1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * KFENCE guarded object allocator and fault handling.
4 *
5 * Copyright (C) 2020, Google LLC.
6 */
7
8 #define pr_fmt(fmt) "kfence: " fmt
9
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/debugfs.h>
13 #include <linux/hash.h>
14 #include <linux/irq_work.h>
15 #include <linux/jhash.h>
16 #include <linux/kcsan-checks.h>
17 #include <linux/kfence.h>
18 #include <linux/kmemleak.h>
19 #include <linux/list.h>
20 #include <linux/lockdep.h>
21 #include <linux/log2.h>
22 #include <linux/memblock.h>
23 #include <linux/moduleparam.h>
24 #include <linux/nodemask.h>
25 #include <linux/notifier.h>
26 #include <linux/panic_notifier.h>
27 #include <linux/random.h>
28 #include <linux/rcupdate.h>
29 #include <linux/sched/clock.h>
30 #include <linux/seq_file.h>
31 #include <linux/slab.h>
32 #include <linux/spinlock.h>
33 #include <linux/string.h>
34
35 #include <asm/kfence.h>
36
37 #include "kfence.h"
38
39 /* Disables KFENCE on the first warning assuming an irrecoverable error. */
40 #define KFENCE_WARN_ON(cond) \
41 ({ \
42 const bool __cond = WARN_ON(cond); \
43 if (unlikely(__cond)) { \
44 WRITE_ONCE(kfence_enabled, false); \
45 disabled_by_warn = true; \
46 } \
47 __cond; \
48 })
49
50 /* === Data ================================================================= */
51
52 static bool kfence_enabled __read_mostly;
53 static bool disabled_by_warn __read_mostly;
54
55 unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
56 EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */
57
58 #ifdef MODULE_PARAM_PREFIX
59 #undef MODULE_PARAM_PREFIX
60 #endif
61 #define MODULE_PARAM_PREFIX "kfence."
62
63 static int kfence_enable_late(void);
param_set_sample_interval(const char * val,const struct kernel_param * kp)64 static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
65 {
66 unsigned long num;
67 int ret = kstrtoul(val, 0, &num);
68
69 if (ret < 0)
70 return ret;
71
72 /* Using 0 to indicate KFENCE is disabled. */
73 if (!num && READ_ONCE(kfence_enabled)) {
74 pr_info("disabled\n");
75 WRITE_ONCE(kfence_enabled, false);
76 }
77
78 *((unsigned long *)kp->arg) = num;
79
80 if (num && !READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
81 return disabled_by_warn ? -EINVAL : kfence_enable_late();
82 return 0;
83 }
84
param_get_sample_interval(char * buffer,const struct kernel_param * kp)85 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
86 {
87 if (!READ_ONCE(kfence_enabled))
88 return sprintf(buffer, "0\n");
89
90 return param_get_ulong(buffer, kp);
91 }
92
93 static const struct kernel_param_ops sample_interval_param_ops = {
94 .set = param_set_sample_interval,
95 .get = param_get_sample_interval,
96 };
97 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
98
99 /* Pool usage% threshold when currently covered allocations are skipped. */
100 static unsigned long kfence_skip_covered_thresh __read_mostly = 75;
101 module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644);
102
103 /* Allocation burst count: number of excess KFENCE allocations per sample. */
104 static unsigned int kfence_burst __read_mostly;
105 module_param_named(burst, kfence_burst, uint, 0644);
106
107 /* If true, use a deferrable timer. */
108 static bool kfence_deferrable __read_mostly = IS_ENABLED(CONFIG_KFENCE_DEFERRABLE);
109 module_param_named(deferrable, kfence_deferrable, bool, 0444);
110
111 /* If true, check all canary bytes on panic. */
112 static bool kfence_check_on_panic __read_mostly;
113 module_param_named(check_on_panic, kfence_check_on_panic, bool, 0444);
114
115 /* The pool of pages used for guard pages and objects. */
116 char *__kfence_pool __read_mostly;
117 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
118
119 /*
120 * Per-object metadata, with one-to-one mapping of object metadata to
121 * backing pages (in __kfence_pool).
122 */
123 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
124 struct kfence_metadata *kfence_metadata __read_mostly;
125
126 /*
127 * If kfence_metadata is not NULL, it may be accessed by kfence_shutdown_cache().
128 * So introduce kfence_metadata_init to initialize metadata, and then make
129 * kfence_metadata visible after initialization is successful. This prevents
130 * potential UAF or access to uninitialized metadata.
131 */
132 static struct kfence_metadata *kfence_metadata_init __read_mostly;
133
134 /* Freelist with available objects. */
135 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
136 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
137
138 /*
139 * The static key to set up a KFENCE allocation; or if static keys are not used
140 * to gate allocations, to avoid a load and compare if KFENCE is disabled.
141 */
142 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
143
144 /* Gates the allocation, ensuring only one succeeds in a given period. */
145 atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
146
147 /*
148 * A Counting Bloom filter of allocation coverage: limits currently covered
149 * allocations of the same source filling up the pool.
150 *
151 * Assuming a range of 15%-85% unique allocations in the pool at any point in
152 * time, the below parameters provide a probablity of 0.02-0.33 for false
153 * positive hits respectively:
154 *
155 * P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM
156 */
157 #define ALLOC_COVERED_HNUM 2
158 #define ALLOC_COVERED_ORDER (const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2)
159 #define ALLOC_COVERED_SIZE (1 << ALLOC_COVERED_ORDER)
160 #define ALLOC_COVERED_HNEXT(h) hash_32(h, ALLOC_COVERED_ORDER)
161 #define ALLOC_COVERED_MASK (ALLOC_COVERED_SIZE - 1)
162 static atomic_t alloc_covered[ALLOC_COVERED_SIZE];
163
164 /* Stack depth used to determine uniqueness of an allocation. */
165 #define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8)
166
167 /*
168 * Randomness for stack hashes, making the same collisions across reboots and
169 * different machines less likely.
170 */
171 static u32 stack_hash_seed __ro_after_init;
172
173 /* Statistics counters for debugfs. */
174 enum kfence_counter_id {
175 KFENCE_COUNTER_ALLOCATED,
176 KFENCE_COUNTER_ALLOCS,
177 KFENCE_COUNTER_FREES,
178 KFENCE_COUNTER_ZOMBIES,
179 KFENCE_COUNTER_BUGS,
180 KFENCE_COUNTER_SKIP_INCOMPAT,
181 KFENCE_COUNTER_SKIP_CAPACITY,
182 KFENCE_COUNTER_SKIP_COVERED,
183 KFENCE_COUNTER_COUNT,
184 };
185 static atomic_long_t counters[KFENCE_COUNTER_COUNT];
186 static const char *const counter_names[] = {
187 [KFENCE_COUNTER_ALLOCATED] = "currently allocated",
188 [KFENCE_COUNTER_ALLOCS] = "total allocations",
189 [KFENCE_COUNTER_FREES] = "total frees",
190 [KFENCE_COUNTER_ZOMBIES] = "zombie allocations",
191 [KFENCE_COUNTER_BUGS] = "total bugs",
192 [KFENCE_COUNTER_SKIP_INCOMPAT] = "skipped allocations (incompatible)",
193 [KFENCE_COUNTER_SKIP_CAPACITY] = "skipped allocations (capacity)",
194 [KFENCE_COUNTER_SKIP_COVERED] = "skipped allocations (covered)",
195 };
196 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
197
198 /* === Internals ============================================================ */
199
should_skip_covered(void)200 static inline bool should_skip_covered(void)
201 {
202 unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100;
203
204 return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh;
205 }
206
get_alloc_stack_hash(unsigned long * stack_entries,size_t num_entries)207 static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries)
208 {
209 num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH);
210 num_entries = filter_irq_stacks(stack_entries, num_entries);
211 return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed);
212 }
213
214 /*
215 * Adds (or subtracts) count @val for allocation stack trace hash
216 * @alloc_stack_hash from Counting Bloom filter.
217 */
alloc_covered_add(u32 alloc_stack_hash,int val)218 static void alloc_covered_add(u32 alloc_stack_hash, int val)
219 {
220 int i;
221
222 for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
223 atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]);
224 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
225 }
226 }
227
228 /*
229 * Returns true if the allocation stack trace hash @alloc_stack_hash is
230 * currently contained (non-zero count) in Counting Bloom filter.
231 */
alloc_covered_contains(u32 alloc_stack_hash)232 static bool alloc_covered_contains(u32 alloc_stack_hash)
233 {
234 int i;
235
236 for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
237 if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]))
238 return false;
239 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
240 }
241
242 return true;
243 }
244
kfence_protect(unsigned long addr)245 static bool kfence_protect(unsigned long addr)
246 {
247 return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
248 }
249
kfence_unprotect(unsigned long addr)250 static bool kfence_unprotect(unsigned long addr)
251 {
252 return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
253 }
254
metadata_to_pageaddr(const struct kfence_metadata * meta)255 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
256 {
257 unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
258 unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
259
260 /* The checks do not affect performance; only called from slow-paths. */
261
262 /* Only call with a pointer into kfence_metadata. */
263 if (KFENCE_WARN_ON(meta < kfence_metadata ||
264 meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
265 return 0;
266
267 /*
268 * This metadata object only ever maps to 1 page; verify that the stored
269 * address is in the expected range.
270 */
271 if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
272 return 0;
273
274 return pageaddr;
275 }
276
kfence_obj_allocated(const struct kfence_metadata * meta)277 static inline bool kfence_obj_allocated(const struct kfence_metadata *meta)
278 {
279 enum kfence_object_state state = READ_ONCE(meta->state);
280
281 return state == KFENCE_OBJECT_ALLOCATED || state == KFENCE_OBJECT_RCU_FREEING;
282 }
283
284 /*
285 * Update the object's metadata state, including updating the alloc/free stacks
286 * depending on the state transition.
287 */
288 static noinline void
metadata_update_state(struct kfence_metadata * meta,enum kfence_object_state next,unsigned long * stack_entries,size_t num_stack_entries)289 metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next,
290 unsigned long *stack_entries, size_t num_stack_entries)
291 {
292 struct kfence_track *track =
293 next == KFENCE_OBJECT_ALLOCATED ? &meta->alloc_track : &meta->free_track;
294
295 lockdep_assert_held(&meta->lock);
296
297 /* Stack has been saved when calling rcu, skip. */
298 if (READ_ONCE(meta->state) == KFENCE_OBJECT_RCU_FREEING)
299 goto out;
300
301 if (stack_entries) {
302 memcpy(track->stack_entries, stack_entries,
303 num_stack_entries * sizeof(stack_entries[0]));
304 } else {
305 /*
306 * Skip over 1 (this) functions; noinline ensures we do not
307 * accidentally skip over the caller by never inlining.
308 */
309 num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
310 }
311 track->num_stack_entries = num_stack_entries;
312 track->pid = task_pid_nr(current);
313 track->cpu = raw_smp_processor_id();
314 track->ts_nsec = local_clock(); /* Same source as printk timestamps. */
315
316 out:
317 /*
318 * Pairs with READ_ONCE() in
319 * kfence_shutdown_cache(),
320 * kfence_handle_page_fault().
321 */
322 WRITE_ONCE(meta->state, next);
323 }
324
325 #ifdef CONFIG_KMSAN
326 #define check_canary_attributes noinline __no_kmsan_checks
327 #else
328 #define check_canary_attributes inline
329 #endif
330
331 /* Check canary byte at @addr. */
check_canary_byte(u8 * addr)332 static check_canary_attributes bool check_canary_byte(u8 *addr)
333 {
334 struct kfence_metadata *meta;
335 unsigned long flags;
336
337 if (likely(*addr == KFENCE_CANARY_PATTERN_U8(addr)))
338 return true;
339
340 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
341
342 meta = addr_to_metadata((unsigned long)addr);
343 raw_spin_lock_irqsave(&meta->lock, flags);
344 kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION);
345 raw_spin_unlock_irqrestore(&meta->lock, flags);
346
347 return false;
348 }
349
set_canary(const struct kfence_metadata * meta)350 static inline void set_canary(const struct kfence_metadata *meta)
351 {
352 const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
353 unsigned long addr = pageaddr;
354
355 /*
356 * The canary may be written to part of the object memory, but it does
357 * not affect it. The user should initialize the object before using it.
358 */
359 for (; addr < meta->addr; addr += sizeof(u64))
360 *((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;
361
362 addr = ALIGN_DOWN(meta->addr + meta->size, sizeof(u64));
363 for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64))
364 *((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;
365 }
366
367 static check_canary_attributes void
check_canary(const struct kfence_metadata * meta)368 check_canary(const struct kfence_metadata *meta)
369 {
370 const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
371 unsigned long addr = pageaddr;
372
373 /*
374 * We'll iterate over each canary byte per-side until a corrupted byte
375 * is found. However, we'll still iterate over the canary bytes to the
376 * right of the object even if there was an error in the canary bytes to
377 * the left of the object. Specifically, if check_canary_byte()
378 * generates an error, showing both sides might give more clues as to
379 * what the error is about when displaying which bytes were corrupted.
380 */
381
382 /* Apply to left of object. */
383 for (; meta->addr - addr >= sizeof(u64); addr += sizeof(u64)) {
384 if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64))
385 break;
386 }
387
388 /*
389 * If the canary is corrupted in a certain 64 bytes, or the canary
390 * memory cannot be completely covered by multiple consecutive 64 bytes,
391 * it needs to be checked one by one.
392 */
393 for (; addr < meta->addr; addr++) {
394 if (unlikely(!check_canary_byte((u8 *)addr)))
395 break;
396 }
397
398 /* Apply to right of object. */
399 for (addr = meta->addr + meta->size; addr % sizeof(u64) != 0; addr++) {
400 if (unlikely(!check_canary_byte((u8 *)addr)))
401 return;
402 }
403 for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64)) {
404 if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64)) {
405
406 for (; addr - pageaddr < PAGE_SIZE; addr++) {
407 if (!check_canary_byte((u8 *)addr))
408 return;
409 }
410 }
411 }
412 }
413
kfence_guarded_alloc(struct kmem_cache * cache,size_t size,gfp_t gfp,unsigned long * stack_entries,size_t num_stack_entries,u32 alloc_stack_hash)414 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp,
415 unsigned long *stack_entries, size_t num_stack_entries,
416 u32 alloc_stack_hash)
417 {
418 struct kfence_metadata *meta = NULL;
419 unsigned long flags;
420 struct slab *slab;
421 void *addr;
422 const bool random_right_allocate = get_random_u32_below(2);
423 const bool random_fault = CONFIG_KFENCE_STRESS_TEST_FAULTS &&
424 !get_random_u32_below(CONFIG_KFENCE_STRESS_TEST_FAULTS);
425
426 /* Try to obtain a free object. */
427 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
428 if (!list_empty(&kfence_freelist)) {
429 meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
430 list_del_init(&meta->list);
431 }
432 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
433 if (!meta) {
434 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]);
435 return NULL;
436 }
437
438 if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
439 /*
440 * This is extremely unlikely -- we are reporting on a
441 * use-after-free, which locked meta->lock, and the reporting
442 * code via printk calls kmalloc() which ends up in
443 * kfence_alloc() and tries to grab the same object that we're
444 * reporting on. While it has never been observed, lockdep does
445 * report that there is a possibility of deadlock. Fix it by
446 * using trylock and bailing out gracefully.
447 */
448 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
449 /* Put the object back on the freelist. */
450 list_add_tail(&meta->list, &kfence_freelist);
451 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
452
453 return NULL;
454 }
455
456 meta->addr = metadata_to_pageaddr(meta);
457 /* Unprotect if we're reusing this page. */
458 if (meta->state == KFENCE_OBJECT_FREED)
459 kfence_unprotect(meta->addr);
460
461 /*
462 * Note: for allocations made before RNG initialization, will always
463 * return zero. We still benefit from enabling KFENCE as early as
464 * possible, even when the RNG is not yet available, as this will allow
465 * KFENCE to detect bugs due to earlier allocations. The only downside
466 * is that the out-of-bounds accesses detected are deterministic for
467 * such allocations.
468 */
469 if (random_right_allocate) {
470 /* Allocate on the "right" side, re-calculate address. */
471 meta->addr += PAGE_SIZE - size;
472 meta->addr = ALIGN_DOWN(meta->addr, cache->align);
473 }
474
475 addr = (void *)meta->addr;
476
477 /* Update remaining metadata. */
478 metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries);
479 /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
480 WRITE_ONCE(meta->cache, cache);
481 meta->size = size;
482 meta->alloc_stack_hash = alloc_stack_hash;
483 raw_spin_unlock_irqrestore(&meta->lock, flags);
484
485 alloc_covered_add(alloc_stack_hash, 1);
486
487 /* Set required slab fields. */
488 slab = virt_to_slab((void *)meta->addr);
489 slab->slab_cache = cache;
490 slab->objects = 1;
491
492 /* Memory initialization. */
493 set_canary(meta);
494
495 /*
496 * We check slab_want_init_on_alloc() ourselves, rather than letting
497 * SL*B do the initialization, as otherwise we might overwrite KFENCE's
498 * redzone.
499 */
500 if (unlikely(slab_want_init_on_alloc(gfp, cache)))
501 memzero_explicit(addr, size);
502 if (cache->ctor)
503 cache->ctor(addr);
504
505 if (random_fault)
506 kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
507
508 atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
509 atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
510
511 return addr;
512 }
513
kfence_guarded_free(void * addr,struct kfence_metadata * meta,bool zombie)514 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
515 {
516 struct kcsan_scoped_access assert_page_exclusive;
517 unsigned long flags;
518 bool init;
519
520 raw_spin_lock_irqsave(&meta->lock, flags);
521
522 if (!kfence_obj_allocated(meta) || meta->addr != (unsigned long)addr) {
523 /* Invalid or double-free, bail out. */
524 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
525 kfence_report_error((unsigned long)addr, false, NULL, meta,
526 KFENCE_ERROR_INVALID_FREE);
527 raw_spin_unlock_irqrestore(&meta->lock, flags);
528 return;
529 }
530
531 /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
532 kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
533 KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
534 &assert_page_exclusive);
535
536 if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
537 kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
538
539 /* Restore page protection if there was an OOB access. */
540 if (meta->unprotected_page) {
541 memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
542 kfence_protect(meta->unprotected_page);
543 meta->unprotected_page = 0;
544 }
545
546 /* Mark the object as freed. */
547 metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0);
548 init = slab_want_init_on_free(meta->cache);
549 raw_spin_unlock_irqrestore(&meta->lock, flags);
550
551 alloc_covered_add(meta->alloc_stack_hash, -1);
552
553 /* Check canary bytes for memory corruption. */
554 check_canary(meta);
555
556 /*
557 * Clear memory if init-on-free is set. While we protect the page, the
558 * data is still there, and after a use-after-free is detected, we
559 * unprotect the page, so the data is still accessible.
560 */
561 if (!zombie && unlikely(init))
562 memzero_explicit(addr, meta->size);
563
564 /* Protect to detect use-after-frees. */
565 kfence_protect((unsigned long)addr);
566
567 kcsan_end_scoped_access(&assert_page_exclusive);
568 if (!zombie) {
569 /* Add it to the tail of the freelist for reuse. */
570 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
571 KFENCE_WARN_ON(!list_empty(&meta->list));
572 list_add_tail(&meta->list, &kfence_freelist);
573 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
574
575 atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
576 atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
577 } else {
578 /* See kfence_shutdown_cache(). */
579 atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
580 }
581 }
582
rcu_guarded_free(struct rcu_head * h)583 static void rcu_guarded_free(struct rcu_head *h)
584 {
585 struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
586
587 kfence_guarded_free((void *)meta->addr, meta, false);
588 }
589
590 /*
591 * Initialization of the KFENCE pool after its allocation.
592 * Returns 0 on success; otherwise returns the address up to
593 * which partial initialization succeeded.
594 */
kfence_init_pool(void)595 static unsigned long kfence_init_pool(void)
596 {
597 unsigned long addr, start_pfn;
598 int i;
599
600 if (!arch_kfence_init_pool())
601 return (unsigned long)__kfence_pool;
602
603 addr = (unsigned long)__kfence_pool;
604 start_pfn = PHYS_PFN(virt_to_phys(__kfence_pool));
605
606 /*
607 * Set up object pages: they must have PGTY_slab set to avoid freeing
608 * them as real pages.
609 *
610 * We also want to avoid inserting kfence_free() in the kfree()
611 * fast-path in SLUB, and therefore need to ensure kfree() correctly
612 * enters __slab_free() slow-path.
613 */
614 for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
615 struct slab *slab;
616
617 if (!i || (i % 2))
618 continue;
619
620 slab = page_slab(pfn_to_page(start_pfn + i));
621 __folio_set_slab(slab_folio(slab));
622 #ifdef CONFIG_MEMCG
623 slab->obj_exts = (unsigned long)&kfence_metadata_init[i / 2 - 1].obj_exts |
624 MEMCG_DATA_OBJEXTS;
625 #endif
626 }
627
628 /*
629 * Protect the first 2 pages. The first page is mostly unnecessary, and
630 * merely serves as an extended guard page. However, adding one
631 * additional page in the beginning gives us an even number of pages,
632 * which simplifies the mapping of address to metadata index.
633 */
634 for (i = 0; i < 2; i++) {
635 if (unlikely(!kfence_protect(addr)))
636 return addr;
637
638 addr += PAGE_SIZE;
639 }
640
641 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
642 struct kfence_metadata *meta = &kfence_metadata_init[i];
643
644 /* Initialize metadata. */
645 INIT_LIST_HEAD(&meta->list);
646 raw_spin_lock_init(&meta->lock);
647 meta->state = KFENCE_OBJECT_UNUSED;
648 meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
649 list_add_tail(&meta->list, &kfence_freelist);
650
651 /* Protect the right redzone. */
652 if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
653 goto reset_slab;
654
655 addr += 2 * PAGE_SIZE;
656 }
657
658 /*
659 * Make kfence_metadata visible only when initialization is successful.
660 * Otherwise, if the initialization fails and kfence_metadata is freed,
661 * it may cause UAF in kfence_shutdown_cache().
662 */
663 smp_store_release(&kfence_metadata, kfence_metadata_init);
664 return 0;
665
666 reset_slab:
667 for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
668 struct slab *slab;
669
670 if (!i || (i % 2))
671 continue;
672
673 slab = page_slab(pfn_to_page(start_pfn + i));
674 #ifdef CONFIG_MEMCG
675 slab->obj_exts = 0;
676 #endif
677 __folio_clear_slab(slab_folio(slab));
678 }
679
680 return addr;
681 }
682
kfence_init_pool_early(void)683 static bool __init kfence_init_pool_early(void)
684 {
685 unsigned long addr;
686
687 if (!__kfence_pool)
688 return false;
689
690 addr = kfence_init_pool();
691
692 if (!addr) {
693 /*
694 * The pool is live and will never be deallocated from this point on.
695 * Ignore the pool object from the kmemleak phys object tree, as it would
696 * otherwise overlap with allocations returned by kfence_alloc(), which
697 * are registered with kmemleak through the slab post-alloc hook.
698 */
699 kmemleak_ignore_phys(__pa(__kfence_pool));
700 return true;
701 }
702
703 /*
704 * Only release unprotected pages, and do not try to go back and change
705 * page attributes due to risk of failing to do so as well. If changing
706 * page attributes for some pages fails, it is very likely that it also
707 * fails for the first page, and therefore expect addr==__kfence_pool in
708 * most failure cases.
709 */
710 memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
711 __kfence_pool = NULL;
712
713 memblock_free_late(__pa(kfence_metadata_init), KFENCE_METADATA_SIZE);
714 kfence_metadata_init = NULL;
715
716 return false;
717 }
718
719 /* === DebugFS Interface ==================================================== */
720
stats_show(struct seq_file * seq,void * v)721 static int stats_show(struct seq_file *seq, void *v)
722 {
723 int i;
724
725 seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
726 for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
727 seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
728
729 return 0;
730 }
731 DEFINE_SHOW_ATTRIBUTE(stats);
732
733 /*
734 * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
735 * start_object() and next_object() return the object index + 1, because NULL is used
736 * to stop iteration.
737 */
start_object(struct seq_file * seq,loff_t * pos)738 static void *start_object(struct seq_file *seq, loff_t *pos)
739 {
740 if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
741 return (void *)((long)*pos + 1);
742 return NULL;
743 }
744
stop_object(struct seq_file * seq,void * v)745 static void stop_object(struct seq_file *seq, void *v)
746 {
747 }
748
next_object(struct seq_file * seq,void * v,loff_t * pos)749 static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
750 {
751 ++*pos;
752 if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
753 return (void *)((long)*pos + 1);
754 return NULL;
755 }
756
show_object(struct seq_file * seq,void * v)757 static int show_object(struct seq_file *seq, void *v)
758 {
759 struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
760 unsigned long flags;
761
762 raw_spin_lock_irqsave(&meta->lock, flags);
763 kfence_print_object(seq, meta);
764 raw_spin_unlock_irqrestore(&meta->lock, flags);
765 seq_puts(seq, "---------------------------------\n");
766
767 return 0;
768 }
769
770 static const struct seq_operations objects_sops = {
771 .start = start_object,
772 .next = next_object,
773 .stop = stop_object,
774 .show = show_object,
775 };
776 DEFINE_SEQ_ATTRIBUTE(objects);
777
kfence_debugfs_init(void)778 static int kfence_debugfs_init(void)
779 {
780 struct dentry *kfence_dir;
781
782 if (!READ_ONCE(kfence_enabled))
783 return 0;
784
785 kfence_dir = debugfs_create_dir("kfence", NULL);
786 debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
787 debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
788 return 0;
789 }
790
791 late_initcall(kfence_debugfs_init);
792
793 /* === Panic Notifier ====================================================== */
794
kfence_check_all_canary(void)795 static void kfence_check_all_canary(void)
796 {
797 int i;
798
799 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
800 struct kfence_metadata *meta = &kfence_metadata[i];
801
802 if (kfence_obj_allocated(meta))
803 check_canary(meta);
804 }
805 }
806
kfence_check_canary_callback(struct notifier_block * nb,unsigned long reason,void * arg)807 static int kfence_check_canary_callback(struct notifier_block *nb,
808 unsigned long reason, void *arg)
809 {
810 kfence_check_all_canary();
811 return NOTIFY_OK;
812 }
813
814 static struct notifier_block kfence_check_canary_notifier = {
815 .notifier_call = kfence_check_canary_callback,
816 };
817
818 /* === Allocation Gate Timer ================================================ */
819
820 static struct delayed_work kfence_timer;
821
822 #ifdef CONFIG_KFENCE_STATIC_KEYS
823 /* Wait queue to wake up allocation-gate timer task. */
824 static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
825
wake_up_kfence_timer(struct irq_work * work)826 static void wake_up_kfence_timer(struct irq_work *work)
827 {
828 wake_up(&allocation_wait);
829 }
830 static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
831 #endif
832
833 /*
834 * Set up delayed work, which will enable and disable the static key. We need to
835 * use a work queue (rather than a simple timer), since enabling and disabling a
836 * static key cannot be done from an interrupt.
837 *
838 * Note: Toggling a static branch currently causes IPIs, and here we'll end up
839 * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
840 * more aggressive sampling intervals), we could get away with a variant that
841 * avoids IPIs, at the cost of not immediately capturing allocations if the
842 * instructions remain cached.
843 */
toggle_allocation_gate(struct work_struct * work)844 static void toggle_allocation_gate(struct work_struct *work)
845 {
846 if (!READ_ONCE(kfence_enabled))
847 return;
848
849 atomic_set(&kfence_allocation_gate, -kfence_burst);
850 #ifdef CONFIG_KFENCE_STATIC_KEYS
851 /* Enable static key, and await allocation to happen. */
852 static_branch_enable(&kfence_allocation_key);
853
854 wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate) > 0);
855
856 /* Disable static key and reset timer. */
857 static_branch_disable(&kfence_allocation_key);
858 #endif
859 queue_delayed_work(system_unbound_wq, &kfence_timer,
860 msecs_to_jiffies(kfence_sample_interval));
861 }
862
863 /* === Public interface ===================================================== */
864
kfence_alloc_pool_and_metadata(void)865 void __init kfence_alloc_pool_and_metadata(void)
866 {
867 if (!kfence_sample_interval)
868 return;
869
870 /*
871 * If the pool has already been initialized by arch, there is no need to
872 * re-allocate the memory pool.
873 */
874 if (!__kfence_pool)
875 __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
876
877 if (!__kfence_pool) {
878 pr_err("failed to allocate pool\n");
879 return;
880 }
881
882 /* The memory allocated by memblock has been zeroed out. */
883 kfence_metadata_init = memblock_alloc(KFENCE_METADATA_SIZE, PAGE_SIZE);
884 if (!kfence_metadata_init) {
885 pr_err("failed to allocate metadata\n");
886 memblock_free(__kfence_pool, KFENCE_POOL_SIZE);
887 __kfence_pool = NULL;
888 }
889 }
890
kfence_init_enable(void)891 static void kfence_init_enable(void)
892 {
893 if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS))
894 static_branch_enable(&kfence_allocation_key);
895
896 if (kfence_deferrable)
897 INIT_DEFERRABLE_WORK(&kfence_timer, toggle_allocation_gate);
898 else
899 INIT_DELAYED_WORK(&kfence_timer, toggle_allocation_gate);
900
901 if (kfence_check_on_panic)
902 atomic_notifier_chain_register(&panic_notifier_list, &kfence_check_canary_notifier);
903
904 WRITE_ONCE(kfence_enabled, true);
905 queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
906
907 pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
908 CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
909 (void *)(__kfence_pool + KFENCE_POOL_SIZE));
910 }
911
kfence_init(void)912 void __init kfence_init(void)
913 {
914 stack_hash_seed = get_random_u32();
915
916 /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
917 if (!kfence_sample_interval)
918 return;
919
920 if (!kfence_init_pool_early()) {
921 pr_err("%s failed\n", __func__);
922 return;
923 }
924
925 kfence_init_enable();
926 }
927
kfence_init_late(void)928 static int kfence_init_late(void)
929 {
930 const unsigned long nr_pages_pool = KFENCE_POOL_SIZE / PAGE_SIZE;
931 const unsigned long nr_pages_meta = KFENCE_METADATA_SIZE / PAGE_SIZE;
932 unsigned long addr = (unsigned long)__kfence_pool;
933 unsigned long free_size = KFENCE_POOL_SIZE;
934 int err = -ENOMEM;
935
936 #ifdef CONFIG_CONTIG_ALLOC
937 struct page *pages;
938
939 pages = alloc_contig_pages(nr_pages_pool, GFP_KERNEL, first_online_node,
940 NULL);
941 if (!pages)
942 return -ENOMEM;
943
944 __kfence_pool = page_to_virt(pages);
945 pages = alloc_contig_pages(nr_pages_meta, GFP_KERNEL, first_online_node,
946 NULL);
947 if (pages)
948 kfence_metadata_init = page_to_virt(pages);
949 #else
950 if (nr_pages_pool > MAX_ORDER_NR_PAGES ||
951 nr_pages_meta > MAX_ORDER_NR_PAGES) {
952 pr_warn("KFENCE_NUM_OBJECTS too large for buddy allocator\n");
953 return -EINVAL;
954 }
955
956 __kfence_pool = alloc_pages_exact(KFENCE_POOL_SIZE, GFP_KERNEL);
957 if (!__kfence_pool)
958 return -ENOMEM;
959
960 kfence_metadata_init = alloc_pages_exact(KFENCE_METADATA_SIZE, GFP_KERNEL);
961 #endif
962
963 if (!kfence_metadata_init)
964 goto free_pool;
965
966 memzero_explicit(kfence_metadata_init, KFENCE_METADATA_SIZE);
967 addr = kfence_init_pool();
968 if (!addr) {
969 kfence_init_enable();
970 kfence_debugfs_init();
971 return 0;
972 }
973
974 pr_err("%s failed\n", __func__);
975 free_size = KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool);
976 err = -EBUSY;
977
978 #ifdef CONFIG_CONTIG_ALLOC
979 free_contig_range(page_to_pfn(virt_to_page((void *)kfence_metadata_init)),
980 nr_pages_meta);
981 free_pool:
982 free_contig_range(page_to_pfn(virt_to_page((void *)addr)),
983 free_size / PAGE_SIZE);
984 #else
985 free_pages_exact((void *)kfence_metadata_init, KFENCE_METADATA_SIZE);
986 free_pool:
987 free_pages_exact((void *)addr, free_size);
988 #endif
989
990 kfence_metadata_init = NULL;
991 __kfence_pool = NULL;
992 return err;
993 }
994
kfence_enable_late(void)995 static int kfence_enable_late(void)
996 {
997 if (!__kfence_pool)
998 return kfence_init_late();
999
1000 WRITE_ONCE(kfence_enabled, true);
1001 queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
1002 pr_info("re-enabled\n");
1003 return 0;
1004 }
1005
kfence_shutdown_cache(struct kmem_cache * s)1006 void kfence_shutdown_cache(struct kmem_cache *s)
1007 {
1008 unsigned long flags;
1009 struct kfence_metadata *meta;
1010 int i;
1011
1012 /* Pairs with release in kfence_init_pool(). */
1013 if (!smp_load_acquire(&kfence_metadata))
1014 return;
1015
1016 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
1017 bool in_use;
1018
1019 meta = &kfence_metadata[i];
1020
1021 /*
1022 * If we observe some inconsistent cache and state pair where we
1023 * should have returned false here, cache destruction is racing
1024 * with either kmem_cache_alloc() or kmem_cache_free(). Taking
1025 * the lock will not help, as different critical section
1026 * serialization will have the same outcome.
1027 */
1028 if (READ_ONCE(meta->cache) != s || !kfence_obj_allocated(meta))
1029 continue;
1030
1031 raw_spin_lock_irqsave(&meta->lock, flags);
1032 in_use = meta->cache == s && kfence_obj_allocated(meta);
1033 raw_spin_unlock_irqrestore(&meta->lock, flags);
1034
1035 if (in_use) {
1036 /*
1037 * This cache still has allocations, and we should not
1038 * release them back into the freelist so they can still
1039 * safely be used and retain the kernel's default
1040 * behaviour of keeping the allocations alive (leak the
1041 * cache); however, they effectively become "zombie
1042 * allocations" as the KFENCE objects are the only ones
1043 * still in use and the owning cache is being destroyed.
1044 *
1045 * We mark them freed, so that any subsequent use shows
1046 * more useful error messages that will include stack
1047 * traces of the user of the object, the original
1048 * allocation, and caller to shutdown_cache().
1049 */
1050 kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
1051 }
1052 }
1053
1054 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
1055 meta = &kfence_metadata[i];
1056
1057 /* See above. */
1058 if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
1059 continue;
1060
1061 raw_spin_lock_irqsave(&meta->lock, flags);
1062 if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
1063 meta->cache = NULL;
1064 raw_spin_unlock_irqrestore(&meta->lock, flags);
1065 }
1066 }
1067
__kfence_alloc(struct kmem_cache * s,size_t size,gfp_t flags)1068 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
1069 {
1070 unsigned long stack_entries[KFENCE_STACK_DEPTH];
1071 size_t num_stack_entries;
1072 u32 alloc_stack_hash;
1073 int allocation_gate;
1074
1075 /*
1076 * Perform size check before switching kfence_allocation_gate, so that
1077 * we don't disable KFENCE without making an allocation.
1078 */
1079 if (size > PAGE_SIZE) {
1080 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
1081 return NULL;
1082 }
1083
1084 /*
1085 * Skip allocations from non-default zones, including DMA. We cannot
1086 * guarantee that pages in the KFENCE pool will have the requested
1087 * properties (e.g. reside in DMAable memory).
1088 */
1089 if ((flags & GFP_ZONEMASK) ||
1090 ((flags & __GFP_THISNODE) && num_online_nodes() > 1) ||
1091 (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) {
1092 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
1093 return NULL;
1094 }
1095
1096 /*
1097 * Skip allocations for this slab, if KFENCE has been disabled for
1098 * this slab.
1099 */
1100 if (s->flags & SLAB_SKIP_KFENCE)
1101 return NULL;
1102
1103 allocation_gate = atomic_inc_return(&kfence_allocation_gate);
1104 if (allocation_gate > 1)
1105 return NULL;
1106 #ifdef CONFIG_KFENCE_STATIC_KEYS
1107 /*
1108 * waitqueue_active() is fully ordered after the update of
1109 * kfence_allocation_gate per atomic_inc_return().
1110 */
1111 if (allocation_gate == 1 && waitqueue_active(&allocation_wait)) {
1112 /*
1113 * Calling wake_up() here may deadlock when allocations happen
1114 * from within timer code. Use an irq_work to defer it.
1115 */
1116 irq_work_queue(&wake_up_kfence_timer_work);
1117 }
1118 #endif
1119
1120 if (!READ_ONCE(kfence_enabled))
1121 return NULL;
1122
1123 num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0);
1124
1125 /*
1126 * Do expensive check for coverage of allocation in slow-path after
1127 * allocation_gate has already become non-zero, even though it might
1128 * mean not making any allocation within a given sample interval.
1129 *
1130 * This ensures reasonable allocation coverage when the pool is almost
1131 * full, including avoiding long-lived allocations of the same source
1132 * filling up the pool (e.g. pagecache allocations).
1133 */
1134 alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries);
1135 if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) {
1136 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]);
1137 return NULL;
1138 }
1139
1140 return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries,
1141 alloc_stack_hash);
1142 }
1143
kfence_ksize(const void * addr)1144 size_t kfence_ksize(const void *addr)
1145 {
1146 const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1147
1148 /*
1149 * Read locklessly -- if there is a race with __kfence_alloc(), this is
1150 * either a use-after-free or invalid access.
1151 */
1152 return meta ? meta->size : 0;
1153 }
1154
kfence_object_start(const void * addr)1155 void *kfence_object_start(const void *addr)
1156 {
1157 const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1158
1159 /*
1160 * Read locklessly -- if there is a race with __kfence_alloc(), this is
1161 * either a use-after-free or invalid access.
1162 */
1163 return meta ? (void *)meta->addr : NULL;
1164 }
1165
__kfence_free(void * addr)1166 void __kfence_free(void *addr)
1167 {
1168 struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1169
1170 #ifdef CONFIG_MEMCG
1171 KFENCE_WARN_ON(meta->obj_exts.objcg);
1172 #endif
1173 /*
1174 * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
1175 * the object, as the object page may be recycled for other-typed
1176 * objects once it has been freed. meta->cache may be NULL if the cache
1177 * was destroyed.
1178 * Save the stack trace here so that reports show where the user freed
1179 * the object.
1180 */
1181 if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU))) {
1182 unsigned long flags;
1183
1184 raw_spin_lock_irqsave(&meta->lock, flags);
1185 metadata_update_state(meta, KFENCE_OBJECT_RCU_FREEING, NULL, 0);
1186 raw_spin_unlock_irqrestore(&meta->lock, flags);
1187 call_rcu(&meta->rcu_head, rcu_guarded_free);
1188 } else {
1189 kfence_guarded_free(addr, meta, false);
1190 }
1191 }
1192
kfence_handle_page_fault(unsigned long addr,bool is_write,struct pt_regs * regs)1193 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
1194 {
1195 const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
1196 struct kfence_metadata *to_report = NULL;
1197 enum kfence_error_type error_type;
1198 unsigned long flags;
1199
1200 if (!is_kfence_address((void *)addr))
1201 return false;
1202
1203 if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
1204 return kfence_unprotect(addr); /* ... unprotect and proceed. */
1205
1206 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
1207
1208 if (page_index % 2) {
1209 /* This is a redzone, report a buffer overflow. */
1210 struct kfence_metadata *meta;
1211 int distance = 0;
1212
1213 meta = addr_to_metadata(addr - PAGE_SIZE);
1214 if (meta && kfence_obj_allocated(meta)) {
1215 to_report = meta;
1216 /* Data race ok; distance calculation approximate. */
1217 distance = addr - data_race(meta->addr + meta->size);
1218 }
1219
1220 meta = addr_to_metadata(addr + PAGE_SIZE);
1221 if (meta && kfence_obj_allocated(meta)) {
1222 /* Data race ok; distance calculation approximate. */
1223 if (!to_report || distance > data_race(meta->addr) - addr)
1224 to_report = meta;
1225 }
1226
1227 if (!to_report)
1228 goto out;
1229
1230 raw_spin_lock_irqsave(&to_report->lock, flags);
1231 to_report->unprotected_page = addr;
1232 error_type = KFENCE_ERROR_OOB;
1233
1234 /*
1235 * If the object was freed before we took the look we can still
1236 * report this as an OOB -- the report will simply show the
1237 * stacktrace of the free as well.
1238 */
1239 } else {
1240 to_report = addr_to_metadata(addr);
1241 if (!to_report)
1242 goto out;
1243
1244 raw_spin_lock_irqsave(&to_report->lock, flags);
1245 error_type = KFENCE_ERROR_UAF;
1246 /*
1247 * We may race with __kfence_alloc(), and it is possible that a
1248 * freed object may be reallocated. We simply report this as a
1249 * use-after-free, with the stack trace showing the place where
1250 * the object was re-allocated.
1251 */
1252 }
1253
1254 out:
1255 if (to_report) {
1256 kfence_report_error(addr, is_write, regs, to_report, error_type);
1257 raw_spin_unlock_irqrestore(&to_report->lock, flags);
1258 } else {
1259 /* This may be a UAF or OOB access, but we can't be sure. */
1260 kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
1261 }
1262
1263 return kfence_unprotect(addr); /* Unprotect and let access proceed. */
1264 }
1265