1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/slab.h>
15 #include <linux/crc32.h>
16 #include <linux/magic.h>
17 #include <linux/kobject.h>
18 #include <linux/sched.h>
19 #include <linux/cred.h>
20 #include <linux/sched/mm.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <linux/rw_hint.h>
27
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30
31 struct pagevec;
32
33 #ifdef CONFIG_F2FS_CHECK_FS
34 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
35 #else
36 #define f2fs_bug_on(sbi, condition) \
37 do { \
38 if (WARN_ON(condition)) \
39 set_sbi_flag(sbi, SBI_NEED_FSCK); \
40 } while (0)
41 #endif
42
43 enum {
44 FAULT_KMALLOC,
45 FAULT_KVMALLOC,
46 FAULT_PAGE_ALLOC,
47 FAULT_PAGE_GET,
48 FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */
49 FAULT_ALLOC_NID,
50 FAULT_ORPHAN,
51 FAULT_BLOCK,
52 FAULT_DIR_DEPTH,
53 FAULT_EVICT_INODE,
54 FAULT_TRUNCATE,
55 FAULT_READ_IO,
56 FAULT_CHECKPOINT,
57 FAULT_DISCARD,
58 FAULT_WRITE_IO,
59 FAULT_SLAB_ALLOC,
60 FAULT_DQUOT_INIT,
61 FAULT_LOCK_OP,
62 FAULT_BLKADDR_VALIDITY,
63 FAULT_BLKADDR_CONSISTENCE,
64 FAULT_NO_SEGMENT,
65 FAULT_INCONSISTENT_FOOTER,
66 FAULT_TIMEOUT,
67 FAULT_VMALLOC,
68 FAULT_MAX,
69 };
70
71 /* indicate which option to update */
72 enum fault_option {
73 FAULT_RATE = 1, /* only update fault rate */
74 FAULT_TYPE = 2, /* only update fault type */
75 FAULT_ALL = 4, /* reset all fault injection options/stats */
76 };
77
78 #ifdef CONFIG_F2FS_FAULT_INJECTION
79 struct f2fs_fault_info {
80 atomic_t inject_ops;
81 int inject_rate;
82 unsigned int inject_type;
83 /* Used to account total count of injection for each type */
84 unsigned int inject_count[FAULT_MAX];
85 };
86
87 extern const char *f2fs_fault_name[FAULT_MAX];
88 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type))
89
90 /* maximum retry count for injected failure */
91 #define DEFAULT_FAILURE_RETRY_COUNT 8
92 #else
93 #define DEFAULT_FAILURE_RETRY_COUNT 1
94 #endif
95
96 /*
97 * For mount options
98 */
99 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000001
100 #define F2FS_MOUNT_DISCARD 0x00000002
101 #define F2FS_MOUNT_NOHEAP 0x00000004
102 #define F2FS_MOUNT_XATTR_USER 0x00000008
103 #define F2FS_MOUNT_POSIX_ACL 0x00000010
104 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000020
105 #define F2FS_MOUNT_INLINE_XATTR 0x00000040
106 #define F2FS_MOUNT_INLINE_DATA 0x00000080
107 #define F2FS_MOUNT_INLINE_DENTRY 0x00000100
108 #define F2FS_MOUNT_FLUSH_MERGE 0x00000200
109 #define F2FS_MOUNT_NOBARRIER 0x00000400
110 #define F2FS_MOUNT_FASTBOOT 0x00000800
111 #define F2FS_MOUNT_READ_EXTENT_CACHE 0x00001000
112 #define F2FS_MOUNT_DATA_FLUSH 0x00002000
113 #define F2FS_MOUNT_FAULT_INJECTION 0x00004000
114 #define F2FS_MOUNT_USRQUOTA 0x00008000
115 #define F2FS_MOUNT_GRPQUOTA 0x00010000
116 #define F2FS_MOUNT_PRJQUOTA 0x00020000
117 #define F2FS_MOUNT_QUOTA 0x00040000
118 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00080000
119 #define F2FS_MOUNT_RESERVE_ROOT 0x00100000
120 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x00200000
121 #define F2FS_MOUNT_NORECOVERY 0x00400000
122 #define F2FS_MOUNT_ATGC 0x00800000
123 #define F2FS_MOUNT_MERGE_CHECKPOINT 0x01000000
124 #define F2FS_MOUNT_GC_MERGE 0x02000000
125 #define F2FS_MOUNT_COMPRESS_CACHE 0x04000000
126 #define F2FS_MOUNT_AGE_EXTENT_CACHE 0x08000000
127 #define F2FS_MOUNT_NAT_BITS 0x10000000
128 #define F2FS_MOUNT_INLINECRYPT 0x20000000
129 /*
130 * Some f2fs environments expect to be able to pass the "lazytime" option
131 * string rather than using the MS_LAZYTIME flag, so this must remain.
132 */
133 #define F2FS_MOUNT_LAZYTIME 0x40000000
134 #define F2FS_MOUNT_RESERVE_NODE 0x80000000
135
136 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
137 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
138 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
139 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
140
141 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
142 typecheck(unsigned long long, b) && \
143 ((long long)((a) - (b)) > 0))
144
145 typedef u32 block_t; /*
146 * should not change u32, since it is the on-disk block
147 * address format, __le32.
148 */
149 typedef u32 nid_t;
150
151 #define COMPRESS_EXT_NUM 16
152
153 enum blkzone_allocation_policy {
154 BLKZONE_ALLOC_PRIOR_SEQ, /* Prioritize writing to sequential zones */
155 BLKZONE_ALLOC_ONLY_SEQ, /* Only allow writing to sequential zones */
156 BLKZONE_ALLOC_PRIOR_CONV, /* Prioritize writing to conventional zones */
157 };
158
159 enum bggc_io_aware_policy {
160 AWARE_ALL_IO, /* skip background GC if there is any kind of pending IO */
161 AWARE_READ_IO, /* skip background GC if there is pending read IO */
162 AWARE_NONE, /* don't aware IO for background GC */
163 };
164
165 enum device_allocation_policy {
166 ALLOCATE_FORWARD_NOHINT,
167 ALLOCATE_FORWARD_WITHIN_HINT,
168 ALLOCATE_FORWARD_FROM_HINT,
169 };
170
171 /*
172 * An implementation of an rwsem that is explicitly unfair to readers. This
173 * prevents priority inversion when a low-priority reader acquires the read lock
174 * while sleeping on the write lock but the write lock is needed by
175 * higher-priority clients.
176 */
177
178 struct f2fs_rwsem {
179 struct rw_semaphore internal_rwsem;
180 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
181 wait_queue_head_t read_waiters;
182 #endif
183 };
184
185 struct f2fs_mount_info {
186 unsigned int opt;
187 block_t root_reserved_blocks; /* root reserved blocks */
188 block_t root_reserved_nodes; /* root reserved nodes */
189 kuid_t s_resuid; /* reserved blocks for uid */
190 kgid_t s_resgid; /* reserved blocks for gid */
191 int active_logs; /* # of active logs */
192 int inline_xattr_size; /* inline xattr size */
193 #ifdef CONFIG_F2FS_FAULT_INJECTION
194 struct f2fs_fault_info fault_info; /* For fault injection */
195 #endif
196 #ifdef CONFIG_QUOTA
197 /* Names of quota files with journalled quota */
198 char *s_qf_names[MAXQUOTAS];
199 int s_jquota_fmt; /* Format of quota to use */
200 #endif
201 /* For which write hints are passed down to block layer */
202 int alloc_mode; /* segment allocation policy */
203 int fsync_mode; /* fsync policy */
204 int fs_mode; /* fs mode: LFS or ADAPTIVE */
205 int bggc_mode; /* bggc mode: off, on or sync */
206 int memory_mode; /* memory mode */
207 int errors; /* errors parameter */
208 int discard_unit; /*
209 * discard command's offset/size should
210 * be aligned to this unit: block,
211 * segment or section
212 */
213 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
214 block_t unusable_cap_perc; /* percentage for cap */
215 block_t unusable_cap; /* Amount of space allowed to be
216 * unusable when disabling checkpoint
217 */
218
219 /* For compression */
220 unsigned char compress_algorithm; /* algorithm type */
221 unsigned char compress_log_size; /* cluster log size */
222 unsigned char compress_level; /* compress level */
223 bool compress_chksum; /* compressed data chksum */
224 unsigned char compress_ext_cnt; /* extension count */
225 unsigned char nocompress_ext_cnt; /* nocompress extension count */
226 int compress_mode; /* compression mode */
227 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
228 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
229 unsigned int lookup_mode;
230 };
231
232 #define F2FS_FEATURE_ENCRYPT 0x00000001
233 #define F2FS_FEATURE_BLKZONED 0x00000002
234 #define F2FS_FEATURE_ATOMIC_WRITE 0x00000004
235 #define F2FS_FEATURE_EXTRA_ATTR 0x00000008
236 #define F2FS_FEATURE_PRJQUOTA 0x00000010
237 #define F2FS_FEATURE_INODE_CHKSUM 0x00000020
238 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x00000040
239 #define F2FS_FEATURE_QUOTA_INO 0x00000080
240 #define F2FS_FEATURE_INODE_CRTIME 0x00000100
241 #define F2FS_FEATURE_LOST_FOUND 0x00000200
242 #define F2FS_FEATURE_VERITY 0x00000400
243 #define F2FS_FEATURE_SB_CHKSUM 0x00000800
244 #define F2FS_FEATURE_CASEFOLD 0x00001000
245 #define F2FS_FEATURE_COMPRESSION 0x00002000
246 #define F2FS_FEATURE_RO 0x00004000
247 #define F2FS_FEATURE_DEVICE_ALIAS 0x00008000
248
249 #define __F2FS_HAS_FEATURE(raw_super, mask) \
250 ((raw_super->feature & cpu_to_le32(mask)) != 0)
251 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
252
253 /*
254 * Default values for user and/or group using reserved blocks
255 */
256 #define F2FS_DEF_RESUID 0
257 #define F2FS_DEF_RESGID 0
258
259 /*
260 * For checkpoint manager
261 */
262 enum {
263 NAT_BITMAP,
264 SIT_BITMAP
265 };
266
267 #define CP_UMOUNT 0x00000001
268 #define CP_FASTBOOT 0x00000002
269 #define CP_SYNC 0x00000004
270 #define CP_RECOVERY 0x00000008
271 #define CP_DISCARD 0x00000010
272 #define CP_TRIMMED 0x00000020
273 #define CP_PAUSE 0x00000040
274 #define CP_RESIZE 0x00000080
275
276 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
277 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
278 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
279 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
280 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
281 #define DEF_CP_INTERVAL 60 /* 60 secs */
282 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
283 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */
284 #define DEF_ENABLE_INTERVAL 16 /* 16 secs */
285 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
286 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
287
288 enum cp_time {
289 CP_TIME_START, /* begin */
290 CP_TIME_LOCK, /* after cp_global_sem */
291 CP_TIME_OP_LOCK, /* after block_operation */
292 CP_TIME_FLUSH_META, /* after flush sit/nat */
293 CP_TIME_SYNC_META, /* after sync_meta_pages */
294 CP_TIME_SYNC_CP_META, /* after sync cp meta pages */
295 CP_TIME_WAIT_DIRTY_META,/* after wait on dirty meta */
296 CP_TIME_WAIT_CP_DATA, /* after wait on cp data */
297 CP_TIME_FLUSH_DEVICE, /* after flush device cache */
298 CP_TIME_WAIT_LAST_CP, /* after wait on last cp pack */
299 CP_TIME_END, /* after unblock_operation */
300 CP_TIME_MAX,
301 };
302
303 /* time cost stats of checkpoint */
304 struct cp_stats {
305 ktime_t times[CP_TIME_MAX];
306 };
307
308 struct cp_control {
309 int reason;
310 __u64 trim_start;
311 __u64 trim_end;
312 __u64 trim_minlen;
313 struct cp_stats stats;
314 };
315
316 /*
317 * indicate meta/data type
318 */
319 enum {
320 META_CP,
321 META_NAT,
322 META_SIT,
323 META_SSA,
324 META_MAX,
325 META_POR,
326 DATA_GENERIC, /* check range only */
327 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
328 DATA_GENERIC_ENHANCE_READ, /*
329 * strong check on range and segment
330 * bitmap but no warning due to race
331 * condition of read on truncated area
332 * by extent_cache
333 */
334 DATA_GENERIC_ENHANCE_UPDATE, /*
335 * strong check on range and segment
336 * bitmap for update case
337 */
338 META_GENERIC,
339 };
340
341 /* for the list of ino */
342 enum {
343 ORPHAN_INO, /* for orphan ino list */
344 APPEND_INO, /* for append ino list */
345 UPDATE_INO, /* for update ino list */
346 TRANS_DIR_INO, /* for transactions dir ino list */
347 XATTR_DIR_INO, /* for xattr updated dir ino list */
348 FLUSH_INO, /* for multiple device flushing */
349 MAX_INO_ENTRY, /* max. list */
350 };
351
352 struct ino_entry {
353 struct list_head list; /* list head */
354 nid_t ino; /* inode number */
355 unsigned int dirty_device; /* dirty device bitmap */
356 };
357
358 /* for the list of inodes to be GCed */
359 struct inode_entry {
360 struct list_head list; /* list head */
361 struct inode *inode; /* vfs inode pointer */
362 };
363
364 struct fsync_node_entry {
365 struct list_head list; /* list head */
366 struct folio *folio; /* warm node folio pointer */
367 unsigned int seq_id; /* sequence id */
368 };
369
370 struct ckpt_req {
371 struct completion wait; /* completion for checkpoint done */
372 struct llist_node llnode; /* llist_node to be linked in wait queue */
373 int ret; /* return code of checkpoint */
374 union {
375 ktime_t queue_time; /* request queued time */
376 ktime_t delta_time; /* time in queue */
377 };
378 };
379
380 struct ckpt_req_control {
381 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */
382 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */
383 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */
384 atomic_t issued_ckpt; /* # of actually issued ckpts */
385 atomic_t total_ckpt; /* # of total ckpts */
386 atomic_t queued_ckpt; /* # of queued ckpts */
387 struct llist_head issue_list; /* list for command issue */
388 spinlock_t stat_lock; /* lock for below checkpoint time stats */
389 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */
390 unsigned int peak_time; /* peak wait time in msec until now */
391 };
392
393 /* a time threshold that checkpoint was blocked for, unit: ms */
394 #define CP_LONG_LATENCY_THRESHOLD 5000
395
396 /* for the bitmap indicate blocks to be discarded */
397 struct discard_entry {
398 struct list_head list; /* list head */
399 block_t start_blkaddr; /* start blockaddr of current segment */
400 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
401 };
402
403 /* minimum discard granularity, unit: block count */
404 #define MIN_DISCARD_GRANULARITY 1
405 /* default discard granularity of inner discard thread, unit: block count */
406 #define DEFAULT_DISCARD_GRANULARITY 16
407 /* default maximum discard granularity of ordered discard, unit: block count */
408 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY 16
409
410 /* max discard pend list number */
411 #define MAX_PLIST_NUM 512
412 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
413 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
414
415 enum {
416 D_PREP, /* initial */
417 D_PARTIAL, /* partially submitted */
418 D_SUBMIT, /* all submitted */
419 D_DONE, /* finished */
420 };
421
422 struct discard_info {
423 block_t lstart; /* logical start address */
424 block_t len; /* length */
425 block_t start; /* actual start address in dev */
426 };
427
428 struct discard_cmd {
429 struct rb_node rb_node; /* rb node located in rb-tree */
430 struct discard_info di; /* discard info */
431 struct list_head list; /* command list */
432 struct completion wait; /* completion */
433 struct block_device *bdev; /* bdev */
434 unsigned short ref; /* reference count */
435 unsigned char state; /* state */
436 unsigned char queued; /* queued discard */
437 int error; /* bio error */
438 spinlock_t lock; /* for state/bio_ref updating */
439 unsigned short bio_ref; /* bio reference count */
440 };
441
442 enum {
443 DPOLICY_BG,
444 DPOLICY_FORCE,
445 DPOLICY_FSTRIM,
446 DPOLICY_UMOUNT,
447 MAX_DPOLICY,
448 };
449
450 enum {
451 DPOLICY_IO_AWARE_DISABLE, /* force to not be aware of IO */
452 DPOLICY_IO_AWARE_ENABLE, /* force to be aware of IO */
453 DPOLICY_IO_AWARE_MAX,
454 };
455
456 struct discard_policy {
457 int type; /* type of discard */
458 unsigned int min_interval; /* used for candidates exist */
459 unsigned int mid_interval; /* used for device busy */
460 unsigned int max_interval; /* used for candidates not exist */
461 unsigned int max_requests; /* # of discards issued per round */
462 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
463 bool io_aware; /* issue discard in idle time */
464 bool sync; /* submit discard with REQ_SYNC flag */
465 bool ordered; /* issue discard by lba order */
466 bool timeout; /* discard timeout for put_super */
467 unsigned int granularity; /* discard granularity */
468 };
469
470 struct discard_cmd_control {
471 struct task_struct *f2fs_issue_discard; /* discard thread */
472 struct list_head entry_list; /* 4KB discard entry list */
473 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
474 struct list_head wait_list; /* store on-flushing entries */
475 struct list_head fstrim_list; /* in-flight discard from fstrim */
476 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
477 struct mutex cmd_lock;
478 unsigned int nr_discards; /* # of discards in the list */
479 unsigned int max_discards; /* max. discards to be issued */
480 unsigned int max_discard_request; /* max. discard request per round */
481 unsigned int min_discard_issue_time; /* min. interval between discard issue */
482 unsigned int mid_discard_issue_time; /* mid. interval between discard issue */
483 unsigned int max_discard_issue_time; /* max. interval between discard issue */
484 unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */
485 unsigned int discard_urgent_util; /* utilization which issue discard proactively */
486 unsigned int discard_granularity; /* discard granularity */
487 unsigned int max_ordered_discard; /* maximum discard granularity issued by lba order */
488 unsigned int discard_io_aware; /* io_aware policy */
489 unsigned int undiscard_blks; /* # of undiscard blocks */
490 unsigned int next_pos; /* next discard position */
491 atomic_t issued_discard; /* # of issued discard */
492 atomic_t queued_discard; /* # of queued discard */
493 atomic_t discard_cmd_cnt; /* # of cached cmd count */
494 struct rb_root_cached root; /* root of discard rb-tree */
495 bool rbtree_check; /* config for consistence check */
496 bool discard_wake; /* to wake up discard thread */
497 };
498
499 /* for the list of fsync inodes, used only during recovery */
500 struct fsync_inode_entry {
501 struct list_head list; /* list head */
502 struct inode *inode; /* vfs inode pointer */
503 block_t blkaddr; /* block address locating the last fsync */
504 block_t last_dentry; /* block address locating the last dentry */
505 };
506
507 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
508 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
509
510 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
511 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
512 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
513 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
514
515 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
516 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
517
update_nats_in_cursum(struct f2fs_journal * journal,int i)518 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
519 {
520 int before = nats_in_cursum(journal);
521
522 journal->n_nats = cpu_to_le16(before + i);
523 return before;
524 }
525
update_sits_in_cursum(struct f2fs_journal * journal,int i)526 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
527 {
528 int before = sits_in_cursum(journal);
529
530 journal->n_sits = cpu_to_le16(before + i);
531 return before;
532 }
533
__has_cursum_space(struct f2fs_journal * journal,int size,int type)534 static inline bool __has_cursum_space(struct f2fs_journal *journal,
535 int size, int type)
536 {
537 if (type == NAT_JOURNAL)
538 return size <= MAX_NAT_JENTRIES(journal);
539 return size <= MAX_SIT_JENTRIES(journal);
540 }
541
542 /* for inline stuff */
543 #define DEF_INLINE_RESERVED_SIZE 1
544 static inline int get_extra_isize(struct inode *inode);
545 static inline int get_inline_xattr_addrs(struct inode *inode);
546 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
547 (CUR_ADDRS_PER_INODE(inode) - \
548 get_inline_xattr_addrs(inode) - \
549 DEF_INLINE_RESERVED_SIZE))
550
551 /* for inline dir */
552 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
553 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
554 BITS_PER_BYTE + 1))
555 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
556 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
557 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
558 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
559 NR_INLINE_DENTRY(inode) + \
560 INLINE_DENTRY_BITMAP_SIZE(inode)))
561
562 /*
563 * For INODE and NODE manager
564 */
565 /* for directory operations */
566
567 struct f2fs_filename {
568 /*
569 * The filename the user specified. This is NULL for some
570 * filesystem-internal operations, e.g. converting an inline directory
571 * to a non-inline one, or roll-forward recovering an encrypted dentry.
572 */
573 const struct qstr *usr_fname;
574
575 /*
576 * The on-disk filename. For encrypted directories, this is encrypted.
577 * This may be NULL for lookups in an encrypted dir without the key.
578 */
579 struct fscrypt_str disk_name;
580
581 /* The dirhash of this filename */
582 f2fs_hash_t hash;
583
584 #ifdef CONFIG_FS_ENCRYPTION
585 /*
586 * For lookups in encrypted directories: either the buffer backing
587 * disk_name, or a buffer that holds the decoded no-key name.
588 */
589 struct fscrypt_str crypto_buf;
590 #endif
591 #if IS_ENABLED(CONFIG_UNICODE)
592 /*
593 * For casefolded directories: the casefolded name, but it's left NULL
594 * if the original name is not valid Unicode, if the original name is
595 * "." or "..", if the directory is both casefolded and encrypted and
596 * its encryption key is unavailable, or if the filesystem is doing an
597 * internal operation where usr_fname is also NULL. In all these cases
598 * we fall back to treating the name as an opaque byte sequence.
599 */
600 struct qstr cf_name;
601 #endif
602 };
603
604 struct f2fs_dentry_ptr {
605 struct inode *inode;
606 void *bitmap;
607 struct f2fs_dir_entry *dentry;
608 __u8 (*filename)[F2FS_SLOT_LEN];
609 int max;
610 int nr_bitmap;
611 };
612
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)613 static inline void make_dentry_ptr_block(struct inode *inode,
614 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
615 {
616 d->inode = inode;
617 d->max = NR_DENTRY_IN_BLOCK;
618 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
619 d->bitmap = t->dentry_bitmap;
620 d->dentry = t->dentry;
621 d->filename = t->filename;
622 }
623
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)624 static inline void make_dentry_ptr_inline(struct inode *inode,
625 struct f2fs_dentry_ptr *d, void *t)
626 {
627 int entry_cnt = NR_INLINE_DENTRY(inode);
628 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
629 int reserved_size = INLINE_RESERVED_SIZE(inode);
630
631 d->inode = inode;
632 d->max = entry_cnt;
633 d->nr_bitmap = bitmap_size;
634 d->bitmap = t;
635 d->dentry = t + bitmap_size + reserved_size;
636 d->filename = t + bitmap_size + reserved_size +
637 SIZE_OF_DIR_ENTRY * entry_cnt;
638 }
639
640 /*
641 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
642 * as its node offset to distinguish from index node blocks.
643 * But some bits are used to mark the node block.
644 */
645 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
646 >> OFFSET_BIT_SHIFT)
647 enum {
648 ALLOC_NODE, /* allocate a new node page if needed */
649 LOOKUP_NODE, /* look up a node without readahead */
650 LOOKUP_NODE_RA, /*
651 * look up a node with readahead called
652 * by get_data_block.
653 */
654 };
655
656 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */
657
658 /* congestion wait timeout value, default: 20ms */
659 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20))
660
661 /* timeout value injected, default: 1000ms */
662 #define DEFAULT_FAULT_TIMEOUT (msecs_to_jiffies(1000))
663
664 /* maximum retry quota flush count */
665 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
666
667 /* maximum retry of EIO'ed page */
668 #define MAX_RETRY_PAGE_EIO 100
669
670 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
671
672 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
673
674 /* dirty segments threshold for triggering CP */
675 #define DEFAULT_DIRTY_THRESHOLD 4
676
677 #define RECOVERY_MAX_RA_BLOCKS BIO_MAX_VECS
678 #define RECOVERY_MIN_RA_BLOCKS 1
679
680 #define F2FS_ONSTACK_PAGES 16 /* nr of onstack pages */
681
682 /* for in-memory extent cache entry */
683 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
684
685 /* number of extent info in extent cache we try to shrink */
686 #define READ_EXTENT_CACHE_SHRINK_NUMBER 128
687
688 /* number of age extent info in extent cache we try to shrink */
689 #define AGE_EXTENT_CACHE_SHRINK_NUMBER 128
690 #define LAST_AGE_WEIGHT 30
691 #define SAME_AGE_REGION 1024
692
693 /*
694 * Define data block with age less than 1GB as hot data
695 * define data block with age less than 10GB but more than 1GB as warm data
696 */
697 #define DEF_HOT_DATA_AGE_THRESHOLD 262144
698 #define DEF_WARM_DATA_AGE_THRESHOLD 2621440
699
700 /* default max read extent count per inode */
701 #define DEF_MAX_READ_EXTENT_COUNT 10240
702
703 /* extent cache type */
704 enum extent_type {
705 EX_READ,
706 EX_BLOCK_AGE,
707 NR_EXTENT_CACHES,
708 };
709
710 struct extent_info {
711 unsigned int fofs; /* start offset in a file */
712 unsigned int len; /* length of the extent */
713 union {
714 /* read extent_cache */
715 struct {
716 /* start block address of the extent */
717 block_t blk;
718 #ifdef CONFIG_F2FS_FS_COMPRESSION
719 /* physical extent length of compressed blocks */
720 unsigned int c_len;
721 #endif
722 };
723 /* block age extent_cache */
724 struct {
725 /* block age of the extent */
726 unsigned long long age;
727 /* last total blocks allocated */
728 unsigned long long last_blocks;
729 };
730 };
731 };
732
733 struct extent_node {
734 struct rb_node rb_node; /* rb node located in rb-tree */
735 struct extent_info ei; /* extent info */
736 struct list_head list; /* node in global extent list of sbi */
737 struct extent_tree *et; /* extent tree pointer */
738 };
739
740 struct extent_tree {
741 nid_t ino; /* inode number */
742 enum extent_type type; /* keep the extent tree type */
743 struct rb_root_cached root; /* root of extent info rb-tree */
744 struct extent_node *cached_en; /* recently accessed extent node */
745 struct list_head list; /* to be used by sbi->zombie_list */
746 rwlock_t lock; /* protect extent info rb-tree */
747 atomic_t node_cnt; /* # of extent node in rb-tree*/
748 bool largest_updated; /* largest extent updated */
749 struct extent_info largest; /* largest cached extent for EX_READ */
750 };
751
752 struct extent_tree_info {
753 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
754 struct mutex extent_tree_lock; /* locking extent radix tree */
755 struct list_head extent_list; /* lru list for shrinker */
756 spinlock_t extent_lock; /* locking extent lru list */
757 atomic_t total_ext_tree; /* extent tree count */
758 struct list_head zombie_list; /* extent zombie tree list */
759 atomic_t total_zombie_tree; /* extent zombie tree count */
760 atomic_t total_ext_node; /* extent info count */
761 };
762
763 /*
764 * State of block returned by f2fs_map_blocks.
765 */
766 #define F2FS_MAP_NEW (1U << 0)
767 #define F2FS_MAP_MAPPED (1U << 1)
768 #define F2FS_MAP_DELALLOC (1U << 2)
769 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
770 F2FS_MAP_DELALLOC)
771
772 struct f2fs_map_blocks {
773 struct block_device *m_bdev; /* for multi-device dio */
774 block_t m_pblk;
775 block_t m_lblk;
776 unsigned int m_len;
777 unsigned int m_flags;
778 unsigned long m_last_pblk; /* last allocated block, only used for DIO in LFS mode */
779 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
780 pgoff_t *m_next_extent; /* point to next possible extent */
781 int m_seg_type;
782 bool m_may_create; /* indicate it is from write path */
783 bool m_multidev_dio; /* indicate it allows multi-device dio */
784 };
785
786 /* for flag in get_data_block */
787 enum {
788 F2FS_GET_BLOCK_DEFAULT,
789 F2FS_GET_BLOCK_FIEMAP,
790 F2FS_GET_BLOCK_BMAP,
791 F2FS_GET_BLOCK_DIO,
792 F2FS_GET_BLOCK_PRE_DIO,
793 F2FS_GET_BLOCK_PRE_AIO,
794 F2FS_GET_BLOCK_PRECACHE,
795 };
796
797 /*
798 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
799 */
800 #define FADVISE_COLD_BIT 0x01
801 #define FADVISE_LOST_PINO_BIT 0x02
802 #define FADVISE_ENCRYPT_BIT 0x04
803 #define FADVISE_ENC_NAME_BIT 0x08
804 #define FADVISE_KEEP_SIZE_BIT 0x10
805 #define FADVISE_HOT_BIT 0x20
806 #define FADVISE_VERITY_BIT 0x40
807 #define FADVISE_TRUNC_BIT 0x80
808
809 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
810
811 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
812 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
813 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
814
815 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
816 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
817 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
818
819 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
820 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
821
822 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
823 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
824
825 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
826 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
827
828 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
829 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
830 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
831
832 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT)
833 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT)
834
835 #define file_should_truncate(inode) is_file(inode, FADVISE_TRUNC_BIT)
836 #define file_need_truncate(inode) set_file(inode, FADVISE_TRUNC_BIT)
837 #define file_dont_truncate(inode) clear_file(inode, FADVISE_TRUNC_BIT)
838
839 #define DEF_DIR_LEVEL 0
840
841 /* used for f2fs_inode_info->flags */
842 enum {
843 FI_NEW_INODE, /* indicate newly allocated inode */
844 FI_DIRTY_INODE, /* indicate inode is dirty or not */
845 FI_AUTO_RECOVER, /* indicate inode is recoverable */
846 FI_DIRTY_DIR, /* indicate directory has dirty pages */
847 FI_INC_LINK, /* need to increment i_nlink */
848 FI_ACL_MODE, /* indicate acl mode */
849 FI_NO_ALLOC, /* should not allocate any blocks */
850 FI_FREE_NID, /* free allocated nide */
851 FI_NO_EXTENT, /* not to use the extent cache */
852 FI_INLINE_XATTR, /* used for inline xattr */
853 FI_INLINE_DATA, /* used for inline data*/
854 FI_INLINE_DENTRY, /* used for inline dentry */
855 FI_APPEND_WRITE, /* inode has appended data */
856 FI_UPDATE_WRITE, /* inode has in-place-update data */
857 FI_NEED_IPU, /* used for ipu per file */
858 FI_ATOMIC_FILE, /* indicate atomic file */
859 FI_DATA_EXIST, /* indicate data exists */
860 FI_SKIP_WRITES, /* should skip data page writeback */
861 FI_OPU_WRITE, /* used for opu per file */
862 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
863 FI_PREALLOCATED_ALL, /* all blocks for write were preallocated */
864 FI_HOT_DATA, /* indicate file is hot */
865 FI_EXTRA_ATTR, /* indicate file has extra attribute */
866 FI_PROJ_INHERIT, /* indicate file inherits projectid */
867 FI_PIN_FILE, /* indicate file should not be gced */
868 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */
869 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */
870 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */
871 FI_MMAP_FILE, /* indicate file was mmapped */
872 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */
873 FI_COMPRESS_RELEASED, /* compressed blocks were released */
874 FI_ALIGNED_WRITE, /* enable aligned write */
875 FI_COW_FILE, /* indicate COW file */
876 FI_ATOMIC_COMMITTED, /* indicate atomic commit completed except disk sync */
877 FI_ATOMIC_DIRTIED, /* indicate atomic file is dirtied */
878 FI_ATOMIC_REPLACE, /* indicate atomic replace */
879 FI_OPENED_FILE, /* indicate file has been opened */
880 FI_DONATE_FINISHED, /* indicate page donation of file has been finished */
881 FI_MAX, /* max flag, never be used */
882 };
883
884 struct f2fs_inode_info {
885 struct inode vfs_inode; /* serve a vfs inode */
886 unsigned long i_flags; /* keep an inode flags for ioctl */
887 unsigned char i_advise; /* use to give file attribute hints */
888 unsigned char i_dir_level; /* use for dentry level for large dir */
889 union {
890 unsigned int i_current_depth; /* only for directory depth */
891 unsigned short i_gc_failures; /* for gc failure statistic */
892 };
893 unsigned int i_pino; /* parent inode number */
894 umode_t i_acl_mode; /* keep file acl mode temporarily */
895
896 /* Use below internally in f2fs*/
897 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */
898 unsigned int ioprio_hint; /* hint for IO priority */
899 struct f2fs_rwsem i_sem; /* protect fi info */
900 atomic_t dirty_pages; /* # of dirty pages */
901 f2fs_hash_t chash; /* hash value of given file name */
902 unsigned int clevel; /* maximum level of given file name */
903 struct task_struct *task; /* lookup and create consistency */
904 struct task_struct *cp_task; /* separate cp/wb IO stats*/
905 struct task_struct *wb_task; /* indicate inode is in context of writeback */
906 nid_t i_xattr_nid; /* node id that contains xattrs */
907 loff_t last_disk_size; /* lastly written file size */
908 spinlock_t i_size_lock; /* protect last_disk_size */
909
910 #ifdef CONFIG_QUOTA
911 struct dquot __rcu *i_dquot[MAXQUOTAS];
912
913 /* quota space reservation, managed internally by quota code */
914 qsize_t i_reserved_quota;
915 #endif
916 struct list_head dirty_list; /* dirty list for dirs and files */
917 struct list_head gdirty_list; /* linked in global dirty list */
918
919 /* linked in global inode list for cache donation */
920 struct list_head gdonate_list;
921 pgoff_t donate_start, donate_end; /* inclusive */
922 atomic_t open_count; /* # of open files */
923
924 struct task_struct *atomic_write_task; /* store atomic write task */
925 struct extent_tree *extent_tree[NR_EXTENT_CACHES];
926 /* cached extent_tree entry */
927 union {
928 struct inode *cow_inode; /* copy-on-write inode for atomic write */
929 struct inode *atomic_inode;
930 /* point to atomic_inode, available only for cow_inode */
931 };
932
933 /* avoid racing between foreground op and gc */
934 struct f2fs_rwsem i_gc_rwsem[2];
935 struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
936
937 int i_extra_isize; /* size of extra space located in i_addr */
938 kprojid_t i_projid; /* id for project quota */
939 int i_inline_xattr_size; /* inline xattr size */
940 struct timespec64 i_crtime; /* inode creation time */
941 struct timespec64 i_disk_time[3];/* inode disk times */
942
943 /* for file compress */
944 atomic_t i_compr_blocks; /* # of compressed blocks */
945 unsigned char i_compress_algorithm; /* algorithm type */
946 unsigned char i_log_cluster_size; /* log of cluster size */
947 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */
948 unsigned char i_compress_flag; /* compress flag */
949 unsigned int i_cluster_size; /* cluster size */
950
951 unsigned int atomic_write_cnt;
952 loff_t original_i_size; /* original i_size before atomic write */
953 #ifdef CONFIG_FS_ENCRYPTION
954 struct fscrypt_inode_info *i_crypt_info; /* filesystem encryption info */
955 #endif
956 #ifdef CONFIG_FS_VERITY
957 struct fsverity_info *i_verity_info; /* filesystem verity info */
958 #endif
959 };
960
get_read_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)961 static inline void get_read_extent_info(struct extent_info *ext,
962 struct f2fs_extent *i_ext)
963 {
964 ext->fofs = le32_to_cpu(i_ext->fofs);
965 ext->blk = le32_to_cpu(i_ext->blk);
966 ext->len = le32_to_cpu(i_ext->len);
967 }
968
set_raw_read_extent(struct extent_info * ext,struct f2fs_extent * i_ext)969 static inline void set_raw_read_extent(struct extent_info *ext,
970 struct f2fs_extent *i_ext)
971 {
972 i_ext->fofs = cpu_to_le32(ext->fofs);
973 i_ext->blk = cpu_to_le32(ext->blk);
974 i_ext->len = cpu_to_le32(ext->len);
975 }
976
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)977 static inline bool __is_discard_mergeable(struct discard_info *back,
978 struct discard_info *front, unsigned int max_len)
979 {
980 return (back->lstart + back->len == front->lstart) &&
981 (back->len + front->len <= max_len);
982 }
983
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)984 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
985 struct discard_info *back, unsigned int max_len)
986 {
987 return __is_discard_mergeable(back, cur, max_len);
988 }
989
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)990 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
991 struct discard_info *front, unsigned int max_len)
992 {
993 return __is_discard_mergeable(cur, front, max_len);
994 }
995
996 /*
997 * For free nid management
998 */
999 enum nid_state {
1000 FREE_NID, /* newly added to free nid list */
1001 PREALLOC_NID, /* it is preallocated */
1002 MAX_NID_STATE,
1003 };
1004
1005 enum nat_state {
1006 TOTAL_NAT,
1007 DIRTY_NAT,
1008 RECLAIMABLE_NAT,
1009 MAX_NAT_STATE,
1010 };
1011
1012 struct f2fs_nm_info {
1013 block_t nat_blkaddr; /* base disk address of NAT */
1014 nid_t max_nid; /* maximum possible node ids */
1015 nid_t available_nids; /* # of available node ids */
1016 nid_t next_scan_nid; /* the next nid to be scanned */
1017 nid_t max_rf_node_blocks; /* max # of nodes for recovery */
1018 unsigned int ram_thresh; /* control the memory footprint */
1019 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
1020 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
1021
1022 /* NAT cache management */
1023 struct radix_tree_root nat_root;/* root of the nat entry cache */
1024 struct radix_tree_root nat_set_root;/* root of the nat set cache */
1025 struct f2fs_rwsem nat_tree_lock; /* protect nat entry tree */
1026 struct list_head nat_entries; /* cached nat entry list (clean) */
1027 spinlock_t nat_list_lock; /* protect clean nat entry list */
1028 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
1029 unsigned int nat_blocks; /* # of nat blocks */
1030
1031 /* free node ids management */
1032 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
1033 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
1034 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
1035 spinlock_t nid_list_lock; /* protect nid lists ops */
1036 struct mutex build_lock; /* lock for build free nids */
1037 unsigned char **free_nid_bitmap;
1038 unsigned char *nat_block_bitmap;
1039 unsigned short *free_nid_count; /* free nid count of NAT block */
1040
1041 /* for checkpoint */
1042 char *nat_bitmap; /* NAT bitmap pointer */
1043
1044 unsigned int nat_bits_blocks; /* # of nat bits blocks */
1045 unsigned char *nat_bits; /* NAT bits blocks */
1046 unsigned char *full_nat_bits; /* full NAT pages */
1047 unsigned char *empty_nat_bits; /* empty NAT pages */
1048 #ifdef CONFIG_F2FS_CHECK_FS
1049 char *nat_bitmap_mir; /* NAT bitmap mirror */
1050 #endif
1051 int bitmap_size; /* bitmap size */
1052 };
1053
1054 /*
1055 * this structure is used as one of function parameters.
1056 * all the information are dedicated to a given direct node block determined
1057 * by the data offset in a file.
1058 */
1059 struct dnode_of_data {
1060 struct inode *inode; /* vfs inode pointer */
1061 struct folio *inode_folio; /* its inode folio, NULL is possible */
1062 struct folio *node_folio; /* cached direct node folio */
1063 nid_t nid; /* node id of the direct node block */
1064 unsigned int ofs_in_node; /* data offset in the node page */
1065 bool inode_folio_locked; /* inode folio is locked or not */
1066 bool node_changed; /* is node block changed */
1067 char cur_level; /* level of hole node page */
1068 char max_level; /* level of current page located */
1069 block_t data_blkaddr; /* block address of the node block */
1070 };
1071
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct folio * ifolio,struct folio * nfolio,nid_t nid)1072 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
1073 struct folio *ifolio, struct folio *nfolio, nid_t nid)
1074 {
1075 memset(dn, 0, sizeof(*dn));
1076 dn->inode = inode;
1077 dn->inode_folio = ifolio;
1078 dn->node_folio = nfolio;
1079 dn->nid = nid;
1080 }
1081
1082 /*
1083 * For SIT manager
1084 *
1085 * By default, there are 6 active log areas across the whole main area.
1086 * When considering hot and cold data separation to reduce cleaning overhead,
1087 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
1088 * respectively.
1089 * In the current design, you should not change the numbers intentionally.
1090 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
1091 * logs individually according to the underlying devices. (default: 6)
1092 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1093 * data and 8 for node logs.
1094 */
1095 #define NR_CURSEG_DATA_TYPE (3)
1096 #define NR_CURSEG_NODE_TYPE (3)
1097 #define NR_CURSEG_INMEM_TYPE (2)
1098 #define NR_CURSEG_RO_TYPE (2)
1099 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1100 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1101
1102 enum log_type {
1103 CURSEG_HOT_DATA = 0, /* directory entry blocks */
1104 CURSEG_WARM_DATA, /* data blocks */
1105 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
1106 CURSEG_HOT_NODE, /* direct node blocks of directory files */
1107 CURSEG_WARM_NODE, /* direct node blocks of normal files */
1108 CURSEG_COLD_NODE, /* indirect node blocks */
1109 NR_PERSISTENT_LOG, /* number of persistent log */
1110 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1111 /* pinned file that needs consecutive block address */
1112 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */
1113 NO_CHECK_TYPE, /* number of persistent & inmem log */
1114 };
1115
1116 struct flush_cmd {
1117 struct completion wait;
1118 struct llist_node llnode;
1119 nid_t ino;
1120 int ret;
1121 };
1122
1123 struct flush_cmd_control {
1124 struct task_struct *f2fs_issue_flush; /* flush thread */
1125 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
1126 atomic_t issued_flush; /* # of issued flushes */
1127 atomic_t queued_flush; /* # of queued flushes */
1128 struct llist_head issue_list; /* list for command issue */
1129 struct llist_node *dispatch_list; /* list for command dispatch */
1130 };
1131
1132 struct f2fs_sm_info {
1133 struct sit_info *sit_info; /* whole segment information */
1134 struct free_segmap_info *free_info; /* free segment information */
1135 struct dirty_seglist_info *dirty_info; /* dirty segment information */
1136 struct curseg_info *curseg_array; /* active segment information */
1137
1138 struct f2fs_rwsem curseg_lock; /* for preventing curseg change */
1139
1140 block_t seg0_blkaddr; /* block address of 0'th segment */
1141 block_t main_blkaddr; /* start block address of main area */
1142 block_t ssa_blkaddr; /* start block address of SSA area */
1143
1144 unsigned int segment_count; /* total # of segments */
1145 unsigned int main_segments; /* # of segments in main area */
1146 unsigned int reserved_segments; /* # of reserved segments */
1147 unsigned int ovp_segments; /* # of overprovision segments */
1148
1149 /* a threshold to reclaim prefree segments */
1150 unsigned int rec_prefree_segments;
1151
1152 struct list_head sit_entry_set; /* sit entry set list */
1153
1154 unsigned int ipu_policy; /* in-place-update policy */
1155 unsigned int min_ipu_util; /* in-place-update threshold */
1156 unsigned int min_fsync_blocks; /* threshold for fsync */
1157 unsigned int min_seq_blocks; /* threshold for sequential blocks */
1158 unsigned int min_hot_blocks; /* threshold for hot block allocation */
1159 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
1160
1161 /* for flush command control */
1162 struct flush_cmd_control *fcc_info;
1163
1164 /* for discard command control */
1165 struct discard_cmd_control *dcc_info;
1166 };
1167
1168 /*
1169 * For superblock
1170 */
1171 /*
1172 * COUNT_TYPE for monitoring
1173 *
1174 * f2fs monitors the number of several block types such as on-writeback,
1175 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1176 */
1177 #define WB_DATA_TYPE(folio, f) \
1178 (f || f2fs_is_cp_guaranteed(folio) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1179 enum count_type {
1180 F2FS_DIRTY_DENTS,
1181 F2FS_DIRTY_DATA,
1182 F2FS_DIRTY_QDATA,
1183 F2FS_DIRTY_NODES,
1184 F2FS_DIRTY_META,
1185 F2FS_DIRTY_IMETA,
1186 F2FS_WB_CP_DATA,
1187 F2FS_WB_DATA,
1188 F2FS_RD_DATA,
1189 F2FS_RD_NODE,
1190 F2FS_RD_META,
1191 F2FS_DIO_WRITE,
1192 F2FS_DIO_READ,
1193 NR_COUNT_TYPE,
1194 };
1195
1196 /*
1197 * The below are the page types of bios used in submit_bio().
1198 * The available types are:
1199 * DATA User data pages. It operates as async mode.
1200 * NODE Node pages. It operates as async mode.
1201 * META FS metadata pages such as SIT, NAT, CP.
1202 * NR_PAGE_TYPE The number of page types.
1203 * META_FLUSH Make sure the previous pages are written
1204 * with waiting the bio's completion
1205 * ... Only can be used with META.
1206 */
1207 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
1208 #define PAGE_TYPE_ON_MAIN(type) ((type) == DATA || (type) == NODE)
1209 enum page_type {
1210 DATA = 0,
1211 NODE = 1, /* should not change this */
1212 META,
1213 NR_PAGE_TYPE,
1214 META_FLUSH,
1215 IPU, /* the below types are used by tracepoints only. */
1216 OPU,
1217 };
1218
1219 enum temp_type {
1220 HOT = 0, /* must be zero for meta bio */
1221 WARM,
1222 COLD,
1223 NR_TEMP_TYPE,
1224 };
1225
1226 enum need_lock_type {
1227 LOCK_REQ = 0,
1228 LOCK_DONE,
1229 LOCK_RETRY,
1230 };
1231
1232 enum cp_reason_type {
1233 CP_NO_NEEDED,
1234 CP_NON_REGULAR,
1235 CP_COMPRESSED,
1236 CP_HARDLINK,
1237 CP_SB_NEED_CP,
1238 CP_WRONG_PINO,
1239 CP_NO_SPC_ROLL,
1240 CP_NODE_NEED_CP,
1241 CP_FASTBOOT_MODE,
1242 CP_SPEC_LOG_NUM,
1243 CP_RECOVER_DIR,
1244 CP_XATTR_DIR,
1245 };
1246
1247 enum iostat_type {
1248 /* WRITE IO */
1249 APP_DIRECT_IO, /* app direct write IOs */
1250 APP_BUFFERED_IO, /* app buffered write IOs */
1251 APP_WRITE_IO, /* app write IOs */
1252 APP_MAPPED_IO, /* app mapped IOs */
1253 APP_BUFFERED_CDATA_IO, /* app buffered write IOs on compressed file */
1254 APP_MAPPED_CDATA_IO, /* app mapped write IOs on compressed file */
1255 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1256 FS_CDATA_IO, /* data IOs from kworker/fsync/reclaimer on compressed file */
1257 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1258 FS_META_IO, /* meta IOs from kworker/reclaimer */
1259 FS_GC_DATA_IO, /* data IOs from forground gc */
1260 FS_GC_NODE_IO, /* node IOs from forground gc */
1261 FS_CP_DATA_IO, /* data IOs from checkpoint */
1262 FS_CP_NODE_IO, /* node IOs from checkpoint */
1263 FS_CP_META_IO, /* meta IOs from checkpoint */
1264
1265 /* READ IO */
1266 APP_DIRECT_READ_IO, /* app direct read IOs */
1267 APP_BUFFERED_READ_IO, /* app buffered read IOs */
1268 APP_READ_IO, /* app read IOs */
1269 APP_MAPPED_READ_IO, /* app mapped read IOs */
1270 APP_BUFFERED_CDATA_READ_IO, /* app buffered read IOs on compressed file */
1271 APP_MAPPED_CDATA_READ_IO, /* app mapped read IOs on compressed file */
1272 FS_DATA_READ_IO, /* data read IOs */
1273 FS_GDATA_READ_IO, /* data read IOs from background gc */
1274 FS_CDATA_READ_IO, /* compressed data read IOs */
1275 FS_NODE_READ_IO, /* node read IOs */
1276 FS_META_READ_IO, /* meta read IOs */
1277
1278 /* other */
1279 FS_DISCARD_IO, /* discard */
1280 FS_FLUSH_IO, /* flush */
1281 FS_ZONE_RESET_IO, /* zone reset */
1282 NR_IO_TYPE,
1283 };
1284
1285 struct f2fs_io_info {
1286 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1287 nid_t ino; /* inode number */
1288 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1289 enum temp_type temp; /* contains HOT/WARM/COLD */
1290 enum req_op op; /* contains REQ_OP_ */
1291 blk_opf_t op_flags; /* req_flag_bits */
1292 block_t new_blkaddr; /* new block address to be written */
1293 block_t old_blkaddr; /* old block address before Cow */
1294 union {
1295 struct page *page; /* page to be written */
1296 struct folio *folio;
1297 };
1298 struct page *encrypted_page; /* encrypted page */
1299 struct page *compressed_page; /* compressed page */
1300 struct list_head list; /* serialize IOs */
1301 unsigned int compr_blocks; /* # of compressed block addresses */
1302 unsigned int need_lock:8; /* indicate we need to lock cp_rwsem */
1303 unsigned int version:8; /* version of the node */
1304 unsigned int submitted:1; /* indicate IO submission */
1305 unsigned int in_list:1; /* indicate fio is in io_list */
1306 unsigned int is_por:1; /* indicate IO is from recovery or not */
1307 unsigned int encrypted:1; /* indicate file is encrypted */
1308 unsigned int meta_gc:1; /* require meta inode GC */
1309 enum iostat_type io_type; /* io type */
1310 struct writeback_control *io_wbc; /* writeback control */
1311 struct bio **bio; /* bio for ipu */
1312 sector_t *last_block; /* last block number in bio */
1313 };
1314
1315 struct bio_entry {
1316 struct bio *bio;
1317 struct list_head list;
1318 };
1319
1320 #define is_read_io(rw) ((rw) == READ)
1321 struct f2fs_bio_info {
1322 struct f2fs_sb_info *sbi; /* f2fs superblock */
1323 struct bio *bio; /* bios to merge */
1324 sector_t last_block_in_bio; /* last block number */
1325 struct f2fs_io_info fio; /* store buffered io info. */
1326 #ifdef CONFIG_BLK_DEV_ZONED
1327 struct completion zone_wait; /* condition value for the previous open zone to close */
1328 struct bio *zone_pending_bio; /* pending bio for the previous zone */
1329 void *bi_private; /* previous bi_private for pending bio */
1330 #endif
1331 struct f2fs_rwsem io_rwsem; /* blocking op for bio */
1332 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1333 struct list_head io_list; /* track fios */
1334 struct list_head bio_list; /* bio entry list head */
1335 struct f2fs_rwsem bio_list_lock; /* lock to protect bio entry list */
1336 };
1337
1338 #define FDEV(i) (sbi->devs[i])
1339 #define RDEV(i) (raw_super->devs[i])
1340 struct f2fs_dev_info {
1341 struct file *bdev_file;
1342 struct block_device *bdev;
1343 char path[MAX_PATH_LEN + 1];
1344 unsigned int total_segments;
1345 block_t start_blk;
1346 block_t end_blk;
1347 #ifdef CONFIG_BLK_DEV_ZONED
1348 unsigned int nr_blkz; /* Total number of zones */
1349 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1350 #endif
1351 };
1352
1353 enum inode_type {
1354 DIR_INODE, /* for dirty dir inode */
1355 FILE_INODE, /* for dirty regular/symlink inode */
1356 DIRTY_META, /* for all dirtied inode metadata */
1357 DONATE_INODE, /* for all inode to donate pages */
1358 NR_INODE_TYPE,
1359 };
1360
1361 /* for inner inode cache management */
1362 struct inode_management {
1363 struct radix_tree_root ino_root; /* ino entry array */
1364 spinlock_t ino_lock; /* for ino entry lock */
1365 struct list_head ino_list; /* inode list head */
1366 unsigned long ino_num; /* number of entries */
1367 };
1368
1369 /* for GC_AT */
1370 struct atgc_management {
1371 bool atgc_enabled; /* ATGC is enabled or not */
1372 struct rb_root_cached root; /* root of victim rb-tree */
1373 struct list_head victim_list; /* linked with all victim entries */
1374 unsigned int victim_count; /* victim count in rb-tree */
1375 unsigned int candidate_ratio; /* candidate ratio */
1376 unsigned int max_candidate_count; /* max candidate count */
1377 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */
1378 unsigned long long age_threshold; /* age threshold */
1379 };
1380
1381 struct f2fs_gc_control {
1382 unsigned int victim_segno; /* target victim segment number */
1383 int init_gc_type; /* FG_GC or BG_GC */
1384 bool no_bg_gc; /* check the space and stop bg_gc */
1385 bool should_migrate_blocks; /* should migrate blocks */
1386 bool err_gc_skipped; /* return EAGAIN if GC skipped */
1387 bool one_time; /* require one time GC in one migration unit */
1388 unsigned int nr_free_secs; /* # of free sections to do GC */
1389 };
1390
1391 /*
1392 * For s_flag in struct f2fs_sb_info
1393 * Modification on enum should be synchronized with s_flag array
1394 */
1395 enum {
1396 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1397 SBI_IS_CLOSE, /* specify unmounting */
1398 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1399 SBI_POR_DOING, /* recovery is doing or not */
1400 SBI_NEED_SB_WRITE, /* need to recover superblock */
1401 SBI_NEED_CP, /* need to checkpoint */
1402 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1403 SBI_IS_RECOVERED, /* recovered orphan/data */
1404 SBI_CP_DISABLED, /* CP was disabled last mount */
1405 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1406 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1407 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1408 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1409 SBI_IS_RESIZEFS, /* resizefs is in process */
1410 SBI_IS_FREEZING, /* freezefs is in process */
1411 SBI_IS_WRITABLE, /* remove ro mountoption transiently */
1412 MAX_SBI_FLAG,
1413 };
1414
1415 enum {
1416 CP_TIME,
1417 REQ_TIME,
1418 DISCARD_TIME,
1419 GC_TIME,
1420 DISABLE_TIME,
1421 ENABLE_TIME,
1422 UMOUNT_DISCARD_TIMEOUT,
1423 MAX_TIME,
1424 };
1425
1426 /* Note that you need to keep synchronization with this gc_mode_names array */
1427 enum {
1428 GC_NORMAL,
1429 GC_IDLE_CB,
1430 GC_IDLE_GREEDY,
1431 GC_IDLE_AT,
1432 GC_URGENT_HIGH,
1433 GC_URGENT_LOW,
1434 GC_URGENT_MID,
1435 MAX_GC_MODE,
1436 };
1437
1438 enum {
1439 BGGC_MODE_ON, /* background gc is on */
1440 BGGC_MODE_OFF, /* background gc is off */
1441 BGGC_MODE_SYNC, /*
1442 * background gc is on, migrating blocks
1443 * like foreground gc
1444 */
1445 };
1446
1447 enum {
1448 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */
1449 FS_MODE_LFS, /* use lfs allocation only */
1450 FS_MODE_FRAGMENT_SEG, /* segment fragmentation mode */
1451 FS_MODE_FRAGMENT_BLK, /* block fragmentation mode */
1452 };
1453
1454 enum {
1455 ALLOC_MODE_DEFAULT, /* stay default */
1456 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1457 };
1458
1459 enum fsync_mode {
1460 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1461 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1462 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1463 };
1464
1465 enum {
1466 COMPR_MODE_FS, /*
1467 * automatically compress compression
1468 * enabled files
1469 */
1470 COMPR_MODE_USER, /*
1471 * automatical compression is disabled.
1472 * user can control the file compression
1473 * using ioctls
1474 */
1475 };
1476
1477 enum {
1478 DISCARD_UNIT_BLOCK, /* basic discard unit is block */
1479 DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */
1480 DISCARD_UNIT_SECTION, /* basic discard unit is section */
1481 };
1482
1483 enum {
1484 MEMORY_MODE_NORMAL, /* memory mode for normal devices */
1485 MEMORY_MODE_LOW, /* memory mode for low memory devices */
1486 };
1487
1488 enum errors_option {
1489 MOUNT_ERRORS_READONLY, /* remount fs ro on errors */
1490 MOUNT_ERRORS_CONTINUE, /* continue on errors */
1491 MOUNT_ERRORS_PANIC, /* panic on errors */
1492 };
1493
1494 enum {
1495 BACKGROUND,
1496 FOREGROUND,
1497 MAX_CALL_TYPE,
1498 TOTAL_CALL = FOREGROUND,
1499 };
1500
1501 enum f2fs_lookup_mode {
1502 LOOKUP_PERF,
1503 LOOKUP_COMPAT,
1504 LOOKUP_AUTO,
1505 };
1506
1507 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1508 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1509 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1510
1511 /*
1512 * Layout of f2fs page.private:
1513 *
1514 * Layout A: lowest bit should be 1
1515 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1516 * bit 0 PAGE_PRIVATE_NOT_POINTER
1517 * bit 1 PAGE_PRIVATE_ONGOING_MIGRATION
1518 * bit 2 PAGE_PRIVATE_INLINE_INODE
1519 * bit 3 PAGE_PRIVATE_REF_RESOURCE
1520 * bit 4 PAGE_PRIVATE_ATOMIC_WRITE
1521 * bit 5- f2fs private data
1522 *
1523 * Layout B: lowest bit should be 0
1524 * page.private is a wrapped pointer.
1525 */
1526 enum {
1527 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */
1528 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */
1529 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */
1530 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */
1531 PAGE_PRIVATE_ATOMIC_WRITE, /* data page from atomic write path */
1532 PAGE_PRIVATE_MAX
1533 };
1534
1535 /* For compression */
1536 enum compress_algorithm_type {
1537 COMPRESS_LZO,
1538 COMPRESS_LZ4,
1539 COMPRESS_ZSTD,
1540 COMPRESS_LZORLE,
1541 COMPRESS_MAX,
1542 };
1543
1544 enum compress_flag {
1545 COMPRESS_CHKSUM,
1546 COMPRESS_MAX_FLAG,
1547 };
1548
1549 #define COMPRESS_WATERMARK 20
1550 #define COMPRESS_PERCENT 20
1551
1552 #define COMPRESS_DATA_RESERVED_SIZE 4
1553 struct compress_data {
1554 __le32 clen; /* compressed data size */
1555 __le32 chksum; /* compressed data checksum */
1556 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */
1557 u8 cdata[]; /* compressed data */
1558 };
1559
1560 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data))
1561
1562 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000
1563
1564 #define F2FS_ZSTD_DEFAULT_CLEVEL 1
1565
1566 #define COMPRESS_LEVEL_OFFSET 8
1567
1568 /* compress context */
1569 struct compress_ctx {
1570 struct inode *inode; /* inode the context belong to */
1571 pgoff_t cluster_idx; /* cluster index number */
1572 unsigned int cluster_size; /* page count in cluster */
1573 unsigned int log_cluster_size; /* log of cluster size */
1574 struct page **rpages; /* pages store raw data in cluster */
1575 unsigned int nr_rpages; /* total page number in rpages */
1576 struct page **cpages; /* pages store compressed data in cluster */
1577 unsigned int nr_cpages; /* total page number in cpages */
1578 unsigned int valid_nr_cpages; /* valid page number in cpages */
1579 void *rbuf; /* virtual mapped address on rpages */
1580 struct compress_data *cbuf; /* virtual mapped address on cpages */
1581 size_t rlen; /* valid data length in rbuf */
1582 size_t clen; /* valid data length in cbuf */
1583 void *private; /* payload buffer for specified compression algorithm */
1584 void *private2; /* extra payload buffer */
1585 };
1586
1587 /* compress context for write IO path */
1588 struct compress_io_ctx {
1589 u32 magic; /* magic number to indicate page is compressed */
1590 struct inode *inode; /* inode the context belong to */
1591 struct page **rpages; /* pages store raw data in cluster */
1592 unsigned int nr_rpages; /* total page number in rpages */
1593 atomic_t pending_pages; /* in-flight compressed page count */
1594 };
1595
1596 /* Context for decompressing one cluster on the read IO path */
1597 struct decompress_io_ctx {
1598 u32 magic; /* magic number to indicate page is compressed */
1599 struct inode *inode; /* inode the context belong to */
1600 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1601 pgoff_t cluster_idx; /* cluster index number */
1602 unsigned int cluster_size; /* page count in cluster */
1603 unsigned int log_cluster_size; /* log of cluster size */
1604 struct page **rpages; /* pages store raw data in cluster */
1605 unsigned int nr_rpages; /* total page number in rpages */
1606 struct page **cpages; /* pages store compressed data in cluster */
1607 unsigned int nr_cpages; /* total page number in cpages */
1608 struct page **tpages; /* temp pages to pad holes in cluster */
1609 void *rbuf; /* virtual mapped address on rpages */
1610 struct compress_data *cbuf; /* virtual mapped address on cpages */
1611 size_t rlen; /* valid data length in rbuf */
1612 size_t clen; /* valid data length in cbuf */
1613
1614 /*
1615 * The number of compressed pages remaining to be read in this cluster.
1616 * This is initially nr_cpages. It is decremented by 1 each time a page
1617 * has been read (or failed to be read). When it reaches 0, the cluster
1618 * is decompressed (or an error is reported).
1619 *
1620 * If an error occurs before all the pages have been submitted for I/O,
1621 * then this will never reach 0. In this case the I/O submitter is
1622 * responsible for calling f2fs_decompress_end_io() instead.
1623 */
1624 atomic_t remaining_pages;
1625
1626 /*
1627 * Number of references to this decompress_io_ctx.
1628 *
1629 * One reference is held for I/O completion. This reference is dropped
1630 * after the pagecache pages are updated and unlocked -- either after
1631 * decompression (and verity if enabled), or after an error.
1632 *
1633 * In addition, each compressed page holds a reference while it is in a
1634 * bio. These references are necessary prevent compressed pages from
1635 * being freed while they are still in a bio.
1636 */
1637 refcount_t refcnt;
1638
1639 bool failed; /* IO error occurred before decompression? */
1640 bool need_verity; /* need fs-verity verification after decompression? */
1641 unsigned char compress_algorithm; /* backup algorithm type */
1642 void *private; /* payload buffer for specified decompression algorithm */
1643 void *private2; /* extra payload buffer */
1644 struct work_struct verity_work; /* work to verify the decompressed pages */
1645 struct work_struct free_work; /* work for late free this structure itself */
1646 };
1647
1648 #define NULL_CLUSTER ((unsigned int)(~0))
1649 #define MIN_COMPRESS_LOG_SIZE 2
1650 #define MAX_COMPRESS_LOG_SIZE 8
1651 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size))
1652
1653 struct f2fs_sb_info {
1654 struct super_block *sb; /* pointer to VFS super block */
1655 struct proc_dir_entry *s_proc; /* proc entry */
1656 struct f2fs_super_block *raw_super; /* raw super block pointer */
1657 struct f2fs_rwsem sb_lock; /* lock for raw super block */
1658 int valid_super_block; /* valid super block no */
1659 unsigned long s_flag; /* flags for sbi */
1660 struct mutex writepages; /* mutex for writepages() */
1661
1662 #ifdef CONFIG_BLK_DEV_ZONED
1663 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1664 unsigned int max_open_zones; /* max open zone resources of the zoned device */
1665 /* For adjust the priority writing position of data in zone UFS */
1666 unsigned int blkzone_alloc_policy;
1667 #endif
1668
1669 /* for node-related operations */
1670 struct f2fs_nm_info *nm_info; /* node manager */
1671 struct inode *node_inode; /* cache node blocks */
1672
1673 /* for segment-related operations */
1674 struct f2fs_sm_info *sm_info; /* segment manager */
1675
1676 /* for bio operations */
1677 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1678 /* keep migration IO order for LFS mode */
1679 struct f2fs_rwsem io_order_lock;
1680 pgoff_t page_eio_ofs[NR_PAGE_TYPE]; /* EIO page offset */
1681 int page_eio_cnt[NR_PAGE_TYPE]; /* EIO count */
1682
1683 /* for checkpoint */
1684 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1685 int cur_cp_pack; /* remain current cp pack */
1686 spinlock_t cp_lock; /* for flag in ckpt */
1687 struct inode *meta_inode; /* cache meta blocks */
1688 struct f2fs_rwsem cp_global_sem; /* checkpoint procedure lock */
1689 struct f2fs_rwsem cp_rwsem; /* blocking FS operations */
1690 struct f2fs_rwsem node_write; /* locking node writes */
1691 struct f2fs_rwsem node_change; /* locking node change */
1692 wait_queue_head_t cp_wait;
1693 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1694 long interval_time[MAX_TIME]; /* to store thresholds */
1695 struct ckpt_req_control cprc_info; /* for checkpoint request control */
1696 struct cp_stats cp_stats; /* for time stat of checkpoint */
1697
1698 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1699
1700 spinlock_t fsync_node_lock; /* for node entry lock */
1701 struct list_head fsync_node_list; /* node list head */
1702 unsigned int fsync_seg_id; /* sequence id */
1703 unsigned int fsync_node_num; /* number of node entries */
1704
1705 /* for orphan inode, use 0'th array */
1706 unsigned int max_orphans; /* max orphan inodes */
1707
1708 /* for inode management */
1709 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1710 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1711 struct mutex flush_lock; /* for flush exclusion */
1712
1713 /* for extent tree cache */
1714 struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1715 atomic64_t allocated_data_blocks; /* for block age extent_cache */
1716 unsigned int max_read_extent_count; /* max read extent count per inode */
1717
1718 /* The threshold used for hot and warm data seperation*/
1719 unsigned int hot_data_age_threshold;
1720 unsigned int warm_data_age_threshold;
1721 unsigned int last_age_weight;
1722
1723 /* control donate caches */
1724 unsigned int donate_files;
1725
1726 /* basic filesystem units */
1727 unsigned int log_sectors_per_block; /* log2 sectors per block */
1728 unsigned int log_blocksize; /* log2 block size */
1729 unsigned int blocksize; /* block size */
1730 unsigned int root_ino_num; /* root inode number*/
1731 unsigned int node_ino_num; /* node inode number*/
1732 unsigned int meta_ino_num; /* meta inode number*/
1733 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1734 unsigned int blocks_per_seg; /* blocks per segment */
1735 unsigned int unusable_blocks_per_sec; /* unusable blocks per section */
1736 unsigned int segs_per_sec; /* segments per section */
1737 unsigned int secs_per_zone; /* sections per zone */
1738 unsigned int total_sections; /* total section count */
1739 unsigned int total_node_count; /* total node block count */
1740 unsigned int total_valid_node_count; /* valid node block count */
1741 int dir_level; /* directory level */
1742 bool readdir_ra; /* readahead inode in readdir */
1743 u64 max_io_bytes; /* max io bytes to merge IOs */
1744
1745 block_t user_block_count; /* # of user blocks */
1746 block_t total_valid_block_count; /* # of valid blocks */
1747 block_t discard_blks; /* discard command candidats */
1748 block_t last_valid_block_count; /* for recovery */
1749 block_t reserved_blocks; /* configurable reserved blocks */
1750 block_t current_reserved_blocks; /* current reserved blocks */
1751
1752 /* Additional tracking for no checkpoint mode */
1753 block_t unusable_block_count; /* # of blocks saved by last cp */
1754
1755 unsigned int nquota_files; /* # of quota sysfile */
1756 struct f2fs_rwsem quota_sem; /* blocking cp for flags */
1757 struct task_struct *umount_lock_holder; /* s_umount lock holder */
1758
1759 /* # of pages, see count_type */
1760 atomic_t nr_pages[NR_COUNT_TYPE];
1761 /* # of allocated blocks */
1762 struct percpu_counter alloc_valid_block_count;
1763 /* # of node block writes as roll forward recovery */
1764 struct percpu_counter rf_node_block_count;
1765
1766 /* writeback control */
1767 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1768
1769 /* valid inode count */
1770 struct percpu_counter total_valid_inode_count;
1771
1772 struct f2fs_mount_info mount_opt; /* mount options */
1773
1774 /* for cleaning operations */
1775 struct f2fs_rwsem gc_lock; /*
1776 * semaphore for GC, avoid
1777 * race between GC and GC or CP
1778 */
1779 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1780 struct atgc_management am; /* atgc management */
1781 unsigned int cur_victim_sec; /* current victim section num */
1782 unsigned int gc_mode; /* current GC state */
1783 unsigned int next_victim_seg[2]; /* next segment in victim section */
1784 spinlock_t gc_remaining_trials_lock;
1785 /* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1786 unsigned int gc_remaining_trials;
1787
1788 /* for skip statistic */
1789 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1790
1791 /* free sections reserved for pinned file */
1792 unsigned int reserved_pin_section;
1793
1794 /* threshold for gc trials on pinned files */
1795 unsigned short gc_pin_file_threshold;
1796 struct f2fs_rwsem pin_sem;
1797
1798 /* maximum # of trials to find a victim segment for SSR and GC */
1799 unsigned int max_victim_search;
1800 /* migration granularity of garbage collection, unit: segment */
1801 unsigned int migration_granularity;
1802 /* migration window granularity of garbage collection, unit: segment */
1803 unsigned int migration_window_granularity;
1804
1805 /*
1806 * for stat information.
1807 * one is for the LFS mode, and the other is for the SSR mode.
1808 */
1809 #ifdef CONFIG_F2FS_STAT_FS
1810 struct f2fs_stat_info *stat_info; /* FS status information */
1811 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1812 unsigned int segment_count[2]; /* # of allocated segments */
1813 unsigned int block_count[2]; /* # of allocated blocks */
1814 atomic_t inplace_count; /* # of inplace update */
1815 /* # of lookup extent cache */
1816 atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1817 /* # of hit rbtree extent node */
1818 atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1819 /* # of hit cached extent node */
1820 atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1821 /* # of hit largest extent node in read extent cache */
1822 atomic64_t read_hit_largest;
1823 atomic_t inline_xattr; /* # of inline_xattr inodes */
1824 atomic_t inline_inode; /* # of inline_data inodes */
1825 atomic_t inline_dir; /* # of inline_dentry inodes */
1826 atomic_t compr_inode; /* # of compressed inodes */
1827 atomic64_t compr_blocks; /* # of compressed blocks */
1828 atomic_t swapfile_inode; /* # of swapfile inodes */
1829 atomic_t atomic_files; /* # of opened atomic file */
1830 atomic_t max_aw_cnt; /* max # of atomic writes */
1831 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1832 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1833 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1834 atomic_t cp_call_count[MAX_CALL_TYPE]; /* # of cp call */
1835 #endif
1836 spinlock_t stat_lock; /* lock for stat operations */
1837
1838 /* to attach REQ_META|REQ_FUA flags */
1839 unsigned int data_io_flag;
1840 unsigned int node_io_flag;
1841
1842 /* For sysfs support */
1843 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */
1844 struct completion s_kobj_unregister;
1845
1846 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */
1847 struct completion s_stat_kobj_unregister;
1848
1849 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */
1850 struct completion s_feature_list_kobj_unregister;
1851
1852 /* For shrinker support */
1853 struct list_head s_list;
1854 struct mutex umount_mutex;
1855 unsigned int shrinker_run_no;
1856
1857 /* For multi devices */
1858 int s_ndevs; /* number of devices */
1859 struct f2fs_dev_info *devs; /* for device list */
1860 unsigned int dirty_device; /* for checkpoint data flush */
1861 spinlock_t dev_lock; /* protect dirty_device */
1862 bool aligned_blksize; /* all devices has the same logical blksize */
1863 unsigned int first_seq_zone_segno; /* first segno in sequential zone */
1864 unsigned int bggc_io_aware; /* For adjust the BG_GC priority when pending IO */
1865 unsigned int allocate_section_hint; /* the boundary position between devices */
1866 unsigned int allocate_section_policy; /* determine the section writing priority */
1867
1868 /* For write statistics */
1869 u64 sectors_written_start;
1870 u64 kbytes_written;
1871
1872 /* Precomputed FS UUID checksum for seeding other checksums */
1873 __u32 s_chksum_seed;
1874
1875 struct workqueue_struct *post_read_wq; /* post read workqueue */
1876
1877 /*
1878 * If we are in irq context, let's update error information into
1879 * on-disk superblock in the work.
1880 */
1881 struct work_struct s_error_work;
1882 unsigned char errors[MAX_F2FS_ERRORS]; /* error flags */
1883 unsigned char stop_reason[MAX_STOP_REASON]; /* stop reason */
1884 spinlock_t error_lock; /* protect errors/stop_reason array */
1885 bool error_dirty; /* errors of sb is dirty */
1886
1887 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */
1888 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */
1889
1890 /* For reclaimed segs statistics per each GC mode */
1891 unsigned int gc_segment_mode; /* GC state for reclaimed segments */
1892 unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */
1893
1894 unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */
1895
1896 int max_fragment_chunk; /* max chunk size for block fragmentation mode */
1897 int max_fragment_hole; /* max hole size for block fragmentation mode */
1898
1899 /* For atomic write statistics */
1900 atomic64_t current_atomic_write;
1901 s64 peak_atomic_write;
1902 u64 committed_atomic_block;
1903 u64 revoked_atomic_block;
1904
1905 /* carve out reserved_blocks from total blocks */
1906 bool carve_out;
1907
1908 #ifdef CONFIG_F2FS_FS_COMPRESSION
1909 struct kmem_cache *page_array_slab; /* page array entry */
1910 unsigned int page_array_slab_size; /* default page array slab size */
1911
1912 /* For runtime compression statistics */
1913 u64 compr_written_block;
1914 u64 compr_saved_block;
1915 u32 compr_new_inode;
1916
1917 /* For compressed block cache */
1918 struct inode *compress_inode; /* cache compressed blocks */
1919 unsigned int compress_percent; /* cache page percentage */
1920 unsigned int compress_watermark; /* cache page watermark */
1921 atomic_t compress_page_hit; /* cache hit count */
1922 #endif
1923
1924 #ifdef CONFIG_F2FS_IOSTAT
1925 /* For app/fs IO statistics */
1926 spinlock_t iostat_lock;
1927 unsigned long long iostat_count[NR_IO_TYPE];
1928 unsigned long long iostat_bytes[NR_IO_TYPE];
1929 unsigned long long prev_iostat_bytes[NR_IO_TYPE];
1930 bool iostat_enable;
1931 unsigned long iostat_next_period;
1932 unsigned int iostat_period_ms;
1933
1934 /* For io latency related statistics info in one iostat period */
1935 spinlock_t iostat_lat_lock;
1936 struct iostat_lat_info *iostat_io_lat;
1937 #endif
1938 };
1939
1940 /* Definitions to access f2fs_sb_info */
1941 #define SEGS_TO_BLKS(sbi, segs) \
1942 ((segs) << (sbi)->log_blocks_per_seg)
1943 #define BLKS_TO_SEGS(sbi, blks) \
1944 ((blks) >> (sbi)->log_blocks_per_seg)
1945
1946 #define BLKS_PER_SEG(sbi) ((sbi)->blocks_per_seg)
1947 #define BLKS_PER_SEC(sbi) (SEGS_TO_BLKS(sbi, (sbi)->segs_per_sec))
1948 #define SEGS_PER_SEC(sbi) ((sbi)->segs_per_sec)
1949
1950 __printf(3, 4)
1951 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, const char *fmt, ...);
1952
1953 #define f2fs_err(sbi, fmt, ...) \
1954 f2fs_printk(sbi, false, KERN_ERR fmt, ##__VA_ARGS__)
1955 #define f2fs_warn(sbi, fmt, ...) \
1956 f2fs_printk(sbi, false, KERN_WARNING fmt, ##__VA_ARGS__)
1957 #define f2fs_notice(sbi, fmt, ...) \
1958 f2fs_printk(sbi, false, KERN_NOTICE fmt, ##__VA_ARGS__)
1959 #define f2fs_info(sbi, fmt, ...) \
1960 f2fs_printk(sbi, false, KERN_INFO fmt, ##__VA_ARGS__)
1961 #define f2fs_debug(sbi, fmt, ...) \
1962 f2fs_printk(sbi, false, KERN_DEBUG fmt, ##__VA_ARGS__)
1963
1964 #define f2fs_err_ratelimited(sbi, fmt, ...) \
1965 f2fs_printk(sbi, true, KERN_ERR fmt, ##__VA_ARGS__)
1966 #define f2fs_warn_ratelimited(sbi, fmt, ...) \
1967 f2fs_printk(sbi, true, KERN_WARNING fmt, ##__VA_ARGS__)
1968 #define f2fs_info_ratelimited(sbi, fmt, ...) \
1969 f2fs_printk(sbi, true, KERN_INFO fmt, ##__VA_ARGS__)
1970
1971 #ifdef CONFIG_F2FS_FAULT_INJECTION
1972 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__, \
1973 __builtin_return_address(0))
__time_to_inject(struct f2fs_sb_info * sbi,int type,const char * func,const char * parent_func)1974 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
1975 const char *func, const char *parent_func)
1976 {
1977 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1978
1979 if (!ffi->inject_rate)
1980 return false;
1981
1982 if (!IS_FAULT_SET(ffi, type))
1983 return false;
1984
1985 atomic_inc(&ffi->inject_ops);
1986 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1987 atomic_set(&ffi->inject_ops, 0);
1988 ffi->inject_count[type]++;
1989 f2fs_info_ratelimited(sbi, "inject %s in %s of %pS",
1990 f2fs_fault_name[type], func, parent_func);
1991 return true;
1992 }
1993 return false;
1994 }
1995 #else
time_to_inject(struct f2fs_sb_info * sbi,int type)1996 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1997 {
1998 return false;
1999 }
2000 #endif
2001
2002 /*
2003 * Test if the mounted volume is a multi-device volume.
2004 * - For a single regular disk volume, sbi->s_ndevs is 0.
2005 * - For a single zoned disk volume, sbi->s_ndevs is 1.
2006 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
2007 */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)2008 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
2009 {
2010 return sbi->s_ndevs > 1;
2011 }
2012
f2fs_update_time(struct f2fs_sb_info * sbi,int type)2013 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
2014 {
2015 unsigned long now = jiffies;
2016
2017 sbi->last_time[type] = now;
2018
2019 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
2020 if (type == REQ_TIME) {
2021 sbi->last_time[DISCARD_TIME] = now;
2022 sbi->last_time[GC_TIME] = now;
2023 }
2024 }
2025
f2fs_time_over(struct f2fs_sb_info * sbi,int type)2026 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
2027 {
2028 unsigned long interval = sbi->interval_time[type] * HZ;
2029
2030 return time_after(jiffies, sbi->last_time[type] + interval);
2031 }
2032
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)2033 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
2034 int type)
2035 {
2036 unsigned long interval = sbi->interval_time[type] * HZ;
2037 unsigned int wait_ms = 0;
2038 long delta;
2039
2040 delta = (sbi->last_time[type] + interval) - jiffies;
2041 if (delta > 0)
2042 wait_ms = jiffies_to_msecs(delta);
2043
2044 return wait_ms;
2045 }
2046
2047 /*
2048 * Inline functions
2049 */
__f2fs_crc32(u32 crc,const void * address,unsigned int length)2050 static inline u32 __f2fs_crc32(u32 crc, const void *address,
2051 unsigned int length)
2052 {
2053 return crc32(crc, address, length);
2054 }
2055
f2fs_crc32(const void * address,unsigned int length)2056 static inline u32 f2fs_crc32(const void *address, unsigned int length)
2057 {
2058 return __f2fs_crc32(F2FS_SUPER_MAGIC, address, length);
2059 }
2060
f2fs_chksum(u32 crc,const void * address,unsigned int length)2061 static inline u32 f2fs_chksum(u32 crc, const void *address, unsigned int length)
2062 {
2063 return __f2fs_crc32(crc, address, length);
2064 }
2065
F2FS_I(struct inode * inode)2066 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
2067 {
2068 return container_of(inode, struct f2fs_inode_info, vfs_inode);
2069 }
2070
F2FS_SB(struct super_block * sb)2071 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
2072 {
2073 return sb->s_fs_info;
2074 }
2075
F2FS_I_SB(struct inode * inode)2076 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
2077 {
2078 return F2FS_SB(inode->i_sb);
2079 }
2080
F2FS_M_SB(struct address_space * mapping)2081 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
2082 {
2083 return F2FS_I_SB(mapping->host);
2084 }
2085
F2FS_F_SB(const struct folio * folio)2086 static inline struct f2fs_sb_info *F2FS_F_SB(const struct folio *folio)
2087 {
2088 return F2FS_M_SB(folio->mapping);
2089 }
2090
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)2091 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
2092 {
2093 return (struct f2fs_super_block *)(sbi->raw_super);
2094 }
2095
F2FS_SUPER_BLOCK(struct folio * folio,pgoff_t index)2096 static inline struct f2fs_super_block *F2FS_SUPER_BLOCK(struct folio *folio,
2097 pgoff_t index)
2098 {
2099 pgoff_t idx_in_folio = index % (1 << folio_order(folio));
2100
2101 return (struct f2fs_super_block *)
2102 (page_address(folio_page(folio, idx_in_folio)) +
2103 F2FS_SUPER_OFFSET);
2104 }
2105
F2FS_CKPT(struct f2fs_sb_info * sbi)2106 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
2107 {
2108 return (struct f2fs_checkpoint *)(sbi->ckpt);
2109 }
2110
F2FS_NODE(const struct folio * folio)2111 static inline struct f2fs_node *F2FS_NODE(const struct folio *folio)
2112 {
2113 return (struct f2fs_node *)folio_address(folio);
2114 }
2115
F2FS_INODE(const struct folio * folio)2116 static inline struct f2fs_inode *F2FS_INODE(const struct folio *folio)
2117 {
2118 return &((struct f2fs_node *)folio_address(folio))->i;
2119 }
2120
NM_I(struct f2fs_sb_info * sbi)2121 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2122 {
2123 return (struct f2fs_nm_info *)(sbi->nm_info);
2124 }
2125
SM_I(struct f2fs_sb_info * sbi)2126 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2127 {
2128 return (struct f2fs_sm_info *)(sbi->sm_info);
2129 }
2130
SIT_I(struct f2fs_sb_info * sbi)2131 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2132 {
2133 return (struct sit_info *)(SM_I(sbi)->sit_info);
2134 }
2135
FREE_I(struct f2fs_sb_info * sbi)2136 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2137 {
2138 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2139 }
2140
DIRTY_I(struct f2fs_sb_info * sbi)2141 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2142 {
2143 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2144 }
2145
META_MAPPING(struct f2fs_sb_info * sbi)2146 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2147 {
2148 return sbi->meta_inode->i_mapping;
2149 }
2150
NODE_MAPPING(struct f2fs_sb_info * sbi)2151 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2152 {
2153 return sbi->node_inode->i_mapping;
2154 }
2155
is_meta_folio(struct folio * folio)2156 static inline bool is_meta_folio(struct folio *folio)
2157 {
2158 return folio->mapping == META_MAPPING(F2FS_F_SB(folio));
2159 }
2160
is_node_folio(struct folio * folio)2161 static inline bool is_node_folio(struct folio *folio)
2162 {
2163 return folio->mapping == NODE_MAPPING(F2FS_F_SB(folio));
2164 }
2165
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)2166 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2167 {
2168 return test_bit(type, &sbi->s_flag);
2169 }
2170
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2171 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2172 {
2173 set_bit(type, &sbi->s_flag);
2174 }
2175
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2176 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2177 {
2178 clear_bit(type, &sbi->s_flag);
2179 }
2180
cur_cp_version(struct f2fs_checkpoint * cp)2181 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2182 {
2183 return le64_to_cpu(cp->checkpoint_ver);
2184 }
2185
f2fs_qf_ino(struct super_block * sb,int type)2186 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2187 {
2188 if (type < F2FS_MAX_QUOTAS)
2189 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2190 return 0;
2191 }
2192
cur_cp_crc(struct f2fs_checkpoint * cp)2193 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2194 {
2195 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2196 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2197 }
2198
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2199 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2200 {
2201 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2202
2203 return ckpt_flags & f;
2204 }
2205
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2206 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2207 {
2208 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2209 }
2210
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2211 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2212 {
2213 unsigned int ckpt_flags;
2214
2215 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2216 ckpt_flags |= f;
2217 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2218 }
2219
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2220 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2221 {
2222 unsigned long flags;
2223
2224 spin_lock_irqsave(&sbi->cp_lock, flags);
2225 __set_ckpt_flags(F2FS_CKPT(sbi), f);
2226 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2227 }
2228
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2229 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2230 {
2231 unsigned int ckpt_flags;
2232
2233 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2234 ckpt_flags &= (~f);
2235 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2236 }
2237
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2238 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2239 {
2240 unsigned long flags;
2241
2242 spin_lock_irqsave(&sbi->cp_lock, flags);
2243 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
2244 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2245 }
2246
2247 #define init_f2fs_rwsem(sem) \
2248 do { \
2249 static struct lock_class_key __key; \
2250 \
2251 __init_f2fs_rwsem((sem), #sem, &__key); \
2252 } while (0)
2253
__init_f2fs_rwsem(struct f2fs_rwsem * sem,const char * sem_name,struct lock_class_key * key)2254 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2255 const char *sem_name, struct lock_class_key *key)
2256 {
2257 __init_rwsem(&sem->internal_rwsem, sem_name, key);
2258 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2259 init_waitqueue_head(&sem->read_waiters);
2260 #endif
2261 }
2262
f2fs_rwsem_is_locked(struct f2fs_rwsem * sem)2263 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2264 {
2265 return rwsem_is_locked(&sem->internal_rwsem);
2266 }
2267
f2fs_rwsem_is_contended(struct f2fs_rwsem * sem)2268 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2269 {
2270 return rwsem_is_contended(&sem->internal_rwsem);
2271 }
2272
f2fs_down_read(struct f2fs_rwsem * sem)2273 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2274 {
2275 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2276 wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2277 #else
2278 down_read(&sem->internal_rwsem);
2279 #endif
2280 }
2281
f2fs_down_read_trylock(struct f2fs_rwsem * sem)2282 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2283 {
2284 return down_read_trylock(&sem->internal_rwsem);
2285 }
2286
f2fs_up_read(struct f2fs_rwsem * sem)2287 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2288 {
2289 up_read(&sem->internal_rwsem);
2290 }
2291
f2fs_down_write(struct f2fs_rwsem * sem)2292 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2293 {
2294 down_write(&sem->internal_rwsem);
2295 }
2296
2297 #ifdef CONFIG_DEBUG_LOCK_ALLOC
f2fs_down_read_nested(struct f2fs_rwsem * sem,int subclass)2298 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2299 {
2300 down_read_nested(&sem->internal_rwsem, subclass);
2301 }
2302
f2fs_down_write_nested(struct f2fs_rwsem * sem,int subclass)2303 static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass)
2304 {
2305 down_write_nested(&sem->internal_rwsem, subclass);
2306 }
2307 #else
2308 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2309 #define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem)
2310 #endif
2311
f2fs_down_write_trylock(struct f2fs_rwsem * sem)2312 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2313 {
2314 return down_write_trylock(&sem->internal_rwsem);
2315 }
2316
f2fs_up_write(struct f2fs_rwsem * sem)2317 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2318 {
2319 up_write(&sem->internal_rwsem);
2320 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2321 wake_up_all(&sem->read_waiters);
2322 #endif
2323 }
2324
disable_nat_bits(struct f2fs_sb_info * sbi,bool lock)2325 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
2326 {
2327 unsigned long flags;
2328 unsigned char *nat_bits;
2329
2330 /*
2331 * In order to re-enable nat_bits we need to call fsck.f2fs by
2332 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
2333 * so let's rely on regular fsck or unclean shutdown.
2334 */
2335
2336 if (lock)
2337 spin_lock_irqsave(&sbi->cp_lock, flags);
2338 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
2339 nat_bits = NM_I(sbi)->nat_bits;
2340 NM_I(sbi)->nat_bits = NULL;
2341 if (lock)
2342 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2343
2344 kvfree(nat_bits);
2345 }
2346
enabled_nat_bits(struct f2fs_sb_info * sbi,struct cp_control * cpc)2347 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
2348 struct cp_control *cpc)
2349 {
2350 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
2351
2352 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
2353 }
2354
f2fs_lock_op(struct f2fs_sb_info * sbi)2355 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2356 {
2357 f2fs_down_read(&sbi->cp_rwsem);
2358 }
2359
f2fs_trylock_op(struct f2fs_sb_info * sbi)2360 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2361 {
2362 if (time_to_inject(sbi, FAULT_LOCK_OP))
2363 return 0;
2364 return f2fs_down_read_trylock(&sbi->cp_rwsem);
2365 }
2366
f2fs_unlock_op(struct f2fs_sb_info * sbi)2367 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2368 {
2369 f2fs_up_read(&sbi->cp_rwsem);
2370 }
2371
f2fs_lock_all(struct f2fs_sb_info * sbi)2372 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2373 {
2374 f2fs_down_write(&sbi->cp_rwsem);
2375 }
2376
f2fs_unlock_all(struct f2fs_sb_info * sbi)2377 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2378 {
2379 f2fs_up_write(&sbi->cp_rwsem);
2380 }
2381
__get_cp_reason(struct f2fs_sb_info * sbi)2382 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2383 {
2384 int reason = CP_SYNC;
2385
2386 if (test_opt(sbi, FASTBOOT))
2387 reason = CP_FASTBOOT;
2388 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2389 reason = CP_UMOUNT;
2390 return reason;
2391 }
2392
__remain_node_summaries(int reason)2393 static inline bool __remain_node_summaries(int reason)
2394 {
2395 return (reason & (CP_UMOUNT | CP_FASTBOOT));
2396 }
2397
__exist_node_summaries(struct f2fs_sb_info * sbi)2398 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2399 {
2400 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2401 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2402 }
2403
2404 /*
2405 * Check whether the inode has blocks or not
2406 */
F2FS_HAS_BLOCKS(struct inode * inode)2407 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2408 {
2409 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2410
2411 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2412 }
2413
f2fs_has_xattr_block(unsigned int ofs)2414 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2415 {
2416 return ofs == XATTR_NODE_OFFSET;
2417 }
2418
__allow_reserved_root(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2419 static inline bool __allow_reserved_root(struct f2fs_sb_info *sbi,
2420 struct inode *inode, bool cap)
2421 {
2422 if (!inode)
2423 return true;
2424 if (IS_NOQUOTA(inode))
2425 return true;
2426 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2427 return true;
2428 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2429 in_group_p(F2FS_OPTION(sbi).s_resgid))
2430 return true;
2431 if (cap && capable(CAP_SYS_RESOURCE))
2432 return true;
2433 return false;
2434 }
2435
get_available_block_count(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2436 static inline unsigned int get_available_block_count(struct f2fs_sb_info *sbi,
2437 struct inode *inode, bool cap)
2438 {
2439 block_t avail_user_block_count;
2440
2441 avail_user_block_count = sbi->user_block_count -
2442 sbi->current_reserved_blocks;
2443
2444 if (test_opt(sbi, RESERVE_ROOT) && !__allow_reserved_root(sbi, inode, cap))
2445 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2446
2447 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2448 if (avail_user_block_count > sbi->unusable_block_count)
2449 avail_user_block_count -= sbi->unusable_block_count;
2450 else
2451 avail_user_block_count = 0;
2452 }
2453
2454 return avail_user_block_count;
2455 }
2456
2457 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count,bool partial)2458 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2459 struct inode *inode, blkcnt_t *count, bool partial)
2460 {
2461 long long diff = 0, release = 0;
2462 block_t avail_user_block_count;
2463 int ret;
2464
2465 ret = dquot_reserve_block(inode, *count);
2466 if (ret)
2467 return ret;
2468
2469 if (time_to_inject(sbi, FAULT_BLOCK)) {
2470 release = *count;
2471 goto release_quota;
2472 }
2473
2474 /*
2475 * let's increase this in prior to actual block count change in order
2476 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2477 */
2478 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2479
2480 spin_lock(&sbi->stat_lock);
2481
2482 avail_user_block_count = get_available_block_count(sbi, inode, true);
2483 diff = (long long)sbi->total_valid_block_count + *count -
2484 avail_user_block_count;
2485 if (unlikely(diff > 0)) {
2486 if (!partial) {
2487 spin_unlock(&sbi->stat_lock);
2488 release = *count;
2489 goto enospc;
2490 }
2491 if (diff > *count)
2492 diff = *count;
2493 *count -= diff;
2494 release = diff;
2495 if (!*count) {
2496 spin_unlock(&sbi->stat_lock);
2497 goto enospc;
2498 }
2499 }
2500 sbi->total_valid_block_count += (block_t)(*count);
2501
2502 spin_unlock(&sbi->stat_lock);
2503
2504 if (unlikely(release)) {
2505 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2506 dquot_release_reservation_block(inode, release);
2507 }
2508 f2fs_i_blocks_write(inode, *count, true, true);
2509 return 0;
2510
2511 enospc:
2512 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2513 release_quota:
2514 dquot_release_reservation_block(inode, release);
2515 return -ENOSPC;
2516 }
2517
2518 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
2519 static inline bool folio_test_f2fs_##name(const struct folio *folio) \
2520 { \
2521 unsigned long priv = (unsigned long)folio->private; \
2522 unsigned long v = (1UL << PAGE_PRIVATE_NOT_POINTER) | \
2523 (1UL << PAGE_PRIVATE_##flagname); \
2524 return (priv & v) == v; \
2525 } \
2526 static inline bool page_private_##name(struct page *page) \
2527 { \
2528 return PagePrivate(page) && \
2529 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
2530 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2531 }
2532
2533 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
2534 static inline void folio_set_f2fs_##name(struct folio *folio) \
2535 { \
2536 unsigned long v = (1UL << PAGE_PRIVATE_NOT_POINTER) | \
2537 (1UL << PAGE_PRIVATE_##flagname); \
2538 if (!folio->private) \
2539 folio_attach_private(folio, (void *)v); \
2540 else { \
2541 v |= (unsigned long)folio->private; \
2542 folio->private = (void *)v; \
2543 } \
2544 } \
2545 static inline void set_page_private_##name(struct page *page) \
2546 { \
2547 if (!PagePrivate(page)) \
2548 attach_page_private(page, (void *)0); \
2549 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
2550 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2551 }
2552
2553 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
2554 static inline void folio_clear_f2fs_##name(struct folio *folio) \
2555 { \
2556 unsigned long v = (unsigned long)folio->private; \
2557 \
2558 v &= ~(1UL << PAGE_PRIVATE_##flagname); \
2559 if (v == (1UL << PAGE_PRIVATE_NOT_POINTER)) \
2560 folio_detach_private(folio); \
2561 else \
2562 folio->private = (void *)v; \
2563 } \
2564 static inline void clear_page_private_##name(struct page *page) \
2565 { \
2566 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2567 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \
2568 detach_page_private(page); \
2569 }
2570
2571 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
2572 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
2573 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
2574 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
2575
2576 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
2577 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
2578 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
2579 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
2580
2581 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
2582 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
2583 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
2584 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
2585
folio_get_f2fs_data(struct folio * folio)2586 static inline unsigned long folio_get_f2fs_data(struct folio *folio)
2587 {
2588 unsigned long data = (unsigned long)folio->private;
2589
2590 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
2591 return 0;
2592 return data >> PAGE_PRIVATE_MAX;
2593 }
2594
folio_set_f2fs_data(struct folio * folio,unsigned long data)2595 static inline void folio_set_f2fs_data(struct folio *folio, unsigned long data)
2596 {
2597 data = (1UL << PAGE_PRIVATE_NOT_POINTER) | (data << PAGE_PRIVATE_MAX);
2598
2599 if (!folio_test_private(folio))
2600 folio_attach_private(folio, (void *)data);
2601 else
2602 folio->private = (void *)((unsigned long)folio->private | data);
2603 }
2604
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2605 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2606 struct inode *inode,
2607 block_t count)
2608 {
2609 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2610
2611 spin_lock(&sbi->stat_lock);
2612 if (unlikely(sbi->total_valid_block_count < count)) {
2613 f2fs_warn(sbi, "Inconsistent total_valid_block_count:%u, ino:%lu, count:%u",
2614 sbi->total_valid_block_count, inode->i_ino, count);
2615 sbi->total_valid_block_count = 0;
2616 set_sbi_flag(sbi, SBI_NEED_FSCK);
2617 } else {
2618 sbi->total_valid_block_count -= count;
2619 }
2620 if (sbi->reserved_blocks &&
2621 sbi->current_reserved_blocks < sbi->reserved_blocks)
2622 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2623 sbi->current_reserved_blocks + count);
2624 spin_unlock(&sbi->stat_lock);
2625 if (unlikely(inode->i_blocks < sectors)) {
2626 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2627 inode->i_ino,
2628 (unsigned long long)inode->i_blocks,
2629 (unsigned long long)sectors);
2630 set_sbi_flag(sbi, SBI_NEED_FSCK);
2631 return;
2632 }
2633 f2fs_i_blocks_write(inode, count, false, true);
2634 }
2635
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2636 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2637 {
2638 atomic_inc(&sbi->nr_pages[count_type]);
2639
2640 if (count_type == F2FS_DIRTY_DENTS ||
2641 count_type == F2FS_DIRTY_NODES ||
2642 count_type == F2FS_DIRTY_META ||
2643 count_type == F2FS_DIRTY_QDATA ||
2644 count_type == F2FS_DIRTY_IMETA)
2645 set_sbi_flag(sbi, SBI_IS_DIRTY);
2646 }
2647
inode_inc_dirty_pages(struct inode * inode)2648 static inline void inode_inc_dirty_pages(struct inode *inode)
2649 {
2650 atomic_inc(&F2FS_I(inode)->dirty_pages);
2651 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2652 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2653 if (IS_NOQUOTA(inode))
2654 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2655 }
2656
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2657 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2658 {
2659 atomic_dec(&sbi->nr_pages[count_type]);
2660 }
2661
inode_dec_dirty_pages(struct inode * inode)2662 static inline void inode_dec_dirty_pages(struct inode *inode)
2663 {
2664 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2665 !S_ISLNK(inode->i_mode))
2666 return;
2667
2668 atomic_dec(&F2FS_I(inode)->dirty_pages);
2669 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2670 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2671 if (IS_NOQUOTA(inode))
2672 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2673 }
2674
inc_atomic_write_cnt(struct inode * inode)2675 static inline void inc_atomic_write_cnt(struct inode *inode)
2676 {
2677 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2678 struct f2fs_inode_info *fi = F2FS_I(inode);
2679 u64 current_write;
2680
2681 fi->atomic_write_cnt++;
2682 atomic64_inc(&sbi->current_atomic_write);
2683 current_write = atomic64_read(&sbi->current_atomic_write);
2684 if (current_write > sbi->peak_atomic_write)
2685 sbi->peak_atomic_write = current_write;
2686 }
2687
release_atomic_write_cnt(struct inode * inode)2688 static inline void release_atomic_write_cnt(struct inode *inode)
2689 {
2690 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2691 struct f2fs_inode_info *fi = F2FS_I(inode);
2692
2693 atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2694 fi->atomic_write_cnt = 0;
2695 }
2696
get_pages(struct f2fs_sb_info * sbi,int count_type)2697 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2698 {
2699 return atomic_read(&sbi->nr_pages[count_type]);
2700 }
2701
get_dirty_pages(struct inode * inode)2702 static inline int get_dirty_pages(struct inode *inode)
2703 {
2704 return atomic_read(&F2FS_I(inode)->dirty_pages);
2705 }
2706
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2707 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2708 {
2709 return div_u64(get_pages(sbi, block_type) + BLKS_PER_SEC(sbi) - 1,
2710 BLKS_PER_SEC(sbi));
2711 }
2712
valid_user_blocks(struct f2fs_sb_info * sbi)2713 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2714 {
2715 return sbi->total_valid_block_count;
2716 }
2717
discard_blocks(struct f2fs_sb_info * sbi)2718 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2719 {
2720 return sbi->discard_blks;
2721 }
2722
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2723 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2724 {
2725 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2726
2727 /* return NAT or SIT bitmap */
2728 if (flag == NAT_BITMAP)
2729 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2730 else if (flag == SIT_BITMAP)
2731 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2732
2733 return 0;
2734 }
2735
__cp_payload(struct f2fs_sb_info * sbi)2736 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2737 {
2738 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2739 }
2740
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2741 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2742 {
2743 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2744 void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2745 int offset;
2746
2747 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2748 offset = (flag == SIT_BITMAP) ?
2749 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2750 /*
2751 * if large_nat_bitmap feature is enabled, leave checksum
2752 * protection for all nat/sit bitmaps.
2753 */
2754 return tmp_ptr + offset + sizeof(__le32);
2755 }
2756
2757 if (__cp_payload(sbi) > 0) {
2758 if (flag == NAT_BITMAP)
2759 return tmp_ptr;
2760 else
2761 return (unsigned char *)ckpt + F2FS_BLKSIZE;
2762 } else {
2763 offset = (flag == NAT_BITMAP) ?
2764 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2765 return tmp_ptr + offset;
2766 }
2767 }
2768
__start_cp_addr(struct f2fs_sb_info * sbi)2769 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2770 {
2771 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2772
2773 if (sbi->cur_cp_pack == 2)
2774 start_addr += BLKS_PER_SEG(sbi);
2775 return start_addr;
2776 }
2777
__start_cp_next_addr(struct f2fs_sb_info * sbi)2778 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2779 {
2780 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2781
2782 if (sbi->cur_cp_pack == 1)
2783 start_addr += BLKS_PER_SEG(sbi);
2784 return start_addr;
2785 }
2786
__set_cp_next_pack(struct f2fs_sb_info * sbi)2787 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2788 {
2789 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2790 }
2791
__start_sum_addr(struct f2fs_sb_info * sbi)2792 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2793 {
2794 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2795 }
2796
2797 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2798 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2799 struct inode *inode, bool is_inode)
2800 {
2801 block_t valid_block_count;
2802 unsigned int valid_node_count, avail_user_node_count;
2803 unsigned int avail_user_block_count;
2804 int err;
2805
2806 if (is_inode) {
2807 if (inode) {
2808 err = dquot_alloc_inode(inode);
2809 if (err)
2810 return err;
2811 }
2812 } else {
2813 err = dquot_reserve_block(inode, 1);
2814 if (err)
2815 return err;
2816 }
2817
2818 if (time_to_inject(sbi, FAULT_BLOCK))
2819 goto enospc;
2820
2821 spin_lock(&sbi->stat_lock);
2822
2823 valid_block_count = sbi->total_valid_block_count + 1;
2824 avail_user_block_count = get_available_block_count(sbi, inode,
2825 test_opt(sbi, RESERVE_NODE));
2826
2827 if (unlikely(valid_block_count > avail_user_block_count)) {
2828 spin_unlock(&sbi->stat_lock);
2829 goto enospc;
2830 }
2831
2832 avail_user_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
2833 if (test_opt(sbi, RESERVE_NODE) &&
2834 !__allow_reserved_root(sbi, inode, true))
2835 avail_user_node_count -= F2FS_OPTION(sbi).root_reserved_nodes;
2836 valid_node_count = sbi->total_valid_node_count + 1;
2837 if (unlikely(valid_node_count > avail_user_node_count)) {
2838 spin_unlock(&sbi->stat_lock);
2839 goto enospc;
2840 }
2841
2842 sbi->total_valid_node_count++;
2843 sbi->total_valid_block_count++;
2844 spin_unlock(&sbi->stat_lock);
2845
2846 if (inode) {
2847 if (is_inode)
2848 f2fs_mark_inode_dirty_sync(inode, true);
2849 else
2850 f2fs_i_blocks_write(inode, 1, true, true);
2851 }
2852
2853 percpu_counter_inc(&sbi->alloc_valid_block_count);
2854 return 0;
2855
2856 enospc:
2857 if (is_inode) {
2858 if (inode)
2859 dquot_free_inode(inode);
2860 } else {
2861 dquot_release_reservation_block(inode, 1);
2862 }
2863 return -ENOSPC;
2864 }
2865
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2866 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2867 struct inode *inode, bool is_inode)
2868 {
2869 spin_lock(&sbi->stat_lock);
2870
2871 if (unlikely(!sbi->total_valid_block_count ||
2872 !sbi->total_valid_node_count)) {
2873 f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2874 sbi->total_valid_block_count,
2875 sbi->total_valid_node_count);
2876 set_sbi_flag(sbi, SBI_NEED_FSCK);
2877 } else {
2878 sbi->total_valid_block_count--;
2879 sbi->total_valid_node_count--;
2880 }
2881
2882 if (sbi->reserved_blocks &&
2883 sbi->current_reserved_blocks < sbi->reserved_blocks)
2884 sbi->current_reserved_blocks++;
2885
2886 spin_unlock(&sbi->stat_lock);
2887
2888 if (is_inode) {
2889 dquot_free_inode(inode);
2890 } else {
2891 if (unlikely(inode->i_blocks == 0)) {
2892 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2893 inode->i_ino,
2894 (unsigned long long)inode->i_blocks);
2895 set_sbi_flag(sbi, SBI_NEED_FSCK);
2896 return;
2897 }
2898 f2fs_i_blocks_write(inode, 1, false, true);
2899 }
2900 }
2901
valid_node_count(struct f2fs_sb_info * sbi)2902 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2903 {
2904 return sbi->total_valid_node_count;
2905 }
2906
inc_valid_inode_count(struct f2fs_sb_info * sbi)2907 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2908 {
2909 percpu_counter_inc(&sbi->total_valid_inode_count);
2910 }
2911
dec_valid_inode_count(struct f2fs_sb_info * sbi)2912 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2913 {
2914 percpu_counter_dec(&sbi->total_valid_inode_count);
2915 }
2916
valid_inode_count(struct f2fs_sb_info * sbi)2917 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2918 {
2919 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2920 }
2921
f2fs_grab_cache_folio(struct address_space * mapping,pgoff_t index,bool for_write)2922 static inline struct folio *f2fs_grab_cache_folio(struct address_space *mapping,
2923 pgoff_t index, bool for_write)
2924 {
2925 struct folio *folio;
2926 unsigned int flags;
2927
2928 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2929 fgf_t fgf_flags;
2930
2931 if (!for_write)
2932 fgf_flags = FGP_LOCK | FGP_ACCESSED;
2933 else
2934 fgf_flags = FGP_LOCK;
2935 folio = __filemap_get_folio(mapping, index, fgf_flags, 0);
2936 if (!IS_ERR(folio))
2937 return folio;
2938
2939 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
2940 return ERR_PTR(-ENOMEM);
2941 }
2942
2943 if (!for_write)
2944 return filemap_grab_folio(mapping, index);
2945
2946 flags = memalloc_nofs_save();
2947 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2948 mapping_gfp_mask(mapping));
2949 memalloc_nofs_restore(flags);
2950
2951 return folio;
2952 }
2953
f2fs_filemap_get_folio(struct address_space * mapping,pgoff_t index,fgf_t fgp_flags,gfp_t gfp_mask)2954 static inline struct folio *f2fs_filemap_get_folio(
2955 struct address_space *mapping, pgoff_t index,
2956 fgf_t fgp_flags, gfp_t gfp_mask)
2957 {
2958 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2959 return ERR_PTR(-ENOMEM);
2960
2961 return __filemap_get_folio(mapping, index, fgp_flags, gfp_mask);
2962 }
2963
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,fgf_t fgp_flags,gfp_t gfp_mask)2964 static inline struct page *f2fs_pagecache_get_page(
2965 struct address_space *mapping, pgoff_t index,
2966 fgf_t fgp_flags, gfp_t gfp_mask)
2967 {
2968 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2969 return NULL;
2970
2971 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2972 }
2973
f2fs_folio_put(struct folio * folio,bool unlock)2974 static inline void f2fs_folio_put(struct folio *folio, bool unlock)
2975 {
2976 if (IS_ERR_OR_NULL(folio))
2977 return;
2978
2979 if (unlock) {
2980 f2fs_bug_on(F2FS_F_SB(folio), !folio_test_locked(folio));
2981 folio_unlock(folio);
2982 }
2983 folio_put(folio);
2984 }
2985
f2fs_put_page(struct page * page,int unlock)2986 static inline void f2fs_put_page(struct page *page, int unlock)
2987 {
2988 if (!page)
2989 return;
2990 f2fs_folio_put(page_folio(page), unlock);
2991 }
2992
f2fs_put_dnode(struct dnode_of_data * dn)2993 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2994 {
2995 if (dn->node_folio)
2996 f2fs_folio_put(dn->node_folio, true);
2997 if (dn->inode_folio && dn->node_folio != dn->inode_folio)
2998 f2fs_folio_put(dn->inode_folio, false);
2999 dn->node_folio = NULL;
3000 dn->inode_folio = NULL;
3001 }
3002
f2fs_kmem_cache_create(const char * name,size_t size)3003 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
3004 size_t size)
3005 {
3006 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
3007 }
3008
f2fs_kmem_cache_alloc_nofail(struct kmem_cache * cachep,gfp_t flags)3009 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
3010 gfp_t flags)
3011 {
3012 void *entry;
3013
3014 entry = kmem_cache_alloc(cachep, flags);
3015 if (!entry)
3016 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
3017 return entry;
3018 }
3019
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags,bool nofail,struct f2fs_sb_info * sbi)3020 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
3021 gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
3022 {
3023 if (nofail)
3024 return f2fs_kmem_cache_alloc_nofail(cachep, flags);
3025
3026 if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
3027 return NULL;
3028
3029 return kmem_cache_alloc(cachep, flags);
3030 }
3031
is_inflight_io(struct f2fs_sb_info * sbi,int type)3032 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
3033 {
3034 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
3035 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
3036 get_pages(sbi, F2FS_WB_CP_DATA) ||
3037 get_pages(sbi, F2FS_DIO_READ) ||
3038 get_pages(sbi, F2FS_DIO_WRITE))
3039 return true;
3040
3041 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
3042 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
3043 return true;
3044
3045 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
3046 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
3047 return true;
3048 return false;
3049 }
3050
is_inflight_read_io(struct f2fs_sb_info * sbi)3051 static inline bool is_inflight_read_io(struct f2fs_sb_info *sbi)
3052 {
3053 return get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_DIO_READ);
3054 }
3055
is_idle(struct f2fs_sb_info * sbi,int type)3056 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
3057 {
3058 bool zoned_gc = (type == GC_TIME &&
3059 F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_BLKZONED));
3060
3061 if (sbi->gc_mode == GC_URGENT_HIGH)
3062 return true;
3063
3064 if (sbi->bggc_io_aware == AWARE_READ_IO && is_inflight_read_io(sbi))
3065 return false;
3066 if (sbi->bggc_io_aware == AWARE_ALL_IO && is_inflight_io(sbi, type))
3067 return false;
3068
3069 if (sbi->gc_mode == GC_URGENT_MID)
3070 return true;
3071
3072 if (sbi->gc_mode == GC_URGENT_LOW &&
3073 (type == DISCARD_TIME || type == GC_TIME))
3074 return true;
3075
3076 if (zoned_gc)
3077 return true;
3078
3079 return f2fs_time_over(sbi, type);
3080 }
3081
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)3082 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
3083 unsigned long index, void *item)
3084 {
3085 while (radix_tree_insert(root, index, item))
3086 cond_resched();
3087 }
3088
3089 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
3090
IS_INODE(const struct folio * folio)3091 static inline bool IS_INODE(const struct folio *folio)
3092 {
3093 struct f2fs_node *p = F2FS_NODE(folio);
3094
3095 return RAW_IS_INODE(p);
3096 }
3097
offset_in_addr(struct f2fs_inode * i)3098 static inline int offset_in_addr(struct f2fs_inode *i)
3099 {
3100 return (i->i_inline & F2FS_EXTRA_ATTR) ?
3101 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
3102 }
3103
blkaddr_in_node(struct f2fs_node * node)3104 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
3105 {
3106 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
3107 }
3108
3109 static inline int f2fs_has_extra_attr(struct inode *inode);
get_dnode_base(struct inode * inode,struct folio * node_folio)3110 static inline unsigned int get_dnode_base(struct inode *inode,
3111 struct folio *node_folio)
3112 {
3113 if (!IS_INODE(node_folio))
3114 return 0;
3115
3116 return inode ? get_extra_isize(inode) :
3117 offset_in_addr(&F2FS_NODE(node_folio)->i);
3118 }
3119
get_dnode_addr(struct inode * inode,struct folio * node_folio)3120 static inline __le32 *get_dnode_addr(struct inode *inode,
3121 struct folio *node_folio)
3122 {
3123 return blkaddr_in_node(F2FS_NODE(node_folio)) +
3124 get_dnode_base(inode, node_folio);
3125 }
3126
data_blkaddr(struct inode * inode,struct folio * node_folio,unsigned int offset)3127 static inline block_t data_blkaddr(struct inode *inode,
3128 struct folio *node_folio, unsigned int offset)
3129 {
3130 return le32_to_cpu(*(get_dnode_addr(inode, node_folio) + offset));
3131 }
3132
f2fs_data_blkaddr(struct dnode_of_data * dn)3133 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
3134 {
3135 return data_blkaddr(dn->inode, dn->node_folio, dn->ofs_in_node);
3136 }
3137
f2fs_test_bit(unsigned int nr,char * addr)3138 static inline int f2fs_test_bit(unsigned int nr, char *addr)
3139 {
3140 int mask;
3141
3142 addr += (nr >> 3);
3143 mask = BIT(7 - (nr & 0x07));
3144 return mask & *addr;
3145 }
3146
f2fs_set_bit(unsigned int nr,char * addr)3147 static inline void f2fs_set_bit(unsigned int nr, char *addr)
3148 {
3149 int mask;
3150
3151 addr += (nr >> 3);
3152 mask = BIT(7 - (nr & 0x07));
3153 *addr |= mask;
3154 }
3155
f2fs_clear_bit(unsigned int nr,char * addr)3156 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
3157 {
3158 int mask;
3159
3160 addr += (nr >> 3);
3161 mask = BIT(7 - (nr & 0x07));
3162 *addr &= ~mask;
3163 }
3164
f2fs_test_and_set_bit(unsigned int nr,char * addr)3165 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
3166 {
3167 int mask;
3168 int ret;
3169
3170 addr += (nr >> 3);
3171 mask = BIT(7 - (nr & 0x07));
3172 ret = mask & *addr;
3173 *addr |= mask;
3174 return ret;
3175 }
3176
f2fs_test_and_clear_bit(unsigned int nr,char * addr)3177 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
3178 {
3179 int mask;
3180 int ret;
3181
3182 addr += (nr >> 3);
3183 mask = BIT(7 - (nr & 0x07));
3184 ret = mask & *addr;
3185 *addr &= ~mask;
3186 return ret;
3187 }
3188
f2fs_change_bit(unsigned int nr,char * addr)3189 static inline void f2fs_change_bit(unsigned int nr, char *addr)
3190 {
3191 int mask;
3192
3193 addr += (nr >> 3);
3194 mask = BIT(7 - (nr & 0x07));
3195 *addr ^= mask;
3196 }
3197
3198 /*
3199 * On-disk inode flags (f2fs_inode::i_flags)
3200 */
3201 #define F2FS_COMPR_FL 0x00000004 /* Compress file */
3202 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
3203 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
3204 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
3205 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
3206 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
3207 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */
3208 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
3209 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
3210 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
3211 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
3212 #define F2FS_DEVICE_ALIAS_FL 0x80000000 /* File for aliasing a device */
3213
3214 #define F2FS_QUOTA_DEFAULT_FL (F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL)
3215
3216 /* Flags that should be inherited by new inodes from their parent. */
3217 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
3218 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3219 F2FS_CASEFOLD_FL)
3220
3221 /* Flags that are appropriate for regular files (all but dir-specific ones). */
3222 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3223 F2FS_CASEFOLD_FL))
3224
3225 /* Flags that are appropriate for non-directories/regular files. */
3226 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
3227
3228 #define IS_DEVICE_ALIASING(inode) (F2FS_I(inode)->i_flags & F2FS_DEVICE_ALIAS_FL)
3229
f2fs_mask_flags(umode_t mode,__u32 flags)3230 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
3231 {
3232 if (S_ISDIR(mode))
3233 return flags;
3234 else if (S_ISREG(mode))
3235 return flags & F2FS_REG_FLMASK;
3236 else
3237 return flags & F2FS_OTHER_FLMASK;
3238 }
3239
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)3240 static inline void __mark_inode_dirty_flag(struct inode *inode,
3241 int flag, bool set)
3242 {
3243 switch (flag) {
3244 case FI_INLINE_XATTR:
3245 case FI_INLINE_DATA:
3246 case FI_INLINE_DENTRY:
3247 case FI_NEW_INODE:
3248 if (set)
3249 return;
3250 fallthrough;
3251 case FI_DATA_EXIST:
3252 case FI_PIN_FILE:
3253 case FI_COMPRESS_RELEASED:
3254 f2fs_mark_inode_dirty_sync(inode, true);
3255 }
3256 }
3257
set_inode_flag(struct inode * inode,int flag)3258 static inline void set_inode_flag(struct inode *inode, int flag)
3259 {
3260 set_bit(flag, F2FS_I(inode)->flags);
3261 __mark_inode_dirty_flag(inode, flag, true);
3262 }
3263
is_inode_flag_set(struct inode * inode,int flag)3264 static inline int is_inode_flag_set(struct inode *inode, int flag)
3265 {
3266 return test_bit(flag, F2FS_I(inode)->flags);
3267 }
3268
clear_inode_flag(struct inode * inode,int flag)3269 static inline void clear_inode_flag(struct inode *inode, int flag)
3270 {
3271 clear_bit(flag, F2FS_I(inode)->flags);
3272 __mark_inode_dirty_flag(inode, flag, false);
3273 }
3274
f2fs_verity_in_progress(struct inode * inode)3275 static inline bool f2fs_verity_in_progress(struct inode *inode)
3276 {
3277 return IS_ENABLED(CONFIG_FS_VERITY) &&
3278 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3279 }
3280
set_acl_inode(struct inode * inode,umode_t mode)3281 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3282 {
3283 F2FS_I(inode)->i_acl_mode = mode;
3284 set_inode_flag(inode, FI_ACL_MODE);
3285 f2fs_mark_inode_dirty_sync(inode, false);
3286 }
3287
f2fs_i_links_write(struct inode * inode,bool inc)3288 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3289 {
3290 if (inc)
3291 inc_nlink(inode);
3292 else
3293 drop_nlink(inode);
3294 f2fs_mark_inode_dirty_sync(inode, true);
3295 }
3296
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)3297 static inline void f2fs_i_blocks_write(struct inode *inode,
3298 block_t diff, bool add, bool claim)
3299 {
3300 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3301 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3302
3303 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
3304 if (add) {
3305 if (claim)
3306 dquot_claim_block(inode, diff);
3307 else
3308 dquot_alloc_block_nofail(inode, diff);
3309 } else {
3310 dquot_free_block(inode, diff);
3311 }
3312
3313 f2fs_mark_inode_dirty_sync(inode, true);
3314 if (clean || recover)
3315 set_inode_flag(inode, FI_AUTO_RECOVER);
3316 }
3317
3318 static inline bool f2fs_is_atomic_file(struct inode *inode);
3319
f2fs_i_size_write(struct inode * inode,loff_t i_size)3320 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3321 {
3322 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3323 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3324
3325 if (i_size_read(inode) == i_size)
3326 return;
3327
3328 i_size_write(inode, i_size);
3329
3330 if (f2fs_is_atomic_file(inode))
3331 return;
3332
3333 f2fs_mark_inode_dirty_sync(inode, true);
3334 if (clean || recover)
3335 set_inode_flag(inode, FI_AUTO_RECOVER);
3336 }
3337
f2fs_i_depth_write(struct inode * inode,unsigned int depth)3338 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3339 {
3340 F2FS_I(inode)->i_current_depth = depth;
3341 f2fs_mark_inode_dirty_sync(inode, true);
3342 }
3343
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)3344 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3345 unsigned int count)
3346 {
3347 F2FS_I(inode)->i_gc_failures = count;
3348 f2fs_mark_inode_dirty_sync(inode, true);
3349 }
3350
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)3351 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3352 {
3353 F2FS_I(inode)->i_xattr_nid = xnid;
3354 f2fs_mark_inode_dirty_sync(inode, true);
3355 }
3356
f2fs_i_pino_write(struct inode * inode,nid_t pino)3357 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3358 {
3359 F2FS_I(inode)->i_pino = pino;
3360 f2fs_mark_inode_dirty_sync(inode, true);
3361 }
3362
get_inline_info(struct inode * inode,struct f2fs_inode * ri)3363 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3364 {
3365 struct f2fs_inode_info *fi = F2FS_I(inode);
3366
3367 if (ri->i_inline & F2FS_INLINE_XATTR)
3368 set_bit(FI_INLINE_XATTR, fi->flags);
3369 if (ri->i_inline & F2FS_INLINE_DATA)
3370 set_bit(FI_INLINE_DATA, fi->flags);
3371 if (ri->i_inline & F2FS_INLINE_DENTRY)
3372 set_bit(FI_INLINE_DENTRY, fi->flags);
3373 if (ri->i_inline & F2FS_DATA_EXIST)
3374 set_bit(FI_DATA_EXIST, fi->flags);
3375 if (ri->i_inline & F2FS_EXTRA_ATTR)
3376 set_bit(FI_EXTRA_ATTR, fi->flags);
3377 if (ri->i_inline & F2FS_PIN_FILE)
3378 set_bit(FI_PIN_FILE, fi->flags);
3379 if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3380 set_bit(FI_COMPRESS_RELEASED, fi->flags);
3381 }
3382
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)3383 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3384 {
3385 ri->i_inline = 0;
3386
3387 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3388 ri->i_inline |= F2FS_INLINE_XATTR;
3389 if (is_inode_flag_set(inode, FI_INLINE_DATA))
3390 ri->i_inline |= F2FS_INLINE_DATA;
3391 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3392 ri->i_inline |= F2FS_INLINE_DENTRY;
3393 if (is_inode_flag_set(inode, FI_DATA_EXIST))
3394 ri->i_inline |= F2FS_DATA_EXIST;
3395 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3396 ri->i_inline |= F2FS_EXTRA_ATTR;
3397 if (is_inode_flag_set(inode, FI_PIN_FILE))
3398 ri->i_inline |= F2FS_PIN_FILE;
3399 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3400 ri->i_inline |= F2FS_COMPRESS_RELEASED;
3401 }
3402
f2fs_has_extra_attr(struct inode * inode)3403 static inline int f2fs_has_extra_attr(struct inode *inode)
3404 {
3405 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3406 }
3407
f2fs_has_inline_xattr(struct inode * inode)3408 static inline int f2fs_has_inline_xattr(struct inode *inode)
3409 {
3410 return is_inode_flag_set(inode, FI_INLINE_XATTR);
3411 }
3412
f2fs_compressed_file(struct inode * inode)3413 static inline int f2fs_compressed_file(struct inode *inode)
3414 {
3415 return S_ISREG(inode->i_mode) &&
3416 is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3417 }
3418
f2fs_need_compress_data(struct inode * inode)3419 static inline bool f2fs_need_compress_data(struct inode *inode)
3420 {
3421 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3422
3423 if (!f2fs_compressed_file(inode))
3424 return false;
3425
3426 if (compress_mode == COMPR_MODE_FS)
3427 return true;
3428 else if (compress_mode == COMPR_MODE_USER &&
3429 is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3430 return true;
3431
3432 return false;
3433 }
3434
addrs_per_page(struct inode * inode,bool is_inode)3435 static inline unsigned int addrs_per_page(struct inode *inode,
3436 bool is_inode)
3437 {
3438 unsigned int addrs = is_inode ? (CUR_ADDRS_PER_INODE(inode) -
3439 get_inline_xattr_addrs(inode)) : DEF_ADDRS_PER_BLOCK;
3440
3441 if (f2fs_compressed_file(inode))
3442 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3443 return addrs;
3444 }
3445
3446 static inline
inline_xattr_addr(struct inode * inode,const struct folio * folio)3447 void *inline_xattr_addr(struct inode *inode, const struct folio *folio)
3448 {
3449 struct f2fs_inode *ri = F2FS_INODE(folio);
3450
3451 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3452 get_inline_xattr_addrs(inode)]);
3453 }
3454
inline_xattr_size(struct inode * inode)3455 static inline int inline_xattr_size(struct inode *inode)
3456 {
3457 if (f2fs_has_inline_xattr(inode))
3458 return get_inline_xattr_addrs(inode) * sizeof(__le32);
3459 return 0;
3460 }
3461
3462 /*
3463 * Notice: check inline_data flag without inode page lock is unsafe.
3464 * It could change at any time by f2fs_convert_inline_folio().
3465 */
f2fs_has_inline_data(struct inode * inode)3466 static inline int f2fs_has_inline_data(struct inode *inode)
3467 {
3468 return is_inode_flag_set(inode, FI_INLINE_DATA);
3469 }
3470
f2fs_exist_data(struct inode * inode)3471 static inline int f2fs_exist_data(struct inode *inode)
3472 {
3473 return is_inode_flag_set(inode, FI_DATA_EXIST);
3474 }
3475
f2fs_is_mmap_file(struct inode * inode)3476 static inline int f2fs_is_mmap_file(struct inode *inode)
3477 {
3478 return is_inode_flag_set(inode, FI_MMAP_FILE);
3479 }
3480
f2fs_is_pinned_file(struct inode * inode)3481 static inline bool f2fs_is_pinned_file(struct inode *inode)
3482 {
3483 return is_inode_flag_set(inode, FI_PIN_FILE);
3484 }
3485
f2fs_is_atomic_file(struct inode * inode)3486 static inline bool f2fs_is_atomic_file(struct inode *inode)
3487 {
3488 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3489 }
3490
f2fs_is_cow_file(struct inode * inode)3491 static inline bool f2fs_is_cow_file(struct inode *inode)
3492 {
3493 return is_inode_flag_set(inode, FI_COW_FILE);
3494 }
3495
inline_data_addr(struct inode * inode,struct folio * folio)3496 static inline void *inline_data_addr(struct inode *inode, struct folio *folio)
3497 {
3498 __le32 *addr = get_dnode_addr(inode, folio);
3499
3500 return (void *)(addr + DEF_INLINE_RESERVED_SIZE);
3501 }
3502
f2fs_has_inline_dentry(struct inode * inode)3503 static inline int f2fs_has_inline_dentry(struct inode *inode)
3504 {
3505 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3506 }
3507
is_file(struct inode * inode,int type)3508 static inline int is_file(struct inode *inode, int type)
3509 {
3510 return F2FS_I(inode)->i_advise & type;
3511 }
3512
set_file(struct inode * inode,int type)3513 static inline void set_file(struct inode *inode, int type)
3514 {
3515 if (is_file(inode, type))
3516 return;
3517 F2FS_I(inode)->i_advise |= type;
3518 f2fs_mark_inode_dirty_sync(inode, true);
3519 }
3520
clear_file(struct inode * inode,int type)3521 static inline void clear_file(struct inode *inode, int type)
3522 {
3523 if (!is_file(inode, type))
3524 return;
3525 F2FS_I(inode)->i_advise &= ~type;
3526 f2fs_mark_inode_dirty_sync(inode, true);
3527 }
3528
f2fs_is_time_consistent(struct inode * inode)3529 static inline bool f2fs_is_time_consistent(struct inode *inode)
3530 {
3531 struct timespec64 ts = inode_get_atime(inode);
3532
3533 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &ts))
3534 return false;
3535 ts = inode_get_ctime(inode);
3536 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ts))
3537 return false;
3538 ts = inode_get_mtime(inode);
3539 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &ts))
3540 return false;
3541 return true;
3542 }
3543
f2fs_skip_inode_update(struct inode * inode,int dsync)3544 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3545 {
3546 bool ret;
3547
3548 if (dsync) {
3549 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3550
3551 spin_lock(&sbi->inode_lock[DIRTY_META]);
3552 ret = list_empty(&F2FS_I(inode)->gdirty_list);
3553 spin_unlock(&sbi->inode_lock[DIRTY_META]);
3554 return ret;
3555 }
3556 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3557 file_keep_isize(inode) ||
3558 i_size_read(inode) & ~PAGE_MASK)
3559 return false;
3560
3561 if (!f2fs_is_time_consistent(inode))
3562 return false;
3563
3564 spin_lock(&F2FS_I(inode)->i_size_lock);
3565 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3566 spin_unlock(&F2FS_I(inode)->i_size_lock);
3567
3568 return ret;
3569 }
3570
f2fs_readonly(struct super_block * sb)3571 static inline bool f2fs_readonly(struct super_block *sb)
3572 {
3573 return sb_rdonly(sb);
3574 }
3575
f2fs_cp_error(struct f2fs_sb_info * sbi)3576 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3577 {
3578 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3579 }
3580
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3581 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3582 size_t size, gfp_t flags)
3583 {
3584 if (time_to_inject(sbi, FAULT_KMALLOC))
3585 return NULL;
3586
3587 return kmalloc(size, flags);
3588 }
3589
f2fs_getname(struct f2fs_sb_info * sbi)3590 static inline void *f2fs_getname(struct f2fs_sb_info *sbi)
3591 {
3592 if (time_to_inject(sbi, FAULT_KMALLOC))
3593 return NULL;
3594
3595 return __getname();
3596 }
3597
f2fs_putname(char * buf)3598 static inline void f2fs_putname(char *buf)
3599 {
3600 __putname(buf);
3601 }
3602
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3603 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3604 size_t size, gfp_t flags)
3605 {
3606 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3607 }
3608
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3609 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3610 size_t size, gfp_t flags)
3611 {
3612 if (time_to_inject(sbi, FAULT_KVMALLOC))
3613 return NULL;
3614
3615 return kvmalloc(size, flags);
3616 }
3617
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3618 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3619 size_t size, gfp_t flags)
3620 {
3621 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3622 }
3623
f2fs_vmalloc(struct f2fs_sb_info * sbi,size_t size)3624 static inline void *f2fs_vmalloc(struct f2fs_sb_info *sbi, size_t size)
3625 {
3626 if (time_to_inject(sbi, FAULT_VMALLOC))
3627 return NULL;
3628
3629 return vmalloc(size);
3630 }
3631
get_extra_isize(struct inode * inode)3632 static inline int get_extra_isize(struct inode *inode)
3633 {
3634 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3635 }
3636
get_inline_xattr_addrs(struct inode * inode)3637 static inline int get_inline_xattr_addrs(struct inode *inode)
3638 {
3639 return F2FS_I(inode)->i_inline_xattr_size;
3640 }
3641
3642 #define f2fs_get_inode_mode(i) \
3643 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3644 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3645
3646 #define F2FS_MIN_EXTRA_ATTR_SIZE (sizeof(__le32))
3647
3648 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
3649 (offsetof(struct f2fs_inode, i_extra_end) - \
3650 offsetof(struct f2fs_inode, i_extra_isize)) \
3651
3652 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
3653 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
3654 ((offsetof(typeof(*(f2fs_inode)), field) + \
3655 sizeof((f2fs_inode)->field)) \
3656 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
3657
3658 #define __is_large_section(sbi) (SEGS_PER_SEC(sbi) > 1)
3659
3660 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3661
3662 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3663 block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3664 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3665 block_t blkaddr, int type)
3666 {
3667 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type))
3668 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3669 blkaddr, type);
3670 }
3671
__is_valid_data_blkaddr(block_t blkaddr)3672 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3673 {
3674 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3675 blkaddr == COMPRESS_ADDR)
3676 return false;
3677 return true;
3678 }
3679
3680 /*
3681 * file.c
3682 */
3683 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3684 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3685 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3686 int f2fs_truncate(struct inode *inode);
3687 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
3688 struct kstat *stat, u32 request_mask, unsigned int flags);
3689 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3690 struct iattr *attr);
3691 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3692 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3693 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
3694 bool readonly, bool need_lock);
3695 int f2fs_precache_extents(struct inode *inode);
3696 int f2fs_fileattr_get(struct dentry *dentry, struct file_kattr *fa);
3697 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3698 struct dentry *dentry, struct file_kattr *fa);
3699 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3700 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3701 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3702 int f2fs_pin_file_control(struct inode *inode, bool inc);
3703
3704 /*
3705 * inode.c
3706 */
3707 void f2fs_set_inode_flags(struct inode *inode);
3708 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct folio *folio);
3709 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct folio *folio);
3710 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3711 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3712 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3713 void f2fs_update_inode(struct inode *inode, struct folio *node_folio);
3714 void f2fs_update_inode_page(struct inode *inode);
3715 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3716 void f2fs_remove_donate_inode(struct inode *inode);
3717 void f2fs_evict_inode(struct inode *inode);
3718 void f2fs_handle_failed_inode(struct inode *inode);
3719
3720 /*
3721 * namei.c
3722 */
3723 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3724 bool hot, bool set);
3725 struct dentry *f2fs_get_parent(struct dentry *child);
3726 int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3727 struct inode **new_inode);
3728
3729 /*
3730 * dir.c
3731 */
3732 #if IS_ENABLED(CONFIG_UNICODE)
3733 int f2fs_init_casefolded_name(const struct inode *dir,
3734 struct f2fs_filename *fname);
3735 void f2fs_free_casefolded_name(struct f2fs_filename *fname);
3736 #else
f2fs_init_casefolded_name(const struct inode * dir,struct f2fs_filename * fname)3737 static inline int f2fs_init_casefolded_name(const struct inode *dir,
3738 struct f2fs_filename *fname)
3739 {
3740 return 0;
3741 }
3742
f2fs_free_casefolded_name(struct f2fs_filename * fname)3743 static inline void f2fs_free_casefolded_name(struct f2fs_filename *fname)
3744 {
3745 }
3746 #endif /* CONFIG_UNICODE */
3747
3748 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3749 int lookup, struct f2fs_filename *fname);
3750 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3751 struct f2fs_filename *fname);
3752 void f2fs_free_filename(struct f2fs_filename *fname);
3753 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3754 const struct f2fs_filename *fname, int *max_slots,
3755 bool use_hash);
3756 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3757 unsigned int start_pos, struct fscrypt_str *fstr);
3758 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3759 struct f2fs_dentry_ptr *d);
3760 struct folio *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3761 const struct f2fs_filename *fname, struct folio *dfolio);
3762 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3763 unsigned int current_depth);
3764 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3765 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3766 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3767 const struct f2fs_filename *fname, struct folio **res_folio);
3768 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3769 const struct qstr *child, struct folio **res_folio);
3770 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct folio **f);
3771 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3772 struct folio **folio);
3773 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3774 struct folio *folio, struct inode *inode);
3775 bool f2fs_has_enough_room(struct inode *dir, struct folio *ifolio,
3776 const struct f2fs_filename *fname);
3777 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3778 const struct fscrypt_str *name, f2fs_hash_t name_hash,
3779 unsigned int bit_pos);
3780 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3781 struct inode *inode, nid_t ino, umode_t mode);
3782 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3783 struct inode *inode, nid_t ino, umode_t mode);
3784 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3785 struct inode *inode, nid_t ino, umode_t mode);
3786 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct folio *folio,
3787 struct inode *dir, struct inode *inode);
3788 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir,
3789 struct f2fs_filename *fname);
3790 bool f2fs_empty_dir(struct inode *dir);
3791
f2fs_add_link(struct dentry * dentry,struct inode * inode)3792 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3793 {
3794 if (fscrypt_is_nokey_name(dentry))
3795 return -ENOKEY;
3796 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3797 inode, inode->i_ino, inode->i_mode);
3798 }
3799
3800 /*
3801 * super.c
3802 */
3803 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3804 void f2fs_inode_synced(struct inode *inode);
3805 int f2fs_dquot_initialize(struct inode *inode);
3806 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3807 int f2fs_do_quota_sync(struct super_block *sb, int type);
3808 loff_t max_file_blocks(struct inode *inode);
3809 void f2fs_quota_off_umount(struct super_block *sb);
3810 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag);
3811 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason);
3812 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3813 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error);
3814 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3815 int f2fs_sync_fs(struct super_block *sb, int sync);
3816 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3817
3818 /*
3819 * hash.c
3820 */
3821 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3822
3823 /*
3824 * node.c
3825 */
3826 struct node_info;
3827 enum node_type;
3828
3829 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3830 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3831 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct folio *folio);
3832 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3833 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct folio *folio);
3834 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3835 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3836 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3837 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3838 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3839 struct node_info *ni, bool checkpoint_context);
3840 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3841 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3842 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3843 int f2fs_truncate_xattr_node(struct inode *inode);
3844 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3845 unsigned int seq_id);
3846 int f2fs_remove_inode_page(struct inode *inode);
3847 struct folio *f2fs_new_inode_folio(struct inode *inode);
3848 struct folio *f2fs_new_node_folio(struct dnode_of_data *dn, unsigned int ofs);
3849 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3850 struct folio *f2fs_get_node_folio(struct f2fs_sb_info *sbi, pgoff_t nid,
3851 enum node_type node_type);
3852 struct folio *f2fs_get_inode_folio(struct f2fs_sb_info *sbi, pgoff_t ino);
3853 struct folio *f2fs_get_xnode_folio(struct f2fs_sb_info *sbi, pgoff_t xnid);
3854 int f2fs_move_node_folio(struct folio *node_folio, int gc_type);
3855 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3856 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3857 struct writeback_control *wbc, bool atomic,
3858 unsigned int *seq_id);
3859 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3860 struct writeback_control *wbc,
3861 bool do_balance, enum iostat_type io_type);
3862 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3863 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3864 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3865 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3866 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3867 int f2fs_recover_inline_xattr(struct inode *inode, struct folio *folio);
3868 int f2fs_recover_xattr_data(struct inode *inode, struct folio *folio);
3869 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct folio *folio);
3870 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3871 unsigned int segno, struct f2fs_summary_block *sum);
3872 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3873 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3874 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3875 int __init f2fs_create_node_manager_caches(void);
3876 void f2fs_destroy_node_manager_caches(void);
3877
3878 /*
3879 * segment.c
3880 */
3881 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3882 int f2fs_commit_atomic_write(struct inode *inode);
3883 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3884 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3885 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3886 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3887 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3888 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3889 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3890 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr,
3891 unsigned int len);
3892 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3893 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3894 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3895 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3896 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3897 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3898 struct cp_control *cpc);
3899 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3900 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3901 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3902 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3903 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3904 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3905 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3906 int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi);
3907 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3908 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3909 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3910 unsigned int start, unsigned int end);
3911 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3912 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi);
3913 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3914 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3915 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3916 struct cp_control *cpc);
3917 struct folio *f2fs_get_sum_folio(struct f2fs_sb_info *sbi, unsigned int segno);
3918 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3919 block_t blk_addr);
3920 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct folio *folio,
3921 enum iostat_type io_type);
3922 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3923 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3924 struct f2fs_io_info *fio);
3925 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3926 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3927 block_t old_blkaddr, block_t new_blkaddr,
3928 bool recover_curseg, bool recover_newaddr,
3929 bool from_gc);
3930 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3931 block_t old_addr, block_t new_addr,
3932 unsigned char version, bool recover_curseg,
3933 bool recover_newaddr);
3934 enum temp_type f2fs_get_segment_temp(struct f2fs_sb_info *sbi,
3935 enum log_type seg_type);
3936 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct folio *folio,
3937 block_t old_blkaddr, block_t *new_blkaddr,
3938 struct f2fs_summary *sum, int type,
3939 struct f2fs_io_info *fio);
3940 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3941 block_t blkaddr, unsigned int blkcnt);
3942 void f2fs_folio_wait_writeback(struct folio *folio, enum page_type type,
3943 bool ordered, bool locked);
3944 #define f2fs_wait_on_page_writeback(page, type, ordered, locked) \
3945 f2fs_folio_wait_writeback(page_folio(page), type, ordered, locked)
3946 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3947 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3948 block_t len);
3949 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3950 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3951 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3952 unsigned int val, int alloc);
3953 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3954 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi);
3955 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3956 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3957 int __init f2fs_create_segment_manager_caches(void);
3958 void f2fs_destroy_segment_manager_caches(void);
3959 int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint);
3960 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3961 enum page_type type, enum temp_type temp);
3962 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi);
3963 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3964 unsigned int segno);
3965 unsigned long long f2fs_get_section_mtime(struct f2fs_sb_info *sbi,
3966 unsigned int segno);
3967
fio_inode(struct f2fs_io_info * fio)3968 static inline struct inode *fio_inode(struct f2fs_io_info *fio)
3969 {
3970 return fio->folio->mapping->host;
3971 }
3972
3973 #define DEF_FRAGMENT_SIZE 4
3974 #define MIN_FRAGMENT_SIZE 1
3975 #define MAX_FRAGMENT_SIZE 512
3976
f2fs_need_rand_seg(struct f2fs_sb_info * sbi)3977 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3978 {
3979 return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3980 F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3981 }
3982
3983 /*
3984 * checkpoint.c
3985 */
3986 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3987 unsigned char reason);
3988 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3989 struct folio *f2fs_grab_meta_folio(struct f2fs_sb_info *sbi, pgoff_t index);
3990 struct folio *f2fs_get_meta_folio(struct f2fs_sb_info *sbi, pgoff_t index);
3991 struct folio *f2fs_get_meta_folio_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3992 struct folio *f2fs_get_tmp_folio(struct f2fs_sb_info *sbi, pgoff_t index);
3993 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3994 block_t blkaddr, int type);
3995 bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi,
3996 block_t blkaddr, int type);
3997 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3998 int type, bool sync);
3999 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
4000 unsigned int ra_blocks);
4001 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
4002 long nr_to_write, enum iostat_type io_type);
4003 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
4004 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
4005 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
4006 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
4007 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
4008 unsigned int devidx, int type);
4009 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
4010 unsigned int devidx, int type);
4011 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
4012 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
4013 void f2fs_add_orphan_inode(struct inode *inode);
4014 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
4015 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
4016 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
4017 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
4018 void f2fs_remove_dirty_inode(struct inode *inode);
4019 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
4020 bool from_cp);
4021 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
4022 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
4023 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
4024 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
4025 int __init f2fs_create_checkpoint_caches(void);
4026 void f2fs_destroy_checkpoint_caches(void);
4027 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
4028 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
4029 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
4030 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
4031
4032 /*
4033 * data.c
4034 */
4035 int __init f2fs_init_bioset(void);
4036 void f2fs_destroy_bioset(void);
4037 bool f2fs_is_cp_guaranteed(const struct folio *folio);
4038 int f2fs_init_bio_entry_cache(void);
4039 void f2fs_destroy_bio_entry_cache(void);
4040 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
4041 enum page_type type);
4042 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
4043 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
4044 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
4045 struct inode *inode, struct folio *folio,
4046 nid_t ino, enum page_type type);
4047 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
4048 struct bio **bio, struct folio *folio);
4049 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
4050 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
4051 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
4052 void f2fs_submit_page_write(struct f2fs_io_info *fio);
4053 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
4054 block_t blk_addr, sector_t *sector);
4055 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
4056 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
4057 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
4058 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
4059 int f2fs_reserve_new_block(struct dnode_of_data *dn);
4060 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
4061 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
4062 struct folio *f2fs_get_read_data_folio(struct inode *inode, pgoff_t index,
4063 blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
4064 struct folio *f2fs_find_data_folio(struct inode *inode, pgoff_t index,
4065 pgoff_t *next_pgofs);
4066 struct folio *f2fs_get_lock_data_folio(struct inode *inode, pgoff_t index,
4067 bool for_write);
4068 struct folio *f2fs_get_new_data_folio(struct inode *inode,
4069 struct folio *ifolio, pgoff_t index, bool new_i_size);
4070 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
4071 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
4072 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4073 u64 start, u64 len);
4074 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
4075 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
4076 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
4077 int f2fs_write_single_data_page(struct folio *folio, int *submitted,
4078 struct bio **bio, sector_t *last_block,
4079 struct writeback_control *wbc,
4080 enum iostat_type io_type,
4081 int compr_blocks, bool allow_balance);
4082 void f2fs_write_failed(struct inode *inode, loff_t to);
4083 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
4084 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
4085 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
4086 void f2fs_clear_page_cache_dirty_tag(struct folio *folio);
4087 int f2fs_init_post_read_processing(void);
4088 void f2fs_destroy_post_read_processing(void);
4089 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
4090 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
4091 extern const struct iomap_ops f2fs_iomap_ops;
4092
4093 /*
4094 * gc.c
4095 */
4096 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
4097 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
4098 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
4099 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
4100 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
4101 int f2fs_gc_range(struct f2fs_sb_info *sbi,
4102 unsigned int start_seg, unsigned int end_seg,
4103 bool dry_run, unsigned int dry_run_sections);
4104 int f2fs_resize_fs(struct file *filp, __u64 block_count);
4105 int __init f2fs_create_garbage_collection_cache(void);
4106 void f2fs_destroy_garbage_collection_cache(void);
4107 /* victim selection function for cleaning and SSR */
4108 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
4109 int gc_type, int type, char alloc_mode,
4110 unsigned long long age, bool one_time);
4111
4112 /*
4113 * recovery.c
4114 */
4115 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
4116 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
4117 int __init f2fs_create_recovery_cache(void);
4118 void f2fs_destroy_recovery_cache(void);
4119
4120 /*
4121 * debug.c
4122 */
4123 #ifdef CONFIG_F2FS_STAT_FS
4124 enum {
4125 DEVSTAT_INUSE,
4126 DEVSTAT_DIRTY,
4127 DEVSTAT_FULL,
4128 DEVSTAT_FREE,
4129 DEVSTAT_PREFREE,
4130 DEVSTAT_MAX,
4131 };
4132
4133 struct f2fs_dev_stats {
4134 unsigned int devstats[2][DEVSTAT_MAX]; /* 0: segs, 1: secs */
4135 };
4136
4137 struct f2fs_stat_info {
4138 struct list_head stat_list;
4139 struct f2fs_sb_info *sbi;
4140 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
4141 int main_area_segs, main_area_sections, main_area_zones;
4142 unsigned long long hit_cached[NR_EXTENT_CACHES];
4143 unsigned long long hit_rbtree[NR_EXTENT_CACHES];
4144 unsigned long long total_ext[NR_EXTENT_CACHES];
4145 unsigned long long hit_total[NR_EXTENT_CACHES];
4146 int ext_tree[NR_EXTENT_CACHES];
4147 int zombie_tree[NR_EXTENT_CACHES];
4148 int ext_node[NR_EXTENT_CACHES];
4149 /* to count memory footprint */
4150 unsigned long long ext_mem[NR_EXTENT_CACHES];
4151 /* for read extent cache */
4152 unsigned long long hit_largest;
4153 /* for block age extent cache */
4154 unsigned long long allocated_data_blocks;
4155 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
4156 int ndirty_data, ndirty_qdata;
4157 unsigned int ndirty_dirs, ndirty_files, ndirty_all;
4158 unsigned int nquota_files, ndonate_files;
4159 int nats, dirty_nats, sits, dirty_sits;
4160 int free_nids, avail_nids, alloc_nids;
4161 int total_count, utilization;
4162 int nr_wb_cp_data, nr_wb_data;
4163 int nr_rd_data, nr_rd_node, nr_rd_meta;
4164 int nr_dio_read, nr_dio_write;
4165 unsigned int io_skip_bggc, other_skip_bggc;
4166 int nr_flushing, nr_flushed, flush_list_empty;
4167 int nr_discarding, nr_discarded;
4168 int nr_discard_cmd;
4169 unsigned int undiscard_blks;
4170 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
4171 unsigned int cur_ckpt_time, peak_ckpt_time;
4172 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
4173 int compr_inode, swapfile_inode;
4174 unsigned long long compr_blocks;
4175 int aw_cnt, max_aw_cnt;
4176 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
4177 unsigned int bimodal, avg_vblocks;
4178 int util_free, util_valid, util_invalid;
4179 int rsvd_segs, overp_segs;
4180 int dirty_count, node_pages, meta_pages, compress_pages;
4181 int compress_page_hit;
4182 int prefree_count, free_segs, free_secs;
4183 int cp_call_count[MAX_CALL_TYPE], cp_count;
4184 int gc_call_count[MAX_CALL_TYPE];
4185 int gc_segs[2][2];
4186 int gc_secs[2][2];
4187 int tot_blks, data_blks, node_blks;
4188 int bg_data_blks, bg_node_blks;
4189 int curseg[NR_CURSEG_TYPE];
4190 int cursec[NR_CURSEG_TYPE];
4191 int curzone[NR_CURSEG_TYPE];
4192 unsigned int dirty_seg[NR_CURSEG_TYPE];
4193 unsigned int full_seg[NR_CURSEG_TYPE];
4194 unsigned int valid_blks[NR_CURSEG_TYPE];
4195
4196 unsigned int meta_count[META_MAX];
4197 unsigned int segment_count[2];
4198 unsigned int block_count[2];
4199 unsigned int inplace_count;
4200 unsigned long long base_mem, cache_mem, page_mem;
4201 struct f2fs_dev_stats *dev_stats;
4202 };
4203
F2FS_STAT(struct f2fs_sb_info * sbi)4204 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
4205 {
4206 return (struct f2fs_stat_info *)sbi->stat_info;
4207 }
4208
4209 #define stat_inc_cp_call_count(sbi, foreground) \
4210 atomic_inc(&sbi->cp_call_count[(foreground)])
4211 #define stat_inc_cp_count(sbi) (F2FS_STAT(sbi)->cp_count++)
4212 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
4213 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
4214 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
4215 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
4216 #define stat_inc_total_hit(sbi, type) (atomic64_inc(&(sbi)->total_hit_ext[type]))
4217 #define stat_inc_rbtree_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_rbtree[type]))
4218 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
4219 #define stat_inc_cached_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_cached[type]))
4220 #define stat_inc_inline_xattr(inode) \
4221 do { \
4222 if (f2fs_has_inline_xattr(inode)) \
4223 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
4224 } while (0)
4225 #define stat_dec_inline_xattr(inode) \
4226 do { \
4227 if (f2fs_has_inline_xattr(inode)) \
4228 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
4229 } while (0)
4230 #define stat_inc_inline_inode(inode) \
4231 do { \
4232 if (f2fs_has_inline_data(inode)) \
4233 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
4234 } while (0)
4235 #define stat_dec_inline_inode(inode) \
4236 do { \
4237 if (f2fs_has_inline_data(inode)) \
4238 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
4239 } while (0)
4240 #define stat_inc_inline_dir(inode) \
4241 do { \
4242 if (f2fs_has_inline_dentry(inode)) \
4243 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
4244 } while (0)
4245 #define stat_dec_inline_dir(inode) \
4246 do { \
4247 if (f2fs_has_inline_dentry(inode)) \
4248 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
4249 } while (0)
4250 #define stat_inc_compr_inode(inode) \
4251 do { \
4252 if (f2fs_compressed_file(inode)) \
4253 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \
4254 } while (0)
4255 #define stat_dec_compr_inode(inode) \
4256 do { \
4257 if (f2fs_compressed_file(inode)) \
4258 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \
4259 } while (0)
4260 #define stat_add_compr_blocks(inode, blocks) \
4261 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
4262 #define stat_sub_compr_blocks(inode, blocks) \
4263 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
4264 #define stat_inc_swapfile_inode(inode) \
4265 (atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
4266 #define stat_dec_swapfile_inode(inode) \
4267 (atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
4268 #define stat_inc_atomic_inode(inode) \
4269 (atomic_inc(&F2FS_I_SB(inode)->atomic_files))
4270 #define stat_dec_atomic_inode(inode) \
4271 (atomic_dec(&F2FS_I_SB(inode)->atomic_files))
4272 #define stat_inc_meta_count(sbi, blkaddr) \
4273 do { \
4274 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
4275 atomic_inc(&(sbi)->meta_count[META_CP]); \
4276 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
4277 atomic_inc(&(sbi)->meta_count[META_SIT]); \
4278 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
4279 atomic_inc(&(sbi)->meta_count[META_NAT]); \
4280 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
4281 atomic_inc(&(sbi)->meta_count[META_SSA]); \
4282 } while (0)
4283 #define stat_inc_seg_type(sbi, curseg) \
4284 ((sbi)->segment_count[(curseg)->alloc_type]++)
4285 #define stat_inc_block_count(sbi, curseg) \
4286 ((sbi)->block_count[(curseg)->alloc_type]++)
4287 #define stat_inc_inplace_blocks(sbi) \
4288 (atomic_inc(&(sbi)->inplace_count))
4289 #define stat_update_max_atomic_write(inode) \
4290 do { \
4291 int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files); \
4292 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
4293 if (cur > max) \
4294 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
4295 } while (0)
4296 #define stat_inc_gc_call_count(sbi, foreground) \
4297 (F2FS_STAT(sbi)->gc_call_count[(foreground)]++)
4298 #define stat_inc_gc_sec_count(sbi, type, gc_type) \
4299 (F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++)
4300 #define stat_inc_gc_seg_count(sbi, type, gc_type) \
4301 (F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++)
4302
4303 #define stat_inc_tot_blk_count(si, blks) \
4304 ((si)->tot_blks += (blks))
4305
4306 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
4307 do { \
4308 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4309 stat_inc_tot_blk_count(si, blks); \
4310 si->data_blks += (blks); \
4311 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4312 } while (0)
4313
4314 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
4315 do { \
4316 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4317 stat_inc_tot_blk_count(si, blks); \
4318 si->node_blks += (blks); \
4319 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4320 } while (0)
4321
4322 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4323 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4324 void __init f2fs_create_root_stats(void);
4325 void f2fs_destroy_root_stats(void);
4326 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4327 #else
4328 #define stat_inc_cp_call_count(sbi, foreground) do { } while (0)
4329 #define stat_inc_cp_count(sbi) do { } while (0)
4330 #define stat_io_skip_bggc_count(sbi) do { } while (0)
4331 #define stat_other_skip_bggc_count(sbi) do { } while (0)
4332 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
4333 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
4334 #define stat_inc_total_hit(sbi, type) do { } while (0)
4335 #define stat_inc_rbtree_node_hit(sbi, type) do { } while (0)
4336 #define stat_inc_largest_node_hit(sbi) do { } while (0)
4337 #define stat_inc_cached_node_hit(sbi, type) do { } while (0)
4338 #define stat_inc_inline_xattr(inode) do { } while (0)
4339 #define stat_dec_inline_xattr(inode) do { } while (0)
4340 #define stat_inc_inline_inode(inode) do { } while (0)
4341 #define stat_dec_inline_inode(inode) do { } while (0)
4342 #define stat_inc_inline_dir(inode) do { } while (0)
4343 #define stat_dec_inline_dir(inode) do { } while (0)
4344 #define stat_inc_compr_inode(inode) do { } while (0)
4345 #define stat_dec_compr_inode(inode) do { } while (0)
4346 #define stat_add_compr_blocks(inode, blocks) do { } while (0)
4347 #define stat_sub_compr_blocks(inode, blocks) do { } while (0)
4348 #define stat_inc_swapfile_inode(inode) do { } while (0)
4349 #define stat_dec_swapfile_inode(inode) do { } while (0)
4350 #define stat_inc_atomic_inode(inode) do { } while (0)
4351 #define stat_dec_atomic_inode(inode) do { } while (0)
4352 #define stat_update_max_atomic_write(inode) do { } while (0)
4353 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
4354 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
4355 #define stat_inc_block_count(sbi, curseg) do { } while (0)
4356 #define stat_inc_inplace_blocks(sbi) do { } while (0)
4357 #define stat_inc_gc_call_count(sbi, foreground) do { } while (0)
4358 #define stat_inc_gc_sec_count(sbi, type, gc_type) do { } while (0)
4359 #define stat_inc_gc_seg_count(sbi, type, gc_type) do { } while (0)
4360 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
4361 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
4362 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
4363
f2fs_build_stats(struct f2fs_sb_info * sbi)4364 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)4365 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)4366 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)4367 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)4368 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4369 #endif
4370
4371 extern const struct file_operations f2fs_dir_operations;
4372 extern const struct file_operations f2fs_file_operations;
4373 extern const struct inode_operations f2fs_file_inode_operations;
4374 extern const struct address_space_operations f2fs_dblock_aops;
4375 extern const struct address_space_operations f2fs_node_aops;
4376 extern const struct address_space_operations f2fs_meta_aops;
4377 extern const struct inode_operations f2fs_dir_inode_operations;
4378 extern const struct inode_operations f2fs_symlink_inode_operations;
4379 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4380 extern const struct inode_operations f2fs_special_inode_operations;
4381 extern struct kmem_cache *f2fs_inode_entry_slab;
4382
4383 /*
4384 * inline.c
4385 */
4386 bool f2fs_may_inline_data(struct inode *inode);
4387 bool f2fs_sanity_check_inline_data(struct inode *inode, struct folio *ifolio);
4388 bool f2fs_may_inline_dentry(struct inode *inode);
4389 void f2fs_do_read_inline_data(struct folio *folio, struct folio *ifolio);
4390 void f2fs_truncate_inline_inode(struct inode *inode, struct folio *ifolio,
4391 u64 from);
4392 int f2fs_read_inline_data(struct inode *inode, struct folio *folio);
4393 int f2fs_convert_inline_folio(struct dnode_of_data *dn, struct folio *folio);
4394 int f2fs_convert_inline_inode(struct inode *inode);
4395 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4396 int f2fs_write_inline_data(struct inode *inode, struct folio *folio);
4397 int f2fs_recover_inline_data(struct inode *inode, struct folio *nfolio);
4398 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4399 const struct f2fs_filename *fname, struct folio **res_folio,
4400 bool use_hash);
4401 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4402 struct folio *ifolio);
4403 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4404 struct inode *inode, nid_t ino, umode_t mode);
4405 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4406 struct folio *folio, struct inode *dir, struct inode *inode);
4407 bool f2fs_empty_inline_dir(struct inode *dir);
4408 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4409 struct fscrypt_str *fstr);
4410 int f2fs_inline_data_fiemap(struct inode *inode,
4411 struct fiemap_extent_info *fieinfo,
4412 __u64 start, __u64 len);
4413
4414 /*
4415 * shrinker.c
4416 */
4417 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4418 struct shrink_control *sc);
4419 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4420 struct shrink_control *sc);
4421 unsigned int f2fs_donate_files(void);
4422 void f2fs_reclaim_caches(unsigned int reclaim_caches_kb);
4423 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4424 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4425
4426 /*
4427 * extent_cache.c
4428 */
4429 bool sanity_check_extent_cache(struct inode *inode, struct folio *ifolio);
4430 void f2fs_init_extent_tree(struct inode *inode);
4431 void f2fs_drop_extent_tree(struct inode *inode);
4432 void f2fs_destroy_extent_node(struct inode *inode);
4433 void f2fs_destroy_extent_tree(struct inode *inode);
4434 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4435 int __init f2fs_create_extent_cache(void);
4436 void f2fs_destroy_extent_cache(void);
4437
4438 /* read extent cache ops */
4439 void f2fs_init_read_extent_tree(struct inode *inode, struct folio *ifolio);
4440 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4441 struct extent_info *ei);
4442 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
4443 block_t *blkaddr);
4444 void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4445 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4446 pgoff_t fofs, block_t blkaddr, unsigned int len);
4447 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4448 int nr_shrink);
4449
4450 /* block age extent cache ops */
4451 void f2fs_init_age_extent_tree(struct inode *inode);
4452 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4453 struct extent_info *ei);
4454 void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4455 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4456 pgoff_t fofs, unsigned int len);
4457 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4458 int nr_shrink);
4459
4460 /*
4461 * sysfs.c
4462 */
4463 #define MIN_RA_MUL 2
4464 #define MAX_RA_MUL 256
4465
4466 int __init f2fs_init_sysfs(void);
4467 void f2fs_exit_sysfs(void);
4468 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4469 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4470
4471 /* verity.c */
4472 extern const struct fsverity_operations f2fs_verityops;
4473
4474 /*
4475 * crypto support
4476 */
f2fs_encrypted_file(struct inode * inode)4477 static inline bool f2fs_encrypted_file(struct inode *inode)
4478 {
4479 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4480 }
4481
f2fs_set_encrypted_inode(struct inode * inode)4482 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4483 {
4484 #ifdef CONFIG_FS_ENCRYPTION
4485 file_set_encrypt(inode);
4486 f2fs_set_inode_flags(inode);
4487 #endif
4488 }
4489
4490 /*
4491 * Returns true if the reads of the inode's data need to undergo some
4492 * postprocessing step, like decryption or authenticity verification.
4493 */
f2fs_post_read_required(struct inode * inode)4494 static inline bool f2fs_post_read_required(struct inode *inode)
4495 {
4496 return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4497 f2fs_compressed_file(inode);
4498 }
4499
f2fs_used_in_atomic_write(struct inode * inode)4500 static inline bool f2fs_used_in_atomic_write(struct inode *inode)
4501 {
4502 return f2fs_is_atomic_file(inode) || f2fs_is_cow_file(inode);
4503 }
4504
f2fs_meta_inode_gc_required(struct inode * inode)4505 static inline bool f2fs_meta_inode_gc_required(struct inode *inode)
4506 {
4507 return f2fs_post_read_required(inode) || f2fs_used_in_atomic_write(inode);
4508 }
4509
4510 /*
4511 * compress.c
4512 */
4513 #ifdef CONFIG_F2FS_FS_COMPRESSION
4514 enum cluster_check_type {
4515 CLUSTER_IS_COMPR, /* check only if compressed cluster */
4516 CLUSTER_COMPR_BLKS, /* return # of compressed blocks in a cluster */
4517 CLUSTER_RAW_BLKS /* return # of raw blocks in a cluster */
4518 };
4519 bool f2fs_is_compressed_page(struct folio *folio);
4520 struct folio *f2fs_compress_control_folio(struct folio *folio);
4521 int f2fs_prepare_compress_overwrite(struct inode *inode,
4522 struct page **pagep, pgoff_t index, void **fsdata);
4523 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4524 pgoff_t index, unsigned copied);
4525 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4526 void f2fs_compress_write_end_io(struct bio *bio, struct folio *folio);
4527 bool f2fs_is_compress_backend_ready(struct inode *inode);
4528 bool f2fs_is_compress_level_valid(int alg, int lvl);
4529 int __init f2fs_init_compress_mempool(void);
4530 void f2fs_destroy_compress_mempool(void);
4531 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4532 void f2fs_end_read_compressed_page(struct folio *folio, bool failed,
4533 block_t blkaddr, bool in_task);
4534 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4535 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4536 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4537 int index, int nr_pages, bool uptodate);
4538 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4539 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct folio *folio);
4540 int f2fs_write_multi_pages(struct compress_ctx *cc,
4541 int *submitted,
4542 struct writeback_control *wbc,
4543 enum iostat_type io_type);
4544 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4545 bool f2fs_is_sparse_cluster(struct inode *inode, pgoff_t index);
4546 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4547 pgoff_t fofs, block_t blkaddr,
4548 unsigned int llen, unsigned int c_len);
4549 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4550 unsigned nr_pages, sector_t *last_block_in_bio,
4551 struct readahead_control *rac, bool for_write);
4552 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4553 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4554 bool in_task);
4555 void f2fs_put_folio_dic(struct folio *folio, bool in_task);
4556 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
4557 unsigned int ofs_in_node);
4558 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4559 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4560 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4561 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4562 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4563 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4564 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4565 int __init f2fs_init_compress_cache(void);
4566 void f2fs_destroy_compress_cache(void);
4567 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4568 void f2fs_invalidate_compress_pages_range(struct f2fs_sb_info *sbi,
4569 block_t blkaddr, unsigned int len);
4570 bool f2fs_load_compressed_folio(struct f2fs_sb_info *sbi, struct folio *folio,
4571 block_t blkaddr);
4572 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4573 #define inc_compr_inode_stat(inode) \
4574 do { \
4575 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4576 sbi->compr_new_inode++; \
4577 } while (0)
4578 #define add_compr_block_stat(inode, blocks) \
4579 do { \
4580 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4581 int diff = F2FS_I(inode)->i_cluster_size - blocks; \
4582 sbi->compr_written_block += blocks; \
4583 sbi->compr_saved_block += diff; \
4584 } while (0)
4585 #else
f2fs_is_compressed_page(struct folio * folio)4586 static inline bool f2fs_is_compressed_page(struct folio *folio) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)4587 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4588 {
4589 if (!f2fs_compressed_file(inode))
4590 return true;
4591 /* not support compression */
4592 return false;
4593 }
f2fs_is_compress_level_valid(int alg,int lvl)4594 static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; }
f2fs_compress_control_folio(struct folio * folio)4595 static inline struct folio *f2fs_compress_control_folio(struct folio *folio)
4596 {
4597 WARN_ON_ONCE(1);
4598 return ERR_PTR(-EINVAL);
4599 }
f2fs_init_compress_mempool(void)4600 static inline int __init f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)4601 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)4602 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4603 bool in_task) { }
f2fs_end_read_compressed_page(struct folio * folio,bool failed,block_t blkaddr,bool in_task)4604 static inline void f2fs_end_read_compressed_page(struct folio *folio,
4605 bool failed, block_t blkaddr, bool in_task)
4606 {
4607 WARN_ON_ONCE(1);
4608 }
f2fs_put_folio_dic(struct folio * folio,bool in_task)4609 static inline void f2fs_put_folio_dic(struct folio *folio, bool in_task)
4610 {
4611 WARN_ON_ONCE(1);
4612 }
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn,unsigned int ofs_in_node)4613 static inline unsigned int f2fs_cluster_blocks_are_contiguous(
4614 struct dnode_of_data *dn, unsigned int ofs_in_node) { return 0; }
f2fs_sanity_check_cluster(struct dnode_of_data * dn)4615 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)4616 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)4617 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)4618 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)4619 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)4620 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)4621 static inline void f2fs_destroy_compress_cache(void) { }
f2fs_invalidate_compress_pages_range(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int len)4622 static inline void f2fs_invalidate_compress_pages_range(struct f2fs_sb_info *sbi,
4623 block_t blkaddr, unsigned int len) { }
f2fs_load_compressed_folio(struct f2fs_sb_info * sbi,struct folio * folio,block_t blkaddr)4624 static inline bool f2fs_load_compressed_folio(struct f2fs_sb_info *sbi,
4625 struct folio *folio, block_t blkaddr) { return false; }
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)4626 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4627 nid_t ino) { }
4628 #define inc_compr_inode_stat(inode) do { } while (0)
f2fs_is_compressed_cluster(struct inode * inode,pgoff_t index)4629 static inline int f2fs_is_compressed_cluster(
4630 struct inode *inode,
4631 pgoff_t index) { return 0; }
f2fs_is_sparse_cluster(struct inode * inode,pgoff_t index)4632 static inline bool f2fs_is_sparse_cluster(
4633 struct inode *inode,
4634 pgoff_t index) { return true; }
f2fs_update_read_extent_tree_range_compressed(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int llen,unsigned int c_len)4635 static inline void f2fs_update_read_extent_tree_range_compressed(
4636 struct inode *inode,
4637 pgoff_t fofs, block_t blkaddr,
4638 unsigned int llen, unsigned int c_len) { }
4639 #endif
4640
set_compress_context(struct inode * inode)4641 static inline int set_compress_context(struct inode *inode)
4642 {
4643 #ifdef CONFIG_F2FS_FS_COMPRESSION
4644 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4645 struct f2fs_inode_info *fi = F2FS_I(inode);
4646
4647 fi->i_compress_algorithm = F2FS_OPTION(sbi).compress_algorithm;
4648 fi->i_log_cluster_size = F2FS_OPTION(sbi).compress_log_size;
4649 fi->i_compress_flag = F2FS_OPTION(sbi).compress_chksum ?
4650 BIT(COMPRESS_CHKSUM) : 0;
4651 fi->i_cluster_size = BIT(fi->i_log_cluster_size);
4652 if ((fi->i_compress_algorithm == COMPRESS_LZ4 ||
4653 fi->i_compress_algorithm == COMPRESS_ZSTD) &&
4654 F2FS_OPTION(sbi).compress_level)
4655 fi->i_compress_level = F2FS_OPTION(sbi).compress_level;
4656 fi->i_flags |= F2FS_COMPR_FL;
4657 set_inode_flag(inode, FI_COMPRESSED_FILE);
4658 stat_inc_compr_inode(inode);
4659 inc_compr_inode_stat(inode);
4660 f2fs_mark_inode_dirty_sync(inode, true);
4661 return 0;
4662 #else
4663 return -EOPNOTSUPP;
4664 #endif
4665 }
4666
f2fs_disable_compressed_file(struct inode * inode)4667 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4668 {
4669 struct f2fs_inode_info *fi = F2FS_I(inode);
4670
4671 f2fs_down_write(&fi->i_sem);
4672
4673 if (!f2fs_compressed_file(inode)) {
4674 f2fs_up_write(&fi->i_sem);
4675 return true;
4676 }
4677 if (f2fs_is_mmap_file(inode) ||
4678 (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))) {
4679 f2fs_up_write(&fi->i_sem);
4680 return false;
4681 }
4682
4683 fi->i_flags &= ~F2FS_COMPR_FL;
4684 stat_dec_compr_inode(inode);
4685 clear_inode_flag(inode, FI_COMPRESSED_FILE);
4686 f2fs_mark_inode_dirty_sync(inode, true);
4687
4688 f2fs_up_write(&fi->i_sem);
4689 return true;
4690 }
4691
4692 #define F2FS_FEATURE_FUNCS(name, flagname) \
4693 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4694 { \
4695 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4696 }
4697
4698 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4699 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4700 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4701 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4702 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4703 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4704 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4705 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4706 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4707 F2FS_FEATURE_FUNCS(verity, VERITY);
4708 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4709 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4710 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4711 F2FS_FEATURE_FUNCS(readonly, RO);
4712 F2FS_FEATURE_FUNCS(device_alias, DEVICE_ALIAS);
4713
4714 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_zone_is_seq(struct f2fs_sb_info * sbi,int devi,unsigned int zone)4715 static inline bool f2fs_zone_is_seq(struct f2fs_sb_info *sbi, int devi,
4716 unsigned int zone)
4717 {
4718 return test_bit(zone, FDEV(devi).blkz_seq);
4719 }
4720
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4721 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4722 block_t blkaddr)
4723 {
4724 return f2fs_zone_is_seq(sbi, devi, blkaddr / sbi->blocks_per_blkz);
4725 }
4726 #endif
4727
f2fs_bdev_index(struct f2fs_sb_info * sbi,struct block_device * bdev)4728 static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi,
4729 struct block_device *bdev)
4730 {
4731 int i;
4732
4733 if (!f2fs_is_multi_device(sbi))
4734 return 0;
4735
4736 for (i = 0; i < sbi->s_ndevs; i++)
4737 if (FDEV(i).bdev == bdev)
4738 return i;
4739
4740 WARN_ON(1);
4741 return -1;
4742 }
4743
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4744 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4745 {
4746 return f2fs_sb_has_blkzoned(sbi);
4747 }
4748
f2fs_bdev_support_discard(struct block_device * bdev)4749 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4750 {
4751 return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4752 }
4753
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4754 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4755 {
4756 int i;
4757
4758 if (!f2fs_is_multi_device(sbi))
4759 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4760
4761 for (i = 0; i < sbi->s_ndevs; i++)
4762 if (f2fs_bdev_support_discard(FDEV(i).bdev))
4763 return true;
4764 return false;
4765 }
4766
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4767 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4768 {
4769 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4770 f2fs_hw_should_discard(sbi);
4771 }
4772
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4773 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4774 {
4775 int i;
4776
4777 if (!f2fs_is_multi_device(sbi))
4778 return bdev_read_only(sbi->sb->s_bdev);
4779
4780 for (i = 0; i < sbi->s_ndevs; i++)
4781 if (bdev_read_only(FDEV(i).bdev))
4782 return true;
4783 return false;
4784 }
4785
f2fs_dev_is_readonly(struct f2fs_sb_info * sbi)4786 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
4787 {
4788 return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
4789 }
4790
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4791 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4792 {
4793 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4794 }
4795
f2fs_is_sequential_zone_area(struct f2fs_sb_info * sbi,block_t blkaddr)4796 static inline bool f2fs_is_sequential_zone_area(struct f2fs_sb_info *sbi,
4797 block_t blkaddr)
4798 {
4799 if (f2fs_sb_has_blkzoned(sbi)) {
4800 #ifdef CONFIG_BLK_DEV_ZONED
4801 int devi = f2fs_target_device_index(sbi, blkaddr);
4802
4803 if (!bdev_is_zoned(FDEV(devi).bdev))
4804 return false;
4805
4806 if (f2fs_is_multi_device(sbi)) {
4807 if (blkaddr < FDEV(devi).start_blk ||
4808 blkaddr > FDEV(devi).end_blk) {
4809 f2fs_err(sbi, "Invalid block %x", blkaddr);
4810 return false;
4811 }
4812 blkaddr -= FDEV(devi).start_blk;
4813 }
4814
4815 return f2fs_blkz_is_seq(sbi, devi, blkaddr);
4816 #else
4817 return false;
4818 #endif
4819 }
4820 return false;
4821 }
4822
f2fs_low_mem_mode(struct f2fs_sb_info * sbi)4823 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4824 {
4825 return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4826 }
4827
f2fs_may_compress(struct inode * inode)4828 static inline bool f2fs_may_compress(struct inode *inode)
4829 {
4830 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4831 f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) ||
4832 f2fs_is_mmap_file(inode))
4833 return false;
4834 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4835 }
4836
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4837 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4838 u64 blocks, bool add)
4839 {
4840 struct f2fs_inode_info *fi = F2FS_I(inode);
4841 int diff = fi->i_cluster_size - blocks;
4842
4843 /* don't update i_compr_blocks if saved blocks were released */
4844 if (!add && !atomic_read(&fi->i_compr_blocks))
4845 return;
4846
4847 if (add) {
4848 atomic_add(diff, &fi->i_compr_blocks);
4849 stat_add_compr_blocks(inode, diff);
4850 } else {
4851 atomic_sub(diff, &fi->i_compr_blocks);
4852 stat_sub_compr_blocks(inode, diff);
4853 }
4854 f2fs_mark_inode_dirty_sync(inode, true);
4855 }
4856
f2fs_allow_multi_device_dio(struct f2fs_sb_info * sbi,int flag)4857 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4858 int flag)
4859 {
4860 if (!f2fs_is_multi_device(sbi))
4861 return false;
4862 if (flag != F2FS_GET_BLOCK_DIO)
4863 return false;
4864 return sbi->aligned_blksize;
4865 }
4866
f2fs_need_verity(const struct inode * inode,pgoff_t idx)4867 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4868 {
4869 return fsverity_active(inode) &&
4870 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4871 }
4872
4873 #ifdef CONFIG_F2FS_FAULT_INJECTION
4874 extern int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate,
4875 unsigned long type, enum fault_option fo);
4876 #else
f2fs_build_fault_attr(struct f2fs_sb_info * sbi,unsigned long rate,unsigned long type,enum fault_option fo)4877 static inline int f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
4878 unsigned long rate, unsigned long type,
4879 enum fault_option fo)
4880 {
4881 return 0;
4882 }
4883 #endif
4884
is_journalled_quota(struct f2fs_sb_info * sbi)4885 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4886 {
4887 #ifdef CONFIG_QUOTA
4888 if (f2fs_sb_has_quota_ino(sbi))
4889 return true;
4890 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4891 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4892 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4893 return true;
4894 #endif
4895 return false;
4896 }
4897
f2fs_block_unit_discard(struct f2fs_sb_info * sbi)4898 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4899 {
4900 return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4901 }
4902
f2fs_io_schedule_timeout(long timeout)4903 static inline void f2fs_io_schedule_timeout(long timeout)
4904 {
4905 set_current_state(TASK_UNINTERRUPTIBLE);
4906 io_schedule_timeout(timeout);
4907 }
4908
f2fs_io_schedule_timeout_killable(long timeout)4909 static inline void f2fs_io_schedule_timeout_killable(long timeout)
4910 {
4911 while (timeout) {
4912 if (fatal_signal_pending(current))
4913 return;
4914 set_current_state(TASK_UNINTERRUPTIBLE);
4915 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
4916 if (timeout <= DEFAULT_IO_TIMEOUT)
4917 return;
4918 timeout -= DEFAULT_IO_TIMEOUT;
4919 }
4920 }
4921
f2fs_handle_page_eio(struct f2fs_sb_info * sbi,struct folio * folio,enum page_type type)4922 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi,
4923 struct folio *folio, enum page_type type)
4924 {
4925 pgoff_t ofs = folio->index;
4926
4927 if (unlikely(f2fs_cp_error(sbi)))
4928 return;
4929
4930 if (ofs == sbi->page_eio_ofs[type]) {
4931 if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4932 set_ckpt_flags(sbi, CP_ERROR_FLAG);
4933 } else {
4934 sbi->page_eio_ofs[type] = ofs;
4935 sbi->page_eio_cnt[type] = 0;
4936 }
4937 }
4938
f2fs_is_readonly(struct f2fs_sb_info * sbi)4939 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4940 {
4941 return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4942 }
4943
f2fs_truncate_meta_inode_pages(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int cnt)4944 static inline void f2fs_truncate_meta_inode_pages(struct f2fs_sb_info *sbi,
4945 block_t blkaddr, unsigned int cnt)
4946 {
4947 bool need_submit = false;
4948 int i = 0;
4949
4950 do {
4951 struct folio *folio;
4952
4953 folio = filemap_get_folio(META_MAPPING(sbi), blkaddr + i);
4954 if (!IS_ERR(folio)) {
4955 if (folio_test_writeback(folio))
4956 need_submit = true;
4957 f2fs_folio_put(folio, false);
4958 }
4959 } while (++i < cnt && !need_submit);
4960
4961 if (need_submit)
4962 f2fs_submit_merged_write_cond(sbi, sbi->meta_inode,
4963 NULL, 0, DATA);
4964
4965 truncate_inode_pages_range(META_MAPPING(sbi),
4966 F2FS_BLK_TO_BYTES((loff_t)blkaddr),
4967 F2FS_BLK_END_BYTES((loff_t)(blkaddr + cnt - 1)));
4968 }
4969
f2fs_invalidate_internal_cache(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int len)4970 static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi,
4971 block_t blkaddr, unsigned int len)
4972 {
4973 f2fs_truncate_meta_inode_pages(sbi, blkaddr, len);
4974 f2fs_invalidate_compress_pages_range(sbi, blkaddr, len);
4975 }
4976
4977 #define EFSBADCRC EBADMSG /* Bad CRC detected */
4978 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
4979
4980 #endif /* _LINUX_F2FS_H */
4981