1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * asus-laptop.c - Asus Laptop Support
4 *
5 * Copyright (C) 2002-2005 Julien Lerouge, 2003-2006 Karol Kozimor
6 * Copyright (C) 2006-2007 Corentin Chary
7 * Copyright (C) 2011 Wind River Systems
8 *
9 * The development page for this driver is located at
10 * http://sourceforge.net/projects/acpi4asus/
11 *
12 * Credits:
13 * Pontus Fuchs - Helper functions, cleanup
14 * Johann Wiesner - Small compile fixes
15 * John Belmonte - ACPI code for Toshiba laptop was a good starting point.
16 * Eric Burghard - LED display support for W1N
17 * Josh Green - Light Sens support
18 * Thomas Tuttle - His first patch for led support was very helpful
19 * Sam Lin - GPS support
20 */
21
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/err.h>
29 #include <linux/proc_fs.h>
30 #include <linux/backlight.h>
31 #include <linux/leds.h>
32 #include <linux/platform_device.h>
33 #include <linux/uaccess.h>
34 #include <linux/input.h>
35 #include <linux/input/sparse-keymap.h>
36 #include <linux/rfkill.h>
37 #include <linux/slab.h>
38 #include <linux/dmi.h>
39 #include <linux/acpi.h>
40 #include <acpi/video.h>
41
42 #define ASUS_LAPTOP_VERSION "0.42"
43
44 #define ASUS_LAPTOP_NAME "Asus Laptop Support"
45 #define ASUS_LAPTOP_CLASS "hotkey"
46 #define ASUS_LAPTOP_DEVICE_NAME "Hotkey"
47 #define ASUS_LAPTOP_FILE KBUILD_MODNAME
48 #define ASUS_LAPTOP_PREFIX "\\_SB.ATKD."
49
50 MODULE_AUTHOR("Julien Lerouge, Karol Kozimor, Corentin Chary");
51 MODULE_DESCRIPTION(ASUS_LAPTOP_NAME);
52 MODULE_LICENSE("GPL");
53
54 /*
55 * WAPF defines the behavior of the Fn+Fx wlan key
56 * The significance of values is yet to be found, but
57 * most of the time:
58 * Bit | Bluetooth | WLAN
59 * 0 | Hardware | Hardware
60 * 1 | Hardware | Software
61 * 4 | Software | Software
62 */
63 static uint wapf = 1;
64 module_param(wapf, uint, 0444);
65 MODULE_PARM_DESC(wapf, "WAPF value");
66
67 static char *wled_type = "unknown";
68 static char *bled_type = "unknown";
69
70 module_param(wled_type, charp, 0444);
71 MODULE_PARM_DESC(wled_type, "Set the wled type on boot "
72 "(unknown, led or rfkill). "
73 "default is unknown");
74
75 module_param(bled_type, charp, 0444);
76 MODULE_PARM_DESC(bled_type, "Set the bled type on boot "
77 "(unknown, led or rfkill). "
78 "default is unknown");
79
80 static int wlan_status = 1;
81 static int bluetooth_status = 1;
82 static int wimax_status = -1;
83 static int wwan_status = -1;
84 static int als_status;
85
86 module_param(wlan_status, int, 0444);
87 MODULE_PARM_DESC(wlan_status, "Set the wireless status on boot "
88 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
89 "default is -1");
90
91 module_param(bluetooth_status, int, 0444);
92 MODULE_PARM_DESC(bluetooth_status, "Set the wireless status on boot "
93 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
94 "default is -1");
95
96 module_param(wimax_status, int, 0444);
97 MODULE_PARM_DESC(wimax_status, "Set the wireless status on boot "
98 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
99 "default is -1");
100
101 module_param(wwan_status, int, 0444);
102 MODULE_PARM_DESC(wwan_status, "Set the wireless status on boot "
103 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
104 "default is -1");
105
106 module_param(als_status, int, 0444);
107 MODULE_PARM_DESC(als_status, "Set the ALS status on boot "
108 "(0 = disabled, 1 = enabled). "
109 "default is 0");
110
111 /*
112 * Some events we use, same for all Asus
113 */
114 #define ATKD_BRNUP_MIN 0x10
115 #define ATKD_BRNUP_MAX 0x1f
116 #define ATKD_BRNDOWN_MIN 0x20
117 #define ATKD_BRNDOWN_MAX 0x2f
118 #define ATKD_BRNDOWN 0x20
119 #define ATKD_BRNUP 0x2f
120 #define ATKD_LCD_ON 0x33
121 #define ATKD_LCD_OFF 0x34
122
123 /*
124 * Known bits returned by \_SB.ATKD.HWRS
125 */
126 #define WL_HWRS 0x80
127 #define BT_HWRS 0x100
128
129 /*
130 * Flags for hotk status
131 * WL_ON and BT_ON are also used for wireless_status()
132 */
133 #define WL_RSTS 0x01 /* internal Wifi */
134 #define BT_RSTS 0x02 /* internal Bluetooth */
135 #define WM_RSTS 0x08 /* internal wimax */
136 #define WW_RSTS 0x20 /* internal wwan */
137
138 /* WLED and BLED type */
139 #define TYPE_UNKNOWN 0
140 #define TYPE_LED 1
141 #define TYPE_RFKILL 2
142
143 /* LED */
144 #define METHOD_MLED "MLED"
145 #define METHOD_TLED "TLED"
146 #define METHOD_RLED "RLED" /* W1JC */
147 #define METHOD_PLED "PLED" /* A7J */
148 #define METHOD_GLED "GLED" /* G1, G2 (probably) */
149
150 /* LEDD */
151 #define METHOD_LEDD "SLCM"
152
153 /*
154 * Bluetooth and WLAN
155 * WLED and BLED are not handled like other XLED, because in some dsdt
156 * they also control the WLAN/Bluetooth device.
157 */
158 #define METHOD_WLAN "WLED"
159 #define METHOD_BLUETOOTH "BLED"
160
161 /* WWAN and WIMAX */
162 #define METHOD_WWAN "GSMC"
163 #define METHOD_WIMAX "WMXC"
164
165 #define METHOD_WL_STATUS "RSTS"
166
167 /* Brightness */
168 #define METHOD_BRIGHTNESS_SET "SPLV"
169 #define METHOD_BRIGHTNESS_GET "GPLV"
170
171 /* Display */
172 #define METHOD_SWITCH_DISPLAY "SDSP"
173
174 #define METHOD_ALS_CONTROL "ALSC" /* Z71A Z71V */
175 #define METHOD_ALS_LEVEL "ALSL" /* Z71A Z71V */
176
177 /* GPS */
178 /* R2H use different handle for GPS on/off */
179 #define METHOD_GPS_ON "SDON"
180 #define METHOD_GPS_OFF "SDOF"
181 #define METHOD_GPS_STATUS "GPST"
182
183 /* Keyboard light */
184 #define METHOD_KBD_LIGHT_SET "SLKB"
185 #define METHOD_KBD_LIGHT_GET "GLKB"
186
187 /* For Pegatron Lucid tablet */
188 #define DEVICE_NAME_PEGA "Lucid"
189
190 #define METHOD_PEGA_ENABLE "ENPR"
191 #define METHOD_PEGA_DISABLE "DAPR"
192 #define PEGA_WLAN 0x00
193 #define PEGA_BLUETOOTH 0x01
194 #define PEGA_WWAN 0x02
195 #define PEGA_ALS 0x04
196 #define PEGA_ALS_POWER 0x05
197
198 #define METHOD_PEGA_READ "RDLN"
199 #define PEGA_READ_ALS_H 0x02
200 #define PEGA_READ_ALS_L 0x03
201
202 #define PEGA_ACCEL_NAME "pega_accel"
203 #define PEGA_ACCEL_DESC "Pegatron Lucid Tablet Accelerometer"
204 #define METHOD_XLRX "XLRX"
205 #define METHOD_XLRY "XLRY"
206 #define METHOD_XLRZ "XLRZ"
207 #define PEGA_ACC_CLAMP 512 /* 1G accel is reported as ~256, so clamp to 2G */
208 #define PEGA_ACC_RETRIES 3
209
210 /*
211 * Define a specific led structure to keep the main structure clean
212 */
213 struct asus_led {
214 int wk;
215 struct work_struct work;
216 struct led_classdev led;
217 struct asus_laptop *asus;
218 const char *method;
219 };
220
221 /*
222 * Same thing for rfkill
223 */
224 struct asus_rfkill {
225 /* type of control. Maps to PEGA_* values or *_RSTS */
226 int control_id;
227 struct rfkill *rfkill;
228 struct asus_laptop *asus;
229 };
230
231 /*
232 * This is the main structure, we can use it to store anything interesting
233 * about the hotk device
234 */
235 struct asus_laptop {
236 char *name; /* laptop name */
237
238 struct acpi_table_header *dsdt_info;
239 struct platform_device *platform_device;
240 struct acpi_device *device; /* the device we are in */
241 struct backlight_device *backlight_device;
242
243 struct input_dev *inputdev;
244 struct key_entry *keymap;
245 struct input_dev *pega_accel_poll;
246
247 struct asus_led wled;
248 struct asus_led bled;
249 struct asus_led mled;
250 struct asus_led tled;
251 struct asus_led rled;
252 struct asus_led pled;
253 struct asus_led gled;
254 struct asus_led kled;
255 struct workqueue_struct *led_workqueue;
256
257 int wled_type;
258 int bled_type;
259 int wireless_status;
260 bool have_rsts;
261 bool is_pega_lucid;
262 bool pega_acc_live;
263 int pega_acc_x;
264 int pega_acc_y;
265 int pega_acc_z;
266
267 struct asus_rfkill wlan;
268 struct asus_rfkill bluetooth;
269 struct asus_rfkill wwan;
270 struct asus_rfkill wimax;
271 struct asus_rfkill gps;
272
273 acpi_handle handle; /* the handle of the hotk device */
274 u32 ledd_status; /* status of the LED display */
275 u8 light_level; /* light sensor level */
276 u8 light_switch; /* light sensor switch value */
277 u16 event_count[128]; /* count for each event TODO make this better */
278 };
279
280 static const struct key_entry asus_keymap[] = {
281 /* Lenovo SL Specific keycodes */
282 {KE_KEY, 0x02, { KEY_SCREENLOCK } },
283 {KE_KEY, 0x05, { KEY_WLAN } },
284 {KE_KEY, 0x08, { KEY_F13 } },
285 {KE_KEY, 0x09, { KEY_PROG2 } }, /* Dock */
286 {KE_KEY, 0x17, { KEY_ZOOM } },
287 {KE_KEY, 0x1f, { KEY_BATTERY } },
288 /* End of Lenovo SL Specific keycodes */
289 {KE_KEY, ATKD_BRNDOWN, { KEY_BRIGHTNESSDOWN } },
290 {KE_KEY, ATKD_BRNUP, { KEY_BRIGHTNESSUP } },
291 {KE_KEY, 0x30, { KEY_VOLUMEUP } },
292 {KE_KEY, 0x31, { KEY_VOLUMEDOWN } },
293 {KE_KEY, 0x32, { KEY_MUTE } },
294 {KE_KEY, 0x33, { KEY_DISPLAYTOGGLE } }, /* LCD on */
295 {KE_KEY, 0x34, { KEY_DISPLAY_OFF } }, /* LCD off */
296 {KE_KEY, 0x40, { KEY_PREVIOUSSONG } },
297 {KE_KEY, 0x41, { KEY_NEXTSONG } },
298 {KE_KEY, 0x43, { KEY_STOPCD } }, /* Stop/Eject */
299 {KE_KEY, 0x45, { KEY_PLAYPAUSE } },
300 {KE_KEY, 0x4c, { KEY_MEDIA } }, /* WMP Key */
301 {KE_KEY, 0x50, { KEY_EMAIL } },
302 {KE_KEY, 0x51, { KEY_WWW } },
303 {KE_KEY, 0x55, { KEY_CALC } },
304 {KE_IGNORE, 0x57, }, /* Battery mode */
305 {KE_IGNORE, 0x58, }, /* AC mode */
306 {KE_KEY, 0x5C, { KEY_SCREENLOCK } }, /* Screenlock */
307 {KE_KEY, 0x5D, { KEY_WLAN } }, /* WLAN Toggle */
308 {KE_KEY, 0x5E, { KEY_WLAN } }, /* WLAN Enable */
309 {KE_KEY, 0x5F, { KEY_WLAN } }, /* WLAN Disable */
310 {KE_KEY, 0x60, { KEY_TOUCHPAD_ON } },
311 {KE_KEY, 0x61, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD only */
312 {KE_KEY, 0x62, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT only */
313 {KE_KEY, 0x63, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT */
314 {KE_KEY, 0x64, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV */
315 {KE_KEY, 0x65, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV */
316 {KE_KEY, 0x66, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV */
317 {KE_KEY, 0x67, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV */
318 {KE_KEY, 0x6A, { KEY_TOUCHPAD_TOGGLE } }, /* Lock Touchpad Fn + F9 */
319 {KE_KEY, 0x6B, { KEY_TOUCHPAD_TOGGLE } }, /* Lock Touchpad */
320 {KE_KEY, 0x6C, { KEY_SLEEP } }, /* Suspend */
321 {KE_KEY, 0x6D, { KEY_SLEEP } }, /* Hibernate */
322 {KE_IGNORE, 0x6E, }, /* Low Battery notification */
323 {KE_KEY, 0x7D, { KEY_BLUETOOTH } }, /* Bluetooth Enable */
324 {KE_KEY, 0x7E, { KEY_BLUETOOTH } }, /* Bluetooth Disable */
325 {KE_KEY, 0x82, { KEY_CAMERA } },
326 {KE_KEY, 0x88, { KEY_RFKILL } }, /* Radio Toggle Key */
327 {KE_KEY, 0x8A, { KEY_PROG1 } }, /* Color enhancement mode */
328 {KE_KEY, 0x8C, { KEY_SWITCHVIDEOMODE } }, /* SDSP DVI only */
329 {KE_KEY, 0x8D, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + DVI */
330 {KE_KEY, 0x8E, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + DVI */
331 {KE_KEY, 0x8F, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV + DVI */
332 {KE_KEY, 0x90, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + DVI */
333 {KE_KEY, 0x91, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV + DVI */
334 {KE_KEY, 0x92, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV + DVI */
335 {KE_KEY, 0x93, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV + DVI */
336 {KE_KEY, 0x95, { KEY_MEDIA } },
337 {KE_KEY, 0x99, { KEY_PHONE } },
338 {KE_KEY, 0xA0, { KEY_SWITCHVIDEOMODE } }, /* SDSP HDMI only */
339 {KE_KEY, 0xA1, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + HDMI */
340 {KE_KEY, 0xA2, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + HDMI */
341 {KE_KEY, 0xA3, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV + HDMI */
342 {KE_KEY, 0xA4, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + HDMI */
343 {KE_KEY, 0xA5, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV + HDMI */
344 {KE_KEY, 0xA6, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV + HDMI */
345 {KE_KEY, 0xA7, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV + HDMI */
346 {KE_KEY, 0xB5, { KEY_CALC } },
347 {KE_KEY, 0xC4, { KEY_KBDILLUMUP } },
348 {KE_KEY, 0xC5, { KEY_KBDILLUMDOWN } },
349 {KE_END, 0},
350 };
351
352
353 /*
354 * This function evaluates an ACPI method, given an int as parameter, the
355 * method is searched within the scope of the handle, can be NULL. The output
356 * of the method is written is output, which can also be NULL
357 *
358 * returns 0 if write is successful, -1 else.
359 */
write_acpi_int_ret(acpi_handle handle,const char * method,int val,struct acpi_buffer * output)360 static int write_acpi_int_ret(acpi_handle handle, const char *method, int val,
361 struct acpi_buffer *output)
362 {
363 struct acpi_object_list params; /* list of input parameters (an int) */
364 union acpi_object in_obj; /* the only param we use */
365 acpi_status status;
366
367 if (!handle)
368 return -1;
369
370 params.count = 1;
371 params.pointer = &in_obj;
372 in_obj.type = ACPI_TYPE_INTEGER;
373 in_obj.integer.value = val;
374
375 status = acpi_evaluate_object(handle, (char *)method, ¶ms, output);
376 if (status == AE_OK)
377 return 0;
378 else
379 return -1;
380 }
381
write_acpi_int(acpi_handle handle,const char * method,int val)382 static int write_acpi_int(acpi_handle handle, const char *method, int val)
383 {
384 return write_acpi_int_ret(handle, method, val, NULL);
385 }
386
acpi_check_handle(acpi_handle handle,const char * method,acpi_handle * ret)387 static int acpi_check_handle(acpi_handle handle, const char *method,
388 acpi_handle *ret)
389 {
390 acpi_status status;
391
392 if (method == NULL)
393 return -ENODEV;
394
395 if (ret)
396 status = acpi_get_handle(handle, (char *)method,
397 ret);
398 else {
399 acpi_handle dummy;
400
401 status = acpi_get_handle(handle, (char *)method,
402 &dummy);
403 }
404
405 if (status != AE_OK) {
406 if (ret)
407 pr_warn("Error finding %s\n", method);
408 return -ENODEV;
409 }
410 return 0;
411 }
412
asus_check_pega_lucid(struct asus_laptop * asus)413 static bool asus_check_pega_lucid(struct asus_laptop *asus)
414 {
415 return !strcmp(asus->name, DEVICE_NAME_PEGA) &&
416 !acpi_check_handle(asus->handle, METHOD_PEGA_ENABLE, NULL) &&
417 !acpi_check_handle(asus->handle, METHOD_PEGA_DISABLE, NULL) &&
418 !acpi_check_handle(asus->handle, METHOD_PEGA_READ, NULL);
419 }
420
asus_pega_lucid_set(struct asus_laptop * asus,int unit,bool enable)421 static int asus_pega_lucid_set(struct asus_laptop *asus, int unit, bool enable)
422 {
423 char *method = enable ? METHOD_PEGA_ENABLE : METHOD_PEGA_DISABLE;
424 return write_acpi_int(asus->handle, method, unit);
425 }
426
pega_acc_axis(struct asus_laptop * asus,int curr,char * method)427 static int pega_acc_axis(struct asus_laptop *asus, int curr, char *method)
428 {
429 unsigned long long val = (unsigned long long)curr;
430 acpi_status status;
431 int i, delta;
432
433 for (i = 0; i < PEGA_ACC_RETRIES; i++) {
434 status = acpi_evaluate_integer(asus->handle, method, NULL, &val);
435 if (ACPI_FAILURE(status))
436 continue;
437 /* The output is noisy. From reading the ASL
438 * dissassembly, timeout errors are returned with 1's
439 * in the high word, and the lack of locking around
440 * thei hi/lo byte reads means that a transition
441 * between (for example) -1 and 0 could be read as
442 * 0xff00 or 0x00ff. */
443 delta = abs(curr - (short)val);
444 if (delta < 128 && !(val & ~0xffff))
445 break;
446 }
447 return clamp_val((short)val, -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP);
448 }
449
pega_accel_poll(struct input_dev * input)450 static void pega_accel_poll(struct input_dev *input)
451 {
452 struct device *parent = input->dev.parent;
453 struct asus_laptop *asus = dev_get_drvdata(parent);
454
455 /* In some cases, the very first call to poll causes a
456 * recursive fault under the polldev worker. This is
457 * apparently related to very early userspace access to the
458 * device, and perhaps a firmware bug. Fake the first report. */
459 if (!asus->pega_acc_live) {
460 asus->pega_acc_live = true;
461 input_report_abs(input, ABS_X, 0);
462 input_report_abs(input, ABS_Y, 0);
463 input_report_abs(input, ABS_Z, 0);
464 input_sync(input);
465 return;
466 }
467
468 asus->pega_acc_x = pega_acc_axis(asus, asus->pega_acc_x, METHOD_XLRX);
469 asus->pega_acc_y = pega_acc_axis(asus, asus->pega_acc_y, METHOD_XLRY);
470 asus->pega_acc_z = pega_acc_axis(asus, asus->pega_acc_z, METHOD_XLRZ);
471
472 /* Note transform, convert to "right/up/out" in the native
473 * landscape orientation (i.e. the vector is the direction of
474 * "real up" in the device's cartiesian coordinates). */
475 input_report_abs(input, ABS_X, -asus->pega_acc_x);
476 input_report_abs(input, ABS_Y, -asus->pega_acc_y);
477 input_report_abs(input, ABS_Z, asus->pega_acc_z);
478 input_sync(input);
479 }
480
pega_accel_exit(struct asus_laptop * asus)481 static void pega_accel_exit(struct asus_laptop *asus)
482 {
483 if (asus->pega_accel_poll) {
484 input_unregister_device(asus->pega_accel_poll);
485 asus->pega_accel_poll = NULL;
486 }
487 }
488
pega_accel_init(struct asus_laptop * asus)489 static int pega_accel_init(struct asus_laptop *asus)
490 {
491 int err;
492 struct input_dev *input;
493
494 if (!asus->is_pega_lucid)
495 return -ENODEV;
496
497 if (acpi_check_handle(asus->handle, METHOD_XLRX, NULL) ||
498 acpi_check_handle(asus->handle, METHOD_XLRY, NULL) ||
499 acpi_check_handle(asus->handle, METHOD_XLRZ, NULL))
500 return -ENODEV;
501
502 input = input_allocate_device();
503 if (!input)
504 return -ENOMEM;
505
506 input->name = PEGA_ACCEL_DESC;
507 input->phys = PEGA_ACCEL_NAME "/input0";
508 input->dev.parent = &asus->platform_device->dev;
509 input->id.bustype = BUS_HOST;
510
511 input_set_abs_params(input, ABS_X,
512 -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
513 input_set_abs_params(input, ABS_Y,
514 -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
515 input_set_abs_params(input, ABS_Z,
516 -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
517
518 err = input_setup_polling(input, pega_accel_poll);
519 if (err)
520 goto exit;
521
522 input_set_poll_interval(input, 125);
523 input_set_min_poll_interval(input, 50);
524 input_set_max_poll_interval(input, 2000);
525
526 err = input_register_device(input);
527 if (err)
528 goto exit;
529
530 asus->pega_accel_poll = input;
531 return 0;
532
533 exit:
534 input_free_device(input);
535 return err;
536 }
537
538 /* Generic LED function */
asus_led_set(struct asus_laptop * asus,const char * method,int value)539 static int asus_led_set(struct asus_laptop *asus, const char *method,
540 int value)
541 {
542 if (!strcmp(method, METHOD_MLED))
543 value = !value;
544 else if (!strcmp(method, METHOD_GLED))
545 value = !value + 1;
546 else
547 value = !!value;
548
549 return write_acpi_int(asus->handle, method, value);
550 }
551
552 /*
553 * LEDs
554 */
555 /* /sys/class/led handlers */
asus_led_cdev_set(struct led_classdev * led_cdev,enum led_brightness value)556 static void asus_led_cdev_set(struct led_classdev *led_cdev,
557 enum led_brightness value)
558 {
559 struct asus_led *led = container_of(led_cdev, struct asus_led, led);
560 struct asus_laptop *asus = led->asus;
561
562 led->wk = !!value;
563 queue_work(asus->led_workqueue, &led->work);
564 }
565
asus_led_cdev_update(struct work_struct * work)566 static void asus_led_cdev_update(struct work_struct *work)
567 {
568 struct asus_led *led = container_of(work, struct asus_led, work);
569 struct asus_laptop *asus = led->asus;
570
571 asus_led_set(asus, led->method, led->wk);
572 }
573
asus_led_cdev_get(struct led_classdev * led_cdev)574 static enum led_brightness asus_led_cdev_get(struct led_classdev *led_cdev)
575 {
576 return led_cdev->brightness;
577 }
578
579 /*
580 * Keyboard backlight (also a LED)
581 */
asus_kled_lvl(struct asus_laptop * asus)582 static int asus_kled_lvl(struct asus_laptop *asus)
583 {
584 unsigned long long kblv;
585 struct acpi_object_list params;
586 union acpi_object in_obj;
587 acpi_status rv;
588
589 params.count = 1;
590 params.pointer = &in_obj;
591 in_obj.type = ACPI_TYPE_INTEGER;
592 in_obj.integer.value = 2;
593
594 rv = acpi_evaluate_integer(asus->handle, METHOD_KBD_LIGHT_GET,
595 ¶ms, &kblv);
596 if (ACPI_FAILURE(rv)) {
597 pr_warn("Error reading kled level\n");
598 return -ENODEV;
599 }
600 return kblv;
601 }
602
asus_kled_set(struct asus_laptop * asus,int kblv)603 static int asus_kled_set(struct asus_laptop *asus, int kblv)
604 {
605 if (kblv > 0)
606 kblv = (1 << 7) | (kblv & 0x7F);
607 else
608 kblv = 0;
609
610 if (write_acpi_int(asus->handle, METHOD_KBD_LIGHT_SET, kblv)) {
611 pr_warn("Keyboard LED display write failed\n");
612 return -EINVAL;
613 }
614 return 0;
615 }
616
asus_kled_cdev_set(struct led_classdev * led_cdev,enum led_brightness value)617 static void asus_kled_cdev_set(struct led_classdev *led_cdev,
618 enum led_brightness value)
619 {
620 struct asus_led *led = container_of(led_cdev, struct asus_led, led);
621 struct asus_laptop *asus = led->asus;
622
623 led->wk = value;
624 queue_work(asus->led_workqueue, &led->work);
625 }
626
asus_kled_cdev_update(struct work_struct * work)627 static void asus_kled_cdev_update(struct work_struct *work)
628 {
629 struct asus_led *led = container_of(work, struct asus_led, work);
630 struct asus_laptop *asus = led->asus;
631
632 asus_kled_set(asus, led->wk);
633 }
634
asus_kled_cdev_get(struct led_classdev * led_cdev)635 static enum led_brightness asus_kled_cdev_get(struct led_classdev *led_cdev)
636 {
637 struct asus_led *led = container_of(led_cdev, struct asus_led, led);
638 struct asus_laptop *asus = led->asus;
639
640 return asus_kled_lvl(asus);
641 }
642
asus_led_exit(struct asus_laptop * asus)643 static void asus_led_exit(struct asus_laptop *asus)
644 {
645 led_classdev_unregister(&asus->wled.led);
646 led_classdev_unregister(&asus->bled.led);
647 led_classdev_unregister(&asus->mled.led);
648 led_classdev_unregister(&asus->tled.led);
649 led_classdev_unregister(&asus->pled.led);
650 led_classdev_unregister(&asus->rled.led);
651 led_classdev_unregister(&asus->gled.led);
652 led_classdev_unregister(&asus->kled.led);
653
654 if (asus->led_workqueue) {
655 destroy_workqueue(asus->led_workqueue);
656 asus->led_workqueue = NULL;
657 }
658 }
659
660 /* Ugly macro, need to fix that later */
asus_led_register(struct asus_laptop * asus,struct asus_led * led,const char * name,const char * method)661 static int asus_led_register(struct asus_laptop *asus,
662 struct asus_led *led,
663 const char *name, const char *method)
664 {
665 struct led_classdev *led_cdev = &led->led;
666
667 if (!method || acpi_check_handle(asus->handle, method, NULL))
668 return 0; /* Led not present */
669
670 led->asus = asus;
671 led->method = method;
672
673 INIT_WORK(&led->work, asus_led_cdev_update);
674 led_cdev->name = name;
675 led_cdev->brightness_set = asus_led_cdev_set;
676 led_cdev->brightness_get = asus_led_cdev_get;
677 led_cdev->max_brightness = 1;
678 return led_classdev_register(&asus->platform_device->dev, led_cdev);
679 }
680
asus_led_init(struct asus_laptop * asus)681 static int asus_led_init(struct asus_laptop *asus)
682 {
683 int r = 0;
684
685 /*
686 * The Pegatron Lucid has no physical leds, but all methods are
687 * available in the DSDT...
688 */
689 if (asus->is_pega_lucid)
690 return 0;
691
692 /*
693 * Functions that actually update the LED's are called from a
694 * workqueue. By doing this as separate work rather than when the LED
695 * subsystem asks, we avoid messing with the Asus ACPI stuff during a
696 * potentially bad time, such as a timer interrupt.
697 */
698 asus->led_workqueue = create_singlethread_workqueue("led_workqueue");
699 if (!asus->led_workqueue)
700 return -ENOMEM;
701
702 if (asus->wled_type == TYPE_LED)
703 r = asus_led_register(asus, &asus->wled, "asus::wlan",
704 METHOD_WLAN);
705 if (r)
706 goto error;
707 if (asus->bled_type == TYPE_LED)
708 r = asus_led_register(asus, &asus->bled, "asus::bluetooth",
709 METHOD_BLUETOOTH);
710 if (r)
711 goto error;
712 r = asus_led_register(asus, &asus->mled, "asus::mail", METHOD_MLED);
713 if (r)
714 goto error;
715 r = asus_led_register(asus, &asus->tled, "asus::touchpad", METHOD_TLED);
716 if (r)
717 goto error;
718 r = asus_led_register(asus, &asus->rled, "asus::record", METHOD_RLED);
719 if (r)
720 goto error;
721 r = asus_led_register(asus, &asus->pled, "asus::phone", METHOD_PLED);
722 if (r)
723 goto error;
724 r = asus_led_register(asus, &asus->gled, "asus::gaming", METHOD_GLED);
725 if (r)
726 goto error;
727 if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL) &&
728 !acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_GET, NULL)) {
729 struct asus_led *led = &asus->kled;
730 struct led_classdev *cdev = &led->led;
731
732 led->asus = asus;
733
734 INIT_WORK(&led->work, asus_kled_cdev_update);
735 cdev->name = "asus::kbd_backlight";
736 cdev->brightness_set = asus_kled_cdev_set;
737 cdev->brightness_get = asus_kled_cdev_get;
738 cdev->max_brightness = 3;
739 r = led_classdev_register(&asus->platform_device->dev, cdev);
740 }
741 error:
742 if (r)
743 asus_led_exit(asus);
744 return r;
745 }
746
747 /*
748 * Backlight device
749 */
asus_read_brightness(struct backlight_device * bd)750 static int asus_read_brightness(struct backlight_device *bd)
751 {
752 struct asus_laptop *asus = bl_get_data(bd);
753 unsigned long long value;
754 acpi_status rv;
755
756 rv = acpi_evaluate_integer(asus->handle, METHOD_BRIGHTNESS_GET,
757 NULL, &value);
758 if (ACPI_FAILURE(rv)) {
759 pr_warn("Error reading brightness\n");
760 return 0;
761 }
762
763 return value;
764 }
765
asus_set_brightness(struct backlight_device * bd,int value)766 static int asus_set_brightness(struct backlight_device *bd, int value)
767 {
768 struct asus_laptop *asus = bl_get_data(bd);
769
770 if (write_acpi_int(asus->handle, METHOD_BRIGHTNESS_SET, value)) {
771 pr_warn("Error changing brightness\n");
772 return -EIO;
773 }
774 return 0;
775 }
776
update_bl_status(struct backlight_device * bd)777 static int update_bl_status(struct backlight_device *bd)
778 {
779 int value = bd->props.brightness;
780
781 return asus_set_brightness(bd, value);
782 }
783
784 static const struct backlight_ops asusbl_ops = {
785 .get_brightness = asus_read_brightness,
786 .update_status = update_bl_status,
787 };
788
asus_backlight_notify(struct asus_laptop * asus)789 static int asus_backlight_notify(struct asus_laptop *asus)
790 {
791 struct backlight_device *bd = asus->backlight_device;
792 int old = bd->props.brightness;
793
794 backlight_force_update(bd, BACKLIGHT_UPDATE_HOTKEY);
795
796 return old;
797 }
798
asus_backlight_init(struct asus_laptop * asus)799 static int asus_backlight_init(struct asus_laptop *asus)
800 {
801 struct backlight_device *bd;
802 struct backlight_properties props;
803
804 if (acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_GET, NULL) ||
805 acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_SET, NULL))
806 return 0;
807
808 memset(&props, 0, sizeof(struct backlight_properties));
809 props.max_brightness = 15;
810 props.type = BACKLIGHT_PLATFORM;
811
812 bd = backlight_device_register(ASUS_LAPTOP_FILE,
813 &asus->platform_device->dev, asus,
814 &asusbl_ops, &props);
815 if (IS_ERR(bd)) {
816 pr_err("Could not register asus backlight device\n");
817 asus->backlight_device = NULL;
818 return PTR_ERR(bd);
819 }
820
821 asus->backlight_device = bd;
822 bd->props.brightness = asus_read_brightness(bd);
823 bd->props.power = BACKLIGHT_POWER_ON;
824 backlight_update_status(bd);
825 return 0;
826 }
827
asus_backlight_exit(struct asus_laptop * asus)828 static void asus_backlight_exit(struct asus_laptop *asus)
829 {
830 backlight_device_unregister(asus->backlight_device);
831 asus->backlight_device = NULL;
832 }
833
834 /*
835 * Platform device handlers
836 */
837
838 /*
839 * We write our info in page, we begin at offset off and cannot write more
840 * than count bytes. We set eof to 1 if we handle those 2 values. We return the
841 * number of bytes written in page
842 */
infos_show(struct device * dev,struct device_attribute * attr,char * page)843 static ssize_t infos_show(struct device *dev, struct device_attribute *attr,
844 char *page)
845 {
846 struct asus_laptop *asus = dev_get_drvdata(dev);
847 int len = 0;
848 unsigned long long temp;
849 char buf[16]; /* enough for all info */
850 acpi_status rv;
851
852 /*
853 * We use the easy way, we don't care of off and count,
854 * so we don't set eof to 1
855 */
856
857 len += sysfs_emit_at(page, len, ASUS_LAPTOP_NAME " " ASUS_LAPTOP_VERSION "\n");
858 len += sysfs_emit_at(page, len, "Model reference : %s\n", asus->name);
859 /*
860 * The SFUN method probably allows the original driver to get the list
861 * of features supported by a given model. For now, 0x0100 or 0x0800
862 * bit signifies that the laptop is equipped with a Wi-Fi MiniPCI card.
863 * The significance of others is yet to be found.
864 */
865 rv = acpi_evaluate_integer(asus->handle, "SFUN", NULL, &temp);
866 if (ACPI_SUCCESS(rv))
867 len += sysfs_emit_at(page, len, "SFUN value : %#x\n",
868 (uint) temp);
869 /*
870 * The HWRS method return informations about the hardware.
871 * 0x80 bit is for WLAN, 0x100 for Bluetooth.
872 * 0x40 for WWAN, 0x10 for WIMAX.
873 * The significance of others is yet to be found.
874 * We don't currently use this for device detection, and it
875 * takes several seconds to run on some systems.
876 */
877 rv = acpi_evaluate_integer(asus->handle, "HWRS", NULL, &temp);
878 if (ACPI_SUCCESS(rv))
879 len += sysfs_emit_at(page, len, "HWRS value : %#x\n",
880 (uint) temp);
881 /*
882 * Another value for userspace: the ASYM method returns 0x02 for
883 * battery low and 0x04 for battery critical, its readings tend to be
884 * more accurate than those provided by _BST.
885 * Note: since not all the laptops provide this method, errors are
886 * silently ignored.
887 */
888 rv = acpi_evaluate_integer(asus->handle, "ASYM", NULL, &temp);
889 if (ACPI_SUCCESS(rv))
890 len += sysfs_emit_at(page, len, "ASYM value : %#x\n",
891 (uint) temp);
892 if (asus->dsdt_info) {
893 snprintf(buf, 16, "%d", asus->dsdt_info->length);
894 len += sysfs_emit_at(page, len, "DSDT length : %s\n", buf);
895 snprintf(buf, 16, "%d", asus->dsdt_info->checksum);
896 len += sysfs_emit_at(page, len, "DSDT checksum : %s\n", buf);
897 snprintf(buf, 16, "%d", asus->dsdt_info->revision);
898 len += sysfs_emit_at(page, len, "DSDT revision : %s\n", buf);
899 snprintf(buf, 7, "%s", asus->dsdt_info->oem_id);
900 len += sysfs_emit_at(page, len, "OEM id : %s\n", buf);
901 snprintf(buf, 9, "%s", asus->dsdt_info->oem_table_id);
902 len += sysfs_emit_at(page, len, "OEM table id : %s\n", buf);
903 snprintf(buf, 16, "%x", asus->dsdt_info->oem_revision);
904 len += sysfs_emit_at(page, len, "OEM revision : 0x%s\n", buf);
905 snprintf(buf, 5, "%s", asus->dsdt_info->asl_compiler_id);
906 len += sysfs_emit_at(page, len, "ASL comp vendor id : %s\n", buf);
907 snprintf(buf, 16, "%x", asus->dsdt_info->asl_compiler_revision);
908 len += sysfs_emit_at(page, len, "ASL comp revision : 0x%s\n", buf);
909 }
910
911 return len;
912 }
913 static DEVICE_ATTR_RO(infos);
914
sysfs_acpi_set(struct asus_laptop * asus,const char * buf,size_t count,const char * method)915 static ssize_t sysfs_acpi_set(struct asus_laptop *asus,
916 const char *buf, size_t count,
917 const char *method)
918 {
919 int rv, value;
920
921 rv = kstrtoint(buf, 0, &value);
922 if (rv < 0)
923 return rv;
924
925 if (write_acpi_int(asus->handle, method, value))
926 return -ENODEV;
927 return count;
928 }
929
930 /*
931 * LEDD display
932 */
ledd_show(struct device * dev,struct device_attribute * attr,char * buf)933 static ssize_t ledd_show(struct device *dev, struct device_attribute *attr,
934 char *buf)
935 {
936 struct asus_laptop *asus = dev_get_drvdata(dev);
937
938 return sysfs_emit(buf, "0x%08x\n", asus->ledd_status);
939 }
940
ledd_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)941 static ssize_t ledd_store(struct device *dev, struct device_attribute *attr,
942 const char *buf, size_t count)
943 {
944 struct asus_laptop *asus = dev_get_drvdata(dev);
945 int rv, value;
946
947 rv = kstrtoint(buf, 0, &value);
948 if (rv < 0)
949 return rv;
950
951 if (write_acpi_int(asus->handle, METHOD_LEDD, value)) {
952 pr_warn("LED display write failed\n");
953 return -ENODEV;
954 }
955
956 asus->ledd_status = (u32) value;
957 return count;
958 }
959 static DEVICE_ATTR_RW(ledd);
960
961 /*
962 * Wireless
963 */
asus_wireless_status(struct asus_laptop * asus,int mask)964 static int asus_wireless_status(struct asus_laptop *asus, int mask)
965 {
966 unsigned long long status;
967 acpi_status rv = AE_OK;
968
969 if (!asus->have_rsts)
970 return (asus->wireless_status & mask) ? 1 : 0;
971
972 rv = acpi_evaluate_integer(asus->handle, METHOD_WL_STATUS,
973 NULL, &status);
974 if (ACPI_FAILURE(rv)) {
975 pr_warn("Error reading Wireless status\n");
976 return -EINVAL;
977 }
978 return !!(status & mask);
979 }
980
981 /*
982 * WLAN
983 */
asus_wlan_set(struct asus_laptop * asus,int status)984 static int asus_wlan_set(struct asus_laptop *asus, int status)
985 {
986 if (write_acpi_int(asus->handle, METHOD_WLAN, !!status)) {
987 pr_warn("Error setting wlan status to %d\n", status);
988 return -EIO;
989 }
990 return 0;
991 }
992
wlan_show(struct device * dev,struct device_attribute * attr,char * buf)993 static ssize_t wlan_show(struct device *dev, struct device_attribute *attr,
994 char *buf)
995 {
996 struct asus_laptop *asus = dev_get_drvdata(dev);
997
998 return sysfs_emit(buf, "%d\n", asus_wireless_status(asus, WL_RSTS));
999 }
1000
wlan_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1001 static ssize_t wlan_store(struct device *dev, struct device_attribute *attr,
1002 const char *buf, size_t count)
1003 {
1004 struct asus_laptop *asus = dev_get_drvdata(dev);
1005
1006 return sysfs_acpi_set(asus, buf, count, METHOD_WLAN);
1007 }
1008 static DEVICE_ATTR_RW(wlan);
1009
1010 /*e
1011 * Bluetooth
1012 */
asus_bluetooth_set(struct asus_laptop * asus,int status)1013 static int asus_bluetooth_set(struct asus_laptop *asus, int status)
1014 {
1015 if (write_acpi_int(asus->handle, METHOD_BLUETOOTH, !!status)) {
1016 pr_warn("Error setting bluetooth status to %d\n", status);
1017 return -EIO;
1018 }
1019 return 0;
1020 }
1021
bluetooth_show(struct device * dev,struct device_attribute * attr,char * buf)1022 static ssize_t bluetooth_show(struct device *dev, struct device_attribute *attr,
1023 char *buf)
1024 {
1025 struct asus_laptop *asus = dev_get_drvdata(dev);
1026
1027 return sysfs_emit(buf, "%d\n", asus_wireless_status(asus, BT_RSTS));
1028 }
1029
bluetooth_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1030 static ssize_t bluetooth_store(struct device *dev,
1031 struct device_attribute *attr, const char *buf,
1032 size_t count)
1033 {
1034 struct asus_laptop *asus = dev_get_drvdata(dev);
1035
1036 return sysfs_acpi_set(asus, buf, count, METHOD_BLUETOOTH);
1037 }
1038 static DEVICE_ATTR_RW(bluetooth);
1039
1040 /*
1041 * Wimax
1042 */
asus_wimax_set(struct asus_laptop * asus,int status)1043 static int asus_wimax_set(struct asus_laptop *asus, int status)
1044 {
1045 if (write_acpi_int(asus->handle, METHOD_WIMAX, !!status)) {
1046 pr_warn("Error setting wimax status to %d\n", status);
1047 return -EIO;
1048 }
1049 return 0;
1050 }
1051
wimax_show(struct device * dev,struct device_attribute * attr,char * buf)1052 static ssize_t wimax_show(struct device *dev, struct device_attribute *attr,
1053 char *buf)
1054 {
1055 struct asus_laptop *asus = dev_get_drvdata(dev);
1056
1057 return sysfs_emit(buf, "%d\n", asus_wireless_status(asus, WM_RSTS));
1058 }
1059
wimax_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1060 static ssize_t wimax_store(struct device *dev, struct device_attribute *attr,
1061 const char *buf, size_t count)
1062 {
1063 struct asus_laptop *asus = dev_get_drvdata(dev);
1064
1065 return sysfs_acpi_set(asus, buf, count, METHOD_WIMAX);
1066 }
1067 static DEVICE_ATTR_RW(wimax);
1068
1069 /*
1070 * Wwan
1071 */
asus_wwan_set(struct asus_laptop * asus,int status)1072 static int asus_wwan_set(struct asus_laptop *asus, int status)
1073 {
1074 if (write_acpi_int(asus->handle, METHOD_WWAN, !!status)) {
1075 pr_warn("Error setting wwan status to %d\n", status);
1076 return -EIO;
1077 }
1078 return 0;
1079 }
1080
wwan_show(struct device * dev,struct device_attribute * attr,char * buf)1081 static ssize_t wwan_show(struct device *dev, struct device_attribute *attr,
1082 char *buf)
1083 {
1084 struct asus_laptop *asus = dev_get_drvdata(dev);
1085
1086 return sysfs_emit(buf, "%d\n", asus_wireless_status(asus, WW_RSTS));
1087 }
1088
wwan_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1089 static ssize_t wwan_store(struct device *dev, struct device_attribute *attr,
1090 const char *buf, size_t count)
1091 {
1092 struct asus_laptop *asus = dev_get_drvdata(dev);
1093
1094 return sysfs_acpi_set(asus, buf, count, METHOD_WWAN);
1095 }
1096 static DEVICE_ATTR_RW(wwan);
1097
1098 /*
1099 * Display
1100 */
asus_set_display(struct asus_laptop * asus,int value)1101 static void asus_set_display(struct asus_laptop *asus, int value)
1102 {
1103 /* no sanity check needed for now */
1104 if (write_acpi_int(asus->handle, METHOD_SWITCH_DISPLAY, value))
1105 pr_warn("Error setting display\n");
1106 return;
1107 }
1108
1109 /*
1110 * Experimental support for display switching. As of now: 1 should activate
1111 * the LCD output, 2 should do for CRT, 4 for TV-Out and 8 for DVI.
1112 * Any combination (bitwise) of these will suffice. I never actually tested 4
1113 * displays hooked up simultaneously, so be warned. See the acpi4asus README
1114 * for more info.
1115 */
display_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1116 static ssize_t display_store(struct device *dev, struct device_attribute *attr,
1117 const char *buf, size_t count)
1118 {
1119 struct asus_laptop *asus = dev_get_drvdata(dev);
1120 int rv, value;
1121
1122 rv = kstrtoint(buf, 0, &value);
1123 if (rv < 0)
1124 return rv;
1125
1126 asus_set_display(asus, value);
1127 return count;
1128 }
1129 static DEVICE_ATTR_WO(display);
1130
1131 /*
1132 * Light Sens
1133 */
asus_als_switch(struct asus_laptop * asus,int value)1134 static void asus_als_switch(struct asus_laptop *asus, int value)
1135 {
1136 int ret;
1137
1138 if (asus->is_pega_lucid) {
1139 ret = asus_pega_lucid_set(asus, PEGA_ALS, value);
1140 if (!ret)
1141 ret = asus_pega_lucid_set(asus, PEGA_ALS_POWER, value);
1142 } else {
1143 ret = write_acpi_int(asus->handle, METHOD_ALS_CONTROL, value);
1144 }
1145 if (ret)
1146 pr_warn("Error setting light sensor switch\n");
1147
1148 asus->light_switch = value;
1149 }
1150
ls_switch_show(struct device * dev,struct device_attribute * attr,char * buf)1151 static ssize_t ls_switch_show(struct device *dev, struct device_attribute *attr,
1152 char *buf)
1153 {
1154 struct asus_laptop *asus = dev_get_drvdata(dev);
1155
1156 return sysfs_emit(buf, "%d\n", asus->light_switch);
1157 }
1158
ls_switch_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1159 static ssize_t ls_switch_store(struct device *dev,
1160 struct device_attribute *attr, const char *buf,
1161 size_t count)
1162 {
1163 struct asus_laptop *asus = dev_get_drvdata(dev);
1164 int rv, value;
1165
1166 rv = kstrtoint(buf, 0, &value);
1167 if (rv < 0)
1168 return rv;
1169
1170 asus_als_switch(asus, value ? 1 : 0);
1171 return count;
1172 }
1173 static DEVICE_ATTR_RW(ls_switch);
1174
asus_als_level(struct asus_laptop * asus,int value)1175 static void asus_als_level(struct asus_laptop *asus, int value)
1176 {
1177 if (write_acpi_int(asus->handle, METHOD_ALS_LEVEL, value))
1178 pr_warn("Error setting light sensor level\n");
1179 asus->light_level = value;
1180 }
1181
ls_level_show(struct device * dev,struct device_attribute * attr,char * buf)1182 static ssize_t ls_level_show(struct device *dev, struct device_attribute *attr,
1183 char *buf)
1184 {
1185 struct asus_laptop *asus = dev_get_drvdata(dev);
1186
1187 return sysfs_emit(buf, "%d\n", asus->light_level);
1188 }
1189
ls_level_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1190 static ssize_t ls_level_store(struct device *dev, struct device_attribute *attr,
1191 const char *buf, size_t count)
1192 {
1193 struct asus_laptop *asus = dev_get_drvdata(dev);
1194 int rv, value;
1195
1196 rv = kstrtoint(buf, 0, &value);
1197 if (rv < 0)
1198 return rv;
1199
1200 value = (0 < value) ? ((15 < value) ? 15 : value) : 0;
1201 /* 0 <= value <= 15 */
1202 asus_als_level(asus, value);
1203
1204 return count;
1205 }
1206 static DEVICE_ATTR_RW(ls_level);
1207
pega_int_read(struct asus_laptop * asus,int arg,int * result)1208 static int pega_int_read(struct asus_laptop *asus, int arg, int *result)
1209 {
1210 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1211 int err = write_acpi_int_ret(asus->handle, METHOD_PEGA_READ, arg,
1212 &buffer);
1213 if (!err) {
1214 union acpi_object *obj = buffer.pointer;
1215 if (obj && obj->type == ACPI_TYPE_INTEGER)
1216 *result = obj->integer.value;
1217 else
1218 err = -EIO;
1219 }
1220 return err;
1221 }
1222
ls_value_show(struct device * dev,struct device_attribute * attr,char * buf)1223 static ssize_t ls_value_show(struct device *dev, struct device_attribute *attr,
1224 char *buf)
1225 {
1226 struct asus_laptop *asus = dev_get_drvdata(dev);
1227 int err, hi, lo;
1228
1229 err = pega_int_read(asus, PEGA_READ_ALS_H, &hi);
1230 if (!err)
1231 err = pega_int_read(asus, PEGA_READ_ALS_L, &lo);
1232 if (!err)
1233 return sysfs_emit(buf, "%d\n", 10 * hi + lo);
1234 return err;
1235 }
1236 static DEVICE_ATTR_RO(ls_value);
1237
1238 /*
1239 * GPS
1240 */
asus_gps_status(struct asus_laptop * asus)1241 static int asus_gps_status(struct asus_laptop *asus)
1242 {
1243 unsigned long long status;
1244 acpi_status rv;
1245
1246 rv = acpi_evaluate_integer(asus->handle, METHOD_GPS_STATUS,
1247 NULL, &status);
1248 if (ACPI_FAILURE(rv)) {
1249 pr_warn("Error reading GPS status\n");
1250 return -ENODEV;
1251 }
1252 return !!status;
1253 }
1254
asus_gps_switch(struct asus_laptop * asus,int status)1255 static int asus_gps_switch(struct asus_laptop *asus, int status)
1256 {
1257 const char *meth = status ? METHOD_GPS_ON : METHOD_GPS_OFF;
1258
1259 if (write_acpi_int(asus->handle, meth, 0x02))
1260 return -ENODEV;
1261 return 0;
1262 }
1263
gps_show(struct device * dev,struct device_attribute * attr,char * buf)1264 static ssize_t gps_show(struct device *dev, struct device_attribute *attr,
1265 char *buf)
1266 {
1267 struct asus_laptop *asus = dev_get_drvdata(dev);
1268
1269 return sysfs_emit(buf, "%d\n", asus_gps_status(asus));
1270 }
1271
gps_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1272 static ssize_t gps_store(struct device *dev, struct device_attribute *attr,
1273 const char *buf, size_t count)
1274 {
1275 struct asus_laptop *asus = dev_get_drvdata(dev);
1276 int rv, value;
1277 int ret;
1278
1279 rv = kstrtoint(buf, 0, &value);
1280 if (rv < 0)
1281 return rv;
1282 ret = asus_gps_switch(asus, !!value);
1283 if (ret)
1284 return ret;
1285 rfkill_set_sw_state(asus->gps.rfkill, !value);
1286 return count;
1287 }
1288 static DEVICE_ATTR_RW(gps);
1289
1290 /*
1291 * rfkill
1292 */
asus_gps_rfkill_set(void * data,bool blocked)1293 static int asus_gps_rfkill_set(void *data, bool blocked)
1294 {
1295 struct asus_laptop *asus = data;
1296
1297 return asus_gps_switch(asus, !blocked);
1298 }
1299
1300 static const struct rfkill_ops asus_gps_rfkill_ops = {
1301 .set_block = asus_gps_rfkill_set,
1302 };
1303
asus_rfkill_set(void * data,bool blocked)1304 static int asus_rfkill_set(void *data, bool blocked)
1305 {
1306 struct asus_rfkill *rfk = data;
1307 struct asus_laptop *asus = rfk->asus;
1308
1309 if (rfk->control_id == WL_RSTS)
1310 return asus_wlan_set(asus, !blocked);
1311 else if (rfk->control_id == BT_RSTS)
1312 return asus_bluetooth_set(asus, !blocked);
1313 else if (rfk->control_id == WM_RSTS)
1314 return asus_wimax_set(asus, !blocked);
1315 else if (rfk->control_id == WW_RSTS)
1316 return asus_wwan_set(asus, !blocked);
1317
1318 return -EINVAL;
1319 }
1320
1321 static const struct rfkill_ops asus_rfkill_ops = {
1322 .set_block = asus_rfkill_set,
1323 };
1324
asus_rfkill_terminate(struct asus_rfkill * rfk)1325 static void asus_rfkill_terminate(struct asus_rfkill *rfk)
1326 {
1327 if (!rfk->rfkill)
1328 return ;
1329
1330 rfkill_unregister(rfk->rfkill);
1331 rfkill_destroy(rfk->rfkill);
1332 rfk->rfkill = NULL;
1333 }
1334
asus_rfkill_exit(struct asus_laptop * asus)1335 static void asus_rfkill_exit(struct asus_laptop *asus)
1336 {
1337 asus_rfkill_terminate(&asus->wwan);
1338 asus_rfkill_terminate(&asus->bluetooth);
1339 asus_rfkill_terminate(&asus->wlan);
1340 asus_rfkill_terminate(&asus->gps);
1341 }
1342
asus_rfkill_setup(struct asus_laptop * asus,struct asus_rfkill * rfk,const char * name,int control_id,int type,const struct rfkill_ops * ops)1343 static int asus_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk,
1344 const char *name, int control_id, int type,
1345 const struct rfkill_ops *ops)
1346 {
1347 int result;
1348
1349 rfk->control_id = control_id;
1350 rfk->asus = asus;
1351 rfk->rfkill = rfkill_alloc(name, &asus->platform_device->dev,
1352 type, ops, rfk);
1353 if (!rfk->rfkill)
1354 return -EINVAL;
1355
1356 result = rfkill_register(rfk->rfkill);
1357 if (result) {
1358 rfkill_destroy(rfk->rfkill);
1359 rfk->rfkill = NULL;
1360 }
1361
1362 return result;
1363 }
1364
asus_rfkill_init(struct asus_laptop * asus)1365 static int asus_rfkill_init(struct asus_laptop *asus)
1366 {
1367 int result = 0;
1368
1369 if (asus->is_pega_lucid)
1370 return -ENODEV;
1371
1372 if (!acpi_check_handle(asus->handle, METHOD_GPS_ON, NULL) &&
1373 !acpi_check_handle(asus->handle, METHOD_GPS_OFF, NULL) &&
1374 !acpi_check_handle(asus->handle, METHOD_GPS_STATUS, NULL))
1375 result = asus_rfkill_setup(asus, &asus->gps, "asus-gps",
1376 -1, RFKILL_TYPE_GPS,
1377 &asus_gps_rfkill_ops);
1378 if (result)
1379 goto exit;
1380
1381
1382 if (!acpi_check_handle(asus->handle, METHOD_WLAN, NULL) &&
1383 asus->wled_type == TYPE_RFKILL)
1384 result = asus_rfkill_setup(asus, &asus->wlan, "asus-wlan",
1385 WL_RSTS, RFKILL_TYPE_WLAN,
1386 &asus_rfkill_ops);
1387 if (result)
1388 goto exit;
1389
1390 if (!acpi_check_handle(asus->handle, METHOD_BLUETOOTH, NULL) &&
1391 asus->bled_type == TYPE_RFKILL)
1392 result = asus_rfkill_setup(asus, &asus->bluetooth,
1393 "asus-bluetooth", BT_RSTS,
1394 RFKILL_TYPE_BLUETOOTH,
1395 &asus_rfkill_ops);
1396 if (result)
1397 goto exit;
1398
1399 if (!acpi_check_handle(asus->handle, METHOD_WWAN, NULL))
1400 result = asus_rfkill_setup(asus, &asus->wwan, "asus-wwan",
1401 WW_RSTS, RFKILL_TYPE_WWAN,
1402 &asus_rfkill_ops);
1403 if (result)
1404 goto exit;
1405
1406 if (!acpi_check_handle(asus->handle, METHOD_WIMAX, NULL))
1407 result = asus_rfkill_setup(asus, &asus->wimax, "asus-wimax",
1408 WM_RSTS, RFKILL_TYPE_WIMAX,
1409 &asus_rfkill_ops);
1410 if (result)
1411 goto exit;
1412
1413 exit:
1414 if (result)
1415 asus_rfkill_exit(asus);
1416
1417 return result;
1418 }
1419
pega_rfkill_set(void * data,bool blocked)1420 static int pega_rfkill_set(void *data, bool blocked)
1421 {
1422 struct asus_rfkill *rfk = data;
1423
1424 int ret = asus_pega_lucid_set(rfk->asus, rfk->control_id, !blocked);
1425 return ret;
1426 }
1427
1428 static const struct rfkill_ops pega_rfkill_ops = {
1429 .set_block = pega_rfkill_set,
1430 };
1431
pega_rfkill_setup(struct asus_laptop * asus,struct asus_rfkill * rfk,const char * name,int controlid,int rfkill_type)1432 static int pega_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk,
1433 const char *name, int controlid, int rfkill_type)
1434 {
1435 return asus_rfkill_setup(asus, rfk, name, controlid, rfkill_type,
1436 &pega_rfkill_ops);
1437 }
1438
pega_rfkill_init(struct asus_laptop * asus)1439 static int pega_rfkill_init(struct asus_laptop *asus)
1440 {
1441 int ret = 0;
1442
1443 if(!asus->is_pega_lucid)
1444 return -ENODEV;
1445
1446 ret = pega_rfkill_setup(asus, &asus->wlan, "pega-wlan",
1447 PEGA_WLAN, RFKILL_TYPE_WLAN);
1448 if(ret)
1449 goto exit;
1450
1451 ret = pega_rfkill_setup(asus, &asus->bluetooth, "pega-bt",
1452 PEGA_BLUETOOTH, RFKILL_TYPE_BLUETOOTH);
1453 if(ret)
1454 goto exit;
1455
1456 ret = pega_rfkill_setup(asus, &asus->wwan, "pega-wwan",
1457 PEGA_WWAN, RFKILL_TYPE_WWAN);
1458
1459 exit:
1460 if (ret)
1461 asus_rfkill_exit(asus);
1462
1463 return ret;
1464 }
1465
1466 /*
1467 * Input device (i.e. hotkeys)
1468 */
asus_input_notify(struct asus_laptop * asus,int event)1469 static void asus_input_notify(struct asus_laptop *asus, int event)
1470 {
1471 if (!asus->inputdev)
1472 return ;
1473 if (!sparse_keymap_report_event(asus->inputdev, event, 1, true))
1474 pr_info("Unknown key %x pressed\n", event);
1475 }
1476
asus_input_init(struct asus_laptop * asus)1477 static int asus_input_init(struct asus_laptop *asus)
1478 {
1479 struct input_dev *input;
1480 int error;
1481
1482 input = input_allocate_device();
1483 if (!input)
1484 return -ENOMEM;
1485
1486 input->name = "Asus Laptop extra buttons";
1487 input->phys = ASUS_LAPTOP_FILE "/input0";
1488 input->id.bustype = BUS_HOST;
1489 input->dev.parent = &asus->platform_device->dev;
1490
1491 error = sparse_keymap_setup(input, asus_keymap, NULL);
1492 if (error) {
1493 pr_err("Unable to setup input device keymap\n");
1494 goto err_free_dev;
1495 }
1496 error = input_register_device(input);
1497 if (error) {
1498 pr_warn("Unable to register input device\n");
1499 goto err_free_dev;
1500 }
1501
1502 asus->inputdev = input;
1503 return 0;
1504
1505 err_free_dev:
1506 input_free_device(input);
1507 return error;
1508 }
1509
asus_input_exit(struct asus_laptop * asus)1510 static void asus_input_exit(struct asus_laptop *asus)
1511 {
1512 if (asus->inputdev)
1513 input_unregister_device(asus->inputdev);
1514 asus->inputdev = NULL;
1515 }
1516
1517 /*
1518 * ACPI driver
1519 */
asus_acpi_notify(struct acpi_device * device,u32 event)1520 static void asus_acpi_notify(struct acpi_device *device, u32 event)
1521 {
1522 struct asus_laptop *asus = acpi_driver_data(device);
1523 u16 count;
1524
1525 /* TODO Find a better way to handle events count. */
1526 count = asus->event_count[event % 128]++;
1527 acpi_bus_generate_netlink_event(asus->device->pnp.device_class,
1528 dev_name(&asus->device->dev), event,
1529 count);
1530
1531 if (event >= ATKD_BRNUP_MIN && event <= ATKD_BRNUP_MAX)
1532 event = ATKD_BRNUP;
1533 else if (event >= ATKD_BRNDOWN_MIN &&
1534 event <= ATKD_BRNDOWN_MAX)
1535 event = ATKD_BRNDOWN;
1536
1537 /* Brightness events are special */
1538 if (event == ATKD_BRNDOWN || event == ATKD_BRNUP) {
1539 if (asus->backlight_device != NULL) {
1540 /* Update the backlight device. */
1541 asus_backlight_notify(asus);
1542 return ;
1543 }
1544 }
1545
1546 /* Accelerometer "coarse orientation change" event */
1547 if (asus->pega_accel_poll && event == 0xEA) {
1548 kobject_uevent(&asus->pega_accel_poll->dev.kobj, KOBJ_CHANGE);
1549 return ;
1550 }
1551
1552 asus_input_notify(asus, event);
1553 }
1554
1555 static struct attribute *asus_attributes[] = {
1556 &dev_attr_infos.attr,
1557 &dev_attr_wlan.attr,
1558 &dev_attr_bluetooth.attr,
1559 &dev_attr_wimax.attr,
1560 &dev_attr_wwan.attr,
1561 &dev_attr_display.attr,
1562 &dev_attr_ledd.attr,
1563 &dev_attr_ls_value.attr,
1564 &dev_attr_ls_level.attr,
1565 &dev_attr_ls_switch.attr,
1566 &dev_attr_gps.attr,
1567 NULL
1568 };
1569
asus_sysfs_is_visible(struct kobject * kobj,struct attribute * attr,int idx)1570 static umode_t asus_sysfs_is_visible(struct kobject *kobj,
1571 struct attribute *attr,
1572 int idx)
1573 {
1574 struct device *dev = kobj_to_dev(kobj);
1575 struct asus_laptop *asus = dev_get_drvdata(dev);
1576 acpi_handle handle = asus->handle;
1577 bool supported;
1578
1579 if (asus->is_pega_lucid) {
1580 /* no ls_level interface on the Lucid */
1581 if (attr == &dev_attr_ls_switch.attr)
1582 supported = true;
1583 else if (attr == &dev_attr_ls_level.attr)
1584 supported = false;
1585 else
1586 goto normal;
1587
1588 return supported ? attr->mode : 0;
1589 }
1590
1591 normal:
1592 if (attr == &dev_attr_wlan.attr) {
1593 supported = !acpi_check_handle(handle, METHOD_WLAN, NULL);
1594
1595 } else if (attr == &dev_attr_bluetooth.attr) {
1596 supported = !acpi_check_handle(handle, METHOD_BLUETOOTH, NULL);
1597
1598 } else if (attr == &dev_attr_display.attr) {
1599 supported = !acpi_check_handle(handle, METHOD_SWITCH_DISPLAY, NULL);
1600
1601 } else if (attr == &dev_attr_wimax.attr) {
1602 supported =
1603 !acpi_check_handle(asus->handle, METHOD_WIMAX, NULL);
1604
1605 } else if (attr == &dev_attr_wwan.attr) {
1606 supported = !acpi_check_handle(asus->handle, METHOD_WWAN, NULL);
1607
1608 } else if (attr == &dev_attr_ledd.attr) {
1609 supported = !acpi_check_handle(handle, METHOD_LEDD, NULL);
1610
1611 } else if (attr == &dev_attr_ls_switch.attr ||
1612 attr == &dev_attr_ls_level.attr) {
1613 supported = !acpi_check_handle(handle, METHOD_ALS_CONTROL, NULL) &&
1614 !acpi_check_handle(handle, METHOD_ALS_LEVEL, NULL);
1615 } else if (attr == &dev_attr_ls_value.attr) {
1616 supported = asus->is_pega_lucid;
1617 } else if (attr == &dev_attr_gps.attr) {
1618 supported = !acpi_check_handle(handle, METHOD_GPS_ON, NULL) &&
1619 !acpi_check_handle(handle, METHOD_GPS_OFF, NULL) &&
1620 !acpi_check_handle(handle, METHOD_GPS_STATUS, NULL);
1621 } else {
1622 supported = true;
1623 }
1624
1625 return supported ? attr->mode : 0;
1626 }
1627
1628
1629 static const struct attribute_group asus_attr_group = {
1630 .is_visible = asus_sysfs_is_visible,
1631 .attrs = asus_attributes,
1632 };
1633
asus_platform_init(struct asus_laptop * asus)1634 static int asus_platform_init(struct asus_laptop *asus)
1635 {
1636 int result;
1637
1638 asus->platform_device = platform_device_alloc(ASUS_LAPTOP_FILE, PLATFORM_DEVID_NONE);
1639 if (!asus->platform_device)
1640 return -ENOMEM;
1641 platform_set_drvdata(asus->platform_device, asus);
1642
1643 result = platform_device_add(asus->platform_device);
1644 if (result)
1645 goto fail_platform_device;
1646
1647 result = sysfs_create_group(&asus->platform_device->dev.kobj,
1648 &asus_attr_group);
1649 if (result)
1650 goto fail_sysfs;
1651
1652 return 0;
1653
1654 fail_sysfs:
1655 platform_device_del(asus->platform_device);
1656 fail_platform_device:
1657 platform_device_put(asus->platform_device);
1658 return result;
1659 }
1660
asus_platform_exit(struct asus_laptop * asus)1661 static void asus_platform_exit(struct asus_laptop *asus)
1662 {
1663 sysfs_remove_group(&asus->platform_device->dev.kobj, &asus_attr_group);
1664 platform_device_unregister(asus->platform_device);
1665 }
1666
1667 static struct platform_driver platform_driver = {
1668 .driver = {
1669 .name = ASUS_LAPTOP_FILE,
1670 },
1671 };
1672
1673 /*
1674 * This function is used to initialize the context with right values. In this
1675 * method, we can make all the detection we want, and modify the asus_laptop
1676 * struct
1677 */
asus_laptop_get_info(struct asus_laptop * asus)1678 static int asus_laptop_get_info(struct asus_laptop *asus)
1679 {
1680 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1681 union acpi_object *model = NULL;
1682 unsigned long long bsts_result;
1683 char *string = NULL;
1684 acpi_status status;
1685
1686 /*
1687 * Get DSDT headers early enough to allow for differentiating between
1688 * models, but late enough to allow acpi_bus_register_driver() to fail
1689 * before doing anything ACPI-specific. Should we encounter a machine,
1690 * which needs special handling (i.e. its hotkey device has a different
1691 * HID), this bit will be moved.
1692 */
1693 status = acpi_get_table(ACPI_SIG_DSDT, 1, &asus->dsdt_info);
1694 if (ACPI_FAILURE(status))
1695 pr_warn("Couldn't get the DSDT table header\n");
1696
1697 /* We have to write 0 on init this far for all ASUS models */
1698 if (write_acpi_int_ret(asus->handle, "INIT", 0, &buffer)) {
1699 pr_err("Hotkey initialization failed\n");
1700 return -ENODEV;
1701 }
1702
1703 /* This needs to be called for some laptops to init properly */
1704 status =
1705 acpi_evaluate_integer(asus->handle, "BSTS", NULL, &bsts_result);
1706 if (ACPI_FAILURE(status))
1707 pr_warn("Error calling BSTS\n");
1708 else if (bsts_result)
1709 pr_notice("BSTS called, 0x%02x returned\n",
1710 (uint) bsts_result);
1711
1712 /* This too ... */
1713 if (write_acpi_int(asus->handle, "CWAP", wapf))
1714 pr_err("Error calling CWAP(%d)\n", wapf);
1715 /*
1716 * Try to match the object returned by INIT to the specific model.
1717 * Handle every possible object (or the lack of thereof) the DSDT
1718 * writers might throw at us. When in trouble, we pass NULL to
1719 * asus_model_match() and try something completely different.
1720 */
1721 if (buffer.pointer) {
1722 model = buffer.pointer;
1723 switch (model->type) {
1724 case ACPI_TYPE_STRING:
1725 string = model->string.pointer;
1726 break;
1727 case ACPI_TYPE_BUFFER:
1728 string = model->buffer.pointer;
1729 break;
1730 default:
1731 string = "";
1732 break;
1733 }
1734 }
1735 asus->name = kstrdup(string, GFP_KERNEL);
1736 if (!asus->name) {
1737 kfree(buffer.pointer);
1738 return -ENOMEM;
1739 }
1740
1741 if (string)
1742 pr_notice(" %s model detected\n", string);
1743
1744 if (!acpi_check_handle(asus->handle, METHOD_WL_STATUS, NULL))
1745 asus->have_rsts = true;
1746
1747 kfree(model);
1748
1749 return AE_OK;
1750 }
1751
asus_acpi_init(struct asus_laptop * asus)1752 static int asus_acpi_init(struct asus_laptop *asus)
1753 {
1754 int result = 0;
1755
1756 result = acpi_bus_get_status(asus->device);
1757 if (result)
1758 return result;
1759 if (!asus->device->status.present) {
1760 pr_err("Hotkey device not present, aborting\n");
1761 return -ENODEV;
1762 }
1763
1764 result = asus_laptop_get_info(asus);
1765 if (result)
1766 return result;
1767
1768 if (!strcmp(bled_type, "led"))
1769 asus->bled_type = TYPE_LED;
1770 else if (!strcmp(bled_type, "rfkill"))
1771 asus->bled_type = TYPE_RFKILL;
1772
1773 if (!strcmp(wled_type, "led"))
1774 asus->wled_type = TYPE_LED;
1775 else if (!strcmp(wled_type, "rfkill"))
1776 asus->wled_type = TYPE_RFKILL;
1777
1778 if (bluetooth_status >= 0)
1779 asus_bluetooth_set(asus, !!bluetooth_status);
1780
1781 if (wlan_status >= 0)
1782 asus_wlan_set(asus, !!wlan_status);
1783
1784 if (wimax_status >= 0)
1785 asus_wimax_set(asus, !!wimax_status);
1786
1787 if (wwan_status >= 0)
1788 asus_wwan_set(asus, !!wwan_status);
1789
1790 /* Keyboard Backlight is on by default */
1791 if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL))
1792 asus_kled_set(asus, 1);
1793
1794 /* LED display is off by default */
1795 asus->ledd_status = 0xFFF;
1796
1797 /* Set initial values of light sensor and level */
1798 asus->light_switch = !!als_status;
1799 asus->light_level = 5; /* level 5 for sensor sensitivity */
1800
1801 if (asus->is_pega_lucid) {
1802 asus_als_switch(asus, asus->light_switch);
1803 } else if (!acpi_check_handle(asus->handle, METHOD_ALS_CONTROL, NULL) &&
1804 !acpi_check_handle(asus->handle, METHOD_ALS_LEVEL, NULL)) {
1805 asus_als_switch(asus, asus->light_switch);
1806 asus_als_level(asus, asus->light_level);
1807 }
1808
1809 return result;
1810 }
1811
asus_dmi_check(void)1812 static void asus_dmi_check(void)
1813 {
1814 const char *model;
1815
1816 model = dmi_get_system_info(DMI_PRODUCT_NAME);
1817 if (!model)
1818 return;
1819
1820 /* On L1400B WLED control the sound card, don't mess with it ... */
1821 if (strncmp(model, "L1400B", 6) == 0)
1822 wlan_status = -1;
1823 }
1824
1825 static bool asus_device_present;
1826
asus_acpi_add(struct acpi_device * device)1827 static int asus_acpi_add(struct acpi_device *device)
1828 {
1829 struct asus_laptop *asus;
1830 int result;
1831
1832 pr_notice("Asus Laptop Support version %s\n",
1833 ASUS_LAPTOP_VERSION);
1834 asus = kzalloc(sizeof(struct asus_laptop), GFP_KERNEL);
1835 if (!asus)
1836 return -ENOMEM;
1837 asus->handle = device->handle;
1838 strscpy(acpi_device_name(device), ASUS_LAPTOP_DEVICE_NAME);
1839 strscpy(acpi_device_class(device), ASUS_LAPTOP_CLASS);
1840 device->driver_data = asus;
1841 asus->device = device;
1842
1843 asus_dmi_check();
1844
1845 result = asus_acpi_init(asus);
1846 if (result)
1847 goto fail_platform;
1848
1849 /*
1850 * Need platform type detection first, then the platform
1851 * device. It is used as a parent for the sub-devices below.
1852 */
1853 asus->is_pega_lucid = asus_check_pega_lucid(asus);
1854 result = asus_platform_init(asus);
1855 if (result)
1856 goto fail_platform;
1857
1858 if (acpi_video_get_backlight_type() == acpi_backlight_vendor) {
1859 result = asus_backlight_init(asus);
1860 if (result)
1861 goto fail_backlight;
1862 }
1863
1864 result = asus_input_init(asus);
1865 if (result)
1866 goto fail_input;
1867
1868 result = asus_led_init(asus);
1869 if (result)
1870 goto fail_led;
1871
1872 result = asus_rfkill_init(asus);
1873 if (result && result != -ENODEV)
1874 goto fail_rfkill;
1875
1876 result = pega_accel_init(asus);
1877 if (result && result != -ENODEV)
1878 goto fail_pega_accel;
1879
1880 result = pega_rfkill_init(asus);
1881 if (result && result != -ENODEV)
1882 goto fail_pega_rfkill;
1883
1884 asus_device_present = true;
1885 return 0;
1886
1887 fail_pega_rfkill:
1888 pega_accel_exit(asus);
1889 fail_pega_accel:
1890 asus_rfkill_exit(asus);
1891 fail_rfkill:
1892 asus_led_exit(asus);
1893 fail_led:
1894 asus_input_exit(asus);
1895 fail_input:
1896 asus_backlight_exit(asus);
1897 fail_backlight:
1898 asus_platform_exit(asus);
1899 fail_platform:
1900 kfree(asus);
1901
1902 return result;
1903 }
1904
asus_acpi_remove(struct acpi_device * device)1905 static void asus_acpi_remove(struct acpi_device *device)
1906 {
1907 struct asus_laptop *asus = acpi_driver_data(device);
1908
1909 asus_backlight_exit(asus);
1910 asus_rfkill_exit(asus);
1911 asus_led_exit(asus);
1912 asus_input_exit(asus);
1913 pega_accel_exit(asus);
1914 asus_platform_exit(asus);
1915
1916 kfree(asus->name);
1917 kfree(asus);
1918 }
1919
1920 static const struct acpi_device_id asus_device_ids[] = {
1921 {"ATK0100", 0},
1922 {"ATK0101", 0},
1923 {"", 0},
1924 };
1925 MODULE_DEVICE_TABLE(acpi, asus_device_ids);
1926
1927 static struct acpi_driver asus_acpi_driver = {
1928 .name = ASUS_LAPTOP_NAME,
1929 .class = ASUS_LAPTOP_CLASS,
1930 .ids = asus_device_ids,
1931 .flags = ACPI_DRIVER_ALL_NOTIFY_EVENTS,
1932 .ops = {
1933 .add = asus_acpi_add,
1934 .remove = asus_acpi_remove,
1935 .notify = asus_acpi_notify,
1936 },
1937 };
1938
asus_laptop_init(void)1939 static int __init asus_laptop_init(void)
1940 {
1941 int result;
1942
1943 result = platform_driver_register(&platform_driver);
1944 if (result < 0)
1945 return result;
1946
1947 result = acpi_bus_register_driver(&asus_acpi_driver);
1948 if (result < 0)
1949 goto fail_acpi_driver;
1950 if (!asus_device_present) {
1951 result = -ENODEV;
1952 goto fail_no_device;
1953 }
1954 return 0;
1955
1956 fail_no_device:
1957 acpi_bus_unregister_driver(&asus_acpi_driver);
1958 fail_acpi_driver:
1959 platform_driver_unregister(&platform_driver);
1960 return result;
1961 }
1962
asus_laptop_exit(void)1963 static void __exit asus_laptop_exit(void)
1964 {
1965 acpi_bus_unregister_driver(&asus_acpi_driver);
1966 platform_driver_unregister(&platform_driver);
1967 }
1968
1969 module_init(asus_laptop_init);
1970 module_exit(asus_laptop_exit);
1971