srcu);
2122
2123 p = &n_utask->return_instances;
2124 for (o = o_utask->return_instances; o; o = o->next) {
2125 n = dup_return_instance(o);
2126 if (!n)
2127 return -ENOMEM;
2128
2129 /* if uprobe is non-NULL, we'll have an extra refcount for uprobe */
2130 uprobe = hprobe_expire(&o->hprobe, true);
2131
2132 /*
2133 * New utask will have stable properly refcounted uprobe or
2134 * NULL. Even if we failed to get refcounted uprobe, we still
2135 * need to preserve full set of return_instances for proper
2136 * uretprobe handling and nesting in forked task.
2137 */
2138 hprobe_init_stable(&n->hprobe, uprobe);
2139
2140 n->next = NULL;
2141 rcu_assign_pointer(*p, n);
2142 p = &n->next;
2143
2144 n_utask->depth++;
2145 }
2146
2147 return 0;
2148 }
2149
dup_xol_work(struct callback_head * work)2150 static void dup_xol_work(struct callback_head *work)
2151 {
2152 if (current->flags & PF_EXITING)
2153 return;
2154
2155 if (!__create_xol_area(current->utask->dup_xol_addr) &&
2156 !fatal_signal_pending(current))
2157 uprobe_warn(current, "dup xol area");
2158 }
2159
2160 /*
2161 * Called in context of a new clone/fork from copy_process.
2162 */
uprobe_copy_process(struct task_struct * t,unsigned long flags)2163 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
2164 {
2165 struct uprobe_task *utask = current->utask;
2166 struct mm_struct *mm = current->mm;
2167 struct xol_area *area;
2168
2169 t->utask = NULL;
2170
2171 if (!utask || !utask->return_instances)
2172 return;
2173
2174 if (mm == t->mm && !(flags & CLONE_VFORK))
2175 return;
2176
2177 if (dup_utask(t, utask))
2178 return uprobe_warn(t, "dup ret instances");
2179
2180 /* The task can fork() after dup_xol_work() fails */
2181 area = mm->uprobes_state.xol_area;
2182 if (!area)
2183 return uprobe_warn(t, "dup xol area");
2184
2185 if (mm == t->mm)
2186 return;
2187
2188 t->utask->dup_xol_addr = area->vaddr;
2189 init_task_work(&t->utask->dup_xol_work, dup_xol_work);
2190 task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME);
2191 }
2192
2193 /*
2194 * Current area->vaddr notion assume the trampoline address is always
2195 * equal area->vaddr.
2196 *
2197 * Returns -1 in case the xol_area is not allocated.
2198 */
uprobe_get_trampoline_vaddr(void)2199 unsigned long uprobe_get_trampoline_vaddr(void)
2200 {
2201 unsigned long trampoline_vaddr = UPROBE_NO_TRAMPOLINE_VADDR;
2202 struct xol_area *area;
2203
2204 /* Pairs with xol_add_vma() smp_store_release() */
2205 area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
2206 if (area)
2207 trampoline_vaddr = area->vaddr;
2208
2209 return trampoline_vaddr;
2210 }
2211
cleanup_return_instances(struct uprobe_task * utask,bool chained,struct pt_regs * regs)2212 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
2213 struct pt_regs *regs)
2214 {
2215 struct return_instance *ri = utask->return_instances, *ri_next;
2216 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
2217
2218 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
2219 ri_next = ri->next;
2220 rcu_assign_pointer(utask->return_instances, ri_next);
2221 utask->depth--;
2222
2223 free_ret_instance(utask, ri, true /* cleanup_hprobe */);
2224 ri = ri_next;
2225 }
2226 }
2227
prepare_uretprobe(struct uprobe * uprobe,struct pt_regs * regs,struct return_instance * ri)2228 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs,
2229 struct return_instance *ri)
2230 {
2231 struct uprobe_task *utask = current->utask;
2232 unsigned long orig_ret_vaddr, trampoline_vaddr;
2233 bool chained;
2234 int srcu_idx;
2235
2236 if (!get_xol_area())
2237 goto free;
2238
2239 if (utask->depth >= MAX_URETPROBE_DEPTH) {
2240 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
2241 " nestedness limit pid/tgid=%d/%d\n",
2242 current->pid, current->tgid);
2243 goto free;
2244 }
2245
2246 trampoline_vaddr = uprobe_get_trampoline_vaddr();
2247 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
2248 if (orig_ret_vaddr == -1)
2249 goto free;
2250
2251 /* drop the entries invalidated by longjmp() */
2252 chained = (orig_ret_vaddr == trampoline_vaddr);
2253 cleanup_return_instances(utask, chained, regs);
2254
2255 /*
2256 * We don't want to keep trampoline address in stack, rather keep the
2257 * original return address of first caller thru all the consequent
2258 * instances. This also makes breakpoint unwrapping easier.
2259 */
2260 if (chained) {
2261 if (!utask->return_instances) {
2262 /*
2263 * This situation is not possible. Likely we have an
2264 * attack from user-space.
2265 */
2266 uprobe_warn(current, "handle tail call");
2267 goto free;
2268 }
2269 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
2270 }
2271
2272 /* __srcu_read_lock() because SRCU lock survives switch to user space */
2273 srcu_idx = __srcu_read_lock(&uretprobes_srcu);
2274
2275 ri->func = instruction_pointer(regs);
2276 ri->stack = user_stack_pointer(regs);
2277 ri->orig_ret_vaddr = orig_ret_vaddr;
2278 ri->chained = chained;
2279
2280 utask->depth++;
2281
2282 hprobe_init_leased(&ri->hprobe, uprobe, srcu_idx);
2283 ri->next = utask->return_instances;
2284 rcu_assign_pointer(utask->return_instances, ri);
2285
2286 mod_timer(&utask->ri_timer, jiffies + RI_TIMER_PERIOD);
2287
2288 return;
2289 free:
2290 ri_free(ri);
2291 }
2292
2293 /* Prepare to single-step probed instruction out of line. */
2294 static int
pre_ssout(struct uprobe * uprobe,struct pt_regs * regs,unsigned long bp_vaddr)2295 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
2296 {
2297 struct uprobe_task *utask = current->utask;
2298 int err;
2299
2300 if (!try_get_uprobe(uprobe))
2301 return -EINVAL;
2302
2303 if (!xol_get_insn_slot(uprobe, utask)) {
2304 err = -ENOMEM;
2305 goto err_out;
2306 }
2307
2308 utask->vaddr = bp_vaddr;
2309 err = arch_uprobe_pre_xol(&uprobe->arch, regs);
2310 if (unlikely(err)) {
2311 xol_free_insn_slot(utask);
2312 goto err_out;
2313 }
2314
2315 utask->active_uprobe = uprobe;
2316 utask->state = UTASK_SSTEP;
2317 return 0;
2318 err_out:
2319 put_uprobe(uprobe);
2320 return err;
2321 }
2322
2323 /*
2324 * If we are singlestepping, then ensure this thread is not connected to
2325 * non-fatal signals until completion of singlestep. When xol insn itself
2326 * triggers the signal, restart the original insn even if the task is
2327 * already SIGKILL'ed (since coredump should report the correct ip). This
2328 * is even more important if the task has a handler for SIGSEGV/etc, The
2329 * _same_ instruction should be repeated again after return from the signal
2330 * handler, and SSTEP can never finish in this case.
2331 */
uprobe_deny_signal(void)2332 bool uprobe_deny_signal(void)
2333 {
2334 struct task_struct *t = current;
2335 struct uprobe_task *utask = t->utask;
2336
2337 if (likely(!utask || !utask->active_uprobe))
2338 return false;
2339
2340 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
2341
2342 if (task_sigpending(t)) {
2343 utask->signal_denied = true;
2344 clear_tsk_thread_flag(t, TIF_SIGPENDING);
2345
2346 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
2347 utask->state = UTASK_SSTEP_TRAPPED;
2348 set_tsk_thread_flag(t, TIF_UPROBE);
2349 }
2350 }
2351
2352 return true;
2353 }
2354
mmf_recalc_uprobes(struct mm_struct * mm)2355 static void mmf_recalc_uprobes(struct mm_struct *mm)
2356 {
2357 VMA_ITERATOR(vmi, mm, 0);
2358 struct vm_area_struct *vma;
2359
2360 for_each_vma(vmi, vma) {
2361 if (!valid_vma(vma, false))
2362 continue;
2363 /*
2364 * This is not strictly accurate, we can race with
2365 * uprobe_unregister() and see the already removed
2366 * uprobe if delete_uprobe() was not yet called.
2367 * Or this uprobe can be filtered out.
2368 */
2369 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2370 return;
2371 }
2372
2373 clear_bit(MMF_HAS_UPROBES, &mm->flags);
2374 }
2375
is_trap_at_addr(struct mm_struct * mm,unsigned long vaddr)2376 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2377 {
2378 struct page *page;
2379 uprobe_opcode_t opcode;
2380 int result;
2381
2382 if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2383 return -EINVAL;
2384
2385 pagefault_disable();
2386 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2387 pagefault_enable();
2388
2389 if (likely(result == 0))
2390 goto out;
2391
2392 result = get_user_pages(vaddr, 1, FOLL_FORCE, &page);
2393 if (result < 0)
2394 return result;
2395
2396 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2397 put_page(page);
2398 out:
2399 /* This needs to return true for any variant of the trap insn */
2400 return is_trap_insn(&opcode);
2401 }
2402
find_active_uprobe_speculative(unsigned long bp_vaddr)2403 static struct uprobe *find_active_uprobe_speculative(unsigned long bp_vaddr)
2404 {
2405 struct mm_struct *mm = current->mm;
2406 struct uprobe *uprobe = NULL;
2407 struct vm_area_struct *vma;
2408 struct file *vm_file;
2409 loff_t offset;
2410 unsigned int seq;
2411
2412 guard(rcu)();
2413
2414 if (!mmap_lock_speculate_try_begin(mm, &seq))
2415 return NULL;
2416
2417 vma = vma_lookup(mm, bp_vaddr);
2418 if (!vma)
2419 return NULL;
2420
2421 /*
2422 * vm_file memory can be reused for another instance of struct file,
2423 * but can't be freed from under us, so it's safe to read fields from
2424 * it, even if the values are some garbage values; ultimately
2425 * find_uprobe_rcu() + mmap_lock_speculation_end() check will ensure
2426 * that whatever we speculatively found is correct
2427 */
2428 vm_file = READ_ONCE(vma->vm_file);
2429 if (!vm_file)
2430 return NULL;
2431
2432 offset = (loff_t)(vma->vm_pgoff << PAGE_SHIFT) + (bp_vaddr - vma->vm_start);
2433 uprobe = find_uprobe_rcu(vm_file->f_inode, offset);
2434 if (!uprobe)
2435 return NULL;
2436
2437 /* now double check that nothing about MM changed */
2438 if (mmap_lock_speculate_retry(mm, seq))
2439 return NULL;
2440
2441 return uprobe;
2442 }
2443
2444 /* assumes being inside RCU protected region */
find_active_uprobe_rcu(unsigned long bp_vaddr,int * is_swbp)2445 static struct uprobe *find_active_uprobe_rcu(unsigned long bp_vaddr, int *is_swbp)
2446 {
2447 struct mm_struct *mm = current->mm;
2448 struct uprobe *uprobe = NULL;
2449 struct vm_area_struct *vma;
2450
2451 uprobe = find_active_uprobe_speculative(bp_vaddr);
2452 if (uprobe)
2453 return uprobe;
2454
2455 mmap_read_lock(mm);
2456 vma = vma_lookup(mm, bp_vaddr);
2457 if (vma) {
2458 if (vma->vm_file) {
2459 struct inode *inode = file_inode(vma->vm_file);
2460 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2461
2462 uprobe = find_uprobe_rcu(inode, offset);
2463 }
2464
2465 if (!uprobe)
2466 *is_swbp = is_trap_at_addr(mm, bp_vaddr);
2467 } else {
2468 *is_swbp = -EFAULT;
2469 }
2470
2471 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2472 mmf_recalc_uprobes(mm);
2473 mmap_read_unlock(mm);
2474
2475 return uprobe;
2476 }
2477
push_consumer(struct return_instance * ri,__u64 id,__u64 cookie)2478 static struct return_instance *push_consumer(struct return_instance *ri, __u64 id, __u64 cookie)
2479 {
2480 struct return_consumer *ric;
2481
2482 if (unlikely(ri == ZERO_SIZE_PTR))
2483 return ri;
2484
2485 if (unlikely(ri->cons_cnt > 0)) {
2486 ric = krealloc(ri->extra_consumers, sizeof(*ric) * ri->cons_cnt, GFP_KERNEL);
2487 if (!ric) {
2488 ri_free(ri);
2489 return ZERO_SIZE_PTR;
2490 }
2491 ri->extra_consumers = ric;
2492 }
2493
2494 ric = likely(ri->cons_cnt == 0) ? &ri->consumer : &ri->extra_consumers[ri->cons_cnt - 1];
2495 ric->id = id;
2496 ric->cookie = cookie;
2497
2498 ri->cons_cnt++;
2499 return ri;
2500 }
2501
2502 static struct return_consumer *
return_consumer_find(struct return_instance * ri,int * iter,int id)2503 return_consumer_find(struct return_instance *ri, int *iter, int id)
2504 {
2505 struct return_consumer *ric;
2506 int idx;
2507
2508 for (idx = *iter; idx < ri->cons_cnt; idx++)
2509 {
2510 ric = likely(idx == 0) ? &ri->consumer : &ri->extra_consumers[idx - 1];
2511 if (ric->id == id) {
2512 *iter = idx + 1;
2513 return ric;
2514 }
2515 }
2516
2517 return NULL;
2518 }
2519
ignore_ret_handler(int rc)2520 static bool ignore_ret_handler(int rc)
2521 {
2522 return rc == UPROBE_HANDLER_REMOVE || rc == UPROBE_HANDLER_IGNORE;
2523 }
2524
handler_chain(struct uprobe * uprobe,struct pt_regs * regs)2525 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2526 {
2527 struct uprobe_consumer *uc;
2528 bool has_consumers = false, remove = true;
2529 struct return_instance *ri = NULL;
2530 struct uprobe_task *utask = current->utask;
2531
2532 utask->auprobe = &uprobe->arch;
2533
2534 list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
2535 bool session = uc->handler && uc->ret_handler;
2536 __u64 cookie = 0;
2537 int rc = 0;
2538
2539 if (uc->handler) {
2540 rc = uc->handler(uc, regs, &cookie);
2541 WARN(rc < 0 || rc > 2,
2542 "bad rc=0x%x from %ps()\n", rc, uc->handler);
2543 }
2544
2545 remove &= rc == UPROBE_HANDLER_REMOVE;
2546 has_consumers = true;
2547
2548 if (!uc->ret_handler || ignore_ret_handler(rc))
2549 continue;
2550
2551 if (!ri)
2552 ri = alloc_return_instance(utask);
2553
2554 if (session)
2555 ri = push_consumer(ri, uc->id, cookie);
2556 }
2557 utask->auprobe = NULL;
2558
2559 if (!ZERO_OR_NULL_PTR(ri))
2560 prepare_uretprobe(uprobe, regs, ri);
2561
2562 if (remove && has_consumers) {
2563 down_read(&uprobe->register_rwsem);
2564
2565 /* re-check that removal is still required, this time under lock */
2566 if (!filter_chain(uprobe, current->mm)) {
2567 WARN_ON(!uprobe_is_active(uprobe));
2568 unapply_uprobe(uprobe, current->mm);
2569 }
2570
2571 up_read(&uprobe->register_rwsem);
2572 }
2573 }
2574
2575 static void
handle_uretprobe_chain(struct return_instance * ri,struct uprobe * uprobe,struct pt_regs * regs)2576 handle_uretprobe_chain(struct return_instance *ri, struct uprobe *uprobe, struct pt_regs *regs)
2577 {
2578 struct return_consumer *ric;
2579 struct uprobe_consumer *uc;
2580 int ric_idx = 0;
2581
2582 /* all consumers unsubscribed meanwhile */
2583 if (unlikely(!uprobe))
2584 return;
2585
2586 rcu_read_lock_trace();
2587 list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
2588 bool session = uc->handler && uc->ret_handler;
2589
2590 if (uc->ret_handler) {
2591 ric = return_consumer_find(ri, &ric_idx, uc->id);
2592 if (!session || ric)
2593 uc->ret_handler(uc, ri->func, regs, ric ? &ric->cookie : NULL);
2594 }
2595 }
2596 rcu_read_unlock_trace();
2597 }
2598
find_next_ret_chain(struct return_instance * ri)2599 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2600 {
2601 bool chained;
2602
2603 do {
2604 chained = ri->chained;
2605 ri = ri->next; /* can't be NULL if chained */
2606 } while (chained);
2607
2608 return ri;
2609 }
2610
uprobe_handle_trampoline(struct pt_regs * regs)2611 void uprobe_handle_trampoline(struct pt_regs *regs)
2612 {
2613 struct uprobe_task *utask;
2614 struct return_instance *ri, *ri_next, *next_chain;
2615 struct uprobe *uprobe;
2616 enum hprobe_state hstate;
2617 bool valid;
2618
2619 utask = current->utask;
2620 if (!utask)
2621 goto sigill;
2622
2623 ri = utask->return_instances;
2624 if (!ri)
2625 goto sigill;
2626
2627 do {
2628 /*
2629 * We should throw out the frames invalidated by longjmp().
2630 * If this chain is valid, then the next one should be alive
2631 * or NULL; the latter case means that nobody but ri->func
2632 * could hit this trampoline on return. TODO: sigaltstack().
2633 */
2634 next_chain = find_next_ret_chain(ri);
2635 valid = !next_chain || arch_uretprobe_is_alive(next_chain, RP_CHECK_RET, regs);
2636
2637 instruction_pointer_set(regs, ri->orig_ret_vaddr);
2638 do {
2639 /* pop current instance from the stack of pending return instances,
2640 * as it's not pending anymore: we just fixed up original
2641 * instruction pointer in regs and are about to call handlers;
2642 * this allows fixup_uretprobe_trampoline_entries() to properly fix up
2643 * captured stack traces from uretprobe handlers, in which pending
2644 * trampoline addresses on the stack are replaced with correct
2645 * original return addresses
2646 */
2647 ri_next = ri->next;
2648 rcu_assign_pointer(utask->return_instances, ri_next);
2649 utask->depth--;
2650
2651 uprobe = hprobe_consume(&ri->hprobe, &hstate);
2652 if (valid)
2653 handle_uretprobe_chain(ri, uprobe, regs);
2654 hprobe_finalize(&ri->hprobe, hstate);
2655
2656 /* We already took care of hprobe, no need to waste more time on that. */
2657 free_ret_instance(utask, ri, false /* !cleanup_hprobe */);
2658 ri = ri_next;
2659 } while (ri != next_chain);
2660 } while (!valid);
2661
2662 return;
2663
2664 sigill:
2665 uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2666 force_sig(SIGILL);
2667 }
2668
arch_uprobe_ignore(struct arch_uprobe * aup,struct pt_regs * regs)2669 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2670 {
2671 return false;
2672 }
2673
arch_uretprobe_is_alive(struct return_instance * ret,enum rp_check ctx,struct pt_regs * regs)2674 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2675 struct pt_regs *regs)
2676 {
2677 return true;
2678 }
2679
2680 /*
2681 * Run handler and ask thread to singlestep.
2682 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2683 */
handle_swbp(struct pt_regs * regs)2684 static void handle_swbp(struct pt_regs *regs)
2685 {
2686 struct uprobe *uprobe;
2687 unsigned long bp_vaddr;
2688 int is_swbp;
2689
2690 bp_vaddr = uprobe_get_swbp_addr(regs);
2691 if (bp_vaddr == uprobe_get_trampoline_vaddr())
2692 return uprobe_handle_trampoline(regs);
2693
2694 rcu_read_lock_trace();
2695
2696 uprobe = find_active_uprobe_rcu(bp_vaddr, &is_swbp);
2697 if (!uprobe) {
2698 if (is_swbp > 0) {
2699 /* No matching uprobe; signal SIGTRAP. */
2700 force_sig(SIGTRAP);
2701 } else {
2702 /*
2703 * Either we raced with uprobe_unregister() or we can't
2704 * access this memory. The latter is only possible if
2705 * another thread plays with our ->mm. In both cases
2706 * we can simply restart. If this vma was unmapped we
2707 * can pretend this insn was not executed yet and get
2708 * the (correct) SIGSEGV after restart.
2709 */
2710 instruction_pointer_set(regs, bp_vaddr);
2711 }
2712 goto out;
2713 }
2714
2715 /* change it in advance for ->handler() and restart */
2716 instruction_pointer_set(regs, bp_vaddr);
2717
2718 /*
2719 * TODO: move copy_insn/etc into _register and remove this hack.
2720 * After we hit the bp, _unregister + _register can install the
2721 * new and not-yet-analyzed uprobe at the same address, restart.
2722 */
2723 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2724 goto out;
2725
2726 /*
2727 * Pairs with the smp_wmb() in prepare_uprobe().
2728 *
2729 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2730 * we must also see the stores to &uprobe->arch performed by the
2731 * prepare_uprobe() call.
2732 */
2733 smp_rmb();
2734
2735 /* Tracing handlers use ->utask to communicate with fetch methods */
2736 if (!get_utask())
2737 goto out;
2738
2739 if (arch_uprobe_ignore(&uprobe->arch, regs))
2740 goto out;
2741
2742 handler_chain(uprobe, regs);
2743
2744 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2745 goto out;
2746
2747 if (pre_ssout(uprobe, regs, bp_vaddr))
2748 goto out;
2749
2750 out:
2751 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2752 rcu_read_unlock_trace();
2753 }
2754
2755 /*
2756 * Perform required fix-ups and disable singlestep.
2757 * Allow pending signals to take effect.
2758 */
handle_singlestep(struct uprobe_task * utask,struct pt_regs * regs)2759 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2760 {
2761 struct uprobe *uprobe;
2762 int err = 0;
2763
2764 uprobe = utask->active_uprobe;
2765 if (utask->state == UTASK_SSTEP_ACK)
2766 err = arch_uprobe_post_xol(&uprobe->arch, regs);
2767 else if (utask->state == UTASK_SSTEP_TRAPPED)
2768 arch_uprobe_abort_xol(&uprobe->arch, regs);
2769 else
2770 WARN_ON_ONCE(1);
2771
2772 put_uprobe(uprobe);
2773 utask->active_uprobe = NULL;
2774 utask->state = UTASK_RUNNING;
2775 xol_free_insn_slot(utask);
2776
2777 if (utask->signal_denied) {
2778 set_thread_flag(TIF_SIGPENDING);
2779 utask->signal_denied = false;
2780 }
2781
2782 if (unlikely(err)) {
2783 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2784 force_sig(SIGILL);
2785 }
2786 }
2787
2788 /*
2789 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2790 * allows the thread to return from interrupt. After that handle_swbp()
2791 * sets utask->active_uprobe.
2792 *
2793 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2794 * and allows the thread to return from interrupt.
2795 *
2796 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2797 * uprobe_notify_resume().
2798 */
uprobe_notify_resume(struct pt_regs * regs)2799 void uprobe_notify_resume(struct pt_regs *regs)
2800 {
2801 struct uprobe_task *utask;
2802
2803 clear_thread_flag(TIF_UPROBE);
2804
2805 utask = current->utask;
2806 if (utask && utask->active_uprobe)
2807 handle_singlestep(utask, regs);
2808 else
2809 handle_swbp(regs);
2810 }
2811
2812 /*
2813 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2814 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2815 */
uprobe_pre_sstep_notifier(struct pt_regs * regs)2816 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2817 {
2818 if (!current->mm)
2819 return 0;
2820
2821 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) &&
2822 (!current->utask || !current->utask->return_instances))
2823 return 0;
2824
2825 set_thread_flag(TIF_UPROBE);
2826 return 1;
2827 }
2828
2829 /*
2830 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2831 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2832 */
uprobe_post_sstep_notifier(struct pt_regs * regs)2833 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2834 {
2835 struct uprobe_task *utask = current->utask;
2836
2837 if (!current->mm || !utask || !utask->active_uprobe)
2838 /* task is currently not uprobed */
2839 return 0;
2840
2841 utask->state = UTASK_SSTEP_ACK;
2842 set_thread_flag(TIF_UPROBE);
2843 return 1;
2844 }
2845
2846 static struct notifier_block uprobe_exception_nb = {
2847 .notifier_call = arch_uprobe_exception_notify,
2848 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
2849 };
2850
uprobes_init(void)2851 void __init uprobes_init(void)
2852 {
2853 int i;
2854
2855 for (i = 0; i < UPROBES_HASH_SZ; i++)
2856 mutex_init(&uprobes_mmap_mutex[i]);
2857
2858 BUG_ON(register_die_notifier(&uprobe_exception_nb));
2859 }
2860