1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Driver for Theobroma Systems UCAN devices, Protocol Version 3 4 * 5 * Copyright (C) 2018 Theobroma Systems Design und Consulting GmbH 6 * 7 * 8 * General Description: 9 * 10 * The USB Device uses three Endpoints: 11 * 12 * CONTROL Endpoint: Is used the setup the device (start, stop, 13 * info, configure). 14 * 15 * IN Endpoint: The device sends CAN Frame Messages and Device 16 * Information using the IN endpoint. 17 * 18 * OUT Endpoint: The driver sends configuration requests, and CAN 19 * Frames on the out endpoint. 20 * 21 * Error Handling: 22 * 23 * If error reporting is turned on the device encodes error into CAN 24 * error frames (see uapi/linux/can/error.h) and sends it using the 25 * IN Endpoint. The driver updates statistics and forward it. 26 */ 27 28 #include <linux/can.h> 29 #include <linux/can/dev.h> 30 #include <linux/can/error.h> 31 #include <linux/ethtool.h> 32 #include <linux/module.h> 33 #include <linux/netdevice.h> 34 #include <linux/signal.h> 35 #include <linux/skbuff.h> 36 #include <linux/slab.h> 37 #include <linux/usb.h> 38 39 #define UCAN_DRIVER_NAME "ucan" 40 #define UCAN_MAX_RX_URBS 8 41 /* the CAN controller needs a while to enable/disable the bus */ 42 #define UCAN_USB_CTL_PIPE_TIMEOUT 1000 43 /* this driver currently supports protocol version 3 only */ 44 #define UCAN_PROTOCOL_VERSION_MIN 3 45 #define UCAN_PROTOCOL_VERSION_MAX 3 46 47 /* UCAN Message Definitions 48 * ------------------------ 49 * 50 * ucan_message_out_t and ucan_message_in_t define the messages 51 * transmitted on the OUT and IN endpoint. 52 * 53 * Multibyte fields are transmitted with little endianness 54 * 55 * INTR Endpoint: a single uint32_t storing the current space in the fifo 56 * 57 * OUT Endpoint: single message of type ucan_message_out_t is 58 * transmitted on the out endpoint 59 * 60 * IN Endpoint: multiple messages ucan_message_in_t concateted in 61 * the following way: 62 * 63 * m[n].len <=> the length if message n(including the header in bytes) 64 * m[n] is is aligned to a 4 byte boundary, hence 65 * offset(m[0]) := 0; 66 * offset(m[n+1]) := offset(m[n]) + (m[n].len + 3) & 3 67 * 68 * this implies that 69 * offset(m[n]) % 4 <=> 0 70 */ 71 72 /* Device Global Commands */ 73 enum { 74 UCAN_DEVICE_GET_FW_STRING = 0, 75 }; 76 77 /* UCAN Commands */ 78 enum { 79 /* start the can transceiver - val defines the operation mode */ 80 UCAN_COMMAND_START = 0, 81 /* cancel pending transmissions and stop the can transceiver */ 82 UCAN_COMMAND_STOP = 1, 83 /* send can transceiver into low-power sleep mode */ 84 UCAN_COMMAND_SLEEP = 2, 85 /* wake up can transceiver from low-power sleep mode */ 86 UCAN_COMMAND_WAKEUP = 3, 87 /* reset the can transceiver */ 88 UCAN_COMMAND_RESET = 4, 89 /* get piece of info from the can transceiver - subcmd defines what 90 * piece 91 */ 92 UCAN_COMMAND_GET = 5, 93 /* clear or disable hardware filter - subcmd defines which of the two */ 94 UCAN_COMMAND_FILTER = 6, 95 /* Setup bittiming */ 96 UCAN_COMMAND_SET_BITTIMING = 7, 97 /* recover from bus-off state */ 98 UCAN_COMMAND_RESTART = 8, 99 }; 100 101 /* UCAN_COMMAND_START and UCAN_COMMAND_GET_INFO operation modes (bitmap). 102 * Undefined bits must be set to 0. 103 */ 104 enum { 105 UCAN_MODE_LOOPBACK = BIT(0), 106 UCAN_MODE_SILENT = BIT(1), 107 UCAN_MODE_3_SAMPLES = BIT(2), 108 UCAN_MODE_ONE_SHOT = BIT(3), 109 UCAN_MODE_BERR_REPORT = BIT(4), 110 }; 111 112 /* UCAN_COMMAND_GET subcommands */ 113 enum { 114 UCAN_COMMAND_GET_INFO = 0, 115 UCAN_COMMAND_GET_PROTOCOL_VERSION = 1, 116 }; 117 118 /* UCAN_COMMAND_FILTER subcommands */ 119 enum { 120 UCAN_FILTER_CLEAR = 0, 121 UCAN_FILTER_DISABLE = 1, 122 UCAN_FILTER_ENABLE = 2, 123 }; 124 125 /* OUT endpoint message types */ 126 enum { 127 UCAN_OUT_TX = 2, /* transmit a CAN frame */ 128 }; 129 130 /* IN endpoint message types */ 131 enum { 132 UCAN_IN_TX_COMPLETE = 1, /* CAN frame transmission completed */ 133 UCAN_IN_RX = 2, /* CAN frame received */ 134 }; 135 136 struct ucan_ctl_cmd_start { 137 __le16 mode; /* OR-ing any of UCAN_MODE_* */ 138 } __packed; 139 140 struct ucan_ctl_cmd_set_bittiming { 141 __le32 tq; /* Time quanta (TQ) in nanoseconds */ 142 __le16 brp; /* TQ Prescaler */ 143 __le16 sample_point; /* Samplepoint on tenth percent */ 144 u8 prop_seg; /* Propagation segment in TQs */ 145 u8 phase_seg1; /* Phase buffer segment 1 in TQs */ 146 u8 phase_seg2; /* Phase buffer segment 2 in TQs */ 147 u8 sjw; /* Synchronisation jump width in TQs */ 148 } __packed; 149 150 struct ucan_ctl_cmd_device_info { 151 __le32 freq; /* Clock Frequency for tq generation */ 152 u8 tx_fifo; /* Size of the transmission fifo */ 153 u8 sjw_max; /* can_bittiming fields... */ 154 u8 tseg1_min; 155 u8 tseg1_max; 156 u8 tseg2_min; 157 u8 tseg2_max; 158 __le16 brp_inc; 159 __le32 brp_min; 160 __le32 brp_max; /* ...can_bittiming fields */ 161 __le16 ctrlmodes; /* supported control modes */ 162 __le16 hwfilter; /* Number of HW filter banks */ 163 __le16 rxmboxes; /* Number of receive Mailboxes */ 164 } __packed; 165 166 struct ucan_ctl_cmd_get_protocol_version { 167 __le32 version; 168 } __packed; 169 170 union ucan_ctl_payload { 171 /* Setup Bittiming 172 * bmRequest == UCAN_COMMAND_START 173 */ 174 struct ucan_ctl_cmd_start cmd_start; 175 /* Setup Bittiming 176 * bmRequest == UCAN_COMMAND_SET_BITTIMING 177 */ 178 struct ucan_ctl_cmd_set_bittiming cmd_set_bittiming; 179 /* Get Device Information 180 * bmRequest == UCAN_COMMAND_GET; wValue = UCAN_COMMAND_GET_INFO 181 */ 182 struct ucan_ctl_cmd_device_info cmd_get_device_info; 183 /* Get Protocol Version 184 * bmRequest == UCAN_COMMAND_GET; 185 * wValue = UCAN_COMMAND_GET_PROTOCOL_VERSION 186 */ 187 struct ucan_ctl_cmd_get_protocol_version cmd_get_protocol_version; 188 189 u8 fw_str[128]; 190 } __packed; 191 192 enum { 193 UCAN_TX_COMPLETE_SUCCESS = BIT(0), 194 }; 195 196 /* Transmission Complete within ucan_message_in */ 197 struct ucan_tx_complete_entry_t { 198 u8 echo_index; 199 u8 flags; 200 } __packed __aligned(0x2); 201 202 /* CAN Data message format within ucan_message_in/out */ 203 struct ucan_can_msg { 204 /* note DLC is computed by 205 * msg.len - sizeof (msg.len) 206 * - sizeof (msg.type) 207 * - sizeof (msg.can_msg.id) 208 */ 209 __le32 id; 210 211 union { 212 u8 data[CAN_MAX_DLEN]; /* Data of CAN frames */ 213 u8 dlc; /* RTR dlc */ 214 }; 215 } __packed; 216 217 /* OUT Endpoint, outbound messages */ 218 struct ucan_message_out { 219 __le16 len; /* Length of the content include header */ 220 u8 type; /* UCAN_OUT_TX and friends */ 221 u8 subtype; /* command sub type */ 222 223 union { 224 /* Transmit CAN frame 225 * (type == UCAN_TX) && ((msg.can_msg.id & CAN_RTR_FLAG) == 0) 226 * subtype stores the echo id 227 */ 228 struct ucan_can_msg can_msg; 229 } msg; 230 } __packed __aligned(0x4); 231 232 /* IN Endpoint, inbound messages */ 233 struct ucan_message_in { 234 __le16 len; /* Length of the content include header */ 235 u8 type; /* UCAN_IN_RX and friends */ 236 u8 subtype; /* command sub type */ 237 238 union { 239 /* CAN Frame received 240 * (type == UCAN_IN_RX) 241 * && ((msg.can_msg.id & CAN_RTR_FLAG) == 0) 242 */ 243 struct ucan_can_msg can_msg; 244 245 /* CAN transmission complete 246 * (type == UCAN_IN_TX_COMPLETE) 247 */ 248 DECLARE_FLEX_ARRAY(struct ucan_tx_complete_entry_t, 249 can_tx_complete_msg); 250 } __aligned(0x4) msg; 251 } __packed __aligned(0x4); 252 253 /* Macros to calculate message lengths */ 254 #define UCAN_OUT_HDR_SIZE offsetof(struct ucan_message_out, msg) 255 256 #define UCAN_IN_HDR_SIZE offsetof(struct ucan_message_in, msg) 257 #define UCAN_IN_LEN(member) (UCAN_OUT_HDR_SIZE + sizeof(member)) 258 259 struct ucan_priv; 260 261 /* Context Information for transmission URBs */ 262 struct ucan_urb_context { 263 struct ucan_priv *up; 264 bool allocated; 265 }; 266 267 /* Information reported by the USB device */ 268 struct ucan_device_info { 269 struct can_bittiming_const bittiming_const; 270 u8 tx_fifo; 271 }; 272 273 /* Driver private data */ 274 struct ucan_priv { 275 /* must be the first member */ 276 struct can_priv can; 277 278 /* linux USB device structures */ 279 struct usb_device *udev; 280 struct net_device *netdev; 281 282 /* lock for can->echo_skb (used around 283 * can_put/get/free_echo_skb 284 */ 285 spinlock_t echo_skb_lock; 286 287 /* usb device information */ 288 u8 intf_index; 289 u8 in_ep_addr; 290 u8 out_ep_addr; 291 u16 in_ep_size; 292 293 /* transmission and reception buffers */ 294 struct usb_anchor rx_urbs; 295 struct usb_anchor tx_urbs; 296 297 union ucan_ctl_payload *ctl_msg_buffer; 298 struct ucan_device_info device_info; 299 300 /* transmission control information and locks */ 301 spinlock_t context_lock; 302 unsigned int available_tx_urbs; 303 struct ucan_urb_context *context_array; 304 }; 305 306 static u8 ucan_can_cc_dlc2len(struct ucan_can_msg *msg, u16 len) 307 { 308 if (le32_to_cpu(msg->id) & CAN_RTR_FLAG) 309 return can_cc_dlc2len(msg->dlc); 310 else 311 return can_cc_dlc2len(len - (UCAN_IN_HDR_SIZE + sizeof(msg->id))); 312 } 313 314 static void ucan_release_context_array(struct ucan_priv *up) 315 { 316 if (!up->context_array) 317 return; 318 319 /* lock is not needed because, driver is currently opening or closing */ 320 up->available_tx_urbs = 0; 321 322 kfree(up->context_array); 323 up->context_array = NULL; 324 } 325 326 static int ucan_alloc_context_array(struct ucan_priv *up) 327 { 328 int i; 329 330 /* release contexts if any */ 331 ucan_release_context_array(up); 332 333 up->context_array = kcalloc(up->device_info.tx_fifo, 334 sizeof(*up->context_array), 335 GFP_KERNEL); 336 if (!up->context_array) { 337 netdev_err(up->netdev, 338 "Not enough memory to allocate tx contexts\n"); 339 return -ENOMEM; 340 } 341 342 for (i = 0; i < up->device_info.tx_fifo; i++) { 343 up->context_array[i].allocated = false; 344 up->context_array[i].up = up; 345 } 346 347 /* lock is not needed because, driver is currently opening */ 348 up->available_tx_urbs = up->device_info.tx_fifo; 349 350 return 0; 351 } 352 353 static struct ucan_urb_context *ucan_alloc_context(struct ucan_priv *up) 354 { 355 int i; 356 unsigned long flags; 357 struct ucan_urb_context *ret = NULL; 358 359 if (WARN_ON_ONCE(!up->context_array)) 360 return NULL; 361 362 /* execute context operation atomically */ 363 spin_lock_irqsave(&up->context_lock, flags); 364 365 for (i = 0; i < up->device_info.tx_fifo; i++) { 366 if (!up->context_array[i].allocated) { 367 /* update context */ 368 ret = &up->context_array[i]; 369 up->context_array[i].allocated = true; 370 371 /* stop queue if necessary */ 372 up->available_tx_urbs--; 373 if (!up->available_tx_urbs) 374 netif_stop_queue(up->netdev); 375 376 break; 377 } 378 } 379 380 spin_unlock_irqrestore(&up->context_lock, flags); 381 return ret; 382 } 383 384 static bool ucan_release_context(struct ucan_priv *up, 385 struct ucan_urb_context *ctx) 386 { 387 unsigned long flags; 388 bool ret = false; 389 390 if (WARN_ON_ONCE(!up->context_array)) 391 return false; 392 393 /* execute context operation atomically */ 394 spin_lock_irqsave(&up->context_lock, flags); 395 396 /* context was not allocated, maybe the device sent garbage */ 397 if (ctx->allocated) { 398 ctx->allocated = false; 399 400 /* check if the queue needs to be woken */ 401 if (!up->available_tx_urbs) 402 netif_wake_queue(up->netdev); 403 up->available_tx_urbs++; 404 405 ret = true; 406 } 407 408 spin_unlock_irqrestore(&up->context_lock, flags); 409 return ret; 410 } 411 412 static int ucan_ctrl_command_out(struct ucan_priv *up, 413 u8 cmd, u16 subcmd, u16 datalen) 414 { 415 return usb_control_msg(up->udev, 416 usb_sndctrlpipe(up->udev, 0), 417 cmd, 418 USB_DIR_OUT | USB_TYPE_VENDOR | 419 USB_RECIP_INTERFACE, 420 subcmd, 421 up->intf_index, 422 up->ctl_msg_buffer, 423 datalen, 424 UCAN_USB_CTL_PIPE_TIMEOUT); 425 } 426 427 static void ucan_get_fw_str(struct ucan_priv *up, char *fw_str, size_t size) 428 { 429 int ret; 430 431 ret = usb_control_msg(up->udev, usb_rcvctrlpipe(up->udev, 0), 432 UCAN_DEVICE_GET_FW_STRING, 433 USB_DIR_IN | USB_TYPE_VENDOR | 434 USB_RECIP_DEVICE, 435 0, 0, fw_str, size - 1, 436 UCAN_USB_CTL_PIPE_TIMEOUT); 437 if (ret > 0) 438 fw_str[ret] = '\0'; 439 else 440 strscpy(fw_str, "unknown", size); 441 } 442 443 /* Parse the device information structure reported by the device and 444 * setup private variables accordingly 445 */ 446 static void ucan_parse_device_info(struct ucan_priv *up, 447 struct ucan_ctl_cmd_device_info *device_info) 448 { 449 struct can_bittiming_const *bittiming = 450 &up->device_info.bittiming_const; 451 u16 ctrlmodes; 452 453 /* store the data */ 454 up->can.clock.freq = le32_to_cpu(device_info->freq); 455 up->device_info.tx_fifo = device_info->tx_fifo; 456 strcpy(bittiming->name, "ucan"); 457 bittiming->tseg1_min = device_info->tseg1_min; 458 bittiming->tseg1_max = device_info->tseg1_max; 459 bittiming->tseg2_min = device_info->tseg2_min; 460 bittiming->tseg2_max = device_info->tseg2_max; 461 bittiming->sjw_max = device_info->sjw_max; 462 bittiming->brp_min = le32_to_cpu(device_info->brp_min); 463 bittiming->brp_max = le32_to_cpu(device_info->brp_max); 464 bittiming->brp_inc = le16_to_cpu(device_info->brp_inc); 465 466 ctrlmodes = le16_to_cpu(device_info->ctrlmodes); 467 468 up->can.ctrlmode_supported = 0; 469 470 if (ctrlmodes & UCAN_MODE_LOOPBACK) 471 up->can.ctrlmode_supported |= CAN_CTRLMODE_LOOPBACK; 472 if (ctrlmodes & UCAN_MODE_SILENT) 473 up->can.ctrlmode_supported |= CAN_CTRLMODE_LISTENONLY; 474 if (ctrlmodes & UCAN_MODE_3_SAMPLES) 475 up->can.ctrlmode_supported |= CAN_CTRLMODE_3_SAMPLES; 476 if (ctrlmodes & UCAN_MODE_ONE_SHOT) 477 up->can.ctrlmode_supported |= CAN_CTRLMODE_ONE_SHOT; 478 if (ctrlmodes & UCAN_MODE_BERR_REPORT) 479 up->can.ctrlmode_supported |= CAN_CTRLMODE_BERR_REPORTING; 480 } 481 482 /* Handle a CAN error frame that we have received from the device. 483 * Returns true if the can state has changed. 484 */ 485 static bool ucan_handle_error_frame(struct ucan_priv *up, 486 struct ucan_message_in *m, 487 canid_t canid) 488 { 489 enum can_state new_state = up->can.state; 490 struct net_device_stats *net_stats = &up->netdev->stats; 491 struct can_device_stats *can_stats = &up->can.can_stats; 492 493 if (canid & CAN_ERR_LOSTARB) 494 can_stats->arbitration_lost++; 495 496 if (canid & CAN_ERR_BUSERROR) 497 can_stats->bus_error++; 498 499 if (canid & CAN_ERR_ACK) 500 net_stats->tx_errors++; 501 502 if (canid & CAN_ERR_BUSOFF) 503 new_state = CAN_STATE_BUS_OFF; 504 505 /* controller problems, details in data[1] */ 506 if (canid & CAN_ERR_CRTL) { 507 u8 d1 = m->msg.can_msg.data[1]; 508 509 if (d1 & CAN_ERR_CRTL_RX_OVERFLOW) 510 net_stats->rx_over_errors++; 511 512 /* controller state bits: if multiple are set the worst wins */ 513 if (d1 & CAN_ERR_CRTL_ACTIVE) 514 new_state = CAN_STATE_ERROR_ACTIVE; 515 516 if (d1 & (CAN_ERR_CRTL_RX_WARNING | CAN_ERR_CRTL_TX_WARNING)) 517 new_state = CAN_STATE_ERROR_WARNING; 518 519 if (d1 & (CAN_ERR_CRTL_RX_PASSIVE | CAN_ERR_CRTL_TX_PASSIVE)) 520 new_state = CAN_STATE_ERROR_PASSIVE; 521 } 522 523 /* protocol error, details in data[2] */ 524 if (canid & CAN_ERR_PROT) { 525 u8 d2 = m->msg.can_msg.data[2]; 526 527 if (d2 & CAN_ERR_PROT_TX) 528 net_stats->tx_errors++; 529 else 530 net_stats->rx_errors++; 531 } 532 533 /* no state change - we are done */ 534 if (up->can.state == new_state) 535 return false; 536 537 /* we switched into a better state */ 538 if (up->can.state > new_state) { 539 up->can.state = new_state; 540 return true; 541 } 542 543 /* we switched into a worse state */ 544 up->can.state = new_state; 545 switch (new_state) { 546 case CAN_STATE_BUS_OFF: 547 can_stats->bus_off++; 548 can_bus_off(up->netdev); 549 break; 550 case CAN_STATE_ERROR_PASSIVE: 551 can_stats->error_passive++; 552 break; 553 case CAN_STATE_ERROR_WARNING: 554 can_stats->error_warning++; 555 break; 556 default: 557 break; 558 } 559 return true; 560 } 561 562 /* Callback on reception of a can frame via the IN endpoint 563 * 564 * This function allocates an skb and transferres it to the Linux 565 * network stack 566 */ 567 static void ucan_rx_can_msg(struct ucan_priv *up, struct ucan_message_in *m) 568 { 569 int len; 570 canid_t canid; 571 struct can_frame *cf; 572 struct sk_buff *skb; 573 struct net_device_stats *stats = &up->netdev->stats; 574 575 /* get the contents of the length field */ 576 len = le16_to_cpu(m->len); 577 578 /* check sanity */ 579 if (len < UCAN_IN_HDR_SIZE + sizeof(m->msg.can_msg.id)) { 580 netdev_warn(up->netdev, "invalid input message len: %d\n", len); 581 return; 582 } 583 584 /* handle error frames */ 585 canid = le32_to_cpu(m->msg.can_msg.id); 586 if (canid & CAN_ERR_FLAG) { 587 bool busstate_changed = ucan_handle_error_frame(up, m, canid); 588 589 /* if berr-reporting is off only state changes get through */ 590 if (!(up->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) && 591 !busstate_changed) 592 return; 593 } else { 594 canid_t canid_mask; 595 /* compute the mask for canid */ 596 canid_mask = CAN_RTR_FLAG; 597 if (canid & CAN_EFF_FLAG) 598 canid_mask |= CAN_EFF_MASK | CAN_EFF_FLAG; 599 else 600 canid_mask |= CAN_SFF_MASK; 601 602 if (canid & ~canid_mask) 603 netdev_warn(up->netdev, 604 "unexpected bits set (canid %x, mask %x)", 605 canid, canid_mask); 606 607 canid &= canid_mask; 608 } 609 610 /* allocate skb */ 611 skb = alloc_can_skb(up->netdev, &cf); 612 if (!skb) 613 return; 614 615 /* fill the can frame */ 616 cf->can_id = canid; 617 618 /* compute DLC taking RTR_FLAG into account */ 619 cf->len = ucan_can_cc_dlc2len(&m->msg.can_msg, len); 620 621 /* copy the payload of non RTR frames */ 622 if (!(cf->can_id & CAN_RTR_FLAG) || (cf->can_id & CAN_ERR_FLAG)) 623 memcpy(cf->data, m->msg.can_msg.data, cf->len); 624 625 /* don't count error frames as real packets */ 626 if (!(cf->can_id & CAN_ERR_FLAG)) { 627 stats->rx_packets++; 628 if (!(cf->can_id & CAN_RTR_FLAG)) 629 stats->rx_bytes += cf->len; 630 } 631 632 /* pass it to Linux */ 633 netif_rx(skb); 634 } 635 636 /* callback indicating completed transmission */ 637 static void ucan_tx_complete_msg(struct ucan_priv *up, 638 struct ucan_message_in *m) 639 { 640 unsigned long flags; 641 u16 count, i; 642 u8 echo_index; 643 u16 len = le16_to_cpu(m->len); 644 645 struct ucan_urb_context *context; 646 647 if (len < UCAN_IN_HDR_SIZE || (len % 2 != 0)) { 648 netdev_err(up->netdev, "invalid tx complete length\n"); 649 return; 650 } 651 652 count = (len - UCAN_IN_HDR_SIZE) / 2; 653 for (i = 0; i < count; i++) { 654 /* we did not submit such echo ids */ 655 echo_index = m->msg.can_tx_complete_msg[i].echo_index; 656 if (echo_index >= up->device_info.tx_fifo) { 657 up->netdev->stats.tx_errors++; 658 netdev_err(up->netdev, 659 "invalid echo_index %d received\n", 660 echo_index); 661 continue; 662 } 663 664 /* gather information from the context */ 665 context = &up->context_array[echo_index]; 666 667 /* Release context and restart queue if necessary. 668 * Also check if the context was allocated 669 */ 670 if (!ucan_release_context(up, context)) 671 continue; 672 673 spin_lock_irqsave(&up->echo_skb_lock, flags); 674 if (m->msg.can_tx_complete_msg[i].flags & 675 UCAN_TX_COMPLETE_SUCCESS) { 676 /* update statistics */ 677 up->netdev->stats.tx_packets++; 678 up->netdev->stats.tx_bytes += 679 can_get_echo_skb(up->netdev, echo_index, NULL); 680 } else { 681 up->netdev->stats.tx_dropped++; 682 can_free_echo_skb(up->netdev, echo_index, NULL); 683 } 684 spin_unlock_irqrestore(&up->echo_skb_lock, flags); 685 } 686 } 687 688 /* callback on reception of a USB message */ 689 static void ucan_read_bulk_callback(struct urb *urb) 690 { 691 int ret; 692 int pos; 693 struct ucan_priv *up = urb->context; 694 struct net_device *netdev = up->netdev; 695 struct ucan_message_in *m; 696 697 /* the device is not up and the driver should not receive any 698 * data on the bulk in pipe 699 */ 700 if (WARN_ON(!up->context_array)) { 701 usb_free_coherent(up->udev, 702 up->in_ep_size, 703 urb->transfer_buffer, 704 urb->transfer_dma); 705 return; 706 } 707 708 /* check URB status */ 709 switch (urb->status) { 710 case 0: 711 break; 712 case -ENOENT: 713 case -EPIPE: 714 case -EPROTO: 715 case -ESHUTDOWN: 716 case -ETIME: 717 /* urb is not resubmitted -> free dma data */ 718 usb_free_coherent(up->udev, 719 up->in_ep_size, 720 urb->transfer_buffer, 721 urb->transfer_dma); 722 netdev_dbg(up->netdev, "not resubmitting urb; status: %d\n", 723 urb->status); 724 return; 725 default: 726 goto resubmit; 727 } 728 729 /* sanity check */ 730 if (!netif_device_present(netdev)) 731 return; 732 733 /* iterate over input */ 734 pos = 0; 735 while (pos < urb->actual_length) { 736 int len; 737 738 /* check sanity (length of header) */ 739 if ((urb->actual_length - pos) < UCAN_IN_HDR_SIZE) { 740 netdev_warn(up->netdev, 741 "invalid message (short; no hdr; l:%d)\n", 742 urb->actual_length); 743 goto resubmit; 744 } 745 746 /* setup the message address */ 747 m = (struct ucan_message_in *) 748 ((u8 *)urb->transfer_buffer + pos); 749 len = le16_to_cpu(m->len); 750 751 /* check sanity (length of content) */ 752 if (urb->actual_length - pos < len) { 753 netdev_warn(up->netdev, 754 "invalid message (short; no data; l:%d)\n", 755 urb->actual_length); 756 print_hex_dump(KERN_WARNING, 757 "raw data: ", 758 DUMP_PREFIX_ADDRESS, 759 16, 760 1, 761 urb->transfer_buffer, 762 urb->actual_length, 763 true); 764 765 goto resubmit; 766 } 767 768 switch (m->type) { 769 case UCAN_IN_RX: 770 ucan_rx_can_msg(up, m); 771 break; 772 case UCAN_IN_TX_COMPLETE: 773 ucan_tx_complete_msg(up, m); 774 break; 775 default: 776 netdev_warn(up->netdev, 777 "invalid message (type; t:%d)\n", 778 m->type); 779 break; 780 } 781 782 /* proceed to next message */ 783 pos += len; 784 /* align to 4 byte boundary */ 785 pos = round_up(pos, 4); 786 } 787 788 resubmit: 789 /* resubmit urb when done */ 790 usb_fill_bulk_urb(urb, up->udev, 791 usb_rcvbulkpipe(up->udev, 792 up->in_ep_addr), 793 urb->transfer_buffer, 794 up->in_ep_size, 795 ucan_read_bulk_callback, 796 up); 797 798 usb_anchor_urb(urb, &up->rx_urbs); 799 ret = usb_submit_urb(urb, GFP_ATOMIC); 800 801 if (ret < 0) { 802 netdev_err(up->netdev, 803 "failed resubmitting read bulk urb: %d\n", 804 ret); 805 806 usb_unanchor_urb(urb); 807 usb_free_coherent(up->udev, 808 up->in_ep_size, 809 urb->transfer_buffer, 810 urb->transfer_dma); 811 812 if (ret == -ENODEV) 813 netif_device_detach(netdev); 814 } 815 } 816 817 /* callback after transmission of a USB message */ 818 static void ucan_write_bulk_callback(struct urb *urb) 819 { 820 unsigned long flags; 821 struct ucan_priv *up; 822 struct ucan_urb_context *context = urb->context; 823 824 /* get the urb context */ 825 if (WARN_ON_ONCE(!context)) 826 return; 827 828 /* free up our allocated buffer */ 829 usb_free_coherent(urb->dev, 830 sizeof(struct ucan_message_out), 831 urb->transfer_buffer, 832 urb->transfer_dma); 833 834 up = context->up; 835 if (WARN_ON_ONCE(!up)) 836 return; 837 838 /* sanity check */ 839 if (!netif_device_present(up->netdev)) 840 return; 841 842 /* transmission failed (USB - the device will not send a TX complete) */ 843 if (urb->status) { 844 netdev_warn(up->netdev, 845 "failed to transmit USB message to device: %d\n", 846 urb->status); 847 848 /* update counters an cleanup */ 849 spin_lock_irqsave(&up->echo_skb_lock, flags); 850 can_free_echo_skb(up->netdev, context - up->context_array, NULL); 851 spin_unlock_irqrestore(&up->echo_skb_lock, flags); 852 853 up->netdev->stats.tx_dropped++; 854 855 /* release context and restart the queue if necessary */ 856 if (!ucan_release_context(up, context)) 857 netdev_err(up->netdev, 858 "urb failed, failed to release context\n"); 859 } 860 } 861 862 static void ucan_cleanup_rx_urbs(struct ucan_priv *up, struct urb **urbs) 863 { 864 int i; 865 866 for (i = 0; i < UCAN_MAX_RX_URBS; i++) { 867 if (urbs[i]) { 868 usb_unanchor_urb(urbs[i]); 869 usb_free_coherent(up->udev, 870 up->in_ep_size, 871 urbs[i]->transfer_buffer, 872 urbs[i]->transfer_dma); 873 usb_free_urb(urbs[i]); 874 } 875 } 876 877 memset(urbs, 0, sizeof(*urbs) * UCAN_MAX_RX_URBS); 878 } 879 880 static int ucan_prepare_and_anchor_rx_urbs(struct ucan_priv *up, 881 struct urb **urbs) 882 { 883 int i; 884 885 memset(urbs, 0, sizeof(*urbs) * UCAN_MAX_RX_URBS); 886 887 for (i = 0; i < UCAN_MAX_RX_URBS; i++) { 888 void *buf; 889 890 urbs[i] = usb_alloc_urb(0, GFP_KERNEL); 891 if (!urbs[i]) 892 goto err; 893 894 buf = usb_alloc_coherent(up->udev, 895 up->in_ep_size, 896 GFP_KERNEL, &urbs[i]->transfer_dma); 897 if (!buf) { 898 /* cleanup this urb */ 899 usb_free_urb(urbs[i]); 900 urbs[i] = NULL; 901 goto err; 902 } 903 904 usb_fill_bulk_urb(urbs[i], up->udev, 905 usb_rcvbulkpipe(up->udev, 906 up->in_ep_addr), 907 buf, 908 up->in_ep_size, 909 ucan_read_bulk_callback, 910 up); 911 912 urbs[i]->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; 913 914 usb_anchor_urb(urbs[i], &up->rx_urbs); 915 } 916 return 0; 917 918 err: 919 /* cleanup other unsubmitted urbs */ 920 ucan_cleanup_rx_urbs(up, urbs); 921 return -ENOMEM; 922 } 923 924 /* Submits rx urbs with the semantic: Either submit all, or cleanup 925 * everything. I case of errors submitted urbs are killed and all urbs in 926 * the array are freed. I case of no errors every entry in the urb 927 * array is set to NULL. 928 */ 929 static int ucan_submit_rx_urbs(struct ucan_priv *up, struct urb **urbs) 930 { 931 int i, ret; 932 933 /* Iterate over all urbs to submit. On success remove the urb 934 * from the list. 935 */ 936 for (i = 0; i < UCAN_MAX_RX_URBS; i++) { 937 ret = usb_submit_urb(urbs[i], GFP_KERNEL); 938 if (ret) { 939 netdev_err(up->netdev, 940 "could not submit urb; code: %d\n", 941 ret); 942 goto err; 943 } 944 945 /* Anchor URB and drop reference, USB core will take 946 * care of freeing it 947 */ 948 usb_free_urb(urbs[i]); 949 urbs[i] = NULL; 950 } 951 return 0; 952 953 err: 954 /* Cleanup unsubmitted urbs */ 955 ucan_cleanup_rx_urbs(up, urbs); 956 957 /* Kill urbs that are already submitted */ 958 usb_kill_anchored_urbs(&up->rx_urbs); 959 960 return ret; 961 } 962 963 /* Open the network device */ 964 static int ucan_open(struct net_device *netdev) 965 { 966 int ret, ret_cleanup; 967 u16 ctrlmode; 968 struct urb *urbs[UCAN_MAX_RX_URBS]; 969 struct ucan_priv *up = netdev_priv(netdev); 970 971 ret = ucan_alloc_context_array(up); 972 if (ret) 973 return ret; 974 975 /* Allocate and prepare IN URBS - allocated and anchored 976 * urbs are stored in urbs[] for clean 977 */ 978 ret = ucan_prepare_and_anchor_rx_urbs(up, urbs); 979 if (ret) 980 goto err_contexts; 981 982 /* Check the control mode */ 983 ctrlmode = 0; 984 if (up->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) 985 ctrlmode |= UCAN_MODE_LOOPBACK; 986 if (up->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) 987 ctrlmode |= UCAN_MODE_SILENT; 988 if (up->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES) 989 ctrlmode |= UCAN_MODE_3_SAMPLES; 990 if (up->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT) 991 ctrlmode |= UCAN_MODE_ONE_SHOT; 992 993 /* Enable this in any case - filtering is down within the 994 * receive path 995 */ 996 ctrlmode |= UCAN_MODE_BERR_REPORT; 997 up->ctl_msg_buffer->cmd_start.mode = cpu_to_le16(ctrlmode); 998 999 /* Driver is ready to receive data - start the USB device */ 1000 ret = ucan_ctrl_command_out(up, UCAN_COMMAND_START, 0, 2); 1001 if (ret < 0) { 1002 netdev_err(up->netdev, 1003 "could not start device, code: %d\n", 1004 ret); 1005 goto err_reset; 1006 } 1007 1008 /* Call CAN layer open */ 1009 ret = open_candev(netdev); 1010 if (ret) 1011 goto err_stop; 1012 1013 /* Driver is ready to receive data. Submit RX URBS */ 1014 ret = ucan_submit_rx_urbs(up, urbs); 1015 if (ret) 1016 goto err_stop; 1017 1018 up->can.state = CAN_STATE_ERROR_ACTIVE; 1019 1020 /* Start the network queue */ 1021 netif_start_queue(netdev); 1022 1023 return 0; 1024 1025 err_stop: 1026 /* The device have started already stop it */ 1027 ret_cleanup = ucan_ctrl_command_out(up, UCAN_COMMAND_STOP, 0, 0); 1028 if (ret_cleanup < 0) 1029 netdev_err(up->netdev, 1030 "could not stop device, code: %d\n", 1031 ret_cleanup); 1032 1033 err_reset: 1034 /* The device might have received data, reset it for 1035 * consistent state 1036 */ 1037 ret_cleanup = ucan_ctrl_command_out(up, UCAN_COMMAND_RESET, 0, 0); 1038 if (ret_cleanup < 0) 1039 netdev_err(up->netdev, 1040 "could not reset device, code: %d\n", 1041 ret_cleanup); 1042 1043 /* clean up unsubmitted urbs */ 1044 ucan_cleanup_rx_urbs(up, urbs); 1045 1046 err_contexts: 1047 ucan_release_context_array(up); 1048 return ret; 1049 } 1050 1051 static struct urb *ucan_prepare_tx_urb(struct ucan_priv *up, 1052 struct ucan_urb_context *context, 1053 struct can_frame *cf, 1054 u8 echo_index) 1055 { 1056 int mlen; 1057 struct urb *urb; 1058 struct ucan_message_out *m; 1059 1060 /* create a URB, and a buffer for it, and copy the data to the URB */ 1061 urb = usb_alloc_urb(0, GFP_ATOMIC); 1062 if (!urb) { 1063 netdev_err(up->netdev, "no memory left for URBs\n"); 1064 return NULL; 1065 } 1066 1067 m = usb_alloc_coherent(up->udev, 1068 sizeof(struct ucan_message_out), 1069 GFP_ATOMIC, 1070 &urb->transfer_dma); 1071 if (!m) { 1072 netdev_err(up->netdev, "no memory left for USB buffer\n"); 1073 usb_free_urb(urb); 1074 return NULL; 1075 } 1076 1077 /* build the USB message */ 1078 m->type = UCAN_OUT_TX; 1079 m->msg.can_msg.id = cpu_to_le32(cf->can_id); 1080 1081 if (cf->can_id & CAN_RTR_FLAG) { 1082 mlen = UCAN_OUT_HDR_SIZE + 1083 offsetof(struct ucan_can_msg, dlc) + 1084 sizeof(m->msg.can_msg.dlc); 1085 m->msg.can_msg.dlc = cf->len; 1086 } else { 1087 mlen = UCAN_OUT_HDR_SIZE + 1088 sizeof(m->msg.can_msg.id) + cf->len; 1089 memcpy(m->msg.can_msg.data, cf->data, cf->len); 1090 } 1091 m->len = cpu_to_le16(mlen); 1092 1093 m->subtype = echo_index; 1094 1095 /* build the urb */ 1096 usb_fill_bulk_urb(urb, up->udev, 1097 usb_sndbulkpipe(up->udev, 1098 up->out_ep_addr), 1099 m, mlen, ucan_write_bulk_callback, context); 1100 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; 1101 1102 return urb; 1103 } 1104 1105 static void ucan_clean_up_tx_urb(struct ucan_priv *up, struct urb *urb) 1106 { 1107 usb_free_coherent(up->udev, sizeof(struct ucan_message_out), 1108 urb->transfer_buffer, urb->transfer_dma); 1109 usb_free_urb(urb); 1110 } 1111 1112 /* callback when Linux needs to send a can frame */ 1113 static netdev_tx_t ucan_start_xmit(struct sk_buff *skb, 1114 struct net_device *netdev) 1115 { 1116 unsigned long flags; 1117 int ret; 1118 u8 echo_index; 1119 struct urb *urb; 1120 struct ucan_urb_context *context; 1121 struct ucan_priv *up = netdev_priv(netdev); 1122 struct can_frame *cf = (struct can_frame *)skb->data; 1123 1124 /* check skb */ 1125 if (can_dev_dropped_skb(netdev, skb)) 1126 return NETDEV_TX_OK; 1127 1128 /* allocate a context and slow down tx path, if fifo state is low */ 1129 context = ucan_alloc_context(up); 1130 echo_index = context - up->context_array; 1131 1132 if (WARN_ON_ONCE(!context)) 1133 return NETDEV_TX_BUSY; 1134 1135 /* prepare urb for transmission */ 1136 urb = ucan_prepare_tx_urb(up, context, cf, echo_index); 1137 if (!urb) 1138 goto drop; 1139 1140 /* put the skb on can loopback stack */ 1141 spin_lock_irqsave(&up->echo_skb_lock, flags); 1142 can_put_echo_skb(skb, up->netdev, echo_index, 0); 1143 spin_unlock_irqrestore(&up->echo_skb_lock, flags); 1144 1145 /* transmit it */ 1146 usb_anchor_urb(urb, &up->tx_urbs); 1147 ret = usb_submit_urb(urb, GFP_ATOMIC); 1148 1149 /* cleanup urb */ 1150 if (ret) { 1151 /* on error, clean up */ 1152 usb_unanchor_urb(urb); 1153 ucan_clean_up_tx_urb(up, urb); 1154 if (!ucan_release_context(up, context)) 1155 netdev_err(up->netdev, 1156 "xmit err: failed to release context\n"); 1157 1158 /* remove the skb from the echo stack - this also 1159 * frees the skb 1160 */ 1161 spin_lock_irqsave(&up->echo_skb_lock, flags); 1162 can_free_echo_skb(up->netdev, echo_index, NULL); 1163 spin_unlock_irqrestore(&up->echo_skb_lock, flags); 1164 1165 if (ret == -ENODEV) { 1166 netif_device_detach(up->netdev); 1167 } else { 1168 netdev_warn(up->netdev, 1169 "xmit err: failed to submit urb %d\n", 1170 ret); 1171 up->netdev->stats.tx_dropped++; 1172 } 1173 return NETDEV_TX_OK; 1174 } 1175 1176 netif_trans_update(netdev); 1177 1178 /* release ref, as we do not need the urb anymore */ 1179 usb_free_urb(urb); 1180 1181 return NETDEV_TX_OK; 1182 1183 drop: 1184 if (!ucan_release_context(up, context)) 1185 netdev_err(up->netdev, 1186 "xmit drop: failed to release context\n"); 1187 dev_kfree_skb(skb); 1188 up->netdev->stats.tx_dropped++; 1189 1190 return NETDEV_TX_OK; 1191 } 1192 1193 /* Device goes down 1194 * 1195 * Clean up used resources 1196 */ 1197 static int ucan_close(struct net_device *netdev) 1198 { 1199 int ret; 1200 struct ucan_priv *up = netdev_priv(netdev); 1201 1202 up->can.state = CAN_STATE_STOPPED; 1203 1204 /* stop sending data */ 1205 usb_kill_anchored_urbs(&up->tx_urbs); 1206 1207 /* stop receiving data */ 1208 usb_kill_anchored_urbs(&up->rx_urbs); 1209 1210 /* stop and reset can device */ 1211 ret = ucan_ctrl_command_out(up, UCAN_COMMAND_STOP, 0, 0); 1212 if (ret < 0) 1213 netdev_err(up->netdev, 1214 "could not stop device, code: %d\n", 1215 ret); 1216 1217 ret = ucan_ctrl_command_out(up, UCAN_COMMAND_RESET, 0, 0); 1218 if (ret < 0) 1219 netdev_err(up->netdev, 1220 "could not reset device, code: %d\n", 1221 ret); 1222 1223 netif_stop_queue(netdev); 1224 1225 ucan_release_context_array(up); 1226 1227 close_candev(up->netdev); 1228 return 0; 1229 } 1230 1231 /* CAN driver callbacks */ 1232 static const struct net_device_ops ucan_netdev_ops = { 1233 .ndo_open = ucan_open, 1234 .ndo_stop = ucan_close, 1235 .ndo_start_xmit = ucan_start_xmit, 1236 }; 1237 1238 static const struct ethtool_ops ucan_ethtool_ops = { 1239 .get_ts_info = ethtool_op_get_ts_info, 1240 }; 1241 1242 /* Request to set bittiming 1243 * 1244 * This function generates an USB set bittiming message and transmits 1245 * it to the device 1246 */ 1247 static int ucan_set_bittiming(struct net_device *netdev) 1248 { 1249 int ret; 1250 struct ucan_priv *up = netdev_priv(netdev); 1251 struct ucan_ctl_cmd_set_bittiming *cmd_set_bittiming; 1252 1253 cmd_set_bittiming = &up->ctl_msg_buffer->cmd_set_bittiming; 1254 cmd_set_bittiming->tq = cpu_to_le32(up->can.bittiming.tq); 1255 cmd_set_bittiming->brp = cpu_to_le16(up->can.bittiming.brp); 1256 cmd_set_bittiming->sample_point = 1257 cpu_to_le16(up->can.bittiming.sample_point); 1258 cmd_set_bittiming->prop_seg = up->can.bittiming.prop_seg; 1259 cmd_set_bittiming->phase_seg1 = up->can.bittiming.phase_seg1; 1260 cmd_set_bittiming->phase_seg2 = up->can.bittiming.phase_seg2; 1261 cmd_set_bittiming->sjw = up->can.bittiming.sjw; 1262 1263 ret = ucan_ctrl_command_out(up, UCAN_COMMAND_SET_BITTIMING, 0, 1264 sizeof(*cmd_set_bittiming)); 1265 return (ret < 0) ? ret : 0; 1266 } 1267 1268 /* Restart the device to get it out of BUS-OFF state. 1269 * Called when the user runs "ip link set can1 type can restart". 1270 */ 1271 static int ucan_set_mode(struct net_device *netdev, enum can_mode mode) 1272 { 1273 int ret; 1274 unsigned long flags; 1275 struct ucan_priv *up = netdev_priv(netdev); 1276 1277 switch (mode) { 1278 case CAN_MODE_START: 1279 netdev_dbg(up->netdev, "restarting device\n"); 1280 1281 ret = ucan_ctrl_command_out(up, UCAN_COMMAND_RESTART, 0, 0); 1282 up->can.state = CAN_STATE_ERROR_ACTIVE; 1283 1284 /* check if queue can be restarted, 1285 * up->available_tx_urbs must be protected by the 1286 * lock 1287 */ 1288 spin_lock_irqsave(&up->context_lock, flags); 1289 1290 if (up->available_tx_urbs > 0) 1291 netif_wake_queue(up->netdev); 1292 1293 spin_unlock_irqrestore(&up->context_lock, flags); 1294 1295 return ret; 1296 default: 1297 return -EOPNOTSUPP; 1298 } 1299 } 1300 1301 /* Probe the device, reset it and gather general device information */ 1302 static int ucan_probe(struct usb_interface *intf, 1303 const struct usb_device_id *id) 1304 { 1305 int ret; 1306 int i; 1307 u32 protocol_version; 1308 struct usb_device *udev; 1309 struct net_device *netdev; 1310 struct usb_host_interface *iface_desc; 1311 struct ucan_priv *up; 1312 struct usb_endpoint_descriptor *ep; 1313 u16 in_ep_size; 1314 u16 out_ep_size; 1315 u8 in_ep_addr; 1316 u8 out_ep_addr; 1317 union ucan_ctl_payload *ctl_msg_buffer; 1318 1319 udev = interface_to_usbdev(intf); 1320 1321 /* Stage 1 - Interface Parsing 1322 * --------------------------- 1323 * 1324 * Identifie the device USB interface descriptor and its 1325 * endpoints. Probing is aborted on errors. 1326 */ 1327 1328 /* check if the interface is sane */ 1329 iface_desc = intf->cur_altsetting; 1330 if (!iface_desc) 1331 return -ENODEV; 1332 1333 dev_info(&udev->dev, 1334 "%s: probing device on interface #%d\n", 1335 UCAN_DRIVER_NAME, 1336 iface_desc->desc.bInterfaceNumber); 1337 1338 /* interface sanity check */ 1339 if (iface_desc->desc.bNumEndpoints != 2) { 1340 dev_err(&udev->dev, 1341 "%s: invalid EP count (%d)", 1342 UCAN_DRIVER_NAME, iface_desc->desc.bNumEndpoints); 1343 goto err_firmware_needs_update; 1344 } 1345 1346 /* check interface endpoints */ 1347 in_ep_addr = 0; 1348 out_ep_addr = 0; 1349 in_ep_size = 0; 1350 out_ep_size = 0; 1351 for (i = 0; i < iface_desc->desc.bNumEndpoints; i++) { 1352 ep = &iface_desc->endpoint[i].desc; 1353 1354 if (((ep->bEndpointAddress & USB_ENDPOINT_DIR_MASK) != 0) && 1355 ((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 1356 USB_ENDPOINT_XFER_BULK)) { 1357 /* In Endpoint */ 1358 in_ep_addr = ep->bEndpointAddress; 1359 in_ep_addr &= USB_ENDPOINT_NUMBER_MASK; 1360 in_ep_size = le16_to_cpu(ep->wMaxPacketSize); 1361 } else if (((ep->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == 1362 0) && 1363 ((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 1364 USB_ENDPOINT_XFER_BULK)) { 1365 /* Out Endpoint */ 1366 out_ep_addr = ep->bEndpointAddress; 1367 out_ep_addr &= USB_ENDPOINT_NUMBER_MASK; 1368 out_ep_size = le16_to_cpu(ep->wMaxPacketSize); 1369 } 1370 } 1371 1372 /* check if interface is sane */ 1373 if (!in_ep_addr || !out_ep_addr) { 1374 dev_err(&udev->dev, "%s: invalid endpoint configuration\n", 1375 UCAN_DRIVER_NAME); 1376 goto err_firmware_needs_update; 1377 } 1378 if (in_ep_size < sizeof(struct ucan_message_in)) { 1379 dev_err(&udev->dev, "%s: invalid in_ep MaxPacketSize\n", 1380 UCAN_DRIVER_NAME); 1381 goto err_firmware_needs_update; 1382 } 1383 if (out_ep_size < sizeof(struct ucan_message_out)) { 1384 dev_err(&udev->dev, "%s: invalid out_ep MaxPacketSize\n", 1385 UCAN_DRIVER_NAME); 1386 goto err_firmware_needs_update; 1387 } 1388 1389 /* Stage 2 - Device Identification 1390 * ------------------------------- 1391 * 1392 * The device interface seems to be a ucan device. Do further 1393 * compatibility checks. On error probing is aborted, on 1394 * success this stage leaves the ctl_msg_buffer with the 1395 * reported contents of a GET_INFO command (supported 1396 * bittimings, tx_fifo depth). This information is used in 1397 * Stage 3 for the final driver initialisation. 1398 */ 1399 1400 /* Prepare Memory for control transfers */ 1401 ctl_msg_buffer = devm_kzalloc(&udev->dev, 1402 sizeof(union ucan_ctl_payload), 1403 GFP_KERNEL); 1404 if (!ctl_msg_buffer) { 1405 dev_err(&udev->dev, 1406 "%s: failed to allocate control pipe memory\n", 1407 UCAN_DRIVER_NAME); 1408 return -ENOMEM; 1409 } 1410 1411 /* get protocol version 1412 * 1413 * note: ucan_ctrl_command_* wrappers cannot be used yet 1414 * because `up` is initialised in Stage 3 1415 */ 1416 ret = usb_control_msg(udev, 1417 usb_rcvctrlpipe(udev, 0), 1418 UCAN_COMMAND_GET, 1419 USB_DIR_IN | USB_TYPE_VENDOR | 1420 USB_RECIP_INTERFACE, 1421 UCAN_COMMAND_GET_PROTOCOL_VERSION, 1422 iface_desc->desc.bInterfaceNumber, 1423 ctl_msg_buffer, 1424 sizeof(union ucan_ctl_payload), 1425 UCAN_USB_CTL_PIPE_TIMEOUT); 1426 1427 /* older firmware version do not support this command - those 1428 * are not supported by this drive 1429 */ 1430 if (ret != 4) { 1431 dev_err(&udev->dev, 1432 "%s: could not read protocol version, ret=%d\n", 1433 UCAN_DRIVER_NAME, ret); 1434 if (ret >= 0) 1435 ret = -EINVAL; 1436 goto err_firmware_needs_update; 1437 } 1438 1439 /* this driver currently supports protocol version 3 only */ 1440 protocol_version = 1441 le32_to_cpu(ctl_msg_buffer->cmd_get_protocol_version.version); 1442 if (protocol_version < UCAN_PROTOCOL_VERSION_MIN || 1443 protocol_version > UCAN_PROTOCOL_VERSION_MAX) { 1444 dev_err(&udev->dev, 1445 "%s: device protocol version %d is not supported\n", 1446 UCAN_DRIVER_NAME, protocol_version); 1447 goto err_firmware_needs_update; 1448 } 1449 1450 /* request the device information and store it in ctl_msg_buffer 1451 * 1452 * note: ucan_ctrl_command_* wrappers cannot be used yet 1453 * because `up` is initialised in Stage 3 1454 */ 1455 ret = usb_control_msg(udev, 1456 usb_rcvctrlpipe(udev, 0), 1457 UCAN_COMMAND_GET, 1458 USB_DIR_IN | USB_TYPE_VENDOR | 1459 USB_RECIP_INTERFACE, 1460 UCAN_COMMAND_GET_INFO, 1461 iface_desc->desc.bInterfaceNumber, 1462 ctl_msg_buffer, 1463 sizeof(ctl_msg_buffer->cmd_get_device_info), 1464 UCAN_USB_CTL_PIPE_TIMEOUT); 1465 1466 if (ret < 0) { 1467 dev_err(&udev->dev, "%s: failed to retrieve device info\n", 1468 UCAN_DRIVER_NAME); 1469 goto err_firmware_needs_update; 1470 } 1471 if (ret < sizeof(ctl_msg_buffer->cmd_get_device_info)) { 1472 dev_err(&udev->dev, "%s: device reported invalid device info\n", 1473 UCAN_DRIVER_NAME); 1474 goto err_firmware_needs_update; 1475 } 1476 if (ctl_msg_buffer->cmd_get_device_info.tx_fifo == 0) { 1477 dev_err(&udev->dev, 1478 "%s: device reported invalid tx-fifo size\n", 1479 UCAN_DRIVER_NAME); 1480 goto err_firmware_needs_update; 1481 } 1482 1483 /* Stage 3 - Driver Initialisation 1484 * ------------------------------- 1485 * 1486 * Register device to Linux, prepare private structures and 1487 * reset the device. 1488 */ 1489 1490 /* allocate driver resources */ 1491 netdev = alloc_candev(sizeof(struct ucan_priv), 1492 ctl_msg_buffer->cmd_get_device_info.tx_fifo); 1493 if (!netdev) { 1494 dev_err(&udev->dev, 1495 "%s: cannot allocate candev\n", UCAN_DRIVER_NAME); 1496 return -ENOMEM; 1497 } 1498 1499 up = netdev_priv(netdev); 1500 1501 /* initialize data */ 1502 up->udev = udev; 1503 up->netdev = netdev; 1504 up->intf_index = iface_desc->desc.bInterfaceNumber; 1505 up->in_ep_addr = in_ep_addr; 1506 up->out_ep_addr = out_ep_addr; 1507 up->in_ep_size = in_ep_size; 1508 up->ctl_msg_buffer = ctl_msg_buffer; 1509 up->context_array = NULL; 1510 up->available_tx_urbs = 0; 1511 1512 up->can.state = CAN_STATE_STOPPED; 1513 up->can.bittiming_const = &up->device_info.bittiming_const; 1514 up->can.do_set_bittiming = ucan_set_bittiming; 1515 up->can.do_set_mode = &ucan_set_mode; 1516 spin_lock_init(&up->context_lock); 1517 spin_lock_init(&up->echo_skb_lock); 1518 netdev->netdev_ops = &ucan_netdev_ops; 1519 netdev->ethtool_ops = &ucan_ethtool_ops; 1520 1521 usb_set_intfdata(intf, up); 1522 SET_NETDEV_DEV(netdev, &intf->dev); 1523 1524 /* parse device information 1525 * the data retrieved in Stage 2 is still available in 1526 * up->ctl_msg_buffer 1527 */ 1528 ucan_parse_device_info(up, &ctl_msg_buffer->cmd_get_device_info); 1529 1530 /* device is compatible, reset it */ 1531 ret = ucan_ctrl_command_out(up, UCAN_COMMAND_RESET, 0, 0); 1532 if (ret < 0) 1533 goto err_free_candev; 1534 1535 init_usb_anchor(&up->rx_urbs); 1536 init_usb_anchor(&up->tx_urbs); 1537 1538 up->can.state = CAN_STATE_STOPPED; 1539 1540 /* register the device */ 1541 ret = register_candev(netdev); 1542 if (ret) 1543 goto err_free_candev; 1544 1545 /* initialisation complete, log device info */ 1546 netdev_info(up->netdev, "registered device\n"); 1547 ucan_get_fw_str(up, up->ctl_msg_buffer->fw_str, 1548 sizeof(up->ctl_msg_buffer->fw_str)); 1549 netdev_info(up->netdev, "firmware string: %s\n", 1550 up->ctl_msg_buffer->fw_str); 1551 1552 /* success */ 1553 return 0; 1554 1555 err_free_candev: 1556 free_candev(netdev); 1557 return ret; 1558 1559 err_firmware_needs_update: 1560 dev_err(&udev->dev, 1561 "%s: probe failed; try to update the device firmware\n", 1562 UCAN_DRIVER_NAME); 1563 return -ENODEV; 1564 } 1565 1566 /* disconnect the device */ 1567 static void ucan_disconnect(struct usb_interface *intf) 1568 { 1569 struct ucan_priv *up = usb_get_intfdata(intf); 1570 1571 usb_set_intfdata(intf, NULL); 1572 1573 if (up) { 1574 unregister_candev(up->netdev); 1575 free_candev(up->netdev); 1576 } 1577 } 1578 1579 static struct usb_device_id ucan_table[] = { 1580 /* Mule (soldered onto compute modules) */ 1581 {USB_DEVICE_INTERFACE_NUMBER(0x2294, 0x425a, 0)}, 1582 /* Seal (standalone USB stick) */ 1583 {USB_DEVICE_INTERFACE_NUMBER(0x2294, 0x425b, 0)}, 1584 {} /* Terminating entry */ 1585 }; 1586 1587 MODULE_DEVICE_TABLE(usb, ucan_table); 1588 /* driver callbacks */ 1589 static struct usb_driver ucan_driver = { 1590 .name = UCAN_DRIVER_NAME, 1591 .probe = ucan_probe, 1592 .disconnect = ucan_disconnect, 1593 .id_table = ucan_table, 1594 }; 1595 1596 module_usb_driver(ucan_driver); 1597 1598 MODULE_LICENSE("GPL v2"); 1599 MODULE_AUTHOR("Martin Elshuber <martin.elshuber@theobroma-systems.com>"); 1600 MODULE_AUTHOR("Jakob Unterwurzacher <jakob.unterwurzacher@theobroma-systems.com>"); 1601 MODULE_DESCRIPTION("Driver for Theobroma Systems UCAN devices"); 1602