1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Universal Flash Storage Host controller driver Core
4 * Copyright (C) 2011-2013 Samsung India Software Operations
5 * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6 *
7 * Authors:
8 * Santosh Yaraganavi <santosh.sy@samsung.com>
9 * Vinayak Holikatti <h.vinayak@samsung.com>
10 */
11
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/pm_opp.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/sched/clock.h>
26 #include <linux/iopoll.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_driver.h>
30 #include <scsi/scsi_eh.h>
31 #include "ufshcd-priv.h"
32 #include <ufs/ufs_quirks.h>
33 #include <ufs/unipro.h>
34 #include "ufs-sysfs.h"
35 #include "ufs-debugfs.h"
36 #include "ufs-fault-injection.h"
37 #include "ufs_bsg.h"
38 #include "ufshcd-crypto.h"
39 #include <linux/unaligned.h>
40
41 #define CREATE_TRACE_POINTS
42 #include "ufs_trace.h"
43
44 #define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\
45 UTP_TASK_REQ_COMPL |\
46 UFSHCD_ERROR_MASK)
47
48 #define UFSHCD_ENABLE_MCQ_INTRS (UTP_TASK_REQ_COMPL |\
49 UFSHCD_ERROR_MASK |\
50 MCQ_CQ_EVENT_STATUS)
51
52
53 /* UIC command timeout, unit: ms */
54 enum {
55 UIC_CMD_TIMEOUT_DEFAULT = 500,
56 UIC_CMD_TIMEOUT_MAX = 2000,
57 };
58 /* NOP OUT retries waiting for NOP IN response */
59 #define NOP_OUT_RETRIES 10
60 /* Timeout after 50 msecs if NOP OUT hangs without response */
61 #define NOP_OUT_TIMEOUT 50 /* msecs */
62
63 /* Query request retries */
64 #define QUERY_REQ_RETRIES 3
65 /* Query request timeout */
66 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
67
68 /* Advanced RPMB request timeout */
69 #define ADVANCED_RPMB_REQ_TIMEOUT 3000 /* 3 seconds */
70
71 /* Task management command timeout */
72 #define TM_CMD_TIMEOUT 100 /* msecs */
73
74 /* maximum number of retries for a general UIC command */
75 #define UFS_UIC_COMMAND_RETRIES 3
76
77 /* maximum number of link-startup retries */
78 #define DME_LINKSTARTUP_RETRIES 3
79
80 /* maximum number of reset retries before giving up */
81 #define MAX_HOST_RESET_RETRIES 5
82
83 /* Maximum number of error handler retries before giving up */
84 #define MAX_ERR_HANDLER_RETRIES 5
85
86 /* Expose the flag value from utp_upiu_query.value */
87 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
88
89 /* Interrupt aggregation default timeout, unit: 40us */
90 #define INT_AGGR_DEF_TO 0x02
91
92 /* default delay of autosuspend: 2000 ms */
93 #define RPM_AUTOSUSPEND_DELAY_MS 2000
94
95 /* Default delay of RPM device flush delayed work */
96 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
97
98 /* Default value of wait time before gating device ref clock */
99 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
100
101 /* Polling time to wait for fDeviceInit */
102 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
103
104 /* Default RTC update every 10 seconds */
105 #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC)
106
107 /* bMaxNumOfRTT is equal to two after device manufacturing */
108 #define DEFAULT_MAX_NUM_RTT 2
109
110 /* UFSHC 4.0 compliant HC support this mode. */
111 static bool use_mcq_mode = true;
112
is_mcq_supported(struct ufs_hba * hba)113 static bool is_mcq_supported(struct ufs_hba *hba)
114 {
115 return hba->mcq_sup && use_mcq_mode;
116 }
117
118 module_param(use_mcq_mode, bool, 0644);
119 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
120
121 static unsigned int uic_cmd_timeout = UIC_CMD_TIMEOUT_DEFAULT;
122
uic_cmd_timeout_set(const char * val,const struct kernel_param * kp)123 static int uic_cmd_timeout_set(const char *val, const struct kernel_param *kp)
124 {
125 return param_set_uint_minmax(val, kp, UIC_CMD_TIMEOUT_DEFAULT,
126 UIC_CMD_TIMEOUT_MAX);
127 }
128
129 static const struct kernel_param_ops uic_cmd_timeout_ops = {
130 .set = uic_cmd_timeout_set,
131 .get = param_get_uint,
132 };
133
134 module_param_cb(uic_cmd_timeout, &uic_cmd_timeout_ops, &uic_cmd_timeout, 0644);
135 MODULE_PARM_DESC(uic_cmd_timeout,
136 "UFS UIC command timeout in milliseconds. Defaults to 500ms. Supported values range from 500ms to 2 seconds inclusively");
137
138 #define ufshcd_toggle_vreg(_dev, _vreg, _on) \
139 ({ \
140 int _ret; \
141 if (_on) \
142 _ret = ufshcd_enable_vreg(_dev, _vreg); \
143 else \
144 _ret = ufshcd_disable_vreg(_dev, _vreg); \
145 _ret; \
146 })
147
148 #define ufshcd_hex_dump(prefix_str, buf, len) do { \
149 size_t __len = (len); \
150 print_hex_dump(KERN_ERR, prefix_str, \
151 __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
152 16, 4, buf, __len, false); \
153 } while (0)
154
ufshcd_dump_regs(struct ufs_hba * hba,size_t offset,size_t len,const char * prefix)155 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
156 const char *prefix)
157 {
158 u32 *regs;
159 size_t pos;
160
161 if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
162 return -EINVAL;
163
164 regs = kzalloc(len, GFP_ATOMIC);
165 if (!regs)
166 return -ENOMEM;
167
168 for (pos = 0; pos < len; pos += 4) {
169 if (offset == 0 &&
170 pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
171 pos <= REG_UIC_ERROR_CODE_DME)
172 continue;
173 regs[pos / 4] = ufshcd_readl(hba, offset + pos);
174 }
175
176 ufshcd_hex_dump(prefix, regs, len);
177 kfree(regs);
178
179 return 0;
180 }
181 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
182
183 enum {
184 UFSHCD_MAX_CHANNEL = 0,
185 UFSHCD_MAX_ID = 1,
186 };
187
188 static const char *const ufshcd_state_name[] = {
189 [UFSHCD_STATE_RESET] = "reset",
190 [UFSHCD_STATE_OPERATIONAL] = "operational",
191 [UFSHCD_STATE_ERROR] = "error",
192 [UFSHCD_STATE_EH_SCHEDULED_FATAL] = "eh_fatal",
193 [UFSHCD_STATE_EH_SCHEDULED_NON_FATAL] = "eh_non_fatal",
194 };
195
196 /* UFSHCD error handling flags */
197 enum {
198 UFSHCD_EH_IN_PROGRESS = (1 << 0),
199 };
200
201 /* UFSHCD UIC layer error flags */
202 enum {
203 UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
204 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
205 UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
206 UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
207 UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
208 UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
209 UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
210 };
211
212 #define ufshcd_set_eh_in_progress(h) \
213 ((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
214 #define ufshcd_eh_in_progress(h) \
215 ((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
216 #define ufshcd_clear_eh_in_progress(h) \
217 ((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
218
219 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
220 [UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
221 [UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
222 [UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
223 [UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
224 [UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
225 [UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
226 /*
227 * For DeepSleep, the link is first put in hibern8 and then off.
228 * Leaving the link in hibern8 is not supported.
229 */
230 [UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
231 };
232
233 static inline enum ufs_dev_pwr_mode
ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)234 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
235 {
236 return ufs_pm_lvl_states[lvl].dev_state;
237 }
238
239 static inline enum uic_link_state
ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)240 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
241 {
242 return ufs_pm_lvl_states[lvl].link_state;
243 }
244
245 static inline enum ufs_pm_level
ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,enum uic_link_state link_state)246 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
247 enum uic_link_state link_state)
248 {
249 enum ufs_pm_level lvl;
250
251 for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
252 if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
253 (ufs_pm_lvl_states[lvl].link_state == link_state))
254 return lvl;
255 }
256
257 /* if no match found, return the level 0 */
258 return UFS_PM_LVL_0;
259 }
260
ufshcd_is_ufs_dev_busy(struct ufs_hba * hba)261 static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba)
262 {
263 return (hba->clk_gating.active_reqs || hba->outstanding_reqs || hba->outstanding_tasks ||
264 hba->active_uic_cmd || hba->uic_async_done);
265 }
266
267 static const struct ufs_dev_quirk ufs_fixups[] = {
268 /* UFS cards deviations table */
269 { .wmanufacturerid = UFS_VENDOR_MICRON,
270 .model = UFS_ANY_MODEL,
271 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
272 { .wmanufacturerid = UFS_VENDOR_SAMSUNG,
273 .model = UFS_ANY_MODEL,
274 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
275 UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
276 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
277 { .wmanufacturerid = UFS_VENDOR_SKHYNIX,
278 .model = UFS_ANY_MODEL,
279 .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
280 { .wmanufacturerid = UFS_VENDOR_SKHYNIX,
281 .model = "hB8aL1" /*H28U62301AMR*/,
282 .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
283 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
284 .model = UFS_ANY_MODEL,
285 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
286 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
287 .model = "THGLF2G9C8KBADG",
288 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
289 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
290 .model = "THGLF2G9D8KBADG",
291 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
292 {}
293 };
294
295 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
296 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
297 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
298 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
299 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
300 static void ufshcd_hba_exit(struct ufs_hba *hba);
301 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params);
302 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
303 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
304 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
305 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
306 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
307 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
308 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
309 bool scale_up);
310 static irqreturn_t ufshcd_intr(int irq, void *__hba);
311 static int ufshcd_change_power_mode(struct ufs_hba *hba,
312 struct ufs_pa_layer_attr *pwr_mode);
313 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
314 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
315 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
316 struct ufs_vreg *vreg);
317 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
318 bool enable);
319 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
320 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
321
ufshcd_enable_irq(struct ufs_hba * hba)322 void ufshcd_enable_irq(struct ufs_hba *hba)
323 {
324 if (!hba->is_irq_enabled) {
325 enable_irq(hba->irq);
326 hba->is_irq_enabled = true;
327 }
328 }
329 EXPORT_SYMBOL_GPL(ufshcd_enable_irq);
330
ufshcd_disable_irq(struct ufs_hba * hba)331 void ufshcd_disable_irq(struct ufs_hba *hba)
332 {
333 if (hba->is_irq_enabled) {
334 disable_irq(hba->irq);
335 hba->is_irq_enabled = false;
336 }
337 }
338 EXPORT_SYMBOL_GPL(ufshcd_disable_irq);
339
ufshcd_configure_wb(struct ufs_hba * hba)340 static void ufshcd_configure_wb(struct ufs_hba *hba)
341 {
342 if (!ufshcd_is_wb_allowed(hba))
343 return;
344
345 ufshcd_wb_toggle(hba, true);
346
347 ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
348
349 if (ufshcd_is_wb_buf_flush_allowed(hba))
350 ufshcd_wb_toggle_buf_flush(hba, true);
351 }
352
ufshcd_add_cmd_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)353 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
354 enum ufs_trace_str_t str_t)
355 {
356 struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
357 struct utp_upiu_header *header;
358
359 if (!trace_ufshcd_upiu_enabled())
360 return;
361
362 if (str_t == UFS_CMD_SEND)
363 header = &rq->header;
364 else
365 header = &hba->lrb[tag].ucd_rsp_ptr->header;
366
367 trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
368 UFS_TSF_CDB);
369 }
370
ufshcd_add_query_upiu_trace(struct ufs_hba * hba,enum ufs_trace_str_t str_t,struct utp_upiu_req * rq_rsp)371 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
372 enum ufs_trace_str_t str_t,
373 struct utp_upiu_req *rq_rsp)
374 {
375 if (!trace_ufshcd_upiu_enabled())
376 return;
377
378 trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
379 &rq_rsp->qr, UFS_TSF_OSF);
380 }
381
ufshcd_add_tm_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)382 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
383 enum ufs_trace_str_t str_t)
384 {
385 struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
386
387 if (!trace_ufshcd_upiu_enabled())
388 return;
389
390 if (str_t == UFS_TM_SEND)
391 trace_ufshcd_upiu(dev_name(hba->dev), str_t,
392 &descp->upiu_req.req_header,
393 &descp->upiu_req.input_param1,
394 UFS_TSF_TM_INPUT);
395 else
396 trace_ufshcd_upiu(dev_name(hba->dev), str_t,
397 &descp->upiu_rsp.rsp_header,
398 &descp->upiu_rsp.output_param1,
399 UFS_TSF_TM_OUTPUT);
400 }
401
ufshcd_add_uic_command_trace(struct ufs_hba * hba,const struct uic_command * ucmd,enum ufs_trace_str_t str_t)402 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
403 const struct uic_command *ucmd,
404 enum ufs_trace_str_t str_t)
405 {
406 u32 cmd;
407
408 if (!trace_ufshcd_uic_command_enabled())
409 return;
410
411 if (str_t == UFS_CMD_SEND)
412 cmd = ucmd->command;
413 else
414 cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
415
416 trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
417 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
418 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
419 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
420 }
421
ufshcd_add_command_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)422 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
423 enum ufs_trace_str_t str_t)
424 {
425 u64 lba = 0;
426 u8 opcode = 0, group_id = 0;
427 u32 doorbell = 0;
428 u32 intr;
429 int hwq_id = -1;
430 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
431 struct scsi_cmnd *cmd = lrbp->cmd;
432 struct request *rq = scsi_cmd_to_rq(cmd);
433 int transfer_len = -1;
434
435 if (!cmd)
436 return;
437
438 /* trace UPIU also */
439 ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
440 if (!trace_ufshcd_command_enabled())
441 return;
442
443 opcode = cmd->cmnd[0];
444
445 if (opcode == READ_10 || opcode == WRITE_10) {
446 /*
447 * Currently we only fully trace read(10) and write(10) commands
448 */
449 transfer_len =
450 be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
451 lba = scsi_get_lba(cmd);
452 if (opcode == WRITE_10)
453 group_id = lrbp->cmd->cmnd[6];
454 } else if (opcode == UNMAP) {
455 /*
456 * The number of Bytes to be unmapped beginning with the lba.
457 */
458 transfer_len = blk_rq_bytes(rq);
459 lba = scsi_get_lba(cmd);
460 }
461
462 intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
463
464 if (hba->mcq_enabled) {
465 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
466
467 hwq_id = hwq->id;
468 } else {
469 doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
470 }
471 trace_ufshcd_command(cmd->device, str_t, tag, doorbell, hwq_id,
472 transfer_len, intr, lba, opcode, group_id);
473 }
474
ufshcd_print_clk_freqs(struct ufs_hba * hba)475 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
476 {
477 struct ufs_clk_info *clki;
478 struct list_head *head = &hba->clk_list_head;
479
480 if (list_empty(head))
481 return;
482
483 list_for_each_entry(clki, head, list) {
484 if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
485 clki->max_freq)
486 dev_err(hba->dev, "clk: %s, rate: %u\n",
487 clki->name, clki->curr_freq);
488 }
489 }
490
ufshcd_print_evt(struct ufs_hba * hba,u32 id,const char * err_name)491 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
492 const char *err_name)
493 {
494 int i;
495 bool found = false;
496 const struct ufs_event_hist *e;
497
498 if (id >= UFS_EVT_CNT)
499 return;
500
501 e = &hba->ufs_stats.event[id];
502
503 for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
504 int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
505
506 if (e->tstamp[p] == 0)
507 continue;
508 dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
509 e->val[p], div_u64(e->tstamp[p], 1000));
510 found = true;
511 }
512
513 if (!found)
514 dev_err(hba->dev, "No record of %s\n", err_name);
515 else
516 dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
517 }
518
ufshcd_print_evt_hist(struct ufs_hba * hba)519 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
520 {
521 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
522
523 ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
524 ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
525 ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
526 ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
527 ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
528 ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
529 "auto_hibern8_err");
530 ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
531 ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
532 "link_startup_fail");
533 ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
534 ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
535 "suspend_fail");
536 ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
537 ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
538 "wlun suspend_fail");
539 ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
540 ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
541 ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
542
543 ufshcd_vops_dbg_register_dump(hba);
544 }
545
546 static
ufshcd_print_tr(struct ufs_hba * hba,int tag,bool pr_prdt)547 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
548 {
549 const struct ufshcd_lrb *lrbp;
550 int prdt_length;
551
552 lrbp = &hba->lrb[tag];
553
554 dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
555 tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
556 dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
557 tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
558 dev_err(hba->dev,
559 "UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
560 tag, (u64)lrbp->utrd_dma_addr);
561
562 ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
563 sizeof(struct utp_transfer_req_desc));
564 dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
565 (u64)lrbp->ucd_req_dma_addr);
566 ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
567 sizeof(struct utp_upiu_req));
568 dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
569 (u64)lrbp->ucd_rsp_dma_addr);
570 ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
571 sizeof(struct utp_upiu_rsp));
572
573 prdt_length = le16_to_cpu(
574 lrbp->utr_descriptor_ptr->prd_table_length);
575 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
576 prdt_length /= ufshcd_sg_entry_size(hba);
577
578 dev_err(hba->dev,
579 "UPIU[%d] - PRDT - %d entries phys@0x%llx\n",
580 tag, prdt_length,
581 (u64)lrbp->ucd_prdt_dma_addr);
582
583 if (pr_prdt)
584 ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
585 ufshcd_sg_entry_size(hba) * prdt_length);
586 }
587
ufshcd_print_tr_iter(struct request * req,void * priv)588 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
589 {
590 struct scsi_device *sdev = req->q->queuedata;
591 struct Scsi_Host *shost = sdev->host;
592 struct ufs_hba *hba = shost_priv(shost);
593
594 ufshcd_print_tr(hba, req->tag, *(bool *)priv);
595
596 return true;
597 }
598
599 /**
600 * ufshcd_print_trs_all - print trs for all started requests.
601 * @hba: per-adapter instance.
602 * @pr_prdt: need to print prdt or not.
603 */
ufshcd_print_trs_all(struct ufs_hba * hba,bool pr_prdt)604 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
605 {
606 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
607 }
608
ufshcd_print_tmrs(struct ufs_hba * hba,unsigned long bitmap)609 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
610 {
611 int tag;
612
613 for_each_set_bit(tag, &bitmap, hba->nutmrs) {
614 struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
615
616 dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
617 ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
618 }
619 }
620
ufshcd_print_host_state(struct ufs_hba * hba)621 static void ufshcd_print_host_state(struct ufs_hba *hba)
622 {
623 const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
624
625 dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
626 dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
627 hba->outstanding_reqs, hba->outstanding_tasks);
628 dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
629 hba->saved_err, hba->saved_uic_err);
630 dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
631 hba->curr_dev_pwr_mode, hba->uic_link_state);
632 dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
633 hba->pm_op_in_progress, hba->is_sys_suspended);
634 dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
635 hba->auto_bkops_enabled, hba->host->host_self_blocked);
636 dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
637 dev_err(hba->dev,
638 "last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
639 div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
640 hba->ufs_stats.hibern8_exit_cnt);
641 dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
642 div_u64(hba->ufs_stats.last_intr_ts, 1000),
643 hba->ufs_stats.last_intr_status);
644 dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
645 hba->eh_flags, hba->req_abort_count);
646 dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
647 hba->ufs_version, hba->capabilities, hba->caps);
648 dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
649 hba->dev_quirks);
650 if (sdev_ufs)
651 dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
652 sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
653
654 ufshcd_print_clk_freqs(hba);
655 }
656
657 /**
658 * ufshcd_print_pwr_info - print power params as saved in hba
659 * power info
660 * @hba: per-adapter instance
661 */
ufshcd_print_pwr_info(struct ufs_hba * hba)662 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
663 {
664 static const char * const names[] = {
665 "INVALID MODE",
666 "FAST MODE",
667 "SLOW_MODE",
668 "INVALID MODE",
669 "FASTAUTO_MODE",
670 "SLOWAUTO_MODE",
671 "INVALID MODE",
672 };
673
674 /*
675 * Using dev_dbg to avoid messages during runtime PM to avoid
676 * never-ending cycles of messages written back to storage by user space
677 * causing runtime resume, causing more messages and so on.
678 */
679 dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
680 __func__,
681 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
682 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
683 names[hba->pwr_info.pwr_rx],
684 names[hba->pwr_info.pwr_tx],
685 hba->pwr_info.hs_rate);
686 }
687
ufshcd_device_reset(struct ufs_hba * hba)688 static void ufshcd_device_reset(struct ufs_hba *hba)
689 {
690 int err;
691
692 err = ufshcd_vops_device_reset(hba);
693
694 if (!err) {
695 ufshcd_set_ufs_dev_active(hba);
696 if (ufshcd_is_wb_allowed(hba)) {
697 hba->dev_info.wb_enabled = false;
698 hba->dev_info.wb_buf_flush_enabled = false;
699 }
700 if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
701 hba->dev_info.rtc_time_baseline = 0;
702 }
703 if (err != -EOPNOTSUPP)
704 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
705 }
706
ufshcd_delay_us(unsigned long us,unsigned long tolerance)707 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
708 {
709 if (!us)
710 return;
711
712 if (us < 10)
713 udelay(us);
714 else
715 usleep_range(us, us + tolerance);
716 }
717 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
718
719 /**
720 * ufshcd_wait_for_register - wait for register value to change
721 * @hba: per-adapter interface
722 * @reg: mmio register offset
723 * @mask: mask to apply to the read register value
724 * @val: value to wait for
725 * @interval_us: polling interval in microseconds
726 * @timeout_ms: timeout in milliseconds
727 *
728 * Return: -ETIMEDOUT on error, zero on success.
729 */
ufshcd_wait_for_register(struct ufs_hba * hba,u32 reg,u32 mask,u32 val,unsigned long interval_us,unsigned long timeout_ms)730 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
731 u32 val, unsigned long interval_us,
732 unsigned long timeout_ms)
733 {
734 u32 v;
735
736 val &= mask; /* ignore bits that we don't intend to wait on */
737
738 return read_poll_timeout(ufshcd_readl, v, (v & mask) == val,
739 interval_us, timeout_ms * 1000, false, hba, reg);
740 }
741
742 /**
743 * ufshcd_get_intr_mask - Get the interrupt bit mask
744 * @hba: Pointer to adapter instance
745 *
746 * Return: interrupt bit mask per version
747 */
ufshcd_get_intr_mask(struct ufs_hba * hba)748 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
749 {
750 if (hba->ufs_version <= ufshci_version(2, 0))
751 return INTERRUPT_MASK_ALL_VER_11;
752
753 return INTERRUPT_MASK_ALL_VER_21;
754 }
755
756 /**
757 * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
758 * @hba: Pointer to adapter instance
759 *
760 * Return: UFSHCI version supported by the controller
761 */
ufshcd_get_ufs_version(struct ufs_hba * hba)762 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
763 {
764 u32 ufshci_ver;
765
766 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
767 ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
768 else
769 ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
770
771 /*
772 * UFSHCI v1.x uses a different version scheme, in order
773 * to allow the use of comparisons with the ufshci_version
774 * function, we convert it to the same scheme as ufs 2.0+.
775 */
776 if (ufshci_ver & 0x00010000)
777 return ufshci_version(1, ufshci_ver & 0x00000100);
778
779 return ufshci_ver;
780 }
781
782 /**
783 * ufshcd_is_device_present - Check if any device connected to
784 * the host controller
785 * @hba: pointer to adapter instance
786 *
787 * Return: true if device present, false if no device detected
788 */
ufshcd_is_device_present(struct ufs_hba * hba)789 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
790 {
791 return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
792 }
793
794 /**
795 * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
796 * @lrbp: pointer to local command reference block
797 * @cqe: pointer to the completion queue entry
798 *
799 * This function is used to get the OCS field from UTRD
800 *
801 * Return: the OCS field in the UTRD.
802 */
ufshcd_get_tr_ocs(struct ufshcd_lrb * lrbp,struct cq_entry * cqe)803 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
804 struct cq_entry *cqe)
805 {
806 if (cqe)
807 return le32_to_cpu(cqe->status) & MASK_OCS;
808
809 return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
810 }
811
812 /**
813 * ufshcd_utrl_clear() - Clear requests from the controller request list.
814 * @hba: per adapter instance
815 * @mask: mask with one bit set for each request to be cleared
816 */
ufshcd_utrl_clear(struct ufs_hba * hba,u32 mask)817 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
818 {
819 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
820 mask = ~mask;
821 /*
822 * From the UFSHCI specification: "UTP Transfer Request List CLear
823 * Register (UTRLCLR): This field is bit significant. Each bit
824 * corresponds to a slot in the UTP Transfer Request List, where bit 0
825 * corresponds to request slot 0. A bit in this field is set to ‘0’
826 * by host software to indicate to the host controller that a transfer
827 * request slot is cleared. The host controller
828 * shall free up any resources associated to the request slot
829 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
830 * host software indicates no change to request slots by setting the
831 * associated bits in this field to ‘1’. Bits in this field shall only
832 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
833 */
834 ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
835 }
836
837 /**
838 * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
839 * @hba: per adapter instance
840 * @pos: position of the bit to be cleared
841 */
ufshcd_utmrl_clear(struct ufs_hba * hba,u32 pos)842 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
843 {
844 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
845 ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
846 else
847 ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
848 }
849
850 /**
851 * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
852 * @reg: Register value of host controller status
853 *
854 * Return: 0 on success; a positive value if failed.
855 */
ufshcd_get_lists_status(u32 reg)856 static inline int ufshcd_get_lists_status(u32 reg)
857 {
858 return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
859 }
860
861 /**
862 * ufshcd_get_uic_cmd_result - Get the UIC command result
863 * @hba: Pointer to adapter instance
864 *
865 * This function gets the result of UIC command completion
866 *
867 * Return: 0 on success; non-zero value on error.
868 */
ufshcd_get_uic_cmd_result(struct ufs_hba * hba)869 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
870 {
871 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
872 MASK_UIC_COMMAND_RESULT;
873 }
874
875 /**
876 * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
877 * @hba: Pointer to adapter instance
878 *
879 * This function gets UIC command argument3
880 *
881 * Return: 0 on success; non-zero value on error.
882 */
ufshcd_get_dme_attr_val(struct ufs_hba * hba)883 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
884 {
885 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
886 }
887
888 /**
889 * ufshcd_get_req_rsp - returns the TR response transaction type
890 * @ucd_rsp_ptr: pointer to response UPIU
891 *
892 * Return: UPIU type.
893 */
894 static inline enum upiu_response_transaction
ufshcd_get_req_rsp(struct utp_upiu_rsp * ucd_rsp_ptr)895 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
896 {
897 return ucd_rsp_ptr->header.transaction_code;
898 }
899
900 /**
901 * ufshcd_is_exception_event - Check if the device raised an exception event
902 * @ucd_rsp_ptr: pointer to response UPIU
903 *
904 * The function checks if the device raised an exception event indicated in
905 * the Device Information field of response UPIU.
906 *
907 * Return: true if exception is raised, false otherwise.
908 */
ufshcd_is_exception_event(struct utp_upiu_rsp * ucd_rsp_ptr)909 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
910 {
911 return ucd_rsp_ptr->header.device_information & 1;
912 }
913
914 /**
915 * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
916 * @hba: per adapter instance
917 */
918 static inline void
ufshcd_reset_intr_aggr(struct ufs_hba * hba)919 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
920 {
921 ufshcd_writel(hba, INT_AGGR_ENABLE |
922 INT_AGGR_COUNTER_AND_TIMER_RESET,
923 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
924 }
925
926 /**
927 * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
928 * @hba: per adapter instance
929 * @cnt: Interrupt aggregation counter threshold
930 * @tmout: Interrupt aggregation timeout value
931 */
932 static inline void
ufshcd_config_intr_aggr(struct ufs_hba * hba,u8 cnt,u8 tmout)933 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
934 {
935 ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
936 INT_AGGR_COUNTER_THLD_VAL(cnt) |
937 INT_AGGR_TIMEOUT_VAL(tmout),
938 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
939 }
940
941 /**
942 * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
943 * @hba: per adapter instance
944 */
ufshcd_disable_intr_aggr(struct ufs_hba * hba)945 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
946 {
947 ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
948 }
949
950 /**
951 * ufshcd_enable_run_stop_reg - Enable run-stop registers,
952 * When run-stop registers are set to 1, it indicates the
953 * host controller that it can process the requests
954 * @hba: per adapter instance
955 */
ufshcd_enable_run_stop_reg(struct ufs_hba * hba)956 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
957 {
958 ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
959 REG_UTP_TASK_REQ_LIST_RUN_STOP);
960 ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
961 REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
962 }
963
964 /**
965 * ufshcd_hba_start - Start controller initialization sequence
966 * @hba: per adapter instance
967 */
ufshcd_hba_start(struct ufs_hba * hba)968 static inline void ufshcd_hba_start(struct ufs_hba *hba)
969 {
970 u32 val = CONTROLLER_ENABLE;
971
972 if (ufshcd_crypto_enable(hba))
973 val |= CRYPTO_GENERAL_ENABLE;
974
975 ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
976 }
977
978 /**
979 * ufshcd_is_hba_active - Get controller state
980 * @hba: per adapter instance
981 *
982 * Return: true if and only if the controller is active.
983 */
ufshcd_is_hba_active(struct ufs_hba * hba)984 bool ufshcd_is_hba_active(struct ufs_hba *hba)
985 {
986 return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
987 }
988 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
989
990 /**
991 * ufshcd_pm_qos_init - initialize PM QoS request
992 * @hba: per adapter instance
993 */
ufshcd_pm_qos_init(struct ufs_hba * hba)994 void ufshcd_pm_qos_init(struct ufs_hba *hba)
995 {
996
997 if (hba->pm_qos_enabled)
998 return;
999
1000 cpu_latency_qos_add_request(&hba->pm_qos_req, PM_QOS_DEFAULT_VALUE);
1001
1002 if (cpu_latency_qos_request_active(&hba->pm_qos_req))
1003 hba->pm_qos_enabled = true;
1004 }
1005
1006 /**
1007 * ufshcd_pm_qos_exit - remove request from PM QoS
1008 * @hba: per adapter instance
1009 */
ufshcd_pm_qos_exit(struct ufs_hba * hba)1010 void ufshcd_pm_qos_exit(struct ufs_hba *hba)
1011 {
1012 if (!hba->pm_qos_enabled)
1013 return;
1014
1015 cpu_latency_qos_remove_request(&hba->pm_qos_req);
1016 hba->pm_qos_enabled = false;
1017 }
1018
1019 /**
1020 * ufshcd_pm_qos_update - update PM QoS request
1021 * @hba: per adapter instance
1022 * @on: If True, vote for perf PM QoS mode otherwise power save mode
1023 */
ufshcd_pm_qos_update(struct ufs_hba * hba,bool on)1024 static void ufshcd_pm_qos_update(struct ufs_hba *hba, bool on)
1025 {
1026 if (!hba->pm_qos_enabled)
1027 return;
1028
1029 cpu_latency_qos_update_request(&hba->pm_qos_req, on ? 0 : PM_QOS_DEFAULT_VALUE);
1030 }
1031
1032 /**
1033 * ufshcd_set_clk_freq - set UFS controller clock frequencies
1034 * @hba: per adapter instance
1035 * @scale_up: If True, set max possible frequency othewise set low frequency
1036 *
1037 * Return: 0 if successful; < 0 upon failure.
1038 */
ufshcd_set_clk_freq(struct ufs_hba * hba,bool scale_up)1039 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1040 {
1041 int ret = 0;
1042 struct ufs_clk_info *clki;
1043 struct list_head *head = &hba->clk_list_head;
1044
1045 if (list_empty(head))
1046 goto out;
1047
1048 list_for_each_entry(clki, head, list) {
1049 if (!IS_ERR_OR_NULL(clki->clk)) {
1050 if (scale_up && clki->max_freq) {
1051 if (clki->curr_freq == clki->max_freq)
1052 continue;
1053
1054 ret = clk_set_rate(clki->clk, clki->max_freq);
1055 if (ret) {
1056 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1057 __func__, clki->name,
1058 clki->max_freq, ret);
1059 break;
1060 }
1061 trace_ufshcd_clk_scaling(dev_name(hba->dev),
1062 "scaled up", clki->name,
1063 clki->curr_freq,
1064 clki->max_freq);
1065
1066 clki->curr_freq = clki->max_freq;
1067
1068 } else if (!scale_up && clki->min_freq) {
1069 if (clki->curr_freq == clki->min_freq)
1070 continue;
1071
1072 ret = clk_set_rate(clki->clk, clki->min_freq);
1073 if (ret) {
1074 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1075 __func__, clki->name,
1076 clki->min_freq, ret);
1077 break;
1078 }
1079 trace_ufshcd_clk_scaling(dev_name(hba->dev),
1080 "scaled down", clki->name,
1081 clki->curr_freq,
1082 clki->min_freq);
1083 clki->curr_freq = clki->min_freq;
1084 }
1085 }
1086 dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1087 clki->name, clk_get_rate(clki->clk));
1088 }
1089
1090 out:
1091 return ret;
1092 }
1093
ufshcd_opp_config_clks(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * data,bool scaling_down)1094 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table,
1095 struct dev_pm_opp *opp, void *data,
1096 bool scaling_down)
1097 {
1098 struct ufs_hba *hba = dev_get_drvdata(dev);
1099 struct list_head *head = &hba->clk_list_head;
1100 struct ufs_clk_info *clki;
1101 unsigned long freq;
1102 u8 idx = 0;
1103 int ret;
1104
1105 list_for_each_entry(clki, head, list) {
1106 if (!IS_ERR_OR_NULL(clki->clk)) {
1107 freq = dev_pm_opp_get_freq_indexed(opp, idx++);
1108
1109 /* Do not set rate for clocks having frequency as 0 */
1110 if (!freq)
1111 continue;
1112
1113 ret = clk_set_rate(clki->clk, freq);
1114 if (ret) {
1115 dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n",
1116 __func__, clki->name, freq, ret);
1117 return ret;
1118 }
1119
1120 trace_ufshcd_clk_scaling(dev_name(dev),
1121 (scaling_down ? "scaled down" : "scaled up"),
1122 clki->name, hba->clk_scaling.target_freq, freq);
1123 }
1124 }
1125
1126 return 0;
1127 }
1128 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks);
1129
ufshcd_opp_set_rate(struct ufs_hba * hba,unsigned long freq)1130 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq)
1131 {
1132 struct dev_pm_opp *opp;
1133 int ret;
1134
1135 opp = dev_pm_opp_find_freq_floor_indexed(hba->dev,
1136 &freq, 0);
1137 if (IS_ERR(opp))
1138 return PTR_ERR(opp);
1139
1140 ret = dev_pm_opp_set_opp(hba->dev, opp);
1141 dev_pm_opp_put(opp);
1142
1143 return ret;
1144 }
1145
1146 /**
1147 * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1148 * @hba: per adapter instance
1149 * @freq: frequency to scale
1150 * @scale_up: True if scaling up and false if scaling down
1151 *
1152 * Return: 0 if successful; < 0 upon failure.
1153 */
ufshcd_scale_clks(struct ufs_hba * hba,unsigned long freq,bool scale_up)1154 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
1155 bool scale_up)
1156 {
1157 int ret = 0;
1158 ktime_t start = ktime_get();
1159
1160 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1161 if (ret)
1162 goto out;
1163
1164 if (hba->use_pm_opp)
1165 ret = ufshcd_opp_set_rate(hba, freq);
1166 else
1167 ret = ufshcd_set_clk_freq(hba, scale_up);
1168 if (ret)
1169 goto out;
1170
1171 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1172 if (ret) {
1173 if (hba->use_pm_opp)
1174 ufshcd_opp_set_rate(hba,
1175 hba->devfreq->previous_freq);
1176 else
1177 ufshcd_set_clk_freq(hba, !scale_up);
1178 goto out;
1179 }
1180
1181 ufshcd_pm_qos_update(hba, scale_up);
1182
1183 out:
1184 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1185 (scale_up ? "up" : "down"),
1186 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1187 return ret;
1188 }
1189
1190 /**
1191 * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1192 * @hba: per adapter instance
1193 * @freq: frequency to scale
1194 * @scale_up: True if scaling up and false if scaling down
1195 *
1196 * Return: true if scaling is required, false otherwise.
1197 */
ufshcd_is_devfreq_scaling_required(struct ufs_hba * hba,unsigned long freq,bool scale_up)1198 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1199 unsigned long freq, bool scale_up)
1200 {
1201 struct ufs_clk_info *clki;
1202 struct list_head *head = &hba->clk_list_head;
1203
1204 if (list_empty(head))
1205 return false;
1206
1207 if (hba->use_pm_opp)
1208 return freq != hba->clk_scaling.target_freq;
1209
1210 list_for_each_entry(clki, head, list) {
1211 if (!IS_ERR_OR_NULL(clki->clk)) {
1212 if (scale_up && clki->max_freq) {
1213 if (clki->curr_freq == clki->max_freq)
1214 continue;
1215 return true;
1216 } else if (!scale_up && clki->min_freq) {
1217 if (clki->curr_freq == clki->min_freq)
1218 continue;
1219 return true;
1220 }
1221 }
1222 }
1223
1224 return false;
1225 }
1226
1227 /*
1228 * Determine the number of pending commands by counting the bits in the SCSI
1229 * device budget maps. This approach has been selected because a bit is set in
1230 * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1231 * flag. The host_self_blocked flag can be modified by calling
1232 * scsi_block_requests() or scsi_unblock_requests().
1233 */
ufshcd_pending_cmds(struct ufs_hba * hba)1234 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1235 {
1236 const struct scsi_device *sdev;
1237 unsigned long flags;
1238 u32 pending = 0;
1239
1240 spin_lock_irqsave(hba->host->host_lock, flags);
1241 __shost_for_each_device(sdev, hba->host)
1242 pending += sbitmap_weight(&sdev->budget_map);
1243 spin_unlock_irqrestore(hba->host->host_lock, flags);
1244
1245 return pending;
1246 }
1247
1248 /*
1249 * Wait until all pending SCSI commands and TMFs have finished or the timeout
1250 * has expired.
1251 *
1252 * Return: 0 upon success; -EBUSY upon timeout.
1253 */
ufshcd_wait_for_doorbell_clr(struct ufs_hba * hba,u64 wait_timeout_us)1254 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1255 u64 wait_timeout_us)
1256 {
1257 int ret = 0;
1258 u32 tm_doorbell;
1259 u32 tr_pending;
1260 bool timeout = false, do_last_check = false;
1261 ktime_t start;
1262
1263 ufshcd_hold(hba);
1264 /*
1265 * Wait for all the outstanding tasks/transfer requests.
1266 * Verify by checking the doorbell registers are clear.
1267 */
1268 start = ktime_get();
1269 do {
1270 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1271 ret = -EBUSY;
1272 goto out;
1273 }
1274
1275 tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1276 tr_pending = ufshcd_pending_cmds(hba);
1277 if (!tm_doorbell && !tr_pending) {
1278 timeout = false;
1279 break;
1280 } else if (do_last_check) {
1281 break;
1282 }
1283
1284 io_schedule_timeout(msecs_to_jiffies(20));
1285 if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1286 wait_timeout_us) {
1287 timeout = true;
1288 /*
1289 * We might have scheduled out for long time so make
1290 * sure to check if doorbells are cleared by this time
1291 * or not.
1292 */
1293 do_last_check = true;
1294 }
1295 } while (tm_doorbell || tr_pending);
1296
1297 if (timeout) {
1298 dev_err(hba->dev,
1299 "%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1300 __func__, tm_doorbell, tr_pending);
1301 ret = -EBUSY;
1302 }
1303 out:
1304 ufshcd_release(hba);
1305 return ret;
1306 }
1307
1308 /**
1309 * ufshcd_scale_gear - scale up/down UFS gear
1310 * @hba: per adapter instance
1311 * @scale_up: True for scaling up gear and false for scaling down
1312 *
1313 * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1314 * non-zero for any other errors.
1315 */
ufshcd_scale_gear(struct ufs_hba * hba,bool scale_up)1316 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1317 {
1318 int ret = 0;
1319 struct ufs_pa_layer_attr new_pwr_info;
1320
1321 if (scale_up) {
1322 memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1323 sizeof(struct ufs_pa_layer_attr));
1324 } else {
1325 memcpy(&new_pwr_info, &hba->pwr_info,
1326 sizeof(struct ufs_pa_layer_attr));
1327
1328 if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1329 hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1330 /* save the current power mode */
1331 memcpy(&hba->clk_scaling.saved_pwr_info,
1332 &hba->pwr_info,
1333 sizeof(struct ufs_pa_layer_attr));
1334
1335 /* scale down gear */
1336 new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1337 new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1338 }
1339 }
1340
1341 /* check if the power mode needs to be changed or not? */
1342 ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1343 if (ret)
1344 dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1345 __func__, ret,
1346 hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1347 new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1348
1349 return ret;
1350 }
1351
1352 /*
1353 * Wait until all pending SCSI commands and TMFs have finished or the timeout
1354 * has expired.
1355 *
1356 * Return: 0 upon success; -EBUSY upon timeout.
1357 */
ufshcd_clock_scaling_prepare(struct ufs_hba * hba,u64 timeout_us)1358 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1359 {
1360 int ret = 0;
1361 /*
1362 * make sure that there are no outstanding requests when
1363 * clock scaling is in progress
1364 */
1365 blk_mq_quiesce_tagset(&hba->host->tag_set);
1366 mutex_lock(&hba->wb_mutex);
1367 down_write(&hba->clk_scaling_lock);
1368
1369 if (!hba->clk_scaling.is_allowed ||
1370 ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1371 ret = -EBUSY;
1372 up_write(&hba->clk_scaling_lock);
1373 mutex_unlock(&hba->wb_mutex);
1374 blk_mq_unquiesce_tagset(&hba->host->tag_set);
1375 goto out;
1376 }
1377
1378 /* let's not get into low power until clock scaling is completed */
1379 ufshcd_hold(hba);
1380
1381 out:
1382 return ret;
1383 }
1384
ufshcd_clock_scaling_unprepare(struct ufs_hba * hba,int err,bool scale_up)1385 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1386 {
1387 up_write(&hba->clk_scaling_lock);
1388
1389 /* Enable Write Booster if we have scaled up else disable it */
1390 if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1391 ufshcd_wb_toggle(hba, scale_up);
1392
1393 mutex_unlock(&hba->wb_mutex);
1394
1395 blk_mq_unquiesce_tagset(&hba->host->tag_set);
1396 ufshcd_release(hba);
1397 }
1398
1399 /**
1400 * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1401 * @hba: per adapter instance
1402 * @freq: frequency to scale
1403 * @scale_up: True for scaling up and false for scalin down
1404 *
1405 * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1406 * for any other errors.
1407 */
ufshcd_devfreq_scale(struct ufs_hba * hba,unsigned long freq,bool scale_up)1408 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq,
1409 bool scale_up)
1410 {
1411 int ret = 0;
1412
1413 ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1414 if (ret)
1415 return ret;
1416
1417 /* scale down the gear before scaling down clocks */
1418 if (!scale_up) {
1419 ret = ufshcd_scale_gear(hba, false);
1420 if (ret)
1421 goto out_unprepare;
1422 }
1423
1424 ret = ufshcd_scale_clks(hba, freq, scale_up);
1425 if (ret) {
1426 if (!scale_up)
1427 ufshcd_scale_gear(hba, true);
1428 goto out_unprepare;
1429 }
1430
1431 /* scale up the gear after scaling up clocks */
1432 if (scale_up) {
1433 ret = ufshcd_scale_gear(hba, true);
1434 if (ret) {
1435 ufshcd_scale_clks(hba, hba->devfreq->previous_freq,
1436 false);
1437 goto out_unprepare;
1438 }
1439 }
1440
1441 out_unprepare:
1442 ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1443 return ret;
1444 }
1445
ufshcd_clk_scaling_suspend_work(struct work_struct * work)1446 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1447 {
1448 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1449 clk_scaling.suspend_work);
1450 unsigned long irq_flags;
1451
1452 spin_lock_irqsave(hba->host->host_lock, irq_flags);
1453 if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1454 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1455 return;
1456 }
1457 hba->clk_scaling.is_suspended = true;
1458 hba->clk_scaling.window_start_t = 0;
1459 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1460
1461 devfreq_suspend_device(hba->devfreq);
1462 }
1463
ufshcd_clk_scaling_resume_work(struct work_struct * work)1464 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1465 {
1466 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1467 clk_scaling.resume_work);
1468 unsigned long irq_flags;
1469
1470 spin_lock_irqsave(hba->host->host_lock, irq_flags);
1471 if (!hba->clk_scaling.is_suspended) {
1472 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1473 return;
1474 }
1475 hba->clk_scaling.is_suspended = false;
1476 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1477
1478 devfreq_resume_device(hba->devfreq);
1479 }
1480
ufshcd_devfreq_target(struct device * dev,unsigned long * freq,u32 flags)1481 static int ufshcd_devfreq_target(struct device *dev,
1482 unsigned long *freq, u32 flags)
1483 {
1484 int ret = 0;
1485 struct ufs_hba *hba = dev_get_drvdata(dev);
1486 ktime_t start;
1487 bool scale_up = false, sched_clk_scaling_suspend_work = false;
1488 struct list_head *clk_list = &hba->clk_list_head;
1489 struct ufs_clk_info *clki;
1490 unsigned long irq_flags;
1491
1492 if (!ufshcd_is_clkscaling_supported(hba))
1493 return -EINVAL;
1494
1495 if (hba->use_pm_opp) {
1496 struct dev_pm_opp *opp;
1497
1498 /* Get the recommended frequency from OPP framework */
1499 opp = devfreq_recommended_opp(dev, freq, flags);
1500 if (IS_ERR(opp))
1501 return PTR_ERR(opp);
1502
1503 dev_pm_opp_put(opp);
1504 } else {
1505 /* Override with the closest supported frequency */
1506 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info,
1507 list);
1508 *freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1509 }
1510
1511 spin_lock_irqsave(hba->host->host_lock, irq_flags);
1512 if (ufshcd_eh_in_progress(hba)) {
1513 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1514 return 0;
1515 }
1516
1517 /* Skip scaling clock when clock scaling is suspended */
1518 if (hba->clk_scaling.is_suspended) {
1519 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1520 dev_warn(hba->dev, "clock scaling is suspended, skip");
1521 return 0;
1522 }
1523
1524 if (!hba->clk_scaling.active_reqs)
1525 sched_clk_scaling_suspend_work = true;
1526
1527 if (list_empty(clk_list)) {
1528 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1529 goto out;
1530 }
1531
1532 /* Decide based on the target or rounded-off frequency and update */
1533 if (hba->use_pm_opp)
1534 scale_up = *freq > hba->clk_scaling.target_freq;
1535 else
1536 scale_up = *freq == clki->max_freq;
1537
1538 if (!hba->use_pm_opp && !scale_up)
1539 *freq = clki->min_freq;
1540
1541 /* Update the frequency */
1542 if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) {
1543 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1544 ret = 0;
1545 goto out; /* no state change required */
1546 }
1547 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1548
1549 start = ktime_get();
1550 ret = ufshcd_devfreq_scale(hba, *freq, scale_up);
1551 if (!ret)
1552 hba->clk_scaling.target_freq = *freq;
1553
1554 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1555 (scale_up ? "up" : "down"),
1556 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1557
1558 out:
1559 if (sched_clk_scaling_suspend_work &&
1560 (!scale_up || hba->clk_scaling.suspend_on_no_request))
1561 queue_work(hba->clk_scaling.workq,
1562 &hba->clk_scaling.suspend_work);
1563
1564 return ret;
1565 }
1566
ufshcd_devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)1567 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1568 struct devfreq_dev_status *stat)
1569 {
1570 struct ufs_hba *hba = dev_get_drvdata(dev);
1571 struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1572 unsigned long flags;
1573 ktime_t curr_t;
1574
1575 if (!ufshcd_is_clkscaling_supported(hba))
1576 return -EINVAL;
1577
1578 memset(stat, 0, sizeof(*stat));
1579
1580 spin_lock_irqsave(hba->host->host_lock, flags);
1581 curr_t = ktime_get();
1582 if (!scaling->window_start_t)
1583 goto start_window;
1584
1585 /*
1586 * If current frequency is 0, then the ondemand governor considers
1587 * there's no initial frequency set. And it always requests to set
1588 * to max. frequency.
1589 */
1590 if (hba->use_pm_opp) {
1591 stat->current_frequency = hba->clk_scaling.target_freq;
1592 } else {
1593 struct list_head *clk_list = &hba->clk_list_head;
1594 struct ufs_clk_info *clki;
1595
1596 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1597 stat->current_frequency = clki->curr_freq;
1598 }
1599
1600 if (scaling->is_busy_started)
1601 scaling->tot_busy_t += ktime_us_delta(curr_t,
1602 scaling->busy_start_t);
1603 stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1604 stat->busy_time = scaling->tot_busy_t;
1605 start_window:
1606 scaling->window_start_t = curr_t;
1607 scaling->tot_busy_t = 0;
1608
1609 if (scaling->active_reqs) {
1610 scaling->busy_start_t = curr_t;
1611 scaling->is_busy_started = true;
1612 } else {
1613 scaling->busy_start_t = 0;
1614 scaling->is_busy_started = false;
1615 }
1616 spin_unlock_irqrestore(hba->host->host_lock, flags);
1617 return 0;
1618 }
1619
ufshcd_devfreq_init(struct ufs_hba * hba)1620 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1621 {
1622 struct list_head *clk_list = &hba->clk_list_head;
1623 struct ufs_clk_info *clki;
1624 struct devfreq *devfreq;
1625 int ret;
1626
1627 /* Skip devfreq if we don't have any clocks in the list */
1628 if (list_empty(clk_list))
1629 return 0;
1630
1631 if (!hba->use_pm_opp) {
1632 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1633 dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1634 dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1635 }
1636
1637 ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1638 &hba->vps->ondemand_data);
1639 devfreq = devfreq_add_device(hba->dev,
1640 &hba->vps->devfreq_profile,
1641 DEVFREQ_GOV_SIMPLE_ONDEMAND,
1642 &hba->vps->ondemand_data);
1643 if (IS_ERR(devfreq)) {
1644 ret = PTR_ERR(devfreq);
1645 dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1646
1647 if (!hba->use_pm_opp) {
1648 dev_pm_opp_remove(hba->dev, clki->min_freq);
1649 dev_pm_opp_remove(hba->dev, clki->max_freq);
1650 }
1651 return ret;
1652 }
1653
1654 hba->devfreq = devfreq;
1655
1656 return 0;
1657 }
1658
ufshcd_devfreq_remove(struct ufs_hba * hba)1659 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1660 {
1661 struct list_head *clk_list = &hba->clk_list_head;
1662
1663 if (!hba->devfreq)
1664 return;
1665
1666 devfreq_remove_device(hba->devfreq);
1667 hba->devfreq = NULL;
1668
1669 if (!hba->use_pm_opp) {
1670 struct ufs_clk_info *clki;
1671
1672 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1673 dev_pm_opp_remove(hba->dev, clki->min_freq);
1674 dev_pm_opp_remove(hba->dev, clki->max_freq);
1675 }
1676 }
1677
ufshcd_suspend_clkscaling(struct ufs_hba * hba)1678 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1679 {
1680 unsigned long flags;
1681 bool suspend = false;
1682
1683 cancel_work_sync(&hba->clk_scaling.suspend_work);
1684 cancel_work_sync(&hba->clk_scaling.resume_work);
1685
1686 spin_lock_irqsave(hba->host->host_lock, flags);
1687 if (!hba->clk_scaling.is_suspended) {
1688 suspend = true;
1689 hba->clk_scaling.is_suspended = true;
1690 hba->clk_scaling.window_start_t = 0;
1691 }
1692 spin_unlock_irqrestore(hba->host->host_lock, flags);
1693
1694 if (suspend)
1695 devfreq_suspend_device(hba->devfreq);
1696 }
1697
ufshcd_resume_clkscaling(struct ufs_hba * hba)1698 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1699 {
1700 unsigned long flags;
1701 bool resume = false;
1702
1703 spin_lock_irqsave(hba->host->host_lock, flags);
1704 if (hba->clk_scaling.is_suspended) {
1705 resume = true;
1706 hba->clk_scaling.is_suspended = false;
1707 }
1708 spin_unlock_irqrestore(hba->host->host_lock, flags);
1709
1710 if (resume)
1711 devfreq_resume_device(hba->devfreq);
1712 }
1713
ufshcd_clkscale_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1714 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1715 struct device_attribute *attr, char *buf)
1716 {
1717 struct ufs_hba *hba = dev_get_drvdata(dev);
1718
1719 return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1720 }
1721
ufshcd_clkscale_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1722 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1723 struct device_attribute *attr, const char *buf, size_t count)
1724 {
1725 struct ufs_hba *hba = dev_get_drvdata(dev);
1726 u32 value;
1727 int err = 0;
1728
1729 if (kstrtou32(buf, 0, &value))
1730 return -EINVAL;
1731
1732 down(&hba->host_sem);
1733 if (!ufshcd_is_user_access_allowed(hba)) {
1734 err = -EBUSY;
1735 goto out;
1736 }
1737
1738 value = !!value;
1739 if (value == hba->clk_scaling.is_enabled)
1740 goto out;
1741
1742 ufshcd_rpm_get_sync(hba);
1743 ufshcd_hold(hba);
1744
1745 hba->clk_scaling.is_enabled = value;
1746
1747 if (value) {
1748 ufshcd_resume_clkscaling(hba);
1749 } else {
1750 ufshcd_suspend_clkscaling(hba);
1751 err = ufshcd_devfreq_scale(hba, ULONG_MAX, true);
1752 if (err)
1753 dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1754 __func__, err);
1755 }
1756
1757 ufshcd_release(hba);
1758 ufshcd_rpm_put_sync(hba);
1759 out:
1760 up(&hba->host_sem);
1761 return err ? err : count;
1762 }
1763
ufshcd_init_clk_scaling_sysfs(struct ufs_hba * hba)1764 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1765 {
1766 hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1767 hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1768 sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1769 hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1770 hba->clk_scaling.enable_attr.attr.mode = 0644;
1771 if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1772 dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1773 }
1774
ufshcd_remove_clk_scaling_sysfs(struct ufs_hba * hba)1775 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1776 {
1777 if (hba->clk_scaling.enable_attr.attr.name)
1778 device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1779 }
1780
ufshcd_init_clk_scaling(struct ufs_hba * hba)1781 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1782 {
1783 if (!ufshcd_is_clkscaling_supported(hba))
1784 return;
1785
1786 if (!hba->clk_scaling.min_gear)
1787 hba->clk_scaling.min_gear = UFS_HS_G1;
1788
1789 INIT_WORK(&hba->clk_scaling.suspend_work,
1790 ufshcd_clk_scaling_suspend_work);
1791 INIT_WORK(&hba->clk_scaling.resume_work,
1792 ufshcd_clk_scaling_resume_work);
1793
1794 hba->clk_scaling.workq = alloc_ordered_workqueue(
1795 "ufs_clkscaling_%d", WQ_MEM_RECLAIM, hba->host->host_no);
1796
1797 hba->clk_scaling.is_initialized = true;
1798 }
1799
ufshcd_exit_clk_scaling(struct ufs_hba * hba)1800 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1801 {
1802 if (!hba->clk_scaling.is_initialized)
1803 return;
1804
1805 ufshcd_remove_clk_scaling_sysfs(hba);
1806 destroy_workqueue(hba->clk_scaling.workq);
1807 ufshcd_devfreq_remove(hba);
1808 hba->clk_scaling.is_initialized = false;
1809 }
1810
ufshcd_ungate_work(struct work_struct * work)1811 static void ufshcd_ungate_work(struct work_struct *work)
1812 {
1813 int ret;
1814 unsigned long flags;
1815 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1816 clk_gating.ungate_work);
1817
1818 cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1819
1820 spin_lock_irqsave(hba->host->host_lock, flags);
1821 if (hba->clk_gating.state == CLKS_ON) {
1822 spin_unlock_irqrestore(hba->host->host_lock, flags);
1823 return;
1824 }
1825
1826 spin_unlock_irqrestore(hba->host->host_lock, flags);
1827 ufshcd_hba_vreg_set_hpm(hba);
1828 ufshcd_setup_clocks(hba, true);
1829
1830 ufshcd_enable_irq(hba);
1831
1832 /* Exit from hibern8 */
1833 if (ufshcd_can_hibern8_during_gating(hba)) {
1834 /* Prevent gating in this path */
1835 hba->clk_gating.is_suspended = true;
1836 if (ufshcd_is_link_hibern8(hba)) {
1837 ret = ufshcd_uic_hibern8_exit(hba);
1838 if (ret)
1839 dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1840 __func__, ret);
1841 else
1842 ufshcd_set_link_active(hba);
1843 }
1844 hba->clk_gating.is_suspended = false;
1845 }
1846 }
1847
1848 /**
1849 * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1850 * Also, exit from hibern8 mode and set the link as active.
1851 * @hba: per adapter instance
1852 */
ufshcd_hold(struct ufs_hba * hba)1853 void ufshcd_hold(struct ufs_hba *hba)
1854 {
1855 bool flush_result;
1856 unsigned long flags;
1857
1858 if (!ufshcd_is_clkgating_allowed(hba) ||
1859 !hba->clk_gating.is_initialized)
1860 return;
1861 spin_lock_irqsave(hba->host->host_lock, flags);
1862 hba->clk_gating.active_reqs++;
1863
1864 start:
1865 switch (hba->clk_gating.state) {
1866 case CLKS_ON:
1867 /*
1868 * Wait for the ungate work to complete if in progress.
1869 * Though the clocks may be in ON state, the link could
1870 * still be in hibner8 state if hibern8 is allowed
1871 * during clock gating.
1872 * Make sure we exit hibern8 state also in addition to
1873 * clocks being ON.
1874 */
1875 if (ufshcd_can_hibern8_during_gating(hba) &&
1876 ufshcd_is_link_hibern8(hba)) {
1877 spin_unlock_irqrestore(hba->host->host_lock, flags);
1878 flush_result = flush_work(&hba->clk_gating.ungate_work);
1879 if (hba->clk_gating.is_suspended && !flush_result)
1880 return;
1881 spin_lock_irqsave(hba->host->host_lock, flags);
1882 goto start;
1883 }
1884 break;
1885 case REQ_CLKS_OFF:
1886 if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1887 hba->clk_gating.state = CLKS_ON;
1888 trace_ufshcd_clk_gating(dev_name(hba->dev),
1889 hba->clk_gating.state);
1890 break;
1891 }
1892 /*
1893 * If we are here, it means gating work is either done or
1894 * currently running. Hence, fall through to cancel gating
1895 * work and to enable clocks.
1896 */
1897 fallthrough;
1898 case CLKS_OFF:
1899 hba->clk_gating.state = REQ_CLKS_ON;
1900 trace_ufshcd_clk_gating(dev_name(hba->dev),
1901 hba->clk_gating.state);
1902 queue_work(hba->clk_gating.clk_gating_workq,
1903 &hba->clk_gating.ungate_work);
1904 /*
1905 * fall through to check if we should wait for this
1906 * work to be done or not.
1907 */
1908 fallthrough;
1909 case REQ_CLKS_ON:
1910 spin_unlock_irqrestore(hba->host->host_lock, flags);
1911 flush_work(&hba->clk_gating.ungate_work);
1912 /* Make sure state is CLKS_ON before returning */
1913 spin_lock_irqsave(hba->host->host_lock, flags);
1914 goto start;
1915 default:
1916 dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1917 __func__, hba->clk_gating.state);
1918 break;
1919 }
1920 spin_unlock_irqrestore(hba->host->host_lock, flags);
1921 }
1922 EXPORT_SYMBOL_GPL(ufshcd_hold);
1923
ufshcd_gate_work(struct work_struct * work)1924 static void ufshcd_gate_work(struct work_struct *work)
1925 {
1926 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1927 clk_gating.gate_work.work);
1928 unsigned long flags;
1929 int ret;
1930
1931 spin_lock_irqsave(hba->host->host_lock, flags);
1932 /*
1933 * In case you are here to cancel this work the gating state
1934 * would be marked as REQ_CLKS_ON. In this case save time by
1935 * skipping the gating work and exit after changing the clock
1936 * state to CLKS_ON.
1937 */
1938 if (hba->clk_gating.is_suspended ||
1939 (hba->clk_gating.state != REQ_CLKS_OFF)) {
1940 hba->clk_gating.state = CLKS_ON;
1941 trace_ufshcd_clk_gating(dev_name(hba->dev),
1942 hba->clk_gating.state);
1943 goto rel_lock;
1944 }
1945
1946 if (ufshcd_is_ufs_dev_busy(hba) || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
1947 goto rel_lock;
1948
1949 spin_unlock_irqrestore(hba->host->host_lock, flags);
1950
1951 /* put the link into hibern8 mode before turning off clocks */
1952 if (ufshcd_can_hibern8_during_gating(hba)) {
1953 ret = ufshcd_uic_hibern8_enter(hba);
1954 if (ret) {
1955 hba->clk_gating.state = CLKS_ON;
1956 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1957 __func__, ret);
1958 trace_ufshcd_clk_gating(dev_name(hba->dev),
1959 hba->clk_gating.state);
1960 goto out;
1961 }
1962 ufshcd_set_link_hibern8(hba);
1963 }
1964
1965 ufshcd_disable_irq(hba);
1966
1967 ufshcd_setup_clocks(hba, false);
1968
1969 /* Put the host controller in low power mode if possible */
1970 ufshcd_hba_vreg_set_lpm(hba);
1971 /*
1972 * In case you are here to cancel this work the gating state
1973 * would be marked as REQ_CLKS_ON. In this case keep the state
1974 * as REQ_CLKS_ON which would anyway imply that clocks are off
1975 * and a request to turn them on is pending. By doing this way,
1976 * we keep the state machine in tact and this would ultimately
1977 * prevent from doing cancel work multiple times when there are
1978 * new requests arriving before the current cancel work is done.
1979 */
1980 spin_lock_irqsave(hba->host->host_lock, flags);
1981 if (hba->clk_gating.state == REQ_CLKS_OFF) {
1982 hba->clk_gating.state = CLKS_OFF;
1983 trace_ufshcd_clk_gating(dev_name(hba->dev),
1984 hba->clk_gating.state);
1985 }
1986 rel_lock:
1987 spin_unlock_irqrestore(hba->host->host_lock, flags);
1988 out:
1989 return;
1990 }
1991
1992 /* host lock must be held before calling this variant */
__ufshcd_release(struct ufs_hba * hba)1993 static void __ufshcd_release(struct ufs_hba *hba)
1994 {
1995 if (!ufshcd_is_clkgating_allowed(hba))
1996 return;
1997
1998 hba->clk_gating.active_reqs--;
1999
2000 if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
2001 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
2002 hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
2003 hba->active_uic_cmd || hba->uic_async_done ||
2004 hba->clk_gating.state == CLKS_OFF)
2005 return;
2006
2007 hba->clk_gating.state = REQ_CLKS_OFF;
2008 trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
2009 queue_delayed_work(hba->clk_gating.clk_gating_workq,
2010 &hba->clk_gating.gate_work,
2011 msecs_to_jiffies(hba->clk_gating.delay_ms));
2012 }
2013
ufshcd_release(struct ufs_hba * hba)2014 void ufshcd_release(struct ufs_hba *hba)
2015 {
2016 unsigned long flags;
2017
2018 spin_lock_irqsave(hba->host->host_lock, flags);
2019 __ufshcd_release(hba);
2020 spin_unlock_irqrestore(hba->host->host_lock, flags);
2021 }
2022 EXPORT_SYMBOL_GPL(ufshcd_release);
2023
ufshcd_clkgate_delay_show(struct device * dev,struct device_attribute * attr,char * buf)2024 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
2025 struct device_attribute *attr, char *buf)
2026 {
2027 struct ufs_hba *hba = dev_get_drvdata(dev);
2028
2029 return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
2030 }
2031
ufshcd_clkgate_delay_set(struct device * dev,unsigned long value)2032 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
2033 {
2034 struct ufs_hba *hba = dev_get_drvdata(dev);
2035 unsigned long flags;
2036
2037 spin_lock_irqsave(hba->host->host_lock, flags);
2038 hba->clk_gating.delay_ms = value;
2039 spin_unlock_irqrestore(hba->host->host_lock, flags);
2040 }
2041 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
2042
ufshcd_clkgate_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2043 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
2044 struct device_attribute *attr, const char *buf, size_t count)
2045 {
2046 unsigned long value;
2047
2048 if (kstrtoul(buf, 0, &value))
2049 return -EINVAL;
2050
2051 ufshcd_clkgate_delay_set(dev, value);
2052 return count;
2053 }
2054
ufshcd_clkgate_enable_show(struct device * dev,struct device_attribute * attr,char * buf)2055 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
2056 struct device_attribute *attr, char *buf)
2057 {
2058 struct ufs_hba *hba = dev_get_drvdata(dev);
2059
2060 return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
2061 }
2062
ufshcd_clkgate_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2063 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
2064 struct device_attribute *attr, const char *buf, size_t count)
2065 {
2066 struct ufs_hba *hba = dev_get_drvdata(dev);
2067 unsigned long flags;
2068 u32 value;
2069
2070 if (kstrtou32(buf, 0, &value))
2071 return -EINVAL;
2072
2073 value = !!value;
2074
2075 spin_lock_irqsave(hba->host->host_lock, flags);
2076 if (value == hba->clk_gating.is_enabled)
2077 goto out;
2078
2079 if (value)
2080 __ufshcd_release(hba);
2081 else
2082 hba->clk_gating.active_reqs++;
2083
2084 hba->clk_gating.is_enabled = value;
2085 out:
2086 spin_unlock_irqrestore(hba->host->host_lock, flags);
2087 return count;
2088 }
2089
ufshcd_init_clk_gating_sysfs(struct ufs_hba * hba)2090 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2091 {
2092 hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2093 hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2094 sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2095 hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2096 hba->clk_gating.delay_attr.attr.mode = 0644;
2097 if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2098 dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2099
2100 hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2101 hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2102 sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2103 hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2104 hba->clk_gating.enable_attr.attr.mode = 0644;
2105 if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2106 dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2107 }
2108
ufshcd_remove_clk_gating_sysfs(struct ufs_hba * hba)2109 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2110 {
2111 if (hba->clk_gating.delay_attr.attr.name)
2112 device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2113 if (hba->clk_gating.enable_attr.attr.name)
2114 device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2115 }
2116
ufshcd_init_clk_gating(struct ufs_hba * hba)2117 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2118 {
2119 if (!ufshcd_is_clkgating_allowed(hba))
2120 return;
2121
2122 hba->clk_gating.state = CLKS_ON;
2123
2124 hba->clk_gating.delay_ms = 150;
2125 INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2126 INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2127
2128 hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(
2129 "ufs_clk_gating_%d", WQ_MEM_RECLAIM | WQ_HIGHPRI,
2130 hba->host->host_no);
2131
2132 ufshcd_init_clk_gating_sysfs(hba);
2133
2134 hba->clk_gating.is_enabled = true;
2135 hba->clk_gating.is_initialized = true;
2136 }
2137
ufshcd_exit_clk_gating(struct ufs_hba * hba)2138 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2139 {
2140 if (!hba->clk_gating.is_initialized)
2141 return;
2142
2143 ufshcd_remove_clk_gating_sysfs(hba);
2144
2145 /* Ungate the clock if necessary. */
2146 ufshcd_hold(hba);
2147 hba->clk_gating.is_initialized = false;
2148 ufshcd_release(hba);
2149
2150 destroy_workqueue(hba->clk_gating.clk_gating_workq);
2151 }
2152
ufshcd_clk_scaling_start_busy(struct ufs_hba * hba)2153 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2154 {
2155 bool queue_resume_work = false;
2156 ktime_t curr_t = ktime_get();
2157 unsigned long flags;
2158
2159 if (!ufshcd_is_clkscaling_supported(hba))
2160 return;
2161
2162 spin_lock_irqsave(hba->host->host_lock, flags);
2163 if (!hba->clk_scaling.active_reqs++)
2164 queue_resume_work = true;
2165
2166 if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2167 spin_unlock_irqrestore(hba->host->host_lock, flags);
2168 return;
2169 }
2170
2171 if (queue_resume_work)
2172 queue_work(hba->clk_scaling.workq,
2173 &hba->clk_scaling.resume_work);
2174
2175 if (!hba->clk_scaling.window_start_t) {
2176 hba->clk_scaling.window_start_t = curr_t;
2177 hba->clk_scaling.tot_busy_t = 0;
2178 hba->clk_scaling.is_busy_started = false;
2179 }
2180
2181 if (!hba->clk_scaling.is_busy_started) {
2182 hba->clk_scaling.busy_start_t = curr_t;
2183 hba->clk_scaling.is_busy_started = true;
2184 }
2185 spin_unlock_irqrestore(hba->host->host_lock, flags);
2186 }
2187
ufshcd_clk_scaling_update_busy(struct ufs_hba * hba)2188 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2189 {
2190 struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2191 unsigned long flags;
2192
2193 if (!ufshcd_is_clkscaling_supported(hba))
2194 return;
2195
2196 spin_lock_irqsave(hba->host->host_lock, flags);
2197 hba->clk_scaling.active_reqs--;
2198 if (!scaling->active_reqs && scaling->is_busy_started) {
2199 scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2200 scaling->busy_start_t));
2201 scaling->busy_start_t = 0;
2202 scaling->is_busy_started = false;
2203 }
2204 spin_unlock_irqrestore(hba->host->host_lock, flags);
2205 }
2206
ufshcd_monitor_opcode2dir(u8 opcode)2207 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2208 {
2209 if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2210 return READ;
2211 else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2212 return WRITE;
2213 else
2214 return -EINVAL;
2215 }
2216
ufshcd_should_inform_monitor(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2217 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2218 struct ufshcd_lrb *lrbp)
2219 {
2220 const struct ufs_hba_monitor *m = &hba->monitor;
2221
2222 return (m->enabled && lrbp && lrbp->cmd &&
2223 (!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2224 ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2225 }
2226
ufshcd_start_monitor(struct ufs_hba * hba,const struct ufshcd_lrb * lrbp)2227 static void ufshcd_start_monitor(struct ufs_hba *hba,
2228 const struct ufshcd_lrb *lrbp)
2229 {
2230 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2231 unsigned long flags;
2232
2233 spin_lock_irqsave(hba->host->host_lock, flags);
2234 if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2235 hba->monitor.busy_start_ts[dir] = ktime_get();
2236 spin_unlock_irqrestore(hba->host->host_lock, flags);
2237 }
2238
ufshcd_update_monitor(struct ufs_hba * hba,const struct ufshcd_lrb * lrbp)2239 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2240 {
2241 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2242 unsigned long flags;
2243
2244 spin_lock_irqsave(hba->host->host_lock, flags);
2245 if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2246 const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2247 struct ufs_hba_monitor *m = &hba->monitor;
2248 ktime_t now, inc, lat;
2249
2250 now = lrbp->compl_time_stamp;
2251 inc = ktime_sub(now, m->busy_start_ts[dir]);
2252 m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2253 m->nr_sec_rw[dir] += blk_rq_sectors(req);
2254
2255 /* Update latencies */
2256 m->nr_req[dir]++;
2257 lat = ktime_sub(now, lrbp->issue_time_stamp);
2258 m->lat_sum[dir] += lat;
2259 if (m->lat_max[dir] < lat || !m->lat_max[dir])
2260 m->lat_max[dir] = lat;
2261 if (m->lat_min[dir] > lat || !m->lat_min[dir])
2262 m->lat_min[dir] = lat;
2263
2264 m->nr_queued[dir]--;
2265 /* Push forward the busy start of monitor */
2266 m->busy_start_ts[dir] = now;
2267 }
2268 spin_unlock_irqrestore(hba->host->host_lock, flags);
2269 }
2270
2271 /**
2272 * ufshcd_send_command - Send SCSI or device management commands
2273 * @hba: per adapter instance
2274 * @task_tag: Task tag of the command
2275 * @hwq: pointer to hardware queue instance
2276 */
2277 static inline
ufshcd_send_command(struct ufs_hba * hba,unsigned int task_tag,struct ufs_hw_queue * hwq)2278 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2279 struct ufs_hw_queue *hwq)
2280 {
2281 struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2282 unsigned long flags;
2283
2284 lrbp->issue_time_stamp = ktime_get();
2285 lrbp->issue_time_stamp_local_clock = local_clock();
2286 lrbp->compl_time_stamp = ktime_set(0, 0);
2287 lrbp->compl_time_stamp_local_clock = 0;
2288 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2289 if (lrbp->cmd)
2290 ufshcd_clk_scaling_start_busy(hba);
2291 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2292 ufshcd_start_monitor(hba, lrbp);
2293
2294 if (hba->mcq_enabled) {
2295 int utrd_size = sizeof(struct utp_transfer_req_desc);
2296 struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2297 struct utp_transfer_req_desc *dest;
2298
2299 spin_lock(&hwq->sq_lock);
2300 dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2301 memcpy(dest, src, utrd_size);
2302 ufshcd_inc_sq_tail(hwq);
2303 spin_unlock(&hwq->sq_lock);
2304 } else {
2305 spin_lock_irqsave(&hba->outstanding_lock, flags);
2306 if (hba->vops && hba->vops->setup_xfer_req)
2307 hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2308 !!lrbp->cmd);
2309 __set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2310 ufshcd_writel(hba, 1 << lrbp->task_tag,
2311 REG_UTP_TRANSFER_REQ_DOOR_BELL);
2312 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2313 }
2314 }
2315
2316 /**
2317 * ufshcd_copy_sense_data - Copy sense data in case of check condition
2318 * @lrbp: pointer to local reference block
2319 */
ufshcd_copy_sense_data(struct ufshcd_lrb * lrbp)2320 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2321 {
2322 u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2323 u16 resp_len;
2324 int len;
2325
2326 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2327 if (sense_buffer && resp_len) {
2328 int len_to_copy;
2329
2330 len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2331 len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2332
2333 memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2334 len_to_copy);
2335 }
2336 }
2337
2338 /**
2339 * ufshcd_copy_query_response() - Copy the Query Response and the data
2340 * descriptor
2341 * @hba: per adapter instance
2342 * @lrbp: pointer to local reference block
2343 *
2344 * Return: 0 upon success; < 0 upon failure.
2345 */
2346 static
ufshcd_copy_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2347 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2348 {
2349 struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2350
2351 memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2352
2353 /* Get the descriptor */
2354 if (hba->dev_cmd.query.descriptor &&
2355 lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2356 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2357 GENERAL_UPIU_REQUEST_SIZE;
2358 u16 resp_len;
2359 u16 buf_len;
2360
2361 /* data segment length */
2362 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2363 .data_segment_length);
2364 buf_len = be16_to_cpu(
2365 hba->dev_cmd.query.request.upiu_req.length);
2366 if (likely(buf_len >= resp_len)) {
2367 memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2368 } else {
2369 dev_warn(hba->dev,
2370 "%s: rsp size %d is bigger than buffer size %d",
2371 __func__, resp_len, buf_len);
2372 return -EINVAL;
2373 }
2374 }
2375
2376 return 0;
2377 }
2378
2379 /**
2380 * ufshcd_hba_capabilities - Read controller capabilities
2381 * @hba: per adapter instance
2382 *
2383 * Return: 0 on success, negative on error.
2384 */
ufshcd_hba_capabilities(struct ufs_hba * hba)2385 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2386 {
2387 int err;
2388
2389 hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2390
2391 /* nutrs and nutmrs are 0 based values */
2392 hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS_SDB) + 1;
2393 hba->nutmrs =
2394 ((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2395 hba->reserved_slot = hba->nutrs - 1;
2396
2397 hba->nortt = FIELD_GET(MASK_NUMBER_OUTSTANDING_RTT, hba->capabilities) + 1;
2398
2399 /* Read crypto capabilities */
2400 err = ufshcd_hba_init_crypto_capabilities(hba);
2401 if (err) {
2402 dev_err(hba->dev, "crypto setup failed\n");
2403 return err;
2404 }
2405
2406 /*
2407 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and
2408 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which
2409 * means we can simply read values regardless of version.
2410 */
2411 hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2412 /*
2413 * 0h: legacy single doorbell support is available
2414 * 1h: indicate that legacy single doorbell support has been removed
2415 */
2416 if (!(hba->quirks & UFSHCD_QUIRK_BROKEN_LSDBS_CAP))
2417 hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities);
2418 else
2419 hba->lsdb_sup = true;
2420
2421 if (!hba->mcq_sup)
2422 return 0;
2423
2424 hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2425 hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2426 hba->mcq_capabilities);
2427
2428 return 0;
2429 }
2430
2431 /**
2432 * ufshcd_ready_for_uic_cmd - Check if controller is ready
2433 * to accept UIC commands
2434 * @hba: per adapter instance
2435 *
2436 * Return: true on success, else false.
2437 */
ufshcd_ready_for_uic_cmd(struct ufs_hba * hba)2438 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2439 {
2440 u32 val;
2441 int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2442 500, uic_cmd_timeout * 1000, false, hba,
2443 REG_CONTROLLER_STATUS);
2444 return ret == 0;
2445 }
2446
2447 /**
2448 * ufshcd_get_upmcrs - Get the power mode change request status
2449 * @hba: Pointer to adapter instance
2450 *
2451 * This function gets the UPMCRS field of HCS register
2452 *
2453 * Return: value of UPMCRS field.
2454 */
ufshcd_get_upmcrs(struct ufs_hba * hba)2455 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2456 {
2457 return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2458 }
2459
2460 /**
2461 * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2462 * @hba: per adapter instance
2463 * @uic_cmd: UIC command
2464 */
2465 static inline void
ufshcd_dispatch_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2466 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2467 {
2468 lockdep_assert_held(&hba->uic_cmd_mutex);
2469
2470 WARN_ON(hba->active_uic_cmd);
2471
2472 hba->active_uic_cmd = uic_cmd;
2473
2474 /* Write Args */
2475 ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2476 ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2477 ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2478
2479 ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2480
2481 /* Write UIC Cmd */
2482 ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2483 REG_UIC_COMMAND);
2484 }
2485
2486 /**
2487 * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2488 * @hba: per adapter instance
2489 * @uic_cmd: UIC command
2490 *
2491 * Return: 0 only if success.
2492 */
2493 static int
ufshcd_wait_for_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2494 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2495 {
2496 int ret;
2497 unsigned long flags;
2498
2499 lockdep_assert_held(&hba->uic_cmd_mutex);
2500
2501 if (wait_for_completion_timeout(&uic_cmd->done,
2502 msecs_to_jiffies(uic_cmd_timeout))) {
2503 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2504 } else {
2505 ret = -ETIMEDOUT;
2506 dev_err(hba->dev,
2507 "uic cmd 0x%x with arg3 0x%x completion timeout\n",
2508 uic_cmd->command, uic_cmd->argument3);
2509
2510 if (!uic_cmd->cmd_active) {
2511 dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2512 __func__);
2513 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2514 }
2515 }
2516
2517 spin_lock_irqsave(hba->host->host_lock, flags);
2518 hba->active_uic_cmd = NULL;
2519 spin_unlock_irqrestore(hba->host->host_lock, flags);
2520
2521 return ret;
2522 }
2523
2524 /**
2525 * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2526 * @hba: per adapter instance
2527 * @uic_cmd: UIC command
2528 *
2529 * Return: 0 only if success.
2530 */
2531 static int
__ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2532 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2533 {
2534 lockdep_assert_held(&hba->uic_cmd_mutex);
2535
2536 if (!ufshcd_ready_for_uic_cmd(hba)) {
2537 dev_err(hba->dev,
2538 "Controller not ready to accept UIC commands\n");
2539 return -EIO;
2540 }
2541
2542 init_completion(&uic_cmd->done);
2543
2544 uic_cmd->cmd_active = 1;
2545 ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2546
2547 return 0;
2548 }
2549
2550 /**
2551 * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2552 * @hba: per adapter instance
2553 * @uic_cmd: UIC command
2554 *
2555 * Return: 0 only if success.
2556 */
ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2557 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2558 {
2559 int ret;
2560
2561 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2562 return 0;
2563
2564 ufshcd_hold(hba);
2565 mutex_lock(&hba->uic_cmd_mutex);
2566 ufshcd_add_delay_before_dme_cmd(hba);
2567
2568 ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
2569 if (!ret)
2570 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2571
2572 mutex_unlock(&hba->uic_cmd_mutex);
2573
2574 ufshcd_release(hba);
2575 return ret;
2576 }
2577
2578 /**
2579 * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2580 * @hba: per-adapter instance
2581 * @lrbp: pointer to local reference block
2582 * @sg_entries: The number of sg lists actually used
2583 * @sg_list: Pointer to SG list
2584 */
ufshcd_sgl_to_prdt(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int sg_entries,struct scatterlist * sg_list)2585 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2586 struct scatterlist *sg_list)
2587 {
2588 struct ufshcd_sg_entry *prd;
2589 struct scatterlist *sg;
2590 int i;
2591
2592 if (sg_entries) {
2593
2594 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2595 lrbp->utr_descriptor_ptr->prd_table_length =
2596 cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2597 else
2598 lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2599
2600 prd = lrbp->ucd_prdt_ptr;
2601
2602 for_each_sg(sg_list, sg, sg_entries, i) {
2603 const unsigned int len = sg_dma_len(sg);
2604
2605 /*
2606 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2607 * based value that indicates the length, in bytes, of
2608 * the data block. A maximum of length of 256KB may
2609 * exist for any entry. Bits 1:0 of this field shall be
2610 * 11b to indicate Dword granularity. A value of '3'
2611 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2612 */
2613 WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2614 prd->size = cpu_to_le32(len - 1);
2615 prd->addr = cpu_to_le64(sg->dma_address);
2616 prd->reserved = 0;
2617 prd = (void *)prd + ufshcd_sg_entry_size(hba);
2618 }
2619 } else {
2620 lrbp->utr_descriptor_ptr->prd_table_length = 0;
2621 }
2622 }
2623
2624 /**
2625 * ufshcd_map_sg - Map scatter-gather list to prdt
2626 * @hba: per adapter instance
2627 * @lrbp: pointer to local reference block
2628 *
2629 * Return: 0 in case of success, non-zero value in case of failure.
2630 */
ufshcd_map_sg(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2631 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2632 {
2633 struct scsi_cmnd *cmd = lrbp->cmd;
2634 int sg_segments = scsi_dma_map(cmd);
2635
2636 if (sg_segments < 0)
2637 return sg_segments;
2638
2639 ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2640
2641 return ufshcd_crypto_fill_prdt(hba, lrbp);
2642 }
2643
2644 /**
2645 * ufshcd_enable_intr - enable interrupts
2646 * @hba: per adapter instance
2647 * @intrs: interrupt bits
2648 */
ufshcd_enable_intr(struct ufs_hba * hba,u32 intrs)2649 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2650 {
2651 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2652
2653 set |= intrs;
2654 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2655 }
2656
2657 /**
2658 * ufshcd_disable_intr - disable interrupts
2659 * @hba: per adapter instance
2660 * @intrs: interrupt bits
2661 */
ufshcd_disable_intr(struct ufs_hba * hba,u32 intrs)2662 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2663 {
2664 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2665
2666 set &= ~intrs;
2667 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2668 }
2669
2670 /**
2671 * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2672 * descriptor according to request
2673 * @hba: per adapter instance
2674 * @lrbp: pointer to local reference block
2675 * @upiu_flags: flags required in the header
2676 * @cmd_dir: requests data direction
2677 * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2678 */
2679 static void
ufshcd_prepare_req_desc_hdr(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 * upiu_flags,enum dma_data_direction cmd_dir,int ehs_length)2680 ufshcd_prepare_req_desc_hdr(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2681 u8 *upiu_flags, enum dma_data_direction cmd_dir,
2682 int ehs_length)
2683 {
2684 struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2685 struct request_desc_header *h = &req_desc->header;
2686 enum utp_data_direction data_direction;
2687
2688 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2689
2690 *h = (typeof(*h)){ };
2691
2692 if (cmd_dir == DMA_FROM_DEVICE) {
2693 data_direction = UTP_DEVICE_TO_HOST;
2694 *upiu_flags = UPIU_CMD_FLAGS_READ;
2695 } else if (cmd_dir == DMA_TO_DEVICE) {
2696 data_direction = UTP_HOST_TO_DEVICE;
2697 *upiu_flags = UPIU_CMD_FLAGS_WRITE;
2698 } else {
2699 data_direction = UTP_NO_DATA_TRANSFER;
2700 *upiu_flags = UPIU_CMD_FLAGS_NONE;
2701 }
2702
2703 h->command_type = lrbp->command_type;
2704 h->data_direction = data_direction;
2705 h->ehs_length = ehs_length;
2706
2707 if (lrbp->intr_cmd)
2708 h->interrupt = 1;
2709
2710 /* Prepare crypto related dwords */
2711 ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2712
2713 /*
2714 * assigning invalid value for command status. Controller
2715 * updates OCS on command completion, with the command
2716 * status
2717 */
2718 h->ocs = OCS_INVALID_COMMAND_STATUS;
2719
2720 req_desc->prd_table_length = 0;
2721 }
2722
2723 /**
2724 * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2725 * for scsi commands
2726 * @lrbp: local reference block pointer
2727 * @upiu_flags: flags
2728 */
2729 static
ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb * lrbp,u8 upiu_flags)2730 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2731 {
2732 struct scsi_cmnd *cmd = lrbp->cmd;
2733 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2734 unsigned short cdb_len;
2735
2736 ucd_req_ptr->header = (struct utp_upiu_header){
2737 .transaction_code = UPIU_TRANSACTION_COMMAND,
2738 .flags = upiu_flags,
2739 .lun = lrbp->lun,
2740 .task_tag = lrbp->task_tag,
2741 .command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2742 };
2743
2744 WARN_ON_ONCE(ucd_req_ptr->header.task_tag != lrbp->task_tag);
2745
2746 ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2747
2748 cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2749 memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2750
2751 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2752 }
2753
2754 /**
2755 * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2756 * @hba: UFS hba
2757 * @lrbp: local reference block pointer
2758 * @upiu_flags: flags
2759 */
ufshcd_prepare_utp_query_req_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 upiu_flags)2760 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2761 struct ufshcd_lrb *lrbp, u8 upiu_flags)
2762 {
2763 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2764 struct ufs_query *query = &hba->dev_cmd.query;
2765 u16 len = be16_to_cpu(query->request.upiu_req.length);
2766
2767 /* Query request header */
2768 ucd_req_ptr->header = (struct utp_upiu_header){
2769 .transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2770 .flags = upiu_flags,
2771 .lun = lrbp->lun,
2772 .task_tag = lrbp->task_tag,
2773 .query_function = query->request.query_func,
2774 /* Data segment length only need for WRITE_DESC */
2775 .data_segment_length =
2776 query->request.upiu_req.opcode ==
2777 UPIU_QUERY_OPCODE_WRITE_DESC ?
2778 cpu_to_be16(len) :
2779 0,
2780 };
2781
2782 /* Copy the Query Request buffer as is */
2783 memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2784 QUERY_OSF_SIZE);
2785
2786 /* Copy the Descriptor */
2787 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2788 memcpy(ucd_req_ptr + 1, query->descriptor, len);
2789
2790 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2791 }
2792
ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb * lrbp)2793 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2794 {
2795 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2796
2797 memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2798
2799 ucd_req_ptr->header = (struct utp_upiu_header){
2800 .transaction_code = UPIU_TRANSACTION_NOP_OUT,
2801 .task_tag = lrbp->task_tag,
2802 };
2803
2804 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2805 }
2806
2807 /**
2808 * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2809 * for Device Management Purposes
2810 * @hba: per adapter instance
2811 * @lrbp: pointer to local reference block
2812 *
2813 * Return: 0 upon success; < 0 upon failure.
2814 */
ufshcd_compose_devman_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2815 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2816 struct ufshcd_lrb *lrbp)
2817 {
2818 u8 upiu_flags;
2819 int ret = 0;
2820
2821 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
2822
2823 if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2824 ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2825 else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2826 ufshcd_prepare_utp_nop_upiu(lrbp);
2827 else
2828 ret = -EINVAL;
2829
2830 return ret;
2831 }
2832
2833 /**
2834 * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2835 * for SCSI Purposes
2836 * @hba: per adapter instance
2837 * @lrbp: pointer to local reference block
2838 */
ufshcd_comp_scsi_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2839 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2840 {
2841 struct request *rq = scsi_cmd_to_rq(lrbp->cmd);
2842 unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
2843 u8 upiu_flags;
2844
2845 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2846 if (ioprio_class == IOPRIO_CLASS_RT)
2847 upiu_flags |= UPIU_CMD_FLAGS_CP;
2848 ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2849 }
2850
__ufshcd_setup_cmd(struct ufshcd_lrb * lrbp,struct scsi_cmnd * cmd,u8 lun,int tag)2851 static void __ufshcd_setup_cmd(struct ufshcd_lrb *lrbp, struct scsi_cmnd *cmd, u8 lun, int tag)
2852 {
2853 memset(lrbp->ucd_req_ptr, 0, sizeof(*lrbp->ucd_req_ptr));
2854
2855 lrbp->cmd = cmd;
2856 lrbp->task_tag = tag;
2857 lrbp->lun = lun;
2858 ufshcd_prepare_lrbp_crypto(cmd ? scsi_cmd_to_rq(cmd) : NULL, lrbp);
2859 }
2860
ufshcd_setup_scsi_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,struct scsi_cmnd * cmd,u8 lun,int tag)2861 static void ufshcd_setup_scsi_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2862 struct scsi_cmnd *cmd, u8 lun, int tag)
2863 {
2864 __ufshcd_setup_cmd(lrbp, cmd, lun, tag);
2865 lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2866 lrbp->req_abort_skip = false;
2867
2868 ufshcd_comp_scsi_upiu(hba, lrbp);
2869 }
2870
2871 /**
2872 * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2873 * @upiu_wlun_id: UPIU W-LUN id
2874 *
2875 * Return: SCSI W-LUN id.
2876 */
ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)2877 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2878 {
2879 return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2880 }
2881
is_device_wlun(struct scsi_device * sdev)2882 static inline bool is_device_wlun(struct scsi_device *sdev)
2883 {
2884 return sdev->lun ==
2885 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2886 }
2887
2888 /*
2889 * Associate the UFS controller queue with the default and poll HCTX types.
2890 * Initialize the mq_map[] arrays.
2891 */
ufshcd_map_queues(struct Scsi_Host * shost)2892 static void ufshcd_map_queues(struct Scsi_Host *shost)
2893 {
2894 struct ufs_hba *hba = shost_priv(shost);
2895 int i, queue_offset = 0;
2896
2897 if (!is_mcq_supported(hba)) {
2898 hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2899 hba->nr_queues[HCTX_TYPE_READ] = 0;
2900 hba->nr_queues[HCTX_TYPE_POLL] = 1;
2901 hba->nr_hw_queues = 1;
2902 }
2903
2904 for (i = 0; i < shost->nr_maps; i++) {
2905 struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2906
2907 map->nr_queues = hba->nr_queues[i];
2908 if (!map->nr_queues)
2909 continue;
2910 map->queue_offset = queue_offset;
2911 if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2912 map->queue_offset = 0;
2913
2914 blk_mq_map_queues(map);
2915 queue_offset += map->nr_queues;
2916 }
2917 }
2918
ufshcd_init_lrb(struct ufs_hba * hba,struct ufshcd_lrb * lrb,int i)2919 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2920 {
2921 struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2922 i * ufshcd_get_ucd_size(hba);
2923 struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2924 dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2925 i * ufshcd_get_ucd_size(hba);
2926 u16 response_offset = le16_to_cpu(utrdlp[i].response_upiu_offset);
2927 u16 prdt_offset = le16_to_cpu(utrdlp[i].prd_table_offset);
2928
2929 lrb->utr_descriptor_ptr = utrdlp + i;
2930 lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2931 i * sizeof(struct utp_transfer_req_desc);
2932 lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2933 lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2934 lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2935 lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2936 lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2937 lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2938 }
2939
2940 /**
2941 * ufshcd_queuecommand - main entry point for SCSI requests
2942 * @host: SCSI host pointer
2943 * @cmd: command from SCSI Midlayer
2944 *
2945 * Return: 0 for success, non-zero in case of failure.
2946 */
ufshcd_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * cmd)2947 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2948 {
2949 struct ufs_hba *hba = shost_priv(host);
2950 int tag = scsi_cmd_to_rq(cmd)->tag;
2951 struct ufshcd_lrb *lrbp;
2952 int err = 0;
2953 struct ufs_hw_queue *hwq = NULL;
2954
2955 switch (hba->ufshcd_state) {
2956 case UFSHCD_STATE_OPERATIONAL:
2957 break;
2958 case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2959 /*
2960 * SCSI error handler can call ->queuecommand() while UFS error
2961 * handler is in progress. Error interrupts could change the
2962 * state from UFSHCD_STATE_RESET to
2963 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2964 * being issued in that case.
2965 */
2966 if (ufshcd_eh_in_progress(hba)) {
2967 err = SCSI_MLQUEUE_HOST_BUSY;
2968 goto out;
2969 }
2970 break;
2971 case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2972 /*
2973 * pm_runtime_get_sync() is used at error handling preparation
2974 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2975 * PM ops, it can never be finished if we let SCSI layer keep
2976 * retrying it, which gets err handler stuck forever. Neither
2977 * can we let the scsi cmd pass through, because UFS is in bad
2978 * state, the scsi cmd may eventually time out, which will get
2979 * err handler blocked for too long. So, just fail the scsi cmd
2980 * sent from PM ops, err handler can recover PM error anyways.
2981 */
2982 if (hba->pm_op_in_progress) {
2983 hba->force_reset = true;
2984 set_host_byte(cmd, DID_BAD_TARGET);
2985 scsi_done(cmd);
2986 goto out;
2987 }
2988 fallthrough;
2989 case UFSHCD_STATE_RESET:
2990 err = SCSI_MLQUEUE_HOST_BUSY;
2991 goto out;
2992 case UFSHCD_STATE_ERROR:
2993 set_host_byte(cmd, DID_ERROR);
2994 scsi_done(cmd);
2995 goto out;
2996 }
2997
2998 hba->req_abort_count = 0;
2999
3000 ufshcd_hold(hba);
3001
3002 lrbp = &hba->lrb[tag];
3003
3004 ufshcd_setup_scsi_cmd(hba, lrbp, cmd, ufshcd_scsi_to_upiu_lun(cmd->device->lun), tag);
3005
3006 err = ufshcd_map_sg(hba, lrbp);
3007 if (err) {
3008 ufshcd_release(hba);
3009 goto out;
3010 }
3011
3012 if (hba->mcq_enabled)
3013 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
3014
3015 ufshcd_send_command(hba, tag, hwq);
3016
3017 out:
3018 if (ufs_trigger_eh(hba)) {
3019 unsigned long flags;
3020
3021 spin_lock_irqsave(hba->host->host_lock, flags);
3022 ufshcd_schedule_eh_work(hba);
3023 spin_unlock_irqrestore(hba->host->host_lock, flags);
3024 }
3025
3026 return err;
3027 }
3028
ufshcd_setup_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,u8 lun,int tag)3029 static void ufshcd_setup_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3030 enum dev_cmd_type cmd_type, u8 lun, int tag)
3031 {
3032 __ufshcd_setup_cmd(lrbp, NULL, lun, tag);
3033 lrbp->intr_cmd = true; /* No interrupt aggregation */
3034 hba->dev_cmd.type = cmd_type;
3035 }
3036
ufshcd_compose_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,int tag)3037 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
3038 struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
3039 {
3040 ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
3041
3042 return ufshcd_compose_devman_upiu(hba, lrbp);
3043 }
3044
3045 /*
3046 * Check with the block layer if the command is inflight
3047 * @cmd: command to check.
3048 *
3049 * Return: true if command is inflight; false if not.
3050 */
ufshcd_cmd_inflight(struct scsi_cmnd * cmd)3051 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
3052 {
3053 return cmd && blk_mq_rq_state(scsi_cmd_to_rq(cmd)) == MQ_RQ_IN_FLIGHT;
3054 }
3055
3056 /*
3057 * Clear the pending command in the controller and wait until
3058 * the controller confirms that the command has been cleared.
3059 * @hba: per adapter instance
3060 * @task_tag: The tag number of the command to be cleared.
3061 */
ufshcd_clear_cmd(struct ufs_hba * hba,u32 task_tag)3062 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
3063 {
3064 u32 mask;
3065 int err;
3066
3067 if (hba->mcq_enabled) {
3068 /*
3069 * MCQ mode. Clean up the MCQ resources similar to
3070 * what the ufshcd_utrl_clear() does for SDB mode.
3071 */
3072 err = ufshcd_mcq_sq_cleanup(hba, task_tag);
3073 if (err) {
3074 dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
3075 __func__, task_tag, err);
3076 return err;
3077 }
3078 return 0;
3079 }
3080
3081 mask = 1U << task_tag;
3082
3083 /* clear outstanding transaction before retry */
3084 ufshcd_utrl_clear(hba, mask);
3085
3086 /*
3087 * wait for h/w to clear corresponding bit in door-bell.
3088 * max. wait is 1 sec.
3089 */
3090 return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3091 mask, ~mask, 1000, 1000);
3092 }
3093
3094 /**
3095 * ufshcd_dev_cmd_completion() - handles device management command responses
3096 * @hba: per adapter instance
3097 * @lrbp: pointer to local reference block
3098 *
3099 * Return: 0 upon success; < 0 upon failure.
3100 */
3101 static int
ufshcd_dev_cmd_completion(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)3102 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3103 {
3104 enum upiu_response_transaction resp;
3105 int err = 0;
3106
3107 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3108 resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3109
3110 switch (resp) {
3111 case UPIU_TRANSACTION_NOP_IN:
3112 if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3113 err = -EINVAL;
3114 dev_err(hba->dev, "%s: unexpected response %x\n",
3115 __func__, resp);
3116 }
3117 break;
3118 case UPIU_TRANSACTION_QUERY_RSP: {
3119 u8 response = lrbp->ucd_rsp_ptr->header.response;
3120
3121 if (response == 0)
3122 err = ufshcd_copy_query_response(hba, lrbp);
3123 break;
3124 }
3125 case UPIU_TRANSACTION_REJECT_UPIU:
3126 /* TODO: handle Reject UPIU Response */
3127 err = -EPERM;
3128 dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3129 __func__);
3130 break;
3131 case UPIU_TRANSACTION_RESPONSE:
3132 if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3133 err = -EINVAL;
3134 dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3135 }
3136 break;
3137 default:
3138 err = -EINVAL;
3139 dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3140 __func__, resp);
3141 break;
3142 }
3143
3144 return err;
3145 }
3146
ufshcd_wait_for_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int max_timeout)3147 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3148 struct ufshcd_lrb *lrbp, int max_timeout)
3149 {
3150 unsigned long time_left = msecs_to_jiffies(max_timeout);
3151 unsigned long flags;
3152 bool pending;
3153 int err;
3154
3155 retry:
3156 time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3157 time_left);
3158
3159 if (likely(time_left)) {
3160 /*
3161 * The completion handler called complete() and the caller of
3162 * this function still owns the @lrbp tag so the code below does
3163 * not trigger any race conditions.
3164 */
3165 hba->dev_cmd.complete = NULL;
3166 err = ufshcd_get_tr_ocs(lrbp, NULL);
3167 if (!err)
3168 err = ufshcd_dev_cmd_completion(hba, lrbp);
3169 } else {
3170 err = -ETIMEDOUT;
3171 dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3172 __func__, lrbp->task_tag);
3173
3174 /* MCQ mode */
3175 if (hba->mcq_enabled) {
3176 /* successfully cleared the command, retry if needed */
3177 if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0)
3178 err = -EAGAIN;
3179 hba->dev_cmd.complete = NULL;
3180 return err;
3181 }
3182
3183 /* SDB mode */
3184 if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3185 /* successfully cleared the command, retry if needed */
3186 err = -EAGAIN;
3187 /*
3188 * Since clearing the command succeeded we also need to
3189 * clear the task tag bit from the outstanding_reqs
3190 * variable.
3191 */
3192 spin_lock_irqsave(&hba->outstanding_lock, flags);
3193 pending = test_bit(lrbp->task_tag,
3194 &hba->outstanding_reqs);
3195 if (pending) {
3196 hba->dev_cmd.complete = NULL;
3197 __clear_bit(lrbp->task_tag,
3198 &hba->outstanding_reqs);
3199 }
3200 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3201
3202 if (!pending) {
3203 /*
3204 * The completion handler ran while we tried to
3205 * clear the command.
3206 */
3207 time_left = 1;
3208 goto retry;
3209 }
3210 } else {
3211 dev_err(hba->dev, "%s: failed to clear tag %d\n",
3212 __func__, lrbp->task_tag);
3213
3214 spin_lock_irqsave(&hba->outstanding_lock, flags);
3215 pending = test_bit(lrbp->task_tag,
3216 &hba->outstanding_reqs);
3217 if (pending)
3218 hba->dev_cmd.complete = NULL;
3219 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3220
3221 if (!pending) {
3222 /*
3223 * The completion handler ran while we tried to
3224 * clear the command.
3225 */
3226 time_left = 1;
3227 goto retry;
3228 }
3229 }
3230 }
3231
3232 return err;
3233 }
3234
ufshcd_dev_man_lock(struct ufs_hba * hba)3235 static void ufshcd_dev_man_lock(struct ufs_hba *hba)
3236 {
3237 ufshcd_hold(hba);
3238 mutex_lock(&hba->dev_cmd.lock);
3239 down_read(&hba->clk_scaling_lock);
3240 }
3241
ufshcd_dev_man_unlock(struct ufs_hba * hba)3242 static void ufshcd_dev_man_unlock(struct ufs_hba *hba)
3243 {
3244 up_read(&hba->clk_scaling_lock);
3245 mutex_unlock(&hba->dev_cmd.lock);
3246 ufshcd_release(hba);
3247 }
3248
ufshcd_issue_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,const u32 tag,int timeout)3249 static int ufshcd_issue_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3250 const u32 tag, int timeout)
3251 {
3252 DECLARE_COMPLETION_ONSTACK(wait);
3253 int err;
3254
3255 hba->dev_cmd.complete = &wait;
3256
3257 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3258
3259 ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3260 err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3261
3262 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3263 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3264
3265 return err;
3266 }
3267
3268 /**
3269 * ufshcd_exec_dev_cmd - API for sending device management requests
3270 * @hba: UFS hba
3271 * @cmd_type: specifies the type (NOP, Query...)
3272 * @timeout: timeout in milliseconds
3273 *
3274 * Return: 0 upon success; < 0 upon failure.
3275 *
3276 * NOTE: Since there is only one available tag for device management commands,
3277 * it is expected you hold the hba->dev_cmd.lock mutex.
3278 */
ufshcd_exec_dev_cmd(struct ufs_hba * hba,enum dev_cmd_type cmd_type,int timeout)3279 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3280 enum dev_cmd_type cmd_type, int timeout)
3281 {
3282 const u32 tag = hba->reserved_slot;
3283 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
3284 int err;
3285
3286 /* Protects use of hba->reserved_slot. */
3287 lockdep_assert_held(&hba->dev_cmd.lock);
3288
3289 err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3290 if (unlikely(err))
3291 return err;
3292
3293 return ufshcd_issue_dev_cmd(hba, lrbp, tag, timeout);
3294 }
3295
3296 /**
3297 * ufshcd_init_query() - init the query response and request parameters
3298 * @hba: per-adapter instance
3299 * @request: address of the request pointer to be initialized
3300 * @response: address of the response pointer to be initialized
3301 * @opcode: operation to perform
3302 * @idn: flag idn to access
3303 * @index: LU number to access
3304 * @selector: query/flag/descriptor further identification
3305 */
ufshcd_init_query(struct ufs_hba * hba,struct ufs_query_req ** request,struct ufs_query_res ** response,enum query_opcode opcode,u8 idn,u8 index,u8 selector)3306 static inline void ufshcd_init_query(struct ufs_hba *hba,
3307 struct ufs_query_req **request, struct ufs_query_res **response,
3308 enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3309 {
3310 *request = &hba->dev_cmd.query.request;
3311 *response = &hba->dev_cmd.query.response;
3312 memset(*request, 0, sizeof(struct ufs_query_req));
3313 memset(*response, 0, sizeof(struct ufs_query_res));
3314 (*request)->upiu_req.opcode = opcode;
3315 (*request)->upiu_req.idn = idn;
3316 (*request)->upiu_req.index = index;
3317 (*request)->upiu_req.selector = selector;
3318 }
3319
ufshcd_query_flag_retry(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3320 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3321 enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3322 {
3323 int ret;
3324 int retries;
3325
3326 for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3327 ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3328 if (ret)
3329 dev_dbg(hba->dev,
3330 "%s: failed with error %d, retries %d\n",
3331 __func__, ret, retries);
3332 else
3333 break;
3334 }
3335
3336 if (ret)
3337 dev_err(hba->dev,
3338 "%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3339 __func__, opcode, idn, ret, retries);
3340 return ret;
3341 }
3342
3343 /**
3344 * ufshcd_query_flag() - API function for sending flag query requests
3345 * @hba: per-adapter instance
3346 * @opcode: flag query to perform
3347 * @idn: flag idn to access
3348 * @index: flag index to access
3349 * @flag_res: the flag value after the query request completes
3350 *
3351 * Return: 0 for success, non-zero in case of failure.
3352 */
ufshcd_query_flag(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3353 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3354 enum flag_idn idn, u8 index, bool *flag_res)
3355 {
3356 struct ufs_query_req *request = NULL;
3357 struct ufs_query_res *response = NULL;
3358 int err, selector = 0;
3359 int timeout = QUERY_REQ_TIMEOUT;
3360
3361 BUG_ON(!hba);
3362
3363 ufshcd_dev_man_lock(hba);
3364
3365 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3366 selector);
3367
3368 switch (opcode) {
3369 case UPIU_QUERY_OPCODE_SET_FLAG:
3370 case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3371 case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3372 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3373 break;
3374 case UPIU_QUERY_OPCODE_READ_FLAG:
3375 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3376 if (!flag_res) {
3377 /* No dummy reads */
3378 dev_err(hba->dev, "%s: Invalid argument for read request\n",
3379 __func__);
3380 err = -EINVAL;
3381 goto out_unlock;
3382 }
3383 break;
3384 default:
3385 dev_err(hba->dev,
3386 "%s: Expected query flag opcode but got = %d\n",
3387 __func__, opcode);
3388 err = -EINVAL;
3389 goto out_unlock;
3390 }
3391
3392 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3393
3394 if (err) {
3395 dev_err(hba->dev,
3396 "%s: Sending flag query for idn %d failed, err = %d\n",
3397 __func__, idn, err);
3398 goto out_unlock;
3399 }
3400
3401 if (flag_res)
3402 *flag_res = (be32_to_cpu(response->upiu_res.value) &
3403 MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3404
3405 out_unlock:
3406 ufshcd_dev_man_unlock(hba);
3407 return err;
3408 }
3409
3410 /**
3411 * ufshcd_query_attr - API function for sending attribute requests
3412 * @hba: per-adapter instance
3413 * @opcode: attribute opcode
3414 * @idn: attribute idn to access
3415 * @index: index field
3416 * @selector: selector field
3417 * @attr_val: the attribute value after the query request completes
3418 *
3419 * Return: 0 for success, non-zero in case of failure.
3420 */
ufshcd_query_attr(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3421 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3422 enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3423 {
3424 struct ufs_query_req *request = NULL;
3425 struct ufs_query_res *response = NULL;
3426 int err;
3427
3428 BUG_ON(!hba);
3429
3430 if (!attr_val) {
3431 dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3432 __func__, opcode);
3433 return -EINVAL;
3434 }
3435
3436 ufshcd_dev_man_lock(hba);
3437
3438 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3439 selector);
3440
3441 switch (opcode) {
3442 case UPIU_QUERY_OPCODE_WRITE_ATTR:
3443 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3444 request->upiu_req.value = cpu_to_be32(*attr_val);
3445 break;
3446 case UPIU_QUERY_OPCODE_READ_ATTR:
3447 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3448 break;
3449 default:
3450 dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3451 __func__, opcode);
3452 err = -EINVAL;
3453 goto out_unlock;
3454 }
3455
3456 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3457
3458 if (err) {
3459 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3460 __func__, opcode, idn, index, err);
3461 goto out_unlock;
3462 }
3463
3464 *attr_val = be32_to_cpu(response->upiu_res.value);
3465
3466 out_unlock:
3467 ufshcd_dev_man_unlock(hba);
3468 return err;
3469 }
3470
3471 /**
3472 * ufshcd_query_attr_retry() - API function for sending query
3473 * attribute with retries
3474 * @hba: per-adapter instance
3475 * @opcode: attribute opcode
3476 * @idn: attribute idn to access
3477 * @index: index field
3478 * @selector: selector field
3479 * @attr_val: the attribute value after the query request
3480 * completes
3481 *
3482 * Return: 0 for success, non-zero in case of failure.
3483 */
ufshcd_query_attr_retry(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3484 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3485 enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3486 u32 *attr_val)
3487 {
3488 int ret = 0;
3489 u32 retries;
3490
3491 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3492 ret = ufshcd_query_attr(hba, opcode, idn, index,
3493 selector, attr_val);
3494 if (ret)
3495 dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3496 __func__, ret, retries);
3497 else
3498 break;
3499 }
3500
3501 if (ret)
3502 dev_err(hba->dev,
3503 "%s: query attribute, idn %d, failed with error %d after %d retries\n",
3504 __func__, idn, ret, QUERY_REQ_RETRIES);
3505 return ret;
3506 }
3507
__ufshcd_query_descriptor(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3508 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3509 enum query_opcode opcode, enum desc_idn idn, u8 index,
3510 u8 selector, u8 *desc_buf, int *buf_len)
3511 {
3512 struct ufs_query_req *request = NULL;
3513 struct ufs_query_res *response = NULL;
3514 int err;
3515
3516 BUG_ON(!hba);
3517
3518 if (!desc_buf) {
3519 dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3520 __func__, opcode);
3521 return -EINVAL;
3522 }
3523
3524 if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3525 dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3526 __func__, *buf_len);
3527 return -EINVAL;
3528 }
3529
3530 ufshcd_dev_man_lock(hba);
3531
3532 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3533 selector);
3534 hba->dev_cmd.query.descriptor = desc_buf;
3535 request->upiu_req.length = cpu_to_be16(*buf_len);
3536
3537 switch (opcode) {
3538 case UPIU_QUERY_OPCODE_WRITE_DESC:
3539 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3540 break;
3541 case UPIU_QUERY_OPCODE_READ_DESC:
3542 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3543 break;
3544 default:
3545 dev_err(hba->dev,
3546 "%s: Expected query descriptor opcode but got = 0x%.2x\n",
3547 __func__, opcode);
3548 err = -EINVAL;
3549 goto out_unlock;
3550 }
3551
3552 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3553
3554 if (err) {
3555 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3556 __func__, opcode, idn, index, err);
3557 goto out_unlock;
3558 }
3559
3560 *buf_len = be16_to_cpu(response->upiu_res.length);
3561
3562 out_unlock:
3563 hba->dev_cmd.query.descriptor = NULL;
3564 ufshcd_dev_man_unlock(hba);
3565 return err;
3566 }
3567
3568 /**
3569 * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3570 * @hba: per-adapter instance
3571 * @opcode: attribute opcode
3572 * @idn: attribute idn to access
3573 * @index: index field
3574 * @selector: selector field
3575 * @desc_buf: the buffer that contains the descriptor
3576 * @buf_len: length parameter passed to the device
3577 *
3578 * The buf_len parameter will contain, on return, the length parameter
3579 * received on the response.
3580 *
3581 * Return: 0 for success, non-zero in case of failure.
3582 */
ufshcd_query_descriptor_retry(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3583 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3584 enum query_opcode opcode,
3585 enum desc_idn idn, u8 index,
3586 u8 selector,
3587 u8 *desc_buf, int *buf_len)
3588 {
3589 int err;
3590 int retries;
3591
3592 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3593 err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3594 selector, desc_buf, buf_len);
3595 if (!err || err == -EINVAL)
3596 break;
3597 }
3598
3599 return err;
3600 }
3601
3602 /**
3603 * ufshcd_read_desc_param - read the specified descriptor parameter
3604 * @hba: Pointer to adapter instance
3605 * @desc_id: descriptor idn value
3606 * @desc_index: descriptor index
3607 * @param_offset: offset of the parameter to read
3608 * @param_read_buf: pointer to buffer where parameter would be read
3609 * @param_size: sizeof(param_read_buf)
3610 *
3611 * Return: 0 in case of success, non-zero otherwise.
3612 */
ufshcd_read_desc_param(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,u8 param_offset,u8 * param_read_buf,u8 param_size)3613 int ufshcd_read_desc_param(struct ufs_hba *hba,
3614 enum desc_idn desc_id,
3615 int desc_index,
3616 u8 param_offset,
3617 u8 *param_read_buf,
3618 u8 param_size)
3619 {
3620 int ret;
3621 u8 *desc_buf;
3622 int buff_len = QUERY_DESC_MAX_SIZE;
3623 bool is_kmalloc = true;
3624
3625 /* Safety check */
3626 if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3627 return -EINVAL;
3628
3629 /* Check whether we need temp memory */
3630 if (param_offset != 0 || param_size < buff_len) {
3631 desc_buf = kzalloc(buff_len, GFP_KERNEL);
3632 if (!desc_buf)
3633 return -ENOMEM;
3634 } else {
3635 desc_buf = param_read_buf;
3636 is_kmalloc = false;
3637 }
3638
3639 /* Request for full descriptor */
3640 ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3641 desc_id, desc_index, 0,
3642 desc_buf, &buff_len);
3643 if (ret) {
3644 dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3645 __func__, desc_id, desc_index, param_offset, ret);
3646 goto out;
3647 }
3648
3649 /* Update descriptor length */
3650 buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3651
3652 if (param_offset >= buff_len) {
3653 dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3654 __func__, param_offset, desc_id, buff_len);
3655 ret = -EINVAL;
3656 goto out;
3657 }
3658
3659 /* Sanity check */
3660 if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3661 dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3662 __func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3663 ret = -EINVAL;
3664 goto out;
3665 }
3666
3667 if (is_kmalloc) {
3668 /* Make sure we don't copy more data than available */
3669 if (param_offset >= buff_len)
3670 ret = -EINVAL;
3671 else
3672 memcpy(param_read_buf, &desc_buf[param_offset],
3673 min_t(u32, param_size, buff_len - param_offset));
3674 }
3675 out:
3676 if (is_kmalloc)
3677 kfree(desc_buf);
3678 return ret;
3679 }
3680
3681 /**
3682 * struct uc_string_id - unicode string
3683 *
3684 * @len: size of this descriptor inclusive
3685 * @type: descriptor type
3686 * @uc: unicode string character
3687 */
3688 struct uc_string_id {
3689 u8 len;
3690 u8 type;
3691 wchar_t uc[];
3692 } __packed;
3693
3694 /* replace non-printable or non-ASCII characters with spaces */
ufshcd_remove_non_printable(u8 ch)3695 static inline char ufshcd_remove_non_printable(u8 ch)
3696 {
3697 return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3698 }
3699
3700 /**
3701 * ufshcd_read_string_desc - read string descriptor
3702 * @hba: pointer to adapter instance
3703 * @desc_index: descriptor index
3704 * @buf: pointer to buffer where descriptor would be read,
3705 * the caller should free the memory.
3706 * @ascii: if true convert from unicode to ascii characters
3707 * null terminated string.
3708 *
3709 * Return:
3710 * * string size on success.
3711 * * -ENOMEM: on allocation failure
3712 * * -EINVAL: on a wrong parameter
3713 */
ufshcd_read_string_desc(struct ufs_hba * hba,u8 desc_index,u8 ** buf,bool ascii)3714 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3715 u8 **buf, bool ascii)
3716 {
3717 struct uc_string_id *uc_str;
3718 u8 *str;
3719 int ret;
3720
3721 if (!buf)
3722 return -EINVAL;
3723
3724 uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3725 if (!uc_str)
3726 return -ENOMEM;
3727
3728 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3729 (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3730 if (ret < 0) {
3731 dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3732 QUERY_REQ_RETRIES, ret);
3733 str = NULL;
3734 goto out;
3735 }
3736
3737 if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3738 dev_dbg(hba->dev, "String Desc is of zero length\n");
3739 str = NULL;
3740 ret = 0;
3741 goto out;
3742 }
3743
3744 if (ascii) {
3745 ssize_t ascii_len;
3746 int i;
3747 /* remove header and divide by 2 to move from UTF16 to UTF8 */
3748 ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3749 str = kzalloc(ascii_len, GFP_KERNEL);
3750 if (!str) {
3751 ret = -ENOMEM;
3752 goto out;
3753 }
3754
3755 /*
3756 * the descriptor contains string in UTF16 format
3757 * we need to convert to utf-8 so it can be displayed
3758 */
3759 ret = utf16s_to_utf8s(uc_str->uc,
3760 uc_str->len - QUERY_DESC_HDR_SIZE,
3761 UTF16_BIG_ENDIAN, str, ascii_len - 1);
3762
3763 /* replace non-printable or non-ASCII characters with spaces */
3764 for (i = 0; i < ret; i++)
3765 str[i] = ufshcd_remove_non_printable(str[i]);
3766
3767 str[ret++] = '\0';
3768
3769 } else {
3770 str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3771 if (!str) {
3772 ret = -ENOMEM;
3773 goto out;
3774 }
3775 ret = uc_str->len;
3776 }
3777 out:
3778 *buf = str;
3779 kfree(uc_str);
3780 return ret;
3781 }
3782
3783 /**
3784 * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3785 * @hba: Pointer to adapter instance
3786 * @lun: lun id
3787 * @param_offset: offset of the parameter to read
3788 * @param_read_buf: pointer to buffer where parameter would be read
3789 * @param_size: sizeof(param_read_buf)
3790 *
3791 * Return: 0 in case of success, non-zero otherwise.
3792 */
ufshcd_read_unit_desc_param(struct ufs_hba * hba,int lun,enum unit_desc_param param_offset,u8 * param_read_buf,u32 param_size)3793 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3794 int lun,
3795 enum unit_desc_param param_offset,
3796 u8 *param_read_buf,
3797 u32 param_size)
3798 {
3799 /*
3800 * Unit descriptors are only available for general purpose LUs (LUN id
3801 * from 0 to 7) and RPMB Well known LU.
3802 */
3803 if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3804 return -EOPNOTSUPP;
3805
3806 return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3807 param_offset, param_read_buf, param_size);
3808 }
3809
ufshcd_get_ref_clk_gating_wait(struct ufs_hba * hba)3810 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3811 {
3812 int err = 0;
3813 u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3814
3815 if (hba->dev_info.wspecversion >= 0x300) {
3816 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3817 QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3818 &gating_wait);
3819 if (err)
3820 dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3821 err, gating_wait);
3822
3823 if (gating_wait == 0) {
3824 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3825 dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3826 gating_wait);
3827 }
3828
3829 hba->dev_info.clk_gating_wait_us = gating_wait;
3830 }
3831
3832 return err;
3833 }
3834
3835 /**
3836 * ufshcd_memory_alloc - allocate memory for host memory space data structures
3837 * @hba: per adapter instance
3838 *
3839 * 1. Allocate DMA memory for Command Descriptor array
3840 * Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3841 * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3842 * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3843 * (UTMRDL)
3844 * 4. Allocate memory for local reference block(lrb).
3845 *
3846 * Return: 0 for success, non-zero in case of failure.
3847 */
ufshcd_memory_alloc(struct ufs_hba * hba)3848 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3849 {
3850 size_t utmrdl_size, utrdl_size, ucdl_size;
3851
3852 /* Allocate memory for UTP command descriptors */
3853 ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3854 hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3855 ucdl_size,
3856 &hba->ucdl_dma_addr,
3857 GFP_KERNEL);
3858
3859 /*
3860 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3861 */
3862 if (!hba->ucdl_base_addr ||
3863 WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3864 dev_err(hba->dev,
3865 "Command Descriptor Memory allocation failed\n");
3866 goto out;
3867 }
3868
3869 /*
3870 * Allocate memory for UTP Transfer descriptors
3871 * UFSHCI requires 1KB alignment of UTRD
3872 */
3873 utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3874 hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3875 utrdl_size,
3876 &hba->utrdl_dma_addr,
3877 GFP_KERNEL);
3878 if (!hba->utrdl_base_addr ||
3879 WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3880 dev_err(hba->dev,
3881 "Transfer Descriptor Memory allocation failed\n");
3882 goto out;
3883 }
3884
3885 /*
3886 * Skip utmrdl allocation; it may have been
3887 * allocated during first pass and not released during
3888 * MCQ memory allocation.
3889 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3890 */
3891 if (hba->utmrdl_base_addr)
3892 goto skip_utmrdl;
3893 /*
3894 * Allocate memory for UTP Task Management descriptors
3895 * UFSHCI requires 1KB alignment of UTMRD
3896 */
3897 utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3898 hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3899 utmrdl_size,
3900 &hba->utmrdl_dma_addr,
3901 GFP_KERNEL);
3902 if (!hba->utmrdl_base_addr ||
3903 WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3904 dev_err(hba->dev,
3905 "Task Management Descriptor Memory allocation failed\n");
3906 goto out;
3907 }
3908
3909 skip_utmrdl:
3910 /* Allocate memory for local reference block */
3911 hba->lrb = devm_kcalloc(hba->dev,
3912 hba->nutrs, sizeof(struct ufshcd_lrb),
3913 GFP_KERNEL);
3914 if (!hba->lrb) {
3915 dev_err(hba->dev, "LRB Memory allocation failed\n");
3916 goto out;
3917 }
3918 return 0;
3919 out:
3920 return -ENOMEM;
3921 }
3922
3923 /**
3924 * ufshcd_host_memory_configure - configure local reference block with
3925 * memory offsets
3926 * @hba: per adapter instance
3927 *
3928 * Configure Host memory space
3929 * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3930 * address.
3931 * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3932 * and PRDT offset.
3933 * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3934 * into local reference block.
3935 */
ufshcd_host_memory_configure(struct ufs_hba * hba)3936 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3937 {
3938 struct utp_transfer_req_desc *utrdlp;
3939 dma_addr_t cmd_desc_dma_addr;
3940 dma_addr_t cmd_desc_element_addr;
3941 u16 response_offset;
3942 u16 prdt_offset;
3943 int cmd_desc_size;
3944 int i;
3945
3946 utrdlp = hba->utrdl_base_addr;
3947
3948 response_offset =
3949 offsetof(struct utp_transfer_cmd_desc, response_upiu);
3950 prdt_offset =
3951 offsetof(struct utp_transfer_cmd_desc, prd_table);
3952
3953 cmd_desc_size = ufshcd_get_ucd_size(hba);
3954 cmd_desc_dma_addr = hba->ucdl_dma_addr;
3955
3956 for (i = 0; i < hba->nutrs; i++) {
3957 /* Configure UTRD with command descriptor base address */
3958 cmd_desc_element_addr =
3959 (cmd_desc_dma_addr + (cmd_desc_size * i));
3960 utrdlp[i].command_desc_base_addr =
3961 cpu_to_le64(cmd_desc_element_addr);
3962
3963 /* Response upiu and prdt offset should be in double words */
3964 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3965 utrdlp[i].response_upiu_offset =
3966 cpu_to_le16(response_offset);
3967 utrdlp[i].prd_table_offset =
3968 cpu_to_le16(prdt_offset);
3969 utrdlp[i].response_upiu_length =
3970 cpu_to_le16(ALIGNED_UPIU_SIZE);
3971 } else {
3972 utrdlp[i].response_upiu_offset =
3973 cpu_to_le16(response_offset >> 2);
3974 utrdlp[i].prd_table_offset =
3975 cpu_to_le16(prdt_offset >> 2);
3976 utrdlp[i].response_upiu_length =
3977 cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3978 }
3979
3980 ufshcd_init_lrb(hba, &hba->lrb[i], i);
3981 }
3982 }
3983
3984 /**
3985 * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3986 * @hba: per adapter instance
3987 *
3988 * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3989 * in order to initialize the Unipro link startup procedure.
3990 * Once the Unipro links are up, the device connected to the controller
3991 * is detected.
3992 *
3993 * Return: 0 on success, non-zero value on failure.
3994 */
ufshcd_dme_link_startup(struct ufs_hba * hba)3995 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3996 {
3997 struct uic_command uic_cmd = {
3998 .command = UIC_CMD_DME_LINK_STARTUP,
3999 };
4000 int ret;
4001
4002 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4003 if (ret)
4004 dev_dbg(hba->dev,
4005 "dme-link-startup: error code %d\n", ret);
4006 return ret;
4007 }
4008 /**
4009 * ufshcd_dme_reset - UIC command for DME_RESET
4010 * @hba: per adapter instance
4011 *
4012 * DME_RESET command is issued in order to reset UniPro stack.
4013 * This function now deals with cold reset.
4014 *
4015 * Return: 0 on success, non-zero value on failure.
4016 */
ufshcd_dme_reset(struct ufs_hba * hba)4017 static int ufshcd_dme_reset(struct ufs_hba *hba)
4018 {
4019 struct uic_command uic_cmd = {
4020 .command = UIC_CMD_DME_RESET,
4021 };
4022 int ret;
4023
4024 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4025 if (ret)
4026 dev_err(hba->dev,
4027 "dme-reset: error code %d\n", ret);
4028
4029 return ret;
4030 }
4031
ufshcd_dme_configure_adapt(struct ufs_hba * hba,int agreed_gear,int adapt_val)4032 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
4033 int agreed_gear,
4034 int adapt_val)
4035 {
4036 int ret;
4037
4038 if (agreed_gear < UFS_HS_G4)
4039 adapt_val = PA_NO_ADAPT;
4040
4041 ret = ufshcd_dme_set(hba,
4042 UIC_ARG_MIB(PA_TXHSADAPTTYPE),
4043 adapt_val);
4044 return ret;
4045 }
4046 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
4047
4048 /**
4049 * ufshcd_dme_enable - UIC command for DME_ENABLE
4050 * @hba: per adapter instance
4051 *
4052 * DME_ENABLE command is issued in order to enable UniPro stack.
4053 *
4054 * Return: 0 on success, non-zero value on failure.
4055 */
ufshcd_dme_enable(struct ufs_hba * hba)4056 static int ufshcd_dme_enable(struct ufs_hba *hba)
4057 {
4058 struct uic_command uic_cmd = {
4059 .command = UIC_CMD_DME_ENABLE,
4060 };
4061 int ret;
4062
4063 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4064 if (ret)
4065 dev_err(hba->dev,
4066 "dme-enable: error code %d\n", ret);
4067
4068 return ret;
4069 }
4070
ufshcd_add_delay_before_dme_cmd(struct ufs_hba * hba)4071 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
4072 {
4073 #define MIN_DELAY_BEFORE_DME_CMDS_US 1000
4074 unsigned long min_sleep_time_us;
4075
4076 if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
4077 return;
4078
4079 /*
4080 * last_dme_cmd_tstamp will be 0 only for 1st call to
4081 * this function
4082 */
4083 if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
4084 min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
4085 } else {
4086 unsigned long delta =
4087 (unsigned long) ktime_to_us(
4088 ktime_sub(ktime_get(),
4089 hba->last_dme_cmd_tstamp));
4090
4091 if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4092 min_sleep_time_us =
4093 MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4094 else
4095 min_sleep_time_us = 0; /* no more delay required */
4096 }
4097
4098 if (min_sleep_time_us > 0) {
4099 /* allow sleep for extra 50us if needed */
4100 usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4101 }
4102
4103 /* update the last_dme_cmd_tstamp */
4104 hba->last_dme_cmd_tstamp = ktime_get();
4105 }
4106
4107 /**
4108 * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4109 * @hba: per adapter instance
4110 * @attr_sel: uic command argument1
4111 * @attr_set: attribute set type as uic command argument2
4112 * @mib_val: setting value as uic command argument3
4113 * @peer: indicate whether peer or local
4114 *
4115 * Return: 0 on success, non-zero value on failure.
4116 */
ufshcd_dme_set_attr(struct ufs_hba * hba,u32 attr_sel,u8 attr_set,u32 mib_val,u8 peer)4117 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4118 u8 attr_set, u32 mib_val, u8 peer)
4119 {
4120 struct uic_command uic_cmd = {
4121 .command = peer ? UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET,
4122 .argument1 = attr_sel,
4123 .argument2 = UIC_ARG_ATTR_TYPE(attr_set),
4124 .argument3 = mib_val,
4125 };
4126 static const char *const action[] = {
4127 "dme-set",
4128 "dme-peer-set"
4129 };
4130 const char *set = action[!!peer];
4131 int ret;
4132 int retries = UFS_UIC_COMMAND_RETRIES;
4133
4134 do {
4135 /* for peer attributes we retry upon failure */
4136 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4137 if (ret)
4138 dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4139 set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4140 } while (ret && peer && --retries);
4141
4142 if (ret)
4143 dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4144 set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4145 UFS_UIC_COMMAND_RETRIES - retries);
4146
4147 return ret;
4148 }
4149 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4150
4151 /**
4152 * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4153 * @hba: per adapter instance
4154 * @attr_sel: uic command argument1
4155 * @mib_val: the value of the attribute as returned by the UIC command
4156 * @peer: indicate whether peer or local
4157 *
4158 * Return: 0 on success, non-zero value on failure.
4159 */
ufshcd_dme_get_attr(struct ufs_hba * hba,u32 attr_sel,u32 * mib_val,u8 peer)4160 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4161 u32 *mib_val, u8 peer)
4162 {
4163 struct uic_command uic_cmd = {
4164 .command = peer ? UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET,
4165 .argument1 = attr_sel,
4166 };
4167 static const char *const action[] = {
4168 "dme-get",
4169 "dme-peer-get"
4170 };
4171 const char *get = action[!!peer];
4172 int ret;
4173 int retries = UFS_UIC_COMMAND_RETRIES;
4174 struct ufs_pa_layer_attr orig_pwr_info;
4175 struct ufs_pa_layer_attr temp_pwr_info;
4176 bool pwr_mode_change = false;
4177
4178 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4179 orig_pwr_info = hba->pwr_info;
4180 temp_pwr_info = orig_pwr_info;
4181
4182 if (orig_pwr_info.pwr_tx == FAST_MODE ||
4183 orig_pwr_info.pwr_rx == FAST_MODE) {
4184 temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4185 temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4186 pwr_mode_change = true;
4187 } else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4188 orig_pwr_info.pwr_rx == SLOW_MODE) {
4189 temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4190 temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4191 pwr_mode_change = true;
4192 }
4193 if (pwr_mode_change) {
4194 ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4195 if (ret)
4196 goto out;
4197 }
4198 }
4199
4200 do {
4201 /* for peer attributes we retry upon failure */
4202 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4203 if (ret)
4204 dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4205 get, UIC_GET_ATTR_ID(attr_sel), ret);
4206 } while (ret && peer && --retries);
4207
4208 if (ret)
4209 dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4210 get, UIC_GET_ATTR_ID(attr_sel),
4211 UFS_UIC_COMMAND_RETRIES - retries);
4212
4213 if (mib_val && !ret)
4214 *mib_val = uic_cmd.argument3;
4215
4216 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4217 && pwr_mode_change)
4218 ufshcd_change_power_mode(hba, &orig_pwr_info);
4219 out:
4220 return ret;
4221 }
4222 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4223
4224 /**
4225 * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4226 * state) and waits for it to take effect.
4227 *
4228 * @hba: per adapter instance
4229 * @cmd: UIC command to execute
4230 *
4231 * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4232 * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4233 * and device UniPro link and hence it's final completion would be indicated by
4234 * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4235 * addition to normal UIC command completion Status (UCCS). This function only
4236 * returns after the relevant status bits indicate the completion.
4237 *
4238 * Return: 0 on success, non-zero value on failure.
4239 */
ufshcd_uic_pwr_ctrl(struct ufs_hba * hba,struct uic_command * cmd)4240 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4241 {
4242 DECLARE_COMPLETION_ONSTACK(uic_async_done);
4243 unsigned long flags;
4244 u8 status;
4245 int ret;
4246 bool reenable_intr = false;
4247
4248 mutex_lock(&hba->uic_cmd_mutex);
4249 ufshcd_add_delay_before_dme_cmd(hba);
4250
4251 spin_lock_irqsave(hba->host->host_lock, flags);
4252 if (ufshcd_is_link_broken(hba)) {
4253 ret = -ENOLINK;
4254 goto out_unlock;
4255 }
4256 hba->uic_async_done = &uic_async_done;
4257 if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4258 ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4259 /*
4260 * Make sure UIC command completion interrupt is disabled before
4261 * issuing UIC command.
4262 */
4263 ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
4264 reenable_intr = true;
4265 }
4266 spin_unlock_irqrestore(hba->host->host_lock, flags);
4267 ret = __ufshcd_send_uic_cmd(hba, cmd);
4268 if (ret) {
4269 dev_err(hba->dev,
4270 "pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4271 cmd->command, cmd->argument3, ret);
4272 goto out;
4273 }
4274
4275 if (!wait_for_completion_timeout(hba->uic_async_done,
4276 msecs_to_jiffies(uic_cmd_timeout))) {
4277 dev_err(hba->dev,
4278 "pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4279 cmd->command, cmd->argument3);
4280
4281 if (!cmd->cmd_active) {
4282 dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4283 __func__);
4284 goto check_upmcrs;
4285 }
4286
4287 ret = -ETIMEDOUT;
4288 goto out;
4289 }
4290
4291 check_upmcrs:
4292 status = ufshcd_get_upmcrs(hba);
4293 if (status != PWR_LOCAL) {
4294 dev_err(hba->dev,
4295 "pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4296 cmd->command, status);
4297 ret = (status != PWR_OK) ? status : -1;
4298 }
4299 out:
4300 if (ret) {
4301 ufshcd_print_host_state(hba);
4302 ufshcd_print_pwr_info(hba);
4303 ufshcd_print_evt_hist(hba);
4304 }
4305
4306 spin_lock_irqsave(hba->host->host_lock, flags);
4307 hba->active_uic_cmd = NULL;
4308 hba->uic_async_done = NULL;
4309 if (reenable_intr)
4310 ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4311 if (ret) {
4312 ufshcd_set_link_broken(hba);
4313 ufshcd_schedule_eh_work(hba);
4314 }
4315 out_unlock:
4316 spin_unlock_irqrestore(hba->host->host_lock, flags);
4317 mutex_unlock(&hba->uic_cmd_mutex);
4318
4319 return ret;
4320 }
4321
4322 /**
4323 * ufshcd_send_bsg_uic_cmd - Send UIC commands requested via BSG layer and retrieve the result
4324 * @hba: per adapter instance
4325 * @uic_cmd: UIC command
4326 *
4327 * Return: 0 only if success.
4328 */
ufshcd_send_bsg_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)4329 int ufshcd_send_bsg_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
4330 {
4331 int ret;
4332
4333 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
4334 return 0;
4335
4336 ufshcd_hold(hba);
4337
4338 if (uic_cmd->argument1 == UIC_ARG_MIB(PA_PWRMODE) &&
4339 uic_cmd->command == UIC_CMD_DME_SET) {
4340 ret = ufshcd_uic_pwr_ctrl(hba, uic_cmd);
4341 goto out;
4342 }
4343
4344 mutex_lock(&hba->uic_cmd_mutex);
4345 ufshcd_add_delay_before_dme_cmd(hba);
4346
4347 ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
4348 if (!ret)
4349 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
4350
4351 mutex_unlock(&hba->uic_cmd_mutex);
4352
4353 out:
4354 ufshcd_release(hba);
4355 return ret;
4356 }
4357
4358 /**
4359 * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4360 * using DME_SET primitives.
4361 * @hba: per adapter instance
4362 * @mode: powr mode value
4363 *
4364 * Return: 0 on success, non-zero value on failure.
4365 */
ufshcd_uic_change_pwr_mode(struct ufs_hba * hba,u8 mode)4366 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4367 {
4368 struct uic_command uic_cmd = {
4369 .command = UIC_CMD_DME_SET,
4370 .argument1 = UIC_ARG_MIB(PA_PWRMODE),
4371 .argument3 = mode,
4372 };
4373 int ret;
4374
4375 if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4376 ret = ufshcd_dme_set(hba,
4377 UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4378 if (ret) {
4379 dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4380 __func__, ret);
4381 goto out;
4382 }
4383 }
4384
4385 ufshcd_hold(hba);
4386 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4387 ufshcd_release(hba);
4388
4389 out:
4390 return ret;
4391 }
4392 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4393
ufshcd_link_recovery(struct ufs_hba * hba)4394 int ufshcd_link_recovery(struct ufs_hba *hba)
4395 {
4396 int ret;
4397 unsigned long flags;
4398
4399 spin_lock_irqsave(hba->host->host_lock, flags);
4400 hba->ufshcd_state = UFSHCD_STATE_RESET;
4401 ufshcd_set_eh_in_progress(hba);
4402 spin_unlock_irqrestore(hba->host->host_lock, flags);
4403
4404 /* Reset the attached device */
4405 ufshcd_device_reset(hba);
4406
4407 ret = ufshcd_host_reset_and_restore(hba);
4408
4409 spin_lock_irqsave(hba->host->host_lock, flags);
4410 if (ret)
4411 hba->ufshcd_state = UFSHCD_STATE_ERROR;
4412 ufshcd_clear_eh_in_progress(hba);
4413 spin_unlock_irqrestore(hba->host->host_lock, flags);
4414
4415 if (ret)
4416 dev_err(hba->dev, "%s: link recovery failed, err %d",
4417 __func__, ret);
4418
4419 return ret;
4420 }
4421 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4422
ufshcd_uic_hibern8_enter(struct ufs_hba * hba)4423 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4424 {
4425 struct uic_command uic_cmd = {
4426 .command = UIC_CMD_DME_HIBER_ENTER,
4427 };
4428 ktime_t start = ktime_get();
4429 int ret;
4430
4431 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4432
4433 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4434 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4435 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4436
4437 if (ret)
4438 dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4439 __func__, ret);
4440 else
4441 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4442 POST_CHANGE);
4443
4444 return ret;
4445 }
4446 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4447
ufshcd_uic_hibern8_exit(struct ufs_hba * hba)4448 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4449 {
4450 struct uic_command uic_cmd = {
4451 .command = UIC_CMD_DME_HIBER_EXIT,
4452 };
4453 int ret;
4454 ktime_t start = ktime_get();
4455
4456 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4457
4458 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4459 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4460 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4461
4462 if (ret) {
4463 dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4464 __func__, ret);
4465 } else {
4466 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4467 POST_CHANGE);
4468 hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4469 hba->ufs_stats.hibern8_exit_cnt++;
4470 }
4471
4472 return ret;
4473 }
4474 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4475
ufshcd_configure_auto_hibern8(struct ufs_hba * hba)4476 static void ufshcd_configure_auto_hibern8(struct ufs_hba *hba)
4477 {
4478 if (!ufshcd_is_auto_hibern8_supported(hba))
4479 return;
4480
4481 ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4482 }
4483
ufshcd_auto_hibern8_update(struct ufs_hba * hba,u32 ahit)4484 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4485 {
4486 const u32 cur_ahit = READ_ONCE(hba->ahit);
4487
4488 if (!ufshcd_is_auto_hibern8_supported(hba) || cur_ahit == ahit)
4489 return;
4490
4491 WRITE_ONCE(hba->ahit, ahit);
4492 if (!pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4493 ufshcd_rpm_get_sync(hba);
4494 ufshcd_hold(hba);
4495 ufshcd_configure_auto_hibern8(hba);
4496 ufshcd_release(hba);
4497 ufshcd_rpm_put_sync(hba);
4498 }
4499 }
4500 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4501
4502 /**
4503 * ufshcd_init_pwr_info - setting the POR (power on reset)
4504 * values in hba power info
4505 * @hba: per-adapter instance
4506 */
ufshcd_init_pwr_info(struct ufs_hba * hba)4507 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4508 {
4509 hba->pwr_info.gear_rx = UFS_PWM_G1;
4510 hba->pwr_info.gear_tx = UFS_PWM_G1;
4511 hba->pwr_info.lane_rx = UFS_LANE_1;
4512 hba->pwr_info.lane_tx = UFS_LANE_1;
4513 hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4514 hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4515 hba->pwr_info.hs_rate = 0;
4516 }
4517
4518 /**
4519 * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4520 * @hba: per-adapter instance
4521 *
4522 * Return: 0 upon success; < 0 upon failure.
4523 */
ufshcd_get_max_pwr_mode(struct ufs_hba * hba)4524 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4525 {
4526 struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4527
4528 if (hba->max_pwr_info.is_valid)
4529 return 0;
4530
4531 if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4532 pwr_info->pwr_tx = FASTAUTO_MODE;
4533 pwr_info->pwr_rx = FASTAUTO_MODE;
4534 } else {
4535 pwr_info->pwr_tx = FAST_MODE;
4536 pwr_info->pwr_rx = FAST_MODE;
4537 }
4538 pwr_info->hs_rate = PA_HS_MODE_B;
4539
4540 /* Get the connected lane count */
4541 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4542 &pwr_info->lane_rx);
4543 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4544 &pwr_info->lane_tx);
4545
4546 if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4547 dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4548 __func__,
4549 pwr_info->lane_rx,
4550 pwr_info->lane_tx);
4551 return -EINVAL;
4552 }
4553
4554 if (pwr_info->lane_rx != pwr_info->lane_tx) {
4555 dev_err(hba->dev, "%s: asymmetric connected lanes. rx=%d, tx=%d\n",
4556 __func__,
4557 pwr_info->lane_rx,
4558 pwr_info->lane_tx);
4559 return -EINVAL;
4560 }
4561
4562 /*
4563 * First, get the maximum gears of HS speed.
4564 * If a zero value, it means there is no HSGEAR capability.
4565 * Then, get the maximum gears of PWM speed.
4566 */
4567 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4568 if (!pwr_info->gear_rx) {
4569 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4570 &pwr_info->gear_rx);
4571 if (!pwr_info->gear_rx) {
4572 dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4573 __func__, pwr_info->gear_rx);
4574 return -EINVAL;
4575 }
4576 pwr_info->pwr_rx = SLOW_MODE;
4577 }
4578
4579 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4580 &pwr_info->gear_tx);
4581 if (!pwr_info->gear_tx) {
4582 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4583 &pwr_info->gear_tx);
4584 if (!pwr_info->gear_tx) {
4585 dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4586 __func__, pwr_info->gear_tx);
4587 return -EINVAL;
4588 }
4589 pwr_info->pwr_tx = SLOW_MODE;
4590 }
4591
4592 hba->max_pwr_info.is_valid = true;
4593 return 0;
4594 }
4595
ufshcd_change_power_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * pwr_mode)4596 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4597 struct ufs_pa_layer_attr *pwr_mode)
4598 {
4599 int ret;
4600
4601 /* if already configured to the requested pwr_mode */
4602 if (!hba->force_pmc &&
4603 pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4604 pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4605 pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4606 pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4607 pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4608 pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4609 pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4610 dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4611 return 0;
4612 }
4613
4614 /*
4615 * Configure attributes for power mode change with below.
4616 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4617 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4618 * - PA_HSSERIES
4619 */
4620 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4621 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4622 pwr_mode->lane_rx);
4623 if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4624 pwr_mode->pwr_rx == FAST_MODE)
4625 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4626 else
4627 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4628
4629 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4630 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4631 pwr_mode->lane_tx);
4632 if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4633 pwr_mode->pwr_tx == FAST_MODE)
4634 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4635 else
4636 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4637
4638 if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4639 pwr_mode->pwr_tx == FASTAUTO_MODE ||
4640 pwr_mode->pwr_rx == FAST_MODE ||
4641 pwr_mode->pwr_tx == FAST_MODE)
4642 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4643 pwr_mode->hs_rate);
4644
4645 if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4646 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4647 DL_FC0ProtectionTimeOutVal_Default);
4648 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4649 DL_TC0ReplayTimeOutVal_Default);
4650 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4651 DL_AFC0ReqTimeOutVal_Default);
4652 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4653 DL_FC1ProtectionTimeOutVal_Default);
4654 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4655 DL_TC1ReplayTimeOutVal_Default);
4656 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4657 DL_AFC1ReqTimeOutVal_Default);
4658
4659 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4660 DL_FC0ProtectionTimeOutVal_Default);
4661 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4662 DL_TC0ReplayTimeOutVal_Default);
4663 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4664 DL_AFC0ReqTimeOutVal_Default);
4665 }
4666
4667 ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4668 | pwr_mode->pwr_tx);
4669
4670 if (ret) {
4671 dev_err(hba->dev,
4672 "%s: power mode change failed %d\n", __func__, ret);
4673 } else {
4674 memcpy(&hba->pwr_info, pwr_mode,
4675 sizeof(struct ufs_pa_layer_attr));
4676 }
4677
4678 return ret;
4679 }
4680
4681 /**
4682 * ufshcd_config_pwr_mode - configure a new power mode
4683 * @hba: per-adapter instance
4684 * @desired_pwr_mode: desired power configuration
4685 *
4686 * Return: 0 upon success; < 0 upon failure.
4687 */
ufshcd_config_pwr_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * desired_pwr_mode)4688 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4689 struct ufs_pa_layer_attr *desired_pwr_mode)
4690 {
4691 struct ufs_pa_layer_attr final_params = { 0 };
4692 int ret;
4693
4694 ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4695 desired_pwr_mode, &final_params);
4696
4697 if (ret)
4698 memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4699
4700 ret = ufshcd_change_power_mode(hba, &final_params);
4701
4702 if (!ret)
4703 ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4704 &final_params);
4705
4706 return ret;
4707 }
4708 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4709
4710 /**
4711 * ufshcd_complete_dev_init() - checks device readiness
4712 * @hba: per-adapter instance
4713 *
4714 * Set fDeviceInit flag and poll until device toggles it.
4715 *
4716 * Return: 0 upon success; < 0 upon failure.
4717 */
ufshcd_complete_dev_init(struct ufs_hba * hba)4718 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4719 {
4720 int err;
4721 bool flag_res = true;
4722 ktime_t timeout;
4723
4724 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4725 QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4726 if (err) {
4727 dev_err(hba->dev,
4728 "%s: setting fDeviceInit flag failed with error %d\n",
4729 __func__, err);
4730 goto out;
4731 }
4732
4733 /* Poll fDeviceInit flag to be cleared */
4734 timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4735 do {
4736 err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4737 QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4738 if (!flag_res)
4739 break;
4740 usleep_range(500, 1000);
4741 } while (ktime_before(ktime_get(), timeout));
4742
4743 if (err) {
4744 dev_err(hba->dev,
4745 "%s: reading fDeviceInit flag failed with error %d\n",
4746 __func__, err);
4747 } else if (flag_res) {
4748 dev_err(hba->dev,
4749 "%s: fDeviceInit was not cleared by the device\n",
4750 __func__);
4751 err = -EBUSY;
4752 }
4753 out:
4754 return err;
4755 }
4756
4757 /**
4758 * ufshcd_make_hba_operational - Make UFS controller operational
4759 * @hba: per adapter instance
4760 *
4761 * To bring UFS host controller to operational state,
4762 * 1. Enable required interrupts
4763 * 2. Configure interrupt aggregation
4764 * 3. Program UTRL and UTMRL base address
4765 * 4. Configure run-stop-registers
4766 *
4767 * Return: 0 on success, non-zero value on failure.
4768 */
ufshcd_make_hba_operational(struct ufs_hba * hba)4769 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4770 {
4771 int err = 0;
4772 u32 reg;
4773
4774 /* Enable required interrupts */
4775 ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4776
4777 /* Configure interrupt aggregation */
4778 if (ufshcd_is_intr_aggr_allowed(hba))
4779 ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4780 else
4781 ufshcd_disable_intr_aggr(hba);
4782
4783 /* Configure UTRL and UTMRL base address registers */
4784 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4785 REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4786 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4787 REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4788 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4789 REG_UTP_TASK_REQ_LIST_BASE_L);
4790 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4791 REG_UTP_TASK_REQ_LIST_BASE_H);
4792
4793 /*
4794 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4795 */
4796 reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4797 if (!(ufshcd_get_lists_status(reg))) {
4798 ufshcd_enable_run_stop_reg(hba);
4799 } else {
4800 dev_err(hba->dev,
4801 "Host controller not ready to process requests");
4802 err = -EIO;
4803 }
4804
4805 return err;
4806 }
4807 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4808
4809 /**
4810 * ufshcd_hba_stop - Send controller to reset state
4811 * @hba: per adapter instance
4812 */
ufshcd_hba_stop(struct ufs_hba * hba)4813 void ufshcd_hba_stop(struct ufs_hba *hba)
4814 {
4815 unsigned long flags;
4816 int err;
4817
4818 /*
4819 * Obtain the host lock to prevent that the controller is disabled
4820 * while the UFS interrupt handler is active on another CPU.
4821 */
4822 spin_lock_irqsave(hba->host->host_lock, flags);
4823 ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE);
4824 spin_unlock_irqrestore(hba->host->host_lock, flags);
4825
4826 err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4827 CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4828 10, 1);
4829 if (err)
4830 dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4831 }
4832 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4833
4834 /**
4835 * ufshcd_hba_execute_hce - initialize the controller
4836 * @hba: per adapter instance
4837 *
4838 * The controller resets itself and controller firmware initialization
4839 * sequence kicks off. When controller is ready it will set
4840 * the Host Controller Enable bit to 1.
4841 *
4842 * Return: 0 on success, non-zero value on failure.
4843 */
ufshcd_hba_execute_hce(struct ufs_hba * hba)4844 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4845 {
4846 int retry;
4847
4848 for (retry = 3; retry > 0; retry--) {
4849 if (ufshcd_is_hba_active(hba))
4850 /* change controller state to "reset state" */
4851 ufshcd_hba_stop(hba);
4852
4853 /* UniPro link is disabled at this point */
4854 ufshcd_set_link_off(hba);
4855
4856 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4857
4858 /* start controller initialization sequence */
4859 ufshcd_hba_start(hba);
4860
4861 /*
4862 * To initialize a UFS host controller HCE bit must be set to 1.
4863 * During initialization the HCE bit value changes from 1->0->1.
4864 * When the host controller completes initialization sequence
4865 * it sets the value of HCE bit to 1. The same HCE bit is read back
4866 * to check if the controller has completed initialization sequence.
4867 * So without this delay the value HCE = 1, set in the previous
4868 * instruction might be read back.
4869 * This delay can be changed based on the controller.
4870 */
4871 ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4872
4873 /* wait for the host controller to complete initialization */
4874 if (!ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, CONTROLLER_ENABLE,
4875 CONTROLLER_ENABLE, 1000, 50))
4876 break;
4877
4878 dev_err(hba->dev, "Enabling the controller failed\n");
4879 }
4880
4881 if (!retry)
4882 return -EIO;
4883
4884 /* enable UIC related interrupts */
4885 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4886
4887 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4888
4889 return 0;
4890 }
4891
ufshcd_hba_enable(struct ufs_hba * hba)4892 int ufshcd_hba_enable(struct ufs_hba *hba)
4893 {
4894 int ret;
4895
4896 if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4897 ufshcd_set_link_off(hba);
4898 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4899
4900 /* enable UIC related interrupts */
4901 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4902 ret = ufshcd_dme_reset(hba);
4903 if (ret) {
4904 dev_err(hba->dev, "DME_RESET failed\n");
4905 return ret;
4906 }
4907
4908 ret = ufshcd_dme_enable(hba);
4909 if (ret) {
4910 dev_err(hba->dev, "Enabling DME failed\n");
4911 return ret;
4912 }
4913
4914 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4915 } else {
4916 ret = ufshcd_hba_execute_hce(hba);
4917 }
4918
4919 return ret;
4920 }
4921 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4922
ufshcd_disable_tx_lcc(struct ufs_hba * hba,bool peer)4923 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4924 {
4925 int tx_lanes = 0, i, err = 0;
4926
4927 if (!peer)
4928 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4929 &tx_lanes);
4930 else
4931 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4932 &tx_lanes);
4933 for (i = 0; i < tx_lanes; i++) {
4934 if (!peer)
4935 err = ufshcd_dme_set(hba,
4936 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4937 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4938 0);
4939 else
4940 err = ufshcd_dme_peer_set(hba,
4941 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4942 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4943 0);
4944 if (err) {
4945 dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4946 __func__, peer, i, err);
4947 break;
4948 }
4949 }
4950
4951 return err;
4952 }
4953
ufshcd_disable_device_tx_lcc(struct ufs_hba * hba)4954 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4955 {
4956 return ufshcd_disable_tx_lcc(hba, true);
4957 }
4958
ufshcd_update_evt_hist(struct ufs_hba * hba,u32 id,u32 val)4959 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4960 {
4961 struct ufs_event_hist *e;
4962
4963 if (id >= UFS_EVT_CNT)
4964 return;
4965
4966 e = &hba->ufs_stats.event[id];
4967 e->val[e->pos] = val;
4968 e->tstamp[e->pos] = local_clock();
4969 e->cnt += 1;
4970 e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4971
4972 ufshcd_vops_event_notify(hba, id, &val);
4973 }
4974 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4975
4976 /**
4977 * ufshcd_link_startup - Initialize unipro link startup
4978 * @hba: per adapter instance
4979 *
4980 * Return: 0 for success, non-zero in case of failure.
4981 */
ufshcd_link_startup(struct ufs_hba * hba)4982 static int ufshcd_link_startup(struct ufs_hba *hba)
4983 {
4984 int ret;
4985 int retries = DME_LINKSTARTUP_RETRIES;
4986 bool link_startup_again = false;
4987
4988 /*
4989 * If UFS device isn't active then we will have to issue link startup
4990 * 2 times to make sure the device state move to active.
4991 */
4992 if (!ufshcd_is_ufs_dev_active(hba))
4993 link_startup_again = true;
4994
4995 link_startup:
4996 do {
4997 ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4998
4999 ret = ufshcd_dme_link_startup(hba);
5000
5001 /* check if device is detected by inter-connect layer */
5002 if (!ret && !ufshcd_is_device_present(hba)) {
5003 ufshcd_update_evt_hist(hba,
5004 UFS_EVT_LINK_STARTUP_FAIL,
5005 0);
5006 dev_err(hba->dev, "%s: Device not present\n", __func__);
5007 ret = -ENXIO;
5008 goto out;
5009 }
5010
5011 /*
5012 * DME link lost indication is only received when link is up,
5013 * but we can't be sure if the link is up until link startup
5014 * succeeds. So reset the local Uni-Pro and try again.
5015 */
5016 if (ret && retries && ufshcd_hba_enable(hba)) {
5017 ufshcd_update_evt_hist(hba,
5018 UFS_EVT_LINK_STARTUP_FAIL,
5019 (u32)ret);
5020 goto out;
5021 }
5022 } while (ret && retries--);
5023
5024 if (ret) {
5025 /* failed to get the link up... retire */
5026 ufshcd_update_evt_hist(hba,
5027 UFS_EVT_LINK_STARTUP_FAIL,
5028 (u32)ret);
5029 goto out;
5030 }
5031
5032 if (link_startup_again) {
5033 link_startup_again = false;
5034 retries = DME_LINKSTARTUP_RETRIES;
5035 goto link_startup;
5036 }
5037
5038 /* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
5039 ufshcd_init_pwr_info(hba);
5040 ufshcd_print_pwr_info(hba);
5041
5042 if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
5043 ret = ufshcd_disable_device_tx_lcc(hba);
5044 if (ret)
5045 goto out;
5046 }
5047
5048 /* Include any host controller configuration via UIC commands */
5049 ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
5050 if (ret)
5051 goto out;
5052
5053 /* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
5054 ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5055 ret = ufshcd_make_hba_operational(hba);
5056 out:
5057 if (ret) {
5058 dev_err(hba->dev, "link startup failed %d\n", ret);
5059 ufshcd_print_host_state(hba);
5060 ufshcd_print_pwr_info(hba);
5061 ufshcd_print_evt_hist(hba);
5062 }
5063 return ret;
5064 }
5065
5066 /**
5067 * ufshcd_verify_dev_init() - Verify device initialization
5068 * @hba: per-adapter instance
5069 *
5070 * Send NOP OUT UPIU and wait for NOP IN response to check whether the
5071 * device Transport Protocol (UTP) layer is ready after a reset.
5072 * If the UTP layer at the device side is not initialized, it may
5073 * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
5074 * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
5075 *
5076 * Return: 0 upon success; < 0 upon failure.
5077 */
ufshcd_verify_dev_init(struct ufs_hba * hba)5078 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
5079 {
5080 int err = 0;
5081 int retries;
5082
5083 ufshcd_dev_man_lock(hba);
5084
5085 for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
5086 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
5087 hba->nop_out_timeout);
5088
5089 if (!err || err == -ETIMEDOUT)
5090 break;
5091
5092 dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
5093 }
5094
5095 ufshcd_dev_man_unlock(hba);
5096
5097 if (err)
5098 dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
5099 return err;
5100 }
5101
5102 /**
5103 * ufshcd_setup_links - associate link b/w device wlun and other luns
5104 * @sdev: pointer to SCSI device
5105 * @hba: pointer to ufs hba
5106 */
ufshcd_setup_links(struct ufs_hba * hba,struct scsi_device * sdev)5107 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5108 {
5109 struct device_link *link;
5110
5111 /*
5112 * Device wlun is the supplier & rest of the luns are consumers.
5113 * This ensures that device wlun suspends after all other luns.
5114 */
5115 if (hba->ufs_device_wlun) {
5116 link = device_link_add(&sdev->sdev_gendev,
5117 &hba->ufs_device_wlun->sdev_gendev,
5118 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5119 if (!link) {
5120 dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5121 dev_name(&hba->ufs_device_wlun->sdev_gendev));
5122 return;
5123 }
5124 hba->luns_avail--;
5125 /* Ignore REPORT_LUN wlun probing */
5126 if (hba->luns_avail == 1) {
5127 ufshcd_rpm_put(hba);
5128 return;
5129 }
5130 } else {
5131 /*
5132 * Device wlun is probed. The assumption is that WLUNs are
5133 * scanned before other LUNs.
5134 */
5135 hba->luns_avail--;
5136 }
5137 }
5138
5139 /**
5140 * ufshcd_lu_init - Initialize the relevant parameters of the LU
5141 * @hba: per-adapter instance
5142 * @sdev: pointer to SCSI device
5143 */
ufshcd_lu_init(struct ufs_hba * hba,struct scsi_device * sdev)5144 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5145 {
5146 int len = QUERY_DESC_MAX_SIZE;
5147 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5148 u8 lun_qdepth = hba->nutrs;
5149 u8 *desc_buf;
5150 int ret;
5151
5152 desc_buf = kzalloc(len, GFP_KERNEL);
5153 if (!desc_buf)
5154 goto set_qdepth;
5155
5156 ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5157 if (ret < 0) {
5158 if (ret == -EOPNOTSUPP)
5159 /* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5160 lun_qdepth = 1;
5161 kfree(desc_buf);
5162 goto set_qdepth;
5163 }
5164
5165 if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5166 /*
5167 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5168 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5169 */
5170 lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5171 }
5172 /*
5173 * According to UFS device specification, the write protection mode is only supported by
5174 * normal LU, not supported by WLUN.
5175 */
5176 if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5177 !hba->dev_info.is_lu_power_on_wp &&
5178 desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5179 hba->dev_info.is_lu_power_on_wp = true;
5180
5181 /* In case of RPMB LU, check if advanced RPMB mode is enabled */
5182 if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5183 desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5184 hba->dev_info.b_advanced_rpmb_en = true;
5185
5186
5187 kfree(desc_buf);
5188 set_qdepth:
5189 /*
5190 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5191 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5192 */
5193 dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5194 scsi_change_queue_depth(sdev, lun_qdepth);
5195 }
5196
5197 /**
5198 * ufshcd_slave_alloc - handle initial SCSI device configurations
5199 * @sdev: pointer to SCSI device
5200 *
5201 * Return: success.
5202 */
ufshcd_slave_alloc(struct scsi_device * sdev)5203 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5204 {
5205 struct ufs_hba *hba;
5206
5207 hba = shost_priv(sdev->host);
5208
5209 /* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5210 sdev->use_10_for_ms = 1;
5211
5212 /* DBD field should be set to 1 in mode sense(10) */
5213 sdev->set_dbd_for_ms = 1;
5214
5215 /* allow SCSI layer to restart the device in case of errors */
5216 sdev->allow_restart = 1;
5217
5218 /* REPORT SUPPORTED OPERATION CODES is not supported */
5219 sdev->no_report_opcodes = 1;
5220
5221 /* WRITE_SAME command is not supported */
5222 sdev->no_write_same = 1;
5223
5224 ufshcd_lu_init(hba, sdev);
5225
5226 ufshcd_setup_links(hba, sdev);
5227
5228 return 0;
5229 }
5230
5231 /**
5232 * ufshcd_change_queue_depth - change queue depth
5233 * @sdev: pointer to SCSI device
5234 * @depth: required depth to set
5235 *
5236 * Change queue depth and make sure the max. limits are not crossed.
5237 *
5238 * Return: new queue depth.
5239 */
ufshcd_change_queue_depth(struct scsi_device * sdev,int depth)5240 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5241 {
5242 return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5243 }
5244
5245 /**
5246 * ufshcd_device_configure - adjust SCSI device configurations
5247 * @sdev: pointer to SCSI device
5248 * @lim: queue limits
5249 *
5250 * Return: 0 (success).
5251 */
ufshcd_device_configure(struct scsi_device * sdev,struct queue_limits * lim)5252 static int ufshcd_device_configure(struct scsi_device *sdev,
5253 struct queue_limits *lim)
5254 {
5255 struct ufs_hba *hba = shost_priv(sdev->host);
5256 struct request_queue *q = sdev->request_queue;
5257
5258 lim->dma_pad_mask = PRDT_DATA_BYTE_COUNT_PAD - 1;
5259
5260 /*
5261 * Block runtime-pm until all consumers are added.
5262 * Refer ufshcd_setup_links().
5263 */
5264 if (is_device_wlun(sdev))
5265 pm_runtime_get_noresume(&sdev->sdev_gendev);
5266 else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5267 sdev->rpm_autosuspend = 1;
5268 /*
5269 * Do not print messages during runtime PM to avoid never-ending cycles
5270 * of messages written back to storage by user space causing runtime
5271 * resume, causing more messages and so on.
5272 */
5273 sdev->silence_suspend = 1;
5274
5275 if (hba->vops && hba->vops->config_scsi_dev)
5276 hba->vops->config_scsi_dev(sdev);
5277
5278 ufshcd_crypto_register(hba, q);
5279
5280 return 0;
5281 }
5282
5283 /**
5284 * ufshcd_slave_destroy - remove SCSI device configurations
5285 * @sdev: pointer to SCSI device
5286 */
ufshcd_slave_destroy(struct scsi_device * sdev)5287 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5288 {
5289 struct ufs_hba *hba;
5290 unsigned long flags;
5291
5292 hba = shost_priv(sdev->host);
5293
5294 /* Drop the reference as it won't be needed anymore */
5295 if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5296 spin_lock_irqsave(hba->host->host_lock, flags);
5297 hba->ufs_device_wlun = NULL;
5298 spin_unlock_irqrestore(hba->host->host_lock, flags);
5299 } else if (hba->ufs_device_wlun) {
5300 struct device *supplier = NULL;
5301
5302 /* Ensure UFS Device WLUN exists and does not disappear */
5303 spin_lock_irqsave(hba->host->host_lock, flags);
5304 if (hba->ufs_device_wlun) {
5305 supplier = &hba->ufs_device_wlun->sdev_gendev;
5306 get_device(supplier);
5307 }
5308 spin_unlock_irqrestore(hba->host->host_lock, flags);
5309
5310 if (supplier) {
5311 /*
5312 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5313 * device will not have been registered but can still
5314 * have a device link holding a reference to the device.
5315 */
5316 device_link_remove(&sdev->sdev_gendev, supplier);
5317 put_device(supplier);
5318 }
5319 }
5320 }
5321
5322 /**
5323 * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5324 * @lrbp: pointer to local reference block of completed command
5325 * @scsi_status: SCSI command status
5326 *
5327 * Return: value base on SCSI command status.
5328 */
5329 static inline int
ufshcd_scsi_cmd_status(struct ufshcd_lrb * lrbp,int scsi_status)5330 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5331 {
5332 int result = 0;
5333
5334 switch (scsi_status) {
5335 case SAM_STAT_CHECK_CONDITION:
5336 ufshcd_copy_sense_data(lrbp);
5337 fallthrough;
5338 case SAM_STAT_GOOD:
5339 result |= DID_OK << 16 | scsi_status;
5340 break;
5341 case SAM_STAT_TASK_SET_FULL:
5342 case SAM_STAT_BUSY:
5343 case SAM_STAT_TASK_ABORTED:
5344 ufshcd_copy_sense_data(lrbp);
5345 result |= scsi_status;
5346 break;
5347 default:
5348 result |= DID_ERROR << 16;
5349 break;
5350 } /* end of switch */
5351
5352 return result;
5353 }
5354
5355 /**
5356 * ufshcd_transfer_rsp_status - Get overall status of the response
5357 * @hba: per adapter instance
5358 * @lrbp: pointer to local reference block of completed command
5359 * @cqe: pointer to the completion queue entry
5360 *
5361 * Return: result of the command to notify SCSI midlayer.
5362 */
5363 static inline int
ufshcd_transfer_rsp_status(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,struct cq_entry * cqe)5364 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5365 struct cq_entry *cqe)
5366 {
5367 int result = 0;
5368 int scsi_status;
5369 enum utp_ocs ocs;
5370 u8 upiu_flags;
5371 u32 resid;
5372
5373 upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5374 resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5375 /*
5376 * Test !overflow instead of underflow to support UFS devices that do
5377 * not set either flag.
5378 */
5379 if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5380 scsi_set_resid(lrbp->cmd, resid);
5381
5382 /* overall command status of utrd */
5383 ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5384
5385 if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5386 if (lrbp->ucd_rsp_ptr->header.response ||
5387 lrbp->ucd_rsp_ptr->header.status)
5388 ocs = OCS_SUCCESS;
5389 }
5390
5391 switch (ocs) {
5392 case OCS_SUCCESS:
5393 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5394 switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5395 case UPIU_TRANSACTION_RESPONSE:
5396 /*
5397 * get the result based on SCSI status response
5398 * to notify the SCSI midlayer of the command status
5399 */
5400 scsi_status = lrbp->ucd_rsp_ptr->header.status;
5401 result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5402
5403 /*
5404 * Currently we are only supporting BKOPs exception
5405 * events hence we can ignore BKOPs exception event
5406 * during power management callbacks. BKOPs exception
5407 * event is not expected to be raised in runtime suspend
5408 * callback as it allows the urgent bkops.
5409 * During system suspend, we are anyway forcefully
5410 * disabling the bkops and if urgent bkops is needed
5411 * it will be enabled on system resume. Long term
5412 * solution could be to abort the system suspend if
5413 * UFS device needs urgent BKOPs.
5414 */
5415 if (!hba->pm_op_in_progress &&
5416 !ufshcd_eh_in_progress(hba) &&
5417 ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5418 /* Flushed in suspend */
5419 schedule_work(&hba->eeh_work);
5420 break;
5421 case UPIU_TRANSACTION_REJECT_UPIU:
5422 /* TODO: handle Reject UPIU Response */
5423 result = DID_ERROR << 16;
5424 dev_err(hba->dev,
5425 "Reject UPIU not fully implemented\n");
5426 break;
5427 default:
5428 dev_err(hba->dev,
5429 "Unexpected request response code = %x\n",
5430 result);
5431 result = DID_ERROR << 16;
5432 break;
5433 }
5434 break;
5435 case OCS_ABORTED:
5436 case OCS_INVALID_COMMAND_STATUS:
5437 result |= DID_REQUEUE << 16;
5438 dev_warn(hba->dev,
5439 "OCS %s from controller for tag %d\n",
5440 (ocs == OCS_ABORTED ? "aborted" : "invalid"),
5441 lrbp->task_tag);
5442 break;
5443 case OCS_INVALID_CMD_TABLE_ATTR:
5444 case OCS_INVALID_PRDT_ATTR:
5445 case OCS_MISMATCH_DATA_BUF_SIZE:
5446 case OCS_MISMATCH_RESP_UPIU_SIZE:
5447 case OCS_PEER_COMM_FAILURE:
5448 case OCS_FATAL_ERROR:
5449 case OCS_DEVICE_FATAL_ERROR:
5450 case OCS_INVALID_CRYPTO_CONFIG:
5451 case OCS_GENERAL_CRYPTO_ERROR:
5452 default:
5453 result |= DID_ERROR << 16;
5454 dev_err(hba->dev,
5455 "OCS error from controller = %x for tag %d\n",
5456 ocs, lrbp->task_tag);
5457 ufshcd_print_evt_hist(hba);
5458 ufshcd_print_host_state(hba);
5459 break;
5460 } /* end of switch */
5461
5462 if ((host_byte(result) != DID_OK) &&
5463 (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5464 ufshcd_print_tr(hba, lrbp->task_tag, true);
5465 return result;
5466 }
5467
ufshcd_is_auto_hibern8_error(struct ufs_hba * hba,u32 intr_mask)5468 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5469 u32 intr_mask)
5470 {
5471 if (!ufshcd_is_auto_hibern8_supported(hba) ||
5472 !ufshcd_is_auto_hibern8_enabled(hba))
5473 return false;
5474
5475 if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5476 return false;
5477
5478 if (hba->active_uic_cmd &&
5479 (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5480 hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5481 return false;
5482
5483 return true;
5484 }
5485
5486 /**
5487 * ufshcd_uic_cmd_compl - handle completion of uic command
5488 * @hba: per adapter instance
5489 * @intr_status: interrupt status generated by the controller
5490 *
5491 * Return:
5492 * IRQ_HANDLED - If interrupt is valid
5493 * IRQ_NONE - If invalid interrupt
5494 */
ufshcd_uic_cmd_compl(struct ufs_hba * hba,u32 intr_status)5495 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5496 {
5497 irqreturn_t retval = IRQ_NONE;
5498 struct uic_command *cmd;
5499
5500 spin_lock(hba->host->host_lock);
5501 cmd = hba->active_uic_cmd;
5502 if (WARN_ON_ONCE(!cmd))
5503 goto unlock;
5504
5505 if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5506 hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5507
5508 if (intr_status & UIC_COMMAND_COMPL) {
5509 cmd->argument2 |= ufshcd_get_uic_cmd_result(hba);
5510 cmd->argument3 = ufshcd_get_dme_attr_val(hba);
5511 if (!hba->uic_async_done)
5512 cmd->cmd_active = 0;
5513 complete(&cmd->done);
5514 retval = IRQ_HANDLED;
5515 }
5516
5517 if (intr_status & UFSHCD_UIC_PWR_MASK && hba->uic_async_done) {
5518 cmd->cmd_active = 0;
5519 complete(hba->uic_async_done);
5520 retval = IRQ_HANDLED;
5521 }
5522
5523 if (retval == IRQ_HANDLED)
5524 ufshcd_add_uic_command_trace(hba, cmd, UFS_CMD_COMP);
5525
5526 unlock:
5527 spin_unlock(hba->host->host_lock);
5528
5529 return retval;
5530 }
5531
5532 /* Release the resources allocated for processing a SCSI command. */
ufshcd_release_scsi_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)5533 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5534 struct ufshcd_lrb *lrbp)
5535 {
5536 struct scsi_cmnd *cmd = lrbp->cmd;
5537
5538 scsi_dma_unmap(cmd);
5539 ufshcd_crypto_clear_prdt(hba, lrbp);
5540 ufshcd_release(hba);
5541 ufshcd_clk_scaling_update_busy(hba);
5542 }
5543
5544 /**
5545 * ufshcd_compl_one_cqe - handle a completion queue entry
5546 * @hba: per adapter instance
5547 * @task_tag: the task tag of the request to be completed
5548 * @cqe: pointer to the completion queue entry
5549 */
ufshcd_compl_one_cqe(struct ufs_hba * hba,int task_tag,struct cq_entry * cqe)5550 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5551 struct cq_entry *cqe)
5552 {
5553 struct ufshcd_lrb *lrbp;
5554 struct scsi_cmnd *cmd;
5555 enum utp_ocs ocs;
5556
5557 lrbp = &hba->lrb[task_tag];
5558 lrbp->compl_time_stamp = ktime_get();
5559 lrbp->compl_time_stamp_local_clock = local_clock();
5560 cmd = lrbp->cmd;
5561 if (cmd) {
5562 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5563 ufshcd_update_monitor(hba, lrbp);
5564 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5565 cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5566 ufshcd_release_scsi_cmd(hba, lrbp);
5567 /* Do not touch lrbp after scsi done */
5568 scsi_done(cmd);
5569 } else if (hba->dev_cmd.complete) {
5570 if (cqe) {
5571 ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5572 lrbp->utr_descriptor_ptr->header.ocs = ocs;
5573 }
5574 complete(hba->dev_cmd.complete);
5575 }
5576 }
5577
5578 /**
5579 * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5580 * @hba: per adapter instance
5581 * @completed_reqs: bitmask that indicates which requests to complete
5582 */
__ufshcd_transfer_req_compl(struct ufs_hba * hba,unsigned long completed_reqs)5583 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5584 unsigned long completed_reqs)
5585 {
5586 int tag;
5587
5588 for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5589 ufshcd_compl_one_cqe(hba, tag, NULL);
5590 }
5591
5592 /* Any value that is not an existing queue number is fine for this constant. */
5593 enum {
5594 UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5595 };
5596
ufshcd_clear_polled(struct ufs_hba * hba,unsigned long * completed_reqs)5597 static void ufshcd_clear_polled(struct ufs_hba *hba,
5598 unsigned long *completed_reqs)
5599 {
5600 int tag;
5601
5602 for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5603 struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5604
5605 if (!cmd)
5606 continue;
5607 if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5608 __clear_bit(tag, completed_reqs);
5609 }
5610 }
5611
5612 /*
5613 * Return: > 0 if one or more commands have been completed or 0 if no
5614 * requests have been completed.
5615 */
ufshcd_poll(struct Scsi_Host * shost,unsigned int queue_num)5616 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5617 {
5618 struct ufs_hba *hba = shost_priv(shost);
5619 unsigned long completed_reqs, flags;
5620 u32 tr_doorbell;
5621 struct ufs_hw_queue *hwq;
5622
5623 if (hba->mcq_enabled) {
5624 hwq = &hba->uhq[queue_num];
5625
5626 return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5627 }
5628
5629 spin_lock_irqsave(&hba->outstanding_lock, flags);
5630 tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5631 completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5632 WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5633 "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5634 hba->outstanding_reqs);
5635 if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5636 /* Do not complete polled requests from interrupt context. */
5637 ufshcd_clear_polled(hba, &completed_reqs);
5638 }
5639 hba->outstanding_reqs &= ~completed_reqs;
5640 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5641
5642 if (completed_reqs)
5643 __ufshcd_transfer_req_compl(hba, completed_reqs);
5644
5645 return completed_reqs != 0;
5646 }
5647
5648 /**
5649 * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5650 * invoked from the error handler context or ufshcd_host_reset_and_restore()
5651 * to complete the pending transfers and free the resources associated with
5652 * the scsi command.
5653 *
5654 * @hba: per adapter instance
5655 * @force_compl: This flag is set to true when invoked
5656 * from ufshcd_host_reset_and_restore() in which case it requires special
5657 * handling because the host controller has been reset by ufshcd_hba_stop().
5658 */
ufshcd_mcq_compl_pending_transfer(struct ufs_hba * hba,bool force_compl)5659 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5660 bool force_compl)
5661 {
5662 struct ufs_hw_queue *hwq;
5663 struct ufshcd_lrb *lrbp;
5664 struct scsi_cmnd *cmd;
5665 unsigned long flags;
5666 int tag;
5667
5668 for (tag = 0; tag < hba->nutrs; tag++) {
5669 lrbp = &hba->lrb[tag];
5670 cmd = lrbp->cmd;
5671 if (!ufshcd_cmd_inflight(cmd) ||
5672 test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5673 continue;
5674
5675 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
5676
5677 if (force_compl) {
5678 ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5679 /*
5680 * For those cmds of which the cqes are not present
5681 * in the cq, complete them explicitly.
5682 */
5683 spin_lock_irqsave(&hwq->cq_lock, flags);
5684 if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5685 set_host_byte(cmd, DID_REQUEUE);
5686 ufshcd_release_scsi_cmd(hba, lrbp);
5687 scsi_done(cmd);
5688 }
5689 spin_unlock_irqrestore(&hwq->cq_lock, flags);
5690 } else {
5691 ufshcd_mcq_poll_cqe_lock(hba, hwq);
5692 }
5693 }
5694 }
5695
5696 /**
5697 * ufshcd_transfer_req_compl - handle SCSI and query command completion
5698 * @hba: per adapter instance
5699 *
5700 * Return:
5701 * IRQ_HANDLED - If interrupt is valid
5702 * IRQ_NONE - If invalid interrupt
5703 */
ufshcd_transfer_req_compl(struct ufs_hba * hba)5704 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5705 {
5706 /* Resetting interrupt aggregation counters first and reading the
5707 * DOOR_BELL afterward allows us to handle all the completed requests.
5708 * In order to prevent other interrupts starvation the DB is read once
5709 * after reset. The down side of this solution is the possibility of
5710 * false interrupt if device completes another request after resetting
5711 * aggregation and before reading the DB.
5712 */
5713 if (ufshcd_is_intr_aggr_allowed(hba) &&
5714 !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5715 ufshcd_reset_intr_aggr(hba);
5716
5717 if (ufs_fail_completion(hba))
5718 return IRQ_HANDLED;
5719
5720 /*
5721 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5722 * do not want polling to trigger spurious interrupt complaints.
5723 */
5724 ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5725
5726 return IRQ_HANDLED;
5727 }
5728
__ufshcd_write_ee_control(struct ufs_hba * hba,u32 ee_ctrl_mask)5729 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5730 {
5731 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5732 QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5733 &ee_ctrl_mask);
5734 }
5735
ufshcd_write_ee_control(struct ufs_hba * hba)5736 int ufshcd_write_ee_control(struct ufs_hba *hba)
5737 {
5738 int err;
5739
5740 mutex_lock(&hba->ee_ctrl_mutex);
5741 err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5742 mutex_unlock(&hba->ee_ctrl_mutex);
5743 if (err)
5744 dev_err(hba->dev, "%s: failed to write ee control %d\n",
5745 __func__, err);
5746 return err;
5747 }
5748
ufshcd_update_ee_control(struct ufs_hba * hba,u16 * mask,const u16 * other_mask,u16 set,u16 clr)5749 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5750 const u16 *other_mask, u16 set, u16 clr)
5751 {
5752 u16 new_mask, ee_ctrl_mask;
5753 int err = 0;
5754
5755 mutex_lock(&hba->ee_ctrl_mutex);
5756 new_mask = (*mask & ~clr) | set;
5757 ee_ctrl_mask = new_mask | *other_mask;
5758 if (ee_ctrl_mask != hba->ee_ctrl_mask)
5759 err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5760 /* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5761 if (!err) {
5762 hba->ee_ctrl_mask = ee_ctrl_mask;
5763 *mask = new_mask;
5764 }
5765 mutex_unlock(&hba->ee_ctrl_mutex);
5766 return err;
5767 }
5768
5769 /**
5770 * ufshcd_disable_ee - disable exception event
5771 * @hba: per-adapter instance
5772 * @mask: exception event to disable
5773 *
5774 * Disables exception event in the device so that the EVENT_ALERT
5775 * bit is not set.
5776 *
5777 * Return: zero on success, non-zero error value on failure.
5778 */
ufshcd_disable_ee(struct ufs_hba * hba,u16 mask)5779 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5780 {
5781 return ufshcd_update_ee_drv_mask(hba, 0, mask);
5782 }
5783
5784 /**
5785 * ufshcd_enable_ee - enable exception event
5786 * @hba: per-adapter instance
5787 * @mask: exception event to enable
5788 *
5789 * Enable corresponding exception event in the device to allow
5790 * device to alert host in critical scenarios.
5791 *
5792 * Return: zero on success, non-zero error value on failure.
5793 */
ufshcd_enable_ee(struct ufs_hba * hba,u16 mask)5794 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5795 {
5796 return ufshcd_update_ee_drv_mask(hba, mask, 0);
5797 }
5798
5799 /**
5800 * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5801 * @hba: per-adapter instance
5802 *
5803 * Allow device to manage background operations on its own. Enabling
5804 * this might lead to inconsistent latencies during normal data transfers
5805 * as the device is allowed to manage its own way of handling background
5806 * operations.
5807 *
5808 * Return: zero on success, non-zero on failure.
5809 */
ufshcd_enable_auto_bkops(struct ufs_hba * hba)5810 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5811 {
5812 int err = 0;
5813
5814 if (hba->auto_bkops_enabled)
5815 goto out;
5816
5817 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5818 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5819 if (err) {
5820 dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5821 __func__, err);
5822 goto out;
5823 }
5824
5825 hba->auto_bkops_enabled = true;
5826 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5827
5828 /* No need of URGENT_BKOPS exception from the device */
5829 err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5830 if (err)
5831 dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5832 __func__, err);
5833 out:
5834 return err;
5835 }
5836
5837 /**
5838 * ufshcd_disable_auto_bkops - block device in doing background operations
5839 * @hba: per-adapter instance
5840 *
5841 * Disabling background operations improves command response latency but
5842 * has drawback of device moving into critical state where the device is
5843 * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5844 * host is idle so that BKOPS are managed effectively without any negative
5845 * impacts.
5846 *
5847 * Return: zero on success, non-zero on failure.
5848 */
ufshcd_disable_auto_bkops(struct ufs_hba * hba)5849 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5850 {
5851 int err = 0;
5852
5853 if (!hba->auto_bkops_enabled)
5854 goto out;
5855
5856 /*
5857 * If host assisted BKOPs is to be enabled, make sure
5858 * urgent bkops exception is allowed.
5859 */
5860 err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5861 if (err) {
5862 dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5863 __func__, err);
5864 goto out;
5865 }
5866
5867 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5868 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5869 if (err) {
5870 dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5871 __func__, err);
5872 ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5873 goto out;
5874 }
5875
5876 hba->auto_bkops_enabled = false;
5877 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5878 hba->is_urgent_bkops_lvl_checked = false;
5879 out:
5880 return err;
5881 }
5882
5883 /**
5884 * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5885 * @hba: per adapter instance
5886 *
5887 * After a device reset the device may toggle the BKOPS_EN flag
5888 * to default value. The s/w tracking variables should be updated
5889 * as well. This function would change the auto-bkops state based on
5890 * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5891 */
ufshcd_force_reset_auto_bkops(struct ufs_hba * hba)5892 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5893 {
5894 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5895 hba->auto_bkops_enabled = false;
5896 hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5897 ufshcd_enable_auto_bkops(hba);
5898 } else {
5899 hba->auto_bkops_enabled = true;
5900 hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5901 ufshcd_disable_auto_bkops(hba);
5902 }
5903 hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5904 hba->is_urgent_bkops_lvl_checked = false;
5905 }
5906
ufshcd_get_bkops_status(struct ufs_hba * hba,u32 * status)5907 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5908 {
5909 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5910 QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5911 }
5912
5913 /**
5914 * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5915 * @hba: per-adapter instance
5916 *
5917 * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5918 * flag in the device to permit background operations if the device
5919 * bkops_status is greater than or equal to the "hba->urgent_bkops_lvl",
5920 * disable otherwise.
5921 *
5922 * Return: 0 for success, non-zero in case of failure.
5923 *
5924 * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5925 * to know whether auto bkops is enabled or disabled after this function
5926 * returns control to it.
5927 */
ufshcd_bkops_ctrl(struct ufs_hba * hba)5928 static int ufshcd_bkops_ctrl(struct ufs_hba *hba)
5929 {
5930 enum bkops_status status = hba->urgent_bkops_lvl;
5931 u32 curr_status = 0;
5932 int err;
5933
5934 err = ufshcd_get_bkops_status(hba, &curr_status);
5935 if (err) {
5936 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5937 __func__, err);
5938 goto out;
5939 } else if (curr_status > BKOPS_STATUS_MAX) {
5940 dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5941 __func__, curr_status);
5942 err = -EINVAL;
5943 goto out;
5944 }
5945
5946 if (curr_status >= status)
5947 err = ufshcd_enable_auto_bkops(hba);
5948 else
5949 err = ufshcd_disable_auto_bkops(hba);
5950 out:
5951 return err;
5952 }
5953
ufshcd_get_ee_status(struct ufs_hba * hba,u32 * status)5954 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5955 {
5956 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5957 QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5958 }
5959
ufshcd_bkops_exception_event_handler(struct ufs_hba * hba)5960 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5961 {
5962 int err;
5963 u32 curr_status = 0;
5964
5965 if (hba->is_urgent_bkops_lvl_checked)
5966 goto enable_auto_bkops;
5967
5968 err = ufshcd_get_bkops_status(hba, &curr_status);
5969 if (err) {
5970 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5971 __func__, err);
5972 goto out;
5973 }
5974
5975 /*
5976 * We are seeing that some devices are raising the urgent bkops
5977 * exception events even when BKOPS status doesn't indicate performace
5978 * impacted or critical. Handle these device by determining their urgent
5979 * bkops status at runtime.
5980 */
5981 if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5982 dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5983 __func__, curr_status);
5984 /* update the current status as the urgent bkops level */
5985 hba->urgent_bkops_lvl = curr_status;
5986 hba->is_urgent_bkops_lvl_checked = true;
5987 }
5988
5989 enable_auto_bkops:
5990 err = ufshcd_enable_auto_bkops(hba);
5991 out:
5992 if (err < 0)
5993 dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5994 __func__, err);
5995 }
5996
ufshcd_temp_exception_event_handler(struct ufs_hba * hba,u16 status)5997 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5998 {
5999 u32 value;
6000
6001 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6002 QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
6003 return;
6004
6005 dev_info(hba->dev, "exception Tcase %d\n", value - 80);
6006
6007 ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
6008
6009 /*
6010 * A placeholder for the platform vendors to add whatever additional
6011 * steps required
6012 */
6013 }
6014
__ufshcd_wb_toggle(struct ufs_hba * hba,bool set,enum flag_idn idn)6015 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
6016 {
6017 u8 index;
6018 enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
6019 UPIU_QUERY_OPCODE_CLEAR_FLAG;
6020
6021 index = ufshcd_wb_get_query_index(hba);
6022 return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
6023 }
6024
ufshcd_wb_toggle(struct ufs_hba * hba,bool enable)6025 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
6026 {
6027 int ret;
6028
6029 if (!ufshcd_is_wb_allowed(hba) ||
6030 hba->dev_info.wb_enabled == enable)
6031 return 0;
6032
6033 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
6034 if (ret) {
6035 dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
6036 __func__, enable ? "enabling" : "disabling", ret);
6037 return ret;
6038 }
6039
6040 hba->dev_info.wb_enabled = enable;
6041 dev_dbg(hba->dev, "%s: Write Booster %s\n",
6042 __func__, enable ? "enabled" : "disabled");
6043
6044 return ret;
6045 }
6046
ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba * hba,bool enable)6047 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
6048 bool enable)
6049 {
6050 int ret;
6051
6052 ret = __ufshcd_wb_toggle(hba, enable,
6053 QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
6054 if (ret) {
6055 dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
6056 __func__, enable ? "enabling" : "disabling", ret);
6057 return;
6058 }
6059 dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
6060 __func__, enable ? "enabled" : "disabled");
6061 }
6062
ufshcd_wb_toggle_buf_flush(struct ufs_hba * hba,bool enable)6063 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
6064 {
6065 int ret;
6066
6067 if (!ufshcd_is_wb_allowed(hba) ||
6068 hba->dev_info.wb_buf_flush_enabled == enable)
6069 return 0;
6070
6071 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
6072 if (ret) {
6073 dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
6074 __func__, enable ? "enabling" : "disabling", ret);
6075 return ret;
6076 }
6077
6078 hba->dev_info.wb_buf_flush_enabled = enable;
6079 dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
6080 __func__, enable ? "enabled" : "disabled");
6081
6082 return ret;
6083 }
6084
ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba * hba,u32 avail_buf)6085 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
6086 u32 avail_buf)
6087 {
6088 u32 cur_buf;
6089 int ret;
6090 u8 index;
6091
6092 index = ufshcd_wb_get_query_index(hba);
6093 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6094 QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6095 index, 0, &cur_buf);
6096 if (ret) {
6097 dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6098 __func__, ret);
6099 return false;
6100 }
6101
6102 if (!cur_buf) {
6103 dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6104 cur_buf);
6105 return false;
6106 }
6107 /* Let it continue to flush when available buffer exceeds threshold */
6108 return avail_buf < hba->vps->wb_flush_threshold;
6109 }
6110
ufshcd_wb_force_disable(struct ufs_hba * hba)6111 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6112 {
6113 if (ufshcd_is_wb_buf_flush_allowed(hba))
6114 ufshcd_wb_toggle_buf_flush(hba, false);
6115
6116 ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6117 ufshcd_wb_toggle(hba, false);
6118 hba->caps &= ~UFSHCD_CAP_WB_EN;
6119
6120 dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6121 }
6122
ufshcd_is_wb_buf_lifetime_available(struct ufs_hba * hba)6123 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6124 {
6125 u32 lifetime;
6126 int ret;
6127 u8 index;
6128
6129 index = ufshcd_wb_get_query_index(hba);
6130 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6131 QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6132 index, 0, &lifetime);
6133 if (ret) {
6134 dev_err(hba->dev,
6135 "%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6136 __func__, ret);
6137 return false;
6138 }
6139
6140 if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6141 dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6142 __func__, lifetime);
6143 return false;
6144 }
6145
6146 dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6147 __func__, lifetime);
6148
6149 return true;
6150 }
6151
ufshcd_wb_need_flush(struct ufs_hba * hba)6152 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6153 {
6154 int ret;
6155 u32 avail_buf;
6156 u8 index;
6157
6158 if (!ufshcd_is_wb_allowed(hba))
6159 return false;
6160
6161 if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6162 ufshcd_wb_force_disable(hba);
6163 return false;
6164 }
6165
6166 /*
6167 * The ufs device needs the vcc to be ON to flush.
6168 * With user-space reduction enabled, it's enough to enable flush
6169 * by checking only the available buffer. The threshold
6170 * defined here is > 90% full.
6171 * With user-space preserved enabled, the current-buffer
6172 * should be checked too because the wb buffer size can reduce
6173 * when disk tends to be full. This info is provided by current
6174 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6175 * keeping vcc on when current buffer is empty.
6176 */
6177 index = ufshcd_wb_get_query_index(hba);
6178 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6179 QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6180 index, 0, &avail_buf);
6181 if (ret) {
6182 dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6183 __func__, ret);
6184 return false;
6185 }
6186
6187 if (!hba->dev_info.b_presrv_uspc_en)
6188 return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6189
6190 return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6191 }
6192
ufshcd_rpm_dev_flush_recheck_work(struct work_struct * work)6193 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6194 {
6195 struct ufs_hba *hba = container_of(to_delayed_work(work),
6196 struct ufs_hba,
6197 rpm_dev_flush_recheck_work);
6198 /*
6199 * To prevent unnecessary VCC power drain after device finishes
6200 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6201 * after a certain delay to recheck the threshold by next runtime
6202 * suspend.
6203 */
6204 ufshcd_rpm_get_sync(hba);
6205 ufshcd_rpm_put_sync(hba);
6206 }
6207
6208 /**
6209 * ufshcd_exception_event_handler - handle exceptions raised by device
6210 * @work: pointer to work data
6211 *
6212 * Read bExceptionEventStatus attribute from the device and handle the
6213 * exception event accordingly.
6214 */
ufshcd_exception_event_handler(struct work_struct * work)6215 static void ufshcd_exception_event_handler(struct work_struct *work)
6216 {
6217 struct ufs_hba *hba;
6218 int err;
6219 u32 status = 0;
6220 hba = container_of(work, struct ufs_hba, eeh_work);
6221
6222 err = ufshcd_get_ee_status(hba, &status);
6223 if (err) {
6224 dev_err(hba->dev, "%s: failed to get exception status %d\n",
6225 __func__, err);
6226 return;
6227 }
6228
6229 trace_ufshcd_exception_event(dev_name(hba->dev), status);
6230
6231 if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6232 ufshcd_bkops_exception_event_handler(hba);
6233
6234 if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6235 ufshcd_temp_exception_event_handler(hba, status);
6236
6237 ufs_debugfs_exception_event(hba, status);
6238 }
6239
6240 /* Complete requests that have door-bell cleared */
ufshcd_complete_requests(struct ufs_hba * hba,bool force_compl)6241 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6242 {
6243 if (hba->mcq_enabled)
6244 ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6245 else
6246 ufshcd_transfer_req_compl(hba);
6247
6248 ufshcd_tmc_handler(hba);
6249 }
6250
6251 /**
6252 * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6253 * to recover from the DL NAC errors or not.
6254 * @hba: per-adapter instance
6255 *
6256 * Return: true if error handling is required, false otherwise.
6257 */
ufshcd_quirk_dl_nac_errors(struct ufs_hba * hba)6258 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6259 {
6260 unsigned long flags;
6261 bool err_handling = true;
6262
6263 spin_lock_irqsave(hba->host->host_lock, flags);
6264 /*
6265 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6266 * device fatal error and/or DL NAC & REPLAY timeout errors.
6267 */
6268 if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6269 goto out;
6270
6271 if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6272 ((hba->saved_err & UIC_ERROR) &&
6273 (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6274 goto out;
6275
6276 if ((hba->saved_err & UIC_ERROR) &&
6277 (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6278 int err;
6279 /*
6280 * wait for 50ms to see if we can get any other errors or not.
6281 */
6282 spin_unlock_irqrestore(hba->host->host_lock, flags);
6283 msleep(50);
6284 spin_lock_irqsave(hba->host->host_lock, flags);
6285
6286 /*
6287 * now check if we have got any other severe errors other than
6288 * DL NAC error?
6289 */
6290 if ((hba->saved_err & INT_FATAL_ERRORS) ||
6291 ((hba->saved_err & UIC_ERROR) &&
6292 (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6293 goto out;
6294
6295 /*
6296 * As DL NAC is the only error received so far, send out NOP
6297 * command to confirm if link is still active or not.
6298 * - If we don't get any response then do error recovery.
6299 * - If we get response then clear the DL NAC error bit.
6300 */
6301
6302 spin_unlock_irqrestore(hba->host->host_lock, flags);
6303 err = ufshcd_verify_dev_init(hba);
6304 spin_lock_irqsave(hba->host->host_lock, flags);
6305
6306 if (err)
6307 goto out;
6308
6309 /* Link seems to be alive hence ignore the DL NAC errors */
6310 if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6311 hba->saved_err &= ~UIC_ERROR;
6312 /* clear NAC error */
6313 hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6314 if (!hba->saved_uic_err)
6315 err_handling = false;
6316 }
6317 out:
6318 spin_unlock_irqrestore(hba->host->host_lock, flags);
6319 return err_handling;
6320 }
6321
6322 /* host lock must be held before calling this func */
ufshcd_is_saved_err_fatal(struct ufs_hba * hba)6323 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6324 {
6325 return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6326 (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6327 }
6328
ufshcd_schedule_eh_work(struct ufs_hba * hba)6329 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6330 {
6331 lockdep_assert_held(hba->host->host_lock);
6332
6333 /* handle fatal errors only when link is not in error state */
6334 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6335 if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6336 ufshcd_is_saved_err_fatal(hba))
6337 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6338 else
6339 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6340 queue_work(hba->eh_wq, &hba->eh_work);
6341 }
6342 }
6343
ufshcd_force_error_recovery(struct ufs_hba * hba)6344 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6345 {
6346 spin_lock_irq(hba->host->host_lock);
6347 hba->force_reset = true;
6348 ufshcd_schedule_eh_work(hba);
6349 spin_unlock_irq(hba->host->host_lock);
6350 }
6351
ufshcd_clk_scaling_allow(struct ufs_hba * hba,bool allow)6352 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6353 {
6354 mutex_lock(&hba->wb_mutex);
6355 down_write(&hba->clk_scaling_lock);
6356 hba->clk_scaling.is_allowed = allow;
6357 up_write(&hba->clk_scaling_lock);
6358 mutex_unlock(&hba->wb_mutex);
6359 }
6360
ufshcd_clk_scaling_suspend(struct ufs_hba * hba,bool suspend)6361 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6362 {
6363 if (suspend) {
6364 if (hba->clk_scaling.is_enabled)
6365 ufshcd_suspend_clkscaling(hba);
6366 ufshcd_clk_scaling_allow(hba, false);
6367 } else {
6368 ufshcd_clk_scaling_allow(hba, true);
6369 if (hba->clk_scaling.is_enabled)
6370 ufshcd_resume_clkscaling(hba);
6371 }
6372 }
6373
ufshcd_err_handling_prepare(struct ufs_hba * hba)6374 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6375 {
6376 ufshcd_rpm_get_sync(hba);
6377 if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6378 hba->is_sys_suspended) {
6379 enum ufs_pm_op pm_op;
6380
6381 /*
6382 * Don't assume anything of resume, if
6383 * resume fails, irq and clocks can be OFF, and powers
6384 * can be OFF or in LPM.
6385 */
6386 ufshcd_setup_hba_vreg(hba, true);
6387 ufshcd_enable_irq(hba);
6388 ufshcd_setup_vreg(hba, true);
6389 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6390 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6391 ufshcd_hold(hba);
6392 if (!ufshcd_is_clkgating_allowed(hba))
6393 ufshcd_setup_clocks(hba, true);
6394 pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6395 ufshcd_vops_resume(hba, pm_op);
6396 } else {
6397 ufshcd_hold(hba);
6398 if (ufshcd_is_clkscaling_supported(hba) &&
6399 hba->clk_scaling.is_enabled)
6400 ufshcd_suspend_clkscaling(hba);
6401 ufshcd_clk_scaling_allow(hba, false);
6402 }
6403 /* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6404 blk_mq_quiesce_tagset(&hba->host->tag_set);
6405 cancel_work_sync(&hba->eeh_work);
6406 }
6407
ufshcd_err_handling_unprepare(struct ufs_hba * hba)6408 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6409 {
6410 blk_mq_unquiesce_tagset(&hba->host->tag_set);
6411 ufshcd_release(hba);
6412 if (ufshcd_is_clkscaling_supported(hba))
6413 ufshcd_clk_scaling_suspend(hba, false);
6414 ufshcd_rpm_put(hba);
6415 }
6416
ufshcd_err_handling_should_stop(struct ufs_hba * hba)6417 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6418 {
6419 return (!hba->is_powered || hba->shutting_down ||
6420 !hba->ufs_device_wlun ||
6421 hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6422 (!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6423 ufshcd_is_link_broken(hba))));
6424 }
6425
6426 #ifdef CONFIG_PM
ufshcd_recover_pm_error(struct ufs_hba * hba)6427 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6428 {
6429 struct Scsi_Host *shost = hba->host;
6430 struct scsi_device *sdev;
6431 struct request_queue *q;
6432 int ret;
6433
6434 hba->is_sys_suspended = false;
6435 /*
6436 * Set RPM status of wlun device to RPM_ACTIVE,
6437 * this also clears its runtime error.
6438 */
6439 ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6440
6441 /* hba device might have a runtime error otherwise */
6442 if (ret)
6443 ret = pm_runtime_set_active(hba->dev);
6444 /*
6445 * If wlun device had runtime error, we also need to resume those
6446 * consumer scsi devices in case any of them has failed to be
6447 * resumed due to supplier runtime resume failure. This is to unblock
6448 * blk_queue_enter in case there are bios waiting inside it.
6449 */
6450 if (!ret) {
6451 shost_for_each_device(sdev, shost) {
6452 q = sdev->request_queue;
6453 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6454 q->rpm_status == RPM_SUSPENDING))
6455 pm_request_resume(q->dev);
6456 }
6457 }
6458 }
6459 #else
ufshcd_recover_pm_error(struct ufs_hba * hba)6460 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6461 {
6462 }
6463 #endif
6464
ufshcd_is_pwr_mode_restore_needed(struct ufs_hba * hba)6465 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6466 {
6467 struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6468 u32 mode;
6469
6470 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6471
6472 if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6473 return true;
6474
6475 if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6476 return true;
6477
6478 return false;
6479 }
6480
ufshcd_abort_one(struct request * rq,void * priv)6481 static bool ufshcd_abort_one(struct request *rq, void *priv)
6482 {
6483 int *ret = priv;
6484 u32 tag = rq->tag;
6485 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6486 struct scsi_device *sdev = cmd->device;
6487 struct Scsi_Host *shost = sdev->host;
6488 struct ufs_hba *hba = shost_priv(shost);
6489
6490 *ret = ufshcd_try_to_abort_task(hba, tag);
6491 dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6492 hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6493 *ret ? "failed" : "succeeded");
6494
6495 return *ret == 0;
6496 }
6497
6498 /**
6499 * ufshcd_abort_all - Abort all pending commands.
6500 * @hba: Host bus adapter pointer.
6501 *
6502 * Return: true if and only if the host controller needs to be reset.
6503 */
ufshcd_abort_all(struct ufs_hba * hba)6504 static bool ufshcd_abort_all(struct ufs_hba *hba)
6505 {
6506 int tag, ret = 0;
6507
6508 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6509 if (ret)
6510 goto out;
6511
6512 /* Clear pending task management requests */
6513 for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6514 ret = ufshcd_clear_tm_cmd(hba, tag);
6515 if (ret)
6516 goto out;
6517 }
6518
6519 out:
6520 /* Complete the requests that are cleared by s/w */
6521 ufshcd_complete_requests(hba, false);
6522
6523 return ret != 0;
6524 }
6525
6526 /**
6527 * ufshcd_err_handler - handle UFS errors that require s/w attention
6528 * @work: pointer to work structure
6529 */
ufshcd_err_handler(struct work_struct * work)6530 static void ufshcd_err_handler(struct work_struct *work)
6531 {
6532 int retries = MAX_ERR_HANDLER_RETRIES;
6533 struct ufs_hba *hba;
6534 unsigned long flags;
6535 bool needs_restore;
6536 bool needs_reset;
6537 int pmc_err;
6538
6539 hba = container_of(work, struct ufs_hba, eh_work);
6540
6541 dev_info(hba->dev,
6542 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6543 __func__, ufshcd_state_name[hba->ufshcd_state],
6544 hba->is_powered, hba->shutting_down, hba->saved_err,
6545 hba->saved_uic_err, hba->force_reset,
6546 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6547
6548 down(&hba->host_sem);
6549 spin_lock_irqsave(hba->host->host_lock, flags);
6550 if (ufshcd_err_handling_should_stop(hba)) {
6551 if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6552 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6553 spin_unlock_irqrestore(hba->host->host_lock, flags);
6554 up(&hba->host_sem);
6555 return;
6556 }
6557 ufshcd_set_eh_in_progress(hba);
6558 spin_unlock_irqrestore(hba->host->host_lock, flags);
6559 ufshcd_err_handling_prepare(hba);
6560 /* Complete requests that have door-bell cleared by h/w */
6561 ufshcd_complete_requests(hba, false);
6562 spin_lock_irqsave(hba->host->host_lock, flags);
6563 again:
6564 needs_restore = false;
6565 needs_reset = false;
6566
6567 if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6568 hba->ufshcd_state = UFSHCD_STATE_RESET;
6569 /*
6570 * A full reset and restore might have happened after preparation
6571 * is finished, double check whether we should stop.
6572 */
6573 if (ufshcd_err_handling_should_stop(hba))
6574 goto skip_err_handling;
6575
6576 if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) &&
6577 !hba->force_reset) {
6578 bool ret;
6579
6580 spin_unlock_irqrestore(hba->host->host_lock, flags);
6581 /* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6582 ret = ufshcd_quirk_dl_nac_errors(hba);
6583 spin_lock_irqsave(hba->host->host_lock, flags);
6584 if (!ret && ufshcd_err_handling_should_stop(hba))
6585 goto skip_err_handling;
6586 }
6587
6588 if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6589 (hba->saved_uic_err &&
6590 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6591 bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6592
6593 spin_unlock_irqrestore(hba->host->host_lock, flags);
6594 ufshcd_print_host_state(hba);
6595 ufshcd_print_pwr_info(hba);
6596 ufshcd_print_evt_hist(hba);
6597 ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6598 ufshcd_print_trs_all(hba, pr_prdt);
6599 spin_lock_irqsave(hba->host->host_lock, flags);
6600 }
6601
6602 /*
6603 * if host reset is required then skip clearing the pending
6604 * transfers forcefully because they will get cleared during
6605 * host reset and restore
6606 */
6607 if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6608 ufshcd_is_saved_err_fatal(hba) ||
6609 ((hba->saved_err & UIC_ERROR) &&
6610 (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6611 UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6612 needs_reset = true;
6613 goto do_reset;
6614 }
6615
6616 /*
6617 * If LINERESET was caught, UFS might have been put to PWM mode,
6618 * check if power mode restore is needed.
6619 */
6620 if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6621 hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6622 if (!hba->saved_uic_err)
6623 hba->saved_err &= ~UIC_ERROR;
6624 spin_unlock_irqrestore(hba->host->host_lock, flags);
6625 if (ufshcd_is_pwr_mode_restore_needed(hba))
6626 needs_restore = true;
6627 spin_lock_irqsave(hba->host->host_lock, flags);
6628 if (!hba->saved_err && !needs_restore)
6629 goto skip_err_handling;
6630 }
6631
6632 hba->silence_err_logs = true;
6633 /* release lock as clear command might sleep */
6634 spin_unlock_irqrestore(hba->host->host_lock, flags);
6635
6636 needs_reset = ufshcd_abort_all(hba);
6637
6638 spin_lock_irqsave(hba->host->host_lock, flags);
6639 hba->silence_err_logs = false;
6640 if (needs_reset)
6641 goto do_reset;
6642
6643 /*
6644 * After all reqs and tasks are cleared from doorbell,
6645 * now it is safe to retore power mode.
6646 */
6647 if (needs_restore) {
6648 spin_unlock_irqrestore(hba->host->host_lock, flags);
6649 /*
6650 * Hold the scaling lock just in case dev cmds
6651 * are sent via bsg and/or sysfs.
6652 */
6653 down_write(&hba->clk_scaling_lock);
6654 hba->force_pmc = true;
6655 pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6656 if (pmc_err) {
6657 needs_reset = true;
6658 dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6659 __func__, pmc_err);
6660 }
6661 hba->force_pmc = false;
6662 ufshcd_print_pwr_info(hba);
6663 up_write(&hba->clk_scaling_lock);
6664 spin_lock_irqsave(hba->host->host_lock, flags);
6665 }
6666
6667 do_reset:
6668 /* Fatal errors need reset */
6669 if (needs_reset) {
6670 int err;
6671
6672 hba->force_reset = false;
6673 spin_unlock_irqrestore(hba->host->host_lock, flags);
6674 err = ufshcd_reset_and_restore(hba);
6675 if (err)
6676 dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6677 __func__, err);
6678 else
6679 ufshcd_recover_pm_error(hba);
6680 spin_lock_irqsave(hba->host->host_lock, flags);
6681 }
6682
6683 skip_err_handling:
6684 if (!needs_reset) {
6685 if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6686 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6687 if (hba->saved_err || hba->saved_uic_err)
6688 dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6689 __func__, hba->saved_err, hba->saved_uic_err);
6690 }
6691 /* Exit in an operational state or dead */
6692 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6693 hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6694 if (--retries)
6695 goto again;
6696 hba->ufshcd_state = UFSHCD_STATE_ERROR;
6697 }
6698 ufshcd_clear_eh_in_progress(hba);
6699 spin_unlock_irqrestore(hba->host->host_lock, flags);
6700 ufshcd_err_handling_unprepare(hba);
6701 up(&hba->host_sem);
6702
6703 dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6704 ufshcd_state_name[hba->ufshcd_state]);
6705 }
6706
6707 /**
6708 * ufshcd_update_uic_error - check and set fatal UIC error flags.
6709 * @hba: per-adapter instance
6710 *
6711 * Return:
6712 * IRQ_HANDLED - If interrupt is valid
6713 * IRQ_NONE - If invalid interrupt
6714 */
ufshcd_update_uic_error(struct ufs_hba * hba)6715 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6716 {
6717 u32 reg;
6718 irqreturn_t retval = IRQ_NONE;
6719
6720 /* PHY layer error */
6721 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6722 if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6723 (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6724 ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6725 /*
6726 * To know whether this error is fatal or not, DB timeout
6727 * must be checked but this error is handled separately.
6728 */
6729 if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6730 dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6731 __func__);
6732
6733 /* Got a LINERESET indication. */
6734 if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6735 struct uic_command *cmd = NULL;
6736
6737 hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6738 if (hba->uic_async_done && hba->active_uic_cmd)
6739 cmd = hba->active_uic_cmd;
6740 /*
6741 * Ignore the LINERESET during power mode change
6742 * operation via DME_SET command.
6743 */
6744 if (cmd && (cmd->command == UIC_CMD_DME_SET))
6745 hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6746 }
6747 retval |= IRQ_HANDLED;
6748 }
6749
6750 /* PA_INIT_ERROR is fatal and needs UIC reset */
6751 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6752 if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6753 (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6754 ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6755
6756 if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6757 hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6758 else if (hba->dev_quirks &
6759 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6760 if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6761 hba->uic_error |=
6762 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6763 else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6764 hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6765 }
6766 retval |= IRQ_HANDLED;
6767 }
6768
6769 /* UIC NL/TL/DME errors needs software retry */
6770 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6771 if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6772 (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6773 ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6774 hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6775 retval |= IRQ_HANDLED;
6776 }
6777
6778 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6779 if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6780 (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6781 ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6782 hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6783 retval |= IRQ_HANDLED;
6784 }
6785
6786 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6787 if ((reg & UIC_DME_ERROR) &&
6788 (reg & UIC_DME_ERROR_CODE_MASK)) {
6789 ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6790 hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6791 retval |= IRQ_HANDLED;
6792 }
6793
6794 dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6795 __func__, hba->uic_error);
6796 return retval;
6797 }
6798
6799 /**
6800 * ufshcd_check_errors - Check for errors that need s/w attention
6801 * @hba: per-adapter instance
6802 * @intr_status: interrupt status generated by the controller
6803 *
6804 * Return:
6805 * IRQ_HANDLED - If interrupt is valid
6806 * IRQ_NONE - If invalid interrupt
6807 */
ufshcd_check_errors(struct ufs_hba * hba,u32 intr_status)6808 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6809 {
6810 bool queue_eh_work = false;
6811 irqreturn_t retval = IRQ_NONE;
6812
6813 spin_lock(hba->host->host_lock);
6814 hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6815
6816 if (hba->errors & INT_FATAL_ERRORS) {
6817 ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6818 hba->errors);
6819 queue_eh_work = true;
6820 }
6821
6822 if (hba->errors & UIC_ERROR) {
6823 hba->uic_error = 0;
6824 retval = ufshcd_update_uic_error(hba);
6825 if (hba->uic_error)
6826 queue_eh_work = true;
6827 }
6828
6829 if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6830 dev_err(hba->dev,
6831 "%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6832 __func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6833 "Enter" : "Exit",
6834 hba->errors, ufshcd_get_upmcrs(hba));
6835 ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6836 hba->errors);
6837 ufshcd_set_link_broken(hba);
6838 queue_eh_work = true;
6839 }
6840
6841 if (queue_eh_work) {
6842 /*
6843 * update the transfer error masks to sticky bits, let's do this
6844 * irrespective of current ufshcd_state.
6845 */
6846 hba->saved_err |= hba->errors;
6847 hba->saved_uic_err |= hba->uic_error;
6848
6849 /* dump controller state before resetting */
6850 if ((hba->saved_err &
6851 (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6852 (hba->saved_uic_err &&
6853 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6854 dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6855 __func__, hba->saved_err,
6856 hba->saved_uic_err);
6857 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6858 "host_regs: ");
6859 ufshcd_print_pwr_info(hba);
6860 }
6861 ufshcd_schedule_eh_work(hba);
6862 retval |= IRQ_HANDLED;
6863 }
6864 /*
6865 * if (!queue_eh_work) -
6866 * Other errors are either non-fatal where host recovers
6867 * itself without s/w intervention or errors that will be
6868 * handled by the SCSI core layer.
6869 */
6870 hba->errors = 0;
6871 hba->uic_error = 0;
6872 spin_unlock(hba->host->host_lock);
6873 return retval;
6874 }
6875
6876 /**
6877 * ufshcd_tmc_handler - handle task management function completion
6878 * @hba: per adapter instance
6879 *
6880 * Return:
6881 * IRQ_HANDLED - If interrupt is valid
6882 * IRQ_NONE - If invalid interrupt
6883 */
ufshcd_tmc_handler(struct ufs_hba * hba)6884 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6885 {
6886 unsigned long flags, pending, issued;
6887 irqreturn_t ret = IRQ_NONE;
6888 int tag;
6889
6890 spin_lock_irqsave(hba->host->host_lock, flags);
6891 pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6892 issued = hba->outstanding_tasks & ~pending;
6893 for_each_set_bit(tag, &issued, hba->nutmrs) {
6894 struct request *req = hba->tmf_rqs[tag];
6895 struct completion *c = req->end_io_data;
6896
6897 complete(c);
6898 ret = IRQ_HANDLED;
6899 }
6900 spin_unlock_irqrestore(hba->host->host_lock, flags);
6901
6902 return ret;
6903 }
6904
6905 /**
6906 * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6907 * @hba: per adapter instance
6908 *
6909 * Return: IRQ_HANDLED if interrupt is handled.
6910 */
ufshcd_handle_mcq_cq_events(struct ufs_hba * hba)6911 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6912 {
6913 struct ufs_hw_queue *hwq;
6914 unsigned long outstanding_cqs;
6915 unsigned int nr_queues;
6916 int i, ret;
6917 u32 events;
6918
6919 ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6920 if (ret)
6921 outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6922
6923 /* Exclude the poll queues */
6924 nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6925 for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6926 hwq = &hba->uhq[i];
6927
6928 events = ufshcd_mcq_read_cqis(hba, i);
6929 if (events)
6930 ufshcd_mcq_write_cqis(hba, events, i);
6931
6932 if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6933 ufshcd_mcq_poll_cqe_lock(hba, hwq);
6934 }
6935
6936 return IRQ_HANDLED;
6937 }
6938
6939 /**
6940 * ufshcd_sl_intr - Interrupt service routine
6941 * @hba: per adapter instance
6942 * @intr_status: contains interrupts generated by the controller
6943 *
6944 * Return:
6945 * IRQ_HANDLED - If interrupt is valid
6946 * IRQ_NONE - If invalid interrupt
6947 */
ufshcd_sl_intr(struct ufs_hba * hba,u32 intr_status)6948 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6949 {
6950 irqreturn_t retval = IRQ_NONE;
6951
6952 if (intr_status & UFSHCD_UIC_MASK)
6953 retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6954
6955 if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6956 retval |= ufshcd_check_errors(hba, intr_status);
6957
6958 if (intr_status & UTP_TASK_REQ_COMPL)
6959 retval |= ufshcd_tmc_handler(hba);
6960
6961 if (intr_status & UTP_TRANSFER_REQ_COMPL)
6962 retval |= ufshcd_transfer_req_compl(hba);
6963
6964 if (intr_status & MCQ_CQ_EVENT_STATUS)
6965 retval |= ufshcd_handle_mcq_cq_events(hba);
6966
6967 return retval;
6968 }
6969
6970 /**
6971 * ufshcd_intr - Main interrupt service routine
6972 * @irq: irq number
6973 * @__hba: pointer to adapter instance
6974 *
6975 * Return:
6976 * IRQ_HANDLED - If interrupt is valid
6977 * IRQ_NONE - If invalid interrupt
6978 */
ufshcd_intr(int irq,void * __hba)6979 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6980 {
6981 u32 intr_status, enabled_intr_status = 0;
6982 irqreturn_t retval = IRQ_NONE;
6983 struct ufs_hba *hba = __hba;
6984 int retries = hba->nutrs;
6985
6986 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6987 hba->ufs_stats.last_intr_status = intr_status;
6988 hba->ufs_stats.last_intr_ts = local_clock();
6989
6990 /*
6991 * There could be max of hba->nutrs reqs in flight and in worst case
6992 * if the reqs get finished 1 by 1 after the interrupt status is
6993 * read, make sure we handle them by checking the interrupt status
6994 * again in a loop until we process all of the reqs before returning.
6995 */
6996 while (intr_status && retries--) {
6997 enabled_intr_status =
6998 intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6999 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
7000 if (enabled_intr_status)
7001 retval |= ufshcd_sl_intr(hba, enabled_intr_status);
7002
7003 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7004 }
7005
7006 if (enabled_intr_status && retval == IRQ_NONE &&
7007 (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
7008 hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
7009 dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
7010 __func__,
7011 intr_status,
7012 hba->ufs_stats.last_intr_status,
7013 enabled_intr_status);
7014 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
7015 }
7016
7017 return retval;
7018 }
7019
ufshcd_clear_tm_cmd(struct ufs_hba * hba,int tag)7020 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
7021 {
7022 int err = 0;
7023 u32 mask = 1 << tag;
7024
7025 if (!test_bit(tag, &hba->outstanding_tasks))
7026 goto out;
7027
7028 ufshcd_utmrl_clear(hba, tag);
7029
7030 /* poll for max. 1 sec to clear door bell register by h/w */
7031 err = ufshcd_wait_for_register(hba,
7032 REG_UTP_TASK_REQ_DOOR_BELL,
7033 mask, 0, 1000, 1000);
7034
7035 dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
7036 tag, err < 0 ? "failed" : "succeeded");
7037
7038 out:
7039 return err;
7040 }
7041
__ufshcd_issue_tm_cmd(struct ufs_hba * hba,struct utp_task_req_desc * treq,u8 tm_function)7042 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
7043 struct utp_task_req_desc *treq, u8 tm_function)
7044 {
7045 struct request_queue *q = hba->tmf_queue;
7046 struct Scsi_Host *host = hba->host;
7047 DECLARE_COMPLETION_ONSTACK(wait);
7048 struct request *req;
7049 unsigned long flags;
7050 int task_tag, err;
7051
7052 /*
7053 * blk_mq_alloc_request() is used here only to get a free tag.
7054 */
7055 req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
7056 if (IS_ERR(req))
7057 return PTR_ERR(req);
7058
7059 req->end_io_data = &wait;
7060 ufshcd_hold(hba);
7061
7062 spin_lock_irqsave(host->host_lock, flags);
7063
7064 task_tag = req->tag;
7065 hba->tmf_rqs[req->tag] = req;
7066 treq->upiu_req.req_header.task_tag = task_tag;
7067
7068 memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7069 ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7070
7071 __set_bit(task_tag, &hba->outstanding_tasks);
7072
7073 spin_unlock_irqrestore(host->host_lock, flags);
7074
7075 /* send command to the controller */
7076 ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7077
7078 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7079
7080 /* wait until the task management command is completed */
7081 err = wait_for_completion_io_timeout(&wait,
7082 msecs_to_jiffies(TM_CMD_TIMEOUT));
7083 if (!err) {
7084 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7085 dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7086 __func__, tm_function);
7087 if (ufshcd_clear_tm_cmd(hba, task_tag))
7088 dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7089 __func__, task_tag);
7090 err = -ETIMEDOUT;
7091 } else {
7092 err = 0;
7093 memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7094
7095 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7096 }
7097
7098 spin_lock_irqsave(hba->host->host_lock, flags);
7099 hba->tmf_rqs[req->tag] = NULL;
7100 __clear_bit(task_tag, &hba->outstanding_tasks);
7101 spin_unlock_irqrestore(hba->host->host_lock, flags);
7102
7103 ufshcd_release(hba);
7104 blk_mq_free_request(req);
7105
7106 return err;
7107 }
7108
7109 /**
7110 * ufshcd_issue_tm_cmd - issues task management commands to controller
7111 * @hba: per adapter instance
7112 * @lun_id: LUN ID to which TM command is sent
7113 * @task_id: task ID to which the TM command is applicable
7114 * @tm_function: task management function opcode
7115 * @tm_response: task management service response return value
7116 *
7117 * Return: non-zero value on error, zero on success.
7118 */
ufshcd_issue_tm_cmd(struct ufs_hba * hba,int lun_id,int task_id,u8 tm_function,u8 * tm_response)7119 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7120 u8 tm_function, u8 *tm_response)
7121 {
7122 struct utp_task_req_desc treq = { };
7123 enum utp_ocs ocs_value;
7124 int err;
7125
7126 /* Configure task request descriptor */
7127 treq.header.interrupt = 1;
7128 treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7129
7130 /* Configure task request UPIU */
7131 treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7132 treq.upiu_req.req_header.lun = lun_id;
7133 treq.upiu_req.req_header.tm_function = tm_function;
7134
7135 /*
7136 * The host shall provide the same value for LUN field in the basic
7137 * header and for Input Parameter.
7138 */
7139 treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7140 treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7141
7142 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7143 if (err == -ETIMEDOUT)
7144 return err;
7145
7146 ocs_value = treq.header.ocs & MASK_OCS;
7147 if (ocs_value != OCS_SUCCESS)
7148 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7149 __func__, ocs_value);
7150 else if (tm_response)
7151 *tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7152 MASK_TM_SERVICE_RESP;
7153 return err;
7154 }
7155
7156 /**
7157 * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7158 * @hba: per-adapter instance
7159 * @req_upiu: upiu request
7160 * @rsp_upiu: upiu reply
7161 * @desc_buff: pointer to descriptor buffer, NULL if NA
7162 * @buff_len: descriptor size, 0 if NA
7163 * @cmd_type: specifies the type (NOP, Query...)
7164 * @desc_op: descriptor operation
7165 *
7166 * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7167 * Therefore, it "rides" the device management infrastructure: uses its tag and
7168 * tasks work queues.
7169 *
7170 * Since there is only one available tag for device management commands,
7171 * the caller is expected to hold the hba->dev_cmd.lock mutex.
7172 *
7173 * Return: 0 upon success; < 0 upon failure.
7174 */
ufshcd_issue_devman_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,u8 * desc_buff,int * buff_len,enum dev_cmd_type cmd_type,enum query_opcode desc_op)7175 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7176 struct utp_upiu_req *req_upiu,
7177 struct utp_upiu_req *rsp_upiu,
7178 u8 *desc_buff, int *buff_len,
7179 enum dev_cmd_type cmd_type,
7180 enum query_opcode desc_op)
7181 {
7182 const u32 tag = hba->reserved_slot;
7183 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7184 int err = 0;
7185 u8 upiu_flags;
7186
7187 /* Protects use of hba->reserved_slot. */
7188 lockdep_assert_held(&hba->dev_cmd.lock);
7189
7190 ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
7191
7192 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
7193
7194 /* update the task tag in the request upiu */
7195 req_upiu->header.task_tag = tag;
7196
7197 /* just copy the upiu request as it is */
7198 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7199 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7200 /* The Data Segment Area is optional depending upon the query
7201 * function value. for WRITE DESCRIPTOR, the data segment
7202 * follows right after the tsf.
7203 */
7204 memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7205 *buff_len = 0;
7206 }
7207
7208 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7209
7210 /*
7211 * ignore the returning value here - ufshcd_check_query_response is
7212 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7213 * read the response directly ignoring all errors.
7214 */
7215 ufshcd_issue_dev_cmd(hba, lrbp, tag, QUERY_REQ_TIMEOUT);
7216
7217 /* just copy the upiu response as it is */
7218 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7219 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7220 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7221 u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7222 .data_segment_length);
7223
7224 if (*buff_len >= resp_len) {
7225 memcpy(desc_buff, descp, resp_len);
7226 *buff_len = resp_len;
7227 } else {
7228 dev_warn(hba->dev,
7229 "%s: rsp size %d is bigger than buffer size %d",
7230 __func__, resp_len, *buff_len);
7231 *buff_len = 0;
7232 err = -EINVAL;
7233 }
7234 }
7235 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7236 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7237
7238 return err;
7239 }
7240
7241 /**
7242 * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7243 * @hba: per-adapter instance
7244 * @req_upiu: upiu request
7245 * @rsp_upiu: upiu reply - only 8 DW as we do not support scsi commands
7246 * @msgcode: message code, one of UPIU Transaction Codes Initiator to Target
7247 * @desc_buff: pointer to descriptor buffer, NULL if NA
7248 * @buff_len: descriptor size, 0 if NA
7249 * @desc_op: descriptor operation
7250 *
7251 * Supports UTP Transfer requests (nop and query), and UTP Task
7252 * Management requests.
7253 * It is up to the caller to fill the upiu conent properly, as it will
7254 * be copied without any further input validations.
7255 *
7256 * Return: 0 upon success; < 0 upon failure.
7257 */
ufshcd_exec_raw_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,enum upiu_request_transaction msgcode,u8 * desc_buff,int * buff_len,enum query_opcode desc_op)7258 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7259 struct utp_upiu_req *req_upiu,
7260 struct utp_upiu_req *rsp_upiu,
7261 enum upiu_request_transaction msgcode,
7262 u8 *desc_buff, int *buff_len,
7263 enum query_opcode desc_op)
7264 {
7265 int err;
7266 enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7267 struct utp_task_req_desc treq = { };
7268 enum utp_ocs ocs_value;
7269 u8 tm_f = req_upiu->header.tm_function;
7270
7271 switch (msgcode) {
7272 case UPIU_TRANSACTION_NOP_OUT:
7273 cmd_type = DEV_CMD_TYPE_NOP;
7274 fallthrough;
7275 case UPIU_TRANSACTION_QUERY_REQ:
7276 ufshcd_dev_man_lock(hba);
7277 err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7278 desc_buff, buff_len,
7279 cmd_type, desc_op);
7280 ufshcd_dev_man_unlock(hba);
7281
7282 break;
7283 case UPIU_TRANSACTION_TASK_REQ:
7284 treq.header.interrupt = 1;
7285 treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7286
7287 memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7288
7289 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7290 if (err == -ETIMEDOUT)
7291 break;
7292
7293 ocs_value = treq.header.ocs & MASK_OCS;
7294 if (ocs_value != OCS_SUCCESS) {
7295 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7296 ocs_value);
7297 break;
7298 }
7299
7300 memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7301
7302 break;
7303 default:
7304 err = -EINVAL;
7305
7306 break;
7307 }
7308
7309 return err;
7310 }
7311
7312 /**
7313 * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7314 * @hba: per adapter instance
7315 * @req_upiu: upiu request
7316 * @rsp_upiu: upiu reply
7317 * @req_ehs: EHS field which contains Advanced RPMB Request Message
7318 * @rsp_ehs: EHS field which returns Advanced RPMB Response Message
7319 * @sg_cnt: The number of sg lists actually used
7320 * @sg_list: Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7321 * @dir: DMA direction
7322 *
7323 * Return: zero on success, non-zero on failure.
7324 */
ufshcd_advanced_rpmb_req_handler(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,struct ufs_ehs * req_ehs,struct ufs_ehs * rsp_ehs,int sg_cnt,struct scatterlist * sg_list,enum dma_data_direction dir)7325 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7326 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7327 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7328 enum dma_data_direction dir)
7329 {
7330 const u32 tag = hba->reserved_slot;
7331 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7332 int err = 0;
7333 int result;
7334 u8 upiu_flags;
7335 u8 *ehs_data;
7336 u16 ehs_len;
7337 int ehs = (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) ? 2 : 0;
7338
7339 /* Protects use of hba->reserved_slot. */
7340 ufshcd_dev_man_lock(hba);
7341
7342 ufshcd_setup_dev_cmd(hba, lrbp, DEV_CMD_TYPE_RPMB, UFS_UPIU_RPMB_WLUN, tag);
7343
7344 ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, ehs);
7345
7346 /* update the task tag */
7347 req_upiu->header.task_tag = tag;
7348
7349 /* copy the UPIU(contains CDB) request as it is */
7350 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7351 /* Copy EHS, starting with byte32, immediately after the CDB package */
7352 memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7353
7354 if (dir != DMA_NONE && sg_list)
7355 ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7356
7357 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7358
7359 err = ufshcd_issue_dev_cmd(hba, lrbp, tag, ADVANCED_RPMB_REQ_TIMEOUT);
7360
7361 if (!err) {
7362 /* Just copy the upiu response as it is */
7363 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7364 /* Get the response UPIU result */
7365 result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7366 lrbp->ucd_rsp_ptr->header.status;
7367
7368 ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7369 /*
7370 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7371 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7372 * Message is 02h
7373 */
7374 if (ehs_len == 2 && rsp_ehs) {
7375 /*
7376 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7377 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7378 */
7379 ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7380 memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7381 }
7382 }
7383
7384 ufshcd_dev_man_unlock(hba);
7385
7386 return err ? : result;
7387 }
7388
7389 /**
7390 * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7391 * @cmd: SCSI command pointer
7392 *
7393 * Return: SUCCESS or FAILED.
7394 */
ufshcd_eh_device_reset_handler(struct scsi_cmnd * cmd)7395 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7396 {
7397 unsigned long flags, pending_reqs = 0, not_cleared = 0;
7398 struct Scsi_Host *host;
7399 struct ufs_hba *hba;
7400 struct ufs_hw_queue *hwq;
7401 struct ufshcd_lrb *lrbp;
7402 u32 pos, not_cleared_mask = 0;
7403 int err;
7404 u8 resp = 0xF, lun;
7405
7406 host = cmd->device->host;
7407 hba = shost_priv(host);
7408
7409 lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7410 err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7411 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7412 if (!err)
7413 err = resp;
7414 goto out;
7415 }
7416
7417 if (hba->mcq_enabled) {
7418 for (pos = 0; pos < hba->nutrs; pos++) {
7419 lrbp = &hba->lrb[pos];
7420 if (ufshcd_cmd_inflight(lrbp->cmd) &&
7421 lrbp->lun == lun) {
7422 ufshcd_clear_cmd(hba, pos);
7423 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7424 ufshcd_mcq_poll_cqe_lock(hba, hwq);
7425 }
7426 }
7427 err = 0;
7428 goto out;
7429 }
7430
7431 /* clear the commands that were pending for corresponding LUN */
7432 spin_lock_irqsave(&hba->outstanding_lock, flags);
7433 for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7434 if (hba->lrb[pos].lun == lun)
7435 __set_bit(pos, &pending_reqs);
7436 hba->outstanding_reqs &= ~pending_reqs;
7437 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7438
7439 for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7440 if (ufshcd_clear_cmd(hba, pos) < 0) {
7441 spin_lock_irqsave(&hba->outstanding_lock, flags);
7442 not_cleared = 1U << pos &
7443 ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7444 hba->outstanding_reqs |= not_cleared;
7445 not_cleared_mask |= not_cleared;
7446 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7447
7448 dev_err(hba->dev, "%s: failed to clear request %d\n",
7449 __func__, pos);
7450 }
7451 }
7452 __ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7453
7454 out:
7455 hba->req_abort_count = 0;
7456 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7457 if (!err) {
7458 err = SUCCESS;
7459 } else {
7460 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7461 err = FAILED;
7462 }
7463 return err;
7464 }
7465
ufshcd_set_req_abort_skip(struct ufs_hba * hba,unsigned long bitmap)7466 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7467 {
7468 struct ufshcd_lrb *lrbp;
7469 int tag;
7470
7471 for_each_set_bit(tag, &bitmap, hba->nutrs) {
7472 lrbp = &hba->lrb[tag];
7473 lrbp->req_abort_skip = true;
7474 }
7475 }
7476
7477 /**
7478 * ufshcd_try_to_abort_task - abort a specific task
7479 * @hba: Pointer to adapter instance
7480 * @tag: Task tag/index to be aborted
7481 *
7482 * Abort the pending command in device by sending UFS_ABORT_TASK task management
7483 * command, and in host controller by clearing the door-bell register. There can
7484 * be race between controller sending the command to the device while abort is
7485 * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7486 * really issued and then try to abort it.
7487 *
7488 * Return: zero on success, non-zero on failure.
7489 */
ufshcd_try_to_abort_task(struct ufs_hba * hba,int tag)7490 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7491 {
7492 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7493 int err;
7494 int poll_cnt;
7495 u8 resp = 0xF;
7496
7497 for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7498 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7499 UFS_QUERY_TASK, &resp);
7500 if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7501 /* cmd pending in the device */
7502 dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7503 __func__, tag);
7504 break;
7505 } else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7506 /*
7507 * cmd not pending in the device, check if it is
7508 * in transition.
7509 */
7510 dev_info(
7511 hba->dev,
7512 "%s: cmd with tag %d not pending in the device.\n",
7513 __func__, tag);
7514 if (!ufshcd_cmd_inflight(lrbp->cmd)) {
7515 dev_info(hba->dev,
7516 "%s: cmd with tag=%d completed.\n",
7517 __func__, tag);
7518 return 0;
7519 }
7520 usleep_range(100, 200);
7521 } else {
7522 dev_err(hba->dev,
7523 "%s: no response from device. tag = %d, err %d\n",
7524 __func__, tag, err);
7525 return err ? : resp;
7526 }
7527 }
7528
7529 if (!poll_cnt)
7530 return -EBUSY;
7531
7532 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7533 UFS_ABORT_TASK, &resp);
7534 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7535 if (!err) {
7536 err = resp; /* service response error */
7537 dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7538 __func__, tag, err);
7539 }
7540 return err;
7541 }
7542
7543 err = ufshcd_clear_cmd(hba, tag);
7544 if (err)
7545 dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7546 __func__, tag, err);
7547
7548 return err;
7549 }
7550
7551 /**
7552 * ufshcd_abort - scsi host template eh_abort_handler callback
7553 * @cmd: SCSI command pointer
7554 *
7555 * Return: SUCCESS or FAILED.
7556 */
ufshcd_abort(struct scsi_cmnd * cmd)7557 static int ufshcd_abort(struct scsi_cmnd *cmd)
7558 {
7559 struct Scsi_Host *host = cmd->device->host;
7560 struct ufs_hba *hba = shost_priv(host);
7561 int tag = scsi_cmd_to_rq(cmd)->tag;
7562 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7563 unsigned long flags;
7564 int err = FAILED;
7565 bool outstanding;
7566 u32 reg;
7567
7568 ufshcd_hold(hba);
7569
7570 if (!hba->mcq_enabled) {
7571 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7572 if (!test_bit(tag, &hba->outstanding_reqs)) {
7573 /* If command is already aborted/completed, return FAILED. */
7574 dev_err(hba->dev,
7575 "%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7576 __func__, tag, hba->outstanding_reqs, reg);
7577 goto release;
7578 }
7579 }
7580
7581 /* Print Transfer Request of aborted task */
7582 dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7583
7584 /*
7585 * Print detailed info about aborted request.
7586 * As more than one request might get aborted at the same time,
7587 * print full information only for the first aborted request in order
7588 * to reduce repeated printouts. For other aborted requests only print
7589 * basic details.
7590 */
7591 scsi_print_command(cmd);
7592 if (!hba->req_abort_count) {
7593 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7594 ufshcd_print_evt_hist(hba);
7595 ufshcd_print_host_state(hba);
7596 ufshcd_print_pwr_info(hba);
7597 ufshcd_print_tr(hba, tag, true);
7598 } else {
7599 ufshcd_print_tr(hba, tag, false);
7600 }
7601 hba->req_abort_count++;
7602
7603 if (!hba->mcq_enabled && !(reg & (1 << tag))) {
7604 /* only execute this code in single doorbell mode */
7605 dev_err(hba->dev,
7606 "%s: cmd was completed, but without a notifying intr, tag = %d",
7607 __func__, tag);
7608 __ufshcd_transfer_req_compl(hba, 1UL << tag);
7609 goto release;
7610 }
7611
7612 /*
7613 * Task abort to the device W-LUN is illegal. When this command
7614 * will fail, due to spec violation, scsi err handling next step
7615 * will be to send LU reset which, again, is a spec violation.
7616 * To avoid these unnecessary/illegal steps, first we clean up
7617 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7618 * then queue the eh_work and bail.
7619 */
7620 if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7621 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7622
7623 spin_lock_irqsave(host->host_lock, flags);
7624 hba->force_reset = true;
7625 ufshcd_schedule_eh_work(hba);
7626 spin_unlock_irqrestore(host->host_lock, flags);
7627 goto release;
7628 }
7629
7630 if (hba->mcq_enabled) {
7631 /* MCQ mode. Branch off to handle abort for mcq mode */
7632 err = ufshcd_mcq_abort(cmd);
7633 goto release;
7634 }
7635
7636 /* Skip task abort in case previous aborts failed and report failure */
7637 if (lrbp->req_abort_skip) {
7638 dev_err(hba->dev, "%s: skipping abort\n", __func__);
7639 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7640 goto release;
7641 }
7642
7643 err = ufshcd_try_to_abort_task(hba, tag);
7644 if (err) {
7645 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7646 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7647 err = FAILED;
7648 goto release;
7649 }
7650
7651 /*
7652 * Clear the corresponding bit from outstanding_reqs since the command
7653 * has been aborted successfully.
7654 */
7655 spin_lock_irqsave(&hba->outstanding_lock, flags);
7656 outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7657 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7658
7659 if (outstanding)
7660 ufshcd_release_scsi_cmd(hba, lrbp);
7661
7662 err = SUCCESS;
7663
7664 release:
7665 /* Matches the ufshcd_hold() call at the start of this function. */
7666 ufshcd_release(hba);
7667 return err;
7668 }
7669
7670 /**
7671 * ufshcd_process_probe_result - Process the ufshcd_probe_hba() result.
7672 * @hba: UFS host controller instance.
7673 * @probe_start: time when the ufshcd_probe_hba() call started.
7674 * @ret: ufshcd_probe_hba() return value.
7675 */
ufshcd_process_probe_result(struct ufs_hba * hba,ktime_t probe_start,int ret)7676 static void ufshcd_process_probe_result(struct ufs_hba *hba,
7677 ktime_t probe_start, int ret)
7678 {
7679 unsigned long flags;
7680
7681 spin_lock_irqsave(hba->host->host_lock, flags);
7682 if (ret)
7683 hba->ufshcd_state = UFSHCD_STATE_ERROR;
7684 else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
7685 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
7686 spin_unlock_irqrestore(hba->host->host_lock, flags);
7687
7688 trace_ufshcd_init(dev_name(hba->dev), ret,
7689 ktime_to_us(ktime_sub(ktime_get(), probe_start)),
7690 hba->curr_dev_pwr_mode, hba->uic_link_state);
7691 }
7692
7693 /**
7694 * ufshcd_host_reset_and_restore - reset and restore host controller
7695 * @hba: per-adapter instance
7696 *
7697 * Note that host controller reset may issue DME_RESET to
7698 * local and remote (device) Uni-Pro stack and the attributes
7699 * are reset to default state.
7700 *
7701 * Return: zero on success, non-zero on failure.
7702 */
ufshcd_host_reset_and_restore(struct ufs_hba * hba)7703 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7704 {
7705 int err;
7706
7707 /*
7708 * Stop the host controller and complete the requests
7709 * cleared by h/w
7710 */
7711 ufshcd_hba_stop(hba);
7712 hba->silence_err_logs = true;
7713 ufshcd_complete_requests(hba, true);
7714 hba->silence_err_logs = false;
7715
7716 /* scale up clocks to max frequency before full reinitialization */
7717 ufshcd_scale_clks(hba, ULONG_MAX, true);
7718
7719 err = ufshcd_hba_enable(hba);
7720
7721 /* Establish the link again and restore the device */
7722 if (!err) {
7723 ktime_t probe_start = ktime_get();
7724
7725 err = ufshcd_device_init(hba, /*init_dev_params=*/false);
7726 if (!err)
7727 err = ufshcd_probe_hba(hba, false);
7728 ufshcd_process_probe_result(hba, probe_start, err);
7729 }
7730
7731 if (err)
7732 dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7733 ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7734 return err;
7735 }
7736
7737 /**
7738 * ufshcd_reset_and_restore - reset and re-initialize host/device
7739 * @hba: per-adapter instance
7740 *
7741 * Reset and recover device, host and re-establish link. This
7742 * is helpful to recover the communication in fatal error conditions.
7743 *
7744 * Return: zero on success, non-zero on failure.
7745 */
ufshcd_reset_and_restore(struct ufs_hba * hba)7746 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7747 {
7748 u32 saved_err = 0;
7749 u32 saved_uic_err = 0;
7750 int err = 0;
7751 unsigned long flags;
7752 int retries = MAX_HOST_RESET_RETRIES;
7753
7754 spin_lock_irqsave(hba->host->host_lock, flags);
7755 do {
7756 /*
7757 * This is a fresh start, cache and clear saved error first,
7758 * in case new error generated during reset and restore.
7759 */
7760 saved_err |= hba->saved_err;
7761 saved_uic_err |= hba->saved_uic_err;
7762 hba->saved_err = 0;
7763 hba->saved_uic_err = 0;
7764 hba->force_reset = false;
7765 hba->ufshcd_state = UFSHCD_STATE_RESET;
7766 spin_unlock_irqrestore(hba->host->host_lock, flags);
7767
7768 /* Reset the attached device */
7769 ufshcd_device_reset(hba);
7770
7771 err = ufshcd_host_reset_and_restore(hba);
7772
7773 spin_lock_irqsave(hba->host->host_lock, flags);
7774 if (err)
7775 continue;
7776 /* Do not exit unless operational or dead */
7777 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7778 hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7779 hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7780 err = -EAGAIN;
7781 } while (err && --retries);
7782
7783 /*
7784 * Inform scsi mid-layer that we did reset and allow to handle
7785 * Unit Attention properly.
7786 */
7787 scsi_report_bus_reset(hba->host, 0);
7788 if (err) {
7789 hba->ufshcd_state = UFSHCD_STATE_ERROR;
7790 hba->saved_err |= saved_err;
7791 hba->saved_uic_err |= saved_uic_err;
7792 }
7793 spin_unlock_irqrestore(hba->host->host_lock, flags);
7794
7795 return err;
7796 }
7797
7798 /**
7799 * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7800 * @cmd: SCSI command pointer
7801 *
7802 * Return: SUCCESS or FAILED.
7803 */
ufshcd_eh_host_reset_handler(struct scsi_cmnd * cmd)7804 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7805 {
7806 int err = SUCCESS;
7807 unsigned long flags;
7808 struct ufs_hba *hba;
7809
7810 hba = shost_priv(cmd->device->host);
7811
7812 /*
7813 * If runtime PM sent SSU and got a timeout, scsi_error_handler is
7814 * stuck in this function waiting for flush_work(&hba->eh_work). And
7815 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do
7816 * ufshcd_link_recovery instead of eh_work to prevent deadlock.
7817 */
7818 if (hba->pm_op_in_progress) {
7819 if (ufshcd_link_recovery(hba))
7820 err = FAILED;
7821
7822 return err;
7823 }
7824
7825 spin_lock_irqsave(hba->host->host_lock, flags);
7826 hba->force_reset = true;
7827 ufshcd_schedule_eh_work(hba);
7828 dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7829 spin_unlock_irqrestore(hba->host->host_lock, flags);
7830
7831 flush_work(&hba->eh_work);
7832
7833 spin_lock_irqsave(hba->host->host_lock, flags);
7834 if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7835 err = FAILED;
7836 spin_unlock_irqrestore(hba->host->host_lock, flags);
7837
7838 return err;
7839 }
7840
7841 /**
7842 * ufshcd_get_max_icc_level - calculate the ICC level
7843 * @sup_curr_uA: max. current supported by the regulator
7844 * @start_scan: row at the desc table to start scan from
7845 * @buff: power descriptor buffer
7846 *
7847 * Return: calculated max ICC level for specific regulator.
7848 */
ufshcd_get_max_icc_level(int sup_curr_uA,u32 start_scan,const char * buff)7849 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7850 const char *buff)
7851 {
7852 int i;
7853 int curr_uA;
7854 u16 data;
7855 u16 unit;
7856
7857 for (i = start_scan; i >= 0; i--) {
7858 data = get_unaligned_be16(&buff[2 * i]);
7859 unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7860 ATTR_ICC_LVL_UNIT_OFFSET;
7861 curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7862 switch (unit) {
7863 case UFSHCD_NANO_AMP:
7864 curr_uA = curr_uA / 1000;
7865 break;
7866 case UFSHCD_MILI_AMP:
7867 curr_uA = curr_uA * 1000;
7868 break;
7869 case UFSHCD_AMP:
7870 curr_uA = curr_uA * 1000 * 1000;
7871 break;
7872 case UFSHCD_MICRO_AMP:
7873 default:
7874 break;
7875 }
7876 if (sup_curr_uA >= curr_uA)
7877 break;
7878 }
7879 if (i < 0) {
7880 i = 0;
7881 pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7882 }
7883
7884 return (u32)i;
7885 }
7886
7887 /**
7888 * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7889 * In case regulators are not initialized we'll return 0
7890 * @hba: per-adapter instance
7891 * @desc_buf: power descriptor buffer to extract ICC levels from.
7892 *
7893 * Return: calculated ICC level.
7894 */
ufshcd_find_max_sup_active_icc_level(struct ufs_hba * hba,const u8 * desc_buf)7895 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7896 const u8 *desc_buf)
7897 {
7898 u32 icc_level = 0;
7899
7900 if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7901 !hba->vreg_info.vccq2) {
7902 /*
7903 * Using dev_dbg to avoid messages during runtime PM to avoid
7904 * never-ending cycles of messages written back to storage by
7905 * user space causing runtime resume, causing more messages and
7906 * so on.
7907 */
7908 dev_dbg(hba->dev,
7909 "%s: Regulator capability was not set, actvIccLevel=%d",
7910 __func__, icc_level);
7911 goto out;
7912 }
7913
7914 if (hba->vreg_info.vcc->max_uA)
7915 icc_level = ufshcd_get_max_icc_level(
7916 hba->vreg_info.vcc->max_uA,
7917 POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7918 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7919
7920 if (hba->vreg_info.vccq->max_uA)
7921 icc_level = ufshcd_get_max_icc_level(
7922 hba->vreg_info.vccq->max_uA,
7923 icc_level,
7924 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7925
7926 if (hba->vreg_info.vccq2->max_uA)
7927 icc_level = ufshcd_get_max_icc_level(
7928 hba->vreg_info.vccq2->max_uA,
7929 icc_level,
7930 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7931 out:
7932 return icc_level;
7933 }
7934
ufshcd_set_active_icc_lvl(struct ufs_hba * hba)7935 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7936 {
7937 int ret;
7938 u8 *desc_buf;
7939 u32 icc_level;
7940
7941 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7942 if (!desc_buf)
7943 return;
7944
7945 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7946 desc_buf, QUERY_DESC_MAX_SIZE);
7947 if (ret) {
7948 dev_err(hba->dev,
7949 "%s: Failed reading power descriptor ret = %d",
7950 __func__, ret);
7951 goto out;
7952 }
7953
7954 icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7955 dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7956
7957 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7958 QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7959
7960 if (ret)
7961 dev_err(hba->dev,
7962 "%s: Failed configuring bActiveICCLevel = %d ret = %d",
7963 __func__, icc_level, ret);
7964
7965 out:
7966 kfree(desc_buf);
7967 }
7968
ufshcd_blk_pm_runtime_init(struct scsi_device * sdev)7969 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7970 {
7971 struct Scsi_Host *shost = sdev->host;
7972
7973 scsi_autopm_get_device(sdev);
7974 blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7975 if (sdev->rpm_autosuspend)
7976 pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7977 shost->rpm_autosuspend_delay);
7978 scsi_autopm_put_device(sdev);
7979 }
7980
7981 /**
7982 * ufshcd_scsi_add_wlus - Adds required W-LUs
7983 * @hba: per-adapter instance
7984 *
7985 * UFS device specification requires the UFS devices to support 4 well known
7986 * logical units:
7987 * "REPORT_LUNS" (address: 01h)
7988 * "UFS Device" (address: 50h)
7989 * "RPMB" (address: 44h)
7990 * "BOOT" (address: 30h)
7991 * UFS device's power management needs to be controlled by "POWER CONDITION"
7992 * field of SSU (START STOP UNIT) command. But this "power condition" field
7993 * will take effect only when its sent to "UFS device" well known logical unit
7994 * hence we require the scsi_device instance to represent this logical unit in
7995 * order for the UFS host driver to send the SSU command for power management.
7996 *
7997 * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7998 * Block) LU so user space process can control this LU. User space may also
7999 * want to have access to BOOT LU.
8000 *
8001 * This function adds scsi device instances for each of all well known LUs
8002 * (except "REPORT LUNS" LU).
8003 *
8004 * Return: zero on success (all required W-LUs are added successfully),
8005 * non-zero error value on failure (if failed to add any of the required W-LU).
8006 */
ufshcd_scsi_add_wlus(struct ufs_hba * hba)8007 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
8008 {
8009 int ret = 0;
8010 struct scsi_device *sdev_boot, *sdev_rpmb;
8011
8012 hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
8013 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
8014 if (IS_ERR(hba->ufs_device_wlun)) {
8015 ret = PTR_ERR(hba->ufs_device_wlun);
8016 hba->ufs_device_wlun = NULL;
8017 goto out;
8018 }
8019 scsi_device_put(hba->ufs_device_wlun);
8020
8021 sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
8022 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
8023 if (IS_ERR(sdev_rpmb)) {
8024 ret = PTR_ERR(sdev_rpmb);
8025 goto remove_ufs_device_wlun;
8026 }
8027 ufshcd_blk_pm_runtime_init(sdev_rpmb);
8028 scsi_device_put(sdev_rpmb);
8029
8030 sdev_boot = __scsi_add_device(hba->host, 0, 0,
8031 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
8032 if (IS_ERR(sdev_boot)) {
8033 dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
8034 } else {
8035 ufshcd_blk_pm_runtime_init(sdev_boot);
8036 scsi_device_put(sdev_boot);
8037 }
8038 goto out;
8039
8040 remove_ufs_device_wlun:
8041 scsi_remove_device(hba->ufs_device_wlun);
8042 out:
8043 return ret;
8044 }
8045
ufshcd_wb_probe(struct ufs_hba * hba,const u8 * desc_buf)8046 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8047 {
8048 struct ufs_dev_info *dev_info = &hba->dev_info;
8049 u8 lun;
8050 u32 d_lu_wb_buf_alloc;
8051 u32 ext_ufs_feature;
8052
8053 if (!ufshcd_is_wb_allowed(hba))
8054 return;
8055
8056 /*
8057 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8058 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8059 * enabled
8060 */
8061 if (!(dev_info->wspecversion >= 0x310 ||
8062 dev_info->wspecversion == 0x220 ||
8063 (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8064 goto wb_disabled;
8065
8066 ext_ufs_feature = get_unaligned_be32(desc_buf +
8067 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8068
8069 if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8070 goto wb_disabled;
8071
8072 /*
8073 * WB may be supported but not configured while provisioning. The spec
8074 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8075 * buffer configured.
8076 */
8077 dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8078
8079 dev_info->b_presrv_uspc_en =
8080 desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8081
8082 if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8083 if (!get_unaligned_be32(desc_buf +
8084 DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8085 goto wb_disabled;
8086 } else {
8087 for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8088 d_lu_wb_buf_alloc = 0;
8089 ufshcd_read_unit_desc_param(hba,
8090 lun,
8091 UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8092 (u8 *)&d_lu_wb_buf_alloc,
8093 sizeof(d_lu_wb_buf_alloc));
8094 if (d_lu_wb_buf_alloc) {
8095 dev_info->wb_dedicated_lu = lun;
8096 break;
8097 }
8098 }
8099
8100 if (!d_lu_wb_buf_alloc)
8101 goto wb_disabled;
8102 }
8103
8104 if (!ufshcd_is_wb_buf_lifetime_available(hba))
8105 goto wb_disabled;
8106
8107 return;
8108
8109 wb_disabled:
8110 hba->caps &= ~UFSHCD_CAP_WB_EN;
8111 }
8112
ufshcd_temp_notif_probe(struct ufs_hba * hba,const u8 * desc_buf)8113 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8114 {
8115 struct ufs_dev_info *dev_info = &hba->dev_info;
8116 u32 ext_ufs_feature;
8117 u8 mask = 0;
8118
8119 if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8120 return;
8121
8122 ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8123
8124 if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8125 mask |= MASK_EE_TOO_LOW_TEMP;
8126
8127 if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8128 mask |= MASK_EE_TOO_HIGH_TEMP;
8129
8130 if (mask) {
8131 ufshcd_enable_ee(hba, mask);
8132 ufs_hwmon_probe(hba, mask);
8133 }
8134 }
8135
ufshcd_ext_iid_probe(struct ufs_hba * hba,u8 * desc_buf)8136 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
8137 {
8138 struct ufs_dev_info *dev_info = &hba->dev_info;
8139 u32 ext_ufs_feature;
8140 u32 ext_iid_en = 0;
8141 int err;
8142
8143 /* Only UFS-4.0 and above may support EXT_IID */
8144 if (dev_info->wspecversion < 0x400)
8145 goto out;
8146
8147 ext_ufs_feature = get_unaligned_be32(desc_buf +
8148 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8149 if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
8150 goto out;
8151
8152 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8153 QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
8154 if (err)
8155 dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
8156
8157 out:
8158 dev_info->b_ext_iid_en = ext_iid_en;
8159 }
8160
ufshcd_set_rtt(struct ufs_hba * hba)8161 static void ufshcd_set_rtt(struct ufs_hba *hba)
8162 {
8163 struct ufs_dev_info *dev_info = &hba->dev_info;
8164 u32 rtt = 0;
8165 u32 dev_rtt = 0;
8166 int host_rtt_cap = hba->vops && hba->vops->max_num_rtt ?
8167 hba->vops->max_num_rtt : hba->nortt;
8168
8169 /* RTT override makes sense only for UFS-4.0 and above */
8170 if (dev_info->wspecversion < 0x400)
8171 return;
8172
8173 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8174 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &dev_rtt)) {
8175 dev_err(hba->dev, "failed reading bMaxNumOfRTT\n");
8176 return;
8177 }
8178
8179 /* do not override if it was already written */
8180 if (dev_rtt != DEFAULT_MAX_NUM_RTT)
8181 return;
8182
8183 rtt = min_t(int, dev_info->rtt_cap, host_rtt_cap);
8184
8185 if (rtt == dev_rtt)
8186 return;
8187
8188 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8189 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt))
8190 dev_err(hba->dev, "failed writing bMaxNumOfRTT\n");
8191 }
8192
ufshcd_fixup_dev_quirks(struct ufs_hba * hba,const struct ufs_dev_quirk * fixups)8193 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8194 const struct ufs_dev_quirk *fixups)
8195 {
8196 const struct ufs_dev_quirk *f;
8197 struct ufs_dev_info *dev_info = &hba->dev_info;
8198
8199 if (!fixups)
8200 return;
8201
8202 for (f = fixups; f->quirk; f++) {
8203 if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8204 f->wmanufacturerid == UFS_ANY_VENDOR) &&
8205 ((dev_info->model &&
8206 STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8207 !strcmp(f->model, UFS_ANY_MODEL)))
8208 hba->dev_quirks |= f->quirk;
8209 }
8210 }
8211 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8212
ufs_fixup_device_setup(struct ufs_hba * hba)8213 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8214 {
8215 /* fix by general quirk table */
8216 ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8217
8218 /* allow vendors to fix quirks */
8219 ufshcd_vops_fixup_dev_quirks(hba);
8220 }
8221
ufshcd_update_rtc(struct ufs_hba * hba)8222 static void ufshcd_update_rtc(struct ufs_hba *hba)
8223 {
8224 struct timespec64 ts64;
8225 int err;
8226 u32 val;
8227
8228 ktime_get_real_ts64(&ts64);
8229
8230 if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) {
8231 dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__);
8232 return;
8233 }
8234
8235 /*
8236 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond
8237 * 2146 is required, it is recommended to choose the relative RTC mode.
8238 */
8239 val = ts64.tv_sec - hba->dev_info.rtc_time_baseline;
8240
8241 /* Skip update RTC if RPM state is not RPM_ACTIVE */
8242 if (ufshcd_rpm_get_if_active(hba) <= 0)
8243 return;
8244
8245 err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED,
8246 0, 0, &val);
8247 ufshcd_rpm_put(hba);
8248
8249 if (err)
8250 dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err);
8251 else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
8252 hba->dev_info.rtc_time_baseline = ts64.tv_sec;
8253 }
8254
ufshcd_rtc_work(struct work_struct * work)8255 static void ufshcd_rtc_work(struct work_struct *work)
8256 {
8257 struct ufs_hba *hba;
8258
8259 hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work);
8260
8261 /* Update RTC only when there are no requests in progress and UFSHCI is operational */
8262 if (!ufshcd_is_ufs_dev_busy(hba) && hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL)
8263 ufshcd_update_rtc(hba);
8264
8265 if (ufshcd_is_ufs_dev_active(hba) && hba->dev_info.rtc_update_period)
8266 schedule_delayed_work(&hba->ufs_rtc_update_work,
8267 msecs_to_jiffies(hba->dev_info.rtc_update_period));
8268 }
8269
ufs_init_rtc(struct ufs_hba * hba,u8 * desc_buf)8270 static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf)
8271 {
8272 u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]);
8273 struct ufs_dev_info *dev_info = &hba->dev_info;
8274
8275 if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) {
8276 dev_info->rtc_type = UFS_RTC_ABSOLUTE;
8277
8278 /*
8279 * The concept of measuring time in Linux as the number of seconds elapsed since
8280 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st
8281 * 2010 00:00, here we need to adjust ABS baseline.
8282 */
8283 dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) -
8284 mktime64(1970, 1, 1, 0, 0, 0);
8285 } else {
8286 dev_info->rtc_type = UFS_RTC_RELATIVE;
8287 dev_info->rtc_time_baseline = 0;
8288 }
8289
8290 /*
8291 * We ignore TIME_PERIOD defined in wPeriodicRTCUpdate because Spec does not clearly state
8292 * how to calculate the specific update period for each time unit. And we disable periodic
8293 * RTC update work, let user configure by sysfs node according to specific circumstance.
8294 */
8295 dev_info->rtc_update_period = 0;
8296 }
8297
ufs_get_device_desc(struct ufs_hba * hba)8298 static int ufs_get_device_desc(struct ufs_hba *hba)
8299 {
8300 int err;
8301 u8 model_index;
8302 u8 *desc_buf;
8303 struct ufs_dev_info *dev_info = &hba->dev_info;
8304
8305 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8306 if (!desc_buf) {
8307 err = -ENOMEM;
8308 goto out;
8309 }
8310
8311 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8312 QUERY_DESC_MAX_SIZE);
8313 if (err) {
8314 dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8315 __func__, err);
8316 goto out;
8317 }
8318
8319 /*
8320 * getting vendor (manufacturerID) and Bank Index in big endian
8321 * format
8322 */
8323 dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8324 desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8325
8326 /* getting Specification Version in big endian format */
8327 dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8328 desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8329 dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8330
8331 dev_info->rtt_cap = desc_buf[DEVICE_DESC_PARAM_RTT_CAP];
8332
8333 model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8334
8335 err = ufshcd_read_string_desc(hba, model_index,
8336 &dev_info->model, SD_ASCII_STD);
8337 if (err < 0) {
8338 dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8339 __func__, err);
8340 goto out;
8341 }
8342
8343 hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8344 desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8345
8346 ufs_fixup_device_setup(hba);
8347
8348 ufshcd_wb_probe(hba, desc_buf);
8349
8350 ufshcd_temp_notif_probe(hba, desc_buf);
8351
8352 ufs_init_rtc(hba, desc_buf);
8353
8354 if (hba->ext_iid_sup)
8355 ufshcd_ext_iid_probe(hba, desc_buf);
8356
8357 /*
8358 * ufshcd_read_string_desc returns size of the string
8359 * reset the error value
8360 */
8361 err = 0;
8362
8363 out:
8364 kfree(desc_buf);
8365 return err;
8366 }
8367
ufs_put_device_desc(struct ufs_hba * hba)8368 static void ufs_put_device_desc(struct ufs_hba *hba)
8369 {
8370 struct ufs_dev_info *dev_info = &hba->dev_info;
8371
8372 kfree(dev_info->model);
8373 dev_info->model = NULL;
8374 }
8375
8376 /**
8377 * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8378 * less than device PA_TACTIVATE time.
8379 * @hba: per-adapter instance
8380 *
8381 * Some UFS devices require host PA_TACTIVATE to be lower than device
8382 * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8383 * for such devices.
8384 *
8385 * Return: zero on success, non-zero error value on failure.
8386 */
ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba * hba)8387 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8388 {
8389 int ret = 0;
8390 u32 granularity, peer_granularity;
8391 u32 pa_tactivate, peer_pa_tactivate;
8392 u32 pa_tactivate_us, peer_pa_tactivate_us;
8393 static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8394
8395 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8396 &granularity);
8397 if (ret)
8398 goto out;
8399
8400 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8401 &peer_granularity);
8402 if (ret)
8403 goto out;
8404
8405 if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8406 (granularity > PA_GRANULARITY_MAX_VAL)) {
8407 dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8408 __func__, granularity);
8409 return -EINVAL;
8410 }
8411
8412 if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8413 (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8414 dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8415 __func__, peer_granularity);
8416 return -EINVAL;
8417 }
8418
8419 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8420 if (ret)
8421 goto out;
8422
8423 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8424 &peer_pa_tactivate);
8425 if (ret)
8426 goto out;
8427
8428 pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8429 peer_pa_tactivate_us = peer_pa_tactivate *
8430 gran_to_us_table[peer_granularity - 1];
8431
8432 if (pa_tactivate_us >= peer_pa_tactivate_us) {
8433 u32 new_peer_pa_tactivate;
8434
8435 new_peer_pa_tactivate = pa_tactivate_us /
8436 gran_to_us_table[peer_granularity - 1];
8437 new_peer_pa_tactivate++;
8438 ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8439 new_peer_pa_tactivate);
8440 }
8441
8442 out:
8443 return ret;
8444 }
8445
ufshcd_tune_unipro_params(struct ufs_hba * hba)8446 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8447 {
8448 ufshcd_vops_apply_dev_quirks(hba);
8449
8450 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8451 /* set 1ms timeout for PA_TACTIVATE */
8452 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8453
8454 if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8455 ufshcd_quirk_tune_host_pa_tactivate(hba);
8456 }
8457
ufshcd_clear_dbg_ufs_stats(struct ufs_hba * hba)8458 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8459 {
8460 hba->ufs_stats.hibern8_exit_cnt = 0;
8461 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8462 hba->req_abort_count = 0;
8463 }
8464
ufshcd_device_geo_params_init(struct ufs_hba * hba)8465 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8466 {
8467 int err;
8468 u8 *desc_buf;
8469
8470 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8471 if (!desc_buf) {
8472 err = -ENOMEM;
8473 goto out;
8474 }
8475
8476 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8477 desc_buf, QUERY_DESC_MAX_SIZE);
8478 if (err) {
8479 dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8480 __func__, err);
8481 goto out;
8482 }
8483
8484 if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8485 hba->dev_info.max_lu_supported = 32;
8486 else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8487 hba->dev_info.max_lu_supported = 8;
8488
8489 out:
8490 kfree(desc_buf);
8491 return err;
8492 }
8493
8494 struct ufs_ref_clk {
8495 unsigned long freq_hz;
8496 enum ufs_ref_clk_freq val;
8497 };
8498
8499 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8500 {19200000, REF_CLK_FREQ_19_2_MHZ},
8501 {26000000, REF_CLK_FREQ_26_MHZ},
8502 {38400000, REF_CLK_FREQ_38_4_MHZ},
8503 {52000000, REF_CLK_FREQ_52_MHZ},
8504 {0, REF_CLK_FREQ_INVAL},
8505 };
8506
8507 static enum ufs_ref_clk_freq
ufs_get_bref_clk_from_hz(unsigned long freq)8508 ufs_get_bref_clk_from_hz(unsigned long freq)
8509 {
8510 int i;
8511
8512 for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8513 if (ufs_ref_clk_freqs[i].freq_hz == freq)
8514 return ufs_ref_clk_freqs[i].val;
8515
8516 return REF_CLK_FREQ_INVAL;
8517 }
8518
ufshcd_parse_dev_ref_clk_freq(struct ufs_hba * hba,struct clk * refclk)8519 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8520 {
8521 unsigned long freq;
8522
8523 freq = clk_get_rate(refclk);
8524
8525 hba->dev_ref_clk_freq =
8526 ufs_get_bref_clk_from_hz(freq);
8527
8528 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8529 dev_err(hba->dev,
8530 "invalid ref_clk setting = %ld\n", freq);
8531 }
8532
ufshcd_set_dev_ref_clk(struct ufs_hba * hba)8533 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8534 {
8535 int err;
8536 u32 ref_clk;
8537 u32 freq = hba->dev_ref_clk_freq;
8538
8539 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8540 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8541
8542 if (err) {
8543 dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8544 err);
8545 goto out;
8546 }
8547
8548 if (ref_clk == freq)
8549 goto out; /* nothing to update */
8550
8551 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8552 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8553
8554 if (err) {
8555 dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8556 ufs_ref_clk_freqs[freq].freq_hz);
8557 goto out;
8558 }
8559
8560 dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8561 ufs_ref_clk_freqs[freq].freq_hz);
8562
8563 out:
8564 return err;
8565 }
8566
ufshcd_device_params_init(struct ufs_hba * hba)8567 static int ufshcd_device_params_init(struct ufs_hba *hba)
8568 {
8569 bool flag;
8570 int ret;
8571
8572 /* Init UFS geometry descriptor related parameters */
8573 ret = ufshcd_device_geo_params_init(hba);
8574 if (ret)
8575 goto out;
8576
8577 /* Check and apply UFS device quirks */
8578 ret = ufs_get_device_desc(hba);
8579 if (ret) {
8580 dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8581 __func__, ret);
8582 goto out;
8583 }
8584
8585 ufshcd_set_rtt(hba);
8586
8587 ufshcd_get_ref_clk_gating_wait(hba);
8588
8589 if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8590 QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8591 hba->dev_info.f_power_on_wp_en = flag;
8592
8593 /* Probe maximum power mode co-supported by both UFS host and device */
8594 if (ufshcd_get_max_pwr_mode(hba))
8595 dev_err(hba->dev,
8596 "%s: Failed getting max supported power mode\n",
8597 __func__);
8598 out:
8599 return ret;
8600 }
8601
ufshcd_set_timestamp_attr(struct ufs_hba * hba)8602 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8603 {
8604 int err;
8605 struct ufs_query_req *request = NULL;
8606 struct ufs_query_res *response = NULL;
8607 struct ufs_dev_info *dev_info = &hba->dev_info;
8608 struct utp_upiu_query_v4_0 *upiu_data;
8609
8610 if (dev_info->wspecversion < 0x400)
8611 return;
8612
8613 ufshcd_dev_man_lock(hba);
8614
8615 ufshcd_init_query(hba, &request, &response,
8616 UPIU_QUERY_OPCODE_WRITE_ATTR,
8617 QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8618
8619 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8620
8621 upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8622
8623 put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8624
8625 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8626
8627 if (err)
8628 dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8629 __func__, err);
8630
8631 ufshcd_dev_man_unlock(hba);
8632 }
8633
8634 /**
8635 * ufshcd_add_lus - probe and add UFS logical units
8636 * @hba: per-adapter instance
8637 *
8638 * Return: 0 upon success; < 0 upon failure.
8639 */
ufshcd_add_lus(struct ufs_hba * hba)8640 static int ufshcd_add_lus(struct ufs_hba *hba)
8641 {
8642 int ret;
8643
8644 /* Add required well known logical units to scsi mid layer */
8645 ret = ufshcd_scsi_add_wlus(hba);
8646 if (ret)
8647 goto out;
8648
8649 /* Initialize devfreq after UFS device is detected */
8650 if (ufshcd_is_clkscaling_supported(hba)) {
8651 memcpy(&hba->clk_scaling.saved_pwr_info,
8652 &hba->pwr_info,
8653 sizeof(struct ufs_pa_layer_attr));
8654 hba->clk_scaling.is_allowed = true;
8655
8656 ret = ufshcd_devfreq_init(hba);
8657 if (ret)
8658 goto out;
8659
8660 hba->clk_scaling.is_enabled = true;
8661 ufshcd_init_clk_scaling_sysfs(hba);
8662 }
8663
8664 /*
8665 * The RTC update code accesses the hba->ufs_device_wlun->sdev_gendev
8666 * pointer and hence must only be started after the WLUN pointer has
8667 * been initialized by ufshcd_scsi_add_wlus().
8668 */
8669 schedule_delayed_work(&hba->ufs_rtc_update_work,
8670 msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
8671
8672 ufs_bsg_probe(hba);
8673 scsi_scan_host(hba->host);
8674
8675 out:
8676 return ret;
8677 }
8678
8679 /* SDB - Single Doorbell */
ufshcd_release_sdb_queue(struct ufs_hba * hba,int nutrs)8680 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8681 {
8682 size_t ucdl_size, utrdl_size;
8683
8684 ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8685 dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8686 hba->ucdl_dma_addr);
8687
8688 utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8689 dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8690 hba->utrdl_dma_addr);
8691
8692 devm_kfree(hba->dev, hba->lrb);
8693 }
8694
ufshcd_alloc_mcq(struct ufs_hba * hba)8695 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8696 {
8697 int ret;
8698 int old_nutrs = hba->nutrs;
8699
8700 ret = ufshcd_mcq_decide_queue_depth(hba);
8701 if (ret < 0)
8702 return ret;
8703
8704 hba->nutrs = ret;
8705 ret = ufshcd_mcq_init(hba);
8706 if (ret)
8707 goto err;
8708
8709 /*
8710 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8711 * Number of supported tags in MCQ mode may be larger than SDB mode.
8712 */
8713 if (hba->nutrs != old_nutrs) {
8714 ufshcd_release_sdb_queue(hba, old_nutrs);
8715 ret = ufshcd_memory_alloc(hba);
8716 if (ret)
8717 goto err;
8718 ufshcd_host_memory_configure(hba);
8719 }
8720
8721 ret = ufshcd_mcq_memory_alloc(hba);
8722 if (ret)
8723 goto err;
8724
8725 hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8726 hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8727
8728 return 0;
8729 err:
8730 hba->nutrs = old_nutrs;
8731 return ret;
8732 }
8733
ufshcd_config_mcq(struct ufs_hba * hba)8734 static void ufshcd_config_mcq(struct ufs_hba *hba)
8735 {
8736 int ret;
8737 u32 intrs;
8738
8739 ret = ufshcd_mcq_vops_config_esi(hba);
8740 dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8741
8742 intrs = UFSHCD_ENABLE_MCQ_INTRS;
8743 if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8744 intrs &= ~MCQ_CQ_EVENT_STATUS;
8745 ufshcd_enable_intr(hba, intrs);
8746 ufshcd_mcq_make_queues_operational(hba);
8747 ufshcd_mcq_config_mac(hba, hba->nutrs);
8748
8749 dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8750 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8751 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8752 hba->nutrs);
8753 }
8754
ufshcd_post_device_init(struct ufs_hba * hba)8755 static int ufshcd_post_device_init(struct ufs_hba *hba)
8756 {
8757 int ret;
8758
8759 ufshcd_tune_unipro_params(hba);
8760
8761 /* UFS device is also active now */
8762 ufshcd_set_ufs_dev_active(hba);
8763 ufshcd_force_reset_auto_bkops(hba);
8764
8765 ufshcd_set_timestamp_attr(hba);
8766
8767 if (!hba->max_pwr_info.is_valid)
8768 return 0;
8769
8770 /*
8771 * Set the right value to bRefClkFreq before attempting to
8772 * switch to HS gears.
8773 */
8774 if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8775 ufshcd_set_dev_ref_clk(hba);
8776 /* Gear up to HS gear. */
8777 ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8778 if (ret) {
8779 dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8780 __func__, ret);
8781 return ret;
8782 }
8783
8784 return 0;
8785 }
8786
ufshcd_device_init(struct ufs_hba * hba,bool init_dev_params)8787 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8788 {
8789 int ret;
8790
8791 WARN_ON_ONCE(!hba->scsi_host_added);
8792
8793 hba->ufshcd_state = UFSHCD_STATE_RESET;
8794
8795 ret = ufshcd_link_startup(hba);
8796 if (ret)
8797 return ret;
8798
8799 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8800 return ret;
8801
8802 /* Debug counters initialization */
8803 ufshcd_clear_dbg_ufs_stats(hba);
8804
8805 /* UniPro link is active now */
8806 ufshcd_set_link_active(hba);
8807
8808 /* Reconfigure MCQ upon reset */
8809 if (hba->mcq_enabled && !init_dev_params) {
8810 ufshcd_config_mcq(hba);
8811 ufshcd_mcq_enable(hba);
8812 }
8813
8814 /* Verify device initialization by sending NOP OUT UPIU */
8815 ret = ufshcd_verify_dev_init(hba);
8816 if (ret)
8817 return ret;
8818
8819 /* Initiate UFS initialization, and waiting until completion */
8820 ret = ufshcd_complete_dev_init(hba);
8821 if (ret)
8822 return ret;
8823
8824 /*
8825 * Initialize UFS device parameters used by driver, these
8826 * parameters are associated with UFS descriptors.
8827 */
8828 if (init_dev_params) {
8829 ret = ufshcd_device_params_init(hba);
8830 if (ret)
8831 return ret;
8832 if (is_mcq_supported(hba) &&
8833 hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH) {
8834 ufshcd_config_mcq(hba);
8835 ufshcd_mcq_enable(hba);
8836 }
8837 }
8838
8839 return ufshcd_post_device_init(hba);
8840 }
8841
8842 /**
8843 * ufshcd_probe_hba - probe hba to detect device and initialize it
8844 * @hba: per-adapter instance
8845 * @init_dev_params: whether or not to call ufshcd_device_params_init().
8846 *
8847 * Execute link-startup and verify device initialization
8848 *
8849 * Return: 0 upon success; < 0 upon failure.
8850 */
ufshcd_probe_hba(struct ufs_hba * hba,bool init_dev_params)8851 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8852 {
8853 int ret;
8854
8855 if (!hba->pm_op_in_progress &&
8856 (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
8857 /* Reset the device and controller before doing reinit */
8858 ufshcd_device_reset(hba);
8859 ufs_put_device_desc(hba);
8860 ufshcd_hba_stop(hba);
8861 ret = ufshcd_hba_enable(hba);
8862 if (ret) {
8863 dev_err(hba->dev, "Host controller enable failed\n");
8864 ufshcd_print_evt_hist(hba);
8865 ufshcd_print_host_state(hba);
8866 return ret;
8867 }
8868
8869 /* Reinit the device */
8870 ret = ufshcd_device_init(hba, init_dev_params);
8871 if (ret)
8872 return ret;
8873 }
8874
8875 ufshcd_print_pwr_info(hba);
8876
8877 /*
8878 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8879 * and for removable UFS card as well, hence always set the parameter.
8880 * Note: Error handler may issue the device reset hence resetting
8881 * bActiveICCLevel as well so it is always safe to set this here.
8882 */
8883 ufshcd_set_active_icc_lvl(hba);
8884
8885 /* Enable UFS Write Booster if supported */
8886 ufshcd_configure_wb(hba);
8887
8888 if (hba->ee_usr_mask)
8889 ufshcd_write_ee_control(hba);
8890 ufshcd_configure_auto_hibern8(hba);
8891
8892 return 0;
8893 }
8894
8895 /**
8896 * ufshcd_async_scan - asynchronous execution for probing hba
8897 * @data: data pointer to pass to this function
8898 * @cookie: cookie data
8899 */
ufshcd_async_scan(void * data,async_cookie_t cookie)8900 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8901 {
8902 struct ufs_hba *hba = (struct ufs_hba *)data;
8903 ktime_t probe_start;
8904 int ret;
8905
8906 down(&hba->host_sem);
8907 /* Initialize hba, detect and initialize UFS device */
8908 probe_start = ktime_get();
8909 ret = ufshcd_probe_hba(hba, true);
8910 ufshcd_process_probe_result(hba, probe_start, ret);
8911 up(&hba->host_sem);
8912 if (ret)
8913 goto out;
8914
8915 /* Probe and add UFS logical units */
8916 ret = ufshcd_add_lus(hba);
8917
8918 out:
8919 pm_runtime_put_sync(hba->dev);
8920
8921 if (ret)
8922 dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
8923 }
8924
ufshcd_eh_timed_out(struct scsi_cmnd * scmd)8925 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8926 {
8927 struct ufs_hba *hba = shost_priv(scmd->device->host);
8928
8929 if (!hba->system_suspending) {
8930 /* Activate the error handler in the SCSI core. */
8931 return SCSI_EH_NOT_HANDLED;
8932 }
8933
8934 /*
8935 * If we get here we know that no TMFs are outstanding and also that
8936 * the only pending command is a START STOP UNIT command. Handle the
8937 * timeout of that command directly to prevent a deadlock between
8938 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8939 */
8940 ufshcd_link_recovery(hba);
8941 dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8942 __func__, hba->outstanding_tasks);
8943
8944 return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8945 }
8946
8947 static const struct attribute_group *ufshcd_driver_groups[] = {
8948 &ufs_sysfs_unit_descriptor_group,
8949 &ufs_sysfs_lun_attributes_group,
8950 NULL,
8951 };
8952
8953 static struct ufs_hba_variant_params ufs_hba_vps = {
8954 .hba_enable_delay_us = 1000,
8955 .wb_flush_threshold = UFS_WB_BUF_REMAIN_PERCENT(40),
8956 .devfreq_profile.polling_ms = 100,
8957 .devfreq_profile.target = ufshcd_devfreq_target,
8958 .devfreq_profile.get_dev_status = ufshcd_devfreq_get_dev_status,
8959 .ondemand_data.upthreshold = 70,
8960 .ondemand_data.downdifferential = 5,
8961 };
8962
8963 static const struct scsi_host_template ufshcd_driver_template = {
8964 .module = THIS_MODULE,
8965 .name = UFSHCD,
8966 .proc_name = UFSHCD,
8967 .map_queues = ufshcd_map_queues,
8968 .queuecommand = ufshcd_queuecommand,
8969 .mq_poll = ufshcd_poll,
8970 .slave_alloc = ufshcd_slave_alloc,
8971 .device_configure = ufshcd_device_configure,
8972 .slave_destroy = ufshcd_slave_destroy,
8973 .change_queue_depth = ufshcd_change_queue_depth,
8974 .eh_abort_handler = ufshcd_abort,
8975 .eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8976 .eh_host_reset_handler = ufshcd_eh_host_reset_handler,
8977 .eh_timed_out = ufshcd_eh_timed_out,
8978 .this_id = -1,
8979 .sg_tablesize = SG_ALL,
8980 .max_segment_size = PRDT_DATA_BYTE_COUNT_MAX,
8981 .max_sectors = SZ_1M / SECTOR_SIZE,
8982 .max_host_blocked = 1,
8983 .track_queue_depth = 1,
8984 .skip_settle_delay = 1,
8985 .sdev_groups = ufshcd_driver_groups,
8986 };
8987
ufshcd_config_vreg_load(struct device * dev,struct ufs_vreg * vreg,int ua)8988 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8989 int ua)
8990 {
8991 int ret;
8992
8993 if (!vreg)
8994 return 0;
8995
8996 /*
8997 * "set_load" operation shall be required on those regulators
8998 * which specifically configured current limitation. Otherwise
8999 * zero max_uA may cause unexpected behavior when regulator is
9000 * enabled or set as high power mode.
9001 */
9002 if (!vreg->max_uA)
9003 return 0;
9004
9005 ret = regulator_set_load(vreg->reg, ua);
9006 if (ret < 0) {
9007 dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
9008 __func__, vreg->name, ua, ret);
9009 }
9010
9011 return ret;
9012 }
9013
ufshcd_config_vreg_lpm(struct ufs_hba * hba,struct ufs_vreg * vreg)9014 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
9015 struct ufs_vreg *vreg)
9016 {
9017 return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
9018 }
9019
ufshcd_config_vreg_hpm(struct ufs_hba * hba,struct ufs_vreg * vreg)9020 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
9021 struct ufs_vreg *vreg)
9022 {
9023 if (!vreg)
9024 return 0;
9025
9026 return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
9027 }
9028
ufshcd_config_vreg(struct device * dev,struct ufs_vreg * vreg,bool on)9029 static int ufshcd_config_vreg(struct device *dev,
9030 struct ufs_vreg *vreg, bool on)
9031 {
9032 if (regulator_count_voltages(vreg->reg) <= 0)
9033 return 0;
9034
9035 return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
9036 }
9037
ufshcd_enable_vreg(struct device * dev,struct ufs_vreg * vreg)9038 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
9039 {
9040 int ret = 0;
9041
9042 if (!vreg || vreg->enabled)
9043 goto out;
9044
9045 ret = ufshcd_config_vreg(dev, vreg, true);
9046 if (!ret)
9047 ret = regulator_enable(vreg->reg);
9048
9049 if (!ret)
9050 vreg->enabled = true;
9051 else
9052 dev_err(dev, "%s: %s enable failed, err=%d\n",
9053 __func__, vreg->name, ret);
9054 out:
9055 return ret;
9056 }
9057
ufshcd_disable_vreg(struct device * dev,struct ufs_vreg * vreg)9058 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9059 {
9060 int ret = 0;
9061
9062 if (!vreg || !vreg->enabled || vreg->always_on)
9063 goto out;
9064
9065 ret = regulator_disable(vreg->reg);
9066
9067 if (!ret) {
9068 /* ignore errors on applying disable config */
9069 ufshcd_config_vreg(dev, vreg, false);
9070 vreg->enabled = false;
9071 } else {
9072 dev_err(dev, "%s: %s disable failed, err=%d\n",
9073 __func__, vreg->name, ret);
9074 }
9075 out:
9076 return ret;
9077 }
9078
ufshcd_setup_vreg(struct ufs_hba * hba,bool on)9079 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9080 {
9081 int ret = 0;
9082 struct device *dev = hba->dev;
9083 struct ufs_vreg_info *info = &hba->vreg_info;
9084
9085 ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9086 if (ret)
9087 goto out;
9088
9089 ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9090 if (ret)
9091 goto out;
9092
9093 ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9094
9095 out:
9096 if (ret) {
9097 ufshcd_toggle_vreg(dev, info->vccq2, false);
9098 ufshcd_toggle_vreg(dev, info->vccq, false);
9099 ufshcd_toggle_vreg(dev, info->vcc, false);
9100 }
9101 return ret;
9102 }
9103
ufshcd_setup_hba_vreg(struct ufs_hba * hba,bool on)9104 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9105 {
9106 struct ufs_vreg_info *info = &hba->vreg_info;
9107
9108 return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9109 }
9110
ufshcd_get_vreg(struct device * dev,struct ufs_vreg * vreg)9111 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9112 {
9113 int ret = 0;
9114
9115 if (!vreg)
9116 goto out;
9117
9118 vreg->reg = devm_regulator_get(dev, vreg->name);
9119 if (IS_ERR(vreg->reg)) {
9120 ret = PTR_ERR(vreg->reg);
9121 dev_err(dev, "%s: %s get failed, err=%d\n",
9122 __func__, vreg->name, ret);
9123 }
9124 out:
9125 return ret;
9126 }
9127 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9128
ufshcd_init_vreg(struct ufs_hba * hba)9129 static int ufshcd_init_vreg(struct ufs_hba *hba)
9130 {
9131 int ret = 0;
9132 struct device *dev = hba->dev;
9133 struct ufs_vreg_info *info = &hba->vreg_info;
9134
9135 ret = ufshcd_get_vreg(dev, info->vcc);
9136 if (ret)
9137 goto out;
9138
9139 ret = ufshcd_get_vreg(dev, info->vccq);
9140 if (!ret)
9141 ret = ufshcd_get_vreg(dev, info->vccq2);
9142 out:
9143 return ret;
9144 }
9145
ufshcd_init_hba_vreg(struct ufs_hba * hba)9146 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9147 {
9148 struct ufs_vreg_info *info = &hba->vreg_info;
9149
9150 return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9151 }
9152
ufshcd_setup_clocks(struct ufs_hba * hba,bool on)9153 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9154 {
9155 int ret = 0;
9156 struct ufs_clk_info *clki;
9157 struct list_head *head = &hba->clk_list_head;
9158 unsigned long flags;
9159 ktime_t start = ktime_get();
9160 bool clk_state_changed = false;
9161
9162 if (list_empty(head))
9163 goto out;
9164
9165 ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9166 if (ret)
9167 return ret;
9168
9169 list_for_each_entry(clki, head, list) {
9170 if (!IS_ERR_OR_NULL(clki->clk)) {
9171 /*
9172 * Don't disable clocks which are needed
9173 * to keep the link active.
9174 */
9175 if (ufshcd_is_link_active(hba) &&
9176 clki->keep_link_active)
9177 continue;
9178
9179 clk_state_changed = on ^ clki->enabled;
9180 if (on && !clki->enabled) {
9181 ret = clk_prepare_enable(clki->clk);
9182 if (ret) {
9183 dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9184 __func__, clki->name, ret);
9185 goto out;
9186 }
9187 } else if (!on && clki->enabled) {
9188 clk_disable_unprepare(clki->clk);
9189 }
9190 clki->enabled = on;
9191 dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9192 clki->name, on ? "en" : "dis");
9193 }
9194 }
9195
9196 ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9197 if (ret)
9198 return ret;
9199
9200 if (!ufshcd_is_clkscaling_supported(hba))
9201 ufshcd_pm_qos_update(hba, on);
9202 out:
9203 if (ret) {
9204 list_for_each_entry(clki, head, list) {
9205 if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9206 clk_disable_unprepare(clki->clk);
9207 }
9208 } else if (!ret && on) {
9209 spin_lock_irqsave(hba->host->host_lock, flags);
9210 hba->clk_gating.state = CLKS_ON;
9211 trace_ufshcd_clk_gating(dev_name(hba->dev),
9212 hba->clk_gating.state);
9213 spin_unlock_irqrestore(hba->host->host_lock, flags);
9214 }
9215
9216 if (clk_state_changed)
9217 trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
9218 (on ? "on" : "off"),
9219 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9220 return ret;
9221 }
9222
ufshcd_parse_ref_clk_property(struct ufs_hba * hba)9223 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9224 {
9225 u32 freq;
9226 int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9227
9228 if (ret) {
9229 dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9230 return REF_CLK_FREQ_INVAL;
9231 }
9232
9233 return ufs_get_bref_clk_from_hz(freq);
9234 }
9235
ufshcd_init_clocks(struct ufs_hba * hba)9236 static int ufshcd_init_clocks(struct ufs_hba *hba)
9237 {
9238 int ret = 0;
9239 struct ufs_clk_info *clki;
9240 struct device *dev = hba->dev;
9241 struct list_head *head = &hba->clk_list_head;
9242
9243 if (list_empty(head))
9244 goto out;
9245
9246 list_for_each_entry(clki, head, list) {
9247 if (!clki->name)
9248 continue;
9249
9250 clki->clk = devm_clk_get(dev, clki->name);
9251 if (IS_ERR(clki->clk)) {
9252 ret = PTR_ERR(clki->clk);
9253 dev_err(dev, "%s: %s clk get failed, %d\n",
9254 __func__, clki->name, ret);
9255 goto out;
9256 }
9257
9258 /*
9259 * Parse device ref clk freq as per device tree "ref_clk".
9260 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9261 * in ufshcd_alloc_host().
9262 */
9263 if (!strcmp(clki->name, "ref_clk"))
9264 ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9265
9266 if (clki->max_freq) {
9267 ret = clk_set_rate(clki->clk, clki->max_freq);
9268 if (ret) {
9269 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9270 __func__, clki->name,
9271 clki->max_freq, ret);
9272 goto out;
9273 }
9274 clki->curr_freq = clki->max_freq;
9275 }
9276 dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9277 clki->name, clk_get_rate(clki->clk));
9278 }
9279
9280 /* Set Max. frequency for all clocks */
9281 if (hba->use_pm_opp) {
9282 ret = ufshcd_opp_set_rate(hba, ULONG_MAX);
9283 if (ret) {
9284 dev_err(hba->dev, "%s: failed to set OPP: %d", __func__,
9285 ret);
9286 goto out;
9287 }
9288 }
9289
9290 out:
9291 return ret;
9292 }
9293
ufshcd_variant_hba_init(struct ufs_hba * hba)9294 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9295 {
9296 int err = 0;
9297
9298 if (!hba->vops)
9299 goto out;
9300
9301 err = ufshcd_vops_init(hba);
9302 if (err)
9303 dev_err_probe(hba->dev, err,
9304 "%s: variant %s init failed with err %d\n",
9305 __func__, ufshcd_get_var_name(hba), err);
9306 out:
9307 return err;
9308 }
9309
ufshcd_variant_hba_exit(struct ufs_hba * hba)9310 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9311 {
9312 if (!hba->vops)
9313 return;
9314
9315 ufshcd_vops_exit(hba);
9316 }
9317
ufshcd_hba_init(struct ufs_hba * hba)9318 static int ufshcd_hba_init(struct ufs_hba *hba)
9319 {
9320 int err;
9321
9322 /*
9323 * Handle host controller power separately from the UFS device power
9324 * rails as it will help controlling the UFS host controller power
9325 * collapse easily which is different than UFS device power collapse.
9326 * Also, enable the host controller power before we go ahead with rest
9327 * of the initialization here.
9328 */
9329 err = ufshcd_init_hba_vreg(hba);
9330 if (err)
9331 goto out;
9332
9333 err = ufshcd_setup_hba_vreg(hba, true);
9334 if (err)
9335 goto out;
9336
9337 err = ufshcd_init_clocks(hba);
9338 if (err)
9339 goto out_disable_hba_vreg;
9340
9341 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9342 hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9343
9344 err = ufshcd_setup_clocks(hba, true);
9345 if (err)
9346 goto out_disable_hba_vreg;
9347
9348 err = ufshcd_init_vreg(hba);
9349 if (err)
9350 goto out_disable_clks;
9351
9352 err = ufshcd_setup_vreg(hba, true);
9353 if (err)
9354 goto out_disable_clks;
9355
9356 err = ufshcd_variant_hba_init(hba);
9357 if (err)
9358 goto out_disable_vreg;
9359
9360 ufs_debugfs_hba_init(hba);
9361 ufs_fault_inject_hba_init(hba);
9362
9363 hba->is_powered = true;
9364 goto out;
9365
9366 out_disable_vreg:
9367 ufshcd_setup_vreg(hba, false);
9368 out_disable_clks:
9369 ufshcd_setup_clocks(hba, false);
9370 out_disable_hba_vreg:
9371 ufshcd_setup_hba_vreg(hba, false);
9372 out:
9373 return err;
9374 }
9375
ufshcd_hba_exit(struct ufs_hba * hba)9376 static void ufshcd_hba_exit(struct ufs_hba *hba)
9377 {
9378 if (hba->is_powered) {
9379 ufshcd_pm_qos_exit(hba);
9380 ufshcd_exit_clk_scaling(hba);
9381 ufshcd_exit_clk_gating(hba);
9382 if (hba->eh_wq)
9383 destroy_workqueue(hba->eh_wq);
9384 ufs_debugfs_hba_exit(hba);
9385 ufshcd_variant_hba_exit(hba);
9386 ufshcd_setup_vreg(hba, false);
9387 ufshcd_setup_clocks(hba, false);
9388 ufshcd_setup_hba_vreg(hba, false);
9389 hba->is_powered = false;
9390 ufs_put_device_desc(hba);
9391 }
9392 }
9393
ufshcd_execute_start_stop(struct scsi_device * sdev,enum ufs_dev_pwr_mode pwr_mode,struct scsi_sense_hdr * sshdr)9394 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9395 enum ufs_dev_pwr_mode pwr_mode,
9396 struct scsi_sense_hdr *sshdr)
9397 {
9398 const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9399 struct scsi_failure failure_defs[] = {
9400 {
9401 .allowed = 2,
9402 .result = SCMD_FAILURE_RESULT_ANY,
9403 },
9404 };
9405 struct scsi_failures failures = {
9406 .failure_definitions = failure_defs,
9407 };
9408 const struct scsi_exec_args args = {
9409 .failures = &failures,
9410 .sshdr = sshdr,
9411 .req_flags = BLK_MQ_REQ_PM,
9412 .scmd_flags = SCMD_FAIL_IF_RECOVERING,
9413 };
9414
9415 return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9416 /*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9417 &args);
9418 }
9419
9420 /**
9421 * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9422 * power mode
9423 * @hba: per adapter instance
9424 * @pwr_mode: device power mode to set
9425 *
9426 * Return: 0 if requested power mode is set successfully;
9427 * < 0 if failed to set the requested power mode.
9428 */
ufshcd_set_dev_pwr_mode(struct ufs_hba * hba,enum ufs_dev_pwr_mode pwr_mode)9429 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9430 enum ufs_dev_pwr_mode pwr_mode)
9431 {
9432 struct scsi_sense_hdr sshdr;
9433 struct scsi_device *sdp;
9434 unsigned long flags;
9435 int ret;
9436
9437 spin_lock_irqsave(hba->host->host_lock, flags);
9438 sdp = hba->ufs_device_wlun;
9439 if (sdp && scsi_device_online(sdp))
9440 ret = scsi_device_get(sdp);
9441 else
9442 ret = -ENODEV;
9443 spin_unlock_irqrestore(hba->host->host_lock, flags);
9444
9445 if (ret)
9446 return ret;
9447
9448 /*
9449 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9450 * handling, which would wait for host to be resumed. Since we know
9451 * we are functional while we are here, skip host resume in error
9452 * handling context.
9453 */
9454 hba->host->eh_noresume = 1;
9455
9456 /*
9457 * Current function would be generally called from the power management
9458 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9459 * already suspended childs.
9460 */
9461 ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9462 if (ret) {
9463 sdev_printk(KERN_WARNING, sdp,
9464 "START_STOP failed for power mode: %d, result %x\n",
9465 pwr_mode, ret);
9466 if (ret > 0) {
9467 if (scsi_sense_valid(&sshdr))
9468 scsi_print_sense_hdr(sdp, NULL, &sshdr);
9469 ret = -EIO;
9470 }
9471 } else {
9472 hba->curr_dev_pwr_mode = pwr_mode;
9473 }
9474
9475 scsi_device_put(sdp);
9476 hba->host->eh_noresume = 0;
9477 return ret;
9478 }
9479
ufshcd_link_state_transition(struct ufs_hba * hba,enum uic_link_state req_link_state,bool check_for_bkops)9480 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9481 enum uic_link_state req_link_state,
9482 bool check_for_bkops)
9483 {
9484 int ret = 0;
9485
9486 if (req_link_state == hba->uic_link_state)
9487 return 0;
9488
9489 if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9490 ret = ufshcd_uic_hibern8_enter(hba);
9491 if (!ret) {
9492 ufshcd_set_link_hibern8(hba);
9493 } else {
9494 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9495 __func__, ret);
9496 goto out;
9497 }
9498 }
9499 /*
9500 * If autobkops is enabled, link can't be turned off because
9501 * turning off the link would also turn off the device, except in the
9502 * case of DeepSleep where the device is expected to remain powered.
9503 */
9504 else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9505 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9506 /*
9507 * Let's make sure that link is in low power mode, we are doing
9508 * this currently by putting the link in Hibern8. Otherway to
9509 * put the link in low power mode is to send the DME end point
9510 * to device and then send the DME reset command to local
9511 * unipro. But putting the link in hibern8 is much faster.
9512 *
9513 * Note also that putting the link in Hibern8 is a requirement
9514 * for entering DeepSleep.
9515 */
9516 ret = ufshcd_uic_hibern8_enter(hba);
9517 if (ret) {
9518 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9519 __func__, ret);
9520 goto out;
9521 }
9522 /*
9523 * Change controller state to "reset state" which
9524 * should also put the link in off/reset state
9525 */
9526 ufshcd_hba_stop(hba);
9527 /*
9528 * TODO: Check if we need any delay to make sure that
9529 * controller is reset
9530 */
9531 ufshcd_set_link_off(hba);
9532 }
9533
9534 out:
9535 return ret;
9536 }
9537
ufshcd_vreg_set_lpm(struct ufs_hba * hba)9538 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9539 {
9540 bool vcc_off = false;
9541
9542 /*
9543 * It seems some UFS devices may keep drawing more than sleep current
9544 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9545 * To avoid this situation, add 2ms delay before putting these UFS
9546 * rails in LPM mode.
9547 */
9548 if (!ufshcd_is_link_active(hba) &&
9549 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9550 usleep_range(2000, 2100);
9551
9552 /*
9553 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9554 * power.
9555 *
9556 * If UFS device and link is in OFF state, all power supplies (VCC,
9557 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9558 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9559 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9560 *
9561 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9562 * in low power state which would save some power.
9563 *
9564 * If Write Booster is enabled and the device needs to flush the WB
9565 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9566 */
9567 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9568 !hba->dev_info.is_lu_power_on_wp) {
9569 ufshcd_setup_vreg(hba, false);
9570 vcc_off = true;
9571 } else if (!ufshcd_is_ufs_dev_active(hba)) {
9572 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9573 vcc_off = true;
9574 if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9575 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9576 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9577 }
9578 }
9579
9580 /*
9581 * Some UFS devices require delay after VCC power rail is turned-off.
9582 */
9583 if (vcc_off && hba->vreg_info.vcc &&
9584 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9585 usleep_range(5000, 5100);
9586 }
9587
9588 #ifdef CONFIG_PM
ufshcd_vreg_set_hpm(struct ufs_hba * hba)9589 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9590 {
9591 int ret = 0;
9592
9593 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9594 !hba->dev_info.is_lu_power_on_wp) {
9595 ret = ufshcd_setup_vreg(hba, true);
9596 } else if (!ufshcd_is_ufs_dev_active(hba)) {
9597 if (!ufshcd_is_link_active(hba)) {
9598 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9599 if (ret)
9600 goto vcc_disable;
9601 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9602 if (ret)
9603 goto vccq_lpm;
9604 }
9605 ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9606 }
9607 goto out;
9608
9609 vccq_lpm:
9610 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9611 vcc_disable:
9612 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9613 out:
9614 return ret;
9615 }
9616 #endif /* CONFIG_PM */
9617
ufshcd_hba_vreg_set_lpm(struct ufs_hba * hba)9618 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9619 {
9620 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9621 ufshcd_setup_hba_vreg(hba, false);
9622 }
9623
ufshcd_hba_vreg_set_hpm(struct ufs_hba * hba)9624 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9625 {
9626 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9627 ufshcd_setup_hba_vreg(hba, true);
9628 }
9629
__ufshcd_wl_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op)9630 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9631 {
9632 int ret = 0;
9633 bool check_for_bkops;
9634 enum ufs_pm_level pm_lvl;
9635 enum ufs_dev_pwr_mode req_dev_pwr_mode;
9636 enum uic_link_state req_link_state;
9637
9638 hba->pm_op_in_progress = true;
9639 if (pm_op != UFS_SHUTDOWN_PM) {
9640 pm_lvl = pm_op == UFS_RUNTIME_PM ?
9641 hba->rpm_lvl : hba->spm_lvl;
9642 req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9643 req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9644 } else {
9645 req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9646 req_link_state = UIC_LINK_OFF_STATE;
9647 }
9648
9649 /*
9650 * If we can't transition into any of the low power modes
9651 * just gate the clocks.
9652 */
9653 ufshcd_hold(hba);
9654 hba->clk_gating.is_suspended = true;
9655
9656 if (ufshcd_is_clkscaling_supported(hba))
9657 ufshcd_clk_scaling_suspend(hba, true);
9658
9659 if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9660 req_link_state == UIC_LINK_ACTIVE_STATE) {
9661 goto vops_suspend;
9662 }
9663
9664 if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9665 (req_link_state == hba->uic_link_state))
9666 goto enable_scaling;
9667
9668 /* UFS device & link must be active before we enter in this function */
9669 if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9670 /* Wait err handler finish or trigger err recovery */
9671 if (!ufshcd_eh_in_progress(hba))
9672 ufshcd_force_error_recovery(hba);
9673 ret = -EBUSY;
9674 goto enable_scaling;
9675 }
9676
9677 if (pm_op == UFS_RUNTIME_PM) {
9678 if (ufshcd_can_autobkops_during_suspend(hba)) {
9679 /*
9680 * The device is idle with no requests in the queue,
9681 * allow background operations if bkops status shows
9682 * that performance might be impacted.
9683 */
9684 ret = ufshcd_bkops_ctrl(hba);
9685 if (ret) {
9686 /*
9687 * If return err in suspend flow, IO will hang.
9688 * Trigger error handler and break suspend for
9689 * error recovery.
9690 */
9691 ufshcd_force_error_recovery(hba);
9692 ret = -EBUSY;
9693 goto enable_scaling;
9694 }
9695 } else {
9696 /* make sure that auto bkops is disabled */
9697 ufshcd_disable_auto_bkops(hba);
9698 }
9699 /*
9700 * If device needs to do BKOP or WB buffer flush during
9701 * Hibern8, keep device power mode as "active power mode"
9702 * and VCC supply.
9703 */
9704 hba->dev_info.b_rpm_dev_flush_capable =
9705 hba->auto_bkops_enabled ||
9706 (((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9707 ((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9708 ufshcd_is_auto_hibern8_enabled(hba))) &&
9709 ufshcd_wb_need_flush(hba));
9710 }
9711
9712 flush_work(&hba->eeh_work);
9713
9714 ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9715 if (ret)
9716 goto enable_scaling;
9717
9718 if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9719 if (pm_op != UFS_RUNTIME_PM)
9720 /* ensure that bkops is disabled */
9721 ufshcd_disable_auto_bkops(hba);
9722
9723 if (!hba->dev_info.b_rpm_dev_flush_capable) {
9724 ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9725 if (ret && pm_op != UFS_SHUTDOWN_PM) {
9726 /*
9727 * If return err in suspend flow, IO will hang.
9728 * Trigger error handler and break suspend for
9729 * error recovery.
9730 */
9731 ufshcd_force_error_recovery(hba);
9732 ret = -EBUSY;
9733 }
9734 if (ret)
9735 goto enable_scaling;
9736 }
9737 }
9738
9739 /*
9740 * In the case of DeepSleep, the device is expected to remain powered
9741 * with the link off, so do not check for bkops.
9742 */
9743 check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9744 ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9745 if (ret && pm_op != UFS_SHUTDOWN_PM) {
9746 /*
9747 * If return err in suspend flow, IO will hang.
9748 * Trigger error handler and break suspend for
9749 * error recovery.
9750 */
9751 ufshcd_force_error_recovery(hba);
9752 ret = -EBUSY;
9753 }
9754 if (ret)
9755 goto set_dev_active;
9756
9757 vops_suspend:
9758 /*
9759 * Call vendor specific suspend callback. As these callbacks may access
9760 * vendor specific host controller register space call them before the
9761 * host clocks are ON.
9762 */
9763 ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9764 if (ret)
9765 goto set_link_active;
9766
9767 cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
9768 goto out;
9769
9770 set_link_active:
9771 /*
9772 * Device hardware reset is required to exit DeepSleep. Also, for
9773 * DeepSleep, the link is off so host reset and restore will be done
9774 * further below.
9775 */
9776 if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9777 ufshcd_device_reset(hba);
9778 WARN_ON(!ufshcd_is_link_off(hba));
9779 }
9780 if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9781 ufshcd_set_link_active(hba);
9782 else if (ufshcd_is_link_off(hba))
9783 ufshcd_host_reset_and_restore(hba);
9784 set_dev_active:
9785 /* Can also get here needing to exit DeepSleep */
9786 if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9787 ufshcd_device_reset(hba);
9788 ufshcd_host_reset_and_restore(hba);
9789 }
9790 if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9791 ufshcd_disable_auto_bkops(hba);
9792 enable_scaling:
9793 if (ufshcd_is_clkscaling_supported(hba))
9794 ufshcd_clk_scaling_suspend(hba, false);
9795
9796 hba->dev_info.b_rpm_dev_flush_capable = false;
9797 out:
9798 if (hba->dev_info.b_rpm_dev_flush_capable) {
9799 schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9800 msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9801 }
9802
9803 if (ret) {
9804 ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9805 hba->clk_gating.is_suspended = false;
9806 ufshcd_release(hba);
9807 }
9808 hba->pm_op_in_progress = false;
9809 return ret;
9810 }
9811
9812 #ifdef CONFIG_PM
__ufshcd_wl_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)9813 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9814 {
9815 int ret;
9816 enum uic_link_state old_link_state = hba->uic_link_state;
9817
9818 hba->pm_op_in_progress = true;
9819
9820 /*
9821 * Call vendor specific resume callback. As these callbacks may access
9822 * vendor specific host controller register space call them when the
9823 * host clocks are ON.
9824 */
9825 ret = ufshcd_vops_resume(hba, pm_op);
9826 if (ret)
9827 goto out;
9828
9829 /* For DeepSleep, the only supported option is to have the link off */
9830 WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9831
9832 if (ufshcd_is_link_hibern8(hba)) {
9833 ret = ufshcd_uic_hibern8_exit(hba);
9834 if (!ret) {
9835 ufshcd_set_link_active(hba);
9836 } else {
9837 dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9838 __func__, ret);
9839 goto vendor_suspend;
9840 }
9841 } else if (ufshcd_is_link_off(hba)) {
9842 /*
9843 * A full initialization of the host and the device is
9844 * required since the link was put to off during suspend.
9845 * Note, in the case of DeepSleep, the device will exit
9846 * DeepSleep due to device reset.
9847 */
9848 ret = ufshcd_reset_and_restore(hba);
9849 /*
9850 * ufshcd_reset_and_restore() should have already
9851 * set the link state as active
9852 */
9853 if (ret || !ufshcd_is_link_active(hba))
9854 goto vendor_suspend;
9855 }
9856
9857 if (!ufshcd_is_ufs_dev_active(hba)) {
9858 ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9859 if (ret)
9860 goto set_old_link_state;
9861 ufshcd_set_timestamp_attr(hba);
9862 schedule_delayed_work(&hba->ufs_rtc_update_work,
9863 msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
9864 }
9865
9866 if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9867 ufshcd_enable_auto_bkops(hba);
9868 else
9869 /*
9870 * If BKOPs operations are urgently needed at this moment then
9871 * keep auto-bkops enabled or else disable it.
9872 */
9873 ufshcd_bkops_ctrl(hba);
9874
9875 if (hba->ee_usr_mask)
9876 ufshcd_write_ee_control(hba);
9877
9878 if (ufshcd_is_clkscaling_supported(hba))
9879 ufshcd_clk_scaling_suspend(hba, false);
9880
9881 if (hba->dev_info.b_rpm_dev_flush_capable) {
9882 hba->dev_info.b_rpm_dev_flush_capable = false;
9883 cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9884 }
9885
9886 ufshcd_configure_auto_hibern8(hba);
9887
9888 goto out;
9889
9890 set_old_link_state:
9891 ufshcd_link_state_transition(hba, old_link_state, 0);
9892 vendor_suspend:
9893 ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9894 ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9895 out:
9896 if (ret)
9897 ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9898 hba->clk_gating.is_suspended = false;
9899 ufshcd_release(hba);
9900 hba->pm_op_in_progress = false;
9901 return ret;
9902 }
9903
ufshcd_wl_runtime_suspend(struct device * dev)9904 static int ufshcd_wl_runtime_suspend(struct device *dev)
9905 {
9906 struct scsi_device *sdev = to_scsi_device(dev);
9907 struct ufs_hba *hba;
9908 int ret;
9909 ktime_t start = ktime_get();
9910
9911 hba = shost_priv(sdev->host);
9912
9913 ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9914 if (ret)
9915 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9916
9917 trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9918 ktime_to_us(ktime_sub(ktime_get(), start)),
9919 hba->curr_dev_pwr_mode, hba->uic_link_state);
9920
9921 return ret;
9922 }
9923
ufshcd_wl_runtime_resume(struct device * dev)9924 static int ufshcd_wl_runtime_resume(struct device *dev)
9925 {
9926 struct scsi_device *sdev = to_scsi_device(dev);
9927 struct ufs_hba *hba;
9928 int ret = 0;
9929 ktime_t start = ktime_get();
9930
9931 hba = shost_priv(sdev->host);
9932
9933 ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9934 if (ret)
9935 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9936
9937 trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9938 ktime_to_us(ktime_sub(ktime_get(), start)),
9939 hba->curr_dev_pwr_mode, hba->uic_link_state);
9940
9941 return ret;
9942 }
9943 #endif
9944
9945 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_suspend(struct device * dev)9946 static int ufshcd_wl_suspend(struct device *dev)
9947 {
9948 struct scsi_device *sdev = to_scsi_device(dev);
9949 struct ufs_hba *hba;
9950 int ret = 0;
9951 ktime_t start = ktime_get();
9952
9953 hba = shost_priv(sdev->host);
9954 down(&hba->host_sem);
9955 hba->system_suspending = true;
9956
9957 if (pm_runtime_suspended(dev))
9958 goto out;
9959
9960 ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9961 if (ret) {
9962 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9963 up(&hba->host_sem);
9964 }
9965
9966 out:
9967 if (!ret)
9968 hba->is_sys_suspended = true;
9969 trace_ufshcd_wl_suspend(dev_name(dev), ret,
9970 ktime_to_us(ktime_sub(ktime_get(), start)),
9971 hba->curr_dev_pwr_mode, hba->uic_link_state);
9972
9973 return ret;
9974 }
9975
ufshcd_wl_resume(struct device * dev)9976 static int ufshcd_wl_resume(struct device *dev)
9977 {
9978 struct scsi_device *sdev = to_scsi_device(dev);
9979 struct ufs_hba *hba;
9980 int ret = 0;
9981 ktime_t start = ktime_get();
9982
9983 hba = shost_priv(sdev->host);
9984
9985 if (pm_runtime_suspended(dev))
9986 goto out;
9987
9988 ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9989 if (ret)
9990 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9991 out:
9992 trace_ufshcd_wl_resume(dev_name(dev), ret,
9993 ktime_to_us(ktime_sub(ktime_get(), start)),
9994 hba->curr_dev_pwr_mode, hba->uic_link_state);
9995 if (!ret)
9996 hba->is_sys_suspended = false;
9997 hba->system_suspending = false;
9998 up(&hba->host_sem);
9999 return ret;
10000 }
10001 #endif
10002
10003 /**
10004 * ufshcd_suspend - helper function for suspend operations
10005 * @hba: per adapter instance
10006 *
10007 * This function will put disable irqs, turn off clocks
10008 * and set vreg and hba-vreg in lpm mode.
10009 *
10010 * Return: 0 upon success; < 0 upon failure.
10011 */
ufshcd_suspend(struct ufs_hba * hba)10012 static int ufshcd_suspend(struct ufs_hba *hba)
10013 {
10014 int ret;
10015
10016 if (!hba->is_powered)
10017 return 0;
10018 /*
10019 * Disable the host irq as host controller as there won't be any
10020 * host controller transaction expected till resume.
10021 */
10022 ufshcd_disable_irq(hba);
10023 ret = ufshcd_setup_clocks(hba, false);
10024 if (ret) {
10025 ufshcd_enable_irq(hba);
10026 return ret;
10027 }
10028 if (ufshcd_is_clkgating_allowed(hba)) {
10029 hba->clk_gating.state = CLKS_OFF;
10030 trace_ufshcd_clk_gating(dev_name(hba->dev),
10031 hba->clk_gating.state);
10032 }
10033
10034 ufshcd_vreg_set_lpm(hba);
10035 /* Put the host controller in low power mode if possible */
10036 ufshcd_hba_vreg_set_lpm(hba);
10037 ufshcd_pm_qos_update(hba, false);
10038 return ret;
10039 }
10040
10041 #ifdef CONFIG_PM
10042 /**
10043 * ufshcd_resume - helper function for resume operations
10044 * @hba: per adapter instance
10045 *
10046 * This function basically turns on the regulators, clocks and
10047 * irqs of the hba.
10048 *
10049 * Return: 0 for success and non-zero for failure.
10050 */
ufshcd_resume(struct ufs_hba * hba)10051 static int ufshcd_resume(struct ufs_hba *hba)
10052 {
10053 int ret;
10054
10055 if (!hba->is_powered)
10056 return 0;
10057
10058 ufshcd_hba_vreg_set_hpm(hba);
10059 ret = ufshcd_vreg_set_hpm(hba);
10060 if (ret)
10061 goto out;
10062
10063 /* Make sure clocks are enabled before accessing controller */
10064 ret = ufshcd_setup_clocks(hba, true);
10065 if (ret)
10066 goto disable_vreg;
10067
10068 /* enable the host irq as host controller would be active soon */
10069 ufshcd_enable_irq(hba);
10070
10071 goto out;
10072
10073 disable_vreg:
10074 ufshcd_vreg_set_lpm(hba);
10075 out:
10076 if (ret)
10077 ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10078 return ret;
10079 }
10080 #endif /* CONFIG_PM */
10081
10082 #ifdef CONFIG_PM_SLEEP
10083 /**
10084 * ufshcd_system_suspend - system suspend callback
10085 * @dev: Device associated with the UFS controller.
10086 *
10087 * Executed before putting the system into a sleep state in which the contents
10088 * of main memory are preserved.
10089 *
10090 * Return: 0 for success and non-zero for failure.
10091 */
ufshcd_system_suspend(struct device * dev)10092 int ufshcd_system_suspend(struct device *dev)
10093 {
10094 struct ufs_hba *hba = dev_get_drvdata(dev);
10095 int ret = 0;
10096 ktime_t start = ktime_get();
10097
10098 if (pm_runtime_suspended(hba->dev))
10099 goto out;
10100
10101 ret = ufshcd_suspend(hba);
10102 out:
10103 trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
10104 ktime_to_us(ktime_sub(ktime_get(), start)),
10105 hba->curr_dev_pwr_mode, hba->uic_link_state);
10106 return ret;
10107 }
10108 EXPORT_SYMBOL(ufshcd_system_suspend);
10109
10110 /**
10111 * ufshcd_system_resume - system resume callback
10112 * @dev: Device associated with the UFS controller.
10113 *
10114 * Executed after waking the system up from a sleep state in which the contents
10115 * of main memory were preserved.
10116 *
10117 * Return: 0 for success and non-zero for failure.
10118 */
ufshcd_system_resume(struct device * dev)10119 int ufshcd_system_resume(struct device *dev)
10120 {
10121 struct ufs_hba *hba = dev_get_drvdata(dev);
10122 ktime_t start = ktime_get();
10123 int ret = 0;
10124
10125 if (pm_runtime_suspended(hba->dev))
10126 goto out;
10127
10128 ret = ufshcd_resume(hba);
10129
10130 out:
10131 trace_ufshcd_system_resume(dev_name(hba->dev), ret,
10132 ktime_to_us(ktime_sub(ktime_get(), start)),
10133 hba->curr_dev_pwr_mode, hba->uic_link_state);
10134
10135 return ret;
10136 }
10137 EXPORT_SYMBOL(ufshcd_system_resume);
10138 #endif /* CONFIG_PM_SLEEP */
10139
10140 #ifdef CONFIG_PM
10141 /**
10142 * ufshcd_runtime_suspend - runtime suspend callback
10143 * @dev: Device associated with the UFS controller.
10144 *
10145 * Check the description of ufshcd_suspend() function for more details.
10146 *
10147 * Return: 0 for success and non-zero for failure.
10148 */
ufshcd_runtime_suspend(struct device * dev)10149 int ufshcd_runtime_suspend(struct device *dev)
10150 {
10151 struct ufs_hba *hba = dev_get_drvdata(dev);
10152 int ret;
10153 ktime_t start = ktime_get();
10154
10155 ret = ufshcd_suspend(hba);
10156
10157 trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
10158 ktime_to_us(ktime_sub(ktime_get(), start)),
10159 hba->curr_dev_pwr_mode, hba->uic_link_state);
10160 return ret;
10161 }
10162 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10163
10164 /**
10165 * ufshcd_runtime_resume - runtime resume routine
10166 * @dev: Device associated with the UFS controller.
10167 *
10168 * This function basically brings controller
10169 * to active state. Following operations are done in this function:
10170 *
10171 * 1. Turn on all the controller related clocks
10172 * 2. Turn ON VCC rail
10173 *
10174 * Return: 0 upon success; < 0 upon failure.
10175 */
ufshcd_runtime_resume(struct device * dev)10176 int ufshcd_runtime_resume(struct device *dev)
10177 {
10178 struct ufs_hba *hba = dev_get_drvdata(dev);
10179 int ret;
10180 ktime_t start = ktime_get();
10181
10182 ret = ufshcd_resume(hba);
10183
10184 trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
10185 ktime_to_us(ktime_sub(ktime_get(), start)),
10186 hba->curr_dev_pwr_mode, hba->uic_link_state);
10187 return ret;
10188 }
10189 EXPORT_SYMBOL(ufshcd_runtime_resume);
10190 #endif /* CONFIG_PM */
10191
ufshcd_wl_shutdown(struct device * dev)10192 static void ufshcd_wl_shutdown(struct device *dev)
10193 {
10194 struct scsi_device *sdev = to_scsi_device(dev);
10195 struct ufs_hba *hba = shost_priv(sdev->host);
10196
10197 down(&hba->host_sem);
10198 hba->shutting_down = true;
10199 up(&hba->host_sem);
10200
10201 /* Turn on everything while shutting down */
10202 ufshcd_rpm_get_sync(hba);
10203 scsi_device_quiesce(sdev);
10204 shost_for_each_device(sdev, hba->host) {
10205 if (sdev == hba->ufs_device_wlun)
10206 continue;
10207 mutex_lock(&sdev->state_mutex);
10208 scsi_device_set_state(sdev, SDEV_OFFLINE);
10209 mutex_unlock(&sdev->state_mutex);
10210 }
10211 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10212
10213 /*
10214 * Next, turn off the UFS controller and the UFS regulators. Disable
10215 * clocks.
10216 */
10217 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10218 ufshcd_suspend(hba);
10219
10220 hba->is_powered = false;
10221 }
10222
10223 /**
10224 * ufshcd_remove - de-allocate SCSI host and host memory space
10225 * data structure memory
10226 * @hba: per adapter instance
10227 */
ufshcd_remove(struct ufs_hba * hba)10228 void ufshcd_remove(struct ufs_hba *hba)
10229 {
10230 if (hba->ufs_device_wlun)
10231 ufshcd_rpm_get_sync(hba);
10232 ufs_hwmon_remove(hba);
10233 ufs_bsg_remove(hba);
10234 ufs_sysfs_remove_nodes(hba->dev);
10235 cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
10236 blk_mq_destroy_queue(hba->tmf_queue);
10237 blk_put_queue(hba->tmf_queue);
10238 blk_mq_free_tag_set(&hba->tmf_tag_set);
10239 if (hba->scsi_host_added)
10240 scsi_remove_host(hba->host);
10241 /* disable interrupts */
10242 ufshcd_disable_intr(hba, hba->intr_mask);
10243 ufshcd_hba_stop(hba);
10244 ufshcd_hba_exit(hba);
10245 }
10246 EXPORT_SYMBOL_GPL(ufshcd_remove);
10247
10248 #ifdef CONFIG_PM_SLEEP
ufshcd_system_freeze(struct device * dev)10249 int ufshcd_system_freeze(struct device *dev)
10250 {
10251
10252 return ufshcd_system_suspend(dev);
10253
10254 }
10255 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10256
ufshcd_system_restore(struct device * dev)10257 int ufshcd_system_restore(struct device *dev)
10258 {
10259
10260 struct ufs_hba *hba = dev_get_drvdata(dev);
10261 int ret;
10262
10263 ret = ufshcd_system_resume(dev);
10264 if (ret)
10265 return ret;
10266
10267 /* Configure UTRL and UTMRL base address registers */
10268 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10269 REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10270 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10271 REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10272 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10273 REG_UTP_TASK_REQ_LIST_BASE_L);
10274 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10275 REG_UTP_TASK_REQ_LIST_BASE_H);
10276 /*
10277 * Make sure that UTRL and UTMRL base address registers
10278 * are updated with the latest queue addresses. Only after
10279 * updating these addresses, we can queue the new commands.
10280 */
10281 ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H);
10282
10283 return 0;
10284
10285 }
10286 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10287
ufshcd_system_thaw(struct device * dev)10288 int ufshcd_system_thaw(struct device *dev)
10289 {
10290 return ufshcd_system_resume(dev);
10291 }
10292 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10293 #endif /* CONFIG_PM_SLEEP */
10294
10295 /**
10296 * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10297 * @hba: pointer to Host Bus Adapter (HBA)
10298 */
ufshcd_dealloc_host(struct ufs_hba * hba)10299 void ufshcd_dealloc_host(struct ufs_hba *hba)
10300 {
10301 scsi_host_put(hba->host);
10302 }
10303 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10304
10305 /**
10306 * ufshcd_set_dma_mask - Set dma mask based on the controller
10307 * addressing capability
10308 * @hba: per adapter instance
10309 *
10310 * Return: 0 for success, non-zero for failure.
10311 */
ufshcd_set_dma_mask(struct ufs_hba * hba)10312 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10313 {
10314 if (hba->vops && hba->vops->set_dma_mask)
10315 return hba->vops->set_dma_mask(hba);
10316 if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10317 if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10318 return 0;
10319 }
10320 return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10321 }
10322
10323 /**
10324 * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10325 * @dev: pointer to device handle
10326 * @hba_handle: driver private handle
10327 *
10328 * Return: 0 on success, non-zero value on failure.
10329 */
ufshcd_alloc_host(struct device * dev,struct ufs_hba ** hba_handle)10330 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10331 {
10332 struct Scsi_Host *host;
10333 struct ufs_hba *hba;
10334 int err = 0;
10335
10336 if (!dev) {
10337 dev_err(dev,
10338 "Invalid memory reference for dev is NULL\n");
10339 err = -ENODEV;
10340 goto out_error;
10341 }
10342
10343 host = scsi_host_alloc(&ufshcd_driver_template,
10344 sizeof(struct ufs_hba));
10345 if (!host) {
10346 dev_err(dev, "scsi_host_alloc failed\n");
10347 err = -ENOMEM;
10348 goto out_error;
10349 }
10350 host->nr_maps = HCTX_TYPE_POLL + 1;
10351 hba = shost_priv(host);
10352 hba->host = host;
10353 hba->dev = dev;
10354 hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10355 hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10356 ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10357 INIT_LIST_HEAD(&hba->clk_list_head);
10358 spin_lock_init(&hba->outstanding_lock);
10359
10360 *hba_handle = hba;
10361
10362 out_error:
10363 return err;
10364 }
10365 EXPORT_SYMBOL(ufshcd_alloc_host);
10366
10367 /* This function exists because blk_mq_alloc_tag_set() requires this. */
ufshcd_queue_tmf(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * qd)10368 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10369 const struct blk_mq_queue_data *qd)
10370 {
10371 WARN_ON_ONCE(true);
10372 return BLK_STS_NOTSUPP;
10373 }
10374
10375 static const struct blk_mq_ops ufshcd_tmf_ops = {
10376 .queue_rq = ufshcd_queue_tmf,
10377 };
10378
ufshcd_add_scsi_host(struct ufs_hba * hba)10379 static int ufshcd_add_scsi_host(struct ufs_hba *hba)
10380 {
10381 int err;
10382
10383 if (is_mcq_supported(hba)) {
10384 ufshcd_mcq_enable(hba);
10385 err = ufshcd_alloc_mcq(hba);
10386 if (!err) {
10387 ufshcd_config_mcq(hba);
10388 } else {
10389 /* Continue with SDB mode */
10390 ufshcd_mcq_disable(hba);
10391 use_mcq_mode = false;
10392 dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
10393 err);
10394 }
10395 }
10396 if (!is_mcq_supported(hba) && !hba->lsdb_sup) {
10397 dev_err(hba->dev,
10398 "%s: failed to initialize (legacy doorbell mode not supported)\n",
10399 __func__);
10400 return -EINVAL;
10401 }
10402
10403 err = scsi_add_host(hba->host, hba->dev);
10404 if (err) {
10405 dev_err(hba->dev, "scsi_add_host failed\n");
10406 return err;
10407 }
10408 hba->scsi_host_added = true;
10409
10410 hba->tmf_tag_set = (struct blk_mq_tag_set) {
10411 .nr_hw_queues = 1,
10412 .queue_depth = hba->nutmrs,
10413 .ops = &ufshcd_tmf_ops,
10414 .flags = BLK_MQ_F_NO_SCHED,
10415 };
10416 err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10417 if (err < 0)
10418 goto remove_scsi_host;
10419 hba->tmf_queue = blk_mq_alloc_queue(&hba->tmf_tag_set, NULL, NULL);
10420 if (IS_ERR(hba->tmf_queue)) {
10421 err = PTR_ERR(hba->tmf_queue);
10422 goto free_tmf_tag_set;
10423 }
10424 hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10425 sizeof(*hba->tmf_rqs), GFP_KERNEL);
10426 if (!hba->tmf_rqs) {
10427 err = -ENOMEM;
10428 goto free_tmf_queue;
10429 }
10430
10431 return 0;
10432
10433 free_tmf_queue:
10434 blk_mq_destroy_queue(hba->tmf_queue);
10435 blk_put_queue(hba->tmf_queue);
10436
10437 free_tmf_tag_set:
10438 blk_mq_free_tag_set(&hba->tmf_tag_set);
10439
10440 remove_scsi_host:
10441 if (hba->scsi_host_added)
10442 scsi_remove_host(hba->host);
10443
10444 return err;
10445 }
10446
10447 /**
10448 * ufshcd_init - Driver initialization routine
10449 * @hba: per-adapter instance
10450 * @mmio_base: base register address
10451 * @irq: Interrupt line of device
10452 *
10453 * Return: 0 on success, non-zero value on failure.
10454 */
ufshcd_init(struct ufs_hba * hba,void __iomem * mmio_base,unsigned int irq)10455 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10456 {
10457 int err;
10458 struct Scsi_Host *host = hba->host;
10459 struct device *dev = hba->dev;
10460
10461 /*
10462 * dev_set_drvdata() must be called before any callbacks are registered
10463 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10464 * sysfs).
10465 */
10466 dev_set_drvdata(dev, hba);
10467
10468 if (!mmio_base) {
10469 dev_err(hba->dev,
10470 "Invalid memory reference for mmio_base is NULL\n");
10471 err = -ENODEV;
10472 goto out_error;
10473 }
10474
10475 hba->mmio_base = mmio_base;
10476 hba->irq = irq;
10477 hba->vps = &ufs_hba_vps;
10478
10479 err = ufshcd_hba_init(hba);
10480 if (err)
10481 goto out_error;
10482
10483 /* Read capabilities registers */
10484 err = ufshcd_hba_capabilities(hba);
10485 if (err)
10486 goto out_disable;
10487
10488 /* Get UFS version supported by the controller */
10489 hba->ufs_version = ufshcd_get_ufs_version(hba);
10490
10491 /* Get Interrupt bit mask per version */
10492 hba->intr_mask = ufshcd_get_intr_mask(hba);
10493
10494 err = ufshcd_set_dma_mask(hba);
10495 if (err) {
10496 dev_err(hba->dev, "set dma mask failed\n");
10497 goto out_disable;
10498 }
10499
10500 /* Allocate memory for host memory space */
10501 err = ufshcd_memory_alloc(hba);
10502 if (err) {
10503 dev_err(hba->dev, "Memory allocation failed\n");
10504 goto out_disable;
10505 }
10506
10507 /* Configure LRB */
10508 ufshcd_host_memory_configure(hba);
10509
10510 host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10511 host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10512 host->max_id = UFSHCD_MAX_ID;
10513 host->max_lun = UFS_MAX_LUNS;
10514 host->max_channel = UFSHCD_MAX_CHANNEL;
10515 host->unique_id = host->host_no;
10516 host->max_cmd_len = UFS_CDB_SIZE;
10517 host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10518
10519 /* Use default RPM delay if host not set */
10520 if (host->rpm_autosuspend_delay == 0)
10521 host->rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS;
10522
10523 hba->max_pwr_info.is_valid = false;
10524
10525 /* Initialize work queues */
10526 hba->eh_wq = alloc_ordered_workqueue("ufs_eh_wq_%d", WQ_MEM_RECLAIM,
10527 hba->host->host_no);
10528 if (!hba->eh_wq) {
10529 dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10530 __func__);
10531 err = -ENOMEM;
10532 goto out_disable;
10533 }
10534 INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10535 INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10536
10537 sema_init(&hba->host_sem, 1);
10538
10539 /* Initialize UIC command mutex */
10540 mutex_init(&hba->uic_cmd_mutex);
10541
10542 /* Initialize mutex for device management commands */
10543 mutex_init(&hba->dev_cmd.lock);
10544
10545 /* Initialize mutex for exception event control */
10546 mutex_init(&hba->ee_ctrl_mutex);
10547
10548 mutex_init(&hba->wb_mutex);
10549 init_rwsem(&hba->clk_scaling_lock);
10550
10551 ufshcd_init_clk_gating(hba);
10552
10553 ufshcd_init_clk_scaling(hba);
10554
10555 /*
10556 * In order to avoid any spurious interrupt immediately after
10557 * registering UFS controller interrupt handler, clear any pending UFS
10558 * interrupt status and disable all the UFS interrupts.
10559 */
10560 ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10561 REG_INTERRUPT_STATUS);
10562 ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10563 /*
10564 * Make sure that UFS interrupts are disabled and any pending interrupt
10565 * status is cleared before registering UFS interrupt handler.
10566 */
10567 ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
10568
10569 /* IRQ registration */
10570 err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10571 if (err) {
10572 dev_err(hba->dev, "request irq failed\n");
10573 goto out_disable;
10574 } else {
10575 hba->is_irq_enabled = true;
10576 }
10577
10578 /* Reset the attached device */
10579 ufshcd_device_reset(hba);
10580
10581 ufshcd_init_crypto(hba);
10582
10583 /* Host controller enable */
10584 err = ufshcd_hba_enable(hba);
10585 if (err) {
10586 dev_err(hba->dev, "Host controller enable failed\n");
10587 ufshcd_print_evt_hist(hba);
10588 ufshcd_print_host_state(hba);
10589 goto out_disable;
10590 }
10591
10592 /*
10593 * Set the default power management level for runtime and system PM if
10594 * not set by the host controller drivers.
10595 * Default power saving mode is to keep UFS link in Hibern8 state
10596 * and UFS device in sleep state.
10597 */
10598 if (!hba->rpm_lvl)
10599 hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10600 UFS_SLEEP_PWR_MODE,
10601 UIC_LINK_HIBERN8_STATE);
10602 if (!hba->spm_lvl)
10603 hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10604 UFS_SLEEP_PWR_MODE,
10605 UIC_LINK_HIBERN8_STATE);
10606
10607 INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work);
10608 INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work);
10609
10610 /* Set the default auto-hiberate idle timer value to 150 ms */
10611 if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10612 hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10613 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10614 }
10615
10616 /* Hold auto suspend until async scan completes */
10617 pm_runtime_get_sync(dev);
10618
10619 /*
10620 * We are assuming that device wasn't put in sleep/power-down
10621 * state exclusively during the boot stage before kernel.
10622 * This assumption helps avoid doing link startup twice during
10623 * ufshcd_probe_hba().
10624 */
10625 ufshcd_set_ufs_dev_active(hba);
10626
10627 /* Initialize hba, detect and initialize UFS device */
10628 ktime_t probe_start = ktime_get();
10629
10630 hba->ufshcd_state = UFSHCD_STATE_RESET;
10631
10632 err = ufshcd_link_startup(hba);
10633 if (err)
10634 goto out_disable;
10635
10636 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
10637 goto initialized;
10638
10639 /* Debug counters initialization */
10640 ufshcd_clear_dbg_ufs_stats(hba);
10641
10642 /* UniPro link is active now */
10643 ufshcd_set_link_active(hba);
10644
10645 /* Verify device initialization by sending NOP OUT UPIU */
10646 err = ufshcd_verify_dev_init(hba);
10647 if (err)
10648 goto out_disable;
10649
10650 /* Initiate UFS initialization, and waiting until completion */
10651 err = ufshcd_complete_dev_init(hba);
10652 if (err)
10653 goto out_disable;
10654
10655 err = ufshcd_device_params_init(hba);
10656 if (err)
10657 goto out_disable;
10658
10659 err = ufshcd_post_device_init(hba);
10660
10661 initialized:
10662 ufshcd_process_probe_result(hba, probe_start, err);
10663 if (err)
10664 goto out_disable;
10665
10666 err = ufshcd_add_scsi_host(hba);
10667 if (err)
10668 goto out_disable;
10669
10670 async_schedule(ufshcd_async_scan, hba);
10671 ufs_sysfs_add_nodes(hba->dev);
10672
10673 device_enable_async_suspend(dev);
10674 ufshcd_pm_qos_init(hba);
10675 return 0;
10676
10677 out_disable:
10678 hba->is_irq_enabled = false;
10679 ufshcd_hba_exit(hba);
10680 out_error:
10681 return err;
10682 }
10683 EXPORT_SYMBOL_GPL(ufshcd_init);
10684
ufshcd_resume_complete(struct device * dev)10685 void ufshcd_resume_complete(struct device *dev)
10686 {
10687 struct ufs_hba *hba = dev_get_drvdata(dev);
10688
10689 if (hba->complete_put) {
10690 ufshcd_rpm_put(hba);
10691 hba->complete_put = false;
10692 }
10693 }
10694 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10695
ufshcd_rpm_ok_for_spm(struct ufs_hba * hba)10696 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10697 {
10698 struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10699 enum ufs_dev_pwr_mode dev_pwr_mode;
10700 enum uic_link_state link_state;
10701 unsigned long flags;
10702 bool res;
10703
10704 spin_lock_irqsave(&dev->power.lock, flags);
10705 dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10706 link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10707 res = pm_runtime_suspended(dev) &&
10708 hba->curr_dev_pwr_mode == dev_pwr_mode &&
10709 hba->uic_link_state == link_state &&
10710 !hba->dev_info.b_rpm_dev_flush_capable;
10711 spin_unlock_irqrestore(&dev->power.lock, flags);
10712
10713 return res;
10714 }
10715
__ufshcd_suspend_prepare(struct device * dev,bool rpm_ok_for_spm)10716 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10717 {
10718 struct ufs_hba *hba = dev_get_drvdata(dev);
10719 int ret;
10720
10721 /*
10722 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10723 * are same. And it doesn't wake up the device for system-suspend
10724 * if it's runtime suspended. But ufs doesn't follow that.
10725 * Refer ufshcd_resume_complete()
10726 */
10727 if (hba->ufs_device_wlun) {
10728 /* Prevent runtime suspend */
10729 ufshcd_rpm_get_noresume(hba);
10730 /*
10731 * Check if already runtime suspended in same state as system
10732 * suspend would be.
10733 */
10734 if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10735 /* RPM state is not ok for SPM, so runtime resume */
10736 ret = ufshcd_rpm_resume(hba);
10737 if (ret < 0 && ret != -EACCES) {
10738 ufshcd_rpm_put(hba);
10739 return ret;
10740 }
10741 }
10742 hba->complete_put = true;
10743 }
10744 return 0;
10745 }
10746 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10747
ufshcd_suspend_prepare(struct device * dev)10748 int ufshcd_suspend_prepare(struct device *dev)
10749 {
10750 return __ufshcd_suspend_prepare(dev, true);
10751 }
10752 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10753
10754 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_poweroff(struct device * dev)10755 static int ufshcd_wl_poweroff(struct device *dev)
10756 {
10757 struct scsi_device *sdev = to_scsi_device(dev);
10758 struct ufs_hba *hba = shost_priv(sdev->host);
10759
10760 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10761 return 0;
10762 }
10763 #endif
10764
ufshcd_wl_probe(struct device * dev)10765 static int ufshcd_wl_probe(struct device *dev)
10766 {
10767 struct scsi_device *sdev = to_scsi_device(dev);
10768
10769 if (!is_device_wlun(sdev))
10770 return -ENODEV;
10771
10772 blk_pm_runtime_init(sdev->request_queue, dev);
10773 pm_runtime_set_autosuspend_delay(dev, 0);
10774 pm_runtime_allow(dev);
10775
10776 return 0;
10777 }
10778
ufshcd_wl_remove(struct device * dev)10779 static int ufshcd_wl_remove(struct device *dev)
10780 {
10781 pm_runtime_forbid(dev);
10782 return 0;
10783 }
10784
10785 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10786 #ifdef CONFIG_PM_SLEEP
10787 .suspend = ufshcd_wl_suspend,
10788 .resume = ufshcd_wl_resume,
10789 .freeze = ufshcd_wl_suspend,
10790 .thaw = ufshcd_wl_resume,
10791 .poweroff = ufshcd_wl_poweroff,
10792 .restore = ufshcd_wl_resume,
10793 #endif
10794 SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10795 };
10796
ufshcd_check_header_layout(void)10797 static void ufshcd_check_header_layout(void)
10798 {
10799 /*
10800 * gcc compilers before version 10 cannot do constant-folding for
10801 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10802 * before.
10803 */
10804 if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10805 return;
10806
10807 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10808 .cci = 3})[0] != 3);
10809
10810 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10811 .ehs_length = 2})[1] != 2);
10812
10813 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10814 .enable_crypto = 1})[2]
10815 != 0x80);
10816
10817 BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10818 .command_type = 5,
10819 .data_direction = 3,
10820 .interrupt = 1,
10821 })[3]) != ((5 << 4) | (3 << 1) | 1));
10822
10823 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10824 .dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10825 cpu_to_le32(0xdeadbeef));
10826
10827 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10828 .ocs = 4})[8] != 4);
10829
10830 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10831 .cds = 5})[9] != 5);
10832
10833 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10834 .dunu = cpu_to_le32(0xbadcafe)})[3] !=
10835 cpu_to_le32(0xbadcafe));
10836
10837 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10838 .iid = 0xf })[4] != 0xf0);
10839
10840 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10841 .command_set_type = 0xf })[4] != 0xf);
10842 }
10843
10844 /*
10845 * ufs_dev_wlun_template - describes ufs device wlun
10846 * ufs-device wlun - used to send pm commands
10847 * All luns are consumers of ufs-device wlun.
10848 *
10849 * Currently, no sd driver is present for wluns.
10850 * Hence the no specific pm operations are performed.
10851 * With ufs design, SSU should be sent to ufs-device wlun.
10852 * Hence register a scsi driver for ufs wluns only.
10853 */
10854 static struct scsi_driver ufs_dev_wlun_template = {
10855 .gendrv = {
10856 .name = "ufs_device_wlun",
10857 .probe = ufshcd_wl_probe,
10858 .remove = ufshcd_wl_remove,
10859 .pm = &ufshcd_wl_pm_ops,
10860 .shutdown = ufshcd_wl_shutdown,
10861 },
10862 };
10863
ufshcd_core_init(void)10864 static int __init ufshcd_core_init(void)
10865 {
10866 int ret;
10867
10868 ufshcd_check_header_layout();
10869
10870 ufs_debugfs_init();
10871
10872 ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10873 if (ret)
10874 ufs_debugfs_exit();
10875 return ret;
10876 }
10877
ufshcd_core_exit(void)10878 static void __exit ufshcd_core_exit(void)
10879 {
10880 ufs_debugfs_exit();
10881 scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10882 }
10883
10884 module_init(ufshcd_core_init);
10885 module_exit(ufshcd_core_exit);
10886
10887 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10888 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10889 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10890 MODULE_SOFTDEP("pre: governor_simpleondemand");
10891 MODULE_LICENSE("GPL");
10892