1 // SPDX-License-Identifier: BSD-3-Clause 2 /* 3 * linux/net/sunrpc/auth_gss/auth_gss.c 4 * 5 * RPCSEC_GSS client authentication. 6 * 7 * Copyright (c) 2000 The Regents of the University of Michigan. 8 * All rights reserved. 9 * 10 * Dug Song <dugsong@monkey.org> 11 * Andy Adamson <andros@umich.edu> 12 */ 13 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/types.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/sunrpc/clnt.h> 21 #include <linux/sunrpc/auth.h> 22 #include <linux/sunrpc/auth_gss.h> 23 #include <linux/sunrpc/gss_krb5.h> 24 #include <linux/sunrpc/svcauth_gss.h> 25 #include <linux/sunrpc/gss_err.h> 26 #include <linux/workqueue.h> 27 #include <linux/sunrpc/rpc_pipe_fs.h> 28 #include <linux/sunrpc/gss_api.h> 29 #include <linux/uaccess.h> 30 #include <linux/hashtable.h> 31 32 #include "auth_gss_internal.h" 33 #include "../netns.h" 34 35 #include <trace/events/rpcgss.h> 36 37 static const struct rpc_authops authgss_ops; 38 39 static const struct rpc_credops gss_credops; 40 static const struct rpc_credops gss_nullops; 41 42 #define GSS_RETRY_EXPIRED 5 43 static unsigned int gss_expired_cred_retry_delay = GSS_RETRY_EXPIRED; 44 45 #define GSS_KEY_EXPIRE_TIMEO 240 46 static unsigned int gss_key_expire_timeo = GSS_KEY_EXPIRE_TIMEO; 47 48 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 49 # define RPCDBG_FACILITY RPCDBG_AUTH 50 #endif 51 52 /* 53 * This compile-time check verifies that we will not exceed the 54 * slack space allotted by the client and server auth_gss code 55 * before they call gss_wrap(). 56 */ 57 #define GSS_KRB5_MAX_SLACK_NEEDED \ 58 (GSS_KRB5_TOK_HDR_LEN /* gss token header */ \ 59 + GSS_KRB5_MAX_CKSUM_LEN /* gss token checksum */ \ 60 + GSS_KRB5_MAX_BLOCKSIZE /* confounder */ \ 61 + GSS_KRB5_MAX_BLOCKSIZE /* possible padding */ \ 62 + GSS_KRB5_TOK_HDR_LEN /* encrypted hdr in v2 token */ \ 63 + GSS_KRB5_MAX_CKSUM_LEN /* encryption hmac */ \ 64 + XDR_UNIT * 2 /* RPC verifier */ \ 65 + GSS_KRB5_TOK_HDR_LEN \ 66 + GSS_KRB5_MAX_CKSUM_LEN) 67 68 #define GSS_CRED_SLACK (RPC_MAX_AUTH_SIZE * 2) 69 /* length of a krb5 verifier (48), plus data added before arguments when 70 * using integrity (two 4-byte integers): */ 71 #define GSS_VERF_SLACK 100 72 73 static DEFINE_HASHTABLE(gss_auth_hash_table, 4); 74 static DEFINE_SPINLOCK(gss_auth_hash_lock); 75 76 struct gss_pipe { 77 struct rpc_pipe_dir_object pdo; 78 struct rpc_pipe *pipe; 79 struct rpc_clnt *clnt; 80 const char *name; 81 struct kref kref; 82 }; 83 84 struct gss_auth { 85 struct kref kref; 86 struct hlist_node hash; 87 struct rpc_auth rpc_auth; 88 struct gss_api_mech *mech; 89 enum rpc_gss_svc service; 90 struct rpc_clnt *client; 91 struct net *net; 92 netns_tracker ns_tracker; 93 /* 94 * There are two upcall pipes; dentry[1], named "gssd", is used 95 * for the new text-based upcall; dentry[0] is named after the 96 * mechanism (for example, "krb5") and exists for 97 * backwards-compatibility with older gssd's. 98 */ 99 struct gss_pipe *gss_pipe[2]; 100 const char *target_name; 101 }; 102 103 /* pipe_version >= 0 if and only if someone has a pipe open. */ 104 static DEFINE_SPINLOCK(pipe_version_lock); 105 static struct rpc_wait_queue pipe_version_rpc_waitqueue; 106 static DECLARE_WAIT_QUEUE_HEAD(pipe_version_waitqueue); 107 static void gss_put_auth(struct gss_auth *gss_auth); 108 109 static void gss_free_ctx(struct gss_cl_ctx *); 110 static const struct rpc_pipe_ops gss_upcall_ops_v0; 111 static const struct rpc_pipe_ops gss_upcall_ops_v1; 112 113 static inline struct gss_cl_ctx * 114 gss_get_ctx(struct gss_cl_ctx *ctx) 115 { 116 refcount_inc(&ctx->count); 117 return ctx; 118 } 119 120 static inline void 121 gss_put_ctx(struct gss_cl_ctx *ctx) 122 { 123 if (refcount_dec_and_test(&ctx->count)) 124 gss_free_ctx(ctx); 125 } 126 127 /* gss_cred_set_ctx: 128 * called by gss_upcall_callback and gss_create_upcall in order 129 * to set the gss context. The actual exchange of an old context 130 * and a new one is protected by the pipe->lock. 131 */ 132 static void 133 gss_cred_set_ctx(struct rpc_cred *cred, struct gss_cl_ctx *ctx) 134 { 135 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 136 137 if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags)) 138 return; 139 gss_get_ctx(ctx); 140 rcu_assign_pointer(gss_cred->gc_ctx, ctx); 141 set_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 142 smp_mb__before_atomic(); 143 clear_bit(RPCAUTH_CRED_NEW, &cred->cr_flags); 144 } 145 146 static struct gss_cl_ctx * 147 gss_cred_get_ctx(struct rpc_cred *cred) 148 { 149 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 150 struct gss_cl_ctx *ctx = NULL; 151 152 rcu_read_lock(); 153 ctx = rcu_dereference(gss_cred->gc_ctx); 154 if (ctx) 155 gss_get_ctx(ctx); 156 rcu_read_unlock(); 157 return ctx; 158 } 159 160 static struct gss_cl_ctx * 161 gss_alloc_context(void) 162 { 163 struct gss_cl_ctx *ctx; 164 165 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 166 if (ctx != NULL) { 167 ctx->gc_proc = RPC_GSS_PROC_DATA; 168 ctx->gc_seq = 1; /* NetApp 6.4R1 doesn't accept seq. no. 0 */ 169 spin_lock_init(&ctx->gc_seq_lock); 170 refcount_set(&ctx->count,1); 171 } 172 return ctx; 173 } 174 175 #define GSSD_MIN_TIMEOUT (60 * 60) 176 static const void * 177 gss_fill_context(const void *p, const void *end, struct gss_cl_ctx *ctx, struct gss_api_mech *gm) 178 { 179 const void *q; 180 unsigned int seclen; 181 unsigned int timeout; 182 unsigned long now = jiffies; 183 u32 window_size; 184 int ret; 185 186 /* First unsigned int gives the remaining lifetime in seconds of the 187 * credential - e.g. the remaining TGT lifetime for Kerberos or 188 * the -t value passed to GSSD. 189 */ 190 p = simple_get_bytes(p, end, &timeout, sizeof(timeout)); 191 if (IS_ERR(p)) 192 goto err; 193 if (timeout == 0) 194 timeout = GSSD_MIN_TIMEOUT; 195 ctx->gc_expiry = now + ((unsigned long)timeout * HZ); 196 /* Sequence number window. Determines the maximum number of 197 * simultaneous requests 198 */ 199 p = simple_get_bytes(p, end, &window_size, sizeof(window_size)); 200 if (IS_ERR(p)) 201 goto err; 202 ctx->gc_win = window_size; 203 /* gssd signals an error by passing ctx->gc_win = 0: */ 204 if (ctx->gc_win == 0) { 205 /* 206 * in which case, p points to an error code. Anything other 207 * than -EKEYEXPIRED gets converted to -EACCES. 208 */ 209 p = simple_get_bytes(p, end, &ret, sizeof(ret)); 210 if (!IS_ERR(p)) 211 p = (ret == -EKEYEXPIRED) ? ERR_PTR(-EKEYEXPIRED) : 212 ERR_PTR(-EACCES); 213 goto err; 214 } 215 /* copy the opaque wire context */ 216 p = simple_get_netobj(p, end, &ctx->gc_wire_ctx); 217 if (IS_ERR(p)) 218 goto err; 219 /* import the opaque security context */ 220 p = simple_get_bytes(p, end, &seclen, sizeof(seclen)); 221 if (IS_ERR(p)) 222 goto err; 223 q = (const void *)((const char *)p + seclen); 224 if (unlikely(q > end || q < p)) { 225 p = ERR_PTR(-EFAULT); 226 goto err; 227 } 228 ret = gss_import_sec_context(p, seclen, gm, &ctx->gc_gss_ctx, NULL, GFP_KERNEL); 229 if (ret < 0) { 230 trace_rpcgss_import_ctx(ret); 231 p = ERR_PTR(ret); 232 goto err; 233 } 234 235 /* is there any trailing data? */ 236 if (q == end) { 237 p = q; 238 goto done; 239 } 240 241 /* pull in acceptor name (if there is one) */ 242 p = simple_get_netobj(q, end, &ctx->gc_acceptor); 243 if (IS_ERR(p)) 244 goto err; 245 done: 246 trace_rpcgss_context(window_size, ctx->gc_expiry, now, timeout, 247 ctx->gc_acceptor.len, ctx->gc_acceptor.data); 248 err: 249 return p; 250 } 251 252 /* XXX: Need some documentation about why UPCALL_BUF_LEN is so small. 253 * Is user space expecting no more than UPCALL_BUF_LEN bytes? 254 * Note that there are now _two_ NI_MAXHOST sized data items 255 * being passed in this string. 256 */ 257 #define UPCALL_BUF_LEN 256 258 259 struct gss_upcall_msg { 260 refcount_t count; 261 kuid_t uid; 262 const char *service_name; 263 struct rpc_pipe_msg msg; 264 struct list_head list; 265 struct gss_auth *auth; 266 struct rpc_pipe *pipe; 267 struct rpc_wait_queue rpc_waitqueue; 268 wait_queue_head_t waitqueue; 269 struct gss_cl_ctx *ctx; 270 char databuf[UPCALL_BUF_LEN]; 271 }; 272 273 static int get_pipe_version(struct net *net) 274 { 275 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 276 int ret; 277 278 spin_lock(&pipe_version_lock); 279 if (sn->pipe_version >= 0) { 280 atomic_inc(&sn->pipe_users); 281 ret = sn->pipe_version; 282 } else 283 ret = -EAGAIN; 284 spin_unlock(&pipe_version_lock); 285 return ret; 286 } 287 288 static void put_pipe_version(struct net *net) 289 { 290 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 291 292 if (atomic_dec_and_lock(&sn->pipe_users, &pipe_version_lock)) { 293 sn->pipe_version = -1; 294 spin_unlock(&pipe_version_lock); 295 } 296 } 297 298 static void 299 gss_release_msg(struct gss_upcall_msg *gss_msg) 300 { 301 struct net *net = gss_msg->auth->net; 302 if (!refcount_dec_and_test(&gss_msg->count)) 303 return; 304 put_pipe_version(net); 305 BUG_ON(!list_empty(&gss_msg->list)); 306 if (gss_msg->ctx != NULL) 307 gss_put_ctx(gss_msg->ctx); 308 rpc_destroy_wait_queue(&gss_msg->rpc_waitqueue); 309 gss_put_auth(gss_msg->auth); 310 kfree_const(gss_msg->service_name); 311 kfree(gss_msg); 312 } 313 314 static struct gss_upcall_msg * 315 __gss_find_upcall(struct rpc_pipe *pipe, kuid_t uid, const struct gss_auth *auth) 316 { 317 struct gss_upcall_msg *pos; 318 list_for_each_entry(pos, &pipe->in_downcall, list) { 319 if (!uid_eq(pos->uid, uid)) 320 continue; 321 if (pos->auth->service != auth->service) 322 continue; 323 refcount_inc(&pos->count); 324 return pos; 325 } 326 return NULL; 327 } 328 329 /* Try to add an upcall to the pipefs queue. 330 * If an upcall owned by our uid already exists, then we return a reference 331 * to that upcall instead of adding the new upcall. 332 */ 333 static inline struct gss_upcall_msg * 334 gss_add_msg(struct gss_upcall_msg *gss_msg) 335 { 336 struct rpc_pipe *pipe = gss_msg->pipe; 337 struct gss_upcall_msg *old; 338 339 spin_lock(&pipe->lock); 340 old = __gss_find_upcall(pipe, gss_msg->uid, gss_msg->auth); 341 if (old == NULL) { 342 refcount_inc(&gss_msg->count); 343 list_add(&gss_msg->list, &pipe->in_downcall); 344 } else 345 gss_msg = old; 346 spin_unlock(&pipe->lock); 347 return gss_msg; 348 } 349 350 static void 351 __gss_unhash_msg(struct gss_upcall_msg *gss_msg) 352 { 353 list_del_init(&gss_msg->list); 354 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno); 355 wake_up_all(&gss_msg->waitqueue); 356 refcount_dec(&gss_msg->count); 357 } 358 359 static void 360 gss_unhash_msg(struct gss_upcall_msg *gss_msg) 361 { 362 struct rpc_pipe *pipe = gss_msg->pipe; 363 364 if (list_empty(&gss_msg->list)) 365 return; 366 spin_lock(&pipe->lock); 367 if (!list_empty(&gss_msg->list)) 368 __gss_unhash_msg(gss_msg); 369 spin_unlock(&pipe->lock); 370 } 371 372 static void 373 gss_handle_downcall_result(struct gss_cred *gss_cred, struct gss_upcall_msg *gss_msg) 374 { 375 switch (gss_msg->msg.errno) { 376 case 0: 377 if (gss_msg->ctx == NULL) 378 break; 379 clear_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags); 380 gss_cred_set_ctx(&gss_cred->gc_base, gss_msg->ctx); 381 break; 382 case -EKEYEXPIRED: 383 set_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags); 384 } 385 gss_cred->gc_upcall_timestamp = jiffies; 386 gss_cred->gc_upcall = NULL; 387 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno); 388 } 389 390 static void 391 gss_upcall_callback(struct rpc_task *task) 392 { 393 struct gss_cred *gss_cred = container_of(task->tk_rqstp->rq_cred, 394 struct gss_cred, gc_base); 395 struct gss_upcall_msg *gss_msg = gss_cred->gc_upcall; 396 struct rpc_pipe *pipe = gss_msg->pipe; 397 398 spin_lock(&pipe->lock); 399 gss_handle_downcall_result(gss_cred, gss_msg); 400 spin_unlock(&pipe->lock); 401 task->tk_status = gss_msg->msg.errno; 402 gss_release_msg(gss_msg); 403 } 404 405 static void gss_encode_v0_msg(struct gss_upcall_msg *gss_msg, 406 const struct cred *cred) 407 { 408 struct user_namespace *userns = cred->user_ns; 409 410 uid_t uid = from_kuid_munged(userns, gss_msg->uid); 411 memcpy(gss_msg->databuf, &uid, sizeof(uid)); 412 gss_msg->msg.data = gss_msg->databuf; 413 gss_msg->msg.len = sizeof(uid); 414 415 BUILD_BUG_ON(sizeof(uid) > sizeof(gss_msg->databuf)); 416 } 417 418 static ssize_t 419 gss_v0_upcall(struct file *file, struct rpc_pipe_msg *msg, 420 char __user *buf, size_t buflen) 421 { 422 struct gss_upcall_msg *gss_msg = container_of(msg, 423 struct gss_upcall_msg, 424 msg); 425 if (msg->copied == 0) 426 gss_encode_v0_msg(gss_msg, file->f_cred); 427 return rpc_pipe_generic_upcall(file, msg, buf, buflen); 428 } 429 430 static int gss_encode_v1_msg(struct gss_upcall_msg *gss_msg, 431 const char *service_name, 432 const char *target_name, 433 const struct cred *cred) 434 { 435 struct user_namespace *userns = cred->user_ns; 436 struct gss_api_mech *mech = gss_msg->auth->mech; 437 char *p = gss_msg->databuf; 438 size_t buflen = sizeof(gss_msg->databuf); 439 int len; 440 441 len = scnprintf(p, buflen, "mech=%s uid=%d", mech->gm_name, 442 from_kuid_munged(userns, gss_msg->uid)); 443 buflen -= len; 444 p += len; 445 gss_msg->msg.len = len; 446 447 /* 448 * target= is a full service principal that names the remote 449 * identity that we are authenticating to. 450 */ 451 if (target_name) { 452 len = scnprintf(p, buflen, " target=%s", target_name); 453 buflen -= len; 454 p += len; 455 gss_msg->msg.len += len; 456 } 457 458 /* 459 * gssd uses service= and srchost= to select a matching key from 460 * the system's keytab to use as the source principal. 461 * 462 * service= is the service name part of the source principal, 463 * or "*" (meaning choose any). 464 * 465 * srchost= is the hostname part of the source principal. When 466 * not provided, gssd uses the local hostname. 467 */ 468 if (service_name) { 469 char *c = strchr(service_name, '@'); 470 471 if (!c) 472 len = scnprintf(p, buflen, " service=%s", 473 service_name); 474 else 475 len = scnprintf(p, buflen, 476 " service=%.*s srchost=%s", 477 (int)(c - service_name), 478 service_name, c + 1); 479 buflen -= len; 480 p += len; 481 gss_msg->msg.len += len; 482 } 483 484 if (mech->gm_upcall_enctypes) { 485 len = scnprintf(p, buflen, " enctypes=%s", 486 mech->gm_upcall_enctypes); 487 buflen -= len; 488 p += len; 489 gss_msg->msg.len += len; 490 } 491 trace_rpcgss_upcall_msg(gss_msg->databuf); 492 len = scnprintf(p, buflen, "\n"); 493 if (len == 0) 494 goto out_overflow; 495 gss_msg->msg.len += len; 496 gss_msg->msg.data = gss_msg->databuf; 497 return 0; 498 out_overflow: 499 WARN_ON_ONCE(1); 500 return -ENOMEM; 501 } 502 503 static ssize_t 504 gss_v1_upcall(struct file *file, struct rpc_pipe_msg *msg, 505 char __user *buf, size_t buflen) 506 { 507 struct gss_upcall_msg *gss_msg = container_of(msg, 508 struct gss_upcall_msg, 509 msg); 510 int err; 511 if (msg->copied == 0) { 512 err = gss_encode_v1_msg(gss_msg, 513 gss_msg->service_name, 514 gss_msg->auth->target_name, 515 file->f_cred); 516 if (err) 517 return err; 518 } 519 return rpc_pipe_generic_upcall(file, msg, buf, buflen); 520 } 521 522 static struct gss_upcall_msg * 523 gss_alloc_msg(struct gss_auth *gss_auth, 524 kuid_t uid, const char *service_name) 525 { 526 struct gss_upcall_msg *gss_msg; 527 int vers; 528 int err = -ENOMEM; 529 530 gss_msg = kzalloc(sizeof(*gss_msg), GFP_KERNEL); 531 if (gss_msg == NULL) 532 goto err; 533 vers = get_pipe_version(gss_auth->net); 534 err = vers; 535 if (err < 0) 536 goto err_free_msg; 537 gss_msg->pipe = gss_auth->gss_pipe[vers]->pipe; 538 INIT_LIST_HEAD(&gss_msg->list); 539 rpc_init_wait_queue(&gss_msg->rpc_waitqueue, "RPCSEC_GSS upcall waitq"); 540 init_waitqueue_head(&gss_msg->waitqueue); 541 refcount_set(&gss_msg->count, 1); 542 gss_msg->uid = uid; 543 gss_msg->auth = gss_auth; 544 kref_get(&gss_auth->kref); 545 if (service_name) { 546 gss_msg->service_name = kstrdup_const(service_name, GFP_KERNEL); 547 if (!gss_msg->service_name) { 548 err = -ENOMEM; 549 goto err_put_pipe_version; 550 } 551 } 552 return gss_msg; 553 err_put_pipe_version: 554 put_pipe_version(gss_auth->net); 555 err_free_msg: 556 kfree(gss_msg); 557 err: 558 return ERR_PTR(err); 559 } 560 561 static struct gss_upcall_msg * 562 gss_setup_upcall(struct gss_auth *gss_auth, struct rpc_cred *cred) 563 { 564 struct gss_cred *gss_cred = container_of(cred, 565 struct gss_cred, gc_base); 566 struct gss_upcall_msg *gss_new, *gss_msg; 567 kuid_t uid = cred->cr_cred->fsuid; 568 569 gss_new = gss_alloc_msg(gss_auth, uid, gss_cred->gc_principal); 570 if (IS_ERR(gss_new)) 571 return gss_new; 572 gss_msg = gss_add_msg(gss_new); 573 if (gss_msg == gss_new) { 574 int res; 575 refcount_inc(&gss_msg->count); 576 res = rpc_queue_upcall(gss_new->pipe, &gss_new->msg); 577 if (res) { 578 gss_unhash_msg(gss_new); 579 refcount_dec(&gss_msg->count); 580 gss_release_msg(gss_new); 581 gss_msg = ERR_PTR(res); 582 } 583 } else 584 gss_release_msg(gss_new); 585 return gss_msg; 586 } 587 588 static void warn_gssd(void) 589 { 590 dprintk("AUTH_GSS upcall failed. Please check user daemon is running.\n"); 591 } 592 593 static inline int 594 gss_refresh_upcall(struct rpc_task *task) 595 { 596 struct rpc_cred *cred = task->tk_rqstp->rq_cred; 597 struct gss_auth *gss_auth = container_of(cred->cr_auth, 598 struct gss_auth, rpc_auth); 599 struct gss_cred *gss_cred = container_of(cred, 600 struct gss_cred, gc_base); 601 struct gss_upcall_msg *gss_msg; 602 struct rpc_pipe *pipe; 603 int err = 0; 604 605 gss_msg = gss_setup_upcall(gss_auth, cred); 606 if (PTR_ERR(gss_msg) == -EAGAIN) { 607 /* XXX: warning on the first, under the assumption we 608 * shouldn't normally hit this case on a refresh. */ 609 warn_gssd(); 610 rpc_sleep_on_timeout(&pipe_version_rpc_waitqueue, 611 task, NULL, jiffies + (15 * HZ)); 612 err = -EAGAIN; 613 goto out; 614 } 615 if (IS_ERR(gss_msg)) { 616 err = PTR_ERR(gss_msg); 617 goto out; 618 } 619 pipe = gss_msg->pipe; 620 spin_lock(&pipe->lock); 621 if (gss_cred->gc_upcall != NULL) 622 rpc_sleep_on(&gss_cred->gc_upcall->rpc_waitqueue, task, NULL); 623 else if (gss_msg->ctx == NULL && gss_msg->msg.errno >= 0) { 624 gss_cred->gc_upcall = gss_msg; 625 /* gss_upcall_callback will release the reference to gss_upcall_msg */ 626 refcount_inc(&gss_msg->count); 627 rpc_sleep_on(&gss_msg->rpc_waitqueue, task, gss_upcall_callback); 628 } else { 629 gss_handle_downcall_result(gss_cred, gss_msg); 630 err = gss_msg->msg.errno; 631 } 632 spin_unlock(&pipe->lock); 633 gss_release_msg(gss_msg); 634 out: 635 trace_rpcgss_upcall_result(from_kuid(&init_user_ns, 636 cred->cr_cred->fsuid), err); 637 return err; 638 } 639 640 static inline int 641 gss_create_upcall(struct gss_auth *gss_auth, struct gss_cred *gss_cred) 642 { 643 struct net *net = gss_auth->net; 644 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 645 struct rpc_pipe *pipe; 646 struct rpc_cred *cred = &gss_cred->gc_base; 647 struct gss_upcall_msg *gss_msg; 648 DEFINE_WAIT(wait); 649 int err; 650 651 retry: 652 err = 0; 653 /* if gssd is down, just skip upcalling altogether */ 654 if (!gssd_running(net)) { 655 warn_gssd(); 656 err = -EACCES; 657 goto out; 658 } 659 gss_msg = gss_setup_upcall(gss_auth, cred); 660 if (PTR_ERR(gss_msg) == -EAGAIN) { 661 err = wait_event_interruptible_timeout(pipe_version_waitqueue, 662 sn->pipe_version >= 0, 15 * HZ); 663 if (sn->pipe_version < 0) { 664 warn_gssd(); 665 err = -EACCES; 666 } 667 if (err < 0) 668 goto out; 669 goto retry; 670 } 671 if (IS_ERR(gss_msg)) { 672 err = PTR_ERR(gss_msg); 673 goto out; 674 } 675 pipe = gss_msg->pipe; 676 for (;;) { 677 prepare_to_wait(&gss_msg->waitqueue, &wait, TASK_KILLABLE); 678 spin_lock(&pipe->lock); 679 if (gss_msg->ctx != NULL || gss_msg->msg.errno < 0) { 680 break; 681 } 682 spin_unlock(&pipe->lock); 683 if (fatal_signal_pending(current)) { 684 err = -ERESTARTSYS; 685 goto out_intr; 686 } 687 schedule(); 688 } 689 if (gss_msg->ctx) { 690 trace_rpcgss_ctx_init(gss_cred); 691 gss_cred_set_ctx(cred, gss_msg->ctx); 692 } else { 693 err = gss_msg->msg.errno; 694 } 695 spin_unlock(&pipe->lock); 696 out_intr: 697 finish_wait(&gss_msg->waitqueue, &wait); 698 gss_release_msg(gss_msg); 699 out: 700 trace_rpcgss_upcall_result(from_kuid(&init_user_ns, 701 cred->cr_cred->fsuid), err); 702 return err; 703 } 704 705 static struct gss_upcall_msg * 706 gss_find_downcall(struct rpc_pipe *pipe, kuid_t uid) 707 { 708 struct gss_upcall_msg *pos; 709 list_for_each_entry(pos, &pipe->in_downcall, list) { 710 if (!uid_eq(pos->uid, uid)) 711 continue; 712 if (!rpc_msg_is_inflight(&pos->msg)) 713 continue; 714 refcount_inc(&pos->count); 715 return pos; 716 } 717 return NULL; 718 } 719 720 #define MSG_BUF_MAXSIZE 1024 721 722 static ssize_t 723 gss_pipe_downcall(struct file *filp, const char __user *src, size_t mlen) 724 { 725 const void *p, *end; 726 void *buf; 727 struct gss_upcall_msg *gss_msg; 728 struct rpc_pipe *pipe = RPC_I(file_inode(filp))->pipe; 729 struct gss_cl_ctx *ctx; 730 uid_t id; 731 kuid_t uid; 732 ssize_t err = -EFBIG; 733 734 if (mlen > MSG_BUF_MAXSIZE) 735 goto out; 736 err = -ENOMEM; 737 buf = kmalloc(mlen, GFP_KERNEL); 738 if (!buf) 739 goto out; 740 741 err = -EFAULT; 742 if (copy_from_user(buf, src, mlen)) 743 goto err; 744 745 end = (const void *)((char *)buf + mlen); 746 p = simple_get_bytes(buf, end, &id, sizeof(id)); 747 if (IS_ERR(p)) { 748 err = PTR_ERR(p); 749 goto err; 750 } 751 752 uid = make_kuid(current_user_ns(), id); 753 if (!uid_valid(uid)) { 754 err = -EINVAL; 755 goto err; 756 } 757 758 err = -ENOMEM; 759 ctx = gss_alloc_context(); 760 if (ctx == NULL) 761 goto err; 762 763 err = -ENOENT; 764 /* Find a matching upcall */ 765 spin_lock(&pipe->lock); 766 gss_msg = gss_find_downcall(pipe, uid); 767 if (gss_msg == NULL) { 768 spin_unlock(&pipe->lock); 769 goto err_put_ctx; 770 } 771 list_del_init(&gss_msg->list); 772 spin_unlock(&pipe->lock); 773 774 p = gss_fill_context(p, end, ctx, gss_msg->auth->mech); 775 if (IS_ERR(p)) { 776 err = PTR_ERR(p); 777 switch (err) { 778 case -EACCES: 779 case -EKEYEXPIRED: 780 gss_msg->msg.errno = err; 781 err = mlen; 782 break; 783 case -EFAULT: 784 case -ENOMEM: 785 case -EINVAL: 786 case -ENOSYS: 787 gss_msg->msg.errno = -EAGAIN; 788 break; 789 default: 790 printk(KERN_CRIT "%s: bad return from " 791 "gss_fill_context: %zd\n", __func__, err); 792 gss_msg->msg.errno = -EIO; 793 } 794 goto err_release_msg; 795 } 796 gss_msg->ctx = gss_get_ctx(ctx); 797 err = mlen; 798 799 err_release_msg: 800 spin_lock(&pipe->lock); 801 __gss_unhash_msg(gss_msg); 802 spin_unlock(&pipe->lock); 803 gss_release_msg(gss_msg); 804 err_put_ctx: 805 gss_put_ctx(ctx); 806 err: 807 kfree(buf); 808 out: 809 return err; 810 } 811 812 static int gss_pipe_open(struct inode *inode, int new_version) 813 { 814 struct net *net = inode->i_sb->s_fs_info; 815 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 816 int ret = 0; 817 818 spin_lock(&pipe_version_lock); 819 if (sn->pipe_version < 0) { 820 /* First open of any gss pipe determines the version: */ 821 sn->pipe_version = new_version; 822 rpc_wake_up(&pipe_version_rpc_waitqueue); 823 wake_up(&pipe_version_waitqueue); 824 } else if (sn->pipe_version != new_version) { 825 /* Trying to open a pipe of a different version */ 826 ret = -EBUSY; 827 goto out; 828 } 829 atomic_inc(&sn->pipe_users); 830 out: 831 spin_unlock(&pipe_version_lock); 832 return ret; 833 834 } 835 836 static int gss_pipe_open_v0(struct inode *inode) 837 { 838 return gss_pipe_open(inode, 0); 839 } 840 841 static int gss_pipe_open_v1(struct inode *inode) 842 { 843 return gss_pipe_open(inode, 1); 844 } 845 846 static void 847 gss_pipe_release(struct inode *inode) 848 { 849 struct net *net = inode->i_sb->s_fs_info; 850 struct rpc_pipe *pipe = RPC_I(inode)->pipe; 851 struct gss_upcall_msg *gss_msg; 852 853 restart: 854 spin_lock(&pipe->lock); 855 list_for_each_entry(gss_msg, &pipe->in_downcall, list) { 856 857 if (!list_empty(&gss_msg->msg.list)) 858 continue; 859 gss_msg->msg.errno = -EPIPE; 860 refcount_inc(&gss_msg->count); 861 __gss_unhash_msg(gss_msg); 862 spin_unlock(&pipe->lock); 863 gss_release_msg(gss_msg); 864 goto restart; 865 } 866 spin_unlock(&pipe->lock); 867 868 put_pipe_version(net); 869 } 870 871 static void 872 gss_pipe_destroy_msg(struct rpc_pipe_msg *msg) 873 { 874 struct gss_upcall_msg *gss_msg = container_of(msg, struct gss_upcall_msg, msg); 875 876 if (msg->errno < 0) { 877 refcount_inc(&gss_msg->count); 878 gss_unhash_msg(gss_msg); 879 if (msg->errno == -ETIMEDOUT) 880 warn_gssd(); 881 gss_release_msg(gss_msg); 882 } 883 gss_release_msg(gss_msg); 884 } 885 886 static void gss_pipe_dentry_destroy(struct dentry *dir, 887 struct rpc_pipe_dir_object *pdo) 888 { 889 struct gss_pipe *gss_pipe = pdo->pdo_data; 890 struct rpc_pipe *pipe = gss_pipe->pipe; 891 892 if (pipe->dentry != NULL) { 893 rpc_unlink(pipe->dentry); 894 pipe->dentry = NULL; 895 } 896 } 897 898 static int gss_pipe_dentry_create(struct dentry *dir, 899 struct rpc_pipe_dir_object *pdo) 900 { 901 struct gss_pipe *p = pdo->pdo_data; 902 struct dentry *dentry; 903 904 dentry = rpc_mkpipe_dentry(dir, p->name, p->clnt, p->pipe); 905 if (IS_ERR(dentry)) 906 return PTR_ERR(dentry); 907 p->pipe->dentry = dentry; 908 return 0; 909 } 910 911 static const struct rpc_pipe_dir_object_ops gss_pipe_dir_object_ops = { 912 .create = gss_pipe_dentry_create, 913 .destroy = gss_pipe_dentry_destroy, 914 }; 915 916 static struct gss_pipe *gss_pipe_alloc(struct rpc_clnt *clnt, 917 const char *name, 918 const struct rpc_pipe_ops *upcall_ops) 919 { 920 struct gss_pipe *p; 921 int err = -ENOMEM; 922 923 p = kmalloc(sizeof(*p), GFP_KERNEL); 924 if (p == NULL) 925 goto err; 926 p->pipe = rpc_mkpipe_data(upcall_ops, RPC_PIPE_WAIT_FOR_OPEN); 927 if (IS_ERR(p->pipe)) { 928 err = PTR_ERR(p->pipe); 929 goto err_free_gss_pipe; 930 } 931 p->name = name; 932 p->clnt = clnt; 933 kref_init(&p->kref); 934 rpc_init_pipe_dir_object(&p->pdo, 935 &gss_pipe_dir_object_ops, 936 p); 937 return p; 938 err_free_gss_pipe: 939 kfree(p); 940 err: 941 return ERR_PTR(err); 942 } 943 944 struct gss_alloc_pdo { 945 struct rpc_clnt *clnt; 946 const char *name; 947 const struct rpc_pipe_ops *upcall_ops; 948 }; 949 950 static int gss_pipe_match_pdo(struct rpc_pipe_dir_object *pdo, void *data) 951 { 952 struct gss_pipe *gss_pipe; 953 struct gss_alloc_pdo *args = data; 954 955 if (pdo->pdo_ops != &gss_pipe_dir_object_ops) 956 return 0; 957 gss_pipe = container_of(pdo, struct gss_pipe, pdo); 958 if (strcmp(gss_pipe->name, args->name) != 0) 959 return 0; 960 if (!kref_get_unless_zero(&gss_pipe->kref)) 961 return 0; 962 return 1; 963 } 964 965 static struct rpc_pipe_dir_object *gss_pipe_alloc_pdo(void *data) 966 { 967 struct gss_pipe *gss_pipe; 968 struct gss_alloc_pdo *args = data; 969 970 gss_pipe = gss_pipe_alloc(args->clnt, args->name, args->upcall_ops); 971 if (!IS_ERR(gss_pipe)) 972 return &gss_pipe->pdo; 973 return NULL; 974 } 975 976 static struct gss_pipe *gss_pipe_get(struct rpc_clnt *clnt, 977 const char *name, 978 const struct rpc_pipe_ops *upcall_ops) 979 { 980 struct net *net = rpc_net_ns(clnt); 981 struct rpc_pipe_dir_object *pdo; 982 struct gss_alloc_pdo args = { 983 .clnt = clnt, 984 .name = name, 985 .upcall_ops = upcall_ops, 986 }; 987 988 pdo = rpc_find_or_alloc_pipe_dir_object(net, 989 &clnt->cl_pipedir_objects, 990 gss_pipe_match_pdo, 991 gss_pipe_alloc_pdo, 992 &args); 993 if (pdo != NULL) 994 return container_of(pdo, struct gss_pipe, pdo); 995 return ERR_PTR(-ENOMEM); 996 } 997 998 static void __gss_pipe_free(struct gss_pipe *p) 999 { 1000 struct rpc_clnt *clnt = p->clnt; 1001 struct net *net = rpc_net_ns(clnt); 1002 1003 rpc_remove_pipe_dir_object(net, 1004 &clnt->cl_pipedir_objects, 1005 &p->pdo); 1006 rpc_destroy_pipe_data(p->pipe); 1007 kfree(p); 1008 } 1009 1010 static void __gss_pipe_release(struct kref *kref) 1011 { 1012 struct gss_pipe *p = container_of(kref, struct gss_pipe, kref); 1013 1014 __gss_pipe_free(p); 1015 } 1016 1017 static void gss_pipe_free(struct gss_pipe *p) 1018 { 1019 if (p != NULL) 1020 kref_put(&p->kref, __gss_pipe_release); 1021 } 1022 1023 /* 1024 * NOTE: we have the opportunity to use different 1025 * parameters based on the input flavor (which must be a pseudoflavor) 1026 */ 1027 static struct gss_auth * 1028 gss_create_new(const struct rpc_auth_create_args *args, struct rpc_clnt *clnt) 1029 { 1030 rpc_authflavor_t flavor = args->pseudoflavor; 1031 struct gss_auth *gss_auth; 1032 struct gss_pipe *gss_pipe; 1033 struct rpc_auth * auth; 1034 int err = -ENOMEM; /* XXX? */ 1035 1036 if (!try_module_get(THIS_MODULE)) 1037 return ERR_PTR(err); 1038 if (!(gss_auth = kmalloc(sizeof(*gss_auth), GFP_KERNEL))) 1039 goto out_dec; 1040 INIT_HLIST_NODE(&gss_auth->hash); 1041 gss_auth->target_name = NULL; 1042 if (args->target_name) { 1043 gss_auth->target_name = kstrdup(args->target_name, GFP_KERNEL); 1044 if (gss_auth->target_name == NULL) 1045 goto err_free; 1046 } 1047 gss_auth->client = clnt; 1048 gss_auth->net = get_net_track(rpc_net_ns(clnt), &gss_auth->ns_tracker, 1049 GFP_KERNEL); 1050 err = -EINVAL; 1051 gss_auth->mech = gss_mech_get_by_pseudoflavor(flavor); 1052 if (!gss_auth->mech) 1053 goto err_put_net; 1054 gss_auth->service = gss_pseudoflavor_to_service(gss_auth->mech, flavor); 1055 if (gss_auth->service == 0) 1056 goto err_put_mech; 1057 if (!gssd_running(gss_auth->net)) 1058 goto err_put_mech; 1059 auth = &gss_auth->rpc_auth; 1060 auth->au_cslack = GSS_CRED_SLACK >> 2; 1061 BUILD_BUG_ON(GSS_KRB5_MAX_SLACK_NEEDED > RPC_MAX_AUTH_SIZE); 1062 auth->au_rslack = GSS_KRB5_MAX_SLACK_NEEDED >> 2; 1063 auth->au_verfsize = GSS_VERF_SLACK >> 2; 1064 auth->au_ralign = GSS_VERF_SLACK >> 2; 1065 __set_bit(RPCAUTH_AUTH_UPDATE_SLACK, &auth->au_flags); 1066 auth->au_ops = &authgss_ops; 1067 auth->au_flavor = flavor; 1068 if (gss_pseudoflavor_to_datatouch(gss_auth->mech, flavor)) 1069 __set_bit(RPCAUTH_AUTH_DATATOUCH, &auth->au_flags); 1070 refcount_set(&auth->au_count, 1); 1071 kref_init(&gss_auth->kref); 1072 1073 err = rpcauth_init_credcache(auth); 1074 if (err) 1075 goto err_put_mech; 1076 /* 1077 * Note: if we created the old pipe first, then someone who 1078 * examined the directory at the right moment might conclude 1079 * that we supported only the old pipe. So we instead create 1080 * the new pipe first. 1081 */ 1082 gss_pipe = gss_pipe_get(clnt, "gssd", &gss_upcall_ops_v1); 1083 if (IS_ERR(gss_pipe)) { 1084 err = PTR_ERR(gss_pipe); 1085 goto err_destroy_credcache; 1086 } 1087 gss_auth->gss_pipe[1] = gss_pipe; 1088 1089 gss_pipe = gss_pipe_get(clnt, gss_auth->mech->gm_name, 1090 &gss_upcall_ops_v0); 1091 if (IS_ERR(gss_pipe)) { 1092 err = PTR_ERR(gss_pipe); 1093 goto err_destroy_pipe_1; 1094 } 1095 gss_auth->gss_pipe[0] = gss_pipe; 1096 1097 return gss_auth; 1098 err_destroy_pipe_1: 1099 gss_pipe_free(gss_auth->gss_pipe[1]); 1100 err_destroy_credcache: 1101 rpcauth_destroy_credcache(auth); 1102 err_put_mech: 1103 gss_mech_put(gss_auth->mech); 1104 err_put_net: 1105 put_net_track(gss_auth->net, &gss_auth->ns_tracker); 1106 err_free: 1107 kfree(gss_auth->target_name); 1108 kfree(gss_auth); 1109 out_dec: 1110 module_put(THIS_MODULE); 1111 trace_rpcgss_createauth(flavor, err); 1112 return ERR_PTR(err); 1113 } 1114 1115 static void 1116 gss_free(struct gss_auth *gss_auth) 1117 { 1118 gss_pipe_free(gss_auth->gss_pipe[0]); 1119 gss_pipe_free(gss_auth->gss_pipe[1]); 1120 gss_mech_put(gss_auth->mech); 1121 put_net_track(gss_auth->net, &gss_auth->ns_tracker); 1122 kfree(gss_auth->target_name); 1123 1124 kfree(gss_auth); 1125 module_put(THIS_MODULE); 1126 } 1127 1128 static void 1129 gss_free_callback(struct kref *kref) 1130 { 1131 struct gss_auth *gss_auth = container_of(kref, struct gss_auth, kref); 1132 1133 gss_free(gss_auth); 1134 } 1135 1136 static void 1137 gss_put_auth(struct gss_auth *gss_auth) 1138 { 1139 kref_put(&gss_auth->kref, gss_free_callback); 1140 } 1141 1142 static void 1143 gss_destroy(struct rpc_auth *auth) 1144 { 1145 struct gss_auth *gss_auth = container_of(auth, 1146 struct gss_auth, rpc_auth); 1147 1148 if (hash_hashed(&gss_auth->hash)) { 1149 spin_lock(&gss_auth_hash_lock); 1150 hash_del(&gss_auth->hash); 1151 spin_unlock(&gss_auth_hash_lock); 1152 } 1153 1154 gss_pipe_free(gss_auth->gss_pipe[0]); 1155 gss_auth->gss_pipe[0] = NULL; 1156 gss_pipe_free(gss_auth->gss_pipe[1]); 1157 gss_auth->gss_pipe[1] = NULL; 1158 rpcauth_destroy_credcache(auth); 1159 1160 gss_put_auth(gss_auth); 1161 } 1162 1163 /* 1164 * Auths may be shared between rpc clients that were cloned from a 1165 * common client with the same xprt, if they also share the flavor and 1166 * target_name. 1167 * 1168 * The auth is looked up from the oldest parent sharing the same 1169 * cl_xprt, and the auth itself references only that common parent 1170 * (which is guaranteed to last as long as any of its descendants). 1171 */ 1172 static struct gss_auth * 1173 gss_auth_find_or_add_hashed(const struct rpc_auth_create_args *args, 1174 struct rpc_clnt *clnt, 1175 struct gss_auth *new) 1176 { 1177 struct gss_auth *gss_auth; 1178 unsigned long hashval = (unsigned long)clnt; 1179 1180 spin_lock(&gss_auth_hash_lock); 1181 hash_for_each_possible(gss_auth_hash_table, 1182 gss_auth, 1183 hash, 1184 hashval) { 1185 if (gss_auth->client != clnt) 1186 continue; 1187 if (gss_auth->rpc_auth.au_flavor != args->pseudoflavor) 1188 continue; 1189 if (gss_auth->target_name != args->target_name) { 1190 if (gss_auth->target_name == NULL) 1191 continue; 1192 if (args->target_name == NULL) 1193 continue; 1194 if (strcmp(gss_auth->target_name, args->target_name)) 1195 continue; 1196 } 1197 if (!refcount_inc_not_zero(&gss_auth->rpc_auth.au_count)) 1198 continue; 1199 goto out; 1200 } 1201 if (new) 1202 hash_add(gss_auth_hash_table, &new->hash, hashval); 1203 gss_auth = new; 1204 out: 1205 spin_unlock(&gss_auth_hash_lock); 1206 return gss_auth; 1207 } 1208 1209 static struct gss_auth * 1210 gss_create_hashed(const struct rpc_auth_create_args *args, 1211 struct rpc_clnt *clnt) 1212 { 1213 struct gss_auth *gss_auth; 1214 struct gss_auth *new; 1215 1216 gss_auth = gss_auth_find_or_add_hashed(args, clnt, NULL); 1217 if (gss_auth != NULL) 1218 goto out; 1219 new = gss_create_new(args, clnt); 1220 if (IS_ERR(new)) 1221 return new; 1222 gss_auth = gss_auth_find_or_add_hashed(args, clnt, new); 1223 if (gss_auth != new) 1224 gss_destroy(&new->rpc_auth); 1225 out: 1226 return gss_auth; 1227 } 1228 1229 static struct rpc_auth * 1230 gss_create(const struct rpc_auth_create_args *args, struct rpc_clnt *clnt) 1231 { 1232 struct gss_auth *gss_auth; 1233 struct rpc_xprt_switch *xps = rcu_access_pointer(clnt->cl_xpi.xpi_xpswitch); 1234 1235 while (clnt != clnt->cl_parent) { 1236 struct rpc_clnt *parent = clnt->cl_parent; 1237 /* Find the original parent for this transport */ 1238 if (rcu_access_pointer(parent->cl_xpi.xpi_xpswitch) != xps) 1239 break; 1240 clnt = parent; 1241 } 1242 1243 gss_auth = gss_create_hashed(args, clnt); 1244 if (IS_ERR(gss_auth)) 1245 return ERR_CAST(gss_auth); 1246 return &gss_auth->rpc_auth; 1247 } 1248 1249 static struct gss_cred * 1250 gss_dup_cred(struct gss_auth *gss_auth, struct gss_cred *gss_cred) 1251 { 1252 struct gss_cred *new; 1253 1254 /* Make a copy of the cred so that we can reference count it */ 1255 new = kzalloc(sizeof(*gss_cred), GFP_KERNEL); 1256 if (new) { 1257 struct auth_cred acred = { 1258 .cred = gss_cred->gc_base.cr_cred, 1259 }; 1260 struct gss_cl_ctx *ctx = 1261 rcu_dereference_protected(gss_cred->gc_ctx, 1); 1262 1263 rpcauth_init_cred(&new->gc_base, &acred, 1264 &gss_auth->rpc_auth, 1265 &gss_nullops); 1266 new->gc_base.cr_flags = 1UL << RPCAUTH_CRED_UPTODATE; 1267 new->gc_service = gss_cred->gc_service; 1268 new->gc_principal = gss_cred->gc_principal; 1269 kref_get(&gss_auth->kref); 1270 rcu_assign_pointer(new->gc_ctx, ctx); 1271 gss_get_ctx(ctx); 1272 } 1273 return new; 1274 } 1275 1276 /* 1277 * gss_send_destroy_context will cause the RPCSEC_GSS to send a NULL RPC call 1278 * to the server with the GSS control procedure field set to 1279 * RPC_GSS_PROC_DESTROY. This should normally cause the server to release 1280 * all RPCSEC_GSS state associated with that context. 1281 */ 1282 static void 1283 gss_send_destroy_context(struct rpc_cred *cred) 1284 { 1285 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 1286 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth); 1287 struct gss_cl_ctx *ctx = rcu_dereference_protected(gss_cred->gc_ctx, 1); 1288 struct gss_cred *new; 1289 struct rpc_task *task; 1290 1291 new = gss_dup_cred(gss_auth, gss_cred); 1292 if (new) { 1293 ctx->gc_proc = RPC_GSS_PROC_DESTROY; 1294 1295 trace_rpcgss_ctx_destroy(gss_cred); 1296 task = rpc_call_null(gss_auth->client, &new->gc_base, 1297 RPC_TASK_ASYNC); 1298 if (!IS_ERR(task)) 1299 rpc_put_task(task); 1300 1301 put_rpccred(&new->gc_base); 1302 } 1303 } 1304 1305 /* gss_destroy_cred (and gss_free_ctx) are used to clean up after failure 1306 * to create a new cred or context, so they check that things have been 1307 * allocated before freeing them. */ 1308 static void 1309 gss_do_free_ctx(struct gss_cl_ctx *ctx) 1310 { 1311 gss_delete_sec_context(&ctx->gc_gss_ctx); 1312 kfree(ctx->gc_wire_ctx.data); 1313 kfree(ctx->gc_acceptor.data); 1314 kfree(ctx); 1315 } 1316 1317 static void 1318 gss_free_ctx_callback(struct rcu_head *head) 1319 { 1320 struct gss_cl_ctx *ctx = container_of(head, struct gss_cl_ctx, gc_rcu); 1321 gss_do_free_ctx(ctx); 1322 } 1323 1324 static void 1325 gss_free_ctx(struct gss_cl_ctx *ctx) 1326 { 1327 call_rcu(&ctx->gc_rcu, gss_free_ctx_callback); 1328 } 1329 1330 static void 1331 gss_free_cred(struct gss_cred *gss_cred) 1332 { 1333 kfree(gss_cred); 1334 } 1335 1336 static void 1337 gss_free_cred_callback(struct rcu_head *head) 1338 { 1339 struct gss_cred *gss_cred = container_of(head, struct gss_cred, gc_base.cr_rcu); 1340 gss_free_cred(gss_cred); 1341 } 1342 1343 static void 1344 gss_destroy_nullcred(struct rpc_cred *cred) 1345 { 1346 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 1347 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth); 1348 struct gss_cl_ctx *ctx = rcu_dereference_protected(gss_cred->gc_ctx, 1); 1349 1350 RCU_INIT_POINTER(gss_cred->gc_ctx, NULL); 1351 put_cred(cred->cr_cred); 1352 call_rcu(&cred->cr_rcu, gss_free_cred_callback); 1353 if (ctx) 1354 gss_put_ctx(ctx); 1355 gss_put_auth(gss_auth); 1356 } 1357 1358 static void 1359 gss_destroy_cred(struct rpc_cred *cred) 1360 { 1361 if (test_and_clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags) != 0) 1362 gss_send_destroy_context(cred); 1363 gss_destroy_nullcred(cred); 1364 } 1365 1366 static int 1367 gss_hash_cred(struct auth_cred *acred, unsigned int hashbits) 1368 { 1369 return hash_64(from_kuid(&init_user_ns, acred->cred->fsuid), hashbits); 1370 } 1371 1372 /* 1373 * Lookup RPCSEC_GSS cred for the current process 1374 */ 1375 static struct rpc_cred *gss_lookup_cred(struct rpc_auth *auth, 1376 struct auth_cred *acred, int flags) 1377 { 1378 return rpcauth_lookup_credcache(auth, acred, flags, 1379 rpc_task_gfp_mask()); 1380 } 1381 1382 static struct rpc_cred * 1383 gss_create_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags, gfp_t gfp) 1384 { 1385 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth); 1386 struct gss_cred *cred = NULL; 1387 int err = -ENOMEM; 1388 1389 if (!(cred = kzalloc(sizeof(*cred), gfp))) 1390 goto out_err; 1391 1392 rpcauth_init_cred(&cred->gc_base, acred, auth, &gss_credops); 1393 /* 1394 * Note: in order to force a call to call_refresh(), we deliberately 1395 * fail to flag the credential as RPCAUTH_CRED_UPTODATE. 1396 */ 1397 cred->gc_base.cr_flags = 1UL << RPCAUTH_CRED_NEW; 1398 cred->gc_service = gss_auth->service; 1399 cred->gc_principal = acred->principal; 1400 kref_get(&gss_auth->kref); 1401 return &cred->gc_base; 1402 1403 out_err: 1404 return ERR_PTR(err); 1405 } 1406 1407 static int 1408 gss_cred_init(struct rpc_auth *auth, struct rpc_cred *cred) 1409 { 1410 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth); 1411 struct gss_cred *gss_cred = container_of(cred,struct gss_cred, gc_base); 1412 int err; 1413 1414 do { 1415 err = gss_create_upcall(gss_auth, gss_cred); 1416 } while (err == -EAGAIN); 1417 return err; 1418 } 1419 1420 static char * 1421 gss_stringify_acceptor(struct rpc_cred *cred) 1422 { 1423 char *string = NULL; 1424 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 1425 struct gss_cl_ctx *ctx; 1426 unsigned int len; 1427 struct xdr_netobj *acceptor; 1428 1429 rcu_read_lock(); 1430 ctx = rcu_dereference(gss_cred->gc_ctx); 1431 if (!ctx) 1432 goto out; 1433 1434 len = ctx->gc_acceptor.len; 1435 rcu_read_unlock(); 1436 1437 /* no point if there's no string */ 1438 if (!len) 1439 return NULL; 1440 realloc: 1441 string = kmalloc(len + 1, GFP_KERNEL); 1442 if (!string) 1443 return NULL; 1444 1445 rcu_read_lock(); 1446 ctx = rcu_dereference(gss_cred->gc_ctx); 1447 1448 /* did the ctx disappear or was it replaced by one with no acceptor? */ 1449 if (!ctx || !ctx->gc_acceptor.len) { 1450 kfree(string); 1451 string = NULL; 1452 goto out; 1453 } 1454 1455 acceptor = &ctx->gc_acceptor; 1456 1457 /* 1458 * Did we find a new acceptor that's longer than the original? Allocate 1459 * a longer buffer and try again. 1460 */ 1461 if (len < acceptor->len) { 1462 len = acceptor->len; 1463 rcu_read_unlock(); 1464 kfree(string); 1465 goto realloc; 1466 } 1467 1468 memcpy(string, acceptor->data, acceptor->len); 1469 string[acceptor->len] = '\0'; 1470 out: 1471 rcu_read_unlock(); 1472 return string; 1473 } 1474 1475 /* 1476 * Returns -EACCES if GSS context is NULL or will expire within the 1477 * timeout (miliseconds) 1478 */ 1479 static int 1480 gss_key_timeout(struct rpc_cred *rc) 1481 { 1482 struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base); 1483 struct gss_cl_ctx *ctx; 1484 unsigned long timeout = jiffies + (gss_key_expire_timeo * HZ); 1485 int ret = 0; 1486 1487 rcu_read_lock(); 1488 ctx = rcu_dereference(gss_cred->gc_ctx); 1489 if (!ctx || time_after(timeout, ctx->gc_expiry)) 1490 ret = -EACCES; 1491 rcu_read_unlock(); 1492 1493 return ret; 1494 } 1495 1496 static int 1497 gss_match(struct auth_cred *acred, struct rpc_cred *rc, int flags) 1498 { 1499 struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base); 1500 struct gss_cl_ctx *ctx; 1501 int ret; 1502 1503 if (test_bit(RPCAUTH_CRED_NEW, &rc->cr_flags)) 1504 goto out; 1505 /* Don't match with creds that have expired. */ 1506 rcu_read_lock(); 1507 ctx = rcu_dereference(gss_cred->gc_ctx); 1508 if (!ctx || time_after(jiffies, ctx->gc_expiry)) { 1509 rcu_read_unlock(); 1510 return 0; 1511 } 1512 rcu_read_unlock(); 1513 if (!test_bit(RPCAUTH_CRED_UPTODATE, &rc->cr_flags)) 1514 return 0; 1515 out: 1516 if (acred->principal != NULL) { 1517 if (gss_cred->gc_principal == NULL) 1518 return 0; 1519 ret = strcmp(acred->principal, gss_cred->gc_principal) == 0; 1520 } else { 1521 if (gss_cred->gc_principal != NULL) 1522 return 0; 1523 ret = uid_eq(rc->cr_cred->fsuid, acred->cred->fsuid); 1524 } 1525 return ret; 1526 } 1527 1528 /* 1529 * Marshal credentials. 1530 * 1531 * The expensive part is computing the verifier. We can't cache a 1532 * pre-computed version of the verifier because the seqno, which 1533 * is different every time, is included in the MIC. 1534 */ 1535 static int gss_marshal(struct rpc_task *task, struct xdr_stream *xdr) 1536 { 1537 struct rpc_rqst *req = task->tk_rqstp; 1538 struct rpc_cred *cred = req->rq_cred; 1539 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, 1540 gc_base); 1541 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 1542 __be32 *p, *cred_len; 1543 u32 maj_stat = 0; 1544 struct xdr_netobj mic; 1545 struct kvec iov; 1546 struct xdr_buf verf_buf; 1547 int status; 1548 1549 /* Credential */ 1550 1551 p = xdr_reserve_space(xdr, 7 * sizeof(*p) + 1552 ctx->gc_wire_ctx.len); 1553 if (!p) 1554 goto marshal_failed; 1555 *p++ = rpc_auth_gss; 1556 cred_len = p++; 1557 1558 spin_lock(&ctx->gc_seq_lock); 1559 req->rq_seqno = (ctx->gc_seq < MAXSEQ) ? ctx->gc_seq++ : MAXSEQ; 1560 spin_unlock(&ctx->gc_seq_lock); 1561 if (req->rq_seqno == MAXSEQ) 1562 goto expired; 1563 trace_rpcgss_seqno(task); 1564 1565 *p++ = cpu_to_be32(RPC_GSS_VERSION); 1566 *p++ = cpu_to_be32(ctx->gc_proc); 1567 *p++ = cpu_to_be32(req->rq_seqno); 1568 *p++ = cpu_to_be32(gss_cred->gc_service); 1569 p = xdr_encode_netobj(p, &ctx->gc_wire_ctx); 1570 *cred_len = cpu_to_be32((p - (cred_len + 1)) << 2); 1571 1572 /* Verifier */ 1573 1574 /* We compute the checksum for the verifier over the xdr-encoded bytes 1575 * starting with the xid and ending at the end of the credential: */ 1576 iov.iov_base = req->rq_snd_buf.head[0].iov_base; 1577 iov.iov_len = (u8 *)p - (u8 *)iov.iov_base; 1578 xdr_buf_from_iov(&iov, &verf_buf); 1579 1580 p = xdr_reserve_space(xdr, sizeof(*p)); 1581 if (!p) 1582 goto marshal_failed; 1583 *p++ = rpc_auth_gss; 1584 mic.data = (u8 *)(p + 1); 1585 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &verf_buf, &mic); 1586 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1587 goto expired; 1588 else if (maj_stat != 0) 1589 goto bad_mic; 1590 if (xdr_stream_encode_opaque_inline(xdr, (void **)&p, mic.len) < 0) 1591 goto marshal_failed; 1592 status = 0; 1593 out: 1594 gss_put_ctx(ctx); 1595 return status; 1596 expired: 1597 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1598 status = -EKEYEXPIRED; 1599 goto out; 1600 marshal_failed: 1601 status = -EMSGSIZE; 1602 goto out; 1603 bad_mic: 1604 trace_rpcgss_get_mic(task, maj_stat); 1605 status = -EIO; 1606 goto out; 1607 } 1608 1609 static int gss_renew_cred(struct rpc_task *task) 1610 { 1611 struct rpc_cred *oldcred = task->tk_rqstp->rq_cred; 1612 struct gss_cred *gss_cred = container_of(oldcred, 1613 struct gss_cred, 1614 gc_base); 1615 struct rpc_auth *auth = oldcred->cr_auth; 1616 struct auth_cred acred = { 1617 .cred = oldcred->cr_cred, 1618 .principal = gss_cred->gc_principal, 1619 }; 1620 struct rpc_cred *new; 1621 1622 new = gss_lookup_cred(auth, &acred, RPCAUTH_LOOKUP_NEW); 1623 if (IS_ERR(new)) 1624 return PTR_ERR(new); 1625 1626 task->tk_rqstp->rq_cred = new; 1627 put_rpccred(oldcred); 1628 return 0; 1629 } 1630 1631 static int gss_cred_is_negative_entry(struct rpc_cred *cred) 1632 { 1633 if (test_bit(RPCAUTH_CRED_NEGATIVE, &cred->cr_flags)) { 1634 unsigned long now = jiffies; 1635 unsigned long begin, expire; 1636 struct gss_cred *gss_cred; 1637 1638 gss_cred = container_of(cred, struct gss_cred, gc_base); 1639 begin = gss_cred->gc_upcall_timestamp; 1640 expire = begin + gss_expired_cred_retry_delay * HZ; 1641 1642 if (time_in_range_open(now, begin, expire)) 1643 return 1; 1644 } 1645 return 0; 1646 } 1647 1648 /* 1649 * Refresh credentials. XXX - finish 1650 */ 1651 static int 1652 gss_refresh(struct rpc_task *task) 1653 { 1654 struct rpc_cred *cred = task->tk_rqstp->rq_cred; 1655 int ret = 0; 1656 1657 if (gss_cred_is_negative_entry(cred)) 1658 return -EKEYEXPIRED; 1659 1660 if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags) && 1661 !test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags)) { 1662 ret = gss_renew_cred(task); 1663 if (ret < 0) 1664 goto out; 1665 cred = task->tk_rqstp->rq_cred; 1666 } 1667 1668 if (test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags)) 1669 ret = gss_refresh_upcall(task); 1670 out: 1671 return ret; 1672 } 1673 1674 /* Dummy refresh routine: used only when destroying the context */ 1675 static int 1676 gss_refresh_null(struct rpc_task *task) 1677 { 1678 return 0; 1679 } 1680 1681 static int 1682 gss_validate(struct rpc_task *task, struct xdr_stream *xdr) 1683 { 1684 struct rpc_cred *cred = task->tk_rqstp->rq_cred; 1685 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 1686 __be32 *p, *seq = NULL; 1687 struct kvec iov; 1688 struct xdr_buf verf_buf; 1689 struct xdr_netobj mic; 1690 u32 len, maj_stat; 1691 int status; 1692 1693 p = xdr_inline_decode(xdr, 2 * sizeof(*p)); 1694 if (!p) 1695 goto validate_failed; 1696 if (*p++ != rpc_auth_gss) 1697 goto validate_failed; 1698 len = be32_to_cpup(p); 1699 if (len > RPC_MAX_AUTH_SIZE) 1700 goto validate_failed; 1701 p = xdr_inline_decode(xdr, len); 1702 if (!p) 1703 goto validate_failed; 1704 1705 seq = kmalloc(4, GFP_KERNEL); 1706 if (!seq) 1707 goto validate_failed; 1708 *seq = cpu_to_be32(task->tk_rqstp->rq_seqno); 1709 iov.iov_base = seq; 1710 iov.iov_len = 4; 1711 xdr_buf_from_iov(&iov, &verf_buf); 1712 mic.data = (u8 *)p; 1713 mic.len = len; 1714 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &verf_buf, &mic); 1715 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1716 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1717 if (maj_stat) 1718 goto bad_mic; 1719 1720 /* We leave it to unwrap to calculate au_rslack. For now we just 1721 * calculate the length of the verifier: */ 1722 if (test_bit(RPCAUTH_AUTH_UPDATE_SLACK, &cred->cr_auth->au_flags)) 1723 cred->cr_auth->au_verfsize = XDR_QUADLEN(len) + 2; 1724 status = 0; 1725 out: 1726 gss_put_ctx(ctx); 1727 kfree(seq); 1728 return status; 1729 1730 validate_failed: 1731 status = -EIO; 1732 goto out; 1733 bad_mic: 1734 trace_rpcgss_verify_mic(task, maj_stat); 1735 status = -EACCES; 1736 goto out; 1737 } 1738 1739 static noinline_for_stack int 1740 gss_wrap_req_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx, 1741 struct rpc_task *task, struct xdr_stream *xdr) 1742 { 1743 struct rpc_rqst *rqstp = task->tk_rqstp; 1744 struct xdr_buf integ_buf, *snd_buf = &rqstp->rq_snd_buf; 1745 struct xdr_netobj mic; 1746 __be32 *p, *integ_len; 1747 u32 offset, maj_stat; 1748 1749 p = xdr_reserve_space(xdr, 2 * sizeof(*p)); 1750 if (!p) 1751 goto wrap_failed; 1752 integ_len = p++; 1753 *p = cpu_to_be32(rqstp->rq_seqno); 1754 1755 if (rpcauth_wrap_req_encode(task, xdr)) 1756 goto wrap_failed; 1757 1758 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base; 1759 if (xdr_buf_subsegment(snd_buf, &integ_buf, 1760 offset, snd_buf->len - offset)) 1761 goto wrap_failed; 1762 *integ_len = cpu_to_be32(integ_buf.len); 1763 1764 p = xdr_reserve_space(xdr, 0); 1765 if (!p) 1766 goto wrap_failed; 1767 mic.data = (u8 *)(p + 1); 1768 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &integ_buf, &mic); 1769 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1770 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1771 else if (maj_stat) 1772 goto bad_mic; 1773 /* Check that the trailing MIC fit in the buffer, after the fact */ 1774 if (xdr_stream_encode_opaque_inline(xdr, (void **)&p, mic.len) < 0) 1775 goto wrap_failed; 1776 return 0; 1777 wrap_failed: 1778 return -EMSGSIZE; 1779 bad_mic: 1780 trace_rpcgss_get_mic(task, maj_stat); 1781 return -EIO; 1782 } 1783 1784 static void 1785 priv_release_snd_buf(struct rpc_rqst *rqstp) 1786 { 1787 int i; 1788 1789 for (i=0; i < rqstp->rq_enc_pages_num; i++) 1790 __free_page(rqstp->rq_enc_pages[i]); 1791 kfree(rqstp->rq_enc_pages); 1792 rqstp->rq_release_snd_buf = NULL; 1793 } 1794 1795 static int 1796 alloc_enc_pages(struct rpc_rqst *rqstp) 1797 { 1798 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf; 1799 int first, last, i; 1800 1801 if (rqstp->rq_release_snd_buf) 1802 rqstp->rq_release_snd_buf(rqstp); 1803 1804 if (snd_buf->page_len == 0) { 1805 rqstp->rq_enc_pages_num = 0; 1806 return 0; 1807 } 1808 1809 first = snd_buf->page_base >> PAGE_SHIFT; 1810 last = (snd_buf->page_base + snd_buf->page_len - 1) >> PAGE_SHIFT; 1811 rqstp->rq_enc_pages_num = last - first + 1 + 1; 1812 rqstp->rq_enc_pages 1813 = kmalloc_array(rqstp->rq_enc_pages_num, 1814 sizeof(struct page *), 1815 GFP_KERNEL); 1816 if (!rqstp->rq_enc_pages) 1817 goto out; 1818 for (i=0; i < rqstp->rq_enc_pages_num; i++) { 1819 rqstp->rq_enc_pages[i] = alloc_page(GFP_KERNEL); 1820 if (rqstp->rq_enc_pages[i] == NULL) 1821 goto out_free; 1822 } 1823 rqstp->rq_release_snd_buf = priv_release_snd_buf; 1824 return 0; 1825 out_free: 1826 rqstp->rq_enc_pages_num = i; 1827 priv_release_snd_buf(rqstp); 1828 out: 1829 return -EAGAIN; 1830 } 1831 1832 static noinline_for_stack int 1833 gss_wrap_req_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx, 1834 struct rpc_task *task, struct xdr_stream *xdr) 1835 { 1836 struct rpc_rqst *rqstp = task->tk_rqstp; 1837 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf; 1838 u32 pad, offset, maj_stat; 1839 int status; 1840 __be32 *p, *opaque_len; 1841 struct page **inpages; 1842 int first; 1843 struct kvec *iov; 1844 1845 status = -EIO; 1846 p = xdr_reserve_space(xdr, 2 * sizeof(*p)); 1847 if (!p) 1848 goto wrap_failed; 1849 opaque_len = p++; 1850 *p = cpu_to_be32(rqstp->rq_seqno); 1851 1852 if (rpcauth_wrap_req_encode(task, xdr)) 1853 goto wrap_failed; 1854 1855 status = alloc_enc_pages(rqstp); 1856 if (unlikely(status)) 1857 goto wrap_failed; 1858 first = snd_buf->page_base >> PAGE_SHIFT; 1859 inpages = snd_buf->pages + first; 1860 snd_buf->pages = rqstp->rq_enc_pages; 1861 snd_buf->page_base -= first << PAGE_SHIFT; 1862 /* 1863 * Move the tail into its own page, in case gss_wrap needs 1864 * more space in the head when wrapping. 1865 * 1866 * Still... Why can't gss_wrap just slide the tail down? 1867 */ 1868 if (snd_buf->page_len || snd_buf->tail[0].iov_len) { 1869 char *tmp; 1870 1871 tmp = page_address(rqstp->rq_enc_pages[rqstp->rq_enc_pages_num - 1]); 1872 memcpy(tmp, snd_buf->tail[0].iov_base, snd_buf->tail[0].iov_len); 1873 snd_buf->tail[0].iov_base = tmp; 1874 } 1875 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base; 1876 maj_stat = gss_wrap(ctx->gc_gss_ctx, offset, snd_buf, inpages); 1877 /* slack space should prevent this ever happening: */ 1878 if (unlikely(snd_buf->len > snd_buf->buflen)) { 1879 status = -EIO; 1880 goto wrap_failed; 1881 } 1882 /* We're assuming that when GSS_S_CONTEXT_EXPIRED, the encryption was 1883 * done anyway, so it's safe to put the request on the wire: */ 1884 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1885 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1886 else if (maj_stat) 1887 goto bad_wrap; 1888 1889 *opaque_len = cpu_to_be32(snd_buf->len - offset); 1890 /* guess whether the pad goes into the head or the tail: */ 1891 if (snd_buf->page_len || snd_buf->tail[0].iov_len) 1892 iov = snd_buf->tail; 1893 else 1894 iov = snd_buf->head; 1895 p = iov->iov_base + iov->iov_len; 1896 pad = xdr_pad_size(snd_buf->len - offset); 1897 memset(p, 0, pad); 1898 iov->iov_len += pad; 1899 snd_buf->len += pad; 1900 1901 return 0; 1902 wrap_failed: 1903 return status; 1904 bad_wrap: 1905 trace_rpcgss_wrap(task, maj_stat); 1906 return -EIO; 1907 } 1908 1909 static int gss_wrap_req(struct rpc_task *task, struct xdr_stream *xdr) 1910 { 1911 struct rpc_cred *cred = task->tk_rqstp->rq_cred; 1912 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, 1913 gc_base); 1914 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 1915 int status; 1916 1917 status = -EIO; 1918 if (ctx->gc_proc != RPC_GSS_PROC_DATA) { 1919 /* The spec seems a little ambiguous here, but I think that not 1920 * wrapping context destruction requests makes the most sense. 1921 */ 1922 status = rpcauth_wrap_req_encode(task, xdr); 1923 goto out; 1924 } 1925 switch (gss_cred->gc_service) { 1926 case RPC_GSS_SVC_NONE: 1927 status = rpcauth_wrap_req_encode(task, xdr); 1928 break; 1929 case RPC_GSS_SVC_INTEGRITY: 1930 status = gss_wrap_req_integ(cred, ctx, task, xdr); 1931 break; 1932 case RPC_GSS_SVC_PRIVACY: 1933 status = gss_wrap_req_priv(cred, ctx, task, xdr); 1934 break; 1935 default: 1936 status = -EIO; 1937 } 1938 out: 1939 gss_put_ctx(ctx); 1940 return status; 1941 } 1942 1943 /** 1944 * gss_update_rslack - Possibly update RPC receive buffer size estimates 1945 * @task: rpc_task for incoming RPC Reply being unwrapped 1946 * @cred: controlling rpc_cred for @task 1947 * @before: XDR words needed before each RPC Reply message 1948 * @after: XDR words needed following each RPC Reply message 1949 * 1950 */ 1951 static void gss_update_rslack(struct rpc_task *task, struct rpc_cred *cred, 1952 unsigned int before, unsigned int after) 1953 { 1954 struct rpc_auth *auth = cred->cr_auth; 1955 1956 if (test_and_clear_bit(RPCAUTH_AUTH_UPDATE_SLACK, &auth->au_flags)) { 1957 auth->au_ralign = auth->au_verfsize + before; 1958 auth->au_rslack = auth->au_verfsize + after; 1959 trace_rpcgss_update_slack(task, auth); 1960 } 1961 } 1962 1963 static int 1964 gss_unwrap_resp_auth(struct rpc_task *task, struct rpc_cred *cred) 1965 { 1966 gss_update_rslack(task, cred, 0, 0); 1967 return 0; 1968 } 1969 1970 /* 1971 * RFC 2203, Section 5.3.2.2 1972 * 1973 * struct rpc_gss_integ_data { 1974 * opaque databody_integ<>; 1975 * opaque checksum<>; 1976 * }; 1977 * 1978 * struct rpc_gss_data_t { 1979 * unsigned int seq_num; 1980 * proc_req_arg_t arg; 1981 * }; 1982 */ 1983 static noinline_for_stack int 1984 gss_unwrap_resp_integ(struct rpc_task *task, struct rpc_cred *cred, 1985 struct gss_cl_ctx *ctx, struct rpc_rqst *rqstp, 1986 struct xdr_stream *xdr) 1987 { 1988 struct xdr_buf gss_data, *rcv_buf = &rqstp->rq_rcv_buf; 1989 u32 len, offset, seqno, maj_stat; 1990 struct xdr_netobj mic; 1991 int ret; 1992 1993 ret = -EIO; 1994 mic.data = NULL; 1995 1996 /* opaque databody_integ<>; */ 1997 if (xdr_stream_decode_u32(xdr, &len)) 1998 goto unwrap_failed; 1999 if (len & 3) 2000 goto unwrap_failed; 2001 offset = rcv_buf->len - xdr_stream_remaining(xdr); 2002 if (xdr_stream_decode_u32(xdr, &seqno)) 2003 goto unwrap_failed; 2004 if (seqno != rqstp->rq_seqno) 2005 goto bad_seqno; 2006 if (xdr_buf_subsegment(rcv_buf, &gss_data, offset, len)) 2007 goto unwrap_failed; 2008 2009 /* 2010 * The xdr_stream now points to the beginning of the 2011 * upper layer payload, to be passed below to 2012 * rpcauth_unwrap_resp_decode(). The checksum, which 2013 * follows the upper layer payload in @rcv_buf, is 2014 * located and parsed without updating the xdr_stream. 2015 */ 2016 2017 /* opaque checksum<>; */ 2018 offset += len; 2019 if (xdr_decode_word(rcv_buf, offset, &len)) 2020 goto unwrap_failed; 2021 offset += sizeof(__be32); 2022 if (offset + len > rcv_buf->len) 2023 goto unwrap_failed; 2024 mic.len = len; 2025 mic.data = kmalloc(len, GFP_KERNEL); 2026 if (ZERO_OR_NULL_PTR(mic.data)) 2027 goto unwrap_failed; 2028 if (read_bytes_from_xdr_buf(rcv_buf, offset, mic.data, mic.len)) 2029 goto unwrap_failed; 2030 2031 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &gss_data, &mic); 2032 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 2033 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 2034 if (maj_stat != GSS_S_COMPLETE) 2035 goto bad_mic; 2036 2037 gss_update_rslack(task, cred, 2, 2 + 1 + XDR_QUADLEN(mic.len)); 2038 ret = 0; 2039 2040 out: 2041 kfree(mic.data); 2042 return ret; 2043 2044 unwrap_failed: 2045 trace_rpcgss_unwrap_failed(task); 2046 goto out; 2047 bad_seqno: 2048 trace_rpcgss_bad_seqno(task, rqstp->rq_seqno, seqno); 2049 goto out; 2050 bad_mic: 2051 trace_rpcgss_verify_mic(task, maj_stat); 2052 goto out; 2053 } 2054 2055 static noinline_for_stack int 2056 gss_unwrap_resp_priv(struct rpc_task *task, struct rpc_cred *cred, 2057 struct gss_cl_ctx *ctx, struct rpc_rqst *rqstp, 2058 struct xdr_stream *xdr) 2059 { 2060 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf; 2061 struct kvec *head = rqstp->rq_rcv_buf.head; 2062 u32 offset, opaque_len, maj_stat; 2063 __be32 *p; 2064 2065 p = xdr_inline_decode(xdr, 2 * sizeof(*p)); 2066 if (unlikely(!p)) 2067 goto unwrap_failed; 2068 opaque_len = be32_to_cpup(p++); 2069 offset = (u8 *)(p) - (u8 *)head->iov_base; 2070 if (offset + opaque_len > rcv_buf->len) 2071 goto unwrap_failed; 2072 2073 maj_stat = gss_unwrap(ctx->gc_gss_ctx, offset, 2074 offset + opaque_len, rcv_buf); 2075 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 2076 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 2077 if (maj_stat != GSS_S_COMPLETE) 2078 goto bad_unwrap; 2079 /* gss_unwrap decrypted the sequence number */ 2080 if (be32_to_cpup(p++) != rqstp->rq_seqno) 2081 goto bad_seqno; 2082 2083 /* gss_unwrap redacts the opaque blob from the head iovec. 2084 * rcv_buf has changed, thus the stream needs to be reset. 2085 */ 2086 xdr_init_decode(xdr, rcv_buf, p, rqstp); 2087 2088 gss_update_rslack(task, cred, 2 + ctx->gc_gss_ctx->align, 2089 2 + ctx->gc_gss_ctx->slack); 2090 2091 return 0; 2092 unwrap_failed: 2093 trace_rpcgss_unwrap_failed(task); 2094 return -EIO; 2095 bad_seqno: 2096 trace_rpcgss_bad_seqno(task, rqstp->rq_seqno, be32_to_cpup(--p)); 2097 return -EIO; 2098 bad_unwrap: 2099 trace_rpcgss_unwrap(task, maj_stat); 2100 return -EIO; 2101 } 2102 2103 static bool 2104 gss_seq_is_newer(u32 new, u32 old) 2105 { 2106 return (s32)(new - old) > 0; 2107 } 2108 2109 static bool 2110 gss_xmit_need_reencode(struct rpc_task *task) 2111 { 2112 struct rpc_rqst *req = task->tk_rqstp; 2113 struct rpc_cred *cred = req->rq_cred; 2114 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 2115 u32 win, seq_xmit = 0; 2116 bool ret = true; 2117 2118 if (!ctx) 2119 goto out; 2120 2121 if (gss_seq_is_newer(req->rq_seqno, READ_ONCE(ctx->gc_seq))) 2122 goto out_ctx; 2123 2124 seq_xmit = READ_ONCE(ctx->gc_seq_xmit); 2125 while (gss_seq_is_newer(req->rq_seqno, seq_xmit)) { 2126 u32 tmp = seq_xmit; 2127 2128 seq_xmit = cmpxchg(&ctx->gc_seq_xmit, tmp, req->rq_seqno); 2129 if (seq_xmit == tmp) { 2130 ret = false; 2131 goto out_ctx; 2132 } 2133 } 2134 2135 win = ctx->gc_win; 2136 if (win > 0) 2137 ret = !gss_seq_is_newer(req->rq_seqno, seq_xmit - win); 2138 2139 out_ctx: 2140 gss_put_ctx(ctx); 2141 out: 2142 trace_rpcgss_need_reencode(task, seq_xmit, ret); 2143 return ret; 2144 } 2145 2146 static int 2147 gss_unwrap_resp(struct rpc_task *task, struct xdr_stream *xdr) 2148 { 2149 struct rpc_rqst *rqstp = task->tk_rqstp; 2150 struct rpc_cred *cred = rqstp->rq_cred; 2151 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, 2152 gc_base); 2153 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 2154 int status = -EIO; 2155 2156 if (ctx->gc_proc != RPC_GSS_PROC_DATA) 2157 goto out_decode; 2158 switch (gss_cred->gc_service) { 2159 case RPC_GSS_SVC_NONE: 2160 status = gss_unwrap_resp_auth(task, cred); 2161 break; 2162 case RPC_GSS_SVC_INTEGRITY: 2163 status = gss_unwrap_resp_integ(task, cred, ctx, rqstp, xdr); 2164 break; 2165 case RPC_GSS_SVC_PRIVACY: 2166 status = gss_unwrap_resp_priv(task, cred, ctx, rqstp, xdr); 2167 break; 2168 } 2169 if (status) 2170 goto out; 2171 2172 out_decode: 2173 status = rpcauth_unwrap_resp_decode(task, xdr); 2174 out: 2175 gss_put_ctx(ctx); 2176 return status; 2177 } 2178 2179 static const struct rpc_authops authgss_ops = { 2180 .owner = THIS_MODULE, 2181 .au_flavor = RPC_AUTH_GSS, 2182 .au_name = "RPCSEC_GSS", 2183 .create = gss_create, 2184 .destroy = gss_destroy, 2185 .hash_cred = gss_hash_cred, 2186 .lookup_cred = gss_lookup_cred, 2187 .crcreate = gss_create_cred, 2188 .info2flavor = gss_mech_info2flavor, 2189 .flavor2info = gss_mech_flavor2info, 2190 }; 2191 2192 static const struct rpc_credops gss_credops = { 2193 .cr_name = "AUTH_GSS", 2194 .crdestroy = gss_destroy_cred, 2195 .cr_init = gss_cred_init, 2196 .crmatch = gss_match, 2197 .crmarshal = gss_marshal, 2198 .crrefresh = gss_refresh, 2199 .crvalidate = gss_validate, 2200 .crwrap_req = gss_wrap_req, 2201 .crunwrap_resp = gss_unwrap_resp, 2202 .crkey_timeout = gss_key_timeout, 2203 .crstringify_acceptor = gss_stringify_acceptor, 2204 .crneed_reencode = gss_xmit_need_reencode, 2205 }; 2206 2207 static const struct rpc_credops gss_nullops = { 2208 .cr_name = "AUTH_GSS", 2209 .crdestroy = gss_destroy_nullcred, 2210 .crmatch = gss_match, 2211 .crmarshal = gss_marshal, 2212 .crrefresh = gss_refresh_null, 2213 .crvalidate = gss_validate, 2214 .crwrap_req = gss_wrap_req, 2215 .crunwrap_resp = gss_unwrap_resp, 2216 .crstringify_acceptor = gss_stringify_acceptor, 2217 }; 2218 2219 static const struct rpc_pipe_ops gss_upcall_ops_v0 = { 2220 .upcall = gss_v0_upcall, 2221 .downcall = gss_pipe_downcall, 2222 .destroy_msg = gss_pipe_destroy_msg, 2223 .open_pipe = gss_pipe_open_v0, 2224 .release_pipe = gss_pipe_release, 2225 }; 2226 2227 static const struct rpc_pipe_ops gss_upcall_ops_v1 = { 2228 .upcall = gss_v1_upcall, 2229 .downcall = gss_pipe_downcall, 2230 .destroy_msg = gss_pipe_destroy_msg, 2231 .open_pipe = gss_pipe_open_v1, 2232 .release_pipe = gss_pipe_release, 2233 }; 2234 2235 static __net_init int rpcsec_gss_init_net(struct net *net) 2236 { 2237 return gss_svc_init_net(net); 2238 } 2239 2240 static __net_exit void rpcsec_gss_exit_net(struct net *net) 2241 { 2242 gss_svc_shutdown_net(net); 2243 } 2244 2245 static struct pernet_operations rpcsec_gss_net_ops = { 2246 .init = rpcsec_gss_init_net, 2247 .exit = rpcsec_gss_exit_net, 2248 }; 2249 2250 /* 2251 * Initialize RPCSEC_GSS module 2252 */ 2253 static int __init init_rpcsec_gss(void) 2254 { 2255 int err = 0; 2256 2257 err = rpcauth_register(&authgss_ops); 2258 if (err) 2259 goto out; 2260 err = gss_svc_init(); 2261 if (err) 2262 goto out_unregister; 2263 err = register_pernet_subsys(&rpcsec_gss_net_ops); 2264 if (err) 2265 goto out_svc_exit; 2266 rpc_init_wait_queue(&pipe_version_rpc_waitqueue, "gss pipe version"); 2267 return 0; 2268 out_svc_exit: 2269 gss_svc_shutdown(); 2270 out_unregister: 2271 rpcauth_unregister(&authgss_ops); 2272 out: 2273 return err; 2274 } 2275 2276 static void __exit exit_rpcsec_gss(void) 2277 { 2278 unregister_pernet_subsys(&rpcsec_gss_net_ops); 2279 gss_svc_shutdown(); 2280 rpcauth_unregister(&authgss_ops); 2281 rcu_barrier(); /* Wait for completion of call_rcu()'s */ 2282 } 2283 2284 MODULE_ALIAS("rpc-auth-6"); 2285 MODULE_DESCRIPTION("Sun RPC Kerberos RPCSEC_GSS client authentication"); 2286 MODULE_LICENSE("GPL"); 2287 module_param_named(expired_cred_retry_delay, 2288 gss_expired_cred_retry_delay, 2289 uint, 0644); 2290 MODULE_PARM_DESC(expired_cred_retry_delay, "Timeout (in seconds) until " 2291 "the RPC engine retries an expired credential"); 2292 2293 module_param_named(key_expire_timeo, 2294 gss_key_expire_timeo, 2295 uint, 0644); 2296 MODULE_PARM_DESC(key_expire_timeo, "Time (in seconds) at the end of a " 2297 "credential keys lifetime where the NFS layer cleans up " 2298 "prior to key expiration"); 2299 2300 module_init(init_rpcsec_gss) 2301 module_exit(exit_rpcsec_gss) 2302