xref: /linux/arch/x86/include/asm/kvm_host.h (revision bf2c3138ae3694d4687cbe451c774c288ae2ad06)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This header defines architecture specific interfaces, x86 version
6  */
7 
8 #ifndef _ASM_X86_KVM_HOST_H
9 #define _ASM_X86_KVM_HOST_H
10 
11 #include <linux/types.h>
12 #include <linux/mm.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/tracepoint.h>
15 #include <linux/cpumask.h>
16 #include <linux/irq_work.h>
17 #include <linux/irq.h>
18 #include <linux/workqueue.h>
19 
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22 #include <linux/kvm_types.h>
23 #include <linux/perf_event.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/clocksource.h>
26 #include <linux/irqbypass.h>
27 #include <linux/kfifo.h>
28 #include <linux/sched/vhost_task.h>
29 #include <linux/call_once.h>
30 #include <linux/atomic.h>
31 
32 #include <asm/apic.h>
33 #include <asm/pvclock-abi.h>
34 #include <asm/debugreg.h>
35 #include <asm/desc.h>
36 #include <asm/mtrr.h>
37 #include <asm/msr-index.h>
38 #include <asm/msr.h>
39 #include <asm/asm.h>
40 #include <asm/irq_remapping.h>
41 #include <asm/kvm_page_track.h>
42 #include <asm/kvm_vcpu_regs.h>
43 #include <asm/reboot.h>
44 #include <hyperv/hvhdk.h>
45 
46 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
47 
48 /*
49  * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if
50  * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS).
51  */
52 #ifdef CONFIG_KVM_MAX_NR_VCPUS
53 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS
54 #else
55 #define KVM_MAX_VCPUS 1024
56 #endif
57 
58 /*
59  * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
60  * might be larger than the actual number of VCPUs because the
61  * APIC ID encodes CPU topology information.
62  *
63  * In the worst case, we'll need less than one extra bit for the
64  * Core ID, and less than one extra bit for the Package (Die) ID,
65  * so ratio of 4 should be enough.
66  */
67 #define KVM_VCPU_ID_RATIO 4
68 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
69 
70 /* memory slots that are not exposed to userspace */
71 #define KVM_INTERNAL_MEM_SLOTS 3
72 
73 #define KVM_HALT_POLL_NS_DEFAULT 200000
74 
75 #define KVM_IRQCHIP_NUM_PINS  KVM_IOAPIC_NUM_PINS
76 
77 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
78 					KVM_DIRTY_LOG_INITIALLY_SET)
79 
80 #define KVM_BUS_LOCK_DETECTION_VALID_MODE	(KVM_BUS_LOCK_DETECTION_OFF | \
81 						 KVM_BUS_LOCK_DETECTION_EXIT)
82 
83 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS	(KVM_X86_NOTIFY_VMEXIT_ENABLED | \
84 						 KVM_X86_NOTIFY_VMEXIT_USER)
85 
86 /* x86-specific vcpu->requests bit members */
87 #define KVM_REQ_MIGRATE_TIMER		KVM_ARCH_REQ(0)
88 #define KVM_REQ_REPORT_TPR_ACCESS	KVM_ARCH_REQ(1)
89 #define KVM_REQ_TRIPLE_FAULT		KVM_ARCH_REQ(2)
90 #define KVM_REQ_MMU_SYNC		KVM_ARCH_REQ(3)
91 #define KVM_REQ_CLOCK_UPDATE		KVM_ARCH_REQ(4)
92 #define KVM_REQ_LOAD_MMU_PGD		KVM_ARCH_REQ(5)
93 #define KVM_REQ_EVENT			KVM_ARCH_REQ(6)
94 #define KVM_REQ_APF_HALT		KVM_ARCH_REQ(7)
95 #define KVM_REQ_STEAL_UPDATE		KVM_ARCH_REQ(8)
96 #define KVM_REQ_NMI			KVM_ARCH_REQ(9)
97 #define KVM_REQ_PMU			KVM_ARCH_REQ(10)
98 #define KVM_REQ_PMI			KVM_ARCH_REQ(11)
99 #ifdef CONFIG_KVM_SMM
100 #define KVM_REQ_SMI			KVM_ARCH_REQ(12)
101 #endif
102 #define KVM_REQ_MASTERCLOCK_UPDATE	KVM_ARCH_REQ(13)
103 #define KVM_REQ_MCLOCK_INPROGRESS \
104 	KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
105 #define KVM_REQ_SCAN_IOAPIC \
106 	KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
107 #define KVM_REQ_GLOBAL_CLOCK_UPDATE	KVM_ARCH_REQ(16)
108 #define KVM_REQ_APIC_PAGE_RELOAD \
109 	KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
110 #define KVM_REQ_HV_CRASH		KVM_ARCH_REQ(18)
111 #define KVM_REQ_IOAPIC_EOI_EXIT		KVM_ARCH_REQ(19)
112 #define KVM_REQ_HV_RESET		KVM_ARCH_REQ(20)
113 #define KVM_REQ_HV_EXIT			KVM_ARCH_REQ(21)
114 #define KVM_REQ_HV_STIMER		KVM_ARCH_REQ(22)
115 #define KVM_REQ_LOAD_EOI_EXITMAP	KVM_ARCH_REQ(23)
116 #define KVM_REQ_GET_NESTED_STATE_PAGES	KVM_ARCH_REQ(24)
117 #define KVM_REQ_APICV_UPDATE \
118 	KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
119 #define KVM_REQ_TLB_FLUSH_CURRENT	KVM_ARCH_REQ(26)
120 #define KVM_REQ_TLB_FLUSH_GUEST \
121 	KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
122 #define KVM_REQ_APF_READY		KVM_ARCH_REQ(28)
123 #define KVM_REQ_RECALC_INTERCEPTS	KVM_ARCH_REQ(29)
124 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
125 	KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
126 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
127 	KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
128 #define KVM_REQ_HV_TLB_FLUSH \
129 	KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
130 #define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE \
131 	KVM_ARCH_REQ_FLAGS(34, KVM_REQUEST_WAIT)
132 
133 #define CR0_RESERVED_BITS                                               \
134 	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
135 			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
136 			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
137 
138 #define CR4_RESERVED_BITS                                               \
139 	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
140 			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
141 			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
142 			  | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
143 			  | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
144 			  | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \
145 			  | X86_CR4_LAM_SUP | X86_CR4_CET))
146 
147 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
148 
149 
150 
151 #define INVALID_PAGE (~(hpa_t)0)
152 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
153 
154 /* KVM Hugepage definitions for x86 */
155 #define KVM_MAX_HUGEPAGE_LEVEL	PG_LEVEL_1G
156 #define KVM_NR_PAGE_SIZES	(KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
157 #define KVM_HPAGE_GFN_SHIFT(x)	(((x) - 1) * 9)
158 #define KVM_HPAGE_SHIFT(x)	(PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
159 #define KVM_HPAGE_SIZE(x)	(1UL << KVM_HPAGE_SHIFT(x))
160 #define KVM_HPAGE_MASK(x)	(~(KVM_HPAGE_SIZE(x) - 1))
161 #define KVM_PAGES_PER_HPAGE(x)	(KVM_HPAGE_SIZE(x) / PAGE_SIZE)
162 
163 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
164 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
165 #define KVM_MMU_HASH_SHIFT 12
166 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
167 #define KVM_MIN_FREE_MMU_PAGES 5
168 #define KVM_REFILL_PAGES 25
169 #define KVM_MAX_CPUID_ENTRIES 256
170 #define KVM_NR_VAR_MTRR 8
171 
172 #define ASYNC_PF_PER_VCPU 64
173 
174 enum kvm_reg {
175 	VCPU_REGS_RAX = __VCPU_REGS_RAX,
176 	VCPU_REGS_RCX = __VCPU_REGS_RCX,
177 	VCPU_REGS_RDX = __VCPU_REGS_RDX,
178 	VCPU_REGS_RBX = __VCPU_REGS_RBX,
179 	VCPU_REGS_RSP = __VCPU_REGS_RSP,
180 	VCPU_REGS_RBP = __VCPU_REGS_RBP,
181 	VCPU_REGS_RSI = __VCPU_REGS_RSI,
182 	VCPU_REGS_RDI = __VCPU_REGS_RDI,
183 #ifdef CONFIG_X86_64
184 	VCPU_REGS_R8  = __VCPU_REGS_R8,
185 	VCPU_REGS_R9  = __VCPU_REGS_R9,
186 	VCPU_REGS_R10 = __VCPU_REGS_R10,
187 	VCPU_REGS_R11 = __VCPU_REGS_R11,
188 	VCPU_REGS_R12 = __VCPU_REGS_R12,
189 	VCPU_REGS_R13 = __VCPU_REGS_R13,
190 	VCPU_REGS_R14 = __VCPU_REGS_R14,
191 	VCPU_REGS_R15 = __VCPU_REGS_R15,
192 #endif
193 	VCPU_REGS_RIP,
194 	NR_VCPU_REGS,
195 
196 	VCPU_EXREG_PDPTR = NR_VCPU_REGS,
197 	VCPU_EXREG_CR0,
198 	/*
199 	 * Alias AMD's ERAPS (not a real register) to CR3 so that common code
200 	 * can trigger emulation of the RAP (Return Address Predictor) with
201 	 * minimal support required in common code.  Piggyback CR3 as the RAP
202 	 * is cleared on writes to CR3, i.e. marking CR3 dirty will naturally
203 	 * mark ERAPS dirty as well.
204 	 */
205 	VCPU_EXREG_CR3,
206 	VCPU_EXREG_ERAPS = VCPU_EXREG_CR3,
207 	VCPU_EXREG_CR4,
208 	VCPU_EXREG_RFLAGS,
209 	VCPU_EXREG_SEGMENTS,
210 	VCPU_EXREG_EXIT_INFO_1,
211 	VCPU_EXREG_EXIT_INFO_2,
212 };
213 
214 enum {
215 	VCPU_SREG_ES,
216 	VCPU_SREG_CS,
217 	VCPU_SREG_SS,
218 	VCPU_SREG_DS,
219 	VCPU_SREG_FS,
220 	VCPU_SREG_GS,
221 	VCPU_SREG_TR,
222 	VCPU_SREG_LDTR,
223 };
224 
225 enum exit_fastpath_completion {
226 	EXIT_FASTPATH_NONE,
227 	EXIT_FASTPATH_REENTER_GUEST,
228 	EXIT_FASTPATH_EXIT_HANDLED,
229 	EXIT_FASTPATH_EXIT_USERSPACE,
230 };
231 typedef enum exit_fastpath_completion fastpath_t;
232 
233 struct x86_emulate_ctxt;
234 struct x86_exception;
235 union kvm_smram;
236 enum x86_intercept;
237 enum x86_intercept_stage;
238 
239 #define KVM_NR_DB_REGS	4
240 
241 #define DR6_BUS_LOCK   (1 << 11)
242 #define DR6_BD		(1 << 13)
243 #define DR6_BS		(1 << 14)
244 #define DR6_BT		(1 << 15)
245 #define DR6_RTM		(1 << 16)
246 /*
247  * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
248  * We can regard all the bits in DR6_FIXED_1 as active_low bits;
249  * they will never be 0 for now, but when they are defined
250  * in the future it will require no code change.
251  *
252  * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
253  */
254 #define DR6_ACTIVE_LOW	0xffff0ff0
255 #define DR6_VOLATILE	0x0001e80f
256 #define DR6_FIXED_1	(DR6_ACTIVE_LOW & ~DR6_VOLATILE)
257 
258 #define DR7_BP_EN_MASK	0x000000ff
259 #define DR7_GE		(1 << 9)
260 #define DR7_GD		(1 << 13)
261 #define DR7_VOLATILE	0xffff2bff
262 
263 #define KVM_GUESTDBG_VALID_MASK \
264 	(KVM_GUESTDBG_ENABLE | \
265 	KVM_GUESTDBG_SINGLESTEP | \
266 	KVM_GUESTDBG_USE_HW_BP | \
267 	KVM_GUESTDBG_USE_SW_BP | \
268 	KVM_GUESTDBG_INJECT_BP | \
269 	KVM_GUESTDBG_INJECT_DB | \
270 	KVM_GUESTDBG_BLOCKIRQ)
271 
272 #define PFERR_PRESENT_MASK	BIT(0)
273 #define PFERR_WRITE_MASK	BIT(1)
274 #define PFERR_USER_MASK		BIT(2)
275 #define PFERR_RSVD_MASK		BIT(3)
276 #define PFERR_FETCH_MASK	BIT(4)
277 #define PFERR_PK_MASK		BIT(5)
278 #define PFERR_SS_MASK		BIT(6)
279 #define PFERR_SGX_MASK		BIT(15)
280 #define PFERR_GUEST_RMP_MASK	BIT_ULL(31)
281 #define PFERR_GUEST_FINAL_MASK	BIT_ULL(32)
282 #define PFERR_GUEST_PAGE_MASK	BIT_ULL(33)
283 #define PFERR_GUEST_ENC_MASK	BIT_ULL(34)
284 #define PFERR_GUEST_SIZEM_MASK	BIT_ULL(35)
285 #define PFERR_GUEST_VMPL_MASK	BIT_ULL(36)
286 
287 /*
288  * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks
289  * when emulating instructions that triggers implicit access.
290  */
291 #define PFERR_IMPLICIT_ACCESS	BIT_ULL(48)
292 /*
293  * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred
294  * when the guest was accessing private memory.
295  */
296 #define PFERR_PRIVATE_ACCESS   BIT_ULL(49)
297 #define PFERR_SYNTHETIC_MASK   (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS)
298 
299 /* apic attention bits */
300 #define KVM_APIC_CHECK_VAPIC	0
301 /*
302  * The following bit is set with PV-EOI, unset on EOI.
303  * We detect PV-EOI changes by guest by comparing
304  * this bit with PV-EOI in guest memory.
305  * See the implementation in apic_update_pv_eoi.
306  */
307 #define KVM_APIC_PV_EOI_PENDING	1
308 
309 struct kvm_kernel_irqfd;
310 struct kvm_kernel_irq_routing_entry;
311 
312 /*
313  * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
314  * also includes TDP pages) to determine whether or not a page can be used in
315  * the given MMU context.  This is a subset of the overall kvm_cpu_role to
316  * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows
317  * allocating 2 bytes per gfn instead of 4 bytes per gfn.
318  *
319  * Upper-level shadow pages having gptes are tracked for write-protection via
320  * gfn_write_track.  As above, gfn_write_track is a 16 bit counter, so KVM must
321  * not create more than 2^16-1 upper-level shadow pages at a single gfn,
322  * otherwise gfn_write_track will overflow and explosions will ensue.
323  *
324  * A unique shadow page (SP) for a gfn is created if and only if an existing SP
325  * cannot be reused.  The ability to reuse a SP is tracked by its role, which
326  * incorporates various mode bits and properties of the SP.  Roughly speaking,
327  * the number of unique SPs that can theoretically be created is 2^n, where n
328  * is the number of bits that are used to compute the role.
329  *
330  * But, even though there are 20 bits in the mask below, not all combinations
331  * of modes and flags are possible:
332  *
333  *   - invalid shadow pages are not accounted, mirror pages are not shadowed,
334  *     so the bits are effectively 18.
335  *
336  *   - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
337  *     execonly and ad_disabled are only used for nested EPT which has
338  *     has_4_byte_gpte=0.  Therefore, 2 bits are always unused.
339  *
340  *   - the 4 bits of level are effectively limited to the values 2/3/4/5,
341  *     as 4k SPs are not tracked (allowed to go unsync).  In addition non-PAE
342  *     paging has exactly one upper level, making level completely redundant
343  *     when has_4_byte_gpte=1.
344  *
345  *   - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
346  *     cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
347  *
348  * Therefore, the maximum number of possible upper-level shadow pages for a
349  * single gfn is a bit less than 2^13.
350  */
351 union kvm_mmu_page_role {
352 	u32 word;
353 	struct {
354 		unsigned level:4;
355 		unsigned has_4_byte_gpte:1;
356 		unsigned quadrant:2;
357 		unsigned direct:1;
358 		unsigned access:3;
359 		unsigned invalid:1;
360 		unsigned efer_nx:1;
361 		unsigned cr0_wp:1;
362 		unsigned smep_andnot_wp:1;
363 		unsigned smap_andnot_wp:1;
364 		unsigned ad_disabled:1;
365 		unsigned guest_mode:1;
366 		unsigned passthrough:1;
367 		unsigned is_mirror:1;
368 		unsigned :4;
369 
370 		/*
371 		 * This is left at the top of the word so that
372 		 * kvm_memslots_for_spte_role can extract it with a
373 		 * simple shift.  While there is room, give it a whole
374 		 * byte so it is also faster to load it from memory.
375 		 */
376 		unsigned smm:8;
377 	};
378 };
379 
380 /*
381  * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
382  * relevant to the current MMU configuration.   When loading CR0, CR4, or EFER,
383  * including on nested transitions, if nothing in the full role changes then
384  * MMU re-configuration can be skipped. @valid bit is set on first usage so we
385  * don't treat all-zero structure as valid data.
386  *
387  * The properties that are tracked in the extended role but not the page role
388  * are for things that either (a) do not affect the validity of the shadow page
389  * or (b) are indirectly reflected in the shadow page's role.  For example,
390  * CR4.PKE only affects permission checks for software walks of the guest page
391  * tables (because KVM doesn't support Protection Keys with shadow paging), and
392  * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
393  *
394  * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
395  * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
396  * SMAP, but the MMU's permission checks for software walks need to be SMEP and
397  * SMAP aware regardless of CR0.WP.
398  */
399 union kvm_mmu_extended_role {
400 	u32 word;
401 	struct {
402 		unsigned int valid:1;
403 		unsigned int execonly:1;
404 		unsigned int cr4_pse:1;
405 		unsigned int cr4_pke:1;
406 		unsigned int cr4_smap:1;
407 		unsigned int cr4_smep:1;
408 		unsigned int cr4_la57:1;
409 		unsigned int efer_lma:1;
410 	};
411 };
412 
413 union kvm_cpu_role {
414 	u64 as_u64;
415 	struct {
416 		union kvm_mmu_page_role base;
417 		union kvm_mmu_extended_role ext;
418 	};
419 };
420 
421 struct kvm_rmap_head {
422 	atomic_long_t val;
423 };
424 
425 struct kvm_pio_request {
426 	unsigned long count;
427 	int in;
428 	int port;
429 	int size;
430 };
431 
432 #define PT64_ROOT_MAX_LEVEL 5
433 
434 struct rsvd_bits_validate {
435 	u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
436 	u64 bad_mt_xwr;
437 };
438 
439 struct kvm_mmu_root_info {
440 	gpa_t pgd;
441 	hpa_t hpa;
442 };
443 
444 #define KVM_MMU_ROOT_INFO_INVALID \
445 	((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
446 
447 #define KVM_MMU_NUM_PREV_ROOTS 3
448 
449 #define KVM_MMU_ROOT_CURRENT		BIT(0)
450 #define KVM_MMU_ROOT_PREVIOUS(i)	BIT(1+i)
451 #define KVM_MMU_ROOTS_ALL		(BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1)
452 
453 #define KVM_HAVE_MMU_RWLOCK
454 
455 struct kvm_mmu_page;
456 struct kvm_page_fault;
457 
458 /*
459  * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
460  * and 2-level 32-bit).  The kvm_mmu structure abstracts the details of the
461  * current mmu mode.
462  */
463 struct kvm_mmu {
464 	unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
465 	u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
466 	int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
467 	void (*inject_page_fault)(struct kvm_vcpu *vcpu,
468 				  struct x86_exception *fault);
469 	gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
470 			    gpa_t gva_or_gpa, u64 access,
471 			    struct x86_exception *exception);
472 	int (*sync_spte)(struct kvm_vcpu *vcpu,
473 			 struct kvm_mmu_page *sp, int i);
474 	struct kvm_mmu_root_info root;
475 	hpa_t mirror_root_hpa;
476 	union kvm_cpu_role cpu_role;
477 	union kvm_mmu_page_role root_role;
478 
479 	/*
480 	* The pkru_mask indicates if protection key checks are needed.  It
481 	* consists of 16 domains indexed by page fault error code bits [4:1],
482 	* with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
483 	* Each domain has 2 bits which are ANDed with AD and WD from PKRU.
484 	*/
485 	u32 pkru_mask;
486 
487 	struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
488 
489 	/*
490 	 * Bitmap; bit set = permission fault
491 	 * Byte index: page fault error code [4:1]
492 	 * Bit index: pte permissions in ACC_* format
493 	 */
494 	u8 permissions[16];
495 
496 	u64 *pae_root;
497 	u64 *pml4_root;
498 	u64 *pml5_root;
499 
500 	/*
501 	 * check zero bits on shadow page table entries, these
502 	 * bits include not only hardware reserved bits but also
503 	 * the bits spte never used.
504 	 */
505 	struct rsvd_bits_validate shadow_zero_check;
506 
507 	struct rsvd_bits_validate guest_rsvd_check;
508 
509 	u64 pdptrs[4]; /* pae */
510 };
511 
512 enum pmc_type {
513 	KVM_PMC_GP = 0,
514 	KVM_PMC_FIXED,
515 };
516 
517 struct kvm_pmc {
518 	enum pmc_type type;
519 	u8 idx;
520 	bool is_paused;
521 	bool intr;
522 	/*
523 	 * Base value of the PMC counter, relative to the *consumed* count in
524 	 * the associated perf_event.  This value includes counter updates from
525 	 * the perf_event and emulated_count since the last time the counter
526 	 * was reprogrammed, but it is *not* the current value as seen by the
527 	 * guest or userspace.
528 	 *
529 	 * The count is relative to the associated perf_event so that KVM
530 	 * doesn't need to reprogram the perf_event every time the guest writes
531 	 * to the counter.
532 	 */
533 	u64 counter;
534 	/*
535 	 * PMC events triggered by KVM emulation that haven't been fully
536 	 * processed, i.e. haven't undergone overflow detection.
537 	 */
538 	u64 emulated_counter;
539 	u64 eventsel;
540 	u64 eventsel_hw;
541 	struct perf_event *perf_event;
542 	struct kvm_vcpu *vcpu;
543 	/*
544 	 * only for creating or reusing perf_event,
545 	 * eventsel value for general purpose counters,
546 	 * ctrl value for fixed counters.
547 	 */
548 	u64 current_config;
549 };
550 
551 /* More counters may conflict with other existing Architectural MSRs */
552 #define KVM_MAX(a, b)	((a) >= (b) ? (a) : (b))
553 #define KVM_MAX_NR_INTEL_GP_COUNTERS	8
554 #define KVM_MAX_NR_AMD_GP_COUNTERS	6
555 #define KVM_MAX_NR_GP_COUNTERS		KVM_MAX(KVM_MAX_NR_INTEL_GP_COUNTERS, \
556 						KVM_MAX_NR_AMD_GP_COUNTERS)
557 
558 #define KVM_MAX_NR_INTEL_FIXED_COUNTERS	3
559 #define KVM_MAX_NR_AMD_FIXED_COUNTERS	0
560 #define KVM_MAX_NR_FIXED_COUNTERS	KVM_MAX(KVM_MAX_NR_INTEL_FIXED_COUNTERS, \
561 						KVM_MAX_NR_AMD_FIXED_COUNTERS)
562 
563 struct kvm_pmu {
564 	u8 version;
565 	unsigned nr_arch_gp_counters;
566 	unsigned nr_arch_fixed_counters;
567 	unsigned available_event_types;
568 	u64 fixed_ctr_ctrl;
569 	u64 fixed_ctr_ctrl_hw;
570 	u64 fixed_ctr_ctrl_rsvd;
571 	u64 global_ctrl;
572 	u64 global_status;
573 	u64 counter_bitmask[2];
574 	u64 global_ctrl_rsvd;
575 	u64 global_status_rsvd;
576 	u64 reserved_bits;
577 	u64 raw_event_mask;
578 	struct kvm_pmc gp_counters[KVM_MAX_NR_GP_COUNTERS];
579 	struct kvm_pmc fixed_counters[KVM_MAX_NR_FIXED_COUNTERS];
580 
581 	/*
582 	 * Overlay the bitmap with a 64-bit atomic so that all bits can be
583 	 * set in a single access, e.g. to reprogram all counters when the PMU
584 	 * filter changes.
585 	 */
586 	union {
587 		DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
588 		atomic64_t __reprogram_pmi;
589 	};
590 	DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
591 	DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
592 
593 	DECLARE_BITMAP(pmc_counting_instructions, X86_PMC_IDX_MAX);
594 	DECLARE_BITMAP(pmc_counting_branches, X86_PMC_IDX_MAX);
595 
596 	u64 ds_area;
597 	u64 pebs_enable;
598 	u64 pebs_enable_rsvd;
599 	u64 pebs_data_cfg;
600 	u64 pebs_data_cfg_rsvd;
601 
602 	/*
603 	 * If a guest counter is cross-mapped to host counter with different
604 	 * index, its PEBS capability will be temporarily disabled.
605 	 *
606 	 * The user should make sure that this mask is updated
607 	 * after disabling interrupts and before perf_guest_get_msrs();
608 	 */
609 	u64 host_cross_mapped_mask;
610 
611 	/*
612 	 * The gate to release perf_events not marked in
613 	 * pmc_in_use only once in a vcpu time slice.
614 	 */
615 	bool need_cleanup;
616 
617 	/*
618 	 * The total number of programmed perf_events and it helps to avoid
619 	 * redundant check before cleanup if guest don't use vPMU at all.
620 	 */
621 	u8 event_count;
622 };
623 
624 struct kvm_pmu_ops;
625 
626 enum {
627 	KVM_DEBUGREG_BP_ENABLED		= BIT(0),
628 	KVM_DEBUGREG_WONT_EXIT		= BIT(1),
629 	/*
630 	 * Guest debug registers (DR0-3, DR6 and DR7) are saved/restored by
631 	 * hardware on exit from or enter to guest. KVM needn't switch them.
632 	 * DR0-3, DR6 and DR7 are set to their architectural INIT value on VM
633 	 * exit, host values need to be restored.
634 	 */
635 	KVM_DEBUGREG_AUTO_SWITCH	= BIT(2),
636 };
637 
638 struct kvm_mtrr {
639 	u64 var[KVM_NR_VAR_MTRR * 2];
640 	u64 fixed_64k;
641 	u64 fixed_16k[2];
642 	u64 fixed_4k[8];
643 	u64 deftype;
644 };
645 
646 /* Hyper-V SynIC timer */
647 struct kvm_vcpu_hv_stimer {
648 	struct hrtimer timer;
649 	int index;
650 	union hv_stimer_config config;
651 	u64 count;
652 	u64 exp_time;
653 	struct hv_message msg;
654 	bool msg_pending;
655 };
656 
657 /* Hyper-V synthetic interrupt controller (SynIC)*/
658 struct kvm_vcpu_hv_synic {
659 	u64 version;
660 	u64 control;
661 	u64 msg_page;
662 	u64 evt_page;
663 	atomic64_t sint[HV_SYNIC_SINT_COUNT];
664 	atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
665 	DECLARE_BITMAP(auto_eoi_bitmap, 256);
666 	DECLARE_BITMAP(vec_bitmap, 256);
667 	bool active;
668 	bool dont_zero_synic_pages;
669 };
670 
671 /* The maximum number of entries on the TLB flush fifo. */
672 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16)
673 /*
674  * Note: the following 'magic' entry is made up by KVM to avoid putting
675  * anything besides GVA on the TLB flush fifo. It is theoretically possible
676  * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000
677  * which will look identical. KVM's action to 'flush everything' instead of
678  * flushing these particular addresses is, however, fully legitimate as
679  * flushing more than requested is always OK.
680  */
681 #define KVM_HV_TLB_FLUSHALL_ENTRY  ((u64)-1)
682 
683 enum hv_tlb_flush_fifos {
684 	HV_L1_TLB_FLUSH_FIFO,
685 	HV_L2_TLB_FLUSH_FIFO,
686 	HV_NR_TLB_FLUSH_FIFOS,
687 };
688 
689 struct kvm_vcpu_hv_tlb_flush_fifo {
690 	spinlock_t write_lock;
691 	DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE);
692 };
693 
694 /* Hyper-V per vcpu emulation context */
695 struct kvm_vcpu_hv {
696 	struct kvm_vcpu *vcpu;
697 	u32 vp_index;
698 	u64 hv_vapic;
699 	s64 runtime_offset;
700 	struct kvm_vcpu_hv_synic synic;
701 	struct kvm_hyperv_exit exit;
702 	struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
703 	DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
704 	bool enforce_cpuid;
705 	struct {
706 		u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
707 		u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
708 		u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
709 		u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
710 		u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
711 		u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
712 		u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */
713 		u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */
714 	} cpuid_cache;
715 
716 	struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS];
717 
718 	/*
719 	 * Preallocated buffers for handling hypercalls that pass sparse vCPU
720 	 * sets (for high vCPU counts, they're too large to comfortably fit on
721 	 * the stack).
722 	 */
723 	u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS];
724 	DECLARE_BITMAP(vcpu_mask, KVM_MAX_VCPUS);
725 
726 	struct hv_vp_assist_page vp_assist_page;
727 
728 	struct {
729 		u64 pa_page_gpa;
730 		u64 vm_id;
731 		u32 vp_id;
732 	} nested;
733 };
734 
735 struct kvm_hypervisor_cpuid {
736 	u32 base;
737 	u32 limit;
738 };
739 
740 #ifdef CONFIG_KVM_XEN
741 /* Xen HVM per vcpu emulation context */
742 struct kvm_vcpu_xen {
743 	u64 hypercall_rip;
744 	u32 current_runstate;
745 	u8 upcall_vector;
746 	struct gfn_to_pfn_cache vcpu_info_cache;
747 	struct gfn_to_pfn_cache vcpu_time_info_cache;
748 	struct gfn_to_pfn_cache runstate_cache;
749 	struct gfn_to_pfn_cache runstate2_cache;
750 	u64 last_steal;
751 	u64 runstate_entry_time;
752 	u64 runstate_times[4];
753 	unsigned long evtchn_pending_sel;
754 	u32 vcpu_id; /* The Xen / ACPI vCPU ID */
755 	u32 timer_virq;
756 	u64 timer_expires; /* In guest epoch */
757 	atomic_t timer_pending;
758 	struct hrtimer timer;
759 	int poll_evtchn;
760 	struct timer_list poll_timer;
761 	struct kvm_hypervisor_cpuid cpuid;
762 };
763 #endif
764 
765 struct kvm_queued_exception {
766 	bool pending;
767 	bool injected;
768 	bool has_error_code;
769 	u8 vector;
770 	u32 error_code;
771 	unsigned long payload;
772 	bool has_payload;
773 };
774 
775 /*
776  * Hardware-defined CPUID leafs that are either scattered by the kernel or are
777  * unknown to the kernel, but need to be directly used by KVM.  Note, these
778  * word values conflict with the kernel's "bug" caps, but KVM doesn't use those.
779  */
780 enum kvm_only_cpuid_leafs {
781 	CPUID_12_EAX	 = NCAPINTS,
782 	CPUID_7_1_EDX,
783 	CPUID_8000_0007_EDX,
784 	CPUID_8000_0022_EAX,
785 	CPUID_7_2_EDX,
786 	CPUID_24_0_EBX,
787 	CPUID_8000_0021_ECX,
788 	CPUID_7_1_ECX,
789 	CPUID_1E_1_EAX,
790 	CPUID_24_1_ECX,
791 	NR_KVM_CPU_CAPS,
792 
793 	NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS,
794 };
795 
796 struct kvm_vcpu_arch {
797 	/*
798 	 * rip and regs accesses must go through
799 	 * kvm_{register,rip}_{read,write} functions.
800 	 */
801 	unsigned long regs[NR_VCPU_REGS];
802 	u32 regs_avail;
803 	u32 regs_dirty;
804 
805 	unsigned long cr0;
806 	unsigned long cr0_guest_owned_bits;
807 	unsigned long cr2;
808 	unsigned long cr3;
809 	unsigned long cr4;
810 	unsigned long cr4_guest_owned_bits;
811 	unsigned long cr4_guest_rsvd_bits;
812 	unsigned long cr8;
813 	u32 host_pkru;
814 	u32 pkru;
815 	u32 hflags;
816 	u64 efer;
817 	u64 host_debugctl;
818 	u64 apic_base;
819 	struct kvm_lapic *apic;    /* kernel irqchip context */
820 	bool load_eoi_exitmap_pending;
821 	DECLARE_BITMAP(ioapic_handled_vectors, 256);
822 	unsigned long apic_attention;
823 	int32_t apic_arb_prio;
824 	int mp_state;
825 	u64 ia32_misc_enable_msr;
826 	u64 smbase;
827 	u64 smi_count;
828 	bool at_instruction_boundary;
829 	bool tpr_access_reporting;
830 	bool xfd_no_write_intercept;
831 	u64 microcode_version;
832 	u64 arch_capabilities;
833 	u64 perf_capabilities;
834 
835 	/*
836 	 * Paging state of the vcpu
837 	 *
838 	 * If the vcpu runs in guest mode with two level paging this still saves
839 	 * the paging mode of the l1 guest. This context is always used to
840 	 * handle faults.
841 	 */
842 	struct kvm_mmu *mmu;
843 
844 	/* Non-nested MMU for L1 */
845 	struct kvm_mmu root_mmu;
846 
847 	/* L1 MMU when running nested */
848 	struct kvm_mmu guest_mmu;
849 
850 	/*
851 	 * Paging state of an L2 guest (used for nested npt)
852 	 *
853 	 * This context will save all necessary information to walk page tables
854 	 * of an L2 guest. This context is only initialized for page table
855 	 * walking and not for faulting since we never handle l2 page faults on
856 	 * the host.
857 	 */
858 	struct kvm_mmu nested_mmu;
859 
860 	/*
861 	 * Pointer to the mmu context currently used for
862 	 * gva_to_gpa translations.
863 	 */
864 	struct kvm_mmu *walk_mmu;
865 
866 	struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
867 	struct kvm_mmu_memory_cache mmu_shadow_page_cache;
868 	struct kvm_mmu_memory_cache mmu_shadowed_info_cache;
869 	struct kvm_mmu_memory_cache mmu_page_header_cache;
870 	/*
871 	 * This cache is to allocate external page table. E.g. private EPT used
872 	 * by the TDX module.
873 	 */
874 	struct kvm_mmu_memory_cache mmu_external_spt_cache;
875 
876 	/*
877 	 * QEMU userspace and the guest each have their own FPU state.
878 	 * In vcpu_run, we switch between the user and guest FPU contexts.
879 	 * While running a VCPU, the VCPU thread will have the guest FPU
880 	 * context.
881 	 *
882 	 * Note that while the PKRU state lives inside the fpu registers,
883 	 * it is switched out separately at VMENTER and VMEXIT time. The
884 	 * "guest_fpstate" state here contains the guest FPU context, with the
885 	 * host PRKU bits.
886 	 */
887 	struct fpu_guest guest_fpu;
888 
889 	u64 xcr0;
890 	u64 guest_supported_xcr0;
891 	u64 ia32_xss;
892 	u64 guest_supported_xss;
893 
894 	struct kvm_pio_request pio;
895 	void *pio_data;
896 	void *sev_pio_data;
897 	unsigned sev_pio_count;
898 
899 	u8 event_exit_inst_len;
900 
901 	bool exception_from_userspace;
902 
903 	/* Exceptions to be injected to the guest. */
904 	struct kvm_queued_exception exception;
905 	/* Exception VM-Exits to be synthesized to L1. */
906 	struct kvm_queued_exception exception_vmexit;
907 
908 	struct kvm_queued_interrupt {
909 		bool injected;
910 		bool soft;
911 		u8 nr;
912 	} interrupt;
913 
914 	int halt_request; /* real mode on Intel only */
915 
916 	int cpuid_nent;
917 	struct kvm_cpuid_entry2 *cpuid_entries;
918 	bool cpuid_dynamic_bits_dirty;
919 	bool is_amd_compatible;
920 
921 	/*
922 	 * cpu_caps holds the effective guest capabilities, i.e. the features
923 	 * the vCPU is allowed to use.  Typically, but not always, features can
924 	 * be used by the guest if and only if both KVM and userspace want to
925 	 * expose the feature to the guest.
926 	 *
927 	 * A common exception is for virtualization holes, i.e. when KVM can't
928 	 * prevent the guest from using a feature, in which case the vCPU "has"
929 	 * the feature regardless of what KVM or userspace desires.
930 	 *
931 	 * Note, features that don't require KVM involvement in any way are
932 	 * NOT enforced/sanitized by KVM, i.e. are taken verbatim from the
933 	 * guest CPUID provided by userspace.
934 	 */
935 	u32 cpu_caps[NR_KVM_CPU_CAPS];
936 
937 	u64 reserved_gpa_bits;
938 	int maxphyaddr;
939 
940 	/* emulate context */
941 
942 	struct x86_emulate_ctxt *emulate_ctxt;
943 	bool emulate_regs_need_sync_to_vcpu;
944 	bool emulate_regs_need_sync_from_vcpu;
945 	int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
946 	unsigned long cui_linear_rip;
947 	int cui_rdmsr_imm_reg;
948 
949 	gpa_t time;
950 	s8  pvclock_tsc_shift;
951 	u32 pvclock_tsc_mul;
952 	unsigned int hw_tsc_khz;
953 	struct gfn_to_pfn_cache pv_time;
954 	/* set guest stopped flag in pvclock flags field */
955 	bool pvclock_set_guest_stopped_request;
956 
957 	struct {
958 		u8 preempted;
959 		u64 msr_val;
960 		u64 last_steal;
961 		struct gfn_to_hva_cache cache;
962 	} st;
963 
964 	u64 l1_tsc_offset;
965 	u64 tsc_offset; /* current tsc offset */
966 	u64 last_guest_tsc;
967 	u64 last_host_tsc;
968 	u64 tsc_offset_adjustment;
969 	u64 this_tsc_nsec;
970 	u64 this_tsc_write;
971 	u64 this_tsc_generation;
972 	bool tsc_catchup;
973 	bool tsc_always_catchup;
974 	s8 virtual_tsc_shift;
975 	u32 virtual_tsc_mult;
976 	u32 virtual_tsc_khz;
977 	s64 ia32_tsc_adjust_msr;
978 	u64 msr_ia32_power_ctl;
979 	u64 l1_tsc_scaling_ratio;
980 	u64 tsc_scaling_ratio; /* current scaling ratio */
981 
982 	atomic_t nmi_queued;  /* unprocessed asynchronous NMIs */
983 	/* Number of NMIs pending injection, not including hardware vNMIs. */
984 	unsigned int nmi_pending;
985 	bool nmi_injected;    /* Trying to inject an NMI this entry */
986 	bool smi_pending;    /* SMI queued after currently running handler */
987 	u8 handling_intr_from_guest;
988 
989 	struct kvm_mtrr mtrr_state;
990 	u64 pat;
991 
992 	unsigned switch_db_regs;
993 	unsigned long db[KVM_NR_DB_REGS];
994 	unsigned long dr6;
995 	unsigned long dr7;
996 	unsigned long eff_db[KVM_NR_DB_REGS];
997 	unsigned long guest_debug_dr7;
998 	u64 msr_platform_info;
999 	u64 msr_misc_features_enables;
1000 
1001 	u64 mcg_cap;
1002 	u64 mcg_status;
1003 	u64 mcg_ctl;
1004 	u64 mcg_ext_ctl;
1005 	u64 *mce_banks;
1006 	u64 *mci_ctl2_banks;
1007 
1008 	/* Cache MMIO info */
1009 	u64 mmio_gva;
1010 	unsigned mmio_access;
1011 	gfn_t mmio_gfn;
1012 	u64 mmio_gen;
1013 
1014 	struct kvm_pmu pmu;
1015 
1016 	/* used for guest single stepping over the given code position */
1017 	unsigned long singlestep_rip;
1018 
1019 #ifdef CONFIG_KVM_HYPERV
1020 	bool hyperv_enabled;
1021 	struct kvm_vcpu_hv *hyperv;
1022 #endif
1023 #ifdef CONFIG_KVM_XEN
1024 	struct kvm_vcpu_xen xen;
1025 #endif
1026 	cpumask_var_t wbinvd_dirty_mask;
1027 
1028 	unsigned long last_retry_eip;
1029 	unsigned long last_retry_addr;
1030 
1031 	struct {
1032 		bool halted;
1033 		gfn_t gfns[ASYNC_PF_PER_VCPU];
1034 		struct gfn_to_hva_cache data;
1035 		u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
1036 		u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
1037 		u16 vec;
1038 		u32 id;
1039 		u32 host_apf_flags;
1040 		bool send_always;
1041 		bool delivery_as_pf_vmexit;
1042 		bool pageready_pending;
1043 	} apf;
1044 
1045 	/* OSVW MSRs (AMD only) */
1046 	struct {
1047 		u64 length;
1048 		u64 status;
1049 	} osvw;
1050 
1051 	struct {
1052 		u64 msr_val;
1053 		struct gfn_to_hva_cache data;
1054 	} pv_eoi;
1055 
1056 	u64 msr_kvm_poll_control;
1057 
1058 	/* pv related host specific info */
1059 	struct {
1060 		bool pv_unhalted;
1061 	} pv;
1062 
1063 	int pending_ioapic_eoi;
1064 	int pending_external_vector;
1065 	int highest_stale_pending_ioapic_eoi;
1066 
1067 	/* be preempted when it's in kernel-mode(cpl=0) */
1068 	bool preempted_in_kernel;
1069 
1070 	/* Host CPU on which VM-entry was most recently attempted */
1071 	int last_vmentry_cpu;
1072 
1073 	/* AMD MSRC001_0015 Hardware Configuration */
1074 	u64 msr_hwcr;
1075 
1076 	/* pv related cpuid info */
1077 	struct {
1078 		/*
1079 		 * value of the eax register in the KVM_CPUID_FEATURES CPUID
1080 		 * leaf.
1081 		 */
1082 		u32 features;
1083 
1084 		/*
1085 		 * indicates whether pv emulation should be disabled if features
1086 		 * are not present in the guest's cpuid
1087 		 */
1088 		bool enforce;
1089 	} pv_cpuid;
1090 
1091 	/* Protected Guests */
1092 	bool guest_state_protected;
1093 	bool guest_tsc_protected;
1094 
1095 	/*
1096 	 * Set when PDPTS were loaded directly by the userspace without
1097 	 * reading the guest memory
1098 	 */
1099 	bool pdptrs_from_userspace;
1100 
1101 #if IS_ENABLED(CONFIG_HYPERV)
1102 	hpa_t hv_root_tdp;
1103 #endif
1104 };
1105 
1106 struct kvm_lpage_info {
1107 	int disallow_lpage;
1108 };
1109 
1110 struct kvm_arch_memory_slot {
1111 	struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
1112 	struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
1113 	unsigned short *gfn_write_track;
1114 };
1115 
1116 /*
1117  * Track the mode of the optimized logical map, as the rules for decoding the
1118  * destination vary per mode.  Enabling the optimized logical map requires all
1119  * software-enabled local APIs to be in the same mode, each addressable APIC to
1120  * be mapped to only one MDA, and each MDA to map to at most one APIC.
1121  */
1122 enum kvm_apic_logical_mode {
1123 	/* All local APICs are software disabled. */
1124 	KVM_APIC_MODE_SW_DISABLED,
1125 	/* All software enabled local APICs in xAPIC cluster addressing mode. */
1126 	KVM_APIC_MODE_XAPIC_CLUSTER,
1127 	/* All software enabled local APICs in xAPIC flat addressing mode. */
1128 	KVM_APIC_MODE_XAPIC_FLAT,
1129 	/* All software enabled local APICs in x2APIC mode. */
1130 	KVM_APIC_MODE_X2APIC,
1131 	/*
1132 	 * Optimized map disabled, e.g. not all local APICs in the same logical
1133 	 * mode, same logical ID assigned to multiple APICs, etc.
1134 	 */
1135 	KVM_APIC_MODE_MAP_DISABLED,
1136 };
1137 
1138 struct kvm_apic_map {
1139 	struct rcu_head rcu;
1140 	enum kvm_apic_logical_mode logical_mode;
1141 	u32 max_apic_id;
1142 	union {
1143 		struct kvm_lapic *xapic_flat_map[8];
1144 		struct kvm_lapic *xapic_cluster_map[16][4];
1145 	};
1146 	struct kvm_lapic *phys_map[];
1147 };
1148 
1149 /* Hyper-V synthetic debugger (SynDbg)*/
1150 struct kvm_hv_syndbg {
1151 	struct {
1152 		u64 control;
1153 		u64 status;
1154 		u64 send_page;
1155 		u64 recv_page;
1156 		u64 pending_page;
1157 	} control;
1158 	u64 options;
1159 };
1160 
1161 /* Current state of Hyper-V TSC page clocksource */
1162 enum hv_tsc_page_status {
1163 	/* TSC page was not set up or disabled */
1164 	HV_TSC_PAGE_UNSET = 0,
1165 	/* TSC page MSR was written by the guest, update pending */
1166 	HV_TSC_PAGE_GUEST_CHANGED,
1167 	/* TSC page update was triggered from the host side */
1168 	HV_TSC_PAGE_HOST_CHANGED,
1169 	/* TSC page was properly set up and is currently active  */
1170 	HV_TSC_PAGE_SET,
1171 	/* TSC page was set up with an inaccessible GPA */
1172 	HV_TSC_PAGE_BROKEN,
1173 };
1174 
1175 #ifdef CONFIG_KVM_HYPERV
1176 /* Hyper-V emulation context */
1177 struct kvm_hv {
1178 	struct mutex hv_lock;
1179 	u64 hv_guest_os_id;
1180 	u64 hv_hypercall;
1181 	u64 hv_tsc_page;
1182 	enum hv_tsc_page_status hv_tsc_page_status;
1183 
1184 	/* Hyper-v based guest crash (NT kernel bugcheck) parameters */
1185 	u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
1186 	u64 hv_crash_ctl;
1187 
1188 	struct ms_hyperv_tsc_page tsc_ref;
1189 
1190 	struct idr conn_to_evt;
1191 
1192 	u64 hv_reenlightenment_control;
1193 	u64 hv_tsc_emulation_control;
1194 	u64 hv_tsc_emulation_status;
1195 	u64 hv_invtsc_control;
1196 
1197 	/* How many vCPUs have VP index != vCPU index */
1198 	atomic_t num_mismatched_vp_indexes;
1199 
1200 	/*
1201 	 * How many SynICs use 'AutoEOI' feature
1202 	 * (protected by arch.apicv_update_lock)
1203 	 */
1204 	unsigned int synic_auto_eoi_used;
1205 
1206 	struct kvm_hv_syndbg hv_syndbg;
1207 
1208 	bool xsaves_xsavec_checked;
1209 };
1210 #endif
1211 
1212 struct msr_bitmap_range {
1213 	u32 flags;
1214 	u32 nmsrs;
1215 	u32 base;
1216 	unsigned long *bitmap;
1217 };
1218 
1219 #ifdef CONFIG_KVM_XEN
1220 /* Xen emulation context */
1221 struct kvm_xen {
1222 	struct mutex xen_lock;
1223 	u32 xen_version;
1224 	bool long_mode;
1225 	bool runstate_update_flag;
1226 	u8 upcall_vector;
1227 	struct gfn_to_pfn_cache shinfo_cache;
1228 	struct idr evtchn_ports;
1229 	unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
1230 
1231 	struct kvm_xen_hvm_config hvm_config;
1232 };
1233 #endif
1234 
1235 enum kvm_irqchip_mode {
1236 	KVM_IRQCHIP_NONE,
1237 #ifdef CONFIG_KVM_IOAPIC
1238 	KVM_IRQCHIP_KERNEL,       /* created with KVM_CREATE_IRQCHIP */
1239 #endif
1240 	KVM_IRQCHIP_SPLIT,        /* created with KVM_CAP_SPLIT_IRQCHIP */
1241 };
1242 
1243 enum kvm_suppress_eoi_broadcast_mode {
1244 	KVM_SUPPRESS_EOI_BROADCAST_QUIRKED, /* Legacy behavior */
1245 	KVM_SUPPRESS_EOI_BROADCAST_ENABLED, /* Enable Suppress EOI broadcast */
1246 	KVM_SUPPRESS_EOI_BROADCAST_DISABLED /* Disable Suppress EOI broadcast */
1247 };
1248 
1249 struct kvm_x86_msr_filter {
1250 	u8 count;
1251 	bool default_allow:1;
1252 	struct msr_bitmap_range ranges[16];
1253 };
1254 
1255 struct kvm_x86_pmu_event_filter {
1256 	__u32 action;
1257 	__u32 nevents;
1258 	__u32 fixed_counter_bitmap;
1259 	__u32 flags;
1260 	__u32 nr_includes;
1261 	__u32 nr_excludes;
1262 	__u64 *includes;
1263 	__u64 *excludes;
1264 	__u64 events[];
1265 };
1266 
1267 enum kvm_apicv_inhibit {
1268 
1269 	/********************************************************************/
1270 	/* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
1271 	/********************************************************************/
1272 
1273 	/*
1274 	 * APIC acceleration is disabled by a module parameter
1275 	 * and/or not supported in hardware.
1276 	 */
1277 	APICV_INHIBIT_REASON_DISABLED,
1278 
1279 	/*
1280 	 * APIC acceleration is inhibited because AutoEOI feature is
1281 	 * being used by a HyperV guest.
1282 	 */
1283 	APICV_INHIBIT_REASON_HYPERV,
1284 
1285 	/*
1286 	 * APIC acceleration is inhibited because the userspace didn't yet
1287 	 * enable the kernel/split irqchip.
1288 	 */
1289 	APICV_INHIBIT_REASON_ABSENT,
1290 
1291 	/* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
1292 	 * (out of band, debug measure of blocking all interrupts on this vCPU)
1293 	 * was enabled, to avoid AVIC/APICv bypassing it.
1294 	 */
1295 	APICV_INHIBIT_REASON_BLOCKIRQ,
1296 
1297 	/*
1298 	 * APICv is disabled because not all vCPUs have a 1:1 mapping between
1299 	 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack.
1300 	 */
1301 	APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED,
1302 
1303 	/*
1304 	 * For simplicity, the APIC acceleration is inhibited
1305 	 * first time either APIC ID or APIC base are changed by the guest
1306 	 * from their reset values.
1307 	 */
1308 	APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
1309 	APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
1310 
1311 	/******************************************************/
1312 	/* INHIBITs that are relevant only to the AMD's AVIC. */
1313 	/******************************************************/
1314 
1315 	/*
1316 	 * AVIC is inhibited on a vCPU because it runs a nested guest.
1317 	 *
1318 	 * This is needed because unlike APICv, the peers of this vCPU
1319 	 * cannot use the doorbell mechanism to signal interrupts via AVIC when
1320 	 * a vCPU runs nested.
1321 	 */
1322 	APICV_INHIBIT_REASON_NESTED,
1323 
1324 	/*
1325 	 * On SVM, the wait for the IRQ window is implemented with pending vIRQ,
1326 	 * which cannot be injected when the AVIC is enabled, thus AVIC
1327 	 * is inhibited while KVM waits for IRQ window.
1328 	 */
1329 	APICV_INHIBIT_REASON_IRQWIN,
1330 
1331 	/*
1332 	 * PIT (i8254) 're-inject' mode, relies on EOI intercept,
1333 	 * which AVIC doesn't support for edge triggered interrupts.
1334 	 */
1335 	APICV_INHIBIT_REASON_PIT_REINJ,
1336 
1337 	/*
1338 	 * AVIC is disabled because SEV doesn't support it.
1339 	 */
1340 	APICV_INHIBIT_REASON_SEV,
1341 
1342 	/*
1343 	 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1
1344 	 * mapping between logical ID and vCPU.
1345 	 */
1346 	APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED,
1347 
1348 	/*
1349 	 * AVIC is disabled because the vCPU's APIC ID is beyond the max
1350 	 * supported by AVIC/x2AVIC, i.e. the vCPU is unaddressable.
1351 	 */
1352 	APICV_INHIBIT_REASON_PHYSICAL_ID_TOO_BIG,
1353 
1354 	NR_APICV_INHIBIT_REASONS,
1355 };
1356 
1357 #define __APICV_INHIBIT_REASON(reason)			\
1358 	{ BIT(APICV_INHIBIT_REASON_##reason), #reason }
1359 
1360 #define APICV_INHIBIT_REASONS				\
1361 	__APICV_INHIBIT_REASON(DISABLED),		\
1362 	__APICV_INHIBIT_REASON(HYPERV),			\
1363 	__APICV_INHIBIT_REASON(ABSENT),			\
1364 	__APICV_INHIBIT_REASON(BLOCKIRQ),		\
1365 	__APICV_INHIBIT_REASON(PHYSICAL_ID_ALIASED),	\
1366 	__APICV_INHIBIT_REASON(APIC_ID_MODIFIED),	\
1367 	__APICV_INHIBIT_REASON(APIC_BASE_MODIFIED),	\
1368 	__APICV_INHIBIT_REASON(NESTED),			\
1369 	__APICV_INHIBIT_REASON(IRQWIN),			\
1370 	__APICV_INHIBIT_REASON(PIT_REINJ),		\
1371 	__APICV_INHIBIT_REASON(SEV),			\
1372 	__APICV_INHIBIT_REASON(LOGICAL_ID_ALIASED),	\
1373 	__APICV_INHIBIT_REASON(PHYSICAL_ID_TOO_BIG)
1374 
1375 struct kvm_possible_nx_huge_pages {
1376 	/*
1377 	 * A list of kvm_mmu_page structs that, if zapped, could possibly be
1378 	 * replaced by an NX huge page.  A shadow page is on this list if its
1379 	 * existence disallows an NX huge page (nx_huge_page_disallowed is set)
1380 	 * and there are no other conditions that prevent a huge page, e.g.
1381 	 * the backing host page is huge, dirtly logging is not enabled for its
1382 	 * memslot, etc...  Note, zapping shadow pages on this list doesn't
1383 	 * guarantee an NX huge page will be created in its stead, e.g. if the
1384 	 * guest attempts to execute from the region then KVM obviously can't
1385 	 * create an NX huge page (without hanging the guest).
1386 	 */
1387 	struct list_head pages;
1388 	u64 nr_pages;
1389 };
1390 
1391 enum kvm_mmu_type {
1392 	KVM_SHADOW_MMU,
1393 #ifdef CONFIG_X86_64
1394 	KVM_TDP_MMU,
1395 #endif
1396 	KVM_NR_MMU_TYPES,
1397 };
1398 
1399 struct kvm_arch {
1400 	unsigned long n_used_mmu_pages;
1401 	unsigned long n_requested_mmu_pages;
1402 	unsigned long n_max_mmu_pages;
1403 	unsigned int indirect_shadow_pages;
1404 	u8 mmu_valid_gen;
1405 	u8 vm_type;
1406 	bool has_private_mem;
1407 	bool has_protected_state;
1408 	bool has_protected_eoi;
1409 	bool pre_fault_allowed;
1410 	struct hlist_head *mmu_page_hash;
1411 	struct list_head active_mmu_pages;
1412 	struct kvm_possible_nx_huge_pages possible_nx_huge_pages[KVM_NR_MMU_TYPES];
1413 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1414 	struct kvm_page_track_notifier_head track_notifier_head;
1415 #endif
1416 	/*
1417 	 * Protects marking pages unsync during page faults, as TDP MMU page
1418 	 * faults only take mmu_lock for read.  For simplicity, the unsync
1419 	 * pages lock is always taken when marking pages unsync regardless of
1420 	 * whether mmu_lock is held for read or write.
1421 	 */
1422 	spinlock_t mmu_unsync_pages_lock;
1423 
1424 	u64 shadow_mmio_value;
1425 
1426 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1427 	atomic_t noncoherent_dma_count;
1428 	unsigned long nr_possible_bypass_irqs;
1429 
1430 #ifdef CONFIG_KVM_IOAPIC
1431 	struct kvm_pic *vpic;
1432 	struct kvm_ioapic *vioapic;
1433 	struct kvm_pit *vpit;
1434 #endif
1435 	atomic_t vapics_in_nmi_mode;
1436 	struct mutex apic_map_lock;
1437 	struct kvm_apic_map __rcu *apic_map;
1438 	atomic_t apic_map_dirty;
1439 
1440 	bool apic_access_memslot_enabled;
1441 	bool apic_access_memslot_inhibited;
1442 
1443 	/* Protects apicv_inhibit_reasons */
1444 	struct rw_semaphore apicv_update_lock;
1445 	unsigned long apicv_inhibit_reasons;
1446 
1447 	gpa_t wall_clock;
1448 
1449 	u64 disabled_exits;
1450 
1451 	s64 kvmclock_offset;
1452 
1453 	/*
1454 	 * This also protects nr_vcpus_matched_tsc which is read from a
1455 	 * preemption-disabled region, so it must be a raw spinlock.
1456 	 */
1457 	raw_spinlock_t tsc_write_lock;
1458 	u64 last_tsc_nsec;
1459 	u64 last_tsc_write;
1460 	u32 last_tsc_khz;
1461 	u64 last_tsc_offset;
1462 	u64 cur_tsc_nsec;
1463 	u64 cur_tsc_write;
1464 	u64 cur_tsc_offset;
1465 	u64 cur_tsc_generation;
1466 	int nr_vcpus_matched_tsc;
1467 
1468 	u32 default_tsc_khz;
1469 	bool user_set_tsc;
1470 	u64 apic_bus_cycle_ns;
1471 
1472 	seqcount_raw_spinlock_t pvclock_sc;
1473 	bool use_master_clock;
1474 	u64 master_kernel_ns;
1475 	u64 master_cycle_now;
1476 
1477 #ifdef CONFIG_KVM_HYPERV
1478 	struct kvm_hv hyperv;
1479 #endif
1480 
1481 #ifdef CONFIG_KVM_XEN
1482 	struct kvm_xen xen;
1483 #endif
1484 
1485 	bool backwards_tsc_observed;
1486 	bool boot_vcpu_runs_old_kvmclock;
1487 	u32 bsp_vcpu_id;
1488 
1489 	u64 disabled_quirks;
1490 
1491 	enum kvm_irqchip_mode irqchip_mode;
1492 	u8 nr_reserved_ioapic_pins;
1493 
1494 	bool disabled_lapic_found;
1495 
1496 	bool x2apic_format;
1497 	bool x2apic_broadcast_quirk_disabled;
1498 	enum kvm_suppress_eoi_broadcast_mode suppress_eoi_broadcast_mode;
1499 
1500 	bool has_mapped_host_mmio;
1501 	bool guest_can_read_msr_platform_info;
1502 	bool exception_payload_enabled;
1503 
1504 	bool triple_fault_event;
1505 
1506 	bool bus_lock_detection_enabled;
1507 	bool enable_pmu;
1508 	bool created_mediated_pmu;
1509 
1510 	u32 notify_window;
1511 	u32 notify_vmexit_flags;
1512 	/*
1513 	 * If exit_on_emulation_error is set, and the in-kernel instruction
1514 	 * emulator fails to emulate an instruction, allow userspace
1515 	 * the opportunity to look at it.
1516 	 */
1517 	bool exit_on_emulation_error;
1518 
1519 	/* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1520 	u32 user_space_msr_mask;
1521 	struct kvm_x86_msr_filter __rcu *msr_filter;
1522 
1523 	u32 hypercall_exit_enabled;
1524 
1525 	/* Guest can access the SGX PROVISIONKEY. */
1526 	bool sgx_provisioning_allowed;
1527 
1528 	struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter;
1529 	struct vhost_task *nx_huge_page_recovery_thread;
1530 	u64 nx_huge_page_last;
1531 	struct once nx_once;
1532 
1533 #ifdef CONFIG_X86_64
1534 #ifdef CONFIG_KVM_PROVE_MMU
1535 	/*
1536 	 * The number of TDP MMU pages across all roots.  Used only to sanity
1537 	 * check that KVM isn't leaking TDP MMU pages.
1538 	 */
1539 	atomic64_t tdp_mmu_pages;
1540 #endif
1541 
1542 	/*
1543 	 * List of struct kvm_mmu_pages being used as roots.
1544 	 * All struct kvm_mmu_pages in the list should have
1545 	 * tdp_mmu_page set.
1546 	 *
1547 	 * For reads, this list is protected by:
1548 	 *	RCU alone or
1549 	 *	the MMU lock in read mode + RCU or
1550 	 *	the MMU lock in write mode
1551 	 *
1552 	 * For writes, this list is protected by tdp_mmu_pages_lock; see
1553 	 * below for the details.
1554 	 *
1555 	 * Roots will remain in the list until their tdp_mmu_root_count
1556 	 * drops to zero, at which point the thread that decremented the
1557 	 * count to zero should removed the root from the list and clean
1558 	 * it up, freeing the root after an RCU grace period.
1559 	 */
1560 	struct list_head tdp_mmu_roots;
1561 
1562 	/*
1563 	 * Protects accesses to the following fields when the MMU lock
1564 	 * is held in read mode:
1565 	 *  - tdp_mmu_roots (above)
1566 	 *  - the link field of kvm_mmu_page structs used by the TDP MMU
1567 	 *  - possible_nx_huge_pages[KVM_TDP_MMU];
1568 	 *  - the possible_nx_huge_page_link field of kvm_mmu_page structs used
1569 	 *    by the TDP MMU
1570 	 * Because the lock is only taken within the MMU lock, strictly
1571 	 * speaking it is redundant to acquire this lock when the thread
1572 	 * holds the MMU lock in write mode.  However it often simplifies
1573 	 * the code to do so.
1574 	 */
1575 	spinlock_t tdp_mmu_pages_lock;
1576 #endif /* CONFIG_X86_64 */
1577 
1578 	/*
1579 	 * If set, at least one shadow root has been allocated. This flag
1580 	 * is used as one input when determining whether certain memslot
1581 	 * related allocations are necessary.
1582 	 */
1583 	bool shadow_root_allocated;
1584 
1585 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1586 	/*
1587 	 * If set, the VM has (or had) an external write tracking user, and
1588 	 * thus all write tracking metadata has been allocated, even if KVM
1589 	 * itself isn't using write tracking.
1590 	 */
1591 	bool external_write_tracking_enabled;
1592 #endif
1593 
1594 #if IS_ENABLED(CONFIG_HYPERV)
1595 	hpa_t	hv_root_tdp;
1596 	spinlock_t hv_root_tdp_lock;
1597 	struct hv_partition_assist_pg *hv_pa_pg;
1598 #endif
1599 	/*
1600 	 * VM-scope maximum vCPU ID. Used to determine the size of structures
1601 	 * that increase along with the maximum vCPU ID, in which case, using
1602 	 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste.
1603 	 */
1604 	u32 max_vcpu_ids;
1605 
1606 	bool disable_nx_huge_pages;
1607 
1608 	/*
1609 	 * Memory caches used to allocate shadow pages when performing eager
1610 	 * page splitting. No need for a shadowed_info_cache since eager page
1611 	 * splitting only allocates direct shadow pages.
1612 	 *
1613 	 * Protected by kvm->slots_lock.
1614 	 */
1615 	struct kvm_mmu_memory_cache split_shadow_page_cache;
1616 	struct kvm_mmu_memory_cache split_page_header_cache;
1617 
1618 	/*
1619 	 * Memory cache used to allocate pte_list_desc structs while splitting
1620 	 * huge pages. In the worst case, to split one huge page, 512
1621 	 * pte_list_desc structs are needed to add each lower level leaf sptep
1622 	 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level
1623 	 * page table.
1624 	 *
1625 	 * Protected by kvm->slots_lock.
1626 	 */
1627 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1)
1628 	struct kvm_mmu_memory_cache split_desc_cache;
1629 
1630 	gfn_t gfn_direct_bits;
1631 
1632 	/*
1633 	 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A Zero
1634 	 * value indicates CPU dirty logging is unsupported or disabled in
1635 	 * current VM.
1636 	 */
1637 	int cpu_dirty_log_size;
1638 };
1639 
1640 struct kvm_vm_stat {
1641 	struct kvm_vm_stat_generic generic;
1642 	u64 mmu_shadow_zapped;
1643 	u64 mmu_pte_write;
1644 	u64 mmu_pde_zapped;
1645 	u64 mmu_flooded;
1646 	u64 mmu_recycled;
1647 	u64 mmu_cache_miss;
1648 	u64 mmu_unsync;
1649 	union {
1650 		struct {
1651 			atomic64_t pages_4k;
1652 			atomic64_t pages_2m;
1653 			atomic64_t pages_1g;
1654 		};
1655 		atomic64_t pages[KVM_NR_PAGE_SIZES];
1656 	};
1657 	u64 nx_lpage_splits;
1658 	u64 max_mmu_page_hash_collisions;
1659 	u64 max_mmu_rmap_size;
1660 };
1661 
1662 struct kvm_vcpu_stat {
1663 	struct kvm_vcpu_stat_generic generic;
1664 	u64 pf_taken;
1665 	u64 pf_fixed;
1666 	u64 pf_emulate;
1667 	u64 pf_spurious;
1668 	u64 pf_fast;
1669 	u64 pf_mmio_spte_created;
1670 	u64 pf_guest;
1671 	u64 tlb_flush;
1672 	u64 invlpg;
1673 
1674 	u64 exits;
1675 	u64 io_exits;
1676 	u64 mmio_exits;
1677 	u64 signal_exits;
1678 	u64 irq_window_exits;
1679 	u64 nmi_window_exits;
1680 	u64 l1d_flush;
1681 	u64 halt_exits;
1682 	u64 request_irq_exits;
1683 	u64 irq_exits;
1684 	u64 host_state_reload;
1685 	u64 fpu_reload;
1686 	u64 insn_emulation;
1687 	u64 insn_emulation_fail;
1688 	u64 hypercalls;
1689 	u64 irq_injections;
1690 	u64 nmi_injections;
1691 	u64 req_event;
1692 	u64 nested_run;
1693 	u64 directed_yield_attempted;
1694 	u64 directed_yield_successful;
1695 	u64 preemption_reported;
1696 	u64 preemption_other;
1697 	u64 guest_mode;
1698 	u64 notify_window_exits;
1699 };
1700 
1701 struct x86_instruction_info;
1702 
1703 struct msr_data {
1704 	bool host_initiated;
1705 	u32 index;
1706 	u64 data;
1707 };
1708 
1709 struct kvm_lapic_irq {
1710 	u32 vector;
1711 	u16 delivery_mode;
1712 	u16 dest_mode;
1713 	bool level;
1714 	u16 trig_mode;
1715 	u32 shorthand;
1716 	u32 dest_id;
1717 	bool msi_redir_hint;
1718 };
1719 
1720 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1721 {
1722 	return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1723 }
1724 
1725 enum kvm_x86_run_flags {
1726 	KVM_RUN_FORCE_IMMEDIATE_EXIT	= BIT(0),
1727 	KVM_RUN_LOAD_GUEST_DR6		= BIT(1),
1728 	KVM_RUN_LOAD_DEBUGCTL		= BIT(2),
1729 };
1730 
1731 struct kvm_x86_ops {
1732 	const char *name;
1733 
1734 	int (*check_processor_compatibility)(void);
1735 
1736 	int (*enable_virtualization_cpu)(void);
1737 	void (*disable_virtualization_cpu)(void);
1738 	cpu_emergency_virt_cb *emergency_disable_virtualization_cpu;
1739 
1740 	void (*hardware_unsetup)(void);
1741 	bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1742 	void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1743 
1744 	unsigned int vm_size;
1745 	int (*vm_init)(struct kvm *kvm);
1746 	void (*vm_destroy)(struct kvm *kvm);
1747 	void (*vm_pre_destroy)(struct kvm *kvm);
1748 
1749 	/* Create, but do not attach this VCPU */
1750 	int (*vcpu_precreate)(struct kvm *kvm);
1751 	int (*vcpu_create)(struct kvm_vcpu *vcpu);
1752 	void (*vcpu_free)(struct kvm_vcpu *vcpu);
1753 	void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1754 
1755 	void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
1756 	void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1757 	void (*vcpu_put)(struct kvm_vcpu *vcpu);
1758 
1759 	/*
1760 	 * Mask of DEBUGCTL bits that are owned by the host, i.e. that need to
1761 	 * match the host's value even while the guest is active.
1762 	 */
1763 	const u64 HOST_OWNED_DEBUGCTL;
1764 
1765 	void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1766 	int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1767 	int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1768 	u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1769 	void (*get_segment)(struct kvm_vcpu *vcpu,
1770 			    struct kvm_segment *var, int seg);
1771 	int (*get_cpl)(struct kvm_vcpu *vcpu);
1772 	int (*get_cpl_no_cache)(struct kvm_vcpu *vcpu);
1773 	void (*set_segment)(struct kvm_vcpu *vcpu,
1774 			    struct kvm_segment *var, int seg);
1775 	void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1776 	bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1777 	void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1778 	void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1779 	bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1780 	void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1781 	int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1782 	void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1783 	void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1784 	void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1785 	void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1786 	void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1787 	void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1788 	void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1789 	unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1790 	void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1791 	bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1792 
1793 	void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
1794 	void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
1795 #if IS_ENABLED(CONFIG_HYPERV)
1796 	int  (*flush_remote_tlbs)(struct kvm *kvm);
1797 	int  (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn,
1798 					gfn_t nr_pages);
1799 #endif
1800 
1801 	/*
1802 	 * Flush any TLB entries associated with the given GVA.
1803 	 * Does not need to flush GPA->HPA mappings.
1804 	 * Can potentially get non-canonical addresses through INVLPGs, which
1805 	 * the implementation may choose to ignore if appropriate.
1806 	 */
1807 	void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1808 
1809 	/*
1810 	 * Flush any TLB entries created by the guest.  Like tlb_flush_gva(),
1811 	 * does not need to flush GPA->HPA mappings.
1812 	 */
1813 	void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
1814 
1815 	int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
1816 	enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu,
1817 						  u64 run_flags);
1818 	int (*handle_exit)(struct kvm_vcpu *vcpu,
1819 		enum exit_fastpath_completion exit_fastpath);
1820 	int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1821 	void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1822 	void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1823 	u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1824 	void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1825 				unsigned char *hypercall_addr);
1826 	void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected);
1827 	void (*inject_nmi)(struct kvm_vcpu *vcpu);
1828 	void (*inject_exception)(struct kvm_vcpu *vcpu);
1829 	void (*cancel_injection)(struct kvm_vcpu *vcpu);
1830 	int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1831 	int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1832 	bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1833 	void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1834 	/* Whether or not a virtual NMI is pending in hardware. */
1835 	bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu);
1836 	/*
1837 	 * Attempt to pend a virtual NMI in hardware.  Returns %true on success
1838 	 * to allow using static_call_ret0 as the fallback.
1839 	 */
1840 	bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu);
1841 	void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1842 	void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1843 	void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1844 
1845 	const bool x2apic_icr_is_split;
1846 	const unsigned long required_apicv_inhibits;
1847 	bool allow_apicv_in_x2apic_without_x2apic_virtualization;
1848 	void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1849 	void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr);
1850 	void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1851 	void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1852 	void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1853 	void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
1854 				  int trig_mode, int vector);
1855 	int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1856 	int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1857 	int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1858 	u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1859 
1860 	void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1861 			     int root_level);
1862 
1863 	/* Update external mapping with page table link. */
1864 	int (*link_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1865 				void *external_spt);
1866 	/* Update the external page table from spte getting set. */
1867 	int (*set_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1868 				 u64 mirror_spte);
1869 
1870 	/* Update external page tables for page table about to be freed. */
1871 	int (*free_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1872 				 void *external_spt);
1873 
1874 	/* Update external page table from spte getting removed, and flush TLB. */
1875 	void (*remove_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1876 				     u64 mirror_spte);
1877 
1878 	bool (*has_wbinvd_exit)(void);
1879 
1880 	u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1881 	u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1882 	void (*write_tsc_offset)(struct kvm_vcpu *vcpu);
1883 	void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu);
1884 
1885 	/*
1886 	 * Retrieve somewhat arbitrary exit/entry information.  Intended to
1887 	 * be used only from within tracepoints or error paths.
1888 	 */
1889 	void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1890 			      u64 *info1, u64 *info2,
1891 			      u32 *intr_info, u32 *error_code);
1892 
1893 	void (*get_entry_info)(struct kvm_vcpu *vcpu,
1894 			       u32 *intr_info, u32 *error_code);
1895 
1896 	int (*check_intercept)(struct kvm_vcpu *vcpu,
1897 			       struct x86_instruction_info *info,
1898 			       enum x86_intercept_stage stage,
1899 			       struct x86_exception *exception);
1900 	void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1901 
1902 	void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1903 
1904 	const struct kvm_x86_nested_ops *nested_ops;
1905 
1906 	void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1907 	void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1908 
1909 	int (*pi_update_irte)(struct kvm_kernel_irqfd *irqfd, struct kvm *kvm,
1910 			      unsigned int host_irq, uint32_t guest_irq,
1911 			      struct kvm_vcpu *vcpu, u32 vector);
1912 	void (*pi_start_bypass)(struct kvm *kvm);
1913 	void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu);
1914 	void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1915 	bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1916 	bool (*protected_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1917 
1918 	int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1919 			    bool *expired);
1920 	void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1921 
1922 	void (*setup_mce)(struct kvm_vcpu *vcpu);
1923 
1924 #ifdef CONFIG_KVM_SMM
1925 	int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1926 	int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram);
1927 	int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram);
1928 	void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1929 #endif
1930 
1931 	int (*dev_get_attr)(u32 group, u64 attr, u64 *val);
1932 	int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
1933 	int (*vcpu_mem_enc_ioctl)(struct kvm_vcpu *vcpu, void __user *argp);
1934 	int (*vcpu_mem_enc_unlocked_ioctl)(struct kvm_vcpu *vcpu, void __user *argp);
1935 	int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1936 	int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1937 	int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1938 	int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1939 	void (*guest_memory_reclaimed)(struct kvm *kvm);
1940 
1941 	int (*get_feature_msr)(u32 msr, u64 *data);
1942 
1943 	int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
1944 					 void *insn, int insn_len);
1945 
1946 	bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1947 	int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu);
1948 
1949 	void (*migrate_timers)(struct kvm_vcpu *vcpu);
1950 	void (*recalc_intercepts)(struct kvm_vcpu *vcpu);
1951 	int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1952 
1953 	void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1954 
1955 	/*
1956 	 * Returns vCPU specific APICv inhibit reasons
1957 	 */
1958 	unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
1959 
1960 	gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags);
1961 	void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu);
1962 	int (*gmem_prepare)(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order);
1963 	void (*gmem_invalidate)(kvm_pfn_t start, kvm_pfn_t end);
1964 	int (*gmem_max_mapping_level)(struct kvm *kvm, kvm_pfn_t pfn, bool is_private);
1965 };
1966 
1967 struct kvm_x86_nested_ops {
1968 	void (*leave_nested)(struct kvm_vcpu *vcpu);
1969 	bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector,
1970 				    u32 error_code);
1971 	int (*check_events)(struct kvm_vcpu *vcpu);
1972 	bool (*has_events)(struct kvm_vcpu *vcpu, bool for_injection);
1973 	void (*triple_fault)(struct kvm_vcpu *vcpu);
1974 	int (*get_state)(struct kvm_vcpu *vcpu,
1975 			 struct kvm_nested_state __user *user_kvm_nested_state,
1976 			 unsigned user_data_size);
1977 	int (*set_state)(struct kvm_vcpu *vcpu,
1978 			 struct kvm_nested_state __user *user_kvm_nested_state,
1979 			 struct kvm_nested_state *kvm_state);
1980 	bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1981 	int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1982 
1983 	int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1984 			    uint16_t *vmcs_version);
1985 	uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1986 	void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu);
1987 };
1988 
1989 struct kvm_x86_init_ops {
1990 	int (*hardware_setup)(void);
1991 	unsigned int (*handle_intel_pt_intr)(void);
1992 
1993 	struct kvm_x86_ops *runtime_ops;
1994 	struct kvm_pmu_ops *pmu_ops;
1995 };
1996 
1997 struct kvm_arch_async_pf {
1998 	u32 token;
1999 	gfn_t gfn;
2000 	unsigned long cr3;
2001 	bool direct_map;
2002 	u64 error_code;
2003 };
2004 
2005 extern u32 __read_mostly kvm_nr_uret_msrs;
2006 extern bool __read_mostly allow_smaller_maxphyaddr;
2007 extern bool __read_mostly enable_apicv;
2008 extern bool __read_mostly enable_ipiv;
2009 extern bool __read_mostly enable_device_posted_irqs;
2010 extern struct kvm_x86_ops kvm_x86_ops;
2011 
2012 #define kvm_x86_call(func) static_call(kvm_x86_##func)
2013 #define kvm_pmu_call(func) static_call(kvm_x86_pmu_##func)
2014 
2015 #define KVM_X86_OP(func) \
2016 	DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
2017 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
2018 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
2019 #include <asm/kvm-x86-ops.h>
2020 
2021 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops);
2022 void kvm_x86_vendor_exit(void);
2023 
2024 #define __KVM_HAVE_ARCH_VM_ALLOC
2025 static inline struct kvm *kvm_arch_alloc_vm(void)
2026 {
2027 	return kvzalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT);
2028 }
2029 
2030 #define __KVM_HAVE_ARCH_VM_FREE
2031 void kvm_arch_free_vm(struct kvm *kvm);
2032 
2033 #if IS_ENABLED(CONFIG_HYPERV)
2034 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
2035 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
2036 {
2037 	if (kvm_x86_ops.flush_remote_tlbs &&
2038 	    !kvm_x86_call(flush_remote_tlbs)(kvm))
2039 		return 0;
2040 	else
2041 		return -ENOTSUPP;
2042 }
2043 
2044 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
2045 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn,
2046 						   u64 nr_pages)
2047 {
2048 	if (!kvm_x86_ops.flush_remote_tlbs_range)
2049 		return -EOPNOTSUPP;
2050 
2051 	return kvm_x86_call(flush_remote_tlbs_range)(kvm, gfn, nr_pages);
2052 }
2053 #endif /* CONFIG_HYPERV */
2054 
2055 enum kvm_intr_type {
2056 	/* Values are arbitrary, but must be non-zero. */
2057 	KVM_HANDLING_IRQ = 1,
2058 	KVM_HANDLING_NMI,
2059 };
2060 
2061 /* Enable perf NMI and timer modes to work, and minimise false positives. */
2062 #define kvm_arch_pmi_in_guest(vcpu) \
2063 	((vcpu) && (vcpu)->arch.handling_intr_from_guest && \
2064 	 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI)))
2065 
2066 void __init kvm_mmu_x86_module_init(void);
2067 int kvm_mmu_vendor_module_init(void);
2068 void kvm_mmu_vendor_module_exit(void);
2069 
2070 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
2071 int kvm_mmu_create(struct kvm_vcpu *vcpu);
2072 int kvm_mmu_init_vm(struct kvm *kvm);
2073 void kvm_mmu_uninit_vm(struct kvm *kvm);
2074 
2075 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
2076 					    struct kvm_memory_slot *slot);
2077 
2078 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
2079 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
2080 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
2081 				      const struct kvm_memory_slot *memslot,
2082 				      int start_level);
2083 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
2084 				       const struct kvm_memory_slot *memslot,
2085 				       int target_level);
2086 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
2087 				  const struct kvm_memory_slot *memslot,
2088 				  u64 start, u64 end,
2089 				  int target_level);
2090 void kvm_mmu_recover_huge_pages(struct kvm *kvm,
2091 				const struct kvm_memory_slot *memslot);
2092 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
2093 				   const struct kvm_memory_slot *memslot);
2094 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
2095 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
2096 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
2097 
2098 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
2099 
2100 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2101 			  const void *val, int bytes);
2102 
2103 extern bool tdp_enabled;
2104 
2105 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
2106 
2107 /*
2108  * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
2109  *			userspace I/O) to indicate that the emulation context
2110  *			should be reused as is, i.e. skip initialization of
2111  *			emulation context, instruction fetch and decode.
2112  *
2113  * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
2114  *		      Indicates that only select instructions (tagged with
2115  *		      EmulateOnUD) should be emulated (to minimize the emulator
2116  *		      attack surface).  See also EMULTYPE_TRAP_UD_FORCED.
2117  *
2118  * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
2119  *		   decode the instruction length.  For use *only* by
2120  *		   kvm_x86_ops.skip_emulated_instruction() implementations if
2121  *		   EMULTYPE_COMPLETE_USER_EXIT is not set.
2122  *
2123  * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
2124  *			     retry native execution under certain conditions,
2125  *			     Can only be set in conjunction with EMULTYPE_PF.
2126  *
2127  * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
2128  *			     triggered by KVM's magic "force emulation" prefix,
2129  *			     which is opt in via module param (off by default).
2130  *			     Bypasses EmulateOnUD restriction despite emulating
2131  *			     due to an intercepted #UD (see EMULTYPE_TRAP_UD).
2132  *			     Used to test the full emulator from userspace.
2133  *
2134  * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
2135  *			backdoor emulation, which is opt in via module param.
2136  *			VMware backdoor emulation handles select instructions
2137  *			and reinjects the #GP for all other cases.
2138  *
2139  * EMULTYPE_PF - Set when an intercepted #PF triggers the emulation, in which case
2140  *		 the CR2/GPA value pass on the stack is valid.
2141  *
2142  * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
2143  *				 state and inject single-step #DBs after skipping
2144  *				 an instruction (after completing userspace I/O).
2145  *
2146  * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that
2147  *			     is attempting to write a gfn that contains one or
2148  *			     more of the PTEs used to translate the write itself,
2149  *			     and the owning page table is being shadowed by KVM.
2150  *			     If emulation of the faulting instruction fails and
2151  *			     this flag is set, KVM will exit to userspace instead
2152  *			     of retrying emulation as KVM cannot make forward
2153  *			     progress.
2154  *
2155  *			     If emulation fails for a write to guest page tables,
2156  *			     KVM unprotects (zaps) the shadow page for the target
2157  *			     gfn and resumes the guest to retry the non-emulatable
2158  *			     instruction (on hardware).  Unprotecting the gfn
2159  *			     doesn't allow forward progress for a self-changing
2160  *			     access because doing so also zaps the translation for
2161  *			     the gfn, i.e. retrying the instruction will hit a
2162  *			     !PRESENT fault, which results in a new shadow page
2163  *			     and sends KVM back to square one.
2164  *
2165  * EMULTYPE_SKIP_SOFT_INT - Set in combination with EMULTYPE_SKIP to only skip
2166  *                          an instruction if it could generate a given software
2167  *                          interrupt, which must be encoded via
2168  *                          EMULTYPE_SET_SOFT_INT_VECTOR().
2169  */
2170 #define EMULTYPE_NO_DECODE	    (1 << 0)
2171 #define EMULTYPE_TRAP_UD	    (1 << 1)
2172 #define EMULTYPE_SKIP		    (1 << 2)
2173 #define EMULTYPE_ALLOW_RETRY_PF	    (1 << 3)
2174 #define EMULTYPE_TRAP_UD_FORCED	    (1 << 4)
2175 #define EMULTYPE_VMWARE_GP	    (1 << 5)
2176 #define EMULTYPE_PF		    (1 << 6)
2177 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
2178 #define EMULTYPE_WRITE_PF_TO_SP	    (1 << 8)
2179 #define EMULTYPE_SKIP_SOFT_INT	    (1 << 9)
2180 
2181 #define EMULTYPE_SET_SOFT_INT_VECTOR(v)	((u32)((v) & 0xff) << 16)
2182 #define EMULTYPE_GET_SOFT_INT_VECTOR(e)	(((e) >> 16) & 0xff)
2183 
2184 static inline bool kvm_can_emulate_event_vectoring(int emul_type)
2185 {
2186 	return !(emul_type & EMULTYPE_PF);
2187 }
2188 
2189 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
2190 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
2191 					void *insn, int insn_len);
2192 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
2193 					  u64 *data, u8 ndata);
2194 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
2195 
2196 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa);
2197 void kvm_prepare_unexpected_reason_exit(struct kvm_vcpu *vcpu, u64 exit_reason);
2198 
2199 void kvm_enable_efer_bits(u64);
2200 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
2201 int kvm_emulate_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2202 int kvm_emulate_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data);
2203 int __kvm_emulate_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2204 int __kvm_emulate_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data);
2205 int kvm_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2206 int kvm_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data);
2207 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
2208 int kvm_emulate_rdmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg);
2209 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
2210 int kvm_emulate_wrmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg);
2211 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
2212 int kvm_emulate_invd(struct kvm_vcpu *vcpu);
2213 int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
2214 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
2215 int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
2216 
2217 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
2218 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
2219 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
2220 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
2221 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
2222 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
2223 
2224 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2225 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2226 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
2227 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
2228 
2229 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
2230 		    int reason, bool has_error_code, u32 error_code);
2231 
2232 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
2233 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
2234 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
2235 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
2236 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2237 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
2238 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
2239 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr);
2240 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
2241 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
2242 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr);
2243 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
2244 
2245 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2246 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2247 
2248 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
2249 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
2250 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
2251 
2252 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2253 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2254 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
2255 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr,
2256 			   bool has_error_code, u32 error_code);
2257 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
2258 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
2259 				    struct x86_exception *fault);
2260 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
2261 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
2262 
2263 static inline int __kvm_irq_line_state(unsigned long *irq_state,
2264 				       int irq_source_id, int level)
2265 {
2266 	/* Logical OR for level trig interrupt */
2267 	if (level)
2268 		__set_bit(irq_source_id, irq_state);
2269 	else
2270 		__clear_bit(irq_source_id, irq_state);
2271 
2272 	return !!(*irq_state);
2273 }
2274 
2275 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
2276 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu);
2277 
2278 void kvm_update_dr7(struct kvm_vcpu *vcpu);
2279 
2280 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
2281 				       bool always_retry);
2282 
2283 static inline bool kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu,
2284 						   gpa_t cr2_or_gpa)
2285 {
2286 	return __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, false);
2287 }
2288 
2289 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
2290 			ulong roots_to_free);
2291 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
2292 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
2293 			      struct x86_exception *exception);
2294 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
2295 			       struct x86_exception *exception);
2296 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
2297 				struct x86_exception *exception);
2298 
2299 bool kvm_apicv_activated(struct kvm *kvm);
2300 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
2301 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
2302 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2303 				      enum kvm_apicv_inhibit reason, bool set);
2304 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2305 				    enum kvm_apicv_inhibit reason, bool set);
2306 
2307 static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
2308 					 enum kvm_apicv_inhibit reason)
2309 {
2310 	kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
2311 }
2312 
2313 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
2314 					   enum kvm_apicv_inhibit reason)
2315 {
2316 	kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
2317 }
2318 
2319 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
2320 		       void *insn, int insn_len);
2321 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg);
2322 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
2323 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
2324 			     u64 addr, unsigned long roots);
2325 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
2326 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
2327 
2328 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
2329 		       int tdp_max_root_level, int tdp_huge_page_level);
2330 
2331 
2332 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2333 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem)
2334 #endif
2335 
2336 #define kvm_arch_has_readonly_mem(kvm) (!(kvm)->arch.has_protected_state)
2337 
2338 static inline u16 kvm_read_ldt(void)
2339 {
2340 	u16 ldt;
2341 	asm("sldt %0" : "=g"(ldt));
2342 	return ldt;
2343 }
2344 
2345 static inline void kvm_load_ldt(u16 sel)
2346 {
2347 	asm("lldt %0" : : "rm"(sel));
2348 }
2349 
2350 #ifdef CONFIG_X86_64
2351 static inline unsigned long read_msr(unsigned long msr)
2352 {
2353 	u64 value;
2354 
2355 	rdmsrq(msr, value);
2356 	return value;
2357 }
2358 #endif
2359 
2360 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
2361 {
2362 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2363 }
2364 
2365 #define TSS_IOPB_BASE_OFFSET 0x66
2366 #define TSS_BASE_SIZE 0x68
2367 #define TSS_IOPB_SIZE (65536 / 8)
2368 #define TSS_REDIRECTION_SIZE (256 / 8)
2369 #define RMODE_TSS_SIZE							\
2370 	(TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
2371 
2372 enum {
2373 	TASK_SWITCH_CALL = 0,
2374 	TASK_SWITCH_IRET = 1,
2375 	TASK_SWITCH_JMP = 2,
2376 	TASK_SWITCH_GATE = 3,
2377 };
2378 
2379 #define HF_GUEST_MASK		(1 << 0) /* VCPU is in guest-mode */
2380 
2381 #ifdef CONFIG_KVM_SMM
2382 #define HF_SMM_MASK		(1 << 1)
2383 #define HF_SMM_INSIDE_NMI_MASK	(1 << 2)
2384 
2385 # define KVM_MAX_NR_ADDRESS_SPACES	2
2386 /* SMM is currently unsupported for guests with private memory. */
2387 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2)
2388 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
2389 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
2390 #else
2391 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0)
2392 #endif
2393 
2394 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
2395 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
2396 int kvm_cpu_has_extint(struct kvm_vcpu *v);
2397 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
2398 int kvm_cpu_get_extint(struct kvm_vcpu *v);
2399 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
2400 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
2401 
2402 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
2403 		    unsigned long ipi_bitmap_high, u32 min,
2404 		    unsigned long icr, int op_64_bit);
2405 
2406 int kvm_add_user_return_msr(u32 msr);
2407 int kvm_find_user_return_msr(u32 msr);
2408 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
2409 u64 kvm_get_user_return_msr(unsigned int slot);
2410 
2411 static inline bool kvm_is_supported_user_return_msr(u32 msr)
2412 {
2413 	return kvm_find_user_return_msr(msr) >= 0;
2414 }
2415 
2416 u64 kvm_scale_tsc(u64 tsc, u64 ratio);
2417 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
2418 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
2419 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
2420 
2421 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
2422 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
2423 
2424 void kvm_make_scan_ioapic_request(struct kvm *kvm);
2425 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
2426 				       unsigned long *vcpu_bitmap);
2427 
2428 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2429 				     struct kvm_async_pf *work);
2430 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2431 				 struct kvm_async_pf *work);
2432 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2433 			       struct kvm_async_pf *work);
2434 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
2435 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
2436 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
2437 
2438 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
2439 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
2440 
2441 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
2442 				     u32 size);
2443 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
2444 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
2445 
2446 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
2447 {
2448 	/* We can only post Fixed and LowPrio IRQs */
2449 	return (irq->delivery_mode == APIC_DM_FIXED ||
2450 		irq->delivery_mode == APIC_DM_LOWEST);
2451 }
2452 
2453 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
2454 {
2455 	kvm_x86_call(vcpu_blocking)(vcpu);
2456 }
2457 
2458 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
2459 {
2460 	kvm_x86_call(vcpu_unblocking)(vcpu);
2461 }
2462 
2463 static inline int kvm_cpu_get_apicid(int mps_cpu)
2464 {
2465 #ifdef CONFIG_X86_LOCAL_APIC
2466 	return default_cpu_present_to_apicid(mps_cpu);
2467 #else
2468 	WARN_ON_ONCE(1);
2469 	return BAD_APICID;
2470 #endif
2471 }
2472 
2473 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
2474 
2475 #define KVM_CLOCK_VALID_FLAGS						\
2476 	(KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
2477 
2478 #define KVM_X86_VALID_QUIRKS			\
2479 	(KVM_X86_QUIRK_LINT0_REENABLED |	\
2480 	 KVM_X86_QUIRK_CD_NW_CLEARED |		\
2481 	 KVM_X86_QUIRK_LAPIC_MMIO_HOLE |	\
2482 	 KVM_X86_QUIRK_OUT_7E_INC_RIP |		\
2483 	 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT |	\
2484 	 KVM_X86_QUIRK_FIX_HYPERCALL_INSN |	\
2485 	 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS |	\
2486 	 KVM_X86_QUIRK_SLOT_ZAP_ALL |		\
2487 	 KVM_X86_QUIRK_STUFF_FEATURE_MSRS |	\
2488 	 KVM_X86_QUIRK_IGNORE_GUEST_PAT)
2489 
2490 #define KVM_X86_CONDITIONAL_QUIRKS		\
2491 	(KVM_X86_QUIRK_CD_NW_CLEARED |		\
2492 	 KVM_X86_QUIRK_IGNORE_GUEST_PAT)
2493 
2494 /*
2495  * KVM previously used a u32 field in kvm_run to indicate the hypercall was
2496  * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the
2497  * remaining 31 lower bits must be 0 to preserve ABI.
2498  */
2499 #define KVM_EXIT_HYPERCALL_MBZ		GENMASK_ULL(31, 1)
2500 
2501 static inline bool kvm_arch_has_irq_bypass(void)
2502 {
2503 	return enable_device_posted_irqs;
2504 }
2505 
2506 #endif /* _ASM_X86_KVM_HOST_H */
2507