xref: /linux/drivers/net/can/spi/mcp251x.c (revision 1a371190a375f98c9b106f758ea41558c3f92556)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* CAN bus driver for Microchip 251x/25625 CAN Controller with SPI Interface
3  *
4  * MCP2510 support and bug fixes by Christian Pellegrin
5  * <chripell@evolware.org>
6  *
7  * Copyright 2009 Christian Pellegrin EVOL S.r.l.
8  *
9  * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
10  * Written under contract by:
11  *   Chris Elston, Katalix Systems, Ltd.
12  *
13  * Based on Microchip MCP251x CAN controller driver written by
14  * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
15  *
16  * Based on CAN bus driver for the CCAN controller written by
17  * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
18  * - Simon Kallweit, intefo AG
19  * Copyright 2007
20  */
21 
22 #include <linux/bitfield.h>
23 #include <linux/can/core.h>
24 #include <linux/can/dev.h>
25 #include <linux/clk.h>
26 #include <linux/completion.h>
27 #include <linux/delay.h>
28 #include <linux/device.h>
29 #include <linux/ethtool.h>
30 #include <linux/freezer.h>
31 #include <linux/gpio/driver.h>
32 #include <linux/interrupt.h>
33 #include <linux/io.h>
34 #include <linux/iopoll.h>
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/netdevice.h>
38 #include <linux/platform_device.h>
39 #include <linux/property.h>
40 #include <linux/regulator/consumer.h>
41 #include <linux/slab.h>
42 #include <linux/spi/spi.h>
43 #include <linux/uaccess.h>
44 
45 /* SPI interface instruction set */
46 #define INSTRUCTION_WRITE	0x02
47 #define INSTRUCTION_READ	0x03
48 #define INSTRUCTION_BIT_MODIFY	0x05
49 #define INSTRUCTION_LOAD_TXB(n)	(0x40 + 2 * (n))
50 #define INSTRUCTION_READ_RXB(n)	(((n) == 0) ? 0x90 : 0x94)
51 #define INSTRUCTION_RESET	0xC0
52 #define RTS_TXB0		0x01
53 #define RTS_TXB1		0x02
54 #define RTS_TXB2		0x04
55 #define INSTRUCTION_RTS(n)	(0x80 | ((n) & 0x07))
56 
57 /* MPC251x registers */
58 #define BFPCTRL			0x0c
59 #  define BFPCTRL_B0BFM		BIT(0)
60 #  define BFPCTRL_B1BFM		BIT(1)
61 #  define BFPCTRL_BFM(n)	(BFPCTRL_B0BFM << (n))
62 #  define BFPCTRL_BFM_MASK	GENMASK(1, 0)
63 #  define BFPCTRL_B0BFE		BIT(2)
64 #  define BFPCTRL_B1BFE		BIT(3)
65 #  define BFPCTRL_BFE(n)	(BFPCTRL_B0BFE << (n))
66 #  define BFPCTRL_BFE_MASK	GENMASK(3, 2)
67 #  define BFPCTRL_B0BFS		BIT(4)
68 #  define BFPCTRL_B1BFS		BIT(5)
69 #  define BFPCTRL_BFS(n)	(BFPCTRL_B0BFS << (n))
70 #  define BFPCTRL_BFS_MASK	GENMASK(5, 4)
71 #define TXRTSCTRL		0x0d
72 #  define TXRTSCTRL_B0RTSM	BIT(0)
73 #  define TXRTSCTRL_B1RTSM	BIT(1)
74 #  define TXRTSCTRL_B2RTSM	BIT(2)
75 #  define TXRTSCTRL_RTSM(n)	(TXRTSCTRL_B0RTSM << (n))
76 #  define TXRTSCTRL_RTSM_MASK	GENMASK(2, 0)
77 #  define TXRTSCTRL_B0RTS	BIT(3)
78 #  define TXRTSCTRL_B1RTS	BIT(4)
79 #  define TXRTSCTRL_B2RTS	BIT(5)
80 #  define TXRTSCTRL_RTS(n)	(TXRTSCTRL_B0RTS << (n))
81 #  define TXRTSCTRL_RTS_MASK	GENMASK(5, 3)
82 #define CANSTAT	      0x0e
83 #define CANCTRL	      0x0f
84 #  define CANCTRL_REQOP_MASK	    0xe0
85 #  define CANCTRL_REQOP_CONF	    0x80
86 #  define CANCTRL_REQOP_LISTEN_ONLY 0x60
87 #  define CANCTRL_REQOP_LOOPBACK    0x40
88 #  define CANCTRL_REQOP_SLEEP	    0x20
89 #  define CANCTRL_REQOP_NORMAL	    0x00
90 #  define CANCTRL_OSM		    0x08
91 #  define CANCTRL_ABAT		    0x10
92 #define TEC	      0x1c
93 #define REC	      0x1d
94 #define CNF1	      0x2a
95 #  define CNF1_SJW_SHIFT   6
96 #define CNF2	      0x29
97 #  define CNF2_BTLMODE	   0x80
98 #  define CNF2_SAM         0x40
99 #  define CNF2_PS1_SHIFT   3
100 #define CNF3	      0x28
101 #  define CNF3_SOF	   0x08
102 #  define CNF3_WAKFIL	   0x04
103 #  define CNF3_PHSEG2_MASK 0x07
104 #define CANINTE	      0x2b
105 #  define CANINTE_MERRE 0x80
106 #  define CANINTE_WAKIE 0x40
107 #  define CANINTE_ERRIE 0x20
108 #  define CANINTE_TX2IE 0x10
109 #  define CANINTE_TX1IE 0x08
110 #  define CANINTE_TX0IE 0x04
111 #  define CANINTE_RX1IE 0x02
112 #  define CANINTE_RX0IE 0x01
113 #define CANINTF	      0x2c
114 #  define CANINTF_MERRF 0x80
115 #  define CANINTF_WAKIF 0x40
116 #  define CANINTF_ERRIF 0x20
117 #  define CANINTF_TX2IF 0x10
118 #  define CANINTF_TX1IF 0x08
119 #  define CANINTF_TX0IF 0x04
120 #  define CANINTF_RX1IF 0x02
121 #  define CANINTF_RX0IF 0x01
122 #  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
123 #  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
124 #  define CANINTF_ERR (CANINTF_ERRIF)
125 #define EFLG	      0x2d
126 #  define EFLG_EWARN	0x01
127 #  define EFLG_RXWAR	0x02
128 #  define EFLG_TXWAR	0x04
129 #  define EFLG_RXEP	0x08
130 #  define EFLG_TXEP	0x10
131 #  define EFLG_TXBO	0x20
132 #  define EFLG_RX0OVR	0x40
133 #  define EFLG_RX1OVR	0x80
134 #define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
135 #  define TXBCTRL_ABTF	0x40
136 #  define TXBCTRL_MLOA	0x20
137 #  define TXBCTRL_TXERR 0x10
138 #  define TXBCTRL_TXREQ 0x08
139 #define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
140 #  define SIDH_SHIFT    3
141 #define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
142 #  define SIDL_SID_MASK    7
143 #  define SIDL_SID_SHIFT   5
144 #  define SIDL_EXIDE_SHIFT 3
145 #  define SIDL_EID_SHIFT   16
146 #  define SIDL_EID_MASK    3
147 #define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
148 #define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
149 #define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
150 #  define DLC_RTR_SHIFT    6
151 #define TXBCTRL_OFF 0
152 #define TXBSIDH_OFF 1
153 #define TXBSIDL_OFF 2
154 #define TXBEID8_OFF 3
155 #define TXBEID0_OFF 4
156 #define TXBDLC_OFF  5
157 #define TXBDAT_OFF  6
158 #define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
159 #  define RXBCTRL_BUKT	0x04
160 #  define RXBCTRL_RXM0	0x20
161 #  define RXBCTRL_RXM1	0x40
162 #define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
163 #  define RXBSIDH_SHIFT 3
164 #define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
165 #  define RXBSIDL_IDE   0x08
166 #  define RXBSIDL_SRR   0x10
167 #  define RXBSIDL_EID   3
168 #  define RXBSIDL_SHIFT 5
169 #define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
170 #define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
171 #define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
172 #  define RXBDLC_LEN_MASK  0x0f
173 #  define RXBDLC_RTR       0x40
174 #define RXBCTRL_OFF 0
175 #define RXBSIDH_OFF 1
176 #define RXBSIDL_OFF 2
177 #define RXBEID8_OFF 3
178 #define RXBEID0_OFF 4
179 #define RXBDLC_OFF  5
180 #define RXBDAT_OFF  6
181 #define RXFSID(n) ((n < 3) ? 0 : 4)
182 #define RXFSIDH(n) ((n) * 4 + RXFSID(n))
183 #define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n))
184 #define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n))
185 #define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n))
186 #define RXMSIDH(n) ((n) * 4 + 0x20)
187 #define RXMSIDL(n) ((n) * 4 + 0x21)
188 #define RXMEID8(n) ((n) * 4 + 0x22)
189 #define RXMEID0(n) ((n) * 4 + 0x23)
190 
191 #define GET_BYTE(val, byte)			\
192 	(((val) >> ((byte) * 8)) & 0xff)
193 #define SET_BYTE(val, byte)			\
194 	(((val) & 0xff) << ((byte) * 8))
195 
196 /* Buffer size required for the largest SPI transfer (i.e., reading a
197  * frame)
198  */
199 #define CAN_FRAME_MAX_DATA_LEN	8
200 #define SPI_TRANSFER_BUF_LEN	(6 + CAN_FRAME_MAX_DATA_LEN)
201 #define CAN_FRAME_MAX_BITS	128
202 
203 #define TX_ECHO_SKB_MAX	1
204 
205 #define MCP251X_OST_DELAY_MS	(5)
206 
207 #define DEVICE_NAME "mcp251x"
208 
209 static const struct can_bittiming_const mcp251x_bittiming_const = {
210 	.name = DEVICE_NAME,
211 	.tseg1_min = 3,
212 	.tseg1_max = 16,
213 	.tseg2_min = 2,
214 	.tseg2_max = 8,
215 	.sjw_max = 4,
216 	.brp_min = 1,
217 	.brp_max = 64,
218 	.brp_inc = 1,
219 };
220 
221 enum mcp251x_model {
222 	CAN_MCP251X_MCP2510	= 0x2510,
223 	CAN_MCP251X_MCP2515	= 0x2515,
224 	CAN_MCP251X_MCP25625	= 0x25625,
225 };
226 
227 struct mcp251x_priv {
228 	struct can_priv	   can;
229 	struct net_device *net;
230 	struct spi_device *spi;
231 	enum mcp251x_model model;
232 
233 	struct mutex mcp_lock; /* SPI device lock */
234 
235 	u8 *spi_tx_buf;
236 	u8 *spi_rx_buf;
237 
238 	struct sk_buff *tx_skb;
239 
240 	struct workqueue_struct *wq;
241 	struct work_struct tx_work;
242 	struct work_struct restart_work;
243 
244 	int force_quit;
245 	int after_suspend;
246 #define AFTER_SUSPEND_UP 1
247 #define AFTER_SUSPEND_DOWN 2
248 #define AFTER_SUSPEND_POWER 4
249 #define AFTER_SUSPEND_RESTART 8
250 	int restart_tx;
251 	bool tx_busy;
252 
253 	struct regulator *power;
254 	struct regulator *transceiver;
255 	struct clk *clk;
256 #ifdef CONFIG_GPIOLIB
257 	struct gpio_chip gpio;
258 	u8 reg_bfpctrl;
259 #endif
260 };
261 
262 #define MCP251X_IS(_model) \
263 static inline int mcp251x_is_##_model(struct spi_device *spi) \
264 { \
265 	struct mcp251x_priv *priv = spi_get_drvdata(spi); \
266 	return priv->model == CAN_MCP251X_MCP##_model; \
267 }
268 
269 MCP251X_IS(2510);
270 
mcp251x_clean(struct net_device * net)271 static void mcp251x_clean(struct net_device *net)
272 {
273 	struct mcp251x_priv *priv = netdev_priv(net);
274 
275 	if (priv->tx_skb || priv->tx_busy)
276 		net->stats.tx_errors++;
277 	dev_kfree_skb(priv->tx_skb);
278 	if (priv->tx_busy)
279 		can_free_echo_skb(priv->net, 0, NULL);
280 	priv->tx_skb = NULL;
281 	priv->tx_busy = false;
282 }
283 
284 /* Note about handling of error return of mcp251x_spi_trans: accessing
285  * registers via SPI is not really different conceptually than using
286  * normal I/O assembler instructions, although it's much more
287  * complicated from a practical POV. So it's not advisable to always
288  * check the return value of this function. Imagine that every
289  * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
290  * error();", it would be a great mess (well there are some situation
291  * when exception handling C++ like could be useful after all). So we
292  * just check that transfers are OK at the beginning of our
293  * conversation with the chip and to avoid doing really nasty things
294  * (like injecting bogus packets in the network stack).
295  */
mcp251x_spi_trans(struct spi_device * spi,int len)296 static int mcp251x_spi_trans(struct spi_device *spi, int len)
297 {
298 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
299 	struct spi_transfer t = {
300 		.tx_buf = priv->spi_tx_buf,
301 		.rx_buf = priv->spi_rx_buf,
302 		.len = len,
303 		.cs_change = 0,
304 	};
305 	struct spi_message m;
306 	int ret;
307 
308 	spi_message_init(&m);
309 	spi_message_add_tail(&t, &m);
310 
311 	ret = spi_sync(spi, &m);
312 	if (ret)
313 		dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
314 	return ret;
315 }
316 
mcp251x_spi_write(struct spi_device * spi,int len)317 static int mcp251x_spi_write(struct spi_device *spi, int len)
318 {
319 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
320 	int ret;
321 
322 	ret = spi_write(spi, priv->spi_tx_buf, len);
323 	if (ret)
324 		dev_err(&spi->dev, "spi write failed: ret = %d\n", ret);
325 
326 	return ret;
327 }
328 
mcp251x_read_reg(struct spi_device * spi,u8 reg)329 static u8 mcp251x_read_reg(struct spi_device *spi, u8 reg)
330 {
331 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
332 	u8 val = 0;
333 
334 	priv->spi_tx_buf[0] = INSTRUCTION_READ;
335 	priv->spi_tx_buf[1] = reg;
336 
337 	if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
338 		spi_write_then_read(spi, priv->spi_tx_buf, 2, &val, 1);
339 	} else {
340 		mcp251x_spi_trans(spi, 3);
341 		val = priv->spi_rx_buf[2];
342 	}
343 
344 	return val;
345 }
346 
mcp251x_read_2regs(struct spi_device * spi,u8 reg,u8 * v1,u8 * v2)347 static void mcp251x_read_2regs(struct spi_device *spi, u8 reg, u8 *v1, u8 *v2)
348 {
349 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
350 
351 	priv->spi_tx_buf[0] = INSTRUCTION_READ;
352 	priv->spi_tx_buf[1] = reg;
353 
354 	if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
355 		u8 val[2] = { 0 };
356 
357 		spi_write_then_read(spi, priv->spi_tx_buf, 2, val, 2);
358 		*v1 = val[0];
359 		*v2 = val[1];
360 	} else {
361 		mcp251x_spi_trans(spi, 4);
362 
363 		*v1 = priv->spi_rx_buf[2];
364 		*v2 = priv->spi_rx_buf[3];
365 	}
366 }
367 
mcp251x_write_reg(struct spi_device * spi,u8 reg,u8 val)368 static void mcp251x_write_reg(struct spi_device *spi, u8 reg, u8 val)
369 {
370 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
371 
372 	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
373 	priv->spi_tx_buf[1] = reg;
374 	priv->spi_tx_buf[2] = val;
375 
376 	mcp251x_spi_write(spi, 3);
377 }
378 
mcp251x_write_2regs(struct spi_device * spi,u8 reg,u8 v1,u8 v2)379 static void mcp251x_write_2regs(struct spi_device *spi, u8 reg, u8 v1, u8 v2)
380 {
381 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
382 
383 	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
384 	priv->spi_tx_buf[1] = reg;
385 	priv->spi_tx_buf[2] = v1;
386 	priv->spi_tx_buf[3] = v2;
387 
388 	mcp251x_spi_write(spi, 4);
389 }
390 
mcp251x_write_bits(struct spi_device * spi,u8 reg,u8 mask,u8 val)391 static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
392 			       u8 mask, u8 val)
393 {
394 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
395 
396 	priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
397 	priv->spi_tx_buf[1] = reg;
398 	priv->spi_tx_buf[2] = mask;
399 	priv->spi_tx_buf[3] = val;
400 
401 	mcp251x_spi_write(spi, 4);
402 }
403 
mcp251x_read_stat(struct spi_device * spi)404 static u8 mcp251x_read_stat(struct spi_device *spi)
405 {
406 	return mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK;
407 }
408 
409 #define mcp251x_read_stat_poll_timeout(addr, val, cond, delay_us, timeout_us) \
410 	readx_poll_timeout(mcp251x_read_stat, addr, val, cond, \
411 			   delay_us, timeout_us)
412 
413 #ifdef CONFIG_GPIOLIB
414 enum {
415 	MCP251X_GPIO_TX0RTS = 0,		/* inputs */
416 	MCP251X_GPIO_TX1RTS,
417 	MCP251X_GPIO_TX2RTS,
418 	MCP251X_GPIO_RX0BF,			/* outputs */
419 	MCP251X_GPIO_RX1BF,
420 };
421 
422 #define MCP251X_GPIO_INPUT_MASK \
423 	GENMASK(MCP251X_GPIO_TX2RTS, MCP251X_GPIO_TX0RTS)
424 #define MCP251X_GPIO_OUTPUT_MASK \
425 	GENMASK(MCP251X_GPIO_RX1BF, MCP251X_GPIO_RX0BF)
426 
427 static const char * const mcp251x_gpio_names[] = {
428 	[MCP251X_GPIO_TX0RTS] = "TX0RTS",	/* inputs */
429 	[MCP251X_GPIO_TX1RTS] = "TX1RTS",
430 	[MCP251X_GPIO_TX2RTS] = "TX2RTS",
431 	[MCP251X_GPIO_RX0BF] = "RX0BF",		/* outputs */
432 	[MCP251X_GPIO_RX1BF] = "RX1BF",
433 };
434 
mcp251x_gpio_is_input(unsigned int offset)435 static inline bool mcp251x_gpio_is_input(unsigned int offset)
436 {
437 	return offset <= MCP251X_GPIO_TX2RTS;
438 }
439 
mcp251x_gpio_request(struct gpio_chip * chip,unsigned int offset)440 static int mcp251x_gpio_request(struct gpio_chip *chip,
441 				unsigned int offset)
442 {
443 	struct mcp251x_priv *priv = gpiochip_get_data(chip);
444 	u8 val;
445 
446 	/* nothing to be done for inputs */
447 	if (mcp251x_gpio_is_input(offset))
448 		return 0;
449 
450 	val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);
451 
452 	mutex_lock(&priv->mcp_lock);
453 	mcp251x_write_bits(priv->spi, BFPCTRL, val, val);
454 	mutex_unlock(&priv->mcp_lock);
455 
456 	priv->reg_bfpctrl |= val;
457 
458 	return 0;
459 }
460 
mcp251x_gpio_free(struct gpio_chip * chip,unsigned int offset)461 static void mcp251x_gpio_free(struct gpio_chip *chip,
462 			      unsigned int offset)
463 {
464 	struct mcp251x_priv *priv = gpiochip_get_data(chip);
465 	u8 val;
466 
467 	/* nothing to be done for inputs */
468 	if (mcp251x_gpio_is_input(offset))
469 		return;
470 
471 	val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);
472 
473 	mutex_lock(&priv->mcp_lock);
474 	mcp251x_write_bits(priv->spi, BFPCTRL, val, 0);
475 	mutex_unlock(&priv->mcp_lock);
476 
477 	priv->reg_bfpctrl &= ~val;
478 }
479 
mcp251x_gpio_get_direction(struct gpio_chip * chip,unsigned int offset)480 static int mcp251x_gpio_get_direction(struct gpio_chip *chip,
481 				      unsigned int offset)
482 {
483 	if (mcp251x_gpio_is_input(offset))
484 		return GPIO_LINE_DIRECTION_IN;
485 
486 	return GPIO_LINE_DIRECTION_OUT;
487 }
488 
mcp251x_gpio_get(struct gpio_chip * chip,unsigned int offset)489 static int mcp251x_gpio_get(struct gpio_chip *chip, unsigned int offset)
490 {
491 	struct mcp251x_priv *priv = gpiochip_get_data(chip);
492 	u8 reg, mask, val;
493 
494 	if (mcp251x_gpio_is_input(offset)) {
495 		reg = TXRTSCTRL;
496 		mask = TXRTSCTRL_RTS(offset);
497 	} else {
498 		reg = BFPCTRL;
499 		mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
500 	}
501 
502 	mutex_lock(&priv->mcp_lock);
503 	val = mcp251x_read_reg(priv->spi, reg);
504 	mutex_unlock(&priv->mcp_lock);
505 
506 	return !!(val & mask);
507 }
508 
mcp251x_gpio_get_multiple(struct gpio_chip * chip,unsigned long * maskp,unsigned long * bitsp)509 static int mcp251x_gpio_get_multiple(struct gpio_chip *chip,
510 				     unsigned long *maskp, unsigned long *bitsp)
511 {
512 	struct mcp251x_priv *priv = gpiochip_get_data(chip);
513 	unsigned long bits = 0;
514 	u8 val;
515 
516 	mutex_lock(&priv->mcp_lock);
517 	if (maskp[0] & MCP251X_GPIO_INPUT_MASK) {
518 		val = mcp251x_read_reg(priv->spi, TXRTSCTRL);
519 		val = FIELD_GET(TXRTSCTRL_RTS_MASK, val);
520 		bits |= FIELD_PREP(MCP251X_GPIO_INPUT_MASK, val);
521 	}
522 	if (maskp[0] & MCP251X_GPIO_OUTPUT_MASK) {
523 		val = mcp251x_read_reg(priv->spi, BFPCTRL);
524 		val = FIELD_GET(BFPCTRL_BFS_MASK, val);
525 		bits |= FIELD_PREP(MCP251X_GPIO_OUTPUT_MASK, val);
526 	}
527 	mutex_unlock(&priv->mcp_lock);
528 
529 	bitsp[0] = bits;
530 	return 0;
531 }
532 
mcp251x_gpio_set(struct gpio_chip * chip,unsigned int offset,int value)533 static void mcp251x_gpio_set(struct gpio_chip *chip, unsigned int offset,
534 			     int value)
535 {
536 	struct mcp251x_priv *priv = gpiochip_get_data(chip);
537 	u8 mask, val;
538 
539 	mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
540 	val = value ? mask : 0;
541 
542 	mutex_lock(&priv->mcp_lock);
543 	mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
544 	mutex_unlock(&priv->mcp_lock);
545 
546 	priv->reg_bfpctrl &= ~mask;
547 	priv->reg_bfpctrl |= val;
548 }
549 
550 static void
mcp251x_gpio_set_multiple(struct gpio_chip * chip,unsigned long * maskp,unsigned long * bitsp)551 mcp251x_gpio_set_multiple(struct gpio_chip *chip,
552 			  unsigned long *maskp, unsigned long *bitsp)
553 {
554 	struct mcp251x_priv *priv = gpiochip_get_data(chip);
555 	u8 mask, val;
556 
557 	mask = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, maskp[0]);
558 	mask = FIELD_PREP(BFPCTRL_BFS_MASK, mask);
559 
560 	val = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, bitsp[0]);
561 	val = FIELD_PREP(BFPCTRL_BFS_MASK, val);
562 
563 	if (!mask)
564 		return;
565 
566 	mutex_lock(&priv->mcp_lock);
567 	mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
568 	mutex_unlock(&priv->mcp_lock);
569 
570 	priv->reg_bfpctrl &= ~mask;
571 	priv->reg_bfpctrl |= val;
572 }
573 
mcp251x_gpio_restore(struct spi_device * spi)574 static void mcp251x_gpio_restore(struct spi_device *spi)
575 {
576 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
577 
578 	mcp251x_write_reg(spi, BFPCTRL, priv->reg_bfpctrl);
579 }
580 
mcp251x_gpio_setup(struct mcp251x_priv * priv)581 static int mcp251x_gpio_setup(struct mcp251x_priv *priv)
582 {
583 	struct gpio_chip *gpio = &priv->gpio;
584 
585 	if (!device_property_present(&priv->spi->dev, "gpio-controller"))
586 		return 0;
587 
588 	/* gpiochip handles TX[0..2]RTS and RX[0..1]BF */
589 	gpio->label = priv->spi->modalias;
590 	gpio->parent = &priv->spi->dev;
591 	gpio->owner = THIS_MODULE;
592 	gpio->request = mcp251x_gpio_request;
593 	gpio->free = mcp251x_gpio_free;
594 	gpio->get_direction = mcp251x_gpio_get_direction;
595 	gpio->get = mcp251x_gpio_get;
596 	gpio->get_multiple = mcp251x_gpio_get_multiple;
597 	gpio->set = mcp251x_gpio_set;
598 	gpio->set_multiple = mcp251x_gpio_set_multiple;
599 	gpio->base = -1;
600 	gpio->ngpio = ARRAY_SIZE(mcp251x_gpio_names);
601 	gpio->names = mcp251x_gpio_names;
602 	gpio->can_sleep = true;
603 
604 	return devm_gpiochip_add_data(&priv->spi->dev, gpio, priv);
605 }
606 #else
mcp251x_gpio_restore(struct spi_device * spi)607 static inline void mcp251x_gpio_restore(struct spi_device *spi)
608 {
609 }
610 
mcp251x_gpio_setup(struct mcp251x_priv * priv)611 static inline int mcp251x_gpio_setup(struct mcp251x_priv *priv)
612 {
613 	return 0;
614 }
615 #endif
616 
mcp251x_hw_tx_frame(struct spi_device * spi,u8 * buf,int len,int tx_buf_idx)617 static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
618 				int len, int tx_buf_idx)
619 {
620 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
621 
622 	if (mcp251x_is_2510(spi)) {
623 		int i;
624 
625 		for (i = 1; i < TXBDAT_OFF + len; i++)
626 			mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
627 					  buf[i]);
628 	} else {
629 		memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
630 		mcp251x_spi_write(spi, TXBDAT_OFF + len);
631 	}
632 }
633 
mcp251x_hw_tx(struct spi_device * spi,struct can_frame * frame,int tx_buf_idx)634 static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
635 			  int tx_buf_idx)
636 {
637 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
638 	u32 sid, eid, exide, rtr;
639 	u8 buf[SPI_TRANSFER_BUF_LEN];
640 
641 	exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
642 	if (exide)
643 		sid = (frame->can_id & CAN_EFF_MASK) >> 18;
644 	else
645 		sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
646 	eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
647 	rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
648 
649 	buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
650 	buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
651 	buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
652 		(exide << SIDL_EXIDE_SHIFT) |
653 		((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
654 	buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
655 	buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
656 	buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->len;
657 	memcpy(buf + TXBDAT_OFF, frame->data, frame->len);
658 	mcp251x_hw_tx_frame(spi, buf, frame->len, tx_buf_idx);
659 
660 	/* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
661 	priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
662 	mcp251x_spi_write(priv->spi, 1);
663 }
664 
mcp251x_hw_rx_frame(struct spi_device * spi,u8 * buf,int buf_idx)665 static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
666 				int buf_idx)
667 {
668 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
669 
670 	if (mcp251x_is_2510(spi)) {
671 		int i, len;
672 
673 		for (i = 1; i < RXBDAT_OFF; i++)
674 			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
675 
676 		len = can_cc_dlc2len(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
677 		for (; i < (RXBDAT_OFF + len); i++)
678 			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
679 	} else {
680 		priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
681 		if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
682 			spi_write_then_read(spi, priv->spi_tx_buf, 1,
683 					    priv->spi_rx_buf,
684 					    SPI_TRANSFER_BUF_LEN);
685 			memcpy(buf + 1, priv->spi_rx_buf,
686 			       SPI_TRANSFER_BUF_LEN - 1);
687 		} else {
688 			mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
689 			memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
690 		}
691 	}
692 }
693 
mcp251x_hw_rx(struct spi_device * spi,int buf_idx)694 static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
695 {
696 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
697 	struct sk_buff *skb;
698 	struct can_frame *frame;
699 	u8 buf[SPI_TRANSFER_BUF_LEN];
700 
701 	skb = alloc_can_skb(priv->net, &frame);
702 	if (!skb) {
703 		dev_err(&spi->dev, "cannot allocate RX skb\n");
704 		priv->net->stats.rx_dropped++;
705 		return;
706 	}
707 
708 	mcp251x_hw_rx_frame(spi, buf, buf_idx);
709 	if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
710 		/* Extended ID format */
711 		frame->can_id = CAN_EFF_FLAG;
712 		frame->can_id |=
713 			/* Extended ID part */
714 			SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
715 			SET_BYTE(buf[RXBEID8_OFF], 1) |
716 			SET_BYTE(buf[RXBEID0_OFF], 0) |
717 			/* Standard ID part */
718 			(((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
719 			  (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
720 		/* Remote transmission request */
721 		if (buf[RXBDLC_OFF] & RXBDLC_RTR)
722 			frame->can_id |= CAN_RTR_FLAG;
723 	} else {
724 		/* Standard ID format */
725 		frame->can_id =
726 			(buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
727 			(buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
728 		if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
729 			frame->can_id |= CAN_RTR_FLAG;
730 	}
731 	/* Data length */
732 	frame->len = can_cc_dlc2len(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
733 	if (!(frame->can_id & CAN_RTR_FLAG)) {
734 		memcpy(frame->data, buf + RXBDAT_OFF, frame->len);
735 
736 		priv->net->stats.rx_bytes += frame->len;
737 	}
738 	priv->net->stats.rx_packets++;
739 
740 	netif_rx(skb);
741 }
742 
mcp251x_hw_sleep(struct spi_device * spi)743 static void mcp251x_hw_sleep(struct spi_device *spi)
744 {
745 	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
746 }
747 
748 /* May only be called when device is sleeping! */
mcp251x_hw_wake(struct spi_device * spi)749 static int mcp251x_hw_wake(struct spi_device *spi)
750 {
751 	u8 value;
752 	int ret;
753 
754 	/* Force wakeup interrupt to wake device, but don't execute IST */
755 	disable_irq_nosync(spi->irq);
756 	mcp251x_write_2regs(spi, CANINTE, CANINTE_WAKIE, CANINTF_WAKIF);
757 
758 	/* Wait for oscillator startup timer after wake up */
759 	mdelay(MCP251X_OST_DELAY_MS);
760 
761 	/* Put device into config mode */
762 	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_CONF);
763 
764 	/* Wait for the device to enter config mode */
765 	ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
766 					     MCP251X_OST_DELAY_MS * 1000,
767 					     USEC_PER_SEC);
768 	if (ret) {
769 		dev_err(&spi->dev, "MCP251x didn't enter in config mode\n");
770 		return ret;
771 	}
772 
773 	/* Disable and clear pending interrupts */
774 	mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
775 	enable_irq(spi->irq);
776 
777 	return 0;
778 }
779 
mcp251x_hard_start_xmit(struct sk_buff * skb,struct net_device * net)780 static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
781 					   struct net_device *net)
782 {
783 	struct mcp251x_priv *priv = netdev_priv(net);
784 	struct spi_device *spi = priv->spi;
785 
786 	if (priv->tx_skb || priv->tx_busy) {
787 		dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
788 		return NETDEV_TX_BUSY;
789 	}
790 
791 	if (can_dev_dropped_skb(net, skb))
792 		return NETDEV_TX_OK;
793 
794 	netif_stop_queue(net);
795 	priv->tx_skb = skb;
796 	queue_work(priv->wq, &priv->tx_work);
797 
798 	return NETDEV_TX_OK;
799 }
800 
mcp251x_do_set_mode(struct net_device * net,enum can_mode mode)801 static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
802 {
803 	struct mcp251x_priv *priv = netdev_priv(net);
804 
805 	switch (mode) {
806 	case CAN_MODE_START:
807 		mcp251x_clean(net);
808 		/* We have to delay work since SPI I/O may sleep */
809 		priv->can.state = CAN_STATE_ERROR_ACTIVE;
810 		priv->restart_tx = 1;
811 		if (priv->can.restart_ms == 0)
812 			priv->after_suspend = AFTER_SUSPEND_RESTART;
813 		queue_work(priv->wq, &priv->restart_work);
814 		break;
815 	default:
816 		return -EOPNOTSUPP;
817 	}
818 
819 	return 0;
820 }
821 
mcp251x_set_normal_mode(struct spi_device * spi)822 static int mcp251x_set_normal_mode(struct spi_device *spi)
823 {
824 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
825 	u8 value;
826 	int ret;
827 
828 	/* Enable interrupts */
829 	mcp251x_write_reg(spi, CANINTE,
830 			  CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
831 			  CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
832 
833 	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
834 		/* Put device into loopback mode */
835 		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
836 	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
837 		/* Put device into listen-only mode */
838 		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
839 	} else {
840 		/* Put device into normal mode */
841 		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
842 
843 		/* Wait for the device to enter normal mode */
844 		ret = mcp251x_read_stat_poll_timeout(spi, value, value == 0,
845 						     MCP251X_OST_DELAY_MS * 1000,
846 						     USEC_PER_SEC);
847 		if (ret) {
848 			dev_err(&spi->dev, "MCP251x didn't enter in normal mode\n");
849 			return ret;
850 		}
851 	}
852 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
853 	return 0;
854 }
855 
mcp251x_do_set_bittiming(struct net_device * net)856 static int mcp251x_do_set_bittiming(struct net_device *net)
857 {
858 	struct mcp251x_priv *priv = netdev_priv(net);
859 	struct can_bittiming *bt = &priv->can.bittiming;
860 	struct spi_device *spi = priv->spi;
861 
862 	mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
863 			  (bt->brp - 1));
864 	mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
865 			  (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
866 			   CNF2_SAM : 0) |
867 			  ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
868 			  (bt->prop_seg - 1));
869 	mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
870 			   (bt->phase_seg2 - 1));
871 	dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
872 		mcp251x_read_reg(spi, CNF1),
873 		mcp251x_read_reg(spi, CNF2),
874 		mcp251x_read_reg(spi, CNF3));
875 
876 	return 0;
877 }
878 
mcp251x_setup(struct net_device * net,struct spi_device * spi)879 static int mcp251x_setup(struct net_device *net, struct spi_device *spi)
880 {
881 	mcp251x_do_set_bittiming(net);
882 
883 	mcp251x_write_reg(spi, RXBCTRL(0),
884 			  RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
885 	mcp251x_write_reg(spi, RXBCTRL(1),
886 			  RXBCTRL_RXM0 | RXBCTRL_RXM1);
887 	return 0;
888 }
889 
mcp251x_hw_reset(struct spi_device * spi)890 static int mcp251x_hw_reset(struct spi_device *spi)
891 {
892 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
893 	u8 value;
894 	int ret;
895 
896 	/* Wait for oscillator startup timer after power up */
897 	mdelay(MCP251X_OST_DELAY_MS);
898 
899 	priv->spi_tx_buf[0] = INSTRUCTION_RESET;
900 	ret = mcp251x_spi_write(spi, 1);
901 	if (ret)
902 		return ret;
903 
904 	/* Wait for oscillator startup timer after reset */
905 	mdelay(MCP251X_OST_DELAY_MS);
906 
907 	/* Wait for reset to finish */
908 	ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
909 					     MCP251X_OST_DELAY_MS * 1000,
910 					     USEC_PER_SEC);
911 	if (ret)
912 		dev_err(&spi->dev, "MCP251x didn't enter in conf mode after reset\n");
913 	return ret;
914 }
915 
mcp251x_hw_probe(struct spi_device * spi)916 static int mcp251x_hw_probe(struct spi_device *spi)
917 {
918 	u8 ctrl;
919 	int ret;
920 
921 	ret = mcp251x_hw_reset(spi);
922 	if (ret)
923 		return ret;
924 
925 	ctrl = mcp251x_read_reg(spi, CANCTRL);
926 
927 	dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);
928 
929 	/* Check for power up default value */
930 	if ((ctrl & 0x17) != 0x07)
931 		return -ENODEV;
932 
933 	return 0;
934 }
935 
mcp251x_power_enable(struct regulator * reg,int enable)936 static int mcp251x_power_enable(struct regulator *reg, int enable)
937 {
938 	if (IS_ERR_OR_NULL(reg))
939 		return 0;
940 
941 	if (enable)
942 		return regulator_enable(reg);
943 	else
944 		return regulator_disable(reg);
945 }
946 
mcp251x_stop(struct net_device * net)947 static int mcp251x_stop(struct net_device *net)
948 {
949 	struct mcp251x_priv *priv = netdev_priv(net);
950 	struct spi_device *spi = priv->spi;
951 
952 	close_candev(net);
953 
954 	priv->force_quit = 1;
955 	free_irq(spi->irq, priv);
956 
957 	mutex_lock(&priv->mcp_lock);
958 
959 	/* Disable and clear pending interrupts */
960 	mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
961 
962 	mcp251x_write_reg(spi, TXBCTRL(0), 0);
963 	mcp251x_clean(net);
964 
965 	mcp251x_hw_sleep(spi);
966 
967 	mcp251x_power_enable(priv->transceiver, 0);
968 
969 	priv->can.state = CAN_STATE_STOPPED;
970 
971 	mutex_unlock(&priv->mcp_lock);
972 
973 	return 0;
974 }
975 
mcp251x_error_skb(struct net_device * net,int can_id,int data1)976 static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
977 {
978 	struct sk_buff *skb;
979 	struct can_frame *frame;
980 
981 	skb = alloc_can_err_skb(net, &frame);
982 	if (skb) {
983 		frame->can_id |= can_id;
984 		frame->data[1] = data1;
985 		netif_rx(skb);
986 	} else {
987 		netdev_err(net, "cannot allocate error skb\n");
988 	}
989 }
990 
mcp251x_tx_work_handler(struct work_struct * ws)991 static void mcp251x_tx_work_handler(struct work_struct *ws)
992 {
993 	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
994 						 tx_work);
995 	struct spi_device *spi = priv->spi;
996 	struct net_device *net = priv->net;
997 	struct can_frame *frame;
998 
999 	mutex_lock(&priv->mcp_lock);
1000 	if (priv->tx_skb) {
1001 		if (priv->can.state == CAN_STATE_BUS_OFF) {
1002 			mcp251x_clean(net);
1003 		} else {
1004 			frame = (struct can_frame *)priv->tx_skb->data;
1005 
1006 			if (frame->len > CAN_FRAME_MAX_DATA_LEN)
1007 				frame->len = CAN_FRAME_MAX_DATA_LEN;
1008 			mcp251x_hw_tx(spi, frame, 0);
1009 			priv->tx_busy = true;
1010 			can_put_echo_skb(priv->tx_skb, net, 0, 0);
1011 			priv->tx_skb = NULL;
1012 		}
1013 	}
1014 	mutex_unlock(&priv->mcp_lock);
1015 }
1016 
mcp251x_restart_work_handler(struct work_struct * ws)1017 static void mcp251x_restart_work_handler(struct work_struct *ws)
1018 {
1019 	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
1020 						 restart_work);
1021 	struct spi_device *spi = priv->spi;
1022 	struct net_device *net = priv->net;
1023 
1024 	mutex_lock(&priv->mcp_lock);
1025 	if (priv->after_suspend) {
1026 		if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1027 			mcp251x_hw_reset(spi);
1028 			mcp251x_setup(net, spi);
1029 			mcp251x_gpio_restore(spi);
1030 		} else {
1031 			mcp251x_hw_wake(spi);
1032 		}
1033 		priv->force_quit = 0;
1034 		if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
1035 			mcp251x_set_normal_mode(spi);
1036 		} else if (priv->after_suspend & AFTER_SUSPEND_UP) {
1037 			netif_device_attach(net);
1038 			mcp251x_clean(net);
1039 			mcp251x_set_normal_mode(spi);
1040 			netif_wake_queue(net);
1041 		} else {
1042 			mcp251x_hw_sleep(spi);
1043 		}
1044 		priv->after_suspend = 0;
1045 	}
1046 
1047 	if (priv->restart_tx) {
1048 		priv->restart_tx = 0;
1049 		mcp251x_write_reg(spi, TXBCTRL(0), 0);
1050 		mcp251x_clean(net);
1051 		netif_wake_queue(net);
1052 		mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
1053 	}
1054 	mutex_unlock(&priv->mcp_lock);
1055 }
1056 
mcp251x_can_ist(int irq,void * dev_id)1057 static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
1058 {
1059 	struct mcp251x_priv *priv = dev_id;
1060 	struct spi_device *spi = priv->spi;
1061 	struct net_device *net = priv->net;
1062 
1063 	mutex_lock(&priv->mcp_lock);
1064 	while (!priv->force_quit) {
1065 		enum can_state new_state;
1066 		u8 intf, eflag;
1067 		u8 clear_intf = 0;
1068 		int can_id = 0, data1 = 0;
1069 
1070 		mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
1071 
1072 		/* receive buffer 0 */
1073 		if (intf & CANINTF_RX0IF) {
1074 			mcp251x_hw_rx(spi, 0);
1075 			/* Free one buffer ASAP
1076 			 * (The MCP2515/25625 does this automatically.)
1077 			 */
1078 			if (mcp251x_is_2510(spi))
1079 				mcp251x_write_bits(spi, CANINTF,
1080 						   CANINTF_RX0IF, 0x00);
1081 
1082 			/* check if buffer 1 is already known to be full, no need to re-read */
1083 			if (!(intf & CANINTF_RX1IF)) {
1084 				u8 intf1, eflag1;
1085 
1086 				/* intf needs to be read again to avoid a race condition */
1087 				mcp251x_read_2regs(spi, CANINTF, &intf1, &eflag1);
1088 
1089 				/* combine flags from both operations for error handling */
1090 				intf |= intf1;
1091 				eflag |= eflag1;
1092 			}
1093 		}
1094 
1095 		/* receive buffer 1 */
1096 		if (intf & CANINTF_RX1IF) {
1097 			mcp251x_hw_rx(spi, 1);
1098 			/* The MCP2515/25625 does this automatically. */
1099 			if (mcp251x_is_2510(spi))
1100 				clear_intf |= CANINTF_RX1IF;
1101 		}
1102 
1103 		/* mask out flags we don't care about */
1104 		intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
1105 
1106 		/* any error or tx interrupt we need to clear? */
1107 		if (intf & (CANINTF_ERR | CANINTF_TX))
1108 			clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
1109 		if (clear_intf)
1110 			mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
1111 
1112 		if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR))
1113 			mcp251x_write_bits(spi, EFLG, eflag, 0x00);
1114 
1115 		/* Update can state */
1116 		if (eflag & EFLG_TXBO) {
1117 			new_state = CAN_STATE_BUS_OFF;
1118 			can_id |= CAN_ERR_BUSOFF;
1119 		} else if (eflag & EFLG_TXEP) {
1120 			new_state = CAN_STATE_ERROR_PASSIVE;
1121 			can_id |= CAN_ERR_CRTL;
1122 			data1 |= CAN_ERR_CRTL_TX_PASSIVE;
1123 		} else if (eflag & EFLG_RXEP) {
1124 			new_state = CAN_STATE_ERROR_PASSIVE;
1125 			can_id |= CAN_ERR_CRTL;
1126 			data1 |= CAN_ERR_CRTL_RX_PASSIVE;
1127 		} else if (eflag & EFLG_TXWAR) {
1128 			new_state = CAN_STATE_ERROR_WARNING;
1129 			can_id |= CAN_ERR_CRTL;
1130 			data1 |= CAN_ERR_CRTL_TX_WARNING;
1131 		} else if (eflag & EFLG_RXWAR) {
1132 			new_state = CAN_STATE_ERROR_WARNING;
1133 			can_id |= CAN_ERR_CRTL;
1134 			data1 |= CAN_ERR_CRTL_RX_WARNING;
1135 		} else {
1136 			new_state = CAN_STATE_ERROR_ACTIVE;
1137 		}
1138 
1139 		/* Update can state statistics */
1140 		switch (priv->can.state) {
1141 		case CAN_STATE_ERROR_ACTIVE:
1142 			if (new_state >= CAN_STATE_ERROR_WARNING &&
1143 			    new_state <= CAN_STATE_BUS_OFF)
1144 				priv->can.can_stats.error_warning++;
1145 			fallthrough;
1146 		case CAN_STATE_ERROR_WARNING:
1147 			if (new_state >= CAN_STATE_ERROR_PASSIVE &&
1148 			    new_state <= CAN_STATE_BUS_OFF)
1149 				priv->can.can_stats.error_passive++;
1150 			break;
1151 		default:
1152 			break;
1153 		}
1154 		priv->can.state = new_state;
1155 
1156 		if (intf & CANINTF_ERRIF) {
1157 			/* Handle overflow counters */
1158 			if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
1159 				if (eflag & EFLG_RX0OVR) {
1160 					net->stats.rx_over_errors++;
1161 					net->stats.rx_errors++;
1162 				}
1163 				if (eflag & EFLG_RX1OVR) {
1164 					net->stats.rx_over_errors++;
1165 					net->stats.rx_errors++;
1166 				}
1167 				can_id |= CAN_ERR_CRTL;
1168 				data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
1169 			}
1170 			mcp251x_error_skb(net, can_id, data1);
1171 		}
1172 
1173 		if (priv->can.state == CAN_STATE_BUS_OFF) {
1174 			if (priv->can.restart_ms == 0) {
1175 				priv->force_quit = 1;
1176 				priv->can.can_stats.bus_off++;
1177 				can_bus_off(net);
1178 				mcp251x_hw_sleep(spi);
1179 				break;
1180 			}
1181 		}
1182 
1183 		if (intf == 0)
1184 			break;
1185 
1186 		if (intf & CANINTF_TX) {
1187 			if (priv->tx_busy) {
1188 				net->stats.tx_packets++;
1189 				net->stats.tx_bytes += can_get_echo_skb(net, 0,
1190 									NULL);
1191 				priv->tx_busy = false;
1192 			}
1193 			netif_wake_queue(net);
1194 		}
1195 	}
1196 	mutex_unlock(&priv->mcp_lock);
1197 	return IRQ_HANDLED;
1198 }
1199 
mcp251x_open(struct net_device * net)1200 static int mcp251x_open(struct net_device *net)
1201 {
1202 	struct mcp251x_priv *priv = netdev_priv(net);
1203 	struct spi_device *spi = priv->spi;
1204 	unsigned long flags = 0;
1205 	int ret;
1206 
1207 	ret = open_candev(net);
1208 	if (ret) {
1209 		dev_err(&spi->dev, "unable to set initial baudrate!\n");
1210 		return ret;
1211 	}
1212 
1213 	mutex_lock(&priv->mcp_lock);
1214 	mcp251x_power_enable(priv->transceiver, 1);
1215 
1216 	priv->force_quit = 0;
1217 	priv->tx_skb = NULL;
1218 	priv->tx_busy = false;
1219 
1220 	if (!dev_fwnode(&spi->dev))
1221 		flags = IRQF_TRIGGER_FALLING;
1222 
1223 	ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
1224 				   flags | IRQF_ONESHOT, dev_name(&spi->dev),
1225 				   priv);
1226 	if (ret) {
1227 		dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
1228 		goto out_close;
1229 	}
1230 
1231 	ret = mcp251x_hw_wake(spi);
1232 	if (ret)
1233 		goto out_free_irq;
1234 	ret = mcp251x_setup(net, spi);
1235 	if (ret)
1236 		goto out_free_irq;
1237 	ret = mcp251x_set_normal_mode(spi);
1238 	if (ret)
1239 		goto out_free_irq;
1240 
1241 	netif_wake_queue(net);
1242 	mutex_unlock(&priv->mcp_lock);
1243 
1244 	return 0;
1245 
1246 out_free_irq:
1247 	free_irq(spi->irq, priv);
1248 	mcp251x_hw_sleep(spi);
1249 out_close:
1250 	mcp251x_power_enable(priv->transceiver, 0);
1251 	close_candev(net);
1252 	mutex_unlock(&priv->mcp_lock);
1253 	return ret;
1254 }
1255 
1256 static const struct net_device_ops mcp251x_netdev_ops = {
1257 	.ndo_open = mcp251x_open,
1258 	.ndo_stop = mcp251x_stop,
1259 	.ndo_start_xmit = mcp251x_hard_start_xmit,
1260 	.ndo_change_mtu = can_change_mtu,
1261 };
1262 
1263 static const struct ethtool_ops mcp251x_ethtool_ops = {
1264 	.get_ts_info = ethtool_op_get_ts_info,
1265 };
1266 
1267 static const struct of_device_id mcp251x_of_match[] = {
1268 	{
1269 		.compatible	= "microchip,mcp2510",
1270 		.data		= (void *)CAN_MCP251X_MCP2510,
1271 	},
1272 	{
1273 		.compatible	= "microchip,mcp2515",
1274 		.data		= (void *)CAN_MCP251X_MCP2515,
1275 	},
1276 	{
1277 		.compatible	= "microchip,mcp25625",
1278 		.data		= (void *)CAN_MCP251X_MCP25625,
1279 	},
1280 	{ }
1281 };
1282 MODULE_DEVICE_TABLE(of, mcp251x_of_match);
1283 
1284 static const struct spi_device_id mcp251x_id_table[] = {
1285 	{
1286 		.name		= "mcp2510",
1287 		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2510,
1288 	},
1289 	{
1290 		.name		= "mcp2515",
1291 		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2515,
1292 	},
1293 	{
1294 		.name		= "mcp25625",
1295 		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP25625,
1296 	},
1297 	{ }
1298 };
1299 MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1300 
mcp251x_can_probe(struct spi_device * spi)1301 static int mcp251x_can_probe(struct spi_device *spi)
1302 {
1303 	struct net_device *net;
1304 	struct mcp251x_priv *priv;
1305 	struct clk *clk;
1306 	u32 freq;
1307 	int ret;
1308 
1309 	clk = devm_clk_get_optional(&spi->dev, NULL);
1310 	if (IS_ERR(clk))
1311 		return PTR_ERR(clk);
1312 
1313 	freq = clk_get_rate(clk);
1314 	if (freq == 0)
1315 		device_property_read_u32(&spi->dev, "clock-frequency", &freq);
1316 
1317 	/* Sanity check */
1318 	if (freq < 1000000 || freq > 25000000)
1319 		return -ERANGE;
1320 
1321 	/* Allocate can/net device */
1322 	net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
1323 	if (!net)
1324 		return -ENOMEM;
1325 
1326 	ret = clk_prepare_enable(clk);
1327 	if (ret)
1328 		goto out_free;
1329 
1330 	net->netdev_ops = &mcp251x_netdev_ops;
1331 	net->ethtool_ops = &mcp251x_ethtool_ops;
1332 	net->flags |= IFF_ECHO;
1333 
1334 	priv = netdev_priv(net);
1335 	priv->can.bittiming_const = &mcp251x_bittiming_const;
1336 	priv->can.do_set_mode = mcp251x_do_set_mode;
1337 	priv->can.clock.freq = freq / 2;
1338 	priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1339 		CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1340 	priv->model = (enum mcp251x_model)(uintptr_t)spi_get_device_match_data(spi);
1341 	priv->net = net;
1342 	priv->clk = clk;
1343 
1344 	spi_set_drvdata(spi, priv);
1345 
1346 	/* Configure the SPI bus */
1347 	spi->bits_per_word = 8;
1348 	if (mcp251x_is_2510(spi))
1349 		spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
1350 	else
1351 		spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
1352 	ret = spi_setup(spi);
1353 	if (ret)
1354 		goto out_clk;
1355 
1356 	priv->power = devm_regulator_get_optional(&spi->dev, "vdd");
1357 	priv->transceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
1358 	if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
1359 	    (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
1360 		ret = -EPROBE_DEFER;
1361 		goto out_clk;
1362 	}
1363 
1364 	ret = mcp251x_power_enable(priv->power, 1);
1365 	if (ret)
1366 		goto out_clk;
1367 
1368 	priv->wq = alloc_workqueue("mcp251x_wq", WQ_FREEZABLE | WQ_MEM_RECLAIM,
1369 				   0);
1370 	if (!priv->wq) {
1371 		ret = -ENOMEM;
1372 		goto out_clk;
1373 	}
1374 	INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
1375 	INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
1376 
1377 	priv->spi = spi;
1378 	mutex_init(&priv->mcp_lock);
1379 
1380 	priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1381 					GFP_KERNEL);
1382 	if (!priv->spi_tx_buf) {
1383 		ret = -ENOMEM;
1384 		goto error_probe;
1385 	}
1386 
1387 	priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1388 					GFP_KERNEL);
1389 	if (!priv->spi_rx_buf) {
1390 		ret = -ENOMEM;
1391 		goto error_probe;
1392 	}
1393 
1394 	SET_NETDEV_DEV(net, &spi->dev);
1395 
1396 	/* Here is OK to not lock the MCP, no one knows about it yet */
1397 	ret = mcp251x_hw_probe(spi);
1398 	if (ret) {
1399 		if (ret == -ENODEV)
1400 			dev_err(&spi->dev, "Cannot initialize MCP%x. Wrong wiring?\n",
1401 				priv->model);
1402 		goto error_probe;
1403 	}
1404 
1405 	mcp251x_hw_sleep(spi);
1406 
1407 	ret = register_candev(net);
1408 	if (ret)
1409 		goto error_probe;
1410 
1411 	ret = mcp251x_gpio_setup(priv);
1412 	if (ret)
1413 		goto out_unregister_candev;
1414 
1415 	netdev_info(net, "MCP%x successfully initialized.\n", priv->model);
1416 	return 0;
1417 
1418 out_unregister_candev:
1419 	unregister_candev(net);
1420 
1421 error_probe:
1422 	destroy_workqueue(priv->wq);
1423 	priv->wq = NULL;
1424 	mcp251x_power_enable(priv->power, 0);
1425 
1426 out_clk:
1427 	clk_disable_unprepare(clk);
1428 
1429 out_free:
1430 	free_candev(net);
1431 
1432 	dev_err(&spi->dev, "Probe failed, err=%d\n", -ret);
1433 	return ret;
1434 }
1435 
mcp251x_can_remove(struct spi_device * spi)1436 static void mcp251x_can_remove(struct spi_device *spi)
1437 {
1438 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1439 	struct net_device *net = priv->net;
1440 
1441 	unregister_candev(net);
1442 
1443 	mcp251x_power_enable(priv->power, 0);
1444 
1445 	destroy_workqueue(priv->wq);
1446 	priv->wq = NULL;
1447 
1448 	clk_disable_unprepare(priv->clk);
1449 
1450 	free_candev(net);
1451 }
1452 
mcp251x_can_suspend(struct device * dev)1453 static int __maybe_unused mcp251x_can_suspend(struct device *dev)
1454 {
1455 	struct spi_device *spi = to_spi_device(dev);
1456 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1457 	struct net_device *net = priv->net;
1458 
1459 	priv->force_quit = 1;
1460 	disable_irq(spi->irq);
1461 	/* Note: at this point neither IST nor workqueues are running.
1462 	 * open/stop cannot be called anyway so locking is not needed
1463 	 */
1464 	if (netif_running(net)) {
1465 		netif_device_detach(net);
1466 
1467 		mcp251x_hw_sleep(spi);
1468 		mcp251x_power_enable(priv->transceiver, 0);
1469 		priv->after_suspend = AFTER_SUSPEND_UP;
1470 	} else {
1471 		priv->after_suspend = AFTER_SUSPEND_DOWN;
1472 	}
1473 
1474 	mcp251x_power_enable(priv->power, 0);
1475 	priv->after_suspend |= AFTER_SUSPEND_POWER;
1476 
1477 	return 0;
1478 }
1479 
mcp251x_can_resume(struct device * dev)1480 static int __maybe_unused mcp251x_can_resume(struct device *dev)
1481 {
1482 	struct spi_device *spi = to_spi_device(dev);
1483 	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1484 
1485 	if (priv->after_suspend & AFTER_SUSPEND_POWER)
1486 		mcp251x_power_enable(priv->power, 1);
1487 	if (priv->after_suspend & AFTER_SUSPEND_UP)
1488 		mcp251x_power_enable(priv->transceiver, 1);
1489 
1490 	if (priv->after_suspend & (AFTER_SUSPEND_POWER | AFTER_SUSPEND_UP))
1491 		queue_work(priv->wq, &priv->restart_work);
1492 	else
1493 		priv->after_suspend = 0;
1494 
1495 	priv->force_quit = 0;
1496 	enable_irq(spi->irq);
1497 	return 0;
1498 }
1499 
1500 static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
1501 	mcp251x_can_resume);
1502 
1503 static struct spi_driver mcp251x_can_driver = {
1504 	.driver = {
1505 		.name = DEVICE_NAME,
1506 		.of_match_table = mcp251x_of_match,
1507 		.pm = &mcp251x_can_pm_ops,
1508 	},
1509 	.id_table = mcp251x_id_table,
1510 	.probe = mcp251x_can_probe,
1511 	.remove = mcp251x_can_remove,
1512 };
1513 module_spi_driver(mcp251x_can_driver);
1514 
1515 MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1516 	      "Christian Pellegrin <chripell@evolware.org>");
1517 MODULE_DESCRIPTION("Microchip 251x/25625 CAN driver");
1518 MODULE_LICENSE("GPL v2");
1519