1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2018 Western Digital Corporation
3
4 #include <linux/err.h>
5 #include <linux/string.h>
6 #include <linux/bitfield.h>
7 #include <linux/unaligned.h>
8 #include <linux/string_choices.h>
9
10 #include <ufs/ufs.h>
11 #include <ufs/unipro.h>
12 #include "ufs-sysfs.h"
13 #include "ufshcd-priv.h"
14
ufs_pa_pwr_mode_to_string(enum ufs_pa_pwr_mode mode)15 static const char *ufs_pa_pwr_mode_to_string(enum ufs_pa_pwr_mode mode)
16 {
17 switch (mode) {
18 case FAST_MODE: return "FAST_MODE";
19 case SLOW_MODE: return "SLOW_MODE";
20 case FASTAUTO_MODE: return "FASTAUTO_MODE";
21 case SLOWAUTO_MODE: return "SLOWAUTO_MODE";
22 default: return "UNKNOWN";
23 }
24 }
25
ufs_hs_gear_rate_to_string(enum ufs_hs_gear_rate rate)26 static const char *ufs_hs_gear_rate_to_string(enum ufs_hs_gear_rate rate)
27 {
28 switch (rate) {
29 case PA_HS_MODE_A: return "HS_RATE_A";
30 case PA_HS_MODE_B: return "HS_RATE_B";
31 default: return "UNKNOWN";
32 }
33 }
34
ufs_pwm_gear_to_string(enum ufs_pwm_gear_tag gear)35 static const char *ufs_pwm_gear_to_string(enum ufs_pwm_gear_tag gear)
36 {
37 switch (gear) {
38 case UFS_PWM_G1: return "PWM_GEAR1";
39 case UFS_PWM_G2: return "PWM_GEAR2";
40 case UFS_PWM_G3: return "PWM_GEAR3";
41 case UFS_PWM_G4: return "PWM_GEAR4";
42 case UFS_PWM_G5: return "PWM_GEAR5";
43 case UFS_PWM_G6: return "PWM_GEAR6";
44 case UFS_PWM_G7: return "PWM_GEAR7";
45 default: return "UNKNOWN";
46 }
47 }
48
ufs_hs_gear_to_string(enum ufs_hs_gear_tag gear)49 static const char *ufs_hs_gear_to_string(enum ufs_hs_gear_tag gear)
50 {
51 switch (gear) {
52 case UFS_HS_G1: return "HS_GEAR1";
53 case UFS_HS_G2: return "HS_GEAR2";
54 case UFS_HS_G3: return "HS_GEAR3";
55 case UFS_HS_G4: return "HS_GEAR4";
56 case UFS_HS_G5: return "HS_GEAR5";
57 default: return "UNKNOWN";
58 }
59 }
60
ufs_wb_resize_hint_to_string(enum wb_resize_hint hint)61 static const char *ufs_wb_resize_hint_to_string(enum wb_resize_hint hint)
62 {
63 switch (hint) {
64 case WB_RESIZE_HINT_KEEP:
65 return "keep";
66 case WB_RESIZE_HINT_DECREASE:
67 return "decrease";
68 case WB_RESIZE_HINT_INCREASE:
69 return "increase";
70 default:
71 return "unknown";
72 }
73 }
74
ufs_wb_resize_status_to_string(enum wb_resize_status status)75 static const char *ufs_wb_resize_status_to_string(enum wb_resize_status status)
76 {
77 switch (status) {
78 case WB_RESIZE_STATUS_IDLE:
79 return "idle";
80 case WB_RESIZE_STATUS_IN_PROGRESS:
81 return "in_progress";
82 case WB_RESIZE_STATUS_COMPLETE_SUCCESS:
83 return "complete_success";
84 case WB_RESIZE_STATUS_GENERAL_FAILURE:
85 return "general_failure";
86 default:
87 return "unknown";
88 }
89 }
90
91 static const char * const ufs_hid_states[] = {
92 [HID_IDLE] = "idle",
93 [ANALYSIS_IN_PROGRESS] = "analysis_in_progress",
94 [DEFRAG_REQUIRED] = "defrag_required",
95 [DEFRAG_IN_PROGRESS] = "defrag_in_progress",
96 [DEFRAG_COMPLETED] = "defrag_completed",
97 [DEFRAG_NOT_REQUIRED] = "defrag_not_required",
98 };
99
ufs_hid_state_to_string(enum ufs_hid_state state)100 static const char *ufs_hid_state_to_string(enum ufs_hid_state state)
101 {
102 if (state < NUM_UFS_HID_STATES)
103 return ufs_hid_states[state];
104
105 return "unknown";
106 }
107
ufshcd_uic_link_state_to_string(enum uic_link_state state)108 static const char *ufshcd_uic_link_state_to_string(
109 enum uic_link_state state)
110 {
111 switch (state) {
112 case UIC_LINK_OFF_STATE: return "OFF";
113 case UIC_LINK_ACTIVE_STATE: return "ACTIVE";
114 case UIC_LINK_HIBERN8_STATE: return "HIBERN8";
115 case UIC_LINK_BROKEN_STATE: return "BROKEN";
116 default: return "UNKNOWN";
117 }
118 }
119
ufshcd_ufs_dev_pwr_mode_to_string(enum ufs_dev_pwr_mode state)120 static const char *ufshcd_ufs_dev_pwr_mode_to_string(
121 enum ufs_dev_pwr_mode state)
122 {
123 switch (state) {
124 case UFS_ACTIVE_PWR_MODE: return "ACTIVE";
125 case UFS_SLEEP_PWR_MODE: return "SLEEP";
126 case UFS_POWERDOWN_PWR_MODE: return "POWERDOWN";
127 case UFS_DEEPSLEEP_PWR_MODE: return "DEEPSLEEP";
128 default: return "UNKNOWN";
129 }
130 }
131
ufs_sysfs_pm_lvl_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count,bool rpm)132 static inline ssize_t ufs_sysfs_pm_lvl_store(struct device *dev,
133 struct device_attribute *attr,
134 const char *buf, size_t count,
135 bool rpm)
136 {
137 struct ufs_hba *hba = dev_get_drvdata(dev);
138 struct ufs_dev_info *dev_info = &hba->dev_info;
139 unsigned long flags, value;
140
141 if (kstrtoul(buf, 0, &value))
142 return -EINVAL;
143
144 if (value >= UFS_PM_LVL_MAX)
145 return -EINVAL;
146
147 if (ufs_pm_lvl_states[value].dev_state == UFS_DEEPSLEEP_PWR_MODE &&
148 (!(hba->caps & UFSHCD_CAP_DEEPSLEEP) ||
149 !(dev_info->wspecversion >= 0x310)))
150 return -EINVAL;
151
152 spin_lock_irqsave(hba->host->host_lock, flags);
153 if (rpm)
154 hba->rpm_lvl = value;
155 else
156 hba->spm_lvl = value;
157 spin_unlock_irqrestore(hba->host->host_lock, flags);
158 return count;
159 }
160
rpm_lvl_show(struct device * dev,struct device_attribute * attr,char * buf)161 static ssize_t rpm_lvl_show(struct device *dev,
162 struct device_attribute *attr, char *buf)
163 {
164 struct ufs_hba *hba = dev_get_drvdata(dev);
165
166 return sysfs_emit(buf, "%d\n", hba->rpm_lvl);
167 }
168
rpm_lvl_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)169 static ssize_t rpm_lvl_store(struct device *dev,
170 struct device_attribute *attr, const char *buf, size_t count)
171 {
172 return ufs_sysfs_pm_lvl_store(dev, attr, buf, count, true);
173 }
174
rpm_target_dev_state_show(struct device * dev,struct device_attribute * attr,char * buf)175 static ssize_t rpm_target_dev_state_show(struct device *dev,
176 struct device_attribute *attr, char *buf)
177 {
178 struct ufs_hba *hba = dev_get_drvdata(dev);
179
180 return sysfs_emit(buf, "%s\n", ufshcd_ufs_dev_pwr_mode_to_string(
181 ufs_pm_lvl_states[hba->rpm_lvl].dev_state));
182 }
183
rpm_target_link_state_show(struct device * dev,struct device_attribute * attr,char * buf)184 static ssize_t rpm_target_link_state_show(struct device *dev,
185 struct device_attribute *attr, char *buf)
186 {
187 struct ufs_hba *hba = dev_get_drvdata(dev);
188
189 return sysfs_emit(buf, "%s\n", ufshcd_uic_link_state_to_string(
190 ufs_pm_lvl_states[hba->rpm_lvl].link_state));
191 }
192
spm_lvl_show(struct device * dev,struct device_attribute * attr,char * buf)193 static ssize_t spm_lvl_show(struct device *dev,
194 struct device_attribute *attr, char *buf)
195 {
196 struct ufs_hba *hba = dev_get_drvdata(dev);
197
198 return sysfs_emit(buf, "%d\n", hba->spm_lvl);
199 }
200
spm_lvl_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)201 static ssize_t spm_lvl_store(struct device *dev,
202 struct device_attribute *attr, const char *buf, size_t count)
203 {
204 return ufs_sysfs_pm_lvl_store(dev, attr, buf, count, false);
205 }
206
spm_target_dev_state_show(struct device * dev,struct device_attribute * attr,char * buf)207 static ssize_t spm_target_dev_state_show(struct device *dev,
208 struct device_attribute *attr, char *buf)
209 {
210 struct ufs_hba *hba = dev_get_drvdata(dev);
211
212 return sysfs_emit(buf, "%s\n", ufshcd_ufs_dev_pwr_mode_to_string(
213 ufs_pm_lvl_states[hba->spm_lvl].dev_state));
214 }
215
spm_target_link_state_show(struct device * dev,struct device_attribute * attr,char * buf)216 static ssize_t spm_target_link_state_show(struct device *dev,
217 struct device_attribute *attr, char *buf)
218 {
219 struct ufs_hba *hba = dev_get_drvdata(dev);
220
221 return sysfs_emit(buf, "%s\n", ufshcd_uic_link_state_to_string(
222 ufs_pm_lvl_states[hba->spm_lvl].link_state));
223 }
224
225 /* Convert Auto-Hibernate Idle Timer register value to microseconds */
ufshcd_ahit_to_us(u32 ahit)226 static int ufshcd_ahit_to_us(u32 ahit)
227 {
228 int timer = FIELD_GET(UFSHCI_AHIBERN8_TIMER_MASK, ahit);
229 int scale = FIELD_GET(UFSHCI_AHIBERN8_SCALE_MASK, ahit);
230
231 for (; scale > 0; --scale)
232 timer *= UFSHCI_AHIBERN8_SCALE_FACTOR;
233
234 return timer;
235 }
236
237 /* Convert microseconds to Auto-Hibernate Idle Timer register value */
ufshcd_us_to_ahit(unsigned int timer)238 static u32 ufshcd_us_to_ahit(unsigned int timer)
239 {
240 unsigned int scale;
241
242 for (scale = 0; timer > UFSHCI_AHIBERN8_TIMER_MASK; ++scale)
243 timer /= UFSHCI_AHIBERN8_SCALE_FACTOR;
244
245 return FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, timer) |
246 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, scale);
247 }
248
ufshcd_read_hci_reg(struct ufs_hba * hba,u32 * val,unsigned int reg)249 static int ufshcd_read_hci_reg(struct ufs_hba *hba, u32 *val, unsigned int reg)
250 {
251 down(&hba->host_sem);
252 if (!ufshcd_is_user_access_allowed(hba)) {
253 up(&hba->host_sem);
254 return -EBUSY;
255 }
256
257 ufshcd_rpm_get_sync(hba);
258 ufshcd_hold(hba);
259 *val = ufshcd_readl(hba, reg);
260 ufshcd_release(hba);
261 ufshcd_rpm_put_sync(hba);
262
263 up(&hba->host_sem);
264 return 0;
265 }
266
auto_hibern8_show(struct device * dev,struct device_attribute * attr,char * buf)267 static ssize_t auto_hibern8_show(struct device *dev,
268 struct device_attribute *attr, char *buf)
269 {
270 u32 ahit;
271 int ret;
272 struct ufs_hba *hba = dev_get_drvdata(dev);
273
274 if (!ufshcd_is_auto_hibern8_supported(hba))
275 return -EOPNOTSUPP;
276
277 ret = ufshcd_read_hci_reg(hba, &ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
278 if (ret)
279 return ret;
280
281 return sysfs_emit(buf, "%d\n", ufshcd_ahit_to_us(ahit));
282 }
283
auto_hibern8_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)284 static ssize_t auto_hibern8_store(struct device *dev,
285 struct device_attribute *attr,
286 const char *buf, size_t count)
287 {
288 struct ufs_hba *hba = dev_get_drvdata(dev);
289 unsigned int timer;
290 int ret = 0;
291
292 if (!ufshcd_is_auto_hibern8_supported(hba))
293 return -EOPNOTSUPP;
294
295 if (kstrtouint(buf, 0, &timer))
296 return -EINVAL;
297
298 if (timer > UFSHCI_AHIBERN8_MAX)
299 return -EINVAL;
300
301 down(&hba->host_sem);
302 if (!ufshcd_is_user_access_allowed(hba)) {
303 ret = -EBUSY;
304 goto out;
305 }
306
307 ufshcd_auto_hibern8_update(hba, ufshcd_us_to_ahit(timer));
308
309 out:
310 up(&hba->host_sem);
311 return ret ? ret : count;
312 }
313
wb_on_show(struct device * dev,struct device_attribute * attr,char * buf)314 static ssize_t wb_on_show(struct device *dev, struct device_attribute *attr,
315 char *buf)
316 {
317 struct ufs_hba *hba = dev_get_drvdata(dev);
318
319 return sysfs_emit(buf, "%d\n", hba->dev_info.wb_enabled);
320 }
321
wb_on_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)322 static ssize_t wb_on_store(struct device *dev, struct device_attribute *attr,
323 const char *buf, size_t count)
324 {
325 struct ufs_hba *hba = dev_get_drvdata(dev);
326 unsigned int wb_enable;
327 ssize_t res;
328
329 if (!ufshcd_is_wb_allowed(hba) || (ufshcd_is_clkscaling_supported(hba)
330 && ufshcd_enable_wb_if_scaling_up(hba))) {
331 /*
332 * If the platform supports UFSHCD_CAP_CLK_SCALING, turn WB
333 * on/off will be done while clock scaling up/down.
334 */
335 dev_warn(dev, "It is not allowed to configure WB!\n");
336 return -EOPNOTSUPP;
337 }
338
339 if (kstrtouint(buf, 0, &wb_enable))
340 return -EINVAL;
341
342 if (wb_enable != 0 && wb_enable != 1)
343 return -EINVAL;
344
345 down(&hba->host_sem);
346 if (!ufshcd_is_user_access_allowed(hba)) {
347 res = -EBUSY;
348 goto out;
349 }
350
351 ufshcd_rpm_get_sync(hba);
352 res = ufshcd_wb_toggle(hba, wb_enable);
353 ufshcd_rpm_put_sync(hba);
354 out:
355 up(&hba->host_sem);
356 return res < 0 ? res : count;
357 }
358
rtc_update_ms_show(struct device * dev,struct device_attribute * attr,char * buf)359 static ssize_t rtc_update_ms_show(struct device *dev, struct device_attribute *attr,
360 char *buf)
361 {
362 struct ufs_hba *hba = dev_get_drvdata(dev);
363
364 return sysfs_emit(buf, "%d\n", hba->dev_info.rtc_update_period);
365 }
366
rtc_update_ms_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)367 static ssize_t rtc_update_ms_store(struct device *dev, struct device_attribute *attr,
368 const char *buf, size_t count)
369 {
370 struct ufs_hba *hba = dev_get_drvdata(dev);
371 unsigned int ms;
372 bool resume_period_update = false;
373
374 if (kstrtouint(buf, 0, &ms))
375 return -EINVAL;
376
377 if (!hba->dev_info.rtc_update_period && ms > 0)
378 resume_period_update = true;
379 /* Minimum and maximum update frequency should be synchronized with all UFS vendors */
380 hba->dev_info.rtc_update_period = ms;
381
382 if (resume_period_update)
383 schedule_delayed_work(&hba->ufs_rtc_update_work,
384 msecs_to_jiffies(hba->dev_info.rtc_update_period));
385 return count;
386 }
387
enable_wb_buf_flush_show(struct device * dev,struct device_attribute * attr,char * buf)388 static ssize_t enable_wb_buf_flush_show(struct device *dev,
389 struct device_attribute *attr,
390 char *buf)
391 {
392 struct ufs_hba *hba = dev_get_drvdata(dev);
393
394 return sysfs_emit(buf, "%d\n", hba->dev_info.wb_buf_flush_enabled);
395 }
396
enable_wb_buf_flush_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)397 static ssize_t enable_wb_buf_flush_store(struct device *dev,
398 struct device_attribute *attr,
399 const char *buf, size_t count)
400 {
401 struct ufs_hba *hba = dev_get_drvdata(dev);
402 unsigned int enable_wb_buf_flush;
403 ssize_t res;
404
405 if (!ufshcd_is_wb_buf_flush_allowed(hba)) {
406 dev_warn(dev, "It is not allowed to configure WB buf flushing!\n");
407 return -EOPNOTSUPP;
408 }
409
410 if (kstrtouint(buf, 0, &enable_wb_buf_flush))
411 return -EINVAL;
412
413 if (enable_wb_buf_flush != 0 && enable_wb_buf_flush != 1)
414 return -EINVAL;
415
416 down(&hba->host_sem);
417 if (!ufshcd_is_user_access_allowed(hba)) {
418 res = -EBUSY;
419 goto out;
420 }
421
422 ufshcd_rpm_get_sync(hba);
423 res = ufshcd_wb_toggle_buf_flush(hba, enable_wb_buf_flush);
424 ufshcd_rpm_put_sync(hba);
425
426 out:
427 up(&hba->host_sem);
428 return res < 0 ? res : count;
429 }
430
wb_flush_threshold_show(struct device * dev,struct device_attribute * attr,char * buf)431 static ssize_t wb_flush_threshold_show(struct device *dev,
432 struct device_attribute *attr,
433 char *buf)
434 {
435 struct ufs_hba *hba = dev_get_drvdata(dev);
436
437 return sysfs_emit(buf, "%u\n", hba->vps->wb_flush_threshold);
438 }
439
wb_flush_threshold_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)440 static ssize_t wb_flush_threshold_store(struct device *dev,
441 struct device_attribute *attr,
442 const char *buf, size_t count)
443 {
444 struct ufs_hba *hba = dev_get_drvdata(dev);
445 unsigned int wb_flush_threshold;
446
447 if (kstrtouint(buf, 0, &wb_flush_threshold))
448 return -EINVAL;
449
450 /* The range of values for wb_flush_threshold is (0,10] */
451 if (wb_flush_threshold > UFS_WB_BUF_REMAIN_PERCENT(100) ||
452 wb_flush_threshold == 0) {
453 dev_err(dev, "The value of wb_flush_threshold is invalid!\n");
454 return -EINVAL;
455 }
456
457 hba->vps->wb_flush_threshold = wb_flush_threshold;
458
459 return count;
460 }
461
462 static const char * const wb_resize_en_mode[] = {
463 [WB_RESIZE_EN_IDLE] = "idle",
464 [WB_RESIZE_EN_DECREASE] = "decrease",
465 [WB_RESIZE_EN_INCREASE] = "increase",
466 };
467
wb_resize_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)468 static ssize_t wb_resize_enable_store(struct device *dev,
469 struct device_attribute *attr,
470 const char *buf, size_t count)
471 {
472 struct ufs_hba *hba = dev_get_drvdata(dev);
473 int mode;
474 ssize_t res;
475
476 if (!ufshcd_is_wb_allowed(hba) || !hba->dev_info.wb_enabled
477 || !hba->dev_info.b_presrv_uspc_en
478 || !(hba->dev_info.ext_wb_sup & UFS_DEV_WB_BUF_RESIZE))
479 return -EOPNOTSUPP;
480
481 mode = sysfs_match_string(wb_resize_en_mode, buf);
482 if (mode < 0)
483 return -EINVAL;
484
485 down(&hba->host_sem);
486 if (!ufshcd_is_user_access_allowed(hba)) {
487 res = -EBUSY;
488 goto out;
489 }
490
491 ufshcd_rpm_get_sync(hba);
492 res = ufshcd_wb_set_resize_en(hba, mode);
493 ufshcd_rpm_put_sync(hba);
494
495 out:
496 up(&hba->host_sem);
497 return res < 0 ? res : count;
498 }
499
500 /**
501 * pm_qos_enable_show - sysfs handler to show pm qos enable value
502 * @dev: device associated with the UFS controller
503 * @attr: sysfs attribute handle
504 * @buf: buffer for sysfs file
505 *
506 * Print 1 if PM QoS feature is enabled, 0 if disabled.
507 *
508 * Returns number of characters written to @buf.
509 */
pm_qos_enable_show(struct device * dev,struct device_attribute * attr,char * buf)510 static ssize_t pm_qos_enable_show(struct device *dev,
511 struct device_attribute *attr, char *buf)
512 {
513 struct ufs_hba *hba = dev_get_drvdata(dev);
514
515 return sysfs_emit(buf, "%d\n", hba->pm_qos_enabled);
516 }
517
518 /**
519 * pm_qos_enable_store - sysfs handler to store value
520 * @dev: device associated with the UFS controller
521 * @attr: sysfs attribute handle
522 * @buf: buffer for sysfs file
523 * @count: stores buffer characters count
524 *
525 * Input 0 to disable PM QoS and 1 value to enable.
526 * Default state: 1
527 *
528 * Return: number of characters written to @buf on success, < 0 upon failure.
529 */
pm_qos_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)530 static ssize_t pm_qos_enable_store(struct device *dev,
531 struct device_attribute *attr, const char *buf, size_t count)
532 {
533 struct ufs_hba *hba = dev_get_drvdata(dev);
534 bool value;
535
536 if (kstrtobool(buf, &value))
537 return -EINVAL;
538
539 if (value)
540 ufshcd_pm_qos_init(hba);
541 else
542 ufshcd_pm_qos_exit(hba);
543
544 return count;
545 }
546
critical_health_show(struct device * dev,struct device_attribute * attr,char * buf)547 static ssize_t critical_health_show(struct device *dev,
548 struct device_attribute *attr, char *buf)
549 {
550 struct ufs_hba *hba = dev_get_drvdata(dev);
551
552 return sysfs_emit(buf, "%d\n", hba->critical_health_count);
553 }
554
device_lvl_exception_count_show(struct device * dev,struct device_attribute * attr,char * buf)555 static ssize_t device_lvl_exception_count_show(struct device *dev,
556 struct device_attribute *attr,
557 char *buf)
558 {
559 struct ufs_hba *hba = dev_get_drvdata(dev);
560
561 if (hba->dev_info.wspecversion < 0x410)
562 return -EOPNOTSUPP;
563
564 return sysfs_emit(buf, "%u\n", atomic_read(&hba->dev_lvl_exception_count));
565 }
566
device_lvl_exception_count_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)567 static ssize_t device_lvl_exception_count_store(struct device *dev,
568 struct device_attribute *attr,
569 const char *buf, size_t count)
570 {
571 struct ufs_hba *hba = dev_get_drvdata(dev);
572 unsigned int value;
573
574 if (kstrtouint(buf, 0, &value))
575 return -EINVAL;
576
577 /* the only supported usecase is to reset the dev_lvl_exception_count */
578 if (value)
579 return -EINVAL;
580
581 atomic_set(&hba->dev_lvl_exception_count, 0);
582
583 return count;
584 }
585
device_lvl_exception_id_show(struct device * dev,struct device_attribute * attr,char * buf)586 static ssize_t device_lvl_exception_id_show(struct device *dev,
587 struct device_attribute *attr,
588 char *buf)
589 {
590 struct ufs_hba *hba = dev_get_drvdata(dev);
591 u64 exception_id;
592 int err;
593
594 ufshcd_rpm_get_sync(hba);
595 err = ufshcd_read_device_lvl_exception_id(hba, &exception_id);
596 ufshcd_rpm_put_sync(hba);
597
598 if (err)
599 return err;
600
601 hba->dev_lvl_exception_id = exception_id;
602 return sysfs_emit(buf, "%llu\n", exception_id);
603 }
604
605 static DEVICE_ATTR_RW(rpm_lvl);
606 static DEVICE_ATTR_RO(rpm_target_dev_state);
607 static DEVICE_ATTR_RO(rpm_target_link_state);
608 static DEVICE_ATTR_RW(spm_lvl);
609 static DEVICE_ATTR_RO(spm_target_dev_state);
610 static DEVICE_ATTR_RO(spm_target_link_state);
611 static DEVICE_ATTR_RW(auto_hibern8);
612 static DEVICE_ATTR_RW(wb_on);
613 static DEVICE_ATTR_RW(enable_wb_buf_flush);
614 static DEVICE_ATTR_RW(wb_flush_threshold);
615 static DEVICE_ATTR_WO(wb_resize_enable);
616 static DEVICE_ATTR_RW(rtc_update_ms);
617 static DEVICE_ATTR_RW(pm_qos_enable);
618 static DEVICE_ATTR_RO(critical_health);
619 static DEVICE_ATTR_RW(device_lvl_exception_count);
620 static DEVICE_ATTR_RO(device_lvl_exception_id);
621
622 static struct attribute *ufs_sysfs_ufshcd_attrs[] = {
623 &dev_attr_rpm_lvl.attr,
624 &dev_attr_rpm_target_dev_state.attr,
625 &dev_attr_rpm_target_link_state.attr,
626 &dev_attr_spm_lvl.attr,
627 &dev_attr_spm_target_dev_state.attr,
628 &dev_attr_spm_target_link_state.attr,
629 &dev_attr_auto_hibern8.attr,
630 &dev_attr_wb_on.attr,
631 &dev_attr_enable_wb_buf_flush.attr,
632 &dev_attr_wb_flush_threshold.attr,
633 &dev_attr_wb_resize_enable.attr,
634 &dev_attr_rtc_update_ms.attr,
635 &dev_attr_pm_qos_enable.attr,
636 &dev_attr_critical_health.attr,
637 &dev_attr_device_lvl_exception_count.attr,
638 &dev_attr_device_lvl_exception_id.attr,
639 NULL
640 };
641
642 static const struct attribute_group ufs_sysfs_default_group = {
643 .attrs = ufs_sysfs_ufshcd_attrs,
644 };
645
clock_scaling_show(struct device * dev,struct device_attribute * attr,char * buf)646 static ssize_t clock_scaling_show(struct device *dev, struct device_attribute *attr,
647 char *buf)
648 {
649 struct ufs_hba *hba = dev_get_drvdata(dev);
650
651 return sysfs_emit(buf, "%d\n", ufshcd_is_clkscaling_supported(hba));
652 }
653
write_booster_show(struct device * dev,struct device_attribute * attr,char * buf)654 static ssize_t write_booster_show(struct device *dev, struct device_attribute *attr,
655 char *buf)
656 {
657 struct ufs_hba *hba = dev_get_drvdata(dev);
658
659 return sysfs_emit(buf, "%d\n", ufshcd_is_wb_allowed(hba));
660 }
661
662 static DEVICE_ATTR_RO(clock_scaling);
663 static DEVICE_ATTR_RO(write_booster);
664
665 /*
666 * See Documentation/ABI/testing/sysfs-driver-ufs for the semantics of this
667 * group.
668 */
669 static struct attribute *ufs_sysfs_capabilities_attrs[] = {
670 &dev_attr_clock_scaling.attr,
671 &dev_attr_write_booster.attr,
672 NULL
673 };
674
675 static const struct attribute_group ufs_sysfs_capabilities_group = {
676 .name = "capabilities",
677 .attrs = ufs_sysfs_capabilities_attrs,
678 };
679
version_show(struct device * dev,struct device_attribute * attr,char * buf)680 static ssize_t version_show(struct device *dev,
681 struct device_attribute *attr, char *buf)
682 {
683 struct ufs_hba *hba = dev_get_drvdata(dev);
684
685 return sysfs_emit(buf, "0x%x\n", hba->ufs_version);
686 }
687
product_id_show(struct device * dev,struct device_attribute * attr,char * buf)688 static ssize_t product_id_show(struct device *dev,
689 struct device_attribute *attr, char *buf)
690 {
691 int ret;
692 u32 val;
693 struct ufs_hba *hba = dev_get_drvdata(dev);
694
695 ret = ufshcd_read_hci_reg(hba, &val, REG_CONTROLLER_PID);
696 if (ret)
697 return ret;
698
699 return sysfs_emit(buf, "0x%x\n", val);
700 }
701
man_id_show(struct device * dev,struct device_attribute * attr,char * buf)702 static ssize_t man_id_show(struct device *dev,
703 struct device_attribute *attr, char *buf)
704 {
705 int ret;
706 u32 val;
707 struct ufs_hba *hba = dev_get_drvdata(dev);
708
709 ret = ufshcd_read_hci_reg(hba, &val, REG_CONTROLLER_MID);
710 if (ret)
711 return ret;
712
713 return sysfs_emit(buf, "0x%x\n", val);
714 }
715
716 static DEVICE_ATTR_RO(version);
717 static DEVICE_ATTR_RO(product_id);
718 static DEVICE_ATTR_RO(man_id);
719
720 static struct attribute *ufs_sysfs_ufshci_cap_attrs[] = {
721 &dev_attr_version.attr,
722 &dev_attr_product_id.attr,
723 &dev_attr_man_id.attr,
724 NULL
725 };
726
727 static const struct attribute_group ufs_sysfs_ufshci_group = {
728 .name = "ufshci_capabilities",
729 .attrs = ufs_sysfs_ufshci_cap_attrs,
730 };
731
monitor_enable_show(struct device * dev,struct device_attribute * attr,char * buf)732 static ssize_t monitor_enable_show(struct device *dev,
733 struct device_attribute *attr, char *buf)
734 {
735 struct ufs_hba *hba = dev_get_drvdata(dev);
736
737 return sysfs_emit(buf, "%d\n", hba->monitor.enabled);
738 }
739
monitor_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)740 static ssize_t monitor_enable_store(struct device *dev,
741 struct device_attribute *attr,
742 const char *buf, size_t count)
743 {
744 struct ufs_hba *hba = dev_get_drvdata(dev);
745 unsigned long value, flags;
746
747 if (kstrtoul(buf, 0, &value))
748 return -EINVAL;
749
750 value = !!value;
751 spin_lock_irqsave(hba->host->host_lock, flags);
752 if (value == hba->monitor.enabled)
753 goto out_unlock;
754
755 if (!value) {
756 memset(&hba->monitor, 0, sizeof(hba->monitor));
757 } else {
758 hba->monitor.enabled = true;
759 hba->monitor.enabled_ts = ktime_get();
760 }
761
762 out_unlock:
763 spin_unlock_irqrestore(hba->host->host_lock, flags);
764 return count;
765 }
766
monitor_chunk_size_show(struct device * dev,struct device_attribute * attr,char * buf)767 static ssize_t monitor_chunk_size_show(struct device *dev,
768 struct device_attribute *attr, char *buf)
769 {
770 struct ufs_hba *hba = dev_get_drvdata(dev);
771
772 return sysfs_emit(buf, "%lu\n", hba->monitor.chunk_size);
773 }
774
monitor_chunk_size_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)775 static ssize_t monitor_chunk_size_store(struct device *dev,
776 struct device_attribute *attr,
777 const char *buf, size_t count)
778 {
779 struct ufs_hba *hba = dev_get_drvdata(dev);
780 unsigned long value, flags;
781
782 if (kstrtoul(buf, 0, &value))
783 return -EINVAL;
784
785 spin_lock_irqsave(hba->host->host_lock, flags);
786 /* Only allow chunk size change when monitor is disabled */
787 if (!hba->monitor.enabled)
788 hba->monitor.chunk_size = value;
789 spin_unlock_irqrestore(hba->host->host_lock, flags);
790 return count;
791 }
792
read_total_sectors_show(struct device * dev,struct device_attribute * attr,char * buf)793 static ssize_t read_total_sectors_show(struct device *dev,
794 struct device_attribute *attr, char *buf)
795 {
796 struct ufs_hba *hba = dev_get_drvdata(dev);
797
798 return sysfs_emit(buf, "%lu\n", hba->monitor.nr_sec_rw[READ]);
799 }
800
read_total_busy_show(struct device * dev,struct device_attribute * attr,char * buf)801 static ssize_t read_total_busy_show(struct device *dev,
802 struct device_attribute *attr, char *buf)
803 {
804 struct ufs_hba *hba = dev_get_drvdata(dev);
805
806 return sysfs_emit(buf, "%llu\n",
807 ktime_to_us(hba->monitor.total_busy[READ]));
808 }
809
read_nr_requests_show(struct device * dev,struct device_attribute * attr,char * buf)810 static ssize_t read_nr_requests_show(struct device *dev,
811 struct device_attribute *attr, char *buf)
812 {
813 struct ufs_hba *hba = dev_get_drvdata(dev);
814
815 return sysfs_emit(buf, "%lu\n", hba->monitor.nr_req[READ]);
816 }
817
read_req_latency_avg_show(struct device * dev,struct device_attribute * attr,char * buf)818 static ssize_t read_req_latency_avg_show(struct device *dev,
819 struct device_attribute *attr,
820 char *buf)
821 {
822 struct ufs_hba *hba = dev_get_drvdata(dev);
823 struct ufs_hba_monitor *m = &hba->monitor;
824
825 if (!m->nr_req[READ])
826 return sysfs_emit(buf, "0\n");
827
828 return sysfs_emit(buf, "%llu\n", div_u64(ktime_to_us(m->lat_sum[READ]),
829 m->nr_req[READ]));
830 }
831
read_req_latency_max_show(struct device * dev,struct device_attribute * attr,char * buf)832 static ssize_t read_req_latency_max_show(struct device *dev,
833 struct device_attribute *attr,
834 char *buf)
835 {
836 struct ufs_hba *hba = dev_get_drvdata(dev);
837
838 return sysfs_emit(buf, "%llu\n",
839 ktime_to_us(hba->monitor.lat_max[READ]));
840 }
841
read_req_latency_min_show(struct device * dev,struct device_attribute * attr,char * buf)842 static ssize_t read_req_latency_min_show(struct device *dev,
843 struct device_attribute *attr,
844 char *buf)
845 {
846 struct ufs_hba *hba = dev_get_drvdata(dev);
847
848 return sysfs_emit(buf, "%llu\n",
849 ktime_to_us(hba->monitor.lat_min[READ]));
850 }
851
read_req_latency_sum_show(struct device * dev,struct device_attribute * attr,char * buf)852 static ssize_t read_req_latency_sum_show(struct device *dev,
853 struct device_attribute *attr,
854 char *buf)
855 {
856 struct ufs_hba *hba = dev_get_drvdata(dev);
857
858 return sysfs_emit(buf, "%llu\n",
859 ktime_to_us(hba->monitor.lat_sum[READ]));
860 }
861
write_total_sectors_show(struct device * dev,struct device_attribute * attr,char * buf)862 static ssize_t write_total_sectors_show(struct device *dev,
863 struct device_attribute *attr,
864 char *buf)
865 {
866 struct ufs_hba *hba = dev_get_drvdata(dev);
867
868 return sysfs_emit(buf, "%lu\n", hba->monitor.nr_sec_rw[WRITE]);
869 }
870
write_total_busy_show(struct device * dev,struct device_attribute * attr,char * buf)871 static ssize_t write_total_busy_show(struct device *dev,
872 struct device_attribute *attr, char *buf)
873 {
874 struct ufs_hba *hba = dev_get_drvdata(dev);
875
876 return sysfs_emit(buf, "%llu\n",
877 ktime_to_us(hba->monitor.total_busy[WRITE]));
878 }
879
write_nr_requests_show(struct device * dev,struct device_attribute * attr,char * buf)880 static ssize_t write_nr_requests_show(struct device *dev,
881 struct device_attribute *attr, char *buf)
882 {
883 struct ufs_hba *hba = dev_get_drvdata(dev);
884
885 return sysfs_emit(buf, "%lu\n", hba->monitor.nr_req[WRITE]);
886 }
887
write_req_latency_avg_show(struct device * dev,struct device_attribute * attr,char * buf)888 static ssize_t write_req_latency_avg_show(struct device *dev,
889 struct device_attribute *attr,
890 char *buf)
891 {
892 struct ufs_hba *hba = dev_get_drvdata(dev);
893 struct ufs_hba_monitor *m = &hba->monitor;
894
895 if (!m->nr_req[WRITE])
896 return sysfs_emit(buf, "0\n");
897
898 return sysfs_emit(buf, "%llu\n", div_u64(ktime_to_us(m->lat_sum[WRITE]),
899 m->nr_req[WRITE]));
900 }
901
write_req_latency_max_show(struct device * dev,struct device_attribute * attr,char * buf)902 static ssize_t write_req_latency_max_show(struct device *dev,
903 struct device_attribute *attr,
904 char *buf)
905 {
906 struct ufs_hba *hba = dev_get_drvdata(dev);
907
908 return sysfs_emit(buf, "%llu\n",
909 ktime_to_us(hba->monitor.lat_max[WRITE]));
910 }
911
write_req_latency_min_show(struct device * dev,struct device_attribute * attr,char * buf)912 static ssize_t write_req_latency_min_show(struct device *dev,
913 struct device_attribute *attr,
914 char *buf)
915 {
916 struct ufs_hba *hba = dev_get_drvdata(dev);
917
918 return sysfs_emit(buf, "%llu\n",
919 ktime_to_us(hba->monitor.lat_min[WRITE]));
920 }
921
write_req_latency_sum_show(struct device * dev,struct device_attribute * attr,char * buf)922 static ssize_t write_req_latency_sum_show(struct device *dev,
923 struct device_attribute *attr,
924 char *buf)
925 {
926 struct ufs_hba *hba = dev_get_drvdata(dev);
927
928 return sysfs_emit(buf, "%llu\n",
929 ktime_to_us(hba->monitor.lat_sum[WRITE]));
930 }
931
932 static DEVICE_ATTR_RW(monitor_enable);
933 static DEVICE_ATTR_RW(monitor_chunk_size);
934 static DEVICE_ATTR_RO(read_total_sectors);
935 static DEVICE_ATTR_RO(read_total_busy);
936 static DEVICE_ATTR_RO(read_nr_requests);
937 static DEVICE_ATTR_RO(read_req_latency_avg);
938 static DEVICE_ATTR_RO(read_req_latency_max);
939 static DEVICE_ATTR_RO(read_req_latency_min);
940 static DEVICE_ATTR_RO(read_req_latency_sum);
941 static DEVICE_ATTR_RO(write_total_sectors);
942 static DEVICE_ATTR_RO(write_total_busy);
943 static DEVICE_ATTR_RO(write_nr_requests);
944 static DEVICE_ATTR_RO(write_req_latency_avg);
945 static DEVICE_ATTR_RO(write_req_latency_max);
946 static DEVICE_ATTR_RO(write_req_latency_min);
947 static DEVICE_ATTR_RO(write_req_latency_sum);
948
949 static struct attribute *ufs_sysfs_monitor_attrs[] = {
950 &dev_attr_monitor_enable.attr,
951 &dev_attr_monitor_chunk_size.attr,
952 &dev_attr_read_total_sectors.attr,
953 &dev_attr_read_total_busy.attr,
954 &dev_attr_read_nr_requests.attr,
955 &dev_attr_read_req_latency_avg.attr,
956 &dev_attr_read_req_latency_max.attr,
957 &dev_attr_read_req_latency_min.attr,
958 &dev_attr_read_req_latency_sum.attr,
959 &dev_attr_write_total_sectors.attr,
960 &dev_attr_write_total_busy.attr,
961 &dev_attr_write_nr_requests.attr,
962 &dev_attr_write_req_latency_avg.attr,
963 &dev_attr_write_req_latency_max.attr,
964 &dev_attr_write_req_latency_min.attr,
965 &dev_attr_write_req_latency_sum.attr,
966 NULL
967 };
968
969 static const struct attribute_group ufs_sysfs_monitor_group = {
970 .name = "monitor",
971 .attrs = ufs_sysfs_monitor_attrs,
972 };
973
lane_show(struct device * dev,struct device_attribute * attr,char * buf)974 static ssize_t lane_show(struct device *dev, struct device_attribute *attr,
975 char *buf)
976 {
977 struct ufs_hba *hba = dev_get_drvdata(dev);
978
979 return sysfs_emit(buf, "%u\n", hba->pwr_info.lane_rx);
980 }
981
mode_show(struct device * dev,struct device_attribute * attr,char * buf)982 static ssize_t mode_show(struct device *dev, struct device_attribute *attr,
983 char *buf)
984 {
985 struct ufs_hba *hba = dev_get_drvdata(dev);
986
987 return sysfs_emit(buf, "%s\n", ufs_pa_pwr_mode_to_string(hba->pwr_info.pwr_rx));
988 }
989
rate_show(struct device * dev,struct device_attribute * attr,char * buf)990 static ssize_t rate_show(struct device *dev, struct device_attribute *attr,
991 char *buf)
992 {
993 struct ufs_hba *hba = dev_get_drvdata(dev);
994
995 return sysfs_emit(buf, "%s\n", ufs_hs_gear_rate_to_string(hba->pwr_info.hs_rate));
996 }
997
gear_show(struct device * dev,struct device_attribute * attr,char * buf)998 static ssize_t gear_show(struct device *dev, struct device_attribute *attr,
999 char *buf)
1000 {
1001 struct ufs_hba *hba = dev_get_drvdata(dev);
1002
1003 return sysfs_emit(buf, "%s\n", hba->pwr_info.hs_rate ?
1004 ufs_hs_gear_to_string(hba->pwr_info.gear_rx) :
1005 ufs_pwm_gear_to_string(hba->pwr_info.gear_rx));
1006 }
1007
dev_pm_show(struct device * dev,struct device_attribute * attr,char * buf)1008 static ssize_t dev_pm_show(struct device *dev, struct device_attribute *attr,
1009 char *buf)
1010 {
1011 struct ufs_hba *hba = dev_get_drvdata(dev);
1012
1013 return sysfs_emit(buf, "%s\n", ufshcd_ufs_dev_pwr_mode_to_string(hba->curr_dev_pwr_mode));
1014 }
1015
link_state_show(struct device * dev,struct device_attribute * attr,char * buf)1016 static ssize_t link_state_show(struct device *dev,
1017 struct device_attribute *attr, char *buf)
1018 {
1019 struct ufs_hba *hba = dev_get_drvdata(dev);
1020
1021 return sysfs_emit(buf, "%s\n", ufshcd_uic_link_state_to_string(hba->uic_link_state));
1022 }
1023
1024 static DEVICE_ATTR_RO(lane);
1025 static DEVICE_ATTR_RO(mode);
1026 static DEVICE_ATTR_RO(rate);
1027 static DEVICE_ATTR_RO(gear);
1028 static DEVICE_ATTR_RO(dev_pm);
1029 static DEVICE_ATTR_RO(link_state);
1030
1031 static struct attribute *ufs_power_info_attrs[] = {
1032 &dev_attr_lane.attr,
1033 &dev_attr_mode.attr,
1034 &dev_attr_rate.attr,
1035 &dev_attr_gear.attr,
1036 &dev_attr_dev_pm.attr,
1037 &dev_attr_link_state.attr,
1038 NULL
1039 };
1040
1041 static const struct attribute_group ufs_sysfs_power_info_group = {
1042 .name = "power_info",
1043 .attrs = ufs_power_info_attrs,
1044 };
1045
ufs_sysfs_read_desc_param(struct ufs_hba * hba,enum desc_idn desc_id,u8 desc_index,u8 param_offset,u8 * sysfs_buf,u8 param_size)1046 static ssize_t ufs_sysfs_read_desc_param(struct ufs_hba *hba,
1047 enum desc_idn desc_id,
1048 u8 desc_index,
1049 u8 param_offset,
1050 u8 *sysfs_buf,
1051 u8 param_size)
1052 {
1053 u8 desc_buf[8] = {0};
1054 int ret;
1055
1056 if (param_size > 8)
1057 return -EINVAL;
1058
1059 down(&hba->host_sem);
1060 if (!ufshcd_is_user_access_allowed(hba)) {
1061 ret = -EBUSY;
1062 goto out;
1063 }
1064
1065 ufshcd_rpm_get_sync(hba);
1066 ret = ufshcd_read_desc_param(hba, desc_id, desc_index,
1067 param_offset, desc_buf, param_size);
1068 ufshcd_rpm_put_sync(hba);
1069 if (ret) {
1070 ret = -EINVAL;
1071 goto out;
1072 }
1073
1074 switch (param_size) {
1075 case 1:
1076 ret = sysfs_emit(sysfs_buf, "0x%02X\n", *desc_buf);
1077 break;
1078 case 2:
1079 ret = sysfs_emit(sysfs_buf, "0x%04X\n",
1080 get_unaligned_be16(desc_buf));
1081 break;
1082 case 4:
1083 ret = sysfs_emit(sysfs_buf, "0x%08X\n",
1084 get_unaligned_be32(desc_buf));
1085 break;
1086 case 8:
1087 ret = sysfs_emit(sysfs_buf, "0x%016llX\n",
1088 get_unaligned_be64(desc_buf));
1089 break;
1090 }
1091
1092 out:
1093 up(&hba->host_sem);
1094 return ret;
1095 }
1096
1097 #define UFS_DESC_PARAM(_name, _puname, _duname, _size) \
1098 static ssize_t _name##_show(struct device *dev, \
1099 struct device_attribute *attr, char *buf) \
1100 { \
1101 struct ufs_hba *hba = dev_get_drvdata(dev); \
1102 return ufs_sysfs_read_desc_param(hba, QUERY_DESC_IDN_##_duname, \
1103 0, _duname##_DESC_PARAM##_puname, buf, _size); \
1104 } \
1105 static DEVICE_ATTR_RO(_name)
1106
1107 #define UFS_DEVICE_DESC_PARAM(_name, _uname, _size) \
1108 UFS_DESC_PARAM(_name, _uname, DEVICE, _size)
1109
1110 UFS_DEVICE_DESC_PARAM(device_type, _DEVICE_TYPE, 1);
1111 UFS_DEVICE_DESC_PARAM(device_class, _DEVICE_CLASS, 1);
1112 UFS_DEVICE_DESC_PARAM(device_sub_class, _DEVICE_SUB_CLASS, 1);
1113 UFS_DEVICE_DESC_PARAM(protocol, _PRTCL, 1);
1114 UFS_DEVICE_DESC_PARAM(number_of_luns, _NUM_LU, 1);
1115 UFS_DEVICE_DESC_PARAM(number_of_wluns, _NUM_WLU, 1);
1116 UFS_DEVICE_DESC_PARAM(boot_enable, _BOOT_ENBL, 1);
1117 UFS_DEVICE_DESC_PARAM(descriptor_access_enable, _DESC_ACCSS_ENBL, 1);
1118 UFS_DEVICE_DESC_PARAM(initial_power_mode, _INIT_PWR_MODE, 1);
1119 UFS_DEVICE_DESC_PARAM(high_priority_lun, _HIGH_PR_LUN, 1);
1120 UFS_DEVICE_DESC_PARAM(secure_removal_type, _SEC_RMV_TYPE, 1);
1121 UFS_DEVICE_DESC_PARAM(support_security_lun, _SEC_LU, 1);
1122 UFS_DEVICE_DESC_PARAM(bkops_termination_latency, _BKOP_TERM_LT, 1);
1123 UFS_DEVICE_DESC_PARAM(initial_active_icc_level, _ACTVE_ICC_LVL, 1);
1124 UFS_DEVICE_DESC_PARAM(specification_version, _SPEC_VER, 2);
1125 UFS_DEVICE_DESC_PARAM(manufacturing_date, _MANF_DATE, 2);
1126 UFS_DEVICE_DESC_PARAM(manufacturer_id, _MANF_ID, 2);
1127 UFS_DEVICE_DESC_PARAM(rtt_capability, _RTT_CAP, 1);
1128 UFS_DEVICE_DESC_PARAM(rtc_update, _FRQ_RTC, 2);
1129 UFS_DEVICE_DESC_PARAM(ufs_features, _UFS_FEAT, 1);
1130 UFS_DEVICE_DESC_PARAM(ffu_timeout, _FFU_TMT, 1);
1131 UFS_DEVICE_DESC_PARAM(queue_depth, _Q_DPTH, 1);
1132 UFS_DEVICE_DESC_PARAM(device_version, _DEV_VER, 2);
1133 UFS_DEVICE_DESC_PARAM(number_of_secure_wpa, _NUM_SEC_WPA, 1);
1134 UFS_DEVICE_DESC_PARAM(psa_max_data_size, _PSA_MAX_DATA, 4);
1135 UFS_DEVICE_DESC_PARAM(psa_state_timeout, _PSA_TMT, 1);
1136 UFS_DEVICE_DESC_PARAM(ext_feature_sup, _EXT_UFS_FEATURE_SUP, 4);
1137 UFS_DEVICE_DESC_PARAM(wb_presv_us_en, _WB_PRESRV_USRSPC_EN, 1);
1138 UFS_DEVICE_DESC_PARAM(wb_type, _WB_TYPE, 1);
1139 UFS_DEVICE_DESC_PARAM(wb_shared_alloc_units, _WB_SHARED_ALLOC_UNITS, 4);
1140
1141 static struct attribute *ufs_sysfs_device_descriptor[] = {
1142 &dev_attr_device_type.attr,
1143 &dev_attr_device_class.attr,
1144 &dev_attr_device_sub_class.attr,
1145 &dev_attr_protocol.attr,
1146 &dev_attr_number_of_luns.attr,
1147 &dev_attr_number_of_wluns.attr,
1148 &dev_attr_boot_enable.attr,
1149 &dev_attr_descriptor_access_enable.attr,
1150 &dev_attr_initial_power_mode.attr,
1151 &dev_attr_high_priority_lun.attr,
1152 &dev_attr_secure_removal_type.attr,
1153 &dev_attr_support_security_lun.attr,
1154 &dev_attr_bkops_termination_latency.attr,
1155 &dev_attr_initial_active_icc_level.attr,
1156 &dev_attr_specification_version.attr,
1157 &dev_attr_manufacturing_date.attr,
1158 &dev_attr_manufacturer_id.attr,
1159 &dev_attr_rtt_capability.attr,
1160 &dev_attr_rtc_update.attr,
1161 &dev_attr_ufs_features.attr,
1162 &dev_attr_ffu_timeout.attr,
1163 &dev_attr_queue_depth.attr,
1164 &dev_attr_device_version.attr,
1165 &dev_attr_number_of_secure_wpa.attr,
1166 &dev_attr_psa_max_data_size.attr,
1167 &dev_attr_psa_state_timeout.attr,
1168 &dev_attr_ext_feature_sup.attr,
1169 &dev_attr_wb_presv_us_en.attr,
1170 &dev_attr_wb_type.attr,
1171 &dev_attr_wb_shared_alloc_units.attr,
1172 NULL,
1173 };
1174
1175 static const struct attribute_group ufs_sysfs_device_descriptor_group = {
1176 .name = "device_descriptor",
1177 .attrs = ufs_sysfs_device_descriptor,
1178 };
1179
1180 #define UFS_INTERCONNECT_DESC_PARAM(_name, _uname, _size) \
1181 UFS_DESC_PARAM(_name, _uname, INTERCONNECT, _size)
1182
1183 UFS_INTERCONNECT_DESC_PARAM(unipro_version, _UNIPRO_VER, 2);
1184 UFS_INTERCONNECT_DESC_PARAM(mphy_version, _MPHY_VER, 2);
1185
1186 static struct attribute *ufs_sysfs_interconnect_descriptor[] = {
1187 &dev_attr_unipro_version.attr,
1188 &dev_attr_mphy_version.attr,
1189 NULL,
1190 };
1191
1192 static const struct attribute_group ufs_sysfs_interconnect_descriptor_group = {
1193 .name = "interconnect_descriptor",
1194 .attrs = ufs_sysfs_interconnect_descriptor,
1195 };
1196
1197 #define UFS_GEOMETRY_DESC_PARAM(_name, _uname, _size) \
1198 UFS_DESC_PARAM(_name, _uname, GEOMETRY, _size)
1199
1200 UFS_GEOMETRY_DESC_PARAM(raw_device_capacity, _DEV_CAP, 8);
1201 UFS_GEOMETRY_DESC_PARAM(max_number_of_luns, _MAX_NUM_LUN, 1);
1202 UFS_GEOMETRY_DESC_PARAM(segment_size, _SEG_SIZE, 4);
1203 UFS_GEOMETRY_DESC_PARAM(allocation_unit_size, _ALLOC_UNIT_SIZE, 1);
1204 UFS_GEOMETRY_DESC_PARAM(min_addressable_block_size, _MIN_BLK_SIZE, 1);
1205 UFS_GEOMETRY_DESC_PARAM(optimal_read_block_size, _OPT_RD_BLK_SIZE, 1);
1206 UFS_GEOMETRY_DESC_PARAM(optimal_write_block_size, _OPT_WR_BLK_SIZE, 1);
1207 UFS_GEOMETRY_DESC_PARAM(max_in_buffer_size, _MAX_IN_BUF_SIZE, 1);
1208 UFS_GEOMETRY_DESC_PARAM(max_out_buffer_size, _MAX_OUT_BUF_SIZE, 1);
1209 UFS_GEOMETRY_DESC_PARAM(rpmb_rw_size, _RPMB_RW_SIZE, 1);
1210 UFS_GEOMETRY_DESC_PARAM(dyn_capacity_resource_policy, _DYN_CAP_RSRC_PLC, 1);
1211 UFS_GEOMETRY_DESC_PARAM(data_ordering, _DATA_ORDER, 1);
1212 UFS_GEOMETRY_DESC_PARAM(max_number_of_contexts, _MAX_NUM_CTX, 1);
1213 UFS_GEOMETRY_DESC_PARAM(sys_data_tag_unit_size, _TAG_UNIT_SIZE, 1);
1214 UFS_GEOMETRY_DESC_PARAM(sys_data_tag_resource_size, _TAG_RSRC_SIZE, 1);
1215 UFS_GEOMETRY_DESC_PARAM(secure_removal_types, _SEC_RM_TYPES, 1);
1216 UFS_GEOMETRY_DESC_PARAM(memory_types, _MEM_TYPES, 2);
1217 UFS_GEOMETRY_DESC_PARAM(sys_code_memory_max_alloc_units,
1218 _SCM_MAX_NUM_UNITS, 4);
1219 UFS_GEOMETRY_DESC_PARAM(sys_code_memory_capacity_adjustment_factor,
1220 _SCM_CAP_ADJ_FCTR, 2);
1221 UFS_GEOMETRY_DESC_PARAM(non_persist_memory_max_alloc_units,
1222 _NPM_MAX_NUM_UNITS, 4);
1223 UFS_GEOMETRY_DESC_PARAM(non_persist_memory_capacity_adjustment_factor,
1224 _NPM_CAP_ADJ_FCTR, 2);
1225 UFS_GEOMETRY_DESC_PARAM(enh1_memory_max_alloc_units,
1226 _ENM1_MAX_NUM_UNITS, 4);
1227 UFS_GEOMETRY_DESC_PARAM(enh1_memory_capacity_adjustment_factor,
1228 _ENM1_CAP_ADJ_FCTR, 2);
1229 UFS_GEOMETRY_DESC_PARAM(enh2_memory_max_alloc_units,
1230 _ENM2_MAX_NUM_UNITS, 4);
1231 UFS_GEOMETRY_DESC_PARAM(enh2_memory_capacity_adjustment_factor,
1232 _ENM2_CAP_ADJ_FCTR, 2);
1233 UFS_GEOMETRY_DESC_PARAM(enh3_memory_max_alloc_units,
1234 _ENM3_MAX_NUM_UNITS, 4);
1235 UFS_GEOMETRY_DESC_PARAM(enh3_memory_capacity_adjustment_factor,
1236 _ENM3_CAP_ADJ_FCTR, 2);
1237 UFS_GEOMETRY_DESC_PARAM(enh4_memory_max_alloc_units,
1238 _ENM4_MAX_NUM_UNITS, 4);
1239 UFS_GEOMETRY_DESC_PARAM(enh4_memory_capacity_adjustment_factor,
1240 _ENM4_CAP_ADJ_FCTR, 2);
1241 UFS_GEOMETRY_DESC_PARAM(wb_max_alloc_units, _WB_MAX_ALLOC_UNITS, 4);
1242 UFS_GEOMETRY_DESC_PARAM(wb_max_wb_luns, _WB_MAX_WB_LUNS, 1);
1243 UFS_GEOMETRY_DESC_PARAM(wb_buff_cap_adj, _WB_BUFF_CAP_ADJ, 1);
1244 UFS_GEOMETRY_DESC_PARAM(wb_sup_red_type, _WB_SUP_RED_TYPE, 1);
1245 UFS_GEOMETRY_DESC_PARAM(wb_sup_wb_type, _WB_SUP_WB_TYPE, 1);
1246
1247
1248 static struct attribute *ufs_sysfs_geometry_descriptor[] = {
1249 &dev_attr_raw_device_capacity.attr,
1250 &dev_attr_max_number_of_luns.attr,
1251 &dev_attr_segment_size.attr,
1252 &dev_attr_allocation_unit_size.attr,
1253 &dev_attr_min_addressable_block_size.attr,
1254 &dev_attr_optimal_read_block_size.attr,
1255 &dev_attr_optimal_write_block_size.attr,
1256 &dev_attr_max_in_buffer_size.attr,
1257 &dev_attr_max_out_buffer_size.attr,
1258 &dev_attr_rpmb_rw_size.attr,
1259 &dev_attr_dyn_capacity_resource_policy.attr,
1260 &dev_attr_data_ordering.attr,
1261 &dev_attr_max_number_of_contexts.attr,
1262 &dev_attr_sys_data_tag_unit_size.attr,
1263 &dev_attr_sys_data_tag_resource_size.attr,
1264 &dev_attr_secure_removal_types.attr,
1265 &dev_attr_memory_types.attr,
1266 &dev_attr_sys_code_memory_max_alloc_units.attr,
1267 &dev_attr_sys_code_memory_capacity_adjustment_factor.attr,
1268 &dev_attr_non_persist_memory_max_alloc_units.attr,
1269 &dev_attr_non_persist_memory_capacity_adjustment_factor.attr,
1270 &dev_attr_enh1_memory_max_alloc_units.attr,
1271 &dev_attr_enh1_memory_capacity_adjustment_factor.attr,
1272 &dev_attr_enh2_memory_max_alloc_units.attr,
1273 &dev_attr_enh2_memory_capacity_adjustment_factor.attr,
1274 &dev_attr_enh3_memory_max_alloc_units.attr,
1275 &dev_attr_enh3_memory_capacity_adjustment_factor.attr,
1276 &dev_attr_enh4_memory_max_alloc_units.attr,
1277 &dev_attr_enh4_memory_capacity_adjustment_factor.attr,
1278 &dev_attr_wb_max_alloc_units.attr,
1279 &dev_attr_wb_max_wb_luns.attr,
1280 &dev_attr_wb_buff_cap_adj.attr,
1281 &dev_attr_wb_sup_red_type.attr,
1282 &dev_attr_wb_sup_wb_type.attr,
1283 NULL,
1284 };
1285
1286 static const struct attribute_group ufs_sysfs_geometry_descriptor_group = {
1287 .name = "geometry_descriptor",
1288 .attrs = ufs_sysfs_geometry_descriptor,
1289 };
1290
1291 #define UFS_HEALTH_DESC_PARAM(_name, _uname, _size) \
1292 UFS_DESC_PARAM(_name, _uname, HEALTH, _size)
1293
1294 UFS_HEALTH_DESC_PARAM(eol_info, _EOL_INFO, 1);
1295 UFS_HEALTH_DESC_PARAM(life_time_estimation_a, _LIFE_TIME_EST_A, 1);
1296 UFS_HEALTH_DESC_PARAM(life_time_estimation_b, _LIFE_TIME_EST_B, 1);
1297
1298 static struct attribute *ufs_sysfs_health_descriptor[] = {
1299 &dev_attr_eol_info.attr,
1300 &dev_attr_life_time_estimation_a.attr,
1301 &dev_attr_life_time_estimation_b.attr,
1302 NULL,
1303 };
1304
1305 static const struct attribute_group ufs_sysfs_health_descriptor_group = {
1306 .name = "health_descriptor",
1307 .attrs = ufs_sysfs_health_descriptor,
1308 };
1309
1310 #define UFS_POWER_DESC_PARAM(_name, _uname, _index) \
1311 static ssize_t _name##_index##_show(struct device *dev, \
1312 struct device_attribute *attr, char *buf) \
1313 { \
1314 struct ufs_hba *hba = dev_get_drvdata(dev); \
1315 return ufs_sysfs_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, \
1316 PWR_DESC##_uname##_0 + _index * 2, buf, 2); \
1317 } \
1318 static DEVICE_ATTR_RO(_name##_index)
1319
1320 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 0);
1321 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 1);
1322 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 2);
1323 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 3);
1324 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 4);
1325 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 5);
1326 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 6);
1327 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 7);
1328 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 8);
1329 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 9);
1330 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 10);
1331 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 11);
1332 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 12);
1333 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 13);
1334 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 14);
1335 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 15);
1336 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 0);
1337 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 1);
1338 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 2);
1339 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 3);
1340 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 4);
1341 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 5);
1342 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 6);
1343 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 7);
1344 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 8);
1345 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 9);
1346 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 10);
1347 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 11);
1348 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 12);
1349 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 13);
1350 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 14);
1351 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 15);
1352 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 0);
1353 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 1);
1354 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 2);
1355 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 3);
1356 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 4);
1357 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 5);
1358 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 6);
1359 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 7);
1360 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 8);
1361 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 9);
1362 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 10);
1363 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 11);
1364 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 12);
1365 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 13);
1366 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 14);
1367 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 15);
1368
1369 static struct attribute *ufs_sysfs_power_descriptor[] = {
1370 &dev_attr_active_icc_levels_vcc0.attr,
1371 &dev_attr_active_icc_levels_vcc1.attr,
1372 &dev_attr_active_icc_levels_vcc2.attr,
1373 &dev_attr_active_icc_levels_vcc3.attr,
1374 &dev_attr_active_icc_levels_vcc4.attr,
1375 &dev_attr_active_icc_levels_vcc5.attr,
1376 &dev_attr_active_icc_levels_vcc6.attr,
1377 &dev_attr_active_icc_levels_vcc7.attr,
1378 &dev_attr_active_icc_levels_vcc8.attr,
1379 &dev_attr_active_icc_levels_vcc9.attr,
1380 &dev_attr_active_icc_levels_vcc10.attr,
1381 &dev_attr_active_icc_levels_vcc11.attr,
1382 &dev_attr_active_icc_levels_vcc12.attr,
1383 &dev_attr_active_icc_levels_vcc13.attr,
1384 &dev_attr_active_icc_levels_vcc14.attr,
1385 &dev_attr_active_icc_levels_vcc15.attr,
1386 &dev_attr_active_icc_levels_vccq0.attr,
1387 &dev_attr_active_icc_levels_vccq1.attr,
1388 &dev_attr_active_icc_levels_vccq2.attr,
1389 &dev_attr_active_icc_levels_vccq3.attr,
1390 &dev_attr_active_icc_levels_vccq4.attr,
1391 &dev_attr_active_icc_levels_vccq5.attr,
1392 &dev_attr_active_icc_levels_vccq6.attr,
1393 &dev_attr_active_icc_levels_vccq7.attr,
1394 &dev_attr_active_icc_levels_vccq8.attr,
1395 &dev_attr_active_icc_levels_vccq9.attr,
1396 &dev_attr_active_icc_levels_vccq10.attr,
1397 &dev_attr_active_icc_levels_vccq11.attr,
1398 &dev_attr_active_icc_levels_vccq12.attr,
1399 &dev_attr_active_icc_levels_vccq13.attr,
1400 &dev_attr_active_icc_levels_vccq14.attr,
1401 &dev_attr_active_icc_levels_vccq15.attr,
1402 &dev_attr_active_icc_levels_vccq20.attr,
1403 &dev_attr_active_icc_levels_vccq21.attr,
1404 &dev_attr_active_icc_levels_vccq22.attr,
1405 &dev_attr_active_icc_levels_vccq23.attr,
1406 &dev_attr_active_icc_levels_vccq24.attr,
1407 &dev_attr_active_icc_levels_vccq25.attr,
1408 &dev_attr_active_icc_levels_vccq26.attr,
1409 &dev_attr_active_icc_levels_vccq27.attr,
1410 &dev_attr_active_icc_levels_vccq28.attr,
1411 &dev_attr_active_icc_levels_vccq29.attr,
1412 &dev_attr_active_icc_levels_vccq210.attr,
1413 &dev_attr_active_icc_levels_vccq211.attr,
1414 &dev_attr_active_icc_levels_vccq212.attr,
1415 &dev_attr_active_icc_levels_vccq213.attr,
1416 &dev_attr_active_icc_levels_vccq214.attr,
1417 &dev_attr_active_icc_levels_vccq215.attr,
1418 NULL,
1419 };
1420
1421 static const struct attribute_group ufs_sysfs_power_descriptor_group = {
1422 .name = "power_descriptor",
1423 .attrs = ufs_sysfs_power_descriptor,
1424 };
1425
1426 #define UFS_STRING_DESCRIPTOR(_name, _pname) \
1427 static ssize_t _name##_show(struct device *dev, \
1428 struct device_attribute *attr, char *buf) \
1429 { \
1430 u8 index; \
1431 struct ufs_hba *hba = dev_get_drvdata(dev); \
1432 int ret; \
1433 int desc_len = QUERY_DESC_MAX_SIZE; \
1434 u8 *desc_buf; \
1435 \
1436 down(&hba->host_sem); \
1437 if (!ufshcd_is_user_access_allowed(hba)) { \
1438 up(&hba->host_sem); \
1439 return -EBUSY; \
1440 } \
1441 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_ATOMIC); \
1442 if (!desc_buf) { \
1443 up(&hba->host_sem); \
1444 return -ENOMEM; \
1445 } \
1446 ufshcd_rpm_get_sync(hba); \
1447 ret = ufshcd_query_descriptor_retry(hba, \
1448 UPIU_QUERY_OPCODE_READ_DESC, QUERY_DESC_IDN_DEVICE, \
1449 0, 0, desc_buf, &desc_len); \
1450 if (ret) { \
1451 ret = -EINVAL; \
1452 goto out; \
1453 } \
1454 index = desc_buf[DEVICE_DESC_PARAM##_pname]; \
1455 kfree(desc_buf); \
1456 desc_buf = NULL; \
1457 ret = ufshcd_read_string_desc(hba, index, &desc_buf, \
1458 SD_ASCII_STD); \
1459 if (ret < 0) \
1460 goto out; \
1461 ret = sysfs_emit(buf, "%s\n", desc_buf); \
1462 out: \
1463 ufshcd_rpm_put_sync(hba); \
1464 kfree(desc_buf); \
1465 up(&hba->host_sem); \
1466 return ret; \
1467 } \
1468 static DEVICE_ATTR_RO(_name)
1469
1470 UFS_STRING_DESCRIPTOR(manufacturer_name, _MANF_NAME);
1471 UFS_STRING_DESCRIPTOR(product_name, _PRDCT_NAME);
1472 UFS_STRING_DESCRIPTOR(oem_id, _OEM_ID);
1473 UFS_STRING_DESCRIPTOR(serial_number, _SN);
1474 UFS_STRING_DESCRIPTOR(product_revision, _PRDCT_REV);
1475
1476 static struct attribute *ufs_sysfs_string_descriptors[] = {
1477 &dev_attr_manufacturer_name.attr,
1478 &dev_attr_product_name.attr,
1479 &dev_attr_oem_id.attr,
1480 &dev_attr_serial_number.attr,
1481 &dev_attr_product_revision.attr,
1482 NULL,
1483 };
1484
1485 static const struct attribute_group ufs_sysfs_string_descriptors_group = {
1486 .name = "string_descriptors",
1487 .attrs = ufs_sysfs_string_descriptors,
1488 };
1489
ufshcd_is_wb_flags(enum flag_idn idn)1490 static inline bool ufshcd_is_wb_flags(enum flag_idn idn)
1491 {
1492 return idn >= QUERY_FLAG_IDN_WB_EN &&
1493 idn <= QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8;
1494 }
1495
1496 #define UFS_FLAG(_name, _uname) \
1497 static ssize_t _name##_show(struct device *dev, \
1498 struct device_attribute *attr, char *buf) \
1499 { \
1500 bool flag; \
1501 u8 index = 0; \
1502 int ret; \
1503 struct ufs_hba *hba = dev_get_drvdata(dev); \
1504 \
1505 down(&hba->host_sem); \
1506 if (!ufshcd_is_user_access_allowed(hba)) { \
1507 up(&hba->host_sem); \
1508 return -EBUSY; \
1509 } \
1510 if (ufshcd_is_wb_flags(QUERY_FLAG_IDN##_uname)) \
1511 index = ufshcd_wb_get_query_index(hba); \
1512 ufshcd_rpm_get_sync(hba); \
1513 ret = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG, \
1514 QUERY_FLAG_IDN##_uname, index, &flag); \
1515 ufshcd_rpm_put_sync(hba); \
1516 if (ret) { \
1517 ret = -EINVAL; \
1518 goto out; \
1519 } \
1520 ret = sysfs_emit(buf, "%s\n", str_true_false(flag)); \
1521 out: \
1522 up(&hba->host_sem); \
1523 return ret; \
1524 } \
1525 static DEVICE_ATTR_RO(_name)
1526
1527 UFS_FLAG(device_init, _FDEVICEINIT);
1528 UFS_FLAG(permanent_wpe, _PERMANENT_WPE);
1529 UFS_FLAG(power_on_wpe, _PWR_ON_WPE);
1530 UFS_FLAG(bkops_enable, _BKOPS_EN);
1531 UFS_FLAG(life_span_mode_enable, _LIFE_SPAN_MODE_ENABLE);
1532 UFS_FLAG(phy_resource_removal, _FPHYRESOURCEREMOVAL);
1533 UFS_FLAG(busy_rtc, _BUSY_RTC);
1534 UFS_FLAG(disable_fw_update, _PERMANENTLY_DISABLE_FW_UPDATE);
1535 UFS_FLAG(wb_enable, _WB_EN);
1536 UFS_FLAG(wb_flush_en, _WB_BUFF_FLUSH_EN);
1537 UFS_FLAG(wb_flush_during_h8, _WB_BUFF_FLUSH_DURING_HIBERN8);
1538
1539 static struct attribute *ufs_sysfs_device_flags[] = {
1540 &dev_attr_device_init.attr,
1541 &dev_attr_permanent_wpe.attr,
1542 &dev_attr_power_on_wpe.attr,
1543 &dev_attr_bkops_enable.attr,
1544 &dev_attr_life_span_mode_enable.attr,
1545 &dev_attr_phy_resource_removal.attr,
1546 &dev_attr_busy_rtc.attr,
1547 &dev_attr_disable_fw_update.attr,
1548 &dev_attr_wb_enable.attr,
1549 &dev_attr_wb_flush_en.attr,
1550 &dev_attr_wb_flush_during_h8.attr,
1551 NULL,
1552 };
1553
1554 static const struct attribute_group ufs_sysfs_flags_group = {
1555 .name = "flags",
1556 .attrs = ufs_sysfs_device_flags,
1557 };
1558
max_number_of_rtt_show(struct device * dev,struct device_attribute * attr,char * buf)1559 static ssize_t max_number_of_rtt_show(struct device *dev,
1560 struct device_attribute *attr, char *buf)
1561 {
1562 struct ufs_hba *hba = dev_get_drvdata(dev);
1563 u32 rtt;
1564 int ret;
1565
1566 down(&hba->host_sem);
1567 if (!ufshcd_is_user_access_allowed(hba)) {
1568 up(&hba->host_sem);
1569 return -EBUSY;
1570 }
1571
1572 ufshcd_rpm_get_sync(hba);
1573 ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR,
1574 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt);
1575 ufshcd_rpm_put_sync(hba);
1576
1577 if (ret)
1578 goto out;
1579
1580 ret = sysfs_emit(buf, "0x%08X\n", rtt);
1581
1582 out:
1583 up(&hba->host_sem);
1584 return ret;
1585 }
1586
max_number_of_rtt_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1587 static ssize_t max_number_of_rtt_store(struct device *dev,
1588 struct device_attribute *attr,
1589 const char *buf, size_t count)
1590 {
1591 struct ufs_hba *hba = dev_get_drvdata(dev);
1592 struct ufs_dev_info *dev_info = &hba->dev_info;
1593 struct scsi_device *sdev;
1594 unsigned int memflags;
1595 unsigned int rtt;
1596 int ret;
1597
1598 if (kstrtouint(buf, 0, &rtt))
1599 return -EINVAL;
1600
1601 if (rtt > dev_info->rtt_cap) {
1602 dev_err(dev, "rtt can be at most bDeviceRTTCap\n");
1603 return -EINVAL;
1604 }
1605
1606 down(&hba->host_sem);
1607 if (!ufshcd_is_user_access_allowed(hba)) {
1608 ret = -EBUSY;
1609 goto out;
1610 }
1611
1612 ufshcd_rpm_get_sync(hba);
1613
1614 memflags = memalloc_noio_save();
1615 shost_for_each_device(sdev, hba->host)
1616 blk_mq_freeze_queue_nomemsave(sdev->request_queue);
1617
1618 ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
1619 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt);
1620
1621 shost_for_each_device(sdev, hba->host)
1622 blk_mq_unfreeze_queue_nomemrestore(sdev->request_queue);
1623 memalloc_noio_restore(memflags);
1624
1625 ufshcd_rpm_put_sync(hba);
1626
1627 out:
1628 up(&hba->host_sem);
1629 return ret < 0 ? ret : count;
1630 }
1631
1632 static DEVICE_ATTR_RW(max_number_of_rtt);
1633
ufshcd_is_wb_attrs(enum attr_idn idn)1634 static inline bool ufshcd_is_wb_attrs(enum attr_idn idn)
1635 {
1636 return idn >= QUERY_ATTR_IDN_WB_FLUSH_STATUS &&
1637 idn <= QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE;
1638 }
1639
wb_read_resize_attrs(struct ufs_hba * hba,enum attr_idn idn,u32 * attr_val)1640 static int wb_read_resize_attrs(struct ufs_hba *hba,
1641 enum attr_idn idn, u32 *attr_val)
1642 {
1643 u8 index = 0;
1644 int ret;
1645
1646 if (!ufshcd_is_wb_allowed(hba) || !hba->dev_info.wb_enabled
1647 || !hba->dev_info.b_presrv_uspc_en
1648 || !(hba->dev_info.ext_wb_sup & UFS_DEV_WB_BUF_RESIZE))
1649 return -EOPNOTSUPP;
1650
1651 down(&hba->host_sem);
1652 if (!ufshcd_is_user_access_allowed(hba)) {
1653 up(&hba->host_sem);
1654 return -EBUSY;
1655 }
1656
1657 index = ufshcd_wb_get_query_index(hba);
1658 ufshcd_rpm_get_sync(hba);
1659 ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR,
1660 idn, index, 0, attr_val);
1661 ufshcd_rpm_put_sync(hba);
1662
1663 up(&hba->host_sem);
1664 return ret;
1665 }
1666
wb_resize_hint_show(struct device * dev,struct device_attribute * attr,char * buf)1667 static ssize_t wb_resize_hint_show(struct device *dev,
1668 struct device_attribute *attr, char *buf)
1669 {
1670 struct ufs_hba *hba = dev_get_drvdata(dev);
1671 int ret;
1672 u32 value;
1673
1674 ret = wb_read_resize_attrs(hba,
1675 QUERY_ATTR_IDN_WB_BUF_RESIZE_HINT, &value);
1676 if (ret)
1677 return ret;
1678
1679 return sysfs_emit(buf, "%s\n", ufs_wb_resize_hint_to_string(value));
1680 }
1681
1682 static DEVICE_ATTR_RO(wb_resize_hint);
1683
wb_resize_status_show(struct device * dev,struct device_attribute * attr,char * buf)1684 static ssize_t wb_resize_status_show(struct device *dev,
1685 struct device_attribute *attr, char *buf)
1686 {
1687 struct ufs_hba *hba = dev_get_drvdata(dev);
1688 int ret;
1689 u32 value;
1690
1691 ret = wb_read_resize_attrs(hba,
1692 QUERY_ATTR_IDN_WB_BUF_RESIZE_STATUS, &value);
1693 if (ret)
1694 return ret;
1695
1696 return sysfs_emit(buf, "%s\n", ufs_wb_resize_status_to_string(value));
1697 }
1698
1699 static DEVICE_ATTR_RO(wb_resize_status);
1700
1701 #define UFS_ATTRIBUTE(_name, _uname) \
1702 static ssize_t _name##_show(struct device *dev, \
1703 struct device_attribute *attr, char *buf) \
1704 { \
1705 struct ufs_hba *hba = dev_get_drvdata(dev); \
1706 u32 value; \
1707 int ret; \
1708 u8 index = 0; \
1709 \
1710 down(&hba->host_sem); \
1711 if (!ufshcd_is_user_access_allowed(hba)) { \
1712 up(&hba->host_sem); \
1713 return -EBUSY; \
1714 } \
1715 if (ufshcd_is_wb_attrs(QUERY_ATTR_IDN##_uname)) \
1716 index = ufshcd_wb_get_query_index(hba); \
1717 ufshcd_rpm_get_sync(hba); \
1718 ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR, \
1719 QUERY_ATTR_IDN##_uname, index, 0, &value); \
1720 ufshcd_rpm_put_sync(hba); \
1721 if (ret) { \
1722 ret = -EINVAL; \
1723 goto out; \
1724 } \
1725 ret = sysfs_emit(buf, "0x%08X\n", value); \
1726 out: \
1727 up(&hba->host_sem); \
1728 return ret; \
1729 } \
1730 static DEVICE_ATTR_RO(_name)
1731
1732 UFS_ATTRIBUTE(boot_lun_enabled, _BOOT_LU_EN);
1733 UFS_ATTRIBUTE(current_power_mode, _POWER_MODE);
1734 UFS_ATTRIBUTE(active_icc_level, _ACTIVE_ICC_LVL);
1735 UFS_ATTRIBUTE(ooo_data_enabled, _OOO_DATA_EN);
1736 UFS_ATTRIBUTE(bkops_status, _BKOPS_STATUS);
1737 UFS_ATTRIBUTE(purge_status, _PURGE_STATUS);
1738 UFS_ATTRIBUTE(max_data_in_size, _MAX_DATA_IN);
1739 UFS_ATTRIBUTE(max_data_out_size, _MAX_DATA_OUT);
1740 UFS_ATTRIBUTE(reference_clock_frequency, _REF_CLK_FREQ);
1741 UFS_ATTRIBUTE(configuration_descriptor_lock, _CONF_DESC_LOCK);
1742 UFS_ATTRIBUTE(exception_event_control, _EE_CONTROL);
1743 UFS_ATTRIBUTE(exception_event_status, _EE_STATUS);
1744 UFS_ATTRIBUTE(ffu_status, _FFU_STATUS);
1745 UFS_ATTRIBUTE(psa_state, _PSA_STATE);
1746 UFS_ATTRIBUTE(psa_data_size, _PSA_DATA_SIZE);
1747 UFS_ATTRIBUTE(wb_flush_status, _WB_FLUSH_STATUS);
1748 UFS_ATTRIBUTE(wb_avail_buf, _AVAIL_WB_BUFF_SIZE);
1749 UFS_ATTRIBUTE(wb_life_time_est, _WB_BUFF_LIFE_TIME_EST);
1750 UFS_ATTRIBUTE(wb_cur_buf, _CURR_WB_BUFF_SIZE);
1751
1752
1753 static struct attribute *ufs_sysfs_attributes[] = {
1754 &dev_attr_boot_lun_enabled.attr,
1755 &dev_attr_current_power_mode.attr,
1756 &dev_attr_active_icc_level.attr,
1757 &dev_attr_ooo_data_enabled.attr,
1758 &dev_attr_bkops_status.attr,
1759 &dev_attr_purge_status.attr,
1760 &dev_attr_max_data_in_size.attr,
1761 &dev_attr_max_data_out_size.attr,
1762 &dev_attr_reference_clock_frequency.attr,
1763 &dev_attr_configuration_descriptor_lock.attr,
1764 &dev_attr_max_number_of_rtt.attr,
1765 &dev_attr_exception_event_control.attr,
1766 &dev_attr_exception_event_status.attr,
1767 &dev_attr_ffu_status.attr,
1768 &dev_attr_psa_state.attr,
1769 &dev_attr_psa_data_size.attr,
1770 &dev_attr_wb_flush_status.attr,
1771 &dev_attr_wb_avail_buf.attr,
1772 &dev_attr_wb_life_time_est.attr,
1773 &dev_attr_wb_cur_buf.attr,
1774 &dev_attr_wb_resize_hint.attr,
1775 &dev_attr_wb_resize_status.attr,
1776 NULL,
1777 };
1778
1779 static const struct attribute_group ufs_sysfs_attributes_group = {
1780 .name = "attributes",
1781 .attrs = ufs_sysfs_attributes,
1782 };
1783
hid_query_attr(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u32 * attr_val)1784 static int hid_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
1785 enum attr_idn idn, u32 *attr_val)
1786 {
1787 int ret;
1788
1789 down(&hba->host_sem);
1790 if (!ufshcd_is_user_access_allowed(hba)) {
1791 up(&hba->host_sem);
1792 return -EBUSY;
1793 }
1794
1795 ufshcd_rpm_get_sync(hba);
1796 ret = ufshcd_query_attr(hba, opcode, idn, 0, 0, attr_val);
1797 ufshcd_rpm_put_sync(hba);
1798
1799 up(&hba->host_sem);
1800 return ret;
1801 }
1802
analysis_trigger_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1803 static ssize_t analysis_trigger_store(struct device *dev,
1804 struct device_attribute *attr, const char *buf, size_t count)
1805 {
1806 struct ufs_hba *hba = dev_get_drvdata(dev);
1807 int mode;
1808 int ret;
1809
1810 if (sysfs_streq(buf, "enable"))
1811 mode = HID_ANALYSIS_ENABLE;
1812 else if (sysfs_streq(buf, "disable"))
1813 mode = HID_ANALYSIS_AND_DEFRAG_DISABLE;
1814 else
1815 return -EINVAL;
1816
1817 ret = hid_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
1818 QUERY_ATTR_IDN_HID_DEFRAG_OPERATION, &mode);
1819
1820 return ret < 0 ? ret : count;
1821 }
1822
1823 static DEVICE_ATTR_WO(analysis_trigger);
1824
defrag_trigger_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1825 static ssize_t defrag_trigger_store(struct device *dev,
1826 struct device_attribute *attr, const char *buf, size_t count)
1827 {
1828 struct ufs_hba *hba = dev_get_drvdata(dev);
1829 int mode;
1830 int ret;
1831
1832 if (sysfs_streq(buf, "enable"))
1833 mode = HID_ANALYSIS_AND_DEFRAG_ENABLE;
1834 else if (sysfs_streq(buf, "disable"))
1835 mode = HID_ANALYSIS_AND_DEFRAG_DISABLE;
1836 else
1837 return -EINVAL;
1838
1839 ret = hid_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
1840 QUERY_ATTR_IDN_HID_DEFRAG_OPERATION, &mode);
1841
1842 return ret < 0 ? ret : count;
1843 }
1844
1845 static DEVICE_ATTR_WO(defrag_trigger);
1846
fragmented_size_show(struct device * dev,struct device_attribute * attr,char * buf)1847 static ssize_t fragmented_size_show(struct device *dev,
1848 struct device_attribute *attr, char *buf)
1849 {
1850 struct ufs_hba *hba = dev_get_drvdata(dev);
1851 u32 value;
1852 int ret;
1853
1854 ret = hid_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR,
1855 QUERY_ATTR_IDN_HID_AVAILABLE_SIZE, &value);
1856 if (ret)
1857 return ret;
1858
1859 return sysfs_emit(buf, "%u\n", value);
1860 }
1861
1862 static DEVICE_ATTR_RO(fragmented_size);
1863
defrag_size_show(struct device * dev,struct device_attribute * attr,char * buf)1864 static ssize_t defrag_size_show(struct device *dev,
1865 struct device_attribute *attr, char *buf)
1866 {
1867 struct ufs_hba *hba = dev_get_drvdata(dev);
1868 u32 value;
1869 int ret;
1870
1871 ret = hid_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR,
1872 QUERY_ATTR_IDN_HID_SIZE, &value);
1873 if (ret)
1874 return ret;
1875
1876 return sysfs_emit(buf, "%u\n", value);
1877 }
1878
defrag_size_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1879 static ssize_t defrag_size_store(struct device *dev,
1880 struct device_attribute *attr, const char *buf, size_t count)
1881 {
1882 struct ufs_hba *hba = dev_get_drvdata(dev);
1883 u32 value;
1884 int ret;
1885
1886 if (kstrtou32(buf, 0, &value))
1887 return -EINVAL;
1888
1889 ret = hid_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
1890 QUERY_ATTR_IDN_HID_SIZE, &value);
1891
1892 return ret < 0 ? ret : count;
1893 }
1894
1895 static DEVICE_ATTR_RW(defrag_size);
1896
progress_ratio_show(struct device * dev,struct device_attribute * attr,char * buf)1897 static ssize_t progress_ratio_show(struct device *dev,
1898 struct device_attribute *attr, char *buf)
1899 {
1900 struct ufs_hba *hba = dev_get_drvdata(dev);
1901 u32 value;
1902 int ret;
1903
1904 ret = hid_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR,
1905 QUERY_ATTR_IDN_HID_PROGRESS_RATIO, &value);
1906 if (ret)
1907 return ret;
1908
1909 return sysfs_emit(buf, "%u\n", value);
1910 }
1911
1912 static DEVICE_ATTR_RO(progress_ratio);
1913
state_show(struct device * dev,struct device_attribute * attr,char * buf)1914 static ssize_t state_show(struct device *dev,
1915 struct device_attribute *attr, char *buf)
1916 {
1917 struct ufs_hba *hba = dev_get_drvdata(dev);
1918 u32 value;
1919 int ret;
1920
1921 ret = hid_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR,
1922 QUERY_ATTR_IDN_HID_STATE, &value);
1923 if (ret)
1924 return ret;
1925
1926 return sysfs_emit(buf, "%s\n", ufs_hid_state_to_string(value));
1927 }
1928
1929 static DEVICE_ATTR_RO(state);
1930
1931 static struct attribute *ufs_sysfs_hid[] = {
1932 &dev_attr_analysis_trigger.attr,
1933 &dev_attr_defrag_trigger.attr,
1934 &dev_attr_fragmented_size.attr,
1935 &dev_attr_defrag_size.attr,
1936 &dev_attr_progress_ratio.attr,
1937 &dev_attr_state.attr,
1938 NULL,
1939 };
1940
ufs_sysfs_hid_is_visible(struct kobject * kobj,struct attribute * attr,int n)1941 static umode_t ufs_sysfs_hid_is_visible(struct kobject *kobj,
1942 struct attribute *attr, int n)
1943 {
1944 struct device *dev = container_of(kobj, struct device, kobj);
1945 struct ufs_hba *hba = dev_get_drvdata(dev);
1946
1947 return hba->dev_info.hid_sup ? attr->mode : 0;
1948 }
1949
1950 static const struct attribute_group ufs_sysfs_hid_group = {
1951 .name = "hid",
1952 .attrs = ufs_sysfs_hid,
1953 .is_visible = ufs_sysfs_hid_is_visible,
1954 };
1955
1956 static const struct attribute_group *ufs_sysfs_groups[] = {
1957 &ufs_sysfs_default_group,
1958 &ufs_sysfs_capabilities_group,
1959 &ufs_sysfs_ufshci_group,
1960 &ufs_sysfs_monitor_group,
1961 &ufs_sysfs_power_info_group,
1962 &ufs_sysfs_device_descriptor_group,
1963 &ufs_sysfs_interconnect_descriptor_group,
1964 &ufs_sysfs_geometry_descriptor_group,
1965 &ufs_sysfs_health_descriptor_group,
1966 &ufs_sysfs_power_descriptor_group,
1967 &ufs_sysfs_string_descriptors_group,
1968 &ufs_sysfs_flags_group,
1969 &ufs_sysfs_attributes_group,
1970 &ufs_sysfs_hid_group,
1971 NULL,
1972 };
1973
1974 #define UFS_LUN_DESC_PARAM(_pname, _puname, _duname, _size) \
1975 static ssize_t _pname##_show(struct device *dev, \
1976 struct device_attribute *attr, char *buf) \
1977 { \
1978 struct scsi_device *sdev = to_scsi_device(dev); \
1979 struct ufs_hba *hba = shost_priv(sdev->host); \
1980 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun); \
1981 if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun)) \
1982 return -EINVAL; \
1983 return ufs_sysfs_read_desc_param(hba, QUERY_DESC_IDN_##_duname, \
1984 lun, _duname##_DESC_PARAM##_puname, buf, _size); \
1985 } \
1986 static DEVICE_ATTR_RO(_pname)
1987
1988 #define UFS_UNIT_DESC_PARAM(_name, _uname, _size) \
1989 UFS_LUN_DESC_PARAM(_name, _uname, UNIT, _size)
1990
1991 UFS_UNIT_DESC_PARAM(lu_enable, _LU_ENABLE, 1);
1992 UFS_UNIT_DESC_PARAM(boot_lun_id, _BOOT_LUN_ID, 1);
1993 UFS_UNIT_DESC_PARAM(lun_write_protect, _LU_WR_PROTECT, 1);
1994 UFS_UNIT_DESC_PARAM(lun_queue_depth, _LU_Q_DEPTH, 1);
1995 UFS_UNIT_DESC_PARAM(psa_sensitive, _PSA_SENSITIVE, 1);
1996 UFS_UNIT_DESC_PARAM(lun_memory_type, _MEM_TYPE, 1);
1997 UFS_UNIT_DESC_PARAM(data_reliability, _DATA_RELIABILITY, 1);
1998 UFS_UNIT_DESC_PARAM(logical_block_size, _LOGICAL_BLK_SIZE, 1);
1999 UFS_UNIT_DESC_PARAM(logical_block_count, _LOGICAL_BLK_COUNT, 8);
2000 UFS_UNIT_DESC_PARAM(erase_block_size, _ERASE_BLK_SIZE, 4);
2001 UFS_UNIT_DESC_PARAM(provisioning_type, _PROVISIONING_TYPE, 1);
2002 UFS_UNIT_DESC_PARAM(physical_memory_resource_count, _PHY_MEM_RSRC_CNT, 8);
2003 UFS_UNIT_DESC_PARAM(context_capabilities, _CTX_CAPABILITIES, 2);
2004 UFS_UNIT_DESC_PARAM(large_unit_granularity, _LARGE_UNIT_SIZE_M1, 1);
2005 UFS_UNIT_DESC_PARAM(wb_buf_alloc_units, _WB_BUF_ALLOC_UNITS, 4);
2006
2007 static struct attribute *ufs_sysfs_unit_descriptor[] = {
2008 &dev_attr_lu_enable.attr,
2009 &dev_attr_boot_lun_id.attr,
2010 &dev_attr_lun_write_protect.attr,
2011 &dev_attr_lun_queue_depth.attr,
2012 &dev_attr_psa_sensitive.attr,
2013 &dev_attr_lun_memory_type.attr,
2014 &dev_attr_data_reliability.attr,
2015 &dev_attr_logical_block_size.attr,
2016 &dev_attr_logical_block_count.attr,
2017 &dev_attr_erase_block_size.attr,
2018 &dev_attr_provisioning_type.attr,
2019 &dev_attr_physical_memory_resource_count.attr,
2020 &dev_attr_context_capabilities.attr,
2021 &dev_attr_large_unit_granularity.attr,
2022 &dev_attr_wb_buf_alloc_units.attr,
2023 NULL,
2024 };
2025
ufs_unit_descriptor_is_visible(struct kobject * kobj,struct attribute * attr,int n)2026 static umode_t ufs_unit_descriptor_is_visible(struct kobject *kobj, struct attribute *attr, int n)
2027 {
2028 struct device *dev = container_of(kobj, struct device, kobj);
2029 struct scsi_device *sdev = to_scsi_device(dev);
2030 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
2031 umode_t mode = attr->mode;
2032
2033 if (lun == UFS_UPIU_BOOT_WLUN || lun == UFS_UPIU_UFS_DEVICE_WLUN)
2034 /* Boot and device WLUN have no unit descriptors */
2035 mode = 0;
2036 if (lun == UFS_UPIU_RPMB_WLUN && attr == &dev_attr_wb_buf_alloc_units.attr)
2037 mode = 0;
2038
2039 return mode;
2040 }
2041
2042
2043 const struct attribute_group ufs_sysfs_unit_descriptor_group = {
2044 .name = "unit_descriptor",
2045 .attrs = ufs_sysfs_unit_descriptor,
2046 .is_visible = ufs_unit_descriptor_is_visible,
2047 };
2048
dyn_cap_needed_attribute_show(struct device * dev,struct device_attribute * attr,char * buf)2049 static ssize_t dyn_cap_needed_attribute_show(struct device *dev,
2050 struct device_attribute *attr, char *buf)
2051 {
2052 u32 value;
2053 struct scsi_device *sdev = to_scsi_device(dev);
2054 struct ufs_hba *hba = shost_priv(sdev->host);
2055 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
2056 int ret;
2057
2058 down(&hba->host_sem);
2059 if (!ufshcd_is_user_access_allowed(hba)) {
2060 ret = -EBUSY;
2061 goto out;
2062 }
2063
2064 ufshcd_rpm_get_sync(hba);
2065 ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR,
2066 QUERY_ATTR_IDN_DYN_CAP_NEEDED, lun, 0, &value);
2067 ufshcd_rpm_put_sync(hba);
2068 if (ret) {
2069 ret = -EINVAL;
2070 goto out;
2071 }
2072
2073 ret = sysfs_emit(buf, "0x%08X\n", value);
2074
2075 out:
2076 up(&hba->host_sem);
2077 return ret;
2078 }
2079 static DEVICE_ATTR_RO(dyn_cap_needed_attribute);
2080
2081 static struct attribute *ufs_sysfs_lun_attributes[] = {
2082 &dev_attr_dyn_cap_needed_attribute.attr,
2083 NULL,
2084 };
2085
2086 const struct attribute_group ufs_sysfs_lun_attributes_group = {
2087 .attrs = ufs_sysfs_lun_attributes,
2088 };
2089
ufs_sysfs_add_nodes(struct device * dev)2090 void ufs_sysfs_add_nodes(struct device *dev)
2091 {
2092 int ret;
2093
2094 ret = sysfs_create_groups(&dev->kobj, ufs_sysfs_groups);
2095 if (ret)
2096 dev_err(dev,
2097 "%s: sysfs groups creation failed (err = %d)\n",
2098 __func__, ret);
2099 }
2100
ufs_sysfs_remove_nodes(struct device * dev)2101 void ufs_sysfs_remove_nodes(struct device *dev)
2102 {
2103 sysfs_remove_groups(&dev->kobj, ufs_sysfs_groups);
2104 }
2105