1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This header defines architecture specific interfaces, x86 version 6 */ 7 8 #ifndef _ASM_X86_KVM_HOST_H 9 #define _ASM_X86_KVM_HOST_H 10 11 #include <linux/types.h> 12 #include <linux/mm.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/tracepoint.h> 15 #include <linux/cpumask.h> 16 #include <linux/irq_work.h> 17 #include <linux/irq.h> 18 #include <linux/workqueue.h> 19 20 #include <linux/kvm.h> 21 #include <linux/kvm_para.h> 22 #include <linux/kvm_types.h> 23 #include <linux/perf_event.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/clocksource.h> 26 #include <linux/irqbypass.h> 27 #include <linux/kfifo.h> 28 #include <linux/sched/vhost_task.h> 29 #include <linux/call_once.h> 30 #include <linux/atomic.h> 31 32 #include <asm/apic.h> 33 #include <asm/pvclock-abi.h> 34 #include <asm/debugreg.h> 35 #include <asm/desc.h> 36 #include <asm/mtrr.h> 37 #include <asm/msr-index.h> 38 #include <asm/msr.h> 39 #include <asm/asm.h> 40 #include <asm/irq_remapping.h> 41 #include <asm/kvm_page_track.h> 42 #include <asm/kvm_vcpu_regs.h> 43 #include <asm/reboot.h> 44 #include <hyperv/hvhdk.h> 45 46 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS 47 48 /* 49 * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if 50 * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS). 51 */ 52 #ifdef CONFIG_KVM_MAX_NR_VCPUS 53 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS 54 #else 55 #define KVM_MAX_VCPUS 1024 56 #endif 57 58 /* 59 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs 60 * might be larger than the actual number of VCPUs because the 61 * APIC ID encodes CPU topology information. 62 * 63 * In the worst case, we'll need less than one extra bit for the 64 * Core ID, and less than one extra bit for the Package (Die) ID, 65 * so ratio of 4 should be enough. 66 */ 67 #define KVM_VCPU_ID_RATIO 4 68 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO) 69 70 /* memory slots that are not exposed to userspace */ 71 #define KVM_INTERNAL_MEM_SLOTS 3 72 73 #define KVM_HALT_POLL_NS_DEFAULT 200000 74 75 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS 76 77 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ 78 KVM_DIRTY_LOG_INITIALLY_SET) 79 80 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \ 81 KVM_BUS_LOCK_DETECTION_EXIT) 82 83 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS (KVM_X86_NOTIFY_VMEXIT_ENABLED | \ 84 KVM_X86_NOTIFY_VMEXIT_USER) 85 86 /* x86-specific vcpu->requests bit members */ 87 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0) 88 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1) 89 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2) 90 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3) 91 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4) 92 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5) 93 #define KVM_REQ_EVENT KVM_ARCH_REQ(6) 94 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7) 95 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8) 96 #define KVM_REQ_NMI KVM_ARCH_REQ(9) 97 #define KVM_REQ_PMU KVM_ARCH_REQ(10) 98 #define KVM_REQ_PMI KVM_ARCH_REQ(11) 99 #ifdef CONFIG_KVM_SMM 100 #define KVM_REQ_SMI KVM_ARCH_REQ(12) 101 #endif 102 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13) 103 #define KVM_REQ_MCLOCK_INPROGRESS \ 104 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 105 #define KVM_REQ_SCAN_IOAPIC \ 106 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 107 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16) 108 #define KVM_REQ_APIC_PAGE_RELOAD \ 109 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 110 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18) 111 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19) 112 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20) 113 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21) 114 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22) 115 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23) 116 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24) 117 #define KVM_REQ_APICV_UPDATE \ 118 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 119 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26) 120 #define KVM_REQ_TLB_FLUSH_GUEST \ 121 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 122 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28) 123 #define KVM_REQ_RECALC_INTERCEPTS KVM_ARCH_REQ(29) 124 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \ 125 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 126 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \ 127 KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 128 #define KVM_REQ_HV_TLB_FLUSH \ 129 KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 130 #define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE \ 131 KVM_ARCH_REQ_FLAGS(34, KVM_REQUEST_WAIT) 132 133 #define CR0_RESERVED_BITS \ 134 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ 135 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ 136 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) 137 138 #define CR4_RESERVED_BITS \ 139 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ 140 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ 141 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \ 142 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \ 143 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \ 144 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \ 145 | X86_CR4_LAM_SUP | X86_CR4_CET)) 146 147 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) 148 149 150 151 #define INVALID_PAGE (~(hpa_t)0) 152 #define VALID_PAGE(x) ((x) != INVALID_PAGE) 153 154 /* KVM Hugepage definitions for x86 */ 155 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G 156 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1) 157 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9) 158 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x)) 159 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x)) 160 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1)) 161 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE) 162 163 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50 164 #define KVM_MIN_ALLOC_MMU_PAGES 64UL 165 #define KVM_MMU_HASH_SHIFT 12 166 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT) 167 #define KVM_MIN_FREE_MMU_PAGES 5 168 #define KVM_REFILL_PAGES 25 169 #define KVM_MAX_CPUID_ENTRIES 256 170 #define KVM_NR_VAR_MTRR 8 171 172 #define ASYNC_PF_PER_VCPU 64 173 174 enum kvm_reg { 175 VCPU_REGS_RAX = __VCPU_REGS_RAX, 176 VCPU_REGS_RCX = __VCPU_REGS_RCX, 177 VCPU_REGS_RDX = __VCPU_REGS_RDX, 178 VCPU_REGS_RBX = __VCPU_REGS_RBX, 179 VCPU_REGS_RSP = __VCPU_REGS_RSP, 180 VCPU_REGS_RBP = __VCPU_REGS_RBP, 181 VCPU_REGS_RSI = __VCPU_REGS_RSI, 182 VCPU_REGS_RDI = __VCPU_REGS_RDI, 183 #ifdef CONFIG_X86_64 184 VCPU_REGS_R8 = __VCPU_REGS_R8, 185 VCPU_REGS_R9 = __VCPU_REGS_R9, 186 VCPU_REGS_R10 = __VCPU_REGS_R10, 187 VCPU_REGS_R11 = __VCPU_REGS_R11, 188 VCPU_REGS_R12 = __VCPU_REGS_R12, 189 VCPU_REGS_R13 = __VCPU_REGS_R13, 190 VCPU_REGS_R14 = __VCPU_REGS_R14, 191 VCPU_REGS_R15 = __VCPU_REGS_R15, 192 #endif 193 VCPU_REGS_RIP, 194 NR_VCPU_REGS, 195 196 VCPU_EXREG_PDPTR = NR_VCPU_REGS, 197 VCPU_EXREG_CR0, 198 /* 199 * Alias AMD's ERAPS (not a real register) to CR3 so that common code 200 * can trigger emulation of the RAP (Return Address Predictor) with 201 * minimal support required in common code. Piggyback CR3 as the RAP 202 * is cleared on writes to CR3, i.e. marking CR3 dirty will naturally 203 * mark ERAPS dirty as well. 204 */ 205 VCPU_EXREG_CR3, 206 VCPU_EXREG_ERAPS = VCPU_EXREG_CR3, 207 VCPU_EXREG_CR4, 208 VCPU_EXREG_RFLAGS, 209 VCPU_EXREG_SEGMENTS, 210 VCPU_EXREG_EXIT_INFO_1, 211 VCPU_EXREG_EXIT_INFO_2, 212 }; 213 214 enum { 215 VCPU_SREG_ES, 216 VCPU_SREG_CS, 217 VCPU_SREG_SS, 218 VCPU_SREG_DS, 219 VCPU_SREG_FS, 220 VCPU_SREG_GS, 221 VCPU_SREG_TR, 222 VCPU_SREG_LDTR, 223 }; 224 225 enum exit_fastpath_completion { 226 EXIT_FASTPATH_NONE, 227 EXIT_FASTPATH_REENTER_GUEST, 228 EXIT_FASTPATH_EXIT_HANDLED, 229 EXIT_FASTPATH_EXIT_USERSPACE, 230 }; 231 typedef enum exit_fastpath_completion fastpath_t; 232 233 struct x86_emulate_ctxt; 234 struct x86_exception; 235 union kvm_smram; 236 enum x86_intercept; 237 enum x86_intercept_stage; 238 239 #define KVM_NR_DB_REGS 4 240 241 #define DR6_BUS_LOCK (1 << 11) 242 #define DR6_BD (1 << 13) 243 #define DR6_BS (1 << 14) 244 #define DR6_BT (1 << 15) 245 #define DR6_RTM (1 << 16) 246 /* 247 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits. 248 * We can regard all the bits in DR6_FIXED_1 as active_low bits; 249 * they will never be 0 for now, but when they are defined 250 * in the future it will require no code change. 251 * 252 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6. 253 */ 254 #define DR6_ACTIVE_LOW 0xffff0ff0 255 #define DR6_VOLATILE 0x0001e80f 256 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE) 257 258 #define DR7_BP_EN_MASK 0x000000ff 259 #define DR7_GE (1 << 9) 260 #define DR7_GD (1 << 13) 261 #define DR7_VOLATILE 0xffff2bff 262 263 #define KVM_GUESTDBG_VALID_MASK \ 264 (KVM_GUESTDBG_ENABLE | \ 265 KVM_GUESTDBG_SINGLESTEP | \ 266 KVM_GUESTDBG_USE_HW_BP | \ 267 KVM_GUESTDBG_USE_SW_BP | \ 268 KVM_GUESTDBG_INJECT_BP | \ 269 KVM_GUESTDBG_INJECT_DB | \ 270 KVM_GUESTDBG_BLOCKIRQ) 271 272 #define PFERR_PRESENT_MASK BIT(0) 273 #define PFERR_WRITE_MASK BIT(1) 274 #define PFERR_USER_MASK BIT(2) 275 #define PFERR_RSVD_MASK BIT(3) 276 #define PFERR_FETCH_MASK BIT(4) 277 #define PFERR_PK_MASK BIT(5) 278 #define PFERR_SS_MASK BIT(6) 279 #define PFERR_SGX_MASK BIT(15) 280 #define PFERR_GUEST_RMP_MASK BIT_ULL(31) 281 #define PFERR_GUEST_FINAL_MASK BIT_ULL(32) 282 #define PFERR_GUEST_PAGE_MASK BIT_ULL(33) 283 #define PFERR_GUEST_ENC_MASK BIT_ULL(34) 284 #define PFERR_GUEST_SIZEM_MASK BIT_ULL(35) 285 #define PFERR_GUEST_VMPL_MASK BIT_ULL(36) 286 287 /* 288 * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks 289 * when emulating instructions that triggers implicit access. 290 */ 291 #define PFERR_IMPLICIT_ACCESS BIT_ULL(48) 292 /* 293 * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred 294 * when the guest was accessing private memory. 295 */ 296 #define PFERR_PRIVATE_ACCESS BIT_ULL(49) 297 #define PFERR_SYNTHETIC_MASK (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS) 298 299 /* apic attention bits */ 300 #define KVM_APIC_CHECK_VAPIC 0 301 /* 302 * The following bit is set with PV-EOI, unset on EOI. 303 * We detect PV-EOI changes by guest by comparing 304 * this bit with PV-EOI in guest memory. 305 * See the implementation in apic_update_pv_eoi. 306 */ 307 #define KVM_APIC_PV_EOI_PENDING 1 308 309 struct kvm_kernel_irqfd; 310 struct kvm_kernel_irq_routing_entry; 311 312 /* 313 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page 314 * also includes TDP pages) to determine whether or not a page can be used in 315 * the given MMU context. This is a subset of the overall kvm_cpu_role to 316 * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows 317 * allocating 2 bytes per gfn instead of 4 bytes per gfn. 318 * 319 * Upper-level shadow pages having gptes are tracked for write-protection via 320 * gfn_write_track. As above, gfn_write_track is a 16 bit counter, so KVM must 321 * not create more than 2^16-1 upper-level shadow pages at a single gfn, 322 * otherwise gfn_write_track will overflow and explosions will ensue. 323 * 324 * A unique shadow page (SP) for a gfn is created if and only if an existing SP 325 * cannot be reused. The ability to reuse a SP is tracked by its role, which 326 * incorporates various mode bits and properties of the SP. Roughly speaking, 327 * the number of unique SPs that can theoretically be created is 2^n, where n 328 * is the number of bits that are used to compute the role. 329 * 330 * But, even though there are 20 bits in the mask below, not all combinations 331 * of modes and flags are possible: 332 * 333 * - invalid shadow pages are not accounted, mirror pages are not shadowed, 334 * so the bits are effectively 18. 335 * 336 * - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging); 337 * execonly and ad_disabled are only used for nested EPT which has 338 * has_4_byte_gpte=0. Therefore, 2 bits are always unused. 339 * 340 * - the 4 bits of level are effectively limited to the values 2/3/4/5, 341 * as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE 342 * paging has exactly one upper level, making level completely redundant 343 * when has_4_byte_gpte=1. 344 * 345 * - on top of this, smep_andnot_wp and smap_andnot_wp are only set if 346 * cr0_wp=0, therefore these three bits only give rise to 5 possibilities. 347 * 348 * Therefore, the maximum number of possible upper-level shadow pages for a 349 * single gfn is a bit less than 2^13. 350 */ 351 union kvm_mmu_page_role { 352 u32 word; 353 struct { 354 unsigned level:4; 355 unsigned has_4_byte_gpte:1; 356 unsigned quadrant:2; 357 unsigned direct:1; 358 unsigned access:3; 359 unsigned invalid:1; 360 unsigned efer_nx:1; 361 unsigned cr0_wp:1; 362 unsigned smep_andnot_wp:1; 363 unsigned smap_andnot_wp:1; 364 unsigned ad_disabled:1; 365 unsigned guest_mode:1; 366 unsigned passthrough:1; 367 unsigned is_mirror:1; 368 unsigned :4; 369 370 /* 371 * This is left at the top of the word so that 372 * kvm_memslots_for_spte_role can extract it with a 373 * simple shift. While there is room, give it a whole 374 * byte so it is also faster to load it from memory. 375 */ 376 unsigned smm:8; 377 }; 378 }; 379 380 /* 381 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties 382 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER, 383 * including on nested transitions, if nothing in the full role changes then 384 * MMU re-configuration can be skipped. @valid bit is set on first usage so we 385 * don't treat all-zero structure as valid data. 386 * 387 * The properties that are tracked in the extended role but not the page role 388 * are for things that either (a) do not affect the validity of the shadow page 389 * or (b) are indirectly reflected in the shadow page's role. For example, 390 * CR4.PKE only affects permission checks for software walks of the guest page 391 * tables (because KVM doesn't support Protection Keys with shadow paging), and 392 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level. 393 * 394 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role. 395 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and 396 * SMAP, but the MMU's permission checks for software walks need to be SMEP and 397 * SMAP aware regardless of CR0.WP. 398 */ 399 union kvm_mmu_extended_role { 400 u32 word; 401 struct { 402 unsigned int valid:1; 403 unsigned int execonly:1; 404 unsigned int cr4_pse:1; 405 unsigned int cr4_pke:1; 406 unsigned int cr4_smap:1; 407 unsigned int cr4_smep:1; 408 unsigned int cr4_la57:1; 409 unsigned int efer_lma:1; 410 }; 411 }; 412 413 union kvm_cpu_role { 414 u64 as_u64; 415 struct { 416 union kvm_mmu_page_role base; 417 union kvm_mmu_extended_role ext; 418 }; 419 }; 420 421 struct kvm_rmap_head { 422 atomic_long_t val; 423 }; 424 425 struct kvm_pio_request { 426 unsigned long count; 427 int in; 428 int port; 429 int size; 430 }; 431 432 #define PT64_ROOT_MAX_LEVEL 5 433 434 struct rsvd_bits_validate { 435 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL]; 436 u64 bad_mt_xwr; 437 }; 438 439 struct kvm_mmu_root_info { 440 gpa_t pgd; 441 hpa_t hpa; 442 }; 443 444 #define KVM_MMU_ROOT_INFO_INVALID \ 445 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE }) 446 447 #define KVM_MMU_NUM_PREV_ROOTS 3 448 449 #define KVM_MMU_ROOT_CURRENT BIT(0) 450 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i) 451 #define KVM_MMU_ROOTS_ALL (BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1) 452 453 #define KVM_HAVE_MMU_RWLOCK 454 455 struct kvm_mmu_page; 456 struct kvm_page_fault; 457 458 /* 459 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit, 460 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the 461 * current mmu mode. 462 */ 463 struct kvm_mmu { 464 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu); 465 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index); 466 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault); 467 void (*inject_page_fault)(struct kvm_vcpu *vcpu, 468 struct x86_exception *fault); 469 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 470 gpa_t gva_or_gpa, u64 access, 471 struct x86_exception *exception); 472 int (*sync_spte)(struct kvm_vcpu *vcpu, 473 struct kvm_mmu_page *sp, int i); 474 struct kvm_mmu_root_info root; 475 hpa_t mirror_root_hpa; 476 union kvm_cpu_role cpu_role; 477 union kvm_mmu_page_role root_role; 478 479 /* 480 * The pkru_mask indicates if protection key checks are needed. It 481 * consists of 16 domains indexed by page fault error code bits [4:1], 482 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables. 483 * Each domain has 2 bits which are ANDed with AD and WD from PKRU. 484 */ 485 u32 pkru_mask; 486 487 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS]; 488 489 /* 490 * Bitmap; bit set = permission fault 491 * Byte index: page fault error code [4:1] 492 * Bit index: pte permissions in ACC_* format 493 */ 494 u8 permissions[16]; 495 496 u64 *pae_root; 497 u64 *pml4_root; 498 u64 *pml5_root; 499 500 /* 501 * check zero bits on shadow page table entries, these 502 * bits include not only hardware reserved bits but also 503 * the bits spte never used. 504 */ 505 struct rsvd_bits_validate shadow_zero_check; 506 507 struct rsvd_bits_validate guest_rsvd_check; 508 509 u64 pdptrs[4]; /* pae */ 510 }; 511 512 enum pmc_type { 513 KVM_PMC_GP = 0, 514 KVM_PMC_FIXED, 515 }; 516 517 struct kvm_pmc { 518 enum pmc_type type; 519 u8 idx; 520 bool is_paused; 521 bool intr; 522 /* 523 * Base value of the PMC counter, relative to the *consumed* count in 524 * the associated perf_event. This value includes counter updates from 525 * the perf_event and emulated_count since the last time the counter 526 * was reprogrammed, but it is *not* the current value as seen by the 527 * guest or userspace. 528 * 529 * The count is relative to the associated perf_event so that KVM 530 * doesn't need to reprogram the perf_event every time the guest writes 531 * to the counter. 532 */ 533 u64 counter; 534 /* 535 * PMC events triggered by KVM emulation that haven't been fully 536 * processed, i.e. haven't undergone overflow detection. 537 */ 538 u64 emulated_counter; 539 u64 eventsel; 540 u64 eventsel_hw; 541 struct perf_event *perf_event; 542 struct kvm_vcpu *vcpu; 543 /* 544 * only for creating or reusing perf_event, 545 * eventsel value for general purpose counters, 546 * ctrl value for fixed counters. 547 */ 548 u64 current_config; 549 }; 550 551 /* More counters may conflict with other existing Architectural MSRs */ 552 #define KVM_MAX(a, b) ((a) >= (b) ? (a) : (b)) 553 #define KVM_MAX_NR_INTEL_GP_COUNTERS 8 554 #define KVM_MAX_NR_AMD_GP_COUNTERS 6 555 #define KVM_MAX_NR_GP_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_GP_COUNTERS, \ 556 KVM_MAX_NR_AMD_GP_COUNTERS) 557 558 #define KVM_MAX_NR_INTEL_FIXED_COUNTERS 3 559 #define KVM_MAX_NR_AMD_FIXED_COUNTERS 0 560 #define KVM_MAX_NR_FIXED_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_FIXED_COUNTERS, \ 561 KVM_MAX_NR_AMD_FIXED_COUNTERS) 562 563 struct kvm_pmu { 564 u8 version; 565 unsigned nr_arch_gp_counters; 566 unsigned nr_arch_fixed_counters; 567 unsigned available_event_types; 568 u64 fixed_ctr_ctrl; 569 u64 fixed_ctr_ctrl_hw; 570 u64 fixed_ctr_ctrl_rsvd; 571 u64 global_ctrl; 572 u64 global_status; 573 u64 counter_bitmask[2]; 574 u64 global_ctrl_rsvd; 575 u64 global_status_rsvd; 576 u64 reserved_bits; 577 u64 raw_event_mask; 578 struct kvm_pmc gp_counters[KVM_MAX_NR_GP_COUNTERS]; 579 struct kvm_pmc fixed_counters[KVM_MAX_NR_FIXED_COUNTERS]; 580 581 /* 582 * Overlay the bitmap with a 64-bit atomic so that all bits can be 583 * set in a single access, e.g. to reprogram all counters when the PMU 584 * filter changes. 585 */ 586 union { 587 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX); 588 atomic64_t __reprogram_pmi; 589 }; 590 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX); 591 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX); 592 593 DECLARE_BITMAP(pmc_counting_instructions, X86_PMC_IDX_MAX); 594 DECLARE_BITMAP(pmc_counting_branches, X86_PMC_IDX_MAX); 595 596 u64 ds_area; 597 u64 pebs_enable; 598 u64 pebs_enable_rsvd; 599 u64 pebs_data_cfg; 600 u64 pebs_data_cfg_rsvd; 601 602 /* 603 * If a guest counter is cross-mapped to host counter with different 604 * index, its PEBS capability will be temporarily disabled. 605 * 606 * The user should make sure that this mask is updated 607 * after disabling interrupts and before perf_guest_get_msrs(); 608 */ 609 u64 host_cross_mapped_mask; 610 611 /* 612 * The gate to release perf_events not marked in 613 * pmc_in_use only once in a vcpu time slice. 614 */ 615 bool need_cleanup; 616 617 /* 618 * The total number of programmed perf_events and it helps to avoid 619 * redundant check before cleanup if guest don't use vPMU at all. 620 */ 621 u8 event_count; 622 }; 623 624 struct kvm_pmu_ops; 625 626 enum { 627 KVM_DEBUGREG_BP_ENABLED = BIT(0), 628 KVM_DEBUGREG_WONT_EXIT = BIT(1), 629 /* 630 * Guest debug registers (DR0-3, DR6 and DR7) are saved/restored by 631 * hardware on exit from or enter to guest. KVM needn't switch them. 632 * DR0-3, DR6 and DR7 are set to their architectural INIT value on VM 633 * exit, host values need to be restored. 634 */ 635 KVM_DEBUGREG_AUTO_SWITCH = BIT(2), 636 }; 637 638 struct kvm_mtrr { 639 u64 var[KVM_NR_VAR_MTRR * 2]; 640 u64 fixed_64k; 641 u64 fixed_16k[2]; 642 u64 fixed_4k[8]; 643 u64 deftype; 644 }; 645 646 /* Hyper-V SynIC timer */ 647 struct kvm_vcpu_hv_stimer { 648 struct hrtimer timer; 649 int index; 650 union hv_stimer_config config; 651 u64 count; 652 u64 exp_time; 653 struct hv_message msg; 654 bool msg_pending; 655 }; 656 657 /* Hyper-V synthetic interrupt controller (SynIC)*/ 658 struct kvm_vcpu_hv_synic { 659 u64 version; 660 u64 control; 661 u64 msg_page; 662 u64 evt_page; 663 atomic64_t sint[HV_SYNIC_SINT_COUNT]; 664 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT]; 665 DECLARE_BITMAP(auto_eoi_bitmap, 256); 666 DECLARE_BITMAP(vec_bitmap, 256); 667 bool active; 668 bool dont_zero_synic_pages; 669 }; 670 671 /* The maximum number of entries on the TLB flush fifo. */ 672 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16) 673 /* 674 * Note: the following 'magic' entry is made up by KVM to avoid putting 675 * anything besides GVA on the TLB flush fifo. It is theoretically possible 676 * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000 677 * which will look identical. KVM's action to 'flush everything' instead of 678 * flushing these particular addresses is, however, fully legitimate as 679 * flushing more than requested is always OK. 680 */ 681 #define KVM_HV_TLB_FLUSHALL_ENTRY ((u64)-1) 682 683 enum hv_tlb_flush_fifos { 684 HV_L1_TLB_FLUSH_FIFO, 685 HV_L2_TLB_FLUSH_FIFO, 686 HV_NR_TLB_FLUSH_FIFOS, 687 }; 688 689 struct kvm_vcpu_hv_tlb_flush_fifo { 690 spinlock_t write_lock; 691 DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE); 692 }; 693 694 /* Hyper-V per vcpu emulation context */ 695 struct kvm_vcpu_hv { 696 struct kvm_vcpu *vcpu; 697 u32 vp_index; 698 u64 hv_vapic; 699 s64 runtime_offset; 700 struct kvm_vcpu_hv_synic synic; 701 struct kvm_hyperv_exit exit; 702 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT]; 703 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); 704 bool enforce_cpuid; 705 struct { 706 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */ 707 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */ 708 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */ 709 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */ 710 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */ 711 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */ 712 u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */ 713 u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */ 714 } cpuid_cache; 715 716 struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS]; 717 718 /* 719 * Preallocated buffers for handling hypercalls that pass sparse vCPU 720 * sets (for high vCPU counts, they're too large to comfortably fit on 721 * the stack). 722 */ 723 u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS]; 724 DECLARE_BITMAP(vcpu_mask, KVM_MAX_VCPUS); 725 726 struct hv_vp_assist_page vp_assist_page; 727 728 struct { 729 u64 pa_page_gpa; 730 u64 vm_id; 731 u32 vp_id; 732 } nested; 733 }; 734 735 struct kvm_hypervisor_cpuid { 736 u32 base; 737 u32 limit; 738 }; 739 740 #ifdef CONFIG_KVM_XEN 741 /* Xen HVM per vcpu emulation context */ 742 struct kvm_vcpu_xen { 743 u64 hypercall_rip; 744 u32 current_runstate; 745 u8 upcall_vector; 746 struct gfn_to_pfn_cache vcpu_info_cache; 747 struct gfn_to_pfn_cache vcpu_time_info_cache; 748 struct gfn_to_pfn_cache runstate_cache; 749 struct gfn_to_pfn_cache runstate2_cache; 750 u64 last_steal; 751 u64 runstate_entry_time; 752 u64 runstate_times[4]; 753 unsigned long evtchn_pending_sel; 754 u32 vcpu_id; /* The Xen / ACPI vCPU ID */ 755 u32 timer_virq; 756 u64 timer_expires; /* In guest epoch */ 757 atomic_t timer_pending; 758 struct hrtimer timer; 759 int poll_evtchn; 760 struct timer_list poll_timer; 761 struct kvm_hypervisor_cpuid cpuid; 762 }; 763 #endif 764 765 struct kvm_queued_exception { 766 bool pending; 767 bool injected; 768 bool has_error_code; 769 u8 vector; 770 u32 error_code; 771 unsigned long payload; 772 bool has_payload; 773 }; 774 775 /* 776 * Hardware-defined CPUID leafs that are either scattered by the kernel or are 777 * unknown to the kernel, but need to be directly used by KVM. Note, these 778 * word values conflict with the kernel's "bug" caps, but KVM doesn't use those. 779 */ 780 enum kvm_only_cpuid_leafs { 781 CPUID_12_EAX = NCAPINTS, 782 CPUID_7_1_EDX, 783 CPUID_8000_0007_EDX, 784 CPUID_8000_0022_EAX, 785 CPUID_7_2_EDX, 786 CPUID_24_0_EBX, 787 CPUID_8000_0021_ECX, 788 CPUID_7_1_ECX, 789 CPUID_1E_1_EAX, 790 CPUID_24_1_ECX, 791 NR_KVM_CPU_CAPS, 792 793 NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS, 794 }; 795 796 struct kvm_vcpu_arch { 797 /* 798 * rip and regs accesses must go through 799 * kvm_{register,rip}_{read,write} functions. 800 */ 801 unsigned long regs[NR_VCPU_REGS]; 802 u32 regs_avail; 803 u32 regs_dirty; 804 805 unsigned long cr0; 806 unsigned long cr0_guest_owned_bits; 807 unsigned long cr2; 808 unsigned long cr3; 809 unsigned long cr4; 810 unsigned long cr4_guest_owned_bits; 811 unsigned long cr4_guest_rsvd_bits; 812 unsigned long cr8; 813 u32 host_pkru; 814 u32 pkru; 815 u32 hflags; 816 u64 efer; 817 u64 host_debugctl; 818 u64 apic_base; 819 struct kvm_lapic *apic; /* kernel irqchip context */ 820 bool load_eoi_exitmap_pending; 821 DECLARE_BITMAP(ioapic_handled_vectors, 256); 822 unsigned long apic_attention; 823 int32_t apic_arb_prio; 824 int mp_state; 825 u64 ia32_misc_enable_msr; 826 u64 smbase; 827 u64 smi_count; 828 bool at_instruction_boundary; 829 bool tpr_access_reporting; 830 bool xfd_no_write_intercept; 831 u64 microcode_version; 832 u64 arch_capabilities; 833 u64 perf_capabilities; 834 835 /* 836 * Paging state of the vcpu 837 * 838 * If the vcpu runs in guest mode with two level paging this still saves 839 * the paging mode of the l1 guest. This context is always used to 840 * handle faults. 841 */ 842 struct kvm_mmu *mmu; 843 844 /* Non-nested MMU for L1 */ 845 struct kvm_mmu root_mmu; 846 847 /* L1 MMU when running nested */ 848 struct kvm_mmu guest_mmu; 849 850 /* 851 * Paging state of an L2 guest (used for nested npt) 852 * 853 * This context will save all necessary information to walk page tables 854 * of an L2 guest. This context is only initialized for page table 855 * walking and not for faulting since we never handle l2 page faults on 856 * the host. 857 */ 858 struct kvm_mmu nested_mmu; 859 860 /* 861 * Pointer to the mmu context currently used for 862 * gva_to_gpa translations. 863 */ 864 struct kvm_mmu *walk_mmu; 865 866 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache; 867 struct kvm_mmu_memory_cache mmu_shadow_page_cache; 868 struct kvm_mmu_memory_cache mmu_shadowed_info_cache; 869 struct kvm_mmu_memory_cache mmu_page_header_cache; 870 /* 871 * This cache is to allocate external page table. E.g. private EPT used 872 * by the TDX module. 873 */ 874 struct kvm_mmu_memory_cache mmu_external_spt_cache; 875 876 /* 877 * QEMU userspace and the guest each have their own FPU state. 878 * In vcpu_run, we switch between the user and guest FPU contexts. 879 * While running a VCPU, the VCPU thread will have the guest FPU 880 * context. 881 * 882 * Note that while the PKRU state lives inside the fpu registers, 883 * it is switched out separately at VMENTER and VMEXIT time. The 884 * "guest_fpstate" state here contains the guest FPU context, with the 885 * host PRKU bits. 886 */ 887 struct fpu_guest guest_fpu; 888 889 u64 xcr0; 890 u64 guest_supported_xcr0; 891 u64 ia32_xss; 892 u64 guest_supported_xss; 893 894 struct kvm_pio_request pio; 895 void *pio_data; 896 void *sev_pio_data; 897 unsigned sev_pio_count; 898 899 u8 event_exit_inst_len; 900 901 bool exception_from_userspace; 902 903 /* Exceptions to be injected to the guest. */ 904 struct kvm_queued_exception exception; 905 /* Exception VM-Exits to be synthesized to L1. */ 906 struct kvm_queued_exception exception_vmexit; 907 908 struct kvm_queued_interrupt { 909 bool injected; 910 bool soft; 911 u8 nr; 912 } interrupt; 913 914 int halt_request; /* real mode on Intel only */ 915 916 int cpuid_nent; 917 struct kvm_cpuid_entry2 *cpuid_entries; 918 bool cpuid_dynamic_bits_dirty; 919 bool is_amd_compatible; 920 921 /* 922 * cpu_caps holds the effective guest capabilities, i.e. the features 923 * the vCPU is allowed to use. Typically, but not always, features can 924 * be used by the guest if and only if both KVM and userspace want to 925 * expose the feature to the guest. 926 * 927 * A common exception is for virtualization holes, i.e. when KVM can't 928 * prevent the guest from using a feature, in which case the vCPU "has" 929 * the feature regardless of what KVM or userspace desires. 930 * 931 * Note, features that don't require KVM involvement in any way are 932 * NOT enforced/sanitized by KVM, i.e. are taken verbatim from the 933 * guest CPUID provided by userspace. 934 */ 935 u32 cpu_caps[NR_KVM_CPU_CAPS]; 936 937 u64 reserved_gpa_bits; 938 int maxphyaddr; 939 940 /* emulate context */ 941 942 struct x86_emulate_ctxt *emulate_ctxt; 943 bool emulate_regs_need_sync_to_vcpu; 944 bool emulate_regs_need_sync_from_vcpu; 945 int (*complete_userspace_io)(struct kvm_vcpu *vcpu); 946 unsigned long cui_linear_rip; 947 int cui_rdmsr_imm_reg; 948 949 gpa_t time; 950 s8 pvclock_tsc_shift; 951 u32 pvclock_tsc_mul; 952 unsigned int hw_tsc_khz; 953 struct gfn_to_pfn_cache pv_time; 954 /* set guest stopped flag in pvclock flags field */ 955 bool pvclock_set_guest_stopped_request; 956 957 struct { 958 u8 preempted; 959 u64 msr_val; 960 u64 last_steal; 961 struct gfn_to_hva_cache cache; 962 } st; 963 964 u64 l1_tsc_offset; 965 u64 tsc_offset; /* current tsc offset */ 966 u64 last_guest_tsc; 967 u64 last_host_tsc; 968 u64 tsc_offset_adjustment; 969 u64 this_tsc_nsec; 970 u64 this_tsc_write; 971 u64 this_tsc_generation; 972 bool tsc_catchup; 973 bool tsc_always_catchup; 974 s8 virtual_tsc_shift; 975 u32 virtual_tsc_mult; 976 u32 virtual_tsc_khz; 977 s64 ia32_tsc_adjust_msr; 978 u64 msr_ia32_power_ctl; 979 u64 l1_tsc_scaling_ratio; 980 u64 tsc_scaling_ratio; /* current scaling ratio */ 981 982 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */ 983 /* Number of NMIs pending injection, not including hardware vNMIs. */ 984 unsigned int nmi_pending; 985 bool nmi_injected; /* Trying to inject an NMI this entry */ 986 bool smi_pending; /* SMI queued after currently running handler */ 987 u8 handling_intr_from_guest; 988 989 struct kvm_mtrr mtrr_state; 990 u64 pat; 991 992 unsigned switch_db_regs; 993 unsigned long db[KVM_NR_DB_REGS]; 994 unsigned long dr6; 995 unsigned long dr7; 996 unsigned long eff_db[KVM_NR_DB_REGS]; 997 unsigned long guest_debug_dr7; 998 u64 msr_platform_info; 999 u64 msr_misc_features_enables; 1000 1001 u64 mcg_cap; 1002 u64 mcg_status; 1003 u64 mcg_ctl; 1004 u64 mcg_ext_ctl; 1005 u64 *mce_banks; 1006 u64 *mci_ctl2_banks; 1007 1008 /* Cache MMIO info */ 1009 u64 mmio_gva; 1010 unsigned mmio_access; 1011 gfn_t mmio_gfn; 1012 u64 mmio_gen; 1013 1014 struct kvm_pmu pmu; 1015 1016 /* used for guest single stepping over the given code position */ 1017 unsigned long singlestep_rip; 1018 1019 #ifdef CONFIG_KVM_HYPERV 1020 bool hyperv_enabled; 1021 struct kvm_vcpu_hv *hyperv; 1022 #endif 1023 #ifdef CONFIG_KVM_XEN 1024 struct kvm_vcpu_xen xen; 1025 #endif 1026 cpumask_var_t wbinvd_dirty_mask; 1027 1028 unsigned long last_retry_eip; 1029 unsigned long last_retry_addr; 1030 1031 struct { 1032 bool halted; 1033 gfn_t gfns[ASYNC_PF_PER_VCPU]; 1034 struct gfn_to_hva_cache data; 1035 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */ 1036 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */ 1037 u16 vec; 1038 u32 id; 1039 u32 host_apf_flags; 1040 bool send_always; 1041 bool delivery_as_pf_vmexit; 1042 bool pageready_pending; 1043 } apf; 1044 1045 /* OSVW MSRs (AMD only) */ 1046 struct { 1047 u64 length; 1048 u64 status; 1049 } osvw; 1050 1051 struct { 1052 u64 msr_val; 1053 struct gfn_to_hva_cache data; 1054 } pv_eoi; 1055 1056 u64 msr_kvm_poll_control; 1057 1058 /* pv related host specific info */ 1059 struct { 1060 bool pv_unhalted; 1061 } pv; 1062 1063 int pending_ioapic_eoi; 1064 int pending_external_vector; 1065 int highest_stale_pending_ioapic_eoi; 1066 1067 /* be preempted when it's in kernel-mode(cpl=0) */ 1068 bool preempted_in_kernel; 1069 1070 /* Host CPU on which VM-entry was most recently attempted */ 1071 int last_vmentry_cpu; 1072 1073 /* AMD MSRC001_0015 Hardware Configuration */ 1074 u64 msr_hwcr; 1075 1076 /* pv related cpuid info */ 1077 struct { 1078 /* 1079 * value of the eax register in the KVM_CPUID_FEATURES CPUID 1080 * leaf. 1081 */ 1082 u32 features; 1083 1084 /* 1085 * indicates whether pv emulation should be disabled if features 1086 * are not present in the guest's cpuid 1087 */ 1088 bool enforce; 1089 } pv_cpuid; 1090 1091 /* Protected Guests */ 1092 bool guest_state_protected; 1093 bool guest_tsc_protected; 1094 1095 /* 1096 * Set when PDPTS were loaded directly by the userspace without 1097 * reading the guest memory 1098 */ 1099 bool pdptrs_from_userspace; 1100 1101 #if IS_ENABLED(CONFIG_HYPERV) 1102 hpa_t hv_root_tdp; 1103 #endif 1104 }; 1105 1106 struct kvm_lpage_info { 1107 int disallow_lpage; 1108 }; 1109 1110 struct kvm_arch_memory_slot { 1111 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES]; 1112 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1]; 1113 unsigned short *gfn_write_track; 1114 }; 1115 1116 /* 1117 * Track the mode of the optimized logical map, as the rules for decoding the 1118 * destination vary per mode. Enabling the optimized logical map requires all 1119 * software-enabled local APIs to be in the same mode, each addressable APIC to 1120 * be mapped to only one MDA, and each MDA to map to at most one APIC. 1121 */ 1122 enum kvm_apic_logical_mode { 1123 /* All local APICs are software disabled. */ 1124 KVM_APIC_MODE_SW_DISABLED, 1125 /* All software enabled local APICs in xAPIC cluster addressing mode. */ 1126 KVM_APIC_MODE_XAPIC_CLUSTER, 1127 /* All software enabled local APICs in xAPIC flat addressing mode. */ 1128 KVM_APIC_MODE_XAPIC_FLAT, 1129 /* All software enabled local APICs in x2APIC mode. */ 1130 KVM_APIC_MODE_X2APIC, 1131 /* 1132 * Optimized map disabled, e.g. not all local APICs in the same logical 1133 * mode, same logical ID assigned to multiple APICs, etc. 1134 */ 1135 KVM_APIC_MODE_MAP_DISABLED, 1136 }; 1137 1138 struct kvm_apic_map { 1139 struct rcu_head rcu; 1140 enum kvm_apic_logical_mode logical_mode; 1141 u32 max_apic_id; 1142 union { 1143 struct kvm_lapic *xapic_flat_map[8]; 1144 struct kvm_lapic *xapic_cluster_map[16][4]; 1145 }; 1146 struct kvm_lapic *phys_map[]; 1147 }; 1148 1149 /* Hyper-V synthetic debugger (SynDbg)*/ 1150 struct kvm_hv_syndbg { 1151 struct { 1152 u64 control; 1153 u64 status; 1154 u64 send_page; 1155 u64 recv_page; 1156 u64 pending_page; 1157 } control; 1158 u64 options; 1159 }; 1160 1161 /* Current state of Hyper-V TSC page clocksource */ 1162 enum hv_tsc_page_status { 1163 /* TSC page was not set up or disabled */ 1164 HV_TSC_PAGE_UNSET = 0, 1165 /* TSC page MSR was written by the guest, update pending */ 1166 HV_TSC_PAGE_GUEST_CHANGED, 1167 /* TSC page update was triggered from the host side */ 1168 HV_TSC_PAGE_HOST_CHANGED, 1169 /* TSC page was properly set up and is currently active */ 1170 HV_TSC_PAGE_SET, 1171 /* TSC page was set up with an inaccessible GPA */ 1172 HV_TSC_PAGE_BROKEN, 1173 }; 1174 1175 #ifdef CONFIG_KVM_HYPERV 1176 /* Hyper-V emulation context */ 1177 struct kvm_hv { 1178 struct mutex hv_lock; 1179 u64 hv_guest_os_id; 1180 u64 hv_hypercall; 1181 u64 hv_tsc_page; 1182 enum hv_tsc_page_status hv_tsc_page_status; 1183 1184 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */ 1185 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS]; 1186 u64 hv_crash_ctl; 1187 1188 struct ms_hyperv_tsc_page tsc_ref; 1189 1190 struct idr conn_to_evt; 1191 1192 u64 hv_reenlightenment_control; 1193 u64 hv_tsc_emulation_control; 1194 u64 hv_tsc_emulation_status; 1195 u64 hv_invtsc_control; 1196 1197 /* How many vCPUs have VP index != vCPU index */ 1198 atomic_t num_mismatched_vp_indexes; 1199 1200 /* 1201 * How many SynICs use 'AutoEOI' feature 1202 * (protected by arch.apicv_update_lock) 1203 */ 1204 unsigned int synic_auto_eoi_used; 1205 1206 struct kvm_hv_syndbg hv_syndbg; 1207 1208 bool xsaves_xsavec_checked; 1209 }; 1210 #endif 1211 1212 struct msr_bitmap_range { 1213 u32 flags; 1214 u32 nmsrs; 1215 u32 base; 1216 unsigned long *bitmap; 1217 }; 1218 1219 #ifdef CONFIG_KVM_XEN 1220 /* Xen emulation context */ 1221 struct kvm_xen { 1222 struct mutex xen_lock; 1223 u32 xen_version; 1224 bool long_mode; 1225 bool runstate_update_flag; 1226 u8 upcall_vector; 1227 struct gfn_to_pfn_cache shinfo_cache; 1228 struct idr evtchn_ports; 1229 unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)]; 1230 1231 struct kvm_xen_hvm_config hvm_config; 1232 }; 1233 #endif 1234 1235 enum kvm_irqchip_mode { 1236 KVM_IRQCHIP_NONE, 1237 #ifdef CONFIG_KVM_IOAPIC 1238 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */ 1239 #endif 1240 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */ 1241 }; 1242 1243 enum kvm_suppress_eoi_broadcast_mode { 1244 KVM_SUPPRESS_EOI_BROADCAST_QUIRKED, /* Legacy behavior */ 1245 KVM_SUPPRESS_EOI_BROADCAST_ENABLED, /* Enable Suppress EOI broadcast */ 1246 KVM_SUPPRESS_EOI_BROADCAST_DISABLED /* Disable Suppress EOI broadcast */ 1247 }; 1248 1249 struct kvm_x86_msr_filter { 1250 u8 count; 1251 bool default_allow:1; 1252 struct msr_bitmap_range ranges[16]; 1253 }; 1254 1255 struct kvm_x86_pmu_event_filter { 1256 __u32 action; 1257 __u32 nevents; 1258 __u32 fixed_counter_bitmap; 1259 __u32 flags; 1260 __u32 nr_includes; 1261 __u32 nr_excludes; 1262 __u64 *includes; 1263 __u64 *excludes; 1264 __u64 events[]; 1265 }; 1266 1267 enum kvm_apicv_inhibit { 1268 1269 /********************************************************************/ 1270 /* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */ 1271 /********************************************************************/ 1272 1273 /* 1274 * APIC acceleration is disabled by a module parameter 1275 * and/or not supported in hardware. 1276 */ 1277 APICV_INHIBIT_REASON_DISABLED, 1278 1279 /* 1280 * APIC acceleration is inhibited because AutoEOI feature is 1281 * being used by a HyperV guest. 1282 */ 1283 APICV_INHIBIT_REASON_HYPERV, 1284 1285 /* 1286 * APIC acceleration is inhibited because the userspace didn't yet 1287 * enable the kernel/split irqchip. 1288 */ 1289 APICV_INHIBIT_REASON_ABSENT, 1290 1291 /* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ 1292 * (out of band, debug measure of blocking all interrupts on this vCPU) 1293 * was enabled, to avoid AVIC/APICv bypassing it. 1294 */ 1295 APICV_INHIBIT_REASON_BLOCKIRQ, 1296 1297 /* 1298 * APICv is disabled because not all vCPUs have a 1:1 mapping between 1299 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack. 1300 */ 1301 APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED, 1302 1303 /* 1304 * For simplicity, the APIC acceleration is inhibited 1305 * first time either APIC ID or APIC base are changed by the guest 1306 * from their reset values. 1307 */ 1308 APICV_INHIBIT_REASON_APIC_ID_MODIFIED, 1309 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED, 1310 1311 /******************************************************/ 1312 /* INHIBITs that are relevant only to the AMD's AVIC. */ 1313 /******************************************************/ 1314 1315 /* 1316 * AVIC is inhibited on a vCPU because it runs a nested guest. 1317 * 1318 * This is needed because unlike APICv, the peers of this vCPU 1319 * cannot use the doorbell mechanism to signal interrupts via AVIC when 1320 * a vCPU runs nested. 1321 */ 1322 APICV_INHIBIT_REASON_NESTED, 1323 1324 /* 1325 * On SVM, the wait for the IRQ window is implemented with pending vIRQ, 1326 * which cannot be injected when the AVIC is enabled, thus AVIC 1327 * is inhibited while KVM waits for IRQ window. 1328 */ 1329 APICV_INHIBIT_REASON_IRQWIN, 1330 1331 /* 1332 * PIT (i8254) 're-inject' mode, relies on EOI intercept, 1333 * which AVIC doesn't support for edge triggered interrupts. 1334 */ 1335 APICV_INHIBIT_REASON_PIT_REINJ, 1336 1337 /* 1338 * AVIC is disabled because SEV doesn't support it. 1339 */ 1340 APICV_INHIBIT_REASON_SEV, 1341 1342 /* 1343 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1 1344 * mapping between logical ID and vCPU. 1345 */ 1346 APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED, 1347 1348 /* 1349 * AVIC is disabled because the vCPU's APIC ID is beyond the max 1350 * supported by AVIC/x2AVIC, i.e. the vCPU is unaddressable. 1351 */ 1352 APICV_INHIBIT_REASON_PHYSICAL_ID_TOO_BIG, 1353 1354 NR_APICV_INHIBIT_REASONS, 1355 }; 1356 1357 #define __APICV_INHIBIT_REASON(reason) \ 1358 { BIT(APICV_INHIBIT_REASON_##reason), #reason } 1359 1360 #define APICV_INHIBIT_REASONS \ 1361 __APICV_INHIBIT_REASON(DISABLED), \ 1362 __APICV_INHIBIT_REASON(HYPERV), \ 1363 __APICV_INHIBIT_REASON(ABSENT), \ 1364 __APICV_INHIBIT_REASON(BLOCKIRQ), \ 1365 __APICV_INHIBIT_REASON(PHYSICAL_ID_ALIASED), \ 1366 __APICV_INHIBIT_REASON(APIC_ID_MODIFIED), \ 1367 __APICV_INHIBIT_REASON(APIC_BASE_MODIFIED), \ 1368 __APICV_INHIBIT_REASON(NESTED), \ 1369 __APICV_INHIBIT_REASON(IRQWIN), \ 1370 __APICV_INHIBIT_REASON(PIT_REINJ), \ 1371 __APICV_INHIBIT_REASON(SEV), \ 1372 __APICV_INHIBIT_REASON(LOGICAL_ID_ALIASED), \ 1373 __APICV_INHIBIT_REASON(PHYSICAL_ID_TOO_BIG) 1374 1375 struct kvm_possible_nx_huge_pages { 1376 /* 1377 * A list of kvm_mmu_page structs that, if zapped, could possibly be 1378 * replaced by an NX huge page. A shadow page is on this list if its 1379 * existence disallows an NX huge page (nx_huge_page_disallowed is set) 1380 * and there are no other conditions that prevent a huge page, e.g. 1381 * the backing host page is huge, dirtly logging is not enabled for its 1382 * memslot, etc... Note, zapping shadow pages on this list doesn't 1383 * guarantee an NX huge page will be created in its stead, e.g. if the 1384 * guest attempts to execute from the region then KVM obviously can't 1385 * create an NX huge page (without hanging the guest). 1386 */ 1387 struct list_head pages; 1388 u64 nr_pages; 1389 }; 1390 1391 enum kvm_mmu_type { 1392 KVM_SHADOW_MMU, 1393 #ifdef CONFIG_X86_64 1394 KVM_TDP_MMU, 1395 #endif 1396 KVM_NR_MMU_TYPES, 1397 }; 1398 1399 struct kvm_arch { 1400 unsigned long n_used_mmu_pages; 1401 unsigned long n_requested_mmu_pages; 1402 unsigned long n_max_mmu_pages; 1403 unsigned int indirect_shadow_pages; 1404 u8 mmu_valid_gen; 1405 u8 vm_type; 1406 bool has_private_mem; 1407 bool has_protected_state; 1408 bool has_protected_eoi; 1409 bool pre_fault_allowed; 1410 struct hlist_head *mmu_page_hash; 1411 struct list_head active_mmu_pages; 1412 struct kvm_possible_nx_huge_pages possible_nx_huge_pages[KVM_NR_MMU_TYPES]; 1413 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1414 struct kvm_page_track_notifier_head track_notifier_head; 1415 #endif 1416 /* 1417 * Protects marking pages unsync during page faults, as TDP MMU page 1418 * faults only take mmu_lock for read. For simplicity, the unsync 1419 * pages lock is always taken when marking pages unsync regardless of 1420 * whether mmu_lock is held for read or write. 1421 */ 1422 spinlock_t mmu_unsync_pages_lock; 1423 1424 u64 shadow_mmio_value; 1425 1426 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA 1427 atomic_t noncoherent_dma_count; 1428 unsigned long nr_possible_bypass_irqs; 1429 1430 #ifdef CONFIG_KVM_IOAPIC 1431 struct kvm_pic *vpic; 1432 struct kvm_ioapic *vioapic; 1433 struct kvm_pit *vpit; 1434 #endif 1435 atomic_t vapics_in_nmi_mode; 1436 struct mutex apic_map_lock; 1437 struct kvm_apic_map __rcu *apic_map; 1438 atomic_t apic_map_dirty; 1439 1440 bool apic_access_memslot_enabled; 1441 bool apic_access_memslot_inhibited; 1442 1443 /* Protects apicv_inhibit_reasons */ 1444 struct rw_semaphore apicv_update_lock; 1445 unsigned long apicv_inhibit_reasons; 1446 1447 gpa_t wall_clock; 1448 1449 u64 disabled_exits; 1450 1451 s64 kvmclock_offset; 1452 1453 /* 1454 * This also protects nr_vcpus_matched_tsc which is read from a 1455 * preemption-disabled region, so it must be a raw spinlock. 1456 */ 1457 raw_spinlock_t tsc_write_lock; 1458 u64 last_tsc_nsec; 1459 u64 last_tsc_write; 1460 u32 last_tsc_khz; 1461 u64 last_tsc_offset; 1462 u64 cur_tsc_nsec; 1463 u64 cur_tsc_write; 1464 u64 cur_tsc_offset; 1465 u64 cur_tsc_generation; 1466 int nr_vcpus_matched_tsc; 1467 1468 u32 default_tsc_khz; 1469 bool user_set_tsc; 1470 u64 apic_bus_cycle_ns; 1471 1472 seqcount_raw_spinlock_t pvclock_sc; 1473 bool use_master_clock; 1474 u64 master_kernel_ns; 1475 u64 master_cycle_now; 1476 1477 #ifdef CONFIG_KVM_HYPERV 1478 struct kvm_hv hyperv; 1479 #endif 1480 1481 #ifdef CONFIG_KVM_XEN 1482 struct kvm_xen xen; 1483 #endif 1484 1485 bool backwards_tsc_observed; 1486 bool boot_vcpu_runs_old_kvmclock; 1487 u32 bsp_vcpu_id; 1488 1489 u64 disabled_quirks; 1490 1491 enum kvm_irqchip_mode irqchip_mode; 1492 u8 nr_reserved_ioapic_pins; 1493 1494 bool disabled_lapic_found; 1495 1496 bool x2apic_format; 1497 bool x2apic_broadcast_quirk_disabled; 1498 enum kvm_suppress_eoi_broadcast_mode suppress_eoi_broadcast_mode; 1499 1500 bool has_mapped_host_mmio; 1501 bool guest_can_read_msr_platform_info; 1502 bool exception_payload_enabled; 1503 1504 bool triple_fault_event; 1505 1506 bool bus_lock_detection_enabled; 1507 bool enable_pmu; 1508 bool created_mediated_pmu; 1509 1510 u32 notify_window; 1511 u32 notify_vmexit_flags; 1512 /* 1513 * If exit_on_emulation_error is set, and the in-kernel instruction 1514 * emulator fails to emulate an instruction, allow userspace 1515 * the opportunity to look at it. 1516 */ 1517 bool exit_on_emulation_error; 1518 1519 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */ 1520 u32 user_space_msr_mask; 1521 struct kvm_x86_msr_filter __rcu *msr_filter; 1522 1523 u32 hypercall_exit_enabled; 1524 1525 /* Guest can access the SGX PROVISIONKEY. */ 1526 bool sgx_provisioning_allowed; 1527 1528 struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter; 1529 struct vhost_task *nx_huge_page_recovery_thread; 1530 u64 nx_huge_page_last; 1531 struct once nx_once; 1532 1533 #ifdef CONFIG_X86_64 1534 #ifdef CONFIG_KVM_PROVE_MMU 1535 /* 1536 * The number of TDP MMU pages across all roots. Used only to sanity 1537 * check that KVM isn't leaking TDP MMU pages. 1538 */ 1539 atomic64_t tdp_mmu_pages; 1540 #endif 1541 1542 /* 1543 * List of struct kvm_mmu_pages being used as roots. 1544 * All struct kvm_mmu_pages in the list should have 1545 * tdp_mmu_page set. 1546 * 1547 * For reads, this list is protected by: 1548 * RCU alone or 1549 * the MMU lock in read mode + RCU or 1550 * the MMU lock in write mode 1551 * 1552 * For writes, this list is protected by tdp_mmu_pages_lock; see 1553 * below for the details. 1554 * 1555 * Roots will remain in the list until their tdp_mmu_root_count 1556 * drops to zero, at which point the thread that decremented the 1557 * count to zero should removed the root from the list and clean 1558 * it up, freeing the root after an RCU grace period. 1559 */ 1560 struct list_head tdp_mmu_roots; 1561 1562 /* 1563 * Protects accesses to the following fields when the MMU lock 1564 * is held in read mode: 1565 * - tdp_mmu_roots (above) 1566 * - the link field of kvm_mmu_page structs used by the TDP MMU 1567 * - possible_nx_huge_pages[KVM_TDP_MMU]; 1568 * - the possible_nx_huge_page_link field of kvm_mmu_page structs used 1569 * by the TDP MMU 1570 * Because the lock is only taken within the MMU lock, strictly 1571 * speaking it is redundant to acquire this lock when the thread 1572 * holds the MMU lock in write mode. However it often simplifies 1573 * the code to do so. 1574 */ 1575 spinlock_t tdp_mmu_pages_lock; 1576 #endif /* CONFIG_X86_64 */ 1577 1578 /* 1579 * If set, at least one shadow root has been allocated. This flag 1580 * is used as one input when determining whether certain memslot 1581 * related allocations are necessary. 1582 */ 1583 bool shadow_root_allocated; 1584 1585 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1586 /* 1587 * If set, the VM has (or had) an external write tracking user, and 1588 * thus all write tracking metadata has been allocated, even if KVM 1589 * itself isn't using write tracking. 1590 */ 1591 bool external_write_tracking_enabled; 1592 #endif 1593 1594 #if IS_ENABLED(CONFIG_HYPERV) 1595 hpa_t hv_root_tdp; 1596 spinlock_t hv_root_tdp_lock; 1597 struct hv_partition_assist_pg *hv_pa_pg; 1598 #endif 1599 /* 1600 * VM-scope maximum vCPU ID. Used to determine the size of structures 1601 * that increase along with the maximum vCPU ID, in which case, using 1602 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste. 1603 */ 1604 u32 max_vcpu_ids; 1605 1606 bool disable_nx_huge_pages; 1607 1608 /* 1609 * Memory caches used to allocate shadow pages when performing eager 1610 * page splitting. No need for a shadowed_info_cache since eager page 1611 * splitting only allocates direct shadow pages. 1612 * 1613 * Protected by kvm->slots_lock. 1614 */ 1615 struct kvm_mmu_memory_cache split_shadow_page_cache; 1616 struct kvm_mmu_memory_cache split_page_header_cache; 1617 1618 /* 1619 * Memory cache used to allocate pte_list_desc structs while splitting 1620 * huge pages. In the worst case, to split one huge page, 512 1621 * pte_list_desc structs are needed to add each lower level leaf sptep 1622 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level 1623 * page table. 1624 * 1625 * Protected by kvm->slots_lock. 1626 */ 1627 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1) 1628 struct kvm_mmu_memory_cache split_desc_cache; 1629 1630 gfn_t gfn_direct_bits; 1631 1632 /* 1633 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A Zero 1634 * value indicates CPU dirty logging is unsupported or disabled in 1635 * current VM. 1636 */ 1637 int cpu_dirty_log_size; 1638 }; 1639 1640 struct kvm_vm_stat { 1641 struct kvm_vm_stat_generic generic; 1642 u64 mmu_shadow_zapped; 1643 u64 mmu_pte_write; 1644 u64 mmu_pde_zapped; 1645 u64 mmu_flooded; 1646 u64 mmu_recycled; 1647 u64 mmu_cache_miss; 1648 u64 mmu_unsync; 1649 union { 1650 struct { 1651 atomic64_t pages_4k; 1652 atomic64_t pages_2m; 1653 atomic64_t pages_1g; 1654 }; 1655 atomic64_t pages[KVM_NR_PAGE_SIZES]; 1656 }; 1657 u64 nx_lpage_splits; 1658 u64 max_mmu_page_hash_collisions; 1659 u64 max_mmu_rmap_size; 1660 }; 1661 1662 struct kvm_vcpu_stat { 1663 struct kvm_vcpu_stat_generic generic; 1664 u64 pf_taken; 1665 u64 pf_fixed; 1666 u64 pf_emulate; 1667 u64 pf_spurious; 1668 u64 pf_fast; 1669 u64 pf_mmio_spte_created; 1670 u64 pf_guest; 1671 u64 tlb_flush; 1672 u64 invlpg; 1673 1674 u64 exits; 1675 u64 io_exits; 1676 u64 mmio_exits; 1677 u64 signal_exits; 1678 u64 irq_window_exits; 1679 u64 nmi_window_exits; 1680 u64 l1d_flush; 1681 u64 halt_exits; 1682 u64 request_irq_exits; 1683 u64 irq_exits; 1684 u64 host_state_reload; 1685 u64 fpu_reload; 1686 u64 insn_emulation; 1687 u64 insn_emulation_fail; 1688 u64 hypercalls; 1689 u64 irq_injections; 1690 u64 nmi_injections; 1691 u64 req_event; 1692 u64 nested_run; 1693 u64 directed_yield_attempted; 1694 u64 directed_yield_successful; 1695 u64 preemption_reported; 1696 u64 preemption_other; 1697 u64 guest_mode; 1698 u64 notify_window_exits; 1699 }; 1700 1701 struct x86_instruction_info; 1702 1703 struct msr_data { 1704 bool host_initiated; 1705 u32 index; 1706 u64 data; 1707 }; 1708 1709 struct kvm_lapic_irq { 1710 u32 vector; 1711 u16 delivery_mode; 1712 u16 dest_mode; 1713 bool level; 1714 u16 trig_mode; 1715 u32 shorthand; 1716 u32 dest_id; 1717 bool msi_redir_hint; 1718 }; 1719 1720 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical) 1721 { 1722 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL; 1723 } 1724 1725 enum kvm_x86_run_flags { 1726 KVM_RUN_FORCE_IMMEDIATE_EXIT = BIT(0), 1727 KVM_RUN_LOAD_GUEST_DR6 = BIT(1), 1728 KVM_RUN_LOAD_DEBUGCTL = BIT(2), 1729 }; 1730 1731 struct kvm_x86_ops { 1732 const char *name; 1733 1734 int (*check_processor_compatibility)(void); 1735 1736 int (*enable_virtualization_cpu)(void); 1737 void (*disable_virtualization_cpu)(void); 1738 cpu_emergency_virt_cb *emergency_disable_virtualization_cpu; 1739 1740 void (*hardware_unsetup)(void); 1741 bool (*has_emulated_msr)(struct kvm *kvm, u32 index); 1742 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu); 1743 1744 unsigned int vm_size; 1745 int (*vm_init)(struct kvm *kvm); 1746 void (*vm_destroy)(struct kvm *kvm); 1747 void (*vm_pre_destroy)(struct kvm *kvm); 1748 1749 /* Create, but do not attach this VCPU */ 1750 int (*vcpu_precreate)(struct kvm *kvm); 1751 int (*vcpu_create)(struct kvm_vcpu *vcpu); 1752 void (*vcpu_free)(struct kvm_vcpu *vcpu); 1753 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event); 1754 1755 void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu); 1756 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu); 1757 void (*vcpu_put)(struct kvm_vcpu *vcpu); 1758 1759 /* 1760 * Mask of DEBUGCTL bits that are owned by the host, i.e. that need to 1761 * match the host's value even while the guest is active. 1762 */ 1763 const u64 HOST_OWNED_DEBUGCTL; 1764 1765 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu); 1766 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1767 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1768 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg); 1769 void (*get_segment)(struct kvm_vcpu *vcpu, 1770 struct kvm_segment *var, int seg); 1771 int (*get_cpl)(struct kvm_vcpu *vcpu); 1772 int (*get_cpl_no_cache)(struct kvm_vcpu *vcpu); 1773 void (*set_segment)(struct kvm_vcpu *vcpu, 1774 struct kvm_segment *var, int seg); 1775 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l); 1776 bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1777 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1778 void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3); 1779 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1780 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1781 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer); 1782 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1783 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1784 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1785 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1786 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu); 1787 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value); 1788 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg); 1789 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu); 1790 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags); 1791 bool (*get_if_flag)(struct kvm_vcpu *vcpu); 1792 1793 void (*flush_tlb_all)(struct kvm_vcpu *vcpu); 1794 void (*flush_tlb_current)(struct kvm_vcpu *vcpu); 1795 #if IS_ENABLED(CONFIG_HYPERV) 1796 int (*flush_remote_tlbs)(struct kvm *kvm); 1797 int (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn, 1798 gfn_t nr_pages); 1799 #endif 1800 1801 /* 1802 * Flush any TLB entries associated with the given GVA. 1803 * Does not need to flush GPA->HPA mappings. 1804 * Can potentially get non-canonical addresses through INVLPGs, which 1805 * the implementation may choose to ignore if appropriate. 1806 */ 1807 void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr); 1808 1809 /* 1810 * Flush any TLB entries created by the guest. Like tlb_flush_gva(), 1811 * does not need to flush GPA->HPA mappings. 1812 */ 1813 void (*flush_tlb_guest)(struct kvm_vcpu *vcpu); 1814 1815 int (*vcpu_pre_run)(struct kvm_vcpu *vcpu); 1816 enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu, 1817 u64 run_flags); 1818 int (*handle_exit)(struct kvm_vcpu *vcpu, 1819 enum exit_fastpath_completion exit_fastpath); 1820 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu); 1821 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu); 1822 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask); 1823 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu); 1824 void (*patch_hypercall)(struct kvm_vcpu *vcpu, 1825 unsigned char *hypercall_addr); 1826 void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected); 1827 void (*inject_nmi)(struct kvm_vcpu *vcpu); 1828 void (*inject_exception)(struct kvm_vcpu *vcpu); 1829 void (*cancel_injection)(struct kvm_vcpu *vcpu); 1830 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1831 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1832 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu); 1833 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked); 1834 /* Whether or not a virtual NMI is pending in hardware. */ 1835 bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu); 1836 /* 1837 * Attempt to pend a virtual NMI in hardware. Returns %true on success 1838 * to allow using static_call_ret0 as the fallback. 1839 */ 1840 bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu); 1841 void (*enable_nmi_window)(struct kvm_vcpu *vcpu); 1842 void (*enable_irq_window)(struct kvm_vcpu *vcpu); 1843 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr); 1844 1845 const bool x2apic_icr_is_split; 1846 const unsigned long required_apicv_inhibits; 1847 bool allow_apicv_in_x2apic_without_x2apic_virtualization; 1848 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu); 1849 void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr); 1850 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap); 1851 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu); 1852 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu); 1853 void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode, 1854 int trig_mode, int vector); 1855 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu); 1856 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr); 1857 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr); 1858 u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio); 1859 1860 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa, 1861 int root_level); 1862 1863 /* Update external mapping with page table link. */ 1864 int (*link_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1865 void *external_spt); 1866 /* Update the external page table from spte getting set. */ 1867 int (*set_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1868 u64 mirror_spte); 1869 1870 /* Update external page tables for page table about to be freed. */ 1871 int (*free_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1872 void *external_spt); 1873 1874 /* Update external page table from spte getting removed, and flush TLB. */ 1875 void (*remove_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1876 u64 mirror_spte); 1877 1878 bool (*has_wbinvd_exit)(void); 1879 1880 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu); 1881 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu); 1882 void (*write_tsc_offset)(struct kvm_vcpu *vcpu); 1883 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu); 1884 1885 /* 1886 * Retrieve somewhat arbitrary exit/entry information. Intended to 1887 * be used only from within tracepoints or error paths. 1888 */ 1889 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason, 1890 u64 *info1, u64 *info2, 1891 u32 *intr_info, u32 *error_code); 1892 1893 void (*get_entry_info)(struct kvm_vcpu *vcpu, 1894 u32 *intr_info, u32 *error_code); 1895 1896 int (*check_intercept)(struct kvm_vcpu *vcpu, 1897 struct x86_instruction_info *info, 1898 enum x86_intercept_stage stage, 1899 struct x86_exception *exception); 1900 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu); 1901 1902 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu); 1903 1904 const struct kvm_x86_nested_ops *nested_ops; 1905 1906 void (*vcpu_blocking)(struct kvm_vcpu *vcpu); 1907 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu); 1908 1909 int (*pi_update_irte)(struct kvm_kernel_irqfd *irqfd, struct kvm *kvm, 1910 unsigned int host_irq, uint32_t guest_irq, 1911 struct kvm_vcpu *vcpu, u32 vector); 1912 void (*pi_start_bypass)(struct kvm *kvm); 1913 void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu); 1914 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu); 1915 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu); 1916 bool (*protected_apic_has_interrupt)(struct kvm_vcpu *vcpu); 1917 1918 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 1919 bool *expired); 1920 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu); 1921 1922 void (*setup_mce)(struct kvm_vcpu *vcpu); 1923 1924 #ifdef CONFIG_KVM_SMM 1925 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1926 int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram); 1927 int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram); 1928 void (*enable_smi_window)(struct kvm_vcpu *vcpu); 1929 #endif 1930 1931 int (*dev_get_attr)(u32 group, u64 attr, u64 *val); 1932 int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp); 1933 int (*vcpu_mem_enc_ioctl)(struct kvm_vcpu *vcpu, void __user *argp); 1934 int (*vcpu_mem_enc_unlocked_ioctl)(struct kvm_vcpu *vcpu, void __user *argp); 1935 int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1936 int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1937 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1938 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1939 void (*guest_memory_reclaimed)(struct kvm *kvm); 1940 1941 int (*get_feature_msr)(u32 msr, u64 *data); 1942 1943 int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type, 1944 void *insn, int insn_len); 1945 1946 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu); 1947 int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu); 1948 1949 void (*migrate_timers)(struct kvm_vcpu *vcpu); 1950 void (*recalc_intercepts)(struct kvm_vcpu *vcpu); 1951 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err); 1952 1953 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector); 1954 1955 /* 1956 * Returns vCPU specific APICv inhibit reasons 1957 */ 1958 unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu); 1959 1960 gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags); 1961 void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu); 1962 int (*gmem_prepare)(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order); 1963 void (*gmem_invalidate)(kvm_pfn_t start, kvm_pfn_t end); 1964 int (*gmem_max_mapping_level)(struct kvm *kvm, kvm_pfn_t pfn, bool is_private); 1965 }; 1966 1967 struct kvm_x86_nested_ops { 1968 void (*leave_nested)(struct kvm_vcpu *vcpu); 1969 bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector, 1970 u32 error_code); 1971 int (*check_events)(struct kvm_vcpu *vcpu); 1972 bool (*has_events)(struct kvm_vcpu *vcpu, bool for_injection); 1973 void (*triple_fault)(struct kvm_vcpu *vcpu); 1974 int (*get_state)(struct kvm_vcpu *vcpu, 1975 struct kvm_nested_state __user *user_kvm_nested_state, 1976 unsigned user_data_size); 1977 int (*set_state)(struct kvm_vcpu *vcpu, 1978 struct kvm_nested_state __user *user_kvm_nested_state, 1979 struct kvm_nested_state *kvm_state); 1980 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu); 1981 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa); 1982 1983 int (*enable_evmcs)(struct kvm_vcpu *vcpu, 1984 uint16_t *vmcs_version); 1985 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu); 1986 void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu); 1987 }; 1988 1989 struct kvm_x86_init_ops { 1990 int (*hardware_setup)(void); 1991 unsigned int (*handle_intel_pt_intr)(void); 1992 1993 struct kvm_x86_ops *runtime_ops; 1994 struct kvm_pmu_ops *pmu_ops; 1995 }; 1996 1997 struct kvm_arch_async_pf { 1998 u32 token; 1999 gfn_t gfn; 2000 unsigned long cr3; 2001 bool direct_map; 2002 u64 error_code; 2003 }; 2004 2005 extern u32 __read_mostly kvm_nr_uret_msrs; 2006 extern bool __read_mostly allow_smaller_maxphyaddr; 2007 extern bool __read_mostly enable_apicv; 2008 extern bool __read_mostly enable_ipiv; 2009 extern bool __read_mostly enable_device_posted_irqs; 2010 extern struct kvm_x86_ops kvm_x86_ops; 2011 2012 #define kvm_x86_call(func) static_call(kvm_x86_##func) 2013 #define kvm_pmu_call(func) static_call(kvm_x86_pmu_##func) 2014 2015 #define KVM_X86_OP(func) \ 2016 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func)); 2017 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 2018 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 2019 #include <asm/kvm-x86-ops.h> 2020 2021 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops); 2022 void kvm_x86_vendor_exit(void); 2023 2024 #define __KVM_HAVE_ARCH_VM_ALLOC 2025 static inline struct kvm *kvm_arch_alloc_vm(void) 2026 { 2027 return kvzalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT); 2028 } 2029 2030 #define __KVM_HAVE_ARCH_VM_FREE 2031 void kvm_arch_free_vm(struct kvm *kvm); 2032 2033 #if IS_ENABLED(CONFIG_HYPERV) 2034 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 2035 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 2036 { 2037 if (kvm_x86_ops.flush_remote_tlbs && 2038 !kvm_x86_call(flush_remote_tlbs)(kvm)) 2039 return 0; 2040 else 2041 return -ENOTSUPP; 2042 } 2043 2044 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 2045 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, 2046 u64 nr_pages) 2047 { 2048 if (!kvm_x86_ops.flush_remote_tlbs_range) 2049 return -EOPNOTSUPP; 2050 2051 return kvm_x86_call(flush_remote_tlbs_range)(kvm, gfn, nr_pages); 2052 } 2053 #endif /* CONFIG_HYPERV */ 2054 2055 enum kvm_intr_type { 2056 /* Values are arbitrary, but must be non-zero. */ 2057 KVM_HANDLING_IRQ = 1, 2058 KVM_HANDLING_NMI, 2059 }; 2060 2061 /* Enable perf NMI and timer modes to work, and minimise false positives. */ 2062 #define kvm_arch_pmi_in_guest(vcpu) \ 2063 ((vcpu) && (vcpu)->arch.handling_intr_from_guest && \ 2064 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI))) 2065 2066 void __init kvm_mmu_x86_module_init(void); 2067 int kvm_mmu_vendor_module_init(void); 2068 void kvm_mmu_vendor_module_exit(void); 2069 2070 void kvm_mmu_destroy(struct kvm_vcpu *vcpu); 2071 int kvm_mmu_create(struct kvm_vcpu *vcpu); 2072 int kvm_mmu_init_vm(struct kvm *kvm); 2073 void kvm_mmu_uninit_vm(struct kvm *kvm); 2074 2075 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm, 2076 struct kvm_memory_slot *slot); 2077 2078 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu); 2079 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu); 2080 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 2081 const struct kvm_memory_slot *memslot, 2082 int start_level); 2083 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 2084 const struct kvm_memory_slot *memslot, 2085 int target_level); 2086 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 2087 const struct kvm_memory_slot *memslot, 2088 u64 start, u64 end, 2089 int target_level); 2090 void kvm_mmu_recover_huge_pages(struct kvm *kvm, 2091 const struct kvm_memory_slot *memslot); 2092 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 2093 const struct kvm_memory_slot *memslot); 2094 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen); 2095 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages); 2096 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end); 2097 2098 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3); 2099 2100 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 2101 const void *val, int bytes); 2102 2103 extern bool tdp_enabled; 2104 2105 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu); 2106 2107 /* 2108 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing 2109 * userspace I/O) to indicate that the emulation context 2110 * should be reused as is, i.e. skip initialization of 2111 * emulation context, instruction fetch and decode. 2112 * 2113 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware. 2114 * Indicates that only select instructions (tagged with 2115 * EmulateOnUD) should be emulated (to minimize the emulator 2116 * attack surface). See also EMULTYPE_TRAP_UD_FORCED. 2117 * 2118 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to 2119 * decode the instruction length. For use *only* by 2120 * kvm_x86_ops.skip_emulated_instruction() implementations if 2121 * EMULTYPE_COMPLETE_USER_EXIT is not set. 2122 * 2123 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to 2124 * retry native execution under certain conditions, 2125 * Can only be set in conjunction with EMULTYPE_PF. 2126 * 2127 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was 2128 * triggered by KVM's magic "force emulation" prefix, 2129 * which is opt in via module param (off by default). 2130 * Bypasses EmulateOnUD restriction despite emulating 2131 * due to an intercepted #UD (see EMULTYPE_TRAP_UD). 2132 * Used to test the full emulator from userspace. 2133 * 2134 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware 2135 * backdoor emulation, which is opt in via module param. 2136 * VMware backdoor emulation handles select instructions 2137 * and reinjects the #GP for all other cases. 2138 * 2139 * EMULTYPE_PF - Set when an intercepted #PF triggers the emulation, in which case 2140 * the CR2/GPA value pass on the stack is valid. 2141 * 2142 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility 2143 * state and inject single-step #DBs after skipping 2144 * an instruction (after completing userspace I/O). 2145 * 2146 * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that 2147 * is attempting to write a gfn that contains one or 2148 * more of the PTEs used to translate the write itself, 2149 * and the owning page table is being shadowed by KVM. 2150 * If emulation of the faulting instruction fails and 2151 * this flag is set, KVM will exit to userspace instead 2152 * of retrying emulation as KVM cannot make forward 2153 * progress. 2154 * 2155 * If emulation fails for a write to guest page tables, 2156 * KVM unprotects (zaps) the shadow page for the target 2157 * gfn and resumes the guest to retry the non-emulatable 2158 * instruction (on hardware). Unprotecting the gfn 2159 * doesn't allow forward progress for a self-changing 2160 * access because doing so also zaps the translation for 2161 * the gfn, i.e. retrying the instruction will hit a 2162 * !PRESENT fault, which results in a new shadow page 2163 * and sends KVM back to square one. 2164 * 2165 * EMULTYPE_SKIP_SOFT_INT - Set in combination with EMULTYPE_SKIP to only skip 2166 * an instruction if it could generate a given software 2167 * interrupt, which must be encoded via 2168 * EMULTYPE_SET_SOFT_INT_VECTOR(). 2169 */ 2170 #define EMULTYPE_NO_DECODE (1 << 0) 2171 #define EMULTYPE_TRAP_UD (1 << 1) 2172 #define EMULTYPE_SKIP (1 << 2) 2173 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3) 2174 #define EMULTYPE_TRAP_UD_FORCED (1 << 4) 2175 #define EMULTYPE_VMWARE_GP (1 << 5) 2176 #define EMULTYPE_PF (1 << 6) 2177 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7) 2178 #define EMULTYPE_WRITE_PF_TO_SP (1 << 8) 2179 #define EMULTYPE_SKIP_SOFT_INT (1 << 9) 2180 2181 #define EMULTYPE_SET_SOFT_INT_VECTOR(v) ((u32)((v) & 0xff) << 16) 2182 #define EMULTYPE_GET_SOFT_INT_VECTOR(e) (((e) >> 16) & 0xff) 2183 2184 static inline bool kvm_can_emulate_event_vectoring(int emul_type) 2185 { 2186 return !(emul_type & EMULTYPE_PF); 2187 } 2188 2189 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type); 2190 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 2191 void *insn, int insn_len); 2192 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, 2193 u64 *data, u8 ndata); 2194 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu); 2195 2196 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa); 2197 void kvm_prepare_unexpected_reason_exit(struct kvm_vcpu *vcpu, u64 exit_reason); 2198 2199 void kvm_enable_efer_bits(u64); 2200 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer); 2201 int kvm_emulate_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data); 2202 int kvm_emulate_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data); 2203 int __kvm_emulate_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data); 2204 int __kvm_emulate_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data); 2205 int kvm_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data); 2206 int kvm_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data); 2207 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu); 2208 int kvm_emulate_rdmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg); 2209 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu); 2210 int kvm_emulate_wrmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg); 2211 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu); 2212 int kvm_emulate_invd(struct kvm_vcpu *vcpu); 2213 int kvm_emulate_mwait(struct kvm_vcpu *vcpu); 2214 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu); 2215 int kvm_emulate_monitor(struct kvm_vcpu *vcpu); 2216 2217 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in); 2218 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu); 2219 int kvm_emulate_halt(struct kvm_vcpu *vcpu); 2220 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu); 2221 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu); 2222 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu); 2223 2224 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 2225 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 2226 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg); 2227 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector); 2228 2229 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 2230 int reason, bool has_error_code, u32 error_code); 2231 2232 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0); 2233 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4); 2234 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); 2235 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); 2236 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 2237 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8); 2238 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val); 2239 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr); 2240 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu); 2241 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw); 2242 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr); 2243 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu); 2244 2245 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2246 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2247 2248 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu); 2249 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 2250 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu); 2251 2252 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr); 2253 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 2254 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload); 2255 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr, 2256 bool has_error_code, u32 error_code); 2257 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault); 2258 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 2259 struct x86_exception *fault); 2260 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl); 2261 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr); 2262 2263 static inline int __kvm_irq_line_state(unsigned long *irq_state, 2264 int irq_source_id, int level) 2265 { 2266 /* Logical OR for level trig interrupt */ 2267 if (level) 2268 __set_bit(irq_source_id, irq_state); 2269 else 2270 __clear_bit(irq_source_id, irq_state); 2271 2272 return !!(*irq_state); 2273 } 2274 2275 void kvm_inject_nmi(struct kvm_vcpu *vcpu); 2276 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu); 2277 2278 void kvm_update_dr7(struct kvm_vcpu *vcpu); 2279 2280 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 2281 bool always_retry); 2282 2283 static inline bool kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, 2284 gpa_t cr2_or_gpa) 2285 { 2286 return __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, false); 2287 } 2288 2289 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 2290 ulong roots_to_free); 2291 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu); 2292 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 2293 struct x86_exception *exception); 2294 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 2295 struct x86_exception *exception); 2296 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 2297 struct x86_exception *exception); 2298 2299 bool kvm_apicv_activated(struct kvm *kvm); 2300 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu); 2301 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu); 2302 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2303 enum kvm_apicv_inhibit reason, bool set); 2304 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2305 enum kvm_apicv_inhibit reason, bool set); 2306 2307 static inline void kvm_set_apicv_inhibit(struct kvm *kvm, 2308 enum kvm_apicv_inhibit reason) 2309 { 2310 kvm_set_or_clear_apicv_inhibit(kvm, reason, true); 2311 } 2312 2313 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm, 2314 enum kvm_apicv_inhibit reason) 2315 { 2316 kvm_set_or_clear_apicv_inhibit(kvm, reason, false); 2317 } 2318 2319 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 2320 void *insn, int insn_len); 2321 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg); 2322 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva); 2323 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 2324 u64 addr, unsigned long roots); 2325 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid); 2326 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd); 2327 2328 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 2329 int tdp_max_root_level, int tdp_huge_page_level); 2330 2331 2332 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2333 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem) 2334 #endif 2335 2336 #define kvm_arch_has_readonly_mem(kvm) (!(kvm)->arch.has_protected_state) 2337 2338 static inline u16 kvm_read_ldt(void) 2339 { 2340 u16 ldt; 2341 asm("sldt %0" : "=g"(ldt)); 2342 return ldt; 2343 } 2344 2345 static inline void kvm_load_ldt(u16 sel) 2346 { 2347 asm("lldt %0" : : "rm"(sel)); 2348 } 2349 2350 #ifdef CONFIG_X86_64 2351 static inline unsigned long read_msr(unsigned long msr) 2352 { 2353 u64 value; 2354 2355 rdmsrq(msr, value); 2356 return value; 2357 } 2358 #endif 2359 2360 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code) 2361 { 2362 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2363 } 2364 2365 #define TSS_IOPB_BASE_OFFSET 0x66 2366 #define TSS_BASE_SIZE 0x68 2367 #define TSS_IOPB_SIZE (65536 / 8) 2368 #define TSS_REDIRECTION_SIZE (256 / 8) 2369 #define RMODE_TSS_SIZE \ 2370 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1) 2371 2372 enum { 2373 TASK_SWITCH_CALL = 0, 2374 TASK_SWITCH_IRET = 1, 2375 TASK_SWITCH_JMP = 2, 2376 TASK_SWITCH_GATE = 3, 2377 }; 2378 2379 #define HF_GUEST_MASK (1 << 0) /* VCPU is in guest-mode */ 2380 2381 #ifdef CONFIG_KVM_SMM 2382 #define HF_SMM_MASK (1 << 1) 2383 #define HF_SMM_INSIDE_NMI_MASK (1 << 2) 2384 2385 # define KVM_MAX_NR_ADDRESS_SPACES 2 2386 /* SMM is currently unsupported for guests with private memory. */ 2387 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2) 2388 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0) 2389 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm) 2390 #else 2391 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0) 2392 #endif 2393 2394 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v); 2395 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu); 2396 int kvm_cpu_has_extint(struct kvm_vcpu *v); 2397 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu); 2398 int kvm_cpu_get_extint(struct kvm_vcpu *v); 2399 int kvm_cpu_get_interrupt(struct kvm_vcpu *v); 2400 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event); 2401 2402 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 2403 unsigned long ipi_bitmap_high, u32 min, 2404 unsigned long icr, int op_64_bit); 2405 2406 int kvm_add_user_return_msr(u32 msr); 2407 int kvm_find_user_return_msr(u32 msr); 2408 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask); 2409 u64 kvm_get_user_return_msr(unsigned int slot); 2410 2411 static inline bool kvm_is_supported_user_return_msr(u32 msr) 2412 { 2413 return kvm_find_user_return_msr(msr) >= 0; 2414 } 2415 2416 u64 kvm_scale_tsc(u64 tsc, u64 ratio); 2417 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc); 2418 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier); 2419 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier); 2420 2421 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu); 2422 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip); 2423 2424 void kvm_make_scan_ioapic_request(struct kvm *kvm); 2425 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 2426 unsigned long *vcpu_bitmap); 2427 2428 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 2429 struct kvm_async_pf *work); 2430 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 2431 struct kvm_async_pf *work); 2432 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 2433 struct kvm_async_pf *work); 2434 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu); 2435 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu); 2436 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 2437 2438 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu); 2439 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err); 2440 2441 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 2442 u32 size); 2443 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu); 2444 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu); 2445 2446 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq) 2447 { 2448 /* We can only post Fixed and LowPrio IRQs */ 2449 return (irq->delivery_mode == APIC_DM_FIXED || 2450 irq->delivery_mode == APIC_DM_LOWEST); 2451 } 2452 2453 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 2454 { 2455 kvm_x86_call(vcpu_blocking)(vcpu); 2456 } 2457 2458 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 2459 { 2460 kvm_x86_call(vcpu_unblocking)(vcpu); 2461 } 2462 2463 static inline int kvm_cpu_get_apicid(int mps_cpu) 2464 { 2465 #ifdef CONFIG_X86_LOCAL_APIC 2466 return default_cpu_present_to_apicid(mps_cpu); 2467 #else 2468 WARN_ON_ONCE(1); 2469 return BAD_APICID; 2470 #endif 2471 } 2472 2473 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages); 2474 2475 #define KVM_CLOCK_VALID_FLAGS \ 2476 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC) 2477 2478 #define KVM_X86_VALID_QUIRKS \ 2479 (KVM_X86_QUIRK_LINT0_REENABLED | \ 2480 KVM_X86_QUIRK_CD_NW_CLEARED | \ 2481 KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \ 2482 KVM_X86_QUIRK_OUT_7E_INC_RIP | \ 2483 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT | \ 2484 KVM_X86_QUIRK_FIX_HYPERCALL_INSN | \ 2485 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS | \ 2486 KVM_X86_QUIRK_SLOT_ZAP_ALL | \ 2487 KVM_X86_QUIRK_STUFF_FEATURE_MSRS | \ 2488 KVM_X86_QUIRK_IGNORE_GUEST_PAT) 2489 2490 #define KVM_X86_CONDITIONAL_QUIRKS \ 2491 (KVM_X86_QUIRK_CD_NW_CLEARED | \ 2492 KVM_X86_QUIRK_IGNORE_GUEST_PAT) 2493 2494 /* 2495 * KVM previously used a u32 field in kvm_run to indicate the hypercall was 2496 * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the 2497 * remaining 31 lower bits must be 0 to preserve ABI. 2498 */ 2499 #define KVM_EXIT_HYPERCALL_MBZ GENMASK_ULL(31, 1) 2500 2501 static inline bool kvm_arch_has_irq_bypass(void) 2502 { 2503 return enable_device_posted_irqs; 2504 } 2505 2506 #endif /* _ASM_X86_KVM_HOST_H */ 2507