1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2020 Facebook */
3
4 #include <linux/bits.h>
5 #include <linux/err.h>
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/debugfs.h>
9 #include <linux/init.h>
10 #include <linux/pci.h>
11 #include <linux/serial_8250.h>
12 #include <linux/clkdev.h>
13 #include <linux/clk-provider.h>
14 #include <linux/platform_device.h>
15 #include <linux/platform_data/i2c-xiic.h>
16 #include <linux/platform_data/i2c-ocores.h>
17 #include <linux/ptp_clock_kernel.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/xilinx_spi.h>
20 #include <linux/spi/altera.h>
21 #include <net/devlink.h>
22 #include <linux/i2c.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/nvmem-consumer.h>
25 #include <linux/crc16.h>
26 #include <linux/dpll.h>
27
28 #define PCI_DEVICE_ID_META_TIMECARD 0x0400
29
30 #define PCI_VENDOR_ID_CELESTICA 0x18d4
31 #define PCI_DEVICE_ID_CELESTICA_TIMECARD 0x1008
32
33 #define PCI_VENDOR_ID_OROLIA 0x1ad7
34 #define PCI_DEVICE_ID_OROLIA_ARTCARD 0xa000
35
36 #define PCI_VENDOR_ID_ADVA 0xad5a
37 #define PCI_DEVICE_ID_ADVA_TIMECARD 0x0400
38
39 static struct class timecard_class = {
40 .name = "timecard",
41 };
42
43 struct ocp_reg {
44 u32 ctrl;
45 u32 status;
46 u32 select;
47 u32 version;
48 u32 time_ns;
49 u32 time_sec;
50 u32 __pad0[2];
51 u32 adjust_ns;
52 u32 adjust_sec;
53 u32 __pad1[2];
54 u32 offset_ns;
55 u32 offset_window_ns;
56 u32 __pad2[2];
57 u32 drift_ns;
58 u32 drift_window_ns;
59 u32 __pad3[6];
60 u32 servo_offset_p;
61 u32 servo_offset_i;
62 u32 servo_drift_p;
63 u32 servo_drift_i;
64 u32 status_offset;
65 u32 status_drift;
66 };
67
68 struct ptp_ocp_servo_conf {
69 u32 servo_offset_p;
70 u32 servo_offset_i;
71 u32 servo_drift_p;
72 u32 servo_drift_i;
73 };
74
75 #define OCP_CTRL_ENABLE BIT(0)
76 #define OCP_CTRL_ADJUST_TIME BIT(1)
77 #define OCP_CTRL_ADJUST_OFFSET BIT(2)
78 #define OCP_CTRL_ADJUST_DRIFT BIT(3)
79 #define OCP_CTRL_ADJUST_SERVO BIT(8)
80 #define OCP_CTRL_READ_TIME_REQ BIT(30)
81 #define OCP_CTRL_READ_TIME_DONE BIT(31)
82
83 #define OCP_STATUS_IN_SYNC BIT(0)
84 #define OCP_STATUS_IN_HOLDOVER BIT(1)
85
86 #define OCP_SELECT_CLK_NONE 0
87 #define OCP_SELECT_CLK_REG 0xfe
88
89 struct tod_reg {
90 u32 ctrl;
91 u32 status;
92 u32 uart_polarity;
93 u32 version;
94 u32 adj_sec;
95 u32 __pad0[3];
96 u32 uart_baud;
97 u32 __pad1[3];
98 u32 utc_status;
99 u32 leap;
100 };
101
102 #define TOD_CTRL_PROTOCOL BIT(28)
103 #define TOD_CTRL_DISABLE_FMT_A BIT(17)
104 #define TOD_CTRL_DISABLE_FMT_B BIT(16)
105 #define TOD_CTRL_ENABLE BIT(0)
106 #define TOD_CTRL_GNSS_MASK GENMASK(3, 0)
107 #define TOD_CTRL_GNSS_SHIFT 24
108
109 #define TOD_STATUS_UTC_MASK GENMASK(7, 0)
110 #define TOD_STATUS_UTC_VALID BIT(8)
111 #define TOD_STATUS_LEAP_ANNOUNCE BIT(12)
112 #define TOD_STATUS_LEAP_VALID BIT(16)
113
114 struct ts_reg {
115 u32 enable;
116 u32 error;
117 u32 polarity;
118 u32 version;
119 u32 __pad0[4];
120 u32 cable_delay;
121 u32 __pad1[3];
122 u32 intr;
123 u32 intr_mask;
124 u32 event_count;
125 u32 __pad2[1];
126 u32 ts_count;
127 u32 time_ns;
128 u32 time_sec;
129 u32 data_width;
130 u32 data;
131 };
132
133 struct pps_reg {
134 u32 ctrl;
135 u32 status;
136 u32 __pad0[6];
137 u32 cable_delay;
138 };
139
140 #define PPS_STATUS_FILTER_ERR BIT(0)
141 #define PPS_STATUS_SUPERV_ERR BIT(1)
142
143 struct img_reg {
144 u32 version;
145 };
146
147 struct gpio_reg {
148 u32 gpio1;
149 u32 __pad0;
150 u32 gpio2;
151 u32 __pad1;
152 };
153
154 struct irig_master_reg {
155 u32 ctrl;
156 u32 status;
157 u32 __pad0;
158 u32 version;
159 u32 adj_sec;
160 u32 mode_ctrl;
161 };
162
163 #define IRIG_M_CTRL_ENABLE BIT(0)
164
165 struct irig_slave_reg {
166 u32 ctrl;
167 u32 status;
168 u32 __pad0;
169 u32 version;
170 u32 adj_sec;
171 u32 mode_ctrl;
172 };
173
174 #define IRIG_S_CTRL_ENABLE BIT(0)
175
176 struct dcf_master_reg {
177 u32 ctrl;
178 u32 status;
179 u32 __pad0;
180 u32 version;
181 u32 adj_sec;
182 };
183
184 #define DCF_M_CTRL_ENABLE BIT(0)
185
186 struct dcf_slave_reg {
187 u32 ctrl;
188 u32 status;
189 u32 __pad0;
190 u32 version;
191 u32 adj_sec;
192 };
193
194 #define DCF_S_CTRL_ENABLE BIT(0)
195
196 struct signal_reg {
197 u32 enable;
198 u32 status;
199 u32 polarity;
200 u32 version;
201 u32 __pad0[4];
202 u32 cable_delay;
203 u32 __pad1[3];
204 u32 intr;
205 u32 intr_mask;
206 u32 __pad2[2];
207 u32 start_ns;
208 u32 start_sec;
209 u32 pulse_ns;
210 u32 pulse_sec;
211 u32 period_ns;
212 u32 period_sec;
213 u32 repeat_count;
214 };
215
216 struct frequency_reg {
217 u32 ctrl;
218 u32 status;
219 };
220
221 struct board_config_reg {
222 u32 mro50_serial_activate;
223 };
224
225 #define FREQ_STATUS_VALID BIT(31)
226 #define FREQ_STATUS_ERROR BIT(30)
227 #define FREQ_STATUS_OVERRUN BIT(29)
228 #define FREQ_STATUS_MASK GENMASK(23, 0)
229
230 struct ptp_ocp_flash_info {
231 const char *name;
232 int pci_offset;
233 int data_size;
234 void *data;
235 };
236
237 struct ptp_ocp_firmware_header {
238 char magic[4];
239 __be16 pci_vendor_id;
240 __be16 pci_device_id;
241 __be32 image_size;
242 __be16 hw_revision;
243 __be16 crc;
244 };
245
246 #define OCP_FIRMWARE_MAGIC_HEADER "OCPC"
247
248 struct ptp_ocp_i2c_info {
249 const char *name;
250 unsigned long fixed_rate;
251 size_t data_size;
252 void *data;
253 };
254
255 struct ptp_ocp_ext_info {
256 int index;
257 irqreturn_t (*irq_fcn)(int irq, void *priv);
258 int (*enable)(void *priv, u32 req, bool enable);
259 };
260
261 struct ptp_ocp_ext_src {
262 void __iomem *mem;
263 struct ptp_ocp *bp;
264 struct ptp_ocp_ext_info *info;
265 int irq_vec;
266 };
267
268 enum ptp_ocp_sma_mode {
269 SMA_MODE_IN,
270 SMA_MODE_OUT,
271 };
272
273 static struct dpll_pin_frequency ptp_ocp_sma_freq[] = {
274 DPLL_PIN_FREQUENCY_1PPS,
275 DPLL_PIN_FREQUENCY_10MHZ,
276 DPLL_PIN_FREQUENCY_IRIG_B,
277 DPLL_PIN_FREQUENCY_DCF77,
278 };
279
280 struct ptp_ocp_sma_connector {
281 enum ptp_ocp_sma_mode mode;
282 bool fixed_fcn;
283 bool fixed_dir;
284 bool disabled;
285 u8 default_fcn;
286 struct dpll_pin *dpll_pin;
287 struct dpll_pin_properties dpll_prop;
288 };
289
290 struct ocp_attr_group {
291 u64 cap;
292 const struct attribute_group *group;
293 };
294
295 #define OCP_CAP_BASIC BIT(0)
296 #define OCP_CAP_SIGNAL BIT(1)
297 #define OCP_CAP_FREQ BIT(2)
298
299 struct ptp_ocp_signal {
300 ktime_t period;
301 ktime_t pulse;
302 ktime_t phase;
303 ktime_t start;
304 int duty;
305 bool polarity;
306 bool running;
307 };
308
309 struct ptp_ocp_serial_port {
310 int line;
311 int baud;
312 };
313
314 #define OCP_BOARD_ID_LEN 13
315 #define OCP_SERIAL_LEN 6
316 #define OCP_SMA_NUM 4
317 #define OCP_SIGNAL_NUM 4
318 #define OCP_FREQ_NUM 4
319
320 enum {
321 PORT_GNSS,
322 PORT_GNSS2,
323 PORT_MAC, /* miniature atomic clock */
324 PORT_NMEA,
325
326 __PORT_COUNT,
327 };
328
329 struct ptp_ocp {
330 struct pci_dev *pdev;
331 struct device dev;
332 spinlock_t lock;
333 struct ocp_reg __iomem *reg;
334 struct tod_reg __iomem *tod;
335 struct pps_reg __iomem *pps_to_ext;
336 struct pps_reg __iomem *pps_to_clk;
337 struct board_config_reg __iomem *board_config;
338 struct gpio_reg __iomem *pps_select;
339 struct gpio_reg __iomem *sma_map1;
340 struct gpio_reg __iomem *sma_map2;
341 struct irig_master_reg __iomem *irig_out;
342 struct irig_slave_reg __iomem *irig_in;
343 struct dcf_master_reg __iomem *dcf_out;
344 struct dcf_slave_reg __iomem *dcf_in;
345 struct tod_reg __iomem *nmea_out;
346 struct frequency_reg __iomem *freq_in[OCP_FREQ_NUM];
347 struct ptp_ocp_ext_src *signal_out[OCP_SIGNAL_NUM];
348 struct ptp_ocp_ext_src *pps;
349 struct ptp_ocp_ext_src *ts0;
350 struct ptp_ocp_ext_src *ts1;
351 struct ptp_ocp_ext_src *ts2;
352 struct ptp_ocp_ext_src *ts3;
353 struct ptp_ocp_ext_src *ts4;
354 struct ocp_art_gpio_reg __iomem *art_sma;
355 struct img_reg __iomem *image;
356 struct ptp_clock *ptp;
357 struct ptp_clock_info ptp_info;
358 struct platform_device *i2c_ctrl;
359 struct platform_device *spi_flash;
360 struct clk_hw *i2c_clk;
361 struct timer_list watchdog;
362 const struct attribute_group **attr_group;
363 const struct ptp_ocp_eeprom_map *eeprom_map;
364 struct dentry *debug_root;
365 bool sync;
366 time64_t gnss_lost;
367 struct delayed_work sync_work;
368 int id;
369 int n_irqs;
370 struct ptp_ocp_serial_port port[__PORT_COUNT];
371 bool fw_loader;
372 u8 fw_tag;
373 u16 fw_version;
374 u8 board_id[OCP_BOARD_ID_LEN];
375 u8 serial[OCP_SERIAL_LEN];
376 bool has_eeprom_data;
377 u32 pps_req_map;
378 int flash_start;
379 u32 utc_tai_offset;
380 u32 ts_window_adjust;
381 u64 fw_cap;
382 struct ptp_ocp_signal signal[OCP_SIGNAL_NUM];
383 struct ptp_ocp_sma_connector sma[OCP_SMA_NUM];
384 const struct ocp_sma_op *sma_op;
385 struct dpll_device *dpll;
386 int signals_nr;
387 int freq_in_nr;
388 };
389
390 #define OCP_REQ_TIMESTAMP BIT(0)
391 #define OCP_REQ_PPS BIT(1)
392
393 struct ocp_resource {
394 unsigned long offset;
395 int size;
396 int irq_vec;
397 int (*setup)(struct ptp_ocp *bp, struct ocp_resource *r);
398 void *extra;
399 unsigned long bp_offset;
400 const char * const name;
401 };
402
403 static int ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r);
404 static int ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r);
405 static int ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r);
406 static int ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r);
407 static int ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r);
408 static int ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
409 static irqreturn_t ptp_ocp_ts_irq(int irq, void *priv);
410 static irqreturn_t ptp_ocp_signal_irq(int irq, void *priv);
411 static int ptp_ocp_ts_enable(void *priv, u32 req, bool enable);
412 static int ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
413 struct ptp_perout_request *req);
414 static int ptp_ocp_signal_enable(void *priv, u32 req, bool enable);
415 static int ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr);
416
417 static int ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
418
419 static int ptp_ocp_adva_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
420
421 static const struct ocp_attr_group fb_timecard_groups[];
422
423 static const struct ocp_attr_group art_timecard_groups[];
424
425 static const struct ocp_attr_group adva_timecard_groups[];
426
427 struct ptp_ocp_eeprom_map {
428 u16 off;
429 u16 len;
430 u32 bp_offset;
431 const void * const tag;
432 };
433
434 #define EEPROM_ENTRY(addr, member) \
435 .off = addr, \
436 .len = sizeof_field(struct ptp_ocp, member), \
437 .bp_offset = offsetof(struct ptp_ocp, member)
438
439 #define BP_MAP_ENTRY_ADDR(bp, map) ({ \
440 (void *)((uintptr_t)(bp) + (map)->bp_offset); \
441 })
442
443 static struct ptp_ocp_eeprom_map fb_eeprom_map[] = {
444 { EEPROM_ENTRY(0x43, board_id) },
445 { EEPROM_ENTRY(0x00, serial), .tag = "mac" },
446 { }
447 };
448
449 static struct ptp_ocp_eeprom_map art_eeprom_map[] = {
450 { EEPROM_ENTRY(0x200 + 0x43, board_id) },
451 { EEPROM_ENTRY(0x200 + 0x63, serial) },
452 { }
453 };
454
455 #define bp_assign_entry(bp, res, val) ({ \
456 uintptr_t addr = (uintptr_t)(bp) + (res)->bp_offset; \
457 *(typeof(val) *)addr = val; \
458 })
459
460 #define OCP_RES_LOCATION(member) \
461 .name = #member, .bp_offset = offsetof(struct ptp_ocp, member)
462
463 #define OCP_MEM_RESOURCE(member) \
464 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_mem
465
466 #define OCP_SERIAL_RESOURCE(member) \
467 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_serial
468
469 #define OCP_I2C_RESOURCE(member) \
470 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_i2c
471
472 #define OCP_SPI_RESOURCE(member) \
473 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_spi
474
475 #define OCP_EXT_RESOURCE(member) \
476 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_ext
477
478 /* This is the MSI vector mapping used.
479 * 0: PPS (TS5)
480 * 1: TS0
481 * 2: TS1
482 * 3: GNSS1
483 * 4: GNSS2
484 * 5: MAC
485 * 6: TS2
486 * 7: I2C controller
487 * 8: HWICAP (notused)
488 * 9: SPI Flash
489 * 10: NMEA
490 * 11: Signal Generator 1
491 * 12: Signal Generator 2
492 * 13: Signal Generator 3
493 * 14: Signal Generator 4
494 * 15: TS3
495 * 16: TS4
496 --
497 * 8: Orolia TS1
498 * 10: Orolia TS2
499 * 11: Orolia TS0 (GNSS)
500 * 12: Orolia PPS
501 * 14: Orolia TS3
502 * 15: Orolia TS4
503 */
504
505 static struct ocp_resource ocp_fb_resource[] = {
506 {
507 OCP_MEM_RESOURCE(reg),
508 .offset = 0x01000000, .size = 0x10000,
509 },
510 {
511 OCP_EXT_RESOURCE(ts0),
512 .offset = 0x01010000, .size = 0x10000, .irq_vec = 1,
513 .extra = &(struct ptp_ocp_ext_info) {
514 .index = 0,
515 .irq_fcn = ptp_ocp_ts_irq,
516 .enable = ptp_ocp_ts_enable,
517 },
518 },
519 {
520 OCP_EXT_RESOURCE(ts1),
521 .offset = 0x01020000, .size = 0x10000, .irq_vec = 2,
522 .extra = &(struct ptp_ocp_ext_info) {
523 .index = 1,
524 .irq_fcn = ptp_ocp_ts_irq,
525 .enable = ptp_ocp_ts_enable,
526 },
527 },
528 {
529 OCP_EXT_RESOURCE(ts2),
530 .offset = 0x01060000, .size = 0x10000, .irq_vec = 6,
531 .extra = &(struct ptp_ocp_ext_info) {
532 .index = 2,
533 .irq_fcn = ptp_ocp_ts_irq,
534 .enable = ptp_ocp_ts_enable,
535 },
536 },
537 {
538 OCP_EXT_RESOURCE(ts3),
539 .offset = 0x01110000, .size = 0x10000, .irq_vec = 15,
540 .extra = &(struct ptp_ocp_ext_info) {
541 .index = 3,
542 .irq_fcn = ptp_ocp_ts_irq,
543 .enable = ptp_ocp_ts_enable,
544 },
545 },
546 {
547 OCP_EXT_RESOURCE(ts4),
548 .offset = 0x01120000, .size = 0x10000, .irq_vec = 16,
549 .extra = &(struct ptp_ocp_ext_info) {
550 .index = 4,
551 .irq_fcn = ptp_ocp_ts_irq,
552 .enable = ptp_ocp_ts_enable,
553 },
554 },
555 /* Timestamp for PHC and/or PPS generator */
556 {
557 OCP_EXT_RESOURCE(pps),
558 .offset = 0x010C0000, .size = 0x10000, .irq_vec = 0,
559 .extra = &(struct ptp_ocp_ext_info) {
560 .index = 5,
561 .irq_fcn = ptp_ocp_ts_irq,
562 .enable = ptp_ocp_ts_enable,
563 },
564 },
565 {
566 OCP_EXT_RESOURCE(signal_out[0]),
567 .offset = 0x010D0000, .size = 0x10000, .irq_vec = 11,
568 .extra = &(struct ptp_ocp_ext_info) {
569 .index = 1,
570 .irq_fcn = ptp_ocp_signal_irq,
571 .enable = ptp_ocp_signal_enable,
572 },
573 },
574 {
575 OCP_EXT_RESOURCE(signal_out[1]),
576 .offset = 0x010E0000, .size = 0x10000, .irq_vec = 12,
577 .extra = &(struct ptp_ocp_ext_info) {
578 .index = 2,
579 .irq_fcn = ptp_ocp_signal_irq,
580 .enable = ptp_ocp_signal_enable,
581 },
582 },
583 {
584 OCP_EXT_RESOURCE(signal_out[2]),
585 .offset = 0x010F0000, .size = 0x10000, .irq_vec = 13,
586 .extra = &(struct ptp_ocp_ext_info) {
587 .index = 3,
588 .irq_fcn = ptp_ocp_signal_irq,
589 .enable = ptp_ocp_signal_enable,
590 },
591 },
592 {
593 OCP_EXT_RESOURCE(signal_out[3]),
594 .offset = 0x01100000, .size = 0x10000, .irq_vec = 14,
595 .extra = &(struct ptp_ocp_ext_info) {
596 .index = 4,
597 .irq_fcn = ptp_ocp_signal_irq,
598 .enable = ptp_ocp_signal_enable,
599 },
600 },
601 {
602 OCP_MEM_RESOURCE(pps_to_ext),
603 .offset = 0x01030000, .size = 0x10000,
604 },
605 {
606 OCP_MEM_RESOURCE(pps_to_clk),
607 .offset = 0x01040000, .size = 0x10000,
608 },
609 {
610 OCP_MEM_RESOURCE(tod),
611 .offset = 0x01050000, .size = 0x10000,
612 },
613 {
614 OCP_MEM_RESOURCE(irig_in),
615 .offset = 0x01070000, .size = 0x10000,
616 },
617 {
618 OCP_MEM_RESOURCE(irig_out),
619 .offset = 0x01080000, .size = 0x10000,
620 },
621 {
622 OCP_MEM_RESOURCE(dcf_in),
623 .offset = 0x01090000, .size = 0x10000,
624 },
625 {
626 OCP_MEM_RESOURCE(dcf_out),
627 .offset = 0x010A0000, .size = 0x10000,
628 },
629 {
630 OCP_MEM_RESOURCE(nmea_out),
631 .offset = 0x010B0000, .size = 0x10000,
632 },
633 {
634 OCP_MEM_RESOURCE(image),
635 .offset = 0x00020000, .size = 0x1000,
636 },
637 {
638 OCP_MEM_RESOURCE(pps_select),
639 .offset = 0x00130000, .size = 0x1000,
640 },
641 {
642 OCP_MEM_RESOURCE(sma_map1),
643 .offset = 0x00140000, .size = 0x1000,
644 },
645 {
646 OCP_MEM_RESOURCE(sma_map2),
647 .offset = 0x00220000, .size = 0x1000,
648 },
649 {
650 OCP_I2C_RESOURCE(i2c_ctrl),
651 .offset = 0x00150000, .size = 0x10000, .irq_vec = 7,
652 .extra = &(struct ptp_ocp_i2c_info) {
653 .name = "xiic-i2c",
654 .fixed_rate = 50000000,
655 .data_size = sizeof(struct xiic_i2c_platform_data),
656 .data = &(struct xiic_i2c_platform_data) {
657 .num_devices = 2,
658 .devices = (struct i2c_board_info[]) {
659 { I2C_BOARD_INFO("24c02", 0x50) },
660 { I2C_BOARD_INFO("24mac402", 0x58),
661 .platform_data = "mac" },
662 },
663 },
664 },
665 },
666 {
667 OCP_SERIAL_RESOURCE(port[PORT_GNSS]),
668 .offset = 0x00160000 + 0x1000, .irq_vec = 3,
669 .extra = &(struct ptp_ocp_serial_port) {
670 .baud = 115200,
671 },
672 },
673 {
674 OCP_SERIAL_RESOURCE(port[PORT_GNSS2]),
675 .offset = 0x00170000 + 0x1000, .irq_vec = 4,
676 .extra = &(struct ptp_ocp_serial_port) {
677 .baud = 115200,
678 },
679 },
680 {
681 OCP_SERIAL_RESOURCE(port[PORT_MAC]),
682 .offset = 0x00180000 + 0x1000, .irq_vec = 5,
683 .extra = &(struct ptp_ocp_serial_port) {
684 .baud = 57600,
685 },
686 },
687 {
688 OCP_SERIAL_RESOURCE(port[PORT_NMEA]),
689 .offset = 0x00190000 + 0x1000, .irq_vec = 10,
690 },
691 {
692 OCP_SPI_RESOURCE(spi_flash),
693 .offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
694 .extra = &(struct ptp_ocp_flash_info) {
695 .name = "xilinx_spi", .pci_offset = 0,
696 .data_size = sizeof(struct xspi_platform_data),
697 .data = &(struct xspi_platform_data) {
698 .num_chipselect = 1,
699 .bits_per_word = 8,
700 .num_devices = 1,
701 .force_irq = true,
702 .devices = &(struct spi_board_info) {
703 .modalias = "spi-nor",
704 },
705 },
706 },
707 },
708 {
709 OCP_MEM_RESOURCE(freq_in[0]),
710 .offset = 0x01200000, .size = 0x10000,
711 },
712 {
713 OCP_MEM_RESOURCE(freq_in[1]),
714 .offset = 0x01210000, .size = 0x10000,
715 },
716 {
717 OCP_MEM_RESOURCE(freq_in[2]),
718 .offset = 0x01220000, .size = 0x10000,
719 },
720 {
721 OCP_MEM_RESOURCE(freq_in[3]),
722 .offset = 0x01230000, .size = 0x10000,
723 },
724 {
725 .setup = ptp_ocp_fb_board_init,
726 .extra = &(struct ptp_ocp_servo_conf) {
727 .servo_offset_p = 0x2000,
728 .servo_offset_i = 0x1000,
729 .servo_drift_p = 0,
730 .servo_drift_i = 0,
731 },
732 },
733 { }
734 };
735
736 #define OCP_ART_CONFIG_SIZE 144
737 #define OCP_ART_TEMP_TABLE_SIZE 368
738
739 struct ocp_art_gpio_reg {
740 struct {
741 u32 gpio;
742 u32 __pad[3];
743 } map[4];
744 };
745
746 static struct ocp_resource ocp_art_resource[] = {
747 {
748 OCP_MEM_RESOURCE(reg),
749 .offset = 0x01000000, .size = 0x10000,
750 },
751 {
752 OCP_SERIAL_RESOURCE(port[PORT_GNSS]),
753 .offset = 0x00160000 + 0x1000, .irq_vec = 3,
754 .extra = &(struct ptp_ocp_serial_port) {
755 .baud = 115200,
756 },
757 },
758 {
759 OCP_MEM_RESOURCE(art_sma),
760 .offset = 0x003C0000, .size = 0x1000,
761 },
762 /* Timestamp associated with GNSS1 receiver PPS */
763 {
764 OCP_EXT_RESOURCE(ts0),
765 .offset = 0x360000, .size = 0x20, .irq_vec = 12,
766 .extra = &(struct ptp_ocp_ext_info) {
767 .index = 0,
768 .irq_fcn = ptp_ocp_ts_irq,
769 .enable = ptp_ocp_ts_enable,
770 },
771 },
772 {
773 OCP_EXT_RESOURCE(ts1),
774 .offset = 0x380000, .size = 0x20, .irq_vec = 8,
775 .extra = &(struct ptp_ocp_ext_info) {
776 .index = 1,
777 .irq_fcn = ptp_ocp_ts_irq,
778 .enable = ptp_ocp_ts_enable,
779 },
780 },
781 {
782 OCP_EXT_RESOURCE(ts2),
783 .offset = 0x390000, .size = 0x20, .irq_vec = 10,
784 .extra = &(struct ptp_ocp_ext_info) {
785 .index = 2,
786 .irq_fcn = ptp_ocp_ts_irq,
787 .enable = ptp_ocp_ts_enable,
788 },
789 },
790 {
791 OCP_EXT_RESOURCE(ts3),
792 .offset = 0x3A0000, .size = 0x20, .irq_vec = 14,
793 .extra = &(struct ptp_ocp_ext_info) {
794 .index = 3,
795 .irq_fcn = ptp_ocp_ts_irq,
796 .enable = ptp_ocp_ts_enable,
797 },
798 },
799 {
800 OCP_EXT_RESOURCE(ts4),
801 .offset = 0x3B0000, .size = 0x20, .irq_vec = 15,
802 .extra = &(struct ptp_ocp_ext_info) {
803 .index = 4,
804 .irq_fcn = ptp_ocp_ts_irq,
805 .enable = ptp_ocp_ts_enable,
806 },
807 },
808 /* Timestamp associated with Internal PPS of the card */
809 {
810 OCP_EXT_RESOURCE(pps),
811 .offset = 0x00330000, .size = 0x20, .irq_vec = 11,
812 .extra = &(struct ptp_ocp_ext_info) {
813 .index = 5,
814 .irq_fcn = ptp_ocp_ts_irq,
815 .enable = ptp_ocp_ts_enable,
816 },
817 },
818 {
819 OCP_SPI_RESOURCE(spi_flash),
820 .offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
821 .extra = &(struct ptp_ocp_flash_info) {
822 .name = "spi_altera", .pci_offset = 0,
823 .data_size = sizeof(struct altera_spi_platform_data),
824 .data = &(struct altera_spi_platform_data) {
825 .num_chipselect = 1,
826 .num_devices = 1,
827 .devices = &(struct spi_board_info) {
828 .modalias = "spi-nor",
829 },
830 },
831 },
832 },
833 {
834 OCP_I2C_RESOURCE(i2c_ctrl),
835 .offset = 0x350000, .size = 0x100, .irq_vec = 4,
836 .extra = &(struct ptp_ocp_i2c_info) {
837 .name = "ocores-i2c",
838 .fixed_rate = 400000,
839 .data_size = sizeof(struct ocores_i2c_platform_data),
840 .data = &(struct ocores_i2c_platform_data) {
841 .clock_khz = 125000,
842 .bus_khz = 400,
843 .num_devices = 1,
844 .devices = &(struct i2c_board_info) {
845 I2C_BOARD_INFO("24c08", 0x50),
846 },
847 },
848 },
849 },
850 {
851 OCP_SERIAL_RESOURCE(port[PORT_MAC]),
852 .offset = 0x00190000, .irq_vec = 7,
853 .extra = &(struct ptp_ocp_serial_port) {
854 .baud = 9600,
855 },
856 },
857 {
858 OCP_MEM_RESOURCE(board_config),
859 .offset = 0x210000, .size = 0x1000,
860 },
861 {
862 .setup = ptp_ocp_art_board_init,
863 .extra = &(struct ptp_ocp_servo_conf) {
864 .servo_offset_p = 0x2000,
865 .servo_offset_i = 0x1000,
866 .servo_drift_p = 0,
867 .servo_drift_i = 0,
868 },
869 },
870 { }
871 };
872
873 static struct ocp_resource ocp_adva_resource[] = {
874 {
875 OCP_MEM_RESOURCE(reg),
876 .offset = 0x01000000, .size = 0x10000,
877 },
878 {
879 OCP_EXT_RESOURCE(ts0),
880 .offset = 0x01010000, .size = 0x10000, .irq_vec = 1,
881 .extra = &(struct ptp_ocp_ext_info) {
882 .index = 0,
883 .irq_fcn = ptp_ocp_ts_irq,
884 .enable = ptp_ocp_ts_enable,
885 },
886 },
887 {
888 OCP_EXT_RESOURCE(ts1),
889 .offset = 0x01020000, .size = 0x10000, .irq_vec = 2,
890 .extra = &(struct ptp_ocp_ext_info) {
891 .index = 1,
892 .irq_fcn = ptp_ocp_ts_irq,
893 .enable = ptp_ocp_ts_enable,
894 },
895 },
896 {
897 OCP_EXT_RESOURCE(ts2),
898 .offset = 0x01060000, .size = 0x10000, .irq_vec = 6,
899 .extra = &(struct ptp_ocp_ext_info) {
900 .index = 2,
901 .irq_fcn = ptp_ocp_ts_irq,
902 .enable = ptp_ocp_ts_enable,
903 },
904 },
905 /* Timestamp for PHC and/or PPS generator */
906 {
907 OCP_EXT_RESOURCE(pps),
908 .offset = 0x010C0000, .size = 0x10000, .irq_vec = 0,
909 .extra = &(struct ptp_ocp_ext_info) {
910 .index = 5,
911 .irq_fcn = ptp_ocp_ts_irq,
912 .enable = ptp_ocp_ts_enable,
913 },
914 },
915 {
916 OCP_EXT_RESOURCE(signal_out[0]),
917 .offset = 0x010D0000, .size = 0x10000, .irq_vec = 11,
918 .extra = &(struct ptp_ocp_ext_info) {
919 .index = 1,
920 .irq_fcn = ptp_ocp_signal_irq,
921 .enable = ptp_ocp_signal_enable,
922 },
923 },
924 {
925 OCP_EXT_RESOURCE(signal_out[1]),
926 .offset = 0x010E0000, .size = 0x10000, .irq_vec = 12,
927 .extra = &(struct ptp_ocp_ext_info) {
928 .index = 2,
929 .irq_fcn = ptp_ocp_signal_irq,
930 .enable = ptp_ocp_signal_enable,
931 },
932 },
933 {
934 OCP_MEM_RESOURCE(pps_to_ext),
935 .offset = 0x01030000, .size = 0x10000,
936 },
937 {
938 OCP_MEM_RESOURCE(pps_to_clk),
939 .offset = 0x01040000, .size = 0x10000,
940 },
941 {
942 OCP_MEM_RESOURCE(tod),
943 .offset = 0x01050000, .size = 0x10000,
944 },
945 {
946 OCP_MEM_RESOURCE(image),
947 .offset = 0x00020000, .size = 0x1000,
948 },
949 {
950 OCP_MEM_RESOURCE(pps_select),
951 .offset = 0x00130000, .size = 0x1000,
952 },
953 {
954 OCP_MEM_RESOURCE(sma_map1),
955 .offset = 0x00140000, .size = 0x1000,
956 },
957 {
958 OCP_MEM_RESOURCE(sma_map2),
959 .offset = 0x00220000, .size = 0x1000,
960 },
961 {
962 OCP_SERIAL_RESOURCE(port[PORT_GNSS]),
963 .offset = 0x00160000 + 0x1000, .irq_vec = 3,
964 .extra = &(struct ptp_ocp_serial_port) {
965 .baud = 9600,
966 },
967 },
968 {
969 OCP_SERIAL_RESOURCE(port[PORT_MAC]),
970 .offset = 0x00180000 + 0x1000, .irq_vec = 5,
971 .extra = &(struct ptp_ocp_serial_port) {
972 .baud = 115200,
973 },
974 },
975 {
976 OCP_MEM_RESOURCE(freq_in[0]),
977 .offset = 0x01200000, .size = 0x10000,
978 },
979 {
980 OCP_MEM_RESOURCE(freq_in[1]),
981 .offset = 0x01210000, .size = 0x10000,
982 },
983 {
984 OCP_SPI_RESOURCE(spi_flash),
985 .offset = 0x00310400, .size = 0x10000, .irq_vec = 9,
986 .extra = &(struct ptp_ocp_flash_info) {
987 .name = "spi_altera", .pci_offset = 0,
988 .data_size = sizeof(struct altera_spi_platform_data),
989 .data = &(struct altera_spi_platform_data) {
990 .num_chipselect = 1,
991 .num_devices = 1,
992 .devices = &(struct spi_board_info) {
993 .modalias = "spi-nor",
994 },
995 },
996 },
997 },
998 {
999 OCP_I2C_RESOURCE(i2c_ctrl),
1000 .offset = 0x150000, .size = 0x100, .irq_vec = 7,
1001 .extra = &(struct ptp_ocp_i2c_info) {
1002 .name = "ocores-i2c",
1003 .fixed_rate = 50000000,
1004 .data_size = sizeof(struct ocores_i2c_platform_data),
1005 .data = &(struct ocores_i2c_platform_data) {
1006 .clock_khz = 50000,
1007 .bus_khz = 100,
1008 .reg_io_width = 4, // 32-bit/4-byte
1009 .reg_shift = 2, // 32-bit addressing
1010 .num_devices = 2,
1011 .devices = (struct i2c_board_info[]) {
1012 { I2C_BOARD_INFO("24c02", 0x50) },
1013 { I2C_BOARD_INFO("24mac402", 0x58),
1014 .platform_data = "mac" },
1015 },
1016 },
1017 },
1018 },
1019 {
1020 .setup = ptp_ocp_adva_board_init,
1021 .extra = &(struct ptp_ocp_servo_conf) {
1022 .servo_offset_p = 0xc000,
1023 .servo_offset_i = 0x1000,
1024 .servo_drift_p = 0,
1025 .servo_drift_i = 0,
1026 },
1027 },
1028 { }
1029 };
1030
1031 static const struct pci_device_id ptp_ocp_pcidev_id[] = {
1032 { PCI_DEVICE_DATA(META, TIMECARD, &ocp_fb_resource) },
1033 { PCI_DEVICE_DATA(CELESTICA, TIMECARD, &ocp_fb_resource) },
1034 { PCI_DEVICE_DATA(OROLIA, ARTCARD, &ocp_art_resource) },
1035 { PCI_DEVICE_DATA(ADVA, TIMECARD, &ocp_adva_resource) },
1036 { }
1037 };
1038 MODULE_DEVICE_TABLE(pci, ptp_ocp_pcidev_id);
1039
1040 static DEFINE_MUTEX(ptp_ocp_lock);
1041 static DEFINE_IDR(ptp_ocp_idr);
1042
1043 struct ocp_selector {
1044 const char *name;
1045 int value;
1046 u64 frequency;
1047 };
1048
1049 static const struct ocp_selector ptp_ocp_clock[] = {
1050 { .name = "NONE", .value = 0 },
1051 { .name = "TOD", .value = 1 },
1052 { .name = "IRIG", .value = 2 },
1053 { .name = "PPS", .value = 3 },
1054 { .name = "PTP", .value = 4 },
1055 { .name = "RTC", .value = 5 },
1056 { .name = "DCF", .value = 6 },
1057 { .name = "REGS", .value = 0xfe },
1058 { .name = "EXT", .value = 0xff },
1059 { }
1060 };
1061
1062 #define SMA_DISABLE BIT(16)
1063 #define SMA_ENABLE BIT(15)
1064 #define SMA_SELECT_MASK GENMASK(14, 0)
1065
1066 static const struct ocp_selector ptp_ocp_sma_in[] = {
1067 { .name = "10Mhz", .value = 0x0000, .frequency = 10000000 },
1068 { .name = "PPS1", .value = 0x0001, .frequency = 1 },
1069 { .name = "PPS2", .value = 0x0002, .frequency = 1 },
1070 { .name = "TS1", .value = 0x0004, .frequency = 0 },
1071 { .name = "TS2", .value = 0x0008, .frequency = 0 },
1072 { .name = "IRIG", .value = 0x0010, .frequency = 10000 },
1073 { .name = "DCF", .value = 0x0020, .frequency = 77500 },
1074 { .name = "TS3", .value = 0x0040, .frequency = 0 },
1075 { .name = "TS4", .value = 0x0080, .frequency = 0 },
1076 { .name = "FREQ1", .value = 0x0100, .frequency = 0 },
1077 { .name = "FREQ2", .value = 0x0200, .frequency = 0 },
1078 { .name = "FREQ3", .value = 0x0400, .frequency = 0 },
1079 { .name = "FREQ4", .value = 0x0800, .frequency = 0 },
1080 { .name = "None", .value = SMA_DISABLE, .frequency = 0 },
1081 { }
1082 };
1083
1084 static const struct ocp_selector ptp_ocp_sma_out[] = {
1085 { .name = "10Mhz", .value = 0x0000, .frequency = 10000000 },
1086 { .name = "PHC", .value = 0x0001, .frequency = 1 },
1087 { .name = "MAC", .value = 0x0002, .frequency = 1 },
1088 { .name = "GNSS1", .value = 0x0004, .frequency = 1 },
1089 { .name = "GNSS2", .value = 0x0008, .frequency = 1 },
1090 { .name = "IRIG", .value = 0x0010, .frequency = 10000 },
1091 { .name = "DCF", .value = 0x0020, .frequency = 77000 },
1092 { .name = "GEN1", .value = 0x0040 },
1093 { .name = "GEN2", .value = 0x0080 },
1094 { .name = "GEN3", .value = 0x0100 },
1095 { .name = "GEN4", .value = 0x0200 },
1096 { .name = "GND", .value = 0x2000 },
1097 { .name = "VCC", .value = 0x4000 },
1098 { }
1099 };
1100
1101 static const struct ocp_selector ptp_ocp_art_sma_in[] = {
1102 { .name = "PPS1", .value = 0x0001, .frequency = 1 },
1103 { .name = "10Mhz", .value = 0x0008, .frequency = 1000000 },
1104 { }
1105 };
1106
1107 static const struct ocp_selector ptp_ocp_art_sma_out[] = {
1108 { .name = "PHC", .value = 0x0002, .frequency = 1 },
1109 { .name = "GNSS", .value = 0x0004, .frequency = 1 },
1110 { .name = "10Mhz", .value = 0x0010, .frequency = 10000000 },
1111 { }
1112 };
1113
1114 static const struct ocp_selector ptp_ocp_adva_sma_in[] = {
1115 { .name = "10Mhz", .value = 0x0000, .frequency = 10000000},
1116 { .name = "PPS1", .value = 0x0001, .frequency = 1 },
1117 { .name = "PPS2", .value = 0x0002, .frequency = 1 },
1118 { .name = "TS1", .value = 0x0004, .frequency = 0 },
1119 { .name = "TS2", .value = 0x0008, .frequency = 0 },
1120 { .name = "FREQ1", .value = 0x0100, .frequency = 0 },
1121 { .name = "FREQ2", .value = 0x0200, .frequency = 0 },
1122 { .name = "None", .value = SMA_DISABLE, .frequency = 0 },
1123 { }
1124 };
1125
1126 static const struct ocp_selector ptp_ocp_adva_sma_out[] = {
1127 { .name = "10Mhz", .value = 0x0000, .frequency = 10000000},
1128 { .name = "PHC", .value = 0x0001, .frequency = 1 },
1129 { .name = "MAC", .value = 0x0002, .frequency = 1 },
1130 { .name = "GNSS1", .value = 0x0004, .frequency = 1 },
1131 { .name = "GEN1", .value = 0x0040 },
1132 { .name = "GEN2", .value = 0x0080 },
1133 { .name = "GND", .value = 0x2000 },
1134 { .name = "VCC", .value = 0x4000 },
1135 { }
1136 };
1137
1138 struct ocp_sma_op {
1139 const struct ocp_selector *tbl[2];
1140 void (*init)(struct ptp_ocp *bp);
1141 u32 (*get)(struct ptp_ocp *bp, int sma_nr);
1142 int (*set_inputs)(struct ptp_ocp *bp, int sma_nr, u32 val);
1143 int (*set_output)(struct ptp_ocp *bp, int sma_nr, u32 val);
1144 };
1145
1146 static void
ptp_ocp_sma_init(struct ptp_ocp * bp)1147 ptp_ocp_sma_init(struct ptp_ocp *bp)
1148 {
1149 return bp->sma_op->init(bp);
1150 }
1151
1152 static u32
ptp_ocp_sma_get(struct ptp_ocp * bp,int sma_nr)1153 ptp_ocp_sma_get(struct ptp_ocp *bp, int sma_nr)
1154 {
1155 return bp->sma_op->get(bp, sma_nr);
1156 }
1157
1158 static int
ptp_ocp_sma_set_inputs(struct ptp_ocp * bp,int sma_nr,u32 val)1159 ptp_ocp_sma_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
1160 {
1161 return bp->sma_op->set_inputs(bp, sma_nr, val);
1162 }
1163
1164 static int
ptp_ocp_sma_set_output(struct ptp_ocp * bp,int sma_nr,u32 val)1165 ptp_ocp_sma_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
1166 {
1167 return bp->sma_op->set_output(bp, sma_nr, val);
1168 }
1169
1170 static const char *
ptp_ocp_select_name_from_val(const struct ocp_selector * tbl,int val)1171 ptp_ocp_select_name_from_val(const struct ocp_selector *tbl, int val)
1172 {
1173 int i;
1174
1175 for (i = 0; tbl[i].name; i++)
1176 if (tbl[i].value == val)
1177 return tbl[i].name;
1178 return NULL;
1179 }
1180
1181 static int
ptp_ocp_select_val_from_name(const struct ocp_selector * tbl,const char * name)1182 ptp_ocp_select_val_from_name(const struct ocp_selector *tbl, const char *name)
1183 {
1184 const char *select;
1185 int i;
1186
1187 for (i = 0; tbl[i].name; i++) {
1188 select = tbl[i].name;
1189 if (!strncasecmp(name, select, strlen(select)))
1190 return tbl[i].value;
1191 }
1192 return -EINVAL;
1193 }
1194
1195 static ssize_t
ptp_ocp_select_table_show(const struct ocp_selector * tbl,char * buf)1196 ptp_ocp_select_table_show(const struct ocp_selector *tbl, char *buf)
1197 {
1198 ssize_t count;
1199 int i;
1200
1201 count = 0;
1202 for (i = 0; tbl[i].name; i++)
1203 count += sysfs_emit_at(buf, count, "%s ", tbl[i].name);
1204 if (count)
1205 count--;
1206 count += sysfs_emit_at(buf, count, "\n");
1207 return count;
1208 }
1209
1210 static int
__ptp_ocp_gettime_locked(struct ptp_ocp * bp,struct timespec64 * ts,struct ptp_system_timestamp * sts)1211 __ptp_ocp_gettime_locked(struct ptp_ocp *bp, struct timespec64 *ts,
1212 struct ptp_system_timestamp *sts)
1213 {
1214 u32 ctrl, time_sec, time_ns;
1215 int i;
1216
1217 ptp_read_system_prets(sts);
1218
1219 ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
1220 iowrite32(ctrl, &bp->reg->ctrl);
1221
1222 for (i = 0; i < 100; i++) {
1223 ctrl = ioread32(&bp->reg->ctrl);
1224 if (ctrl & OCP_CTRL_READ_TIME_DONE)
1225 break;
1226 }
1227 ptp_read_system_postts(sts);
1228
1229 if (sts && bp->ts_window_adjust) {
1230 s64 ns = timespec64_to_ns(&sts->post_ts);
1231
1232 sts->post_ts = ns_to_timespec64(ns - bp->ts_window_adjust);
1233 }
1234
1235 time_ns = ioread32(&bp->reg->time_ns);
1236 time_sec = ioread32(&bp->reg->time_sec);
1237
1238 ts->tv_sec = time_sec;
1239 ts->tv_nsec = time_ns;
1240
1241 return ctrl & OCP_CTRL_READ_TIME_DONE ? 0 : -ETIMEDOUT;
1242 }
1243
1244 static int
ptp_ocp_gettimex(struct ptp_clock_info * ptp_info,struct timespec64 * ts,struct ptp_system_timestamp * sts)1245 ptp_ocp_gettimex(struct ptp_clock_info *ptp_info, struct timespec64 *ts,
1246 struct ptp_system_timestamp *sts)
1247 {
1248 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1249 unsigned long flags;
1250 int err;
1251
1252 spin_lock_irqsave(&bp->lock, flags);
1253 err = __ptp_ocp_gettime_locked(bp, ts, sts);
1254 spin_unlock_irqrestore(&bp->lock, flags);
1255
1256 return err;
1257 }
1258
1259 static void
__ptp_ocp_settime_locked(struct ptp_ocp * bp,const struct timespec64 * ts)1260 __ptp_ocp_settime_locked(struct ptp_ocp *bp, const struct timespec64 *ts)
1261 {
1262 u32 ctrl, time_sec, time_ns;
1263 u32 select;
1264
1265 time_ns = ts->tv_nsec;
1266 time_sec = ts->tv_sec;
1267
1268 select = ioread32(&bp->reg->select);
1269 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1270
1271 iowrite32(time_ns, &bp->reg->adjust_ns);
1272 iowrite32(time_sec, &bp->reg->adjust_sec);
1273
1274 ctrl = OCP_CTRL_ADJUST_TIME | OCP_CTRL_ENABLE;
1275 iowrite32(ctrl, &bp->reg->ctrl);
1276
1277 /* restore clock selection */
1278 iowrite32(select >> 16, &bp->reg->select);
1279 }
1280
1281 static int
ptp_ocp_settime(struct ptp_clock_info * ptp_info,const struct timespec64 * ts)1282 ptp_ocp_settime(struct ptp_clock_info *ptp_info, const struct timespec64 *ts)
1283 {
1284 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1285 unsigned long flags;
1286
1287 spin_lock_irqsave(&bp->lock, flags);
1288 __ptp_ocp_settime_locked(bp, ts);
1289 spin_unlock_irqrestore(&bp->lock, flags);
1290
1291 return 0;
1292 }
1293
1294 static void
__ptp_ocp_adjtime_locked(struct ptp_ocp * bp,u32 adj_val)1295 __ptp_ocp_adjtime_locked(struct ptp_ocp *bp, u32 adj_val)
1296 {
1297 u32 select, ctrl;
1298
1299 select = ioread32(&bp->reg->select);
1300 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1301
1302 iowrite32(adj_val, &bp->reg->offset_ns);
1303 iowrite32(NSEC_PER_SEC, &bp->reg->offset_window_ns);
1304
1305 ctrl = OCP_CTRL_ADJUST_OFFSET | OCP_CTRL_ENABLE;
1306 iowrite32(ctrl, &bp->reg->ctrl);
1307
1308 /* restore clock selection */
1309 iowrite32(select >> 16, &bp->reg->select);
1310 }
1311
1312 static void
ptp_ocp_adjtime_coarse(struct ptp_ocp * bp,s64 delta_ns)1313 ptp_ocp_adjtime_coarse(struct ptp_ocp *bp, s64 delta_ns)
1314 {
1315 struct timespec64 ts;
1316 unsigned long flags;
1317 int err;
1318
1319 spin_lock_irqsave(&bp->lock, flags);
1320 err = __ptp_ocp_gettime_locked(bp, &ts, NULL);
1321 if (likely(!err)) {
1322 set_normalized_timespec64(&ts, ts.tv_sec,
1323 ts.tv_nsec + delta_ns);
1324 __ptp_ocp_settime_locked(bp, &ts);
1325 }
1326 spin_unlock_irqrestore(&bp->lock, flags);
1327 }
1328
1329 static int
ptp_ocp_adjtime(struct ptp_clock_info * ptp_info,s64 delta_ns)1330 ptp_ocp_adjtime(struct ptp_clock_info *ptp_info, s64 delta_ns)
1331 {
1332 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1333 unsigned long flags;
1334 u32 adj_ns, sign;
1335
1336 if (delta_ns > NSEC_PER_SEC || -delta_ns > NSEC_PER_SEC) {
1337 ptp_ocp_adjtime_coarse(bp, delta_ns);
1338 return 0;
1339 }
1340
1341 sign = delta_ns < 0 ? BIT(31) : 0;
1342 adj_ns = sign ? -delta_ns : delta_ns;
1343
1344 spin_lock_irqsave(&bp->lock, flags);
1345 __ptp_ocp_adjtime_locked(bp, sign | adj_ns);
1346 spin_unlock_irqrestore(&bp->lock, flags);
1347
1348 return 0;
1349 }
1350
1351 static int
ptp_ocp_null_adjfine(struct ptp_clock_info * ptp_info,long scaled_ppm)1352 ptp_ocp_null_adjfine(struct ptp_clock_info *ptp_info, long scaled_ppm)
1353 {
1354 if (scaled_ppm == 0)
1355 return 0;
1356
1357 return -EOPNOTSUPP;
1358 }
1359
1360 static s32
ptp_ocp_null_getmaxphase(struct ptp_clock_info * ptp_info)1361 ptp_ocp_null_getmaxphase(struct ptp_clock_info *ptp_info)
1362 {
1363 return 0;
1364 }
1365
1366 static int
ptp_ocp_null_adjphase(struct ptp_clock_info * ptp_info,s32 phase_ns)1367 ptp_ocp_null_adjphase(struct ptp_clock_info *ptp_info, s32 phase_ns)
1368 {
1369 return -EOPNOTSUPP;
1370 }
1371
1372 static int
ptp_ocp_enable(struct ptp_clock_info * ptp_info,struct ptp_clock_request * rq,int on)1373 ptp_ocp_enable(struct ptp_clock_info *ptp_info, struct ptp_clock_request *rq,
1374 int on)
1375 {
1376 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1377 struct ptp_ocp_ext_src *ext = NULL;
1378 u32 req;
1379 int err;
1380
1381 switch (rq->type) {
1382 case PTP_CLK_REQ_EXTTS:
1383 req = OCP_REQ_TIMESTAMP;
1384 switch (rq->extts.index) {
1385 case 0:
1386 ext = bp->ts0;
1387 break;
1388 case 1:
1389 ext = bp->ts1;
1390 break;
1391 case 2:
1392 ext = bp->ts2;
1393 break;
1394 case 3:
1395 ext = bp->ts3;
1396 break;
1397 case 4:
1398 ext = bp->ts4;
1399 break;
1400 case 5:
1401 ext = bp->pps;
1402 break;
1403 }
1404 break;
1405 case PTP_CLK_REQ_PPS:
1406 req = OCP_REQ_PPS;
1407 ext = bp->pps;
1408 break;
1409 case PTP_CLK_REQ_PEROUT:
1410 switch (rq->perout.index) {
1411 case 0:
1412 /* This is a request for 1PPS on an output SMA.
1413 * Allow, but assume manual configuration.
1414 */
1415 if (on && (rq->perout.period.sec != 1 ||
1416 rq->perout.period.nsec != 0))
1417 return -EINVAL;
1418 return 0;
1419 case 1:
1420 case 2:
1421 case 3:
1422 case 4:
1423 req = rq->perout.index - 1;
1424 ext = bp->signal_out[req];
1425 err = ptp_ocp_signal_from_perout(bp, req, &rq->perout);
1426 if (err)
1427 return err;
1428 break;
1429 }
1430 break;
1431 default:
1432 return -EOPNOTSUPP;
1433 }
1434
1435 err = -ENXIO;
1436 if (ext)
1437 err = ext->info->enable(ext, req, on);
1438
1439 return err;
1440 }
1441
1442 static int
ptp_ocp_verify(struct ptp_clock_info * ptp_info,unsigned pin,enum ptp_pin_function func,unsigned chan)1443 ptp_ocp_verify(struct ptp_clock_info *ptp_info, unsigned pin,
1444 enum ptp_pin_function func, unsigned chan)
1445 {
1446 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1447 char buf[16];
1448
1449 switch (func) {
1450 case PTP_PF_NONE:
1451 snprintf(buf, sizeof(buf), "IN: None");
1452 break;
1453 case PTP_PF_EXTTS:
1454 /* Allow timestamps, but require sysfs configuration. */
1455 return 0;
1456 case PTP_PF_PEROUT:
1457 /* channel 0 is 1PPS from PHC.
1458 * channels 1..4 are the frequency generators.
1459 */
1460 if (chan)
1461 snprintf(buf, sizeof(buf), "OUT: GEN%d", chan);
1462 else
1463 snprintf(buf, sizeof(buf), "OUT: PHC");
1464 break;
1465 default:
1466 return -EOPNOTSUPP;
1467 }
1468
1469 return ptp_ocp_sma_store(bp, buf, pin + 1);
1470 }
1471
1472 static const struct ptp_clock_info ptp_ocp_clock_info = {
1473 .owner = THIS_MODULE,
1474 .name = KBUILD_MODNAME,
1475 .max_adj = 100000000,
1476 .gettimex64 = ptp_ocp_gettimex,
1477 .settime64 = ptp_ocp_settime,
1478 .adjtime = ptp_ocp_adjtime,
1479 .adjfine = ptp_ocp_null_adjfine,
1480 .adjphase = ptp_ocp_null_adjphase,
1481 .getmaxphase = ptp_ocp_null_getmaxphase,
1482 .enable = ptp_ocp_enable,
1483 .verify = ptp_ocp_verify,
1484 .pps = true,
1485 .n_ext_ts = 6,
1486 .n_per_out = 5,
1487 .supported_extts_flags = PTP_STRICT_FLAGS | PTP_RISING_EDGE,
1488 .supported_perout_flags = PTP_PEROUT_DUTY_CYCLE | PTP_PEROUT_PHASE,
1489 };
1490
1491 static void
__ptp_ocp_clear_drift_locked(struct ptp_ocp * bp)1492 __ptp_ocp_clear_drift_locked(struct ptp_ocp *bp)
1493 {
1494 u32 ctrl, select;
1495
1496 select = ioread32(&bp->reg->select);
1497 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1498
1499 iowrite32(0, &bp->reg->drift_ns);
1500
1501 ctrl = OCP_CTRL_ADJUST_DRIFT | OCP_CTRL_ENABLE;
1502 iowrite32(ctrl, &bp->reg->ctrl);
1503
1504 /* restore clock selection */
1505 iowrite32(select >> 16, &bp->reg->select);
1506 }
1507
1508 static void
ptp_ocp_utc_distribute(struct ptp_ocp * bp,u32 val)1509 ptp_ocp_utc_distribute(struct ptp_ocp *bp, u32 val)
1510 {
1511 unsigned long flags;
1512
1513 spin_lock_irqsave(&bp->lock, flags);
1514
1515 bp->utc_tai_offset = val;
1516
1517 if (bp->irig_out)
1518 iowrite32(val, &bp->irig_out->adj_sec);
1519 if (bp->dcf_out)
1520 iowrite32(val, &bp->dcf_out->adj_sec);
1521 if (bp->nmea_out)
1522 iowrite32(val, &bp->nmea_out->adj_sec);
1523
1524 spin_unlock_irqrestore(&bp->lock, flags);
1525 }
1526
1527 static void
ptp_ocp_watchdog(struct timer_list * t)1528 ptp_ocp_watchdog(struct timer_list *t)
1529 {
1530 struct ptp_ocp *bp = timer_container_of(bp, t, watchdog);
1531 unsigned long flags;
1532 u32 status, utc_offset;
1533
1534 status = ioread32(&bp->pps_to_clk->status);
1535
1536 if (status & PPS_STATUS_SUPERV_ERR) {
1537 iowrite32(status, &bp->pps_to_clk->status);
1538 if (!bp->gnss_lost) {
1539 spin_lock_irqsave(&bp->lock, flags);
1540 __ptp_ocp_clear_drift_locked(bp);
1541 spin_unlock_irqrestore(&bp->lock, flags);
1542 bp->gnss_lost = ktime_get_real_seconds();
1543 }
1544
1545 } else if (bp->gnss_lost) {
1546 bp->gnss_lost = 0;
1547 }
1548
1549 /* if GNSS provides correct data we can rely on
1550 * it to get leap second information
1551 */
1552 if (bp->tod) {
1553 status = ioread32(&bp->tod->utc_status);
1554 utc_offset = status & TOD_STATUS_UTC_MASK;
1555 if (status & TOD_STATUS_UTC_VALID &&
1556 utc_offset != bp->utc_tai_offset)
1557 ptp_ocp_utc_distribute(bp, utc_offset);
1558 }
1559
1560 mod_timer(&bp->watchdog, jiffies + HZ);
1561 }
1562
1563 static void
ptp_ocp_estimate_pci_timing(struct ptp_ocp * bp)1564 ptp_ocp_estimate_pci_timing(struct ptp_ocp *bp)
1565 {
1566 ktime_t start, end, delay = U64_MAX;
1567 u32 ctrl;
1568 int i;
1569
1570 for (i = 0; i < 3; i++) {
1571 ctrl = ioread32(&bp->reg->ctrl);
1572 ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
1573
1574 iowrite32(ctrl, &bp->reg->ctrl);
1575
1576 start = ktime_get_raw_ns();
1577
1578 ctrl = ioread32(&bp->reg->ctrl);
1579
1580 end = ktime_get_raw_ns();
1581
1582 delay = min(delay, end - start);
1583 }
1584 bp->ts_window_adjust = (delay >> 5) * 3;
1585 }
1586
1587 static int
ptp_ocp_init_clock(struct ptp_ocp * bp,struct ptp_ocp_servo_conf * servo_conf)1588 ptp_ocp_init_clock(struct ptp_ocp *bp, struct ptp_ocp_servo_conf *servo_conf)
1589 {
1590 struct timespec64 ts;
1591 u32 ctrl;
1592
1593 ctrl = OCP_CTRL_ENABLE;
1594 iowrite32(ctrl, &bp->reg->ctrl);
1595
1596 /* servo configuration */
1597 iowrite32(servo_conf->servo_offset_p, &bp->reg->servo_offset_p);
1598 iowrite32(servo_conf->servo_offset_i, &bp->reg->servo_offset_i);
1599 iowrite32(servo_conf->servo_drift_p, &bp->reg->servo_drift_p);
1600 iowrite32(servo_conf->servo_drift_p, &bp->reg->servo_drift_i);
1601
1602 /* latch servo values */
1603 ctrl |= OCP_CTRL_ADJUST_SERVO;
1604 iowrite32(ctrl, &bp->reg->ctrl);
1605
1606 if ((ioread32(&bp->reg->ctrl) & OCP_CTRL_ENABLE) == 0) {
1607 dev_err(&bp->pdev->dev, "clock not enabled\n");
1608 return -ENODEV;
1609 }
1610
1611 ptp_ocp_estimate_pci_timing(bp);
1612
1613 bp->sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC;
1614 if (!bp->sync) {
1615 ktime_get_clocktai_ts64(&ts);
1616 ptp_ocp_settime(&bp->ptp_info, &ts);
1617 }
1618
1619 /* If there is a clock supervisor, then enable the watchdog */
1620 if (bp->pps_to_clk) {
1621 timer_setup(&bp->watchdog, ptp_ocp_watchdog, 0);
1622 mod_timer(&bp->watchdog, jiffies + HZ);
1623 }
1624
1625 return 0;
1626 }
1627
1628 static void
ptp_ocp_tod_init(struct ptp_ocp * bp)1629 ptp_ocp_tod_init(struct ptp_ocp *bp)
1630 {
1631 u32 ctrl, reg;
1632
1633 ctrl = ioread32(&bp->tod->ctrl);
1634 ctrl |= TOD_CTRL_PROTOCOL | TOD_CTRL_ENABLE;
1635 ctrl &= ~(TOD_CTRL_DISABLE_FMT_A | TOD_CTRL_DISABLE_FMT_B);
1636 iowrite32(ctrl, &bp->tod->ctrl);
1637
1638 reg = ioread32(&bp->tod->utc_status);
1639 if (reg & TOD_STATUS_UTC_VALID)
1640 ptp_ocp_utc_distribute(bp, reg & TOD_STATUS_UTC_MASK);
1641 }
1642
1643 static const char *
ptp_ocp_tod_proto_name(const int idx)1644 ptp_ocp_tod_proto_name(const int idx)
1645 {
1646 static const char * const proto_name[] = {
1647 "NMEA", "NMEA_ZDA", "NMEA_RMC", "NMEA_none",
1648 "UBX", "UBX_UTC", "UBX_LS", "UBX_none"
1649 };
1650 return proto_name[idx];
1651 }
1652
1653 static const char *
ptp_ocp_tod_gnss_name(int idx)1654 ptp_ocp_tod_gnss_name(int idx)
1655 {
1656 static const char * const gnss_name[] = {
1657 "ALL", "COMBINED", "GPS", "GLONASS", "GALILEO", "BEIDOU",
1658 "Unknown"
1659 };
1660 if (idx >= ARRAY_SIZE(gnss_name))
1661 idx = ARRAY_SIZE(gnss_name) - 1;
1662 return gnss_name[idx];
1663 }
1664
1665 static const char *
ptp_ocp_tty_port_name(int idx)1666 ptp_ocp_tty_port_name(int idx)
1667 {
1668 static const char * const tty_name[] = {
1669 "GNSS", "GNSS2", "MAC", "NMEA"
1670 };
1671 return tty_name[idx];
1672 }
1673
1674 struct ptp_ocp_nvmem_match_info {
1675 struct ptp_ocp *bp;
1676 const void * const tag;
1677 };
1678
1679 static int
ptp_ocp_nvmem_match(struct device * dev,const void * data)1680 ptp_ocp_nvmem_match(struct device *dev, const void *data)
1681 {
1682 const struct ptp_ocp_nvmem_match_info *info = data;
1683
1684 dev = dev->parent;
1685 if (!i2c_verify_client(dev) || info->tag != dev->platform_data)
1686 return 0;
1687
1688 while ((dev = dev->parent))
1689 if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
1690 return info->bp == dev_get_drvdata(dev);
1691 return 0;
1692 }
1693
1694 static inline struct nvmem_device *
ptp_ocp_nvmem_device_get(struct ptp_ocp * bp,const void * const tag)1695 ptp_ocp_nvmem_device_get(struct ptp_ocp *bp, const void * const tag)
1696 {
1697 struct ptp_ocp_nvmem_match_info info = { .bp = bp, .tag = tag };
1698
1699 return nvmem_device_find(&info, ptp_ocp_nvmem_match);
1700 }
1701
1702 static inline void
ptp_ocp_nvmem_device_put(struct nvmem_device ** nvmemp)1703 ptp_ocp_nvmem_device_put(struct nvmem_device **nvmemp)
1704 {
1705 if (!IS_ERR_OR_NULL(*nvmemp))
1706 nvmem_device_put(*nvmemp);
1707 *nvmemp = NULL;
1708 }
1709
1710 static void
ptp_ocp_read_eeprom(struct ptp_ocp * bp)1711 ptp_ocp_read_eeprom(struct ptp_ocp *bp)
1712 {
1713 const struct ptp_ocp_eeprom_map *map;
1714 struct nvmem_device *nvmem;
1715 const void *tag;
1716 int ret;
1717
1718 if (!bp->i2c_ctrl)
1719 return;
1720
1721 tag = NULL;
1722 nvmem = NULL;
1723
1724 for (map = bp->eeprom_map; map->len; map++) {
1725 if (map->tag != tag) {
1726 tag = map->tag;
1727 ptp_ocp_nvmem_device_put(&nvmem);
1728 }
1729 if (!nvmem) {
1730 nvmem = ptp_ocp_nvmem_device_get(bp, tag);
1731 if (IS_ERR(nvmem)) {
1732 ret = PTR_ERR(nvmem);
1733 goto fail;
1734 }
1735 }
1736 ret = nvmem_device_read(nvmem, map->off, map->len,
1737 BP_MAP_ENTRY_ADDR(bp, map));
1738 if (ret != map->len)
1739 goto fail;
1740 }
1741
1742 bp->has_eeprom_data = true;
1743
1744 out:
1745 ptp_ocp_nvmem_device_put(&nvmem);
1746 return;
1747
1748 fail:
1749 dev_err(&bp->pdev->dev, "could not read eeprom: %d\n", ret);
1750 goto out;
1751 }
1752
1753 static struct device *
ptp_ocp_find_flash(struct ptp_ocp * bp)1754 ptp_ocp_find_flash(struct ptp_ocp *bp)
1755 {
1756 struct device *dev, *last;
1757
1758 last = NULL;
1759 dev = &bp->spi_flash->dev;
1760
1761 while ((dev = device_find_any_child(dev))) {
1762 if (!strcmp("mtd", dev_bus_name(dev)))
1763 break;
1764 put_device(last);
1765 last = dev;
1766 }
1767 put_device(last);
1768
1769 return dev;
1770 }
1771
1772 static int
ptp_ocp_devlink_fw_image(struct devlink * devlink,const struct firmware * fw,const u8 ** data,size_t * size)1773 ptp_ocp_devlink_fw_image(struct devlink *devlink, const struct firmware *fw,
1774 const u8 **data, size_t *size)
1775 {
1776 struct ptp_ocp *bp = devlink_priv(devlink);
1777 const struct ptp_ocp_firmware_header *hdr;
1778 size_t offset, length;
1779 u16 crc;
1780
1781 hdr = (const struct ptp_ocp_firmware_header *)fw->data;
1782 if (memcmp(hdr->magic, OCP_FIRMWARE_MAGIC_HEADER, 4)) {
1783 devlink_flash_update_status_notify(devlink,
1784 "No firmware header found, cancel firmware upgrade",
1785 NULL, 0, 0);
1786 return -EINVAL;
1787 }
1788
1789 if (be16_to_cpu(hdr->pci_vendor_id) != bp->pdev->vendor ||
1790 be16_to_cpu(hdr->pci_device_id) != bp->pdev->device) {
1791 devlink_flash_update_status_notify(devlink,
1792 "Firmware image compatibility check failed",
1793 NULL, 0, 0);
1794 return -EINVAL;
1795 }
1796
1797 offset = sizeof(*hdr);
1798 length = be32_to_cpu(hdr->image_size);
1799 if (length != (fw->size - offset)) {
1800 devlink_flash_update_status_notify(devlink,
1801 "Firmware image size check failed",
1802 NULL, 0, 0);
1803 return -EINVAL;
1804 }
1805
1806 crc = crc16(0xffff, &fw->data[offset], length);
1807 if (be16_to_cpu(hdr->crc) != crc) {
1808 devlink_flash_update_status_notify(devlink,
1809 "Firmware image CRC check failed",
1810 NULL, 0, 0);
1811 return -EINVAL;
1812 }
1813
1814 *data = &fw->data[offset];
1815 *size = length;
1816
1817 return 0;
1818 }
1819
1820 static int
ptp_ocp_devlink_flash(struct devlink * devlink,struct device * dev,const struct firmware * fw)1821 ptp_ocp_devlink_flash(struct devlink *devlink, struct device *dev,
1822 const struct firmware *fw)
1823 {
1824 struct mtd_info *mtd = dev_get_drvdata(dev);
1825 struct ptp_ocp *bp = devlink_priv(devlink);
1826 size_t off, len, size, resid, wrote;
1827 struct erase_info erase;
1828 size_t base, blksz;
1829 const u8 *data;
1830 int err;
1831
1832 err = ptp_ocp_devlink_fw_image(devlink, fw, &data, &size);
1833 if (err)
1834 goto out;
1835
1836 off = 0;
1837 base = bp->flash_start;
1838 blksz = 4096;
1839 resid = size;
1840
1841 while (resid) {
1842 devlink_flash_update_status_notify(devlink, "Flashing",
1843 NULL, off, size);
1844
1845 len = min_t(size_t, resid, blksz);
1846 erase.addr = base + off;
1847 erase.len = blksz;
1848
1849 err = mtd_erase(mtd, &erase);
1850 if (err)
1851 goto out;
1852
1853 err = mtd_write(mtd, base + off, len, &wrote, data + off);
1854 if (err)
1855 goto out;
1856
1857 off += blksz;
1858 resid -= len;
1859 }
1860 out:
1861 return err;
1862 }
1863
1864 static int
ptp_ocp_devlink_flash_update(struct devlink * devlink,struct devlink_flash_update_params * params,struct netlink_ext_ack * extack)1865 ptp_ocp_devlink_flash_update(struct devlink *devlink,
1866 struct devlink_flash_update_params *params,
1867 struct netlink_ext_ack *extack)
1868 {
1869 struct ptp_ocp *bp = devlink_priv(devlink);
1870 struct device *dev;
1871 const char *msg;
1872 int err;
1873
1874 dev = ptp_ocp_find_flash(bp);
1875 if (!dev) {
1876 dev_err(&bp->pdev->dev, "Can't find Flash SPI adapter\n");
1877 return -ENODEV;
1878 }
1879
1880 devlink_flash_update_status_notify(devlink, "Preparing to flash",
1881 NULL, 0, 0);
1882
1883 err = ptp_ocp_devlink_flash(devlink, dev, params->fw);
1884
1885 msg = err ? "Flash error" : "Flash complete";
1886 devlink_flash_update_status_notify(devlink, msg, NULL, 0, 0);
1887
1888 put_device(dev);
1889 return err;
1890 }
1891
1892 static int
ptp_ocp_devlink_info_get(struct devlink * devlink,struct devlink_info_req * req,struct netlink_ext_ack * extack)1893 ptp_ocp_devlink_info_get(struct devlink *devlink, struct devlink_info_req *req,
1894 struct netlink_ext_ack *extack)
1895 {
1896 struct ptp_ocp *bp = devlink_priv(devlink);
1897 const char *fw_image;
1898 char buf[32];
1899 int err;
1900
1901 fw_image = bp->fw_loader ? "loader" : "fw";
1902 sprintf(buf, "%d.%d", bp->fw_tag, bp->fw_version);
1903 err = devlink_info_version_running_put(req, fw_image, buf);
1904 if (err)
1905 return err;
1906
1907 if (!bp->has_eeprom_data) {
1908 ptp_ocp_read_eeprom(bp);
1909 if (!bp->has_eeprom_data)
1910 return 0;
1911 }
1912
1913 sprintf(buf, "%pM", bp->serial);
1914 err = devlink_info_serial_number_put(req, buf);
1915 if (err)
1916 return err;
1917
1918 err = devlink_info_version_fixed_put(req,
1919 DEVLINK_INFO_VERSION_GENERIC_BOARD_ID,
1920 bp->board_id);
1921 if (err)
1922 return err;
1923
1924 return 0;
1925 }
1926
1927 static const struct devlink_ops ptp_ocp_devlink_ops = {
1928 .flash_update = ptp_ocp_devlink_flash_update,
1929 .info_get = ptp_ocp_devlink_info_get,
1930 };
1931
1932 static void __iomem *
__ptp_ocp_get_mem(struct ptp_ocp * bp,resource_size_t start,int size)1933 __ptp_ocp_get_mem(struct ptp_ocp *bp, resource_size_t start, int size)
1934 {
1935 struct resource res = DEFINE_RES_MEM_NAMED(start, size, "ptp_ocp");
1936
1937 return devm_ioremap_resource(&bp->pdev->dev, &res);
1938 }
1939
1940 static void __iomem *
ptp_ocp_get_mem(struct ptp_ocp * bp,struct ocp_resource * r)1941 ptp_ocp_get_mem(struct ptp_ocp *bp, struct ocp_resource *r)
1942 {
1943 resource_size_t start;
1944
1945 start = pci_resource_start(bp->pdev, 0) + r->offset;
1946 return __ptp_ocp_get_mem(bp, start, r->size);
1947 }
1948
1949 static int
ptp_ocp_register_spi(struct ptp_ocp * bp,struct ocp_resource * r)1950 ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r)
1951 {
1952 struct ptp_ocp_flash_info *info;
1953 struct pci_dev *pdev = bp->pdev;
1954 struct platform_device *p;
1955 struct resource res[2];
1956 resource_size_t start;
1957 int id;
1958
1959 start = pci_resource_start(pdev, 0) + r->offset;
1960 res[0] = DEFINE_RES_MEM(start, r->size);
1961 res[1] = DEFINE_RES_IRQ(pci_irq_vector(pdev, r->irq_vec));
1962
1963 info = r->extra;
1964 id = pci_dev_id(pdev) << 1;
1965 id += info->pci_offset;
1966
1967 p = platform_device_register_resndata(&pdev->dev, info->name, id,
1968 res, ARRAY_SIZE(res), info->data,
1969 info->data_size);
1970 if (IS_ERR(p))
1971 return PTR_ERR(p);
1972
1973 bp_assign_entry(bp, r, p);
1974
1975 return 0;
1976 }
1977
1978 static struct platform_device *
ptp_ocp_i2c_bus(struct pci_dev * pdev,struct ocp_resource * r,int id)1979 ptp_ocp_i2c_bus(struct pci_dev *pdev, struct ocp_resource *r, int id)
1980 {
1981 struct ptp_ocp_i2c_info *info;
1982 struct resource res[2];
1983 resource_size_t start;
1984
1985 info = r->extra;
1986 start = pci_resource_start(pdev, 0) + r->offset;
1987 res[0] = DEFINE_RES_MEM(start, r->size);
1988 res[1] = DEFINE_RES_IRQ(pci_irq_vector(pdev, r->irq_vec));
1989
1990 return platform_device_register_resndata(&pdev->dev, info->name,
1991 id, res, ARRAY_SIZE(res),
1992 info->data, info->data_size);
1993 }
1994
1995 static int
ptp_ocp_register_i2c(struct ptp_ocp * bp,struct ocp_resource * r)1996 ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r)
1997 {
1998 struct pci_dev *pdev = bp->pdev;
1999 struct ptp_ocp_i2c_info *info;
2000 struct platform_device *p;
2001 struct clk_hw *clk;
2002 char buf[32];
2003 int id;
2004
2005 info = r->extra;
2006 id = pci_dev_id(bp->pdev);
2007
2008 sprintf(buf, "AXI.%d", id);
2009 clk = clk_hw_register_fixed_rate(&pdev->dev, buf, NULL, 0,
2010 info->fixed_rate);
2011 if (IS_ERR(clk))
2012 return PTR_ERR(clk);
2013 bp->i2c_clk = clk;
2014
2015 sprintf(buf, "%s.%d", info->name, id);
2016 devm_clk_hw_register_clkdev(&pdev->dev, clk, NULL, buf);
2017 p = ptp_ocp_i2c_bus(bp->pdev, r, id);
2018 if (IS_ERR(p))
2019 return PTR_ERR(p);
2020
2021 bp_assign_entry(bp, r, p);
2022
2023 return 0;
2024 }
2025
2026 /* The expectation is that this is triggered only on error. */
2027 static irqreturn_t
ptp_ocp_signal_irq(int irq,void * priv)2028 ptp_ocp_signal_irq(int irq, void *priv)
2029 {
2030 struct ptp_ocp_ext_src *ext = priv;
2031 struct signal_reg __iomem *reg = ext->mem;
2032 struct ptp_ocp *bp = ext->bp;
2033 u32 enable, status;
2034 int gen;
2035
2036 gen = ext->info->index - 1;
2037
2038 enable = ioread32(®->enable);
2039 status = ioread32(®->status);
2040
2041 /* disable generator on error */
2042 if (status || !enable) {
2043 iowrite32(0, ®->intr_mask);
2044 iowrite32(0, ®->enable);
2045 bp->signal[gen].running = false;
2046 }
2047
2048 iowrite32(0, ®->intr); /* ack interrupt */
2049
2050 return IRQ_HANDLED;
2051 }
2052
2053 static int
ptp_ocp_signal_set(struct ptp_ocp * bp,int gen,struct ptp_ocp_signal * s)2054 ptp_ocp_signal_set(struct ptp_ocp *bp, int gen, struct ptp_ocp_signal *s)
2055 {
2056 struct ptp_system_timestamp sts;
2057 struct timespec64 ts;
2058 ktime_t start_ns;
2059 int err;
2060
2061 if (!s->period)
2062 return 0;
2063
2064 if (!s->pulse)
2065 s->pulse = ktime_divns(s->period * s->duty, 100);
2066
2067 err = ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts);
2068 if (err)
2069 return err;
2070
2071 start_ns = ktime_set(ts.tv_sec, ts.tv_nsec) + NSEC_PER_MSEC;
2072 if (!s->start) {
2073 /* roundup() does not work on 32-bit systems */
2074 s->start = DIV64_U64_ROUND_UP(start_ns, s->period);
2075 s->start *= s->period;
2076 s->start = ktime_add(s->start, s->phase);
2077 }
2078
2079 if (s->duty < 1 || s->duty > 99)
2080 return -EINVAL;
2081
2082 if (s->pulse < 1 || s->pulse > s->period)
2083 return -EINVAL;
2084
2085 if (s->start < start_ns)
2086 return -EINVAL;
2087
2088 bp->signal[gen] = *s;
2089
2090 return 0;
2091 }
2092
2093 static int
ptp_ocp_signal_from_perout(struct ptp_ocp * bp,int gen,struct ptp_perout_request * req)2094 ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
2095 struct ptp_perout_request *req)
2096 {
2097 struct ptp_ocp_signal s = { };
2098
2099 s.polarity = bp->signal[gen].polarity;
2100 s.period = ktime_set(req->period.sec, req->period.nsec);
2101 if (!s.period)
2102 return 0;
2103
2104 if (req->flags & PTP_PEROUT_DUTY_CYCLE) {
2105 s.pulse = ktime_set(req->on.sec, req->on.nsec);
2106 s.duty = ktime_divns(s.pulse * 100, s.period);
2107 }
2108
2109 if (req->flags & PTP_PEROUT_PHASE)
2110 s.phase = ktime_set(req->phase.sec, req->phase.nsec);
2111 else
2112 s.start = ktime_set(req->start.sec, req->start.nsec);
2113
2114 return ptp_ocp_signal_set(bp, gen, &s);
2115 }
2116
2117 static int
ptp_ocp_signal_enable(void * priv,u32 req,bool enable)2118 ptp_ocp_signal_enable(void *priv, u32 req, bool enable)
2119 {
2120 struct ptp_ocp_ext_src *ext = priv;
2121 struct signal_reg __iomem *reg = ext->mem;
2122 struct ptp_ocp *bp = ext->bp;
2123 struct timespec64 ts;
2124 int gen;
2125
2126 gen = ext->info->index - 1;
2127
2128 iowrite32(0, ®->intr_mask);
2129 iowrite32(0, ®->enable);
2130 bp->signal[gen].running = false;
2131 if (!enable)
2132 return 0;
2133
2134 ts = ktime_to_timespec64(bp->signal[gen].start);
2135 iowrite32(ts.tv_sec, ®->start_sec);
2136 iowrite32(ts.tv_nsec, ®->start_ns);
2137
2138 ts = ktime_to_timespec64(bp->signal[gen].period);
2139 iowrite32(ts.tv_sec, ®->period_sec);
2140 iowrite32(ts.tv_nsec, ®->period_ns);
2141
2142 ts = ktime_to_timespec64(bp->signal[gen].pulse);
2143 iowrite32(ts.tv_sec, ®->pulse_sec);
2144 iowrite32(ts.tv_nsec, ®->pulse_ns);
2145
2146 iowrite32(bp->signal[gen].polarity, ®->polarity);
2147 iowrite32(0, ®->repeat_count);
2148
2149 iowrite32(0, ®->intr); /* clear interrupt state */
2150 iowrite32(1, ®->intr_mask); /* enable interrupt */
2151 iowrite32(3, ®->enable); /* valid & enable */
2152
2153 bp->signal[gen].running = true;
2154
2155 return 0;
2156 }
2157
2158 static irqreturn_t
ptp_ocp_ts_irq(int irq,void * priv)2159 ptp_ocp_ts_irq(int irq, void *priv)
2160 {
2161 struct ptp_ocp_ext_src *ext = priv;
2162 struct ts_reg __iomem *reg = ext->mem;
2163 struct ptp_clock_event ev;
2164 u32 sec, nsec;
2165
2166 if (ext == ext->bp->pps) {
2167 if (ext->bp->pps_req_map & OCP_REQ_PPS) {
2168 ev.type = PTP_CLOCK_PPS;
2169 ptp_clock_event(ext->bp->ptp, &ev);
2170 }
2171
2172 if ((ext->bp->pps_req_map & ~OCP_REQ_PPS) == 0)
2173 goto out;
2174 }
2175
2176 /* XXX should fix API - this converts s/ns -> ts -> s/ns */
2177 sec = ioread32(®->time_sec);
2178 nsec = ioread32(®->time_ns);
2179
2180 ev.type = PTP_CLOCK_EXTTS;
2181 ev.index = ext->info->index;
2182 ev.timestamp = sec * NSEC_PER_SEC + nsec;
2183
2184 ptp_clock_event(ext->bp->ptp, &ev);
2185
2186 out:
2187 iowrite32(1, ®->intr); /* write 1 to ack */
2188
2189 return IRQ_HANDLED;
2190 }
2191
2192 static int
ptp_ocp_ts_enable(void * priv,u32 req,bool enable)2193 ptp_ocp_ts_enable(void *priv, u32 req, bool enable)
2194 {
2195 struct ptp_ocp_ext_src *ext = priv;
2196 struct ts_reg __iomem *reg = ext->mem;
2197 struct ptp_ocp *bp = ext->bp;
2198
2199 if (ext == bp->pps) {
2200 u32 old_map = bp->pps_req_map;
2201
2202 if (enable)
2203 bp->pps_req_map |= req;
2204 else
2205 bp->pps_req_map &= ~req;
2206
2207 /* if no state change, just return */
2208 if ((!!old_map ^ !!bp->pps_req_map) == 0)
2209 return 0;
2210 }
2211
2212 if (enable) {
2213 iowrite32(1, ®->enable);
2214 iowrite32(1, ®->intr_mask);
2215 iowrite32(1, ®->intr);
2216 } else {
2217 iowrite32(0, ®->intr_mask);
2218 iowrite32(0, ®->enable);
2219 }
2220
2221 return 0;
2222 }
2223
2224 static void
ptp_ocp_unregister_ext(struct ptp_ocp_ext_src * ext)2225 ptp_ocp_unregister_ext(struct ptp_ocp_ext_src *ext)
2226 {
2227 if (!ext)
2228 return;
2229
2230 ext->info->enable(ext, ~0, false);
2231 pci_free_irq(ext->bp->pdev, ext->irq_vec, ext);
2232 kfree(ext);
2233 }
2234
2235 static int
ptp_ocp_register_ext(struct ptp_ocp * bp,struct ocp_resource * r)2236 ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r)
2237 {
2238 struct pci_dev *pdev = bp->pdev;
2239 struct ptp_ocp_ext_src *ext;
2240 int err;
2241
2242 ext = kzalloc(sizeof(*ext), GFP_KERNEL);
2243 if (!ext)
2244 return -ENOMEM;
2245
2246 ext->mem = ptp_ocp_get_mem(bp, r);
2247 if (IS_ERR(ext->mem)) {
2248 err = PTR_ERR(ext->mem);
2249 goto out;
2250 }
2251
2252 ext->bp = bp;
2253 ext->info = r->extra;
2254 ext->irq_vec = r->irq_vec;
2255
2256 err = pci_request_irq(pdev, r->irq_vec, ext->info->irq_fcn, NULL,
2257 ext, "ocp%d.%s", bp->id, r->name);
2258 if (err) {
2259 dev_err(&pdev->dev, "Could not get irq %d\n", r->irq_vec);
2260 goto out;
2261 }
2262
2263 bp_assign_entry(bp, r, ext);
2264
2265 return 0;
2266
2267 out:
2268 kfree(ext);
2269 return err;
2270 }
2271
2272 static int
ptp_ocp_serial_line(struct ptp_ocp * bp,struct ocp_resource * r)2273 ptp_ocp_serial_line(struct ptp_ocp *bp, struct ocp_resource *r)
2274 {
2275 struct pci_dev *pdev = bp->pdev;
2276 struct uart_8250_port uart;
2277
2278 /* Setting UPF_IOREMAP and leaving port.membase unspecified lets
2279 * the serial port device claim and release the pci resource.
2280 */
2281 memset(&uart, 0, sizeof(uart));
2282 uart.port.dev = &pdev->dev;
2283 uart.port.iotype = UPIO_MEM;
2284 uart.port.regshift = 2;
2285 uart.port.mapbase = pci_resource_start(pdev, 0) + r->offset;
2286 uart.port.irq = pci_irq_vector(pdev, r->irq_vec);
2287 uart.port.uartclk = 50000000;
2288 uart.port.flags = UPF_FIXED_TYPE | UPF_IOREMAP | UPF_NO_THRE_TEST;
2289 uart.port.type = PORT_16550A;
2290
2291 return serial8250_register_8250_port(&uart);
2292 }
2293
2294 static int
ptp_ocp_register_serial(struct ptp_ocp * bp,struct ocp_resource * r)2295 ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r)
2296 {
2297 struct ptp_ocp_serial_port *p = (struct ptp_ocp_serial_port *)r->extra;
2298 struct ptp_ocp_serial_port port = {};
2299
2300 port.line = ptp_ocp_serial_line(bp, r);
2301 if (port.line < 0)
2302 return port.line;
2303
2304 if (p)
2305 port.baud = p->baud;
2306
2307 bp_assign_entry(bp, r, port);
2308
2309 return 0;
2310 }
2311
2312 static int
ptp_ocp_register_mem(struct ptp_ocp * bp,struct ocp_resource * r)2313 ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r)
2314 {
2315 void __iomem *mem;
2316
2317 mem = ptp_ocp_get_mem(bp, r);
2318 if (IS_ERR(mem))
2319 return PTR_ERR(mem);
2320
2321 bp_assign_entry(bp, r, mem);
2322
2323 return 0;
2324 }
2325
2326 static void
ptp_ocp_nmea_out_init(struct ptp_ocp * bp)2327 ptp_ocp_nmea_out_init(struct ptp_ocp *bp)
2328 {
2329 if (!bp->nmea_out)
2330 return;
2331
2332 iowrite32(0, &bp->nmea_out->ctrl); /* disable */
2333 iowrite32(7, &bp->nmea_out->uart_baud); /* 115200 */
2334 iowrite32(1, &bp->nmea_out->ctrl); /* enable */
2335 }
2336
2337 static void
_ptp_ocp_signal_init(struct ptp_ocp_signal * s,struct signal_reg __iomem * reg)2338 _ptp_ocp_signal_init(struct ptp_ocp_signal *s, struct signal_reg __iomem *reg)
2339 {
2340 u32 val;
2341
2342 iowrite32(0, ®->enable); /* disable */
2343
2344 val = ioread32(®->polarity);
2345 s->polarity = val ? true : false;
2346 s->duty = 50;
2347 }
2348
2349 static void
ptp_ocp_signal_init(struct ptp_ocp * bp)2350 ptp_ocp_signal_init(struct ptp_ocp *bp)
2351 {
2352 int i;
2353
2354 for (i = 0; i < 4; i++)
2355 if (bp->signal_out[i])
2356 _ptp_ocp_signal_init(&bp->signal[i],
2357 bp->signal_out[i]->mem);
2358 }
2359
2360 static void
ptp_ocp_attr_group_del(struct ptp_ocp * bp)2361 ptp_ocp_attr_group_del(struct ptp_ocp *bp)
2362 {
2363 sysfs_remove_groups(&bp->dev.kobj, bp->attr_group);
2364 kfree(bp->attr_group);
2365 }
2366
2367 static int
ptp_ocp_attr_group_add(struct ptp_ocp * bp,const struct ocp_attr_group * attr_tbl)2368 ptp_ocp_attr_group_add(struct ptp_ocp *bp,
2369 const struct ocp_attr_group *attr_tbl)
2370 {
2371 int count, i;
2372 int err;
2373
2374 count = 0;
2375 for (i = 0; attr_tbl[i].cap; i++)
2376 if (attr_tbl[i].cap & bp->fw_cap)
2377 count++;
2378
2379 bp->attr_group = kcalloc(count + 1, sizeof(*bp->attr_group),
2380 GFP_KERNEL);
2381 if (!bp->attr_group)
2382 return -ENOMEM;
2383
2384 count = 0;
2385 for (i = 0; attr_tbl[i].cap; i++)
2386 if (attr_tbl[i].cap & bp->fw_cap)
2387 bp->attr_group[count++] = attr_tbl[i].group;
2388
2389 err = sysfs_create_groups(&bp->dev.kobj, bp->attr_group);
2390 if (err)
2391 bp->attr_group[0] = NULL;
2392
2393 return err;
2394 }
2395
2396 static void
ptp_ocp_enable_fpga(u32 __iomem * reg,u32 bit,bool enable)2397 ptp_ocp_enable_fpga(u32 __iomem *reg, u32 bit, bool enable)
2398 {
2399 u32 ctrl;
2400 bool on;
2401
2402 ctrl = ioread32(reg);
2403 on = ctrl & bit;
2404 if (on ^ enable) {
2405 ctrl &= ~bit;
2406 ctrl |= enable ? bit : 0;
2407 iowrite32(ctrl, reg);
2408 }
2409 }
2410
2411 static void
ptp_ocp_irig_out(struct ptp_ocp * bp,bool enable)2412 ptp_ocp_irig_out(struct ptp_ocp *bp, bool enable)
2413 {
2414 return ptp_ocp_enable_fpga(&bp->irig_out->ctrl,
2415 IRIG_M_CTRL_ENABLE, enable);
2416 }
2417
2418 static void
ptp_ocp_irig_in(struct ptp_ocp * bp,bool enable)2419 ptp_ocp_irig_in(struct ptp_ocp *bp, bool enable)
2420 {
2421 return ptp_ocp_enable_fpga(&bp->irig_in->ctrl,
2422 IRIG_S_CTRL_ENABLE, enable);
2423 }
2424
2425 static void
ptp_ocp_dcf_out(struct ptp_ocp * bp,bool enable)2426 ptp_ocp_dcf_out(struct ptp_ocp *bp, bool enable)
2427 {
2428 return ptp_ocp_enable_fpga(&bp->dcf_out->ctrl,
2429 DCF_M_CTRL_ENABLE, enable);
2430 }
2431
2432 static void
ptp_ocp_dcf_in(struct ptp_ocp * bp,bool enable)2433 ptp_ocp_dcf_in(struct ptp_ocp *bp, bool enable)
2434 {
2435 return ptp_ocp_enable_fpga(&bp->dcf_in->ctrl,
2436 DCF_S_CTRL_ENABLE, enable);
2437 }
2438
2439 static void
__handle_signal_outputs(struct ptp_ocp * bp,u32 val)2440 __handle_signal_outputs(struct ptp_ocp *bp, u32 val)
2441 {
2442 ptp_ocp_irig_out(bp, val & 0x00100010);
2443 ptp_ocp_dcf_out(bp, val & 0x00200020);
2444 }
2445
2446 static void
__handle_signal_inputs(struct ptp_ocp * bp,u32 val)2447 __handle_signal_inputs(struct ptp_ocp *bp, u32 val)
2448 {
2449 ptp_ocp_irig_in(bp, val & 0x00100010);
2450 ptp_ocp_dcf_in(bp, val & 0x00200020);
2451 }
2452
2453 static u32
ptp_ocp_sma_fb_get(struct ptp_ocp * bp,int sma_nr)2454 ptp_ocp_sma_fb_get(struct ptp_ocp *bp, int sma_nr)
2455 {
2456 u32 __iomem *gpio;
2457 u32 shift;
2458
2459 if (bp->sma[sma_nr - 1].fixed_fcn)
2460 return (sma_nr - 1) & 1;
2461
2462 if (bp->sma[sma_nr - 1].mode == SMA_MODE_IN)
2463 gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2464 else
2465 gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2466 shift = sma_nr & 1 ? 0 : 16;
2467
2468 return (ioread32(gpio) >> shift) & 0xffff;
2469 }
2470
2471 static int
ptp_ocp_sma_fb_set_output(struct ptp_ocp * bp,int sma_nr,u32 val)2472 ptp_ocp_sma_fb_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
2473 {
2474 u32 reg, mask, shift;
2475 unsigned long flags;
2476 u32 __iomem *gpio;
2477
2478 gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2479 shift = sma_nr & 1 ? 0 : 16;
2480
2481 mask = 0xffff << (16 - shift);
2482
2483 spin_lock_irqsave(&bp->lock, flags);
2484
2485 reg = ioread32(gpio);
2486 reg = (reg & mask) | (val << shift);
2487
2488 __handle_signal_outputs(bp, reg);
2489
2490 iowrite32(reg, gpio);
2491
2492 spin_unlock_irqrestore(&bp->lock, flags);
2493
2494 return 0;
2495 }
2496
2497 static int
ptp_ocp_sma_fb_set_inputs(struct ptp_ocp * bp,int sma_nr,u32 val)2498 ptp_ocp_sma_fb_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
2499 {
2500 u32 reg, mask, shift;
2501 unsigned long flags;
2502 u32 __iomem *gpio;
2503
2504 gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2505 shift = sma_nr & 1 ? 0 : 16;
2506
2507 mask = 0xffff << (16 - shift);
2508
2509 spin_lock_irqsave(&bp->lock, flags);
2510
2511 reg = ioread32(gpio);
2512 reg = (reg & mask) | (val << shift);
2513
2514 __handle_signal_inputs(bp, reg);
2515
2516 iowrite32(reg, gpio);
2517
2518 spin_unlock_irqrestore(&bp->lock, flags);
2519
2520 return 0;
2521 }
2522
2523 static void
ptp_ocp_sma_fb_init(struct ptp_ocp * bp)2524 ptp_ocp_sma_fb_init(struct ptp_ocp *bp)
2525 {
2526 struct dpll_pin_properties prop = {
2527 .board_label = NULL,
2528 .type = DPLL_PIN_TYPE_EXT,
2529 .capabilities = DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE,
2530 .freq_supported_num = ARRAY_SIZE(ptp_ocp_sma_freq),
2531 .freq_supported = ptp_ocp_sma_freq,
2532
2533 };
2534 u32 reg;
2535 int i;
2536
2537 /* defaults */
2538 for (i = 0; i < OCP_SMA_NUM; i++) {
2539 bp->sma[i].default_fcn = i & 1;
2540 bp->sma[i].dpll_prop = prop;
2541 bp->sma[i].dpll_prop.board_label =
2542 bp->ptp_info.pin_config[i].name;
2543 }
2544 bp->sma[0].mode = SMA_MODE_IN;
2545 bp->sma[1].mode = SMA_MODE_IN;
2546 bp->sma[2].mode = SMA_MODE_OUT;
2547 bp->sma[3].mode = SMA_MODE_OUT;
2548 /* If no SMA1 map, the pin functions and directions are fixed. */
2549 if (!bp->sma_map1) {
2550 for (i = 0; i < OCP_SMA_NUM; i++) {
2551 bp->sma[i].fixed_fcn = true;
2552 bp->sma[i].fixed_dir = true;
2553 bp->sma[i].dpll_prop.capabilities &=
2554 ~DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
2555 }
2556 return;
2557 }
2558
2559 /* If SMA2 GPIO output map is all 1, it is not present.
2560 * This indicates the firmware has fixed direction SMA pins.
2561 */
2562 reg = ioread32(&bp->sma_map2->gpio2);
2563 if (reg == 0xffffffff) {
2564 for (i = 0; i < OCP_SMA_NUM; i++)
2565 bp->sma[i].fixed_dir = true;
2566 } else {
2567 reg = ioread32(&bp->sma_map1->gpio1);
2568 bp->sma[0].mode = reg & BIT(15) ? SMA_MODE_IN : SMA_MODE_OUT;
2569 bp->sma[1].mode = reg & BIT(31) ? SMA_MODE_IN : SMA_MODE_OUT;
2570
2571 reg = ioread32(&bp->sma_map1->gpio2);
2572 bp->sma[2].mode = reg & BIT(15) ? SMA_MODE_OUT : SMA_MODE_IN;
2573 bp->sma[3].mode = reg & BIT(31) ? SMA_MODE_OUT : SMA_MODE_IN;
2574 }
2575 }
2576
2577 static const struct ocp_sma_op ocp_fb_sma_op = {
2578 .tbl = { ptp_ocp_sma_in, ptp_ocp_sma_out },
2579 .init = ptp_ocp_sma_fb_init,
2580 .get = ptp_ocp_sma_fb_get,
2581 .set_inputs = ptp_ocp_sma_fb_set_inputs,
2582 .set_output = ptp_ocp_sma_fb_set_output,
2583 };
2584
2585 static int
ptp_ocp_sma_adva_set_output(struct ptp_ocp * bp,int sma_nr,u32 val)2586 ptp_ocp_sma_adva_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
2587 {
2588 u32 reg, mask, shift;
2589 unsigned long flags;
2590 u32 __iomem *gpio;
2591
2592 gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2593 shift = sma_nr & 1 ? 0 : 16;
2594
2595 mask = 0xffff << (16 - shift);
2596
2597 spin_lock_irqsave(&bp->lock, flags);
2598
2599 reg = ioread32(gpio);
2600 reg = (reg & mask) | (val << shift);
2601
2602 iowrite32(reg, gpio);
2603
2604 spin_unlock_irqrestore(&bp->lock, flags);
2605
2606 return 0;
2607 }
2608
2609 static int
ptp_ocp_sma_adva_set_inputs(struct ptp_ocp * bp,int sma_nr,u32 val)2610 ptp_ocp_sma_adva_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
2611 {
2612 u32 reg, mask, shift;
2613 unsigned long flags;
2614 u32 __iomem *gpio;
2615
2616 gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2617 shift = sma_nr & 1 ? 0 : 16;
2618
2619 mask = 0xffff << (16 - shift);
2620
2621 spin_lock_irqsave(&bp->lock, flags);
2622
2623 reg = ioread32(gpio);
2624 reg = (reg & mask) | (val << shift);
2625
2626 iowrite32(reg, gpio);
2627
2628 spin_unlock_irqrestore(&bp->lock, flags);
2629
2630 return 0;
2631 }
2632
2633 static const struct ocp_sma_op ocp_adva_sma_op = {
2634 .tbl = { ptp_ocp_adva_sma_in, ptp_ocp_adva_sma_out },
2635 .init = ptp_ocp_sma_fb_init,
2636 .get = ptp_ocp_sma_fb_get,
2637 .set_inputs = ptp_ocp_sma_adva_set_inputs,
2638 .set_output = ptp_ocp_sma_adva_set_output,
2639 };
2640
2641 static int
ptp_ocp_set_pins(struct ptp_ocp * bp)2642 ptp_ocp_set_pins(struct ptp_ocp *bp)
2643 {
2644 struct ptp_pin_desc *config;
2645 int i;
2646
2647 config = kcalloc(4, sizeof(*config), GFP_KERNEL);
2648 if (!config)
2649 return -ENOMEM;
2650
2651 for (i = 0; i < 4; i++) {
2652 sprintf(config[i].name, "sma%d", i + 1);
2653 config[i].index = i;
2654 }
2655
2656 bp->ptp_info.n_pins = 4;
2657 bp->ptp_info.pin_config = config;
2658
2659 return 0;
2660 }
2661
2662 static void
ptp_ocp_fb_set_version(struct ptp_ocp * bp)2663 ptp_ocp_fb_set_version(struct ptp_ocp *bp)
2664 {
2665 u64 cap = OCP_CAP_BASIC;
2666 u32 version;
2667
2668 version = ioread32(&bp->image->version);
2669
2670 /* if lower 16 bits are empty, this is the fw loader. */
2671 if ((version & 0xffff) == 0) {
2672 version = version >> 16;
2673 bp->fw_loader = true;
2674 }
2675
2676 bp->fw_tag = version >> 15;
2677 bp->fw_version = version & 0x7fff;
2678
2679 if (bp->fw_tag) {
2680 /* FPGA firmware */
2681 if (version >= 5)
2682 cap |= OCP_CAP_SIGNAL | OCP_CAP_FREQ;
2683 } else {
2684 /* SOM firmware */
2685 if (version >= 19)
2686 cap |= OCP_CAP_SIGNAL;
2687 if (version >= 20)
2688 cap |= OCP_CAP_FREQ;
2689 }
2690
2691 bp->fw_cap = cap;
2692 }
2693
2694 /* FB specific board initializers; last "resource" registered. */
2695 static int
ptp_ocp_fb_board_init(struct ptp_ocp * bp,struct ocp_resource * r)2696 ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2697 {
2698 int err;
2699
2700 bp->flash_start = 1024 * 4096;
2701 bp->eeprom_map = fb_eeprom_map;
2702 bp->fw_version = ioread32(&bp->image->version);
2703 bp->sma_op = &ocp_fb_sma_op;
2704 bp->signals_nr = 4;
2705 bp->freq_in_nr = 4;
2706
2707 ptp_ocp_fb_set_version(bp);
2708
2709 ptp_ocp_tod_init(bp);
2710 ptp_ocp_nmea_out_init(bp);
2711 ptp_ocp_signal_init(bp);
2712
2713 err = ptp_ocp_attr_group_add(bp, fb_timecard_groups);
2714 if (err)
2715 return err;
2716
2717 err = ptp_ocp_set_pins(bp);
2718 if (err)
2719 return err;
2720 ptp_ocp_sma_init(bp);
2721
2722 return ptp_ocp_init_clock(bp, r->extra);
2723 }
2724
2725 static bool
ptp_ocp_allow_irq(struct ptp_ocp * bp,struct ocp_resource * r)2726 ptp_ocp_allow_irq(struct ptp_ocp *bp, struct ocp_resource *r)
2727 {
2728 bool allow = !r->irq_vec || r->irq_vec < bp->n_irqs;
2729
2730 if (!allow)
2731 dev_err(&bp->pdev->dev, "irq %d out of range, skipping %s\n",
2732 r->irq_vec, r->name);
2733 return allow;
2734 }
2735
2736 static int
ptp_ocp_register_resources(struct ptp_ocp * bp,kernel_ulong_t driver_data)2737 ptp_ocp_register_resources(struct ptp_ocp *bp, kernel_ulong_t driver_data)
2738 {
2739 struct ocp_resource *r, *table;
2740 int err = 0;
2741
2742 table = (struct ocp_resource *)driver_data;
2743 for (r = table; r->setup; r++) {
2744 if (!ptp_ocp_allow_irq(bp, r))
2745 continue;
2746 err = r->setup(bp, r);
2747 if (err) {
2748 dev_err(&bp->pdev->dev,
2749 "Could not register %s: err %d\n",
2750 r->name, err);
2751 break;
2752 }
2753 }
2754 return err;
2755 }
2756
2757 static void
ptp_ocp_art_sma_init(struct ptp_ocp * bp)2758 ptp_ocp_art_sma_init(struct ptp_ocp *bp)
2759 {
2760 struct dpll_pin_properties prop = {
2761 .board_label = NULL,
2762 .type = DPLL_PIN_TYPE_EXT,
2763 .capabilities = 0,
2764 .freq_supported_num = ARRAY_SIZE(ptp_ocp_sma_freq),
2765 .freq_supported = ptp_ocp_sma_freq,
2766
2767 };
2768 u32 reg;
2769 int i;
2770
2771 /* defaults */
2772 bp->sma[0].mode = SMA_MODE_IN;
2773 bp->sma[1].mode = SMA_MODE_IN;
2774 bp->sma[2].mode = SMA_MODE_OUT;
2775 bp->sma[3].mode = SMA_MODE_OUT;
2776
2777 bp->sma[0].default_fcn = 0x08; /* IN: 10Mhz */
2778 bp->sma[1].default_fcn = 0x01; /* IN: PPS1 */
2779 bp->sma[2].default_fcn = 0x10; /* OUT: 10Mhz */
2780 bp->sma[3].default_fcn = 0x02; /* OUT: PHC */
2781
2782 for (i = 0; i < OCP_SMA_NUM; i++) {
2783 /* If no SMA map, the pin functions and directions are fixed. */
2784 bp->sma[i].dpll_prop = prop;
2785 bp->sma[i].dpll_prop.board_label =
2786 bp->ptp_info.pin_config[i].name;
2787 if (!bp->art_sma) {
2788 bp->sma[i].fixed_fcn = true;
2789 bp->sma[i].fixed_dir = true;
2790 continue;
2791 }
2792 reg = ioread32(&bp->art_sma->map[i].gpio);
2793
2794 switch (reg & 0xff) {
2795 case 0:
2796 bp->sma[i].fixed_fcn = true;
2797 bp->sma[i].fixed_dir = true;
2798 break;
2799 case 1:
2800 case 8:
2801 bp->sma[i].mode = SMA_MODE_IN;
2802 bp->sma[i].dpll_prop.capabilities =
2803 DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
2804 break;
2805 default:
2806 bp->sma[i].mode = SMA_MODE_OUT;
2807 bp->sma[i].dpll_prop.capabilities =
2808 DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
2809 break;
2810 }
2811 }
2812 }
2813
2814 static u32
ptp_ocp_art_sma_get(struct ptp_ocp * bp,int sma_nr)2815 ptp_ocp_art_sma_get(struct ptp_ocp *bp, int sma_nr)
2816 {
2817 if (bp->sma[sma_nr - 1].fixed_fcn)
2818 return bp->sma[sma_nr - 1].default_fcn;
2819
2820 return ioread32(&bp->art_sma->map[sma_nr - 1].gpio) & 0xff;
2821 }
2822
2823 /* note: store 0 is considered invalid. */
2824 static int
ptp_ocp_art_sma_set(struct ptp_ocp * bp,int sma_nr,u32 val)2825 ptp_ocp_art_sma_set(struct ptp_ocp *bp, int sma_nr, u32 val)
2826 {
2827 unsigned long flags;
2828 u32 __iomem *gpio;
2829 int err = 0;
2830 u32 reg;
2831
2832 val &= SMA_SELECT_MASK;
2833 if (hweight32(val) > 1)
2834 return -EINVAL;
2835
2836 gpio = &bp->art_sma->map[sma_nr - 1].gpio;
2837
2838 spin_lock_irqsave(&bp->lock, flags);
2839 reg = ioread32(gpio);
2840 if (((reg >> 16) & val) == 0) {
2841 err = -EOPNOTSUPP;
2842 } else {
2843 reg = (reg & 0xff00) | (val & 0xff);
2844 iowrite32(reg, gpio);
2845 }
2846 spin_unlock_irqrestore(&bp->lock, flags);
2847
2848 return err;
2849 }
2850
2851 static const struct ocp_sma_op ocp_art_sma_op = {
2852 .tbl = { ptp_ocp_art_sma_in, ptp_ocp_art_sma_out },
2853 .init = ptp_ocp_art_sma_init,
2854 .get = ptp_ocp_art_sma_get,
2855 .set_inputs = ptp_ocp_art_sma_set,
2856 .set_output = ptp_ocp_art_sma_set,
2857 };
2858
2859 /* ART specific board initializers; last "resource" registered. */
2860 static int
ptp_ocp_art_board_init(struct ptp_ocp * bp,struct ocp_resource * r)2861 ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2862 {
2863 int err;
2864
2865 bp->flash_start = 0x1000000;
2866 bp->eeprom_map = art_eeprom_map;
2867 bp->fw_cap = OCP_CAP_BASIC;
2868 bp->fw_version = ioread32(&bp->reg->version);
2869 bp->fw_tag = 2;
2870 bp->sma_op = &ocp_art_sma_op;
2871 bp->signals_nr = 4;
2872 bp->freq_in_nr = 4;
2873
2874 /* Enable MAC serial port during initialisation */
2875 iowrite32(1, &bp->board_config->mro50_serial_activate);
2876
2877 err = ptp_ocp_set_pins(bp);
2878 if (err)
2879 return err;
2880 ptp_ocp_sma_init(bp);
2881
2882 err = ptp_ocp_attr_group_add(bp, art_timecard_groups);
2883 if (err)
2884 return err;
2885
2886 return ptp_ocp_init_clock(bp, r->extra);
2887 }
2888
2889 /* ADVA specific board initializers; last "resource" registered. */
2890 static int
ptp_ocp_adva_board_init(struct ptp_ocp * bp,struct ocp_resource * r)2891 ptp_ocp_adva_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2892 {
2893 int err;
2894 u32 version;
2895
2896 bp->flash_start = 0xA00000;
2897 bp->eeprom_map = fb_eeprom_map;
2898 bp->sma_op = &ocp_adva_sma_op;
2899 bp->signals_nr = 2;
2900 bp->freq_in_nr = 2;
2901
2902 version = ioread32(&bp->image->version);
2903 /* if lower 16 bits are empty, this is the fw loader. */
2904 if ((version & 0xffff) == 0) {
2905 version = version >> 16;
2906 bp->fw_loader = true;
2907 }
2908 bp->fw_tag = 3;
2909 bp->fw_version = version & 0xffff;
2910 bp->fw_cap = OCP_CAP_BASIC | OCP_CAP_SIGNAL | OCP_CAP_FREQ;
2911
2912 ptp_ocp_tod_init(bp);
2913 ptp_ocp_nmea_out_init(bp);
2914 ptp_ocp_signal_init(bp);
2915
2916 err = ptp_ocp_attr_group_add(bp, adva_timecard_groups);
2917 if (err)
2918 return err;
2919
2920 err = ptp_ocp_set_pins(bp);
2921 if (err)
2922 return err;
2923 ptp_ocp_sma_init(bp);
2924
2925 return ptp_ocp_init_clock(bp, r->extra);
2926 }
2927
2928 static ssize_t
ptp_ocp_show_output(const struct ocp_selector * tbl,u32 val,char * buf,int def_val)2929 ptp_ocp_show_output(const struct ocp_selector *tbl, u32 val, char *buf,
2930 int def_val)
2931 {
2932 const char *name;
2933 ssize_t count;
2934
2935 count = sysfs_emit(buf, "OUT: ");
2936 name = ptp_ocp_select_name_from_val(tbl, val);
2937 if (!name)
2938 name = ptp_ocp_select_name_from_val(tbl, def_val);
2939 count += sysfs_emit_at(buf, count, "%s\n", name);
2940 return count;
2941 }
2942
2943 static ssize_t
ptp_ocp_show_inputs(const struct ocp_selector * tbl,u32 val,char * buf,int def_val)2944 ptp_ocp_show_inputs(const struct ocp_selector *tbl, u32 val, char *buf,
2945 int def_val)
2946 {
2947 const char *name;
2948 ssize_t count;
2949 int i;
2950
2951 count = sysfs_emit(buf, "IN: ");
2952 for (i = 0; tbl[i].name; i++) {
2953 if (val & tbl[i].value) {
2954 name = tbl[i].name;
2955 count += sysfs_emit_at(buf, count, "%s ", name);
2956 }
2957 }
2958 if (!val && def_val >= 0) {
2959 name = ptp_ocp_select_name_from_val(tbl, def_val);
2960 count += sysfs_emit_at(buf, count, "%s ", name);
2961 }
2962 if (count)
2963 count--;
2964 count += sysfs_emit_at(buf, count, "\n");
2965 return count;
2966 }
2967
2968 static int
sma_parse_inputs(const struct ocp_selector * const tbl[],const char * buf,enum ptp_ocp_sma_mode * mode)2969 sma_parse_inputs(const struct ocp_selector * const tbl[], const char *buf,
2970 enum ptp_ocp_sma_mode *mode)
2971 {
2972 int idx, count, dir;
2973 char **argv;
2974 int ret;
2975
2976 argv = argv_split(GFP_KERNEL, buf, &count);
2977 if (!argv)
2978 return -ENOMEM;
2979
2980 ret = -EINVAL;
2981 if (!count)
2982 goto out;
2983
2984 idx = 0;
2985 dir = *mode == SMA_MODE_IN ? 0 : 1;
2986 if (!strcasecmp("IN:", argv[0])) {
2987 dir = 0;
2988 idx++;
2989 }
2990 if (!strcasecmp("OUT:", argv[0])) {
2991 dir = 1;
2992 idx++;
2993 }
2994 *mode = dir == 0 ? SMA_MODE_IN : SMA_MODE_OUT;
2995
2996 ret = 0;
2997 for (; idx < count; idx++)
2998 ret |= ptp_ocp_select_val_from_name(tbl[dir], argv[idx]);
2999 if (ret < 0)
3000 ret = -EINVAL;
3001
3002 out:
3003 argv_free(argv);
3004 return ret;
3005 }
3006
3007 static ssize_t
ptp_ocp_sma_show(struct ptp_ocp * bp,int sma_nr,char * buf,int default_in_val,int default_out_val)3008 ptp_ocp_sma_show(struct ptp_ocp *bp, int sma_nr, char *buf,
3009 int default_in_val, int default_out_val)
3010 {
3011 struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
3012 const struct ocp_selector * const *tbl;
3013 u32 val;
3014
3015 tbl = bp->sma_op->tbl;
3016 val = ptp_ocp_sma_get(bp, sma_nr) & SMA_SELECT_MASK;
3017
3018 if (sma->mode == SMA_MODE_IN) {
3019 if (sma->disabled)
3020 val = SMA_DISABLE;
3021 return ptp_ocp_show_inputs(tbl[0], val, buf, default_in_val);
3022 }
3023
3024 return ptp_ocp_show_output(tbl[1], val, buf, default_out_val);
3025 }
3026
3027 static ssize_t
sma1_show(struct device * dev,struct device_attribute * attr,char * buf)3028 sma1_show(struct device *dev, struct device_attribute *attr, char *buf)
3029 {
3030 struct ptp_ocp *bp = dev_get_drvdata(dev);
3031
3032 return ptp_ocp_sma_show(bp, 1, buf, 0, 1);
3033 }
3034
3035 static ssize_t
sma2_show(struct device * dev,struct device_attribute * attr,char * buf)3036 sma2_show(struct device *dev, struct device_attribute *attr, char *buf)
3037 {
3038 struct ptp_ocp *bp = dev_get_drvdata(dev);
3039
3040 return ptp_ocp_sma_show(bp, 2, buf, -1, 1);
3041 }
3042
3043 static ssize_t
sma3_show(struct device * dev,struct device_attribute * attr,char * buf)3044 sma3_show(struct device *dev, struct device_attribute *attr, char *buf)
3045 {
3046 struct ptp_ocp *bp = dev_get_drvdata(dev);
3047
3048 return ptp_ocp_sma_show(bp, 3, buf, -1, 0);
3049 }
3050
3051 static ssize_t
sma4_show(struct device * dev,struct device_attribute * attr,char * buf)3052 sma4_show(struct device *dev, struct device_attribute *attr, char *buf)
3053 {
3054 struct ptp_ocp *bp = dev_get_drvdata(dev);
3055
3056 return ptp_ocp_sma_show(bp, 4, buf, -1, 1);
3057 }
3058
3059 static int
ptp_ocp_sma_store_val(struct ptp_ocp * bp,int val,enum ptp_ocp_sma_mode mode,int sma_nr)3060 ptp_ocp_sma_store_val(struct ptp_ocp *bp, int val, enum ptp_ocp_sma_mode mode, int sma_nr)
3061 {
3062 struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
3063
3064 if (sma->fixed_dir && (mode != sma->mode || val & SMA_DISABLE))
3065 return -EOPNOTSUPP;
3066
3067 if (sma->fixed_fcn) {
3068 if (val != sma->default_fcn)
3069 return -EOPNOTSUPP;
3070 return 0;
3071 }
3072
3073 sma->disabled = !!(val & SMA_DISABLE);
3074
3075 if (mode != sma->mode) {
3076 if (mode == SMA_MODE_IN)
3077 ptp_ocp_sma_set_output(bp, sma_nr, 0);
3078 else
3079 ptp_ocp_sma_set_inputs(bp, sma_nr, 0);
3080 sma->mode = mode;
3081 }
3082
3083 if (!sma->fixed_dir)
3084 val |= SMA_ENABLE; /* add enable bit */
3085
3086 if (sma->disabled)
3087 val = 0;
3088
3089 if (mode == SMA_MODE_IN)
3090 val = ptp_ocp_sma_set_inputs(bp, sma_nr, val);
3091 else
3092 val = ptp_ocp_sma_set_output(bp, sma_nr, val);
3093
3094 return val;
3095 }
3096
3097 static int
ptp_ocp_sma_store(struct ptp_ocp * bp,const char * buf,int sma_nr)3098 ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr)
3099 {
3100 struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
3101 enum ptp_ocp_sma_mode mode;
3102 int val;
3103
3104 mode = sma->mode;
3105 val = sma_parse_inputs(bp->sma_op->tbl, buf, &mode);
3106 if (val < 0)
3107 return val;
3108 return ptp_ocp_sma_store_val(bp, val, mode, sma_nr);
3109 }
3110
3111 static ssize_t
sma1_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3112 sma1_store(struct device *dev, struct device_attribute *attr,
3113 const char *buf, size_t count)
3114 {
3115 struct ptp_ocp *bp = dev_get_drvdata(dev);
3116 int err;
3117
3118 err = ptp_ocp_sma_store(bp, buf, 1);
3119 return err ? err : count;
3120 }
3121
3122 static ssize_t
sma2_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3123 sma2_store(struct device *dev, struct device_attribute *attr,
3124 const char *buf, size_t count)
3125 {
3126 struct ptp_ocp *bp = dev_get_drvdata(dev);
3127 int err;
3128
3129 err = ptp_ocp_sma_store(bp, buf, 2);
3130 return err ? err : count;
3131 }
3132
3133 static ssize_t
sma3_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3134 sma3_store(struct device *dev, struct device_attribute *attr,
3135 const char *buf, size_t count)
3136 {
3137 struct ptp_ocp *bp = dev_get_drvdata(dev);
3138 int err;
3139
3140 err = ptp_ocp_sma_store(bp, buf, 3);
3141 return err ? err : count;
3142 }
3143
3144 static ssize_t
sma4_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3145 sma4_store(struct device *dev, struct device_attribute *attr,
3146 const char *buf, size_t count)
3147 {
3148 struct ptp_ocp *bp = dev_get_drvdata(dev);
3149 int err;
3150
3151 err = ptp_ocp_sma_store(bp, buf, 4);
3152 return err ? err : count;
3153 }
3154 static DEVICE_ATTR_RW(sma1);
3155 static DEVICE_ATTR_RW(sma2);
3156 static DEVICE_ATTR_RW(sma3);
3157 static DEVICE_ATTR_RW(sma4);
3158
3159 static ssize_t
available_sma_inputs_show(struct device * dev,struct device_attribute * attr,char * buf)3160 available_sma_inputs_show(struct device *dev,
3161 struct device_attribute *attr, char *buf)
3162 {
3163 struct ptp_ocp *bp = dev_get_drvdata(dev);
3164
3165 return ptp_ocp_select_table_show(bp->sma_op->tbl[0], buf);
3166 }
3167 static DEVICE_ATTR_RO(available_sma_inputs);
3168
3169 static ssize_t
available_sma_outputs_show(struct device * dev,struct device_attribute * attr,char * buf)3170 available_sma_outputs_show(struct device *dev,
3171 struct device_attribute *attr, char *buf)
3172 {
3173 struct ptp_ocp *bp = dev_get_drvdata(dev);
3174
3175 return ptp_ocp_select_table_show(bp->sma_op->tbl[1], buf);
3176 }
3177 static DEVICE_ATTR_RO(available_sma_outputs);
3178
3179 #define EXT_ATTR_RO(_group, _name, _val) \
3180 struct dev_ext_attribute dev_attr_##_group##_val##_##_name = \
3181 { __ATTR_RO(_name), (void *)_val }
3182 #define EXT_ATTR_RW(_group, _name, _val) \
3183 struct dev_ext_attribute dev_attr_##_group##_val##_##_name = \
3184 { __ATTR_RW(_name), (void *)_val }
3185 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
3186
3187 /* period [duty [phase [polarity]]] */
3188 static ssize_t
signal_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3189 signal_store(struct device *dev, struct device_attribute *attr,
3190 const char *buf, size_t count)
3191 {
3192 struct dev_ext_attribute *ea = to_ext_attr(attr);
3193 struct ptp_ocp *bp = dev_get_drvdata(dev);
3194 struct ptp_ocp_signal s = { };
3195 int gen = (uintptr_t)ea->var;
3196 int argc, err;
3197 char **argv;
3198
3199 argv = argv_split(GFP_KERNEL, buf, &argc);
3200 if (!argv)
3201 return -ENOMEM;
3202
3203 err = -EINVAL;
3204 s.duty = bp->signal[gen].duty;
3205 s.phase = bp->signal[gen].phase;
3206 s.period = bp->signal[gen].period;
3207 s.polarity = bp->signal[gen].polarity;
3208
3209 switch (argc) {
3210 case 4:
3211 argc--;
3212 err = kstrtobool(argv[argc], &s.polarity);
3213 if (err)
3214 goto out;
3215 fallthrough;
3216 case 3:
3217 argc--;
3218 err = kstrtou64(argv[argc], 0, &s.phase);
3219 if (err)
3220 goto out;
3221 fallthrough;
3222 case 2:
3223 argc--;
3224 err = kstrtoint(argv[argc], 0, &s.duty);
3225 if (err)
3226 goto out;
3227 fallthrough;
3228 case 1:
3229 argc--;
3230 err = kstrtou64(argv[argc], 0, &s.period);
3231 if (err)
3232 goto out;
3233 break;
3234 default:
3235 goto out;
3236 }
3237
3238 err = ptp_ocp_signal_set(bp, gen, &s);
3239 if (err)
3240 goto out;
3241
3242 err = ptp_ocp_signal_enable(bp->signal_out[gen], gen, s.period != 0);
3243
3244 out:
3245 argv_free(argv);
3246 return err ? err : count;
3247 }
3248
3249 static ssize_t
signal_show(struct device * dev,struct device_attribute * attr,char * buf)3250 signal_show(struct device *dev, struct device_attribute *attr, char *buf)
3251 {
3252 struct dev_ext_attribute *ea = to_ext_attr(attr);
3253 struct ptp_ocp *bp = dev_get_drvdata(dev);
3254 struct ptp_ocp_signal *signal;
3255 int gen = (uintptr_t)ea->var;
3256 struct timespec64 ts;
3257
3258 signal = &bp->signal[gen];
3259
3260 ts = ktime_to_timespec64(signal->start);
3261
3262 return sysfs_emit(buf, "%llu %d %llu %d %ptT TAI\n",
3263 signal->period, signal->duty, signal->phase, signal->polarity,
3264 &ts.tv_sec);
3265 }
3266 static EXT_ATTR_RW(signal, signal, 0);
3267 static EXT_ATTR_RW(signal, signal, 1);
3268 static EXT_ATTR_RW(signal, signal, 2);
3269 static EXT_ATTR_RW(signal, signal, 3);
3270
3271 static ssize_t
duty_show(struct device * dev,struct device_attribute * attr,char * buf)3272 duty_show(struct device *dev, struct device_attribute *attr, char *buf)
3273 {
3274 struct dev_ext_attribute *ea = to_ext_attr(attr);
3275 struct ptp_ocp *bp = dev_get_drvdata(dev);
3276 int i = (uintptr_t)ea->var;
3277
3278 return sysfs_emit(buf, "%d\n", bp->signal[i].duty);
3279 }
3280 static EXT_ATTR_RO(signal, duty, 0);
3281 static EXT_ATTR_RO(signal, duty, 1);
3282 static EXT_ATTR_RO(signal, duty, 2);
3283 static EXT_ATTR_RO(signal, duty, 3);
3284
3285 static ssize_t
period_show(struct device * dev,struct device_attribute * attr,char * buf)3286 period_show(struct device *dev, struct device_attribute *attr, char *buf)
3287 {
3288 struct dev_ext_attribute *ea = to_ext_attr(attr);
3289 struct ptp_ocp *bp = dev_get_drvdata(dev);
3290 int i = (uintptr_t)ea->var;
3291
3292 return sysfs_emit(buf, "%llu\n", bp->signal[i].period);
3293 }
3294 static EXT_ATTR_RO(signal, period, 0);
3295 static EXT_ATTR_RO(signal, period, 1);
3296 static EXT_ATTR_RO(signal, period, 2);
3297 static EXT_ATTR_RO(signal, period, 3);
3298
3299 static ssize_t
phase_show(struct device * dev,struct device_attribute * attr,char * buf)3300 phase_show(struct device *dev, struct device_attribute *attr, char *buf)
3301 {
3302 struct dev_ext_attribute *ea = to_ext_attr(attr);
3303 struct ptp_ocp *bp = dev_get_drvdata(dev);
3304 int i = (uintptr_t)ea->var;
3305
3306 return sysfs_emit(buf, "%llu\n", bp->signal[i].phase);
3307 }
3308 static EXT_ATTR_RO(signal, phase, 0);
3309 static EXT_ATTR_RO(signal, phase, 1);
3310 static EXT_ATTR_RO(signal, phase, 2);
3311 static EXT_ATTR_RO(signal, phase, 3);
3312
3313 static ssize_t
polarity_show(struct device * dev,struct device_attribute * attr,char * buf)3314 polarity_show(struct device *dev, struct device_attribute *attr,
3315 char *buf)
3316 {
3317 struct dev_ext_attribute *ea = to_ext_attr(attr);
3318 struct ptp_ocp *bp = dev_get_drvdata(dev);
3319 int i = (uintptr_t)ea->var;
3320
3321 return sysfs_emit(buf, "%d\n", bp->signal[i].polarity);
3322 }
3323 static EXT_ATTR_RO(signal, polarity, 0);
3324 static EXT_ATTR_RO(signal, polarity, 1);
3325 static EXT_ATTR_RO(signal, polarity, 2);
3326 static EXT_ATTR_RO(signal, polarity, 3);
3327
3328 static ssize_t
running_show(struct device * dev,struct device_attribute * attr,char * buf)3329 running_show(struct device *dev, struct device_attribute *attr, char *buf)
3330 {
3331 struct dev_ext_attribute *ea = to_ext_attr(attr);
3332 struct ptp_ocp *bp = dev_get_drvdata(dev);
3333 int i = (uintptr_t)ea->var;
3334
3335 return sysfs_emit(buf, "%d\n", bp->signal[i].running);
3336 }
3337 static EXT_ATTR_RO(signal, running, 0);
3338 static EXT_ATTR_RO(signal, running, 1);
3339 static EXT_ATTR_RO(signal, running, 2);
3340 static EXT_ATTR_RO(signal, running, 3);
3341
3342 static ssize_t
start_show(struct device * dev,struct device_attribute * attr,char * buf)3343 start_show(struct device *dev, struct device_attribute *attr, char *buf)
3344 {
3345 struct dev_ext_attribute *ea = to_ext_attr(attr);
3346 struct ptp_ocp *bp = dev_get_drvdata(dev);
3347 int i = (uintptr_t)ea->var;
3348 struct timespec64 ts;
3349
3350 ts = ktime_to_timespec64(bp->signal[i].start);
3351 return sysfs_emit(buf, "%llu.%lu\n", ts.tv_sec, ts.tv_nsec);
3352 }
3353 static EXT_ATTR_RO(signal, start, 0);
3354 static EXT_ATTR_RO(signal, start, 1);
3355 static EXT_ATTR_RO(signal, start, 2);
3356 static EXT_ATTR_RO(signal, start, 3);
3357
3358 static ssize_t
seconds_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3359 seconds_store(struct device *dev, struct device_attribute *attr,
3360 const char *buf, size_t count)
3361 {
3362 struct dev_ext_attribute *ea = to_ext_attr(attr);
3363 struct ptp_ocp *bp = dev_get_drvdata(dev);
3364 int idx = (uintptr_t)ea->var;
3365 u32 val;
3366 int err;
3367
3368 err = kstrtou32(buf, 0, &val);
3369 if (err)
3370 return err;
3371 if (val > 0xff)
3372 return -EINVAL;
3373
3374 if (val)
3375 val = (val << 8) | 0x1;
3376
3377 iowrite32(val, &bp->freq_in[idx]->ctrl);
3378
3379 return count;
3380 }
3381
3382 static ssize_t
seconds_show(struct device * dev,struct device_attribute * attr,char * buf)3383 seconds_show(struct device *dev, struct device_attribute *attr, char *buf)
3384 {
3385 struct dev_ext_attribute *ea = to_ext_attr(attr);
3386 struct ptp_ocp *bp = dev_get_drvdata(dev);
3387 int idx = (uintptr_t)ea->var;
3388 u32 val;
3389
3390 val = ioread32(&bp->freq_in[idx]->ctrl);
3391 if (val & 1)
3392 val = (val >> 8) & 0xff;
3393 else
3394 val = 0;
3395
3396 return sysfs_emit(buf, "%u\n", val);
3397 }
3398 static EXT_ATTR_RW(freq, seconds, 0);
3399 static EXT_ATTR_RW(freq, seconds, 1);
3400 static EXT_ATTR_RW(freq, seconds, 2);
3401 static EXT_ATTR_RW(freq, seconds, 3);
3402
3403 static ssize_t
frequency_show(struct device * dev,struct device_attribute * attr,char * buf)3404 frequency_show(struct device *dev, struct device_attribute *attr, char *buf)
3405 {
3406 struct dev_ext_attribute *ea = to_ext_attr(attr);
3407 struct ptp_ocp *bp = dev_get_drvdata(dev);
3408 int idx = (uintptr_t)ea->var;
3409 u32 val;
3410
3411 val = ioread32(&bp->freq_in[idx]->status);
3412 if (val & FREQ_STATUS_ERROR)
3413 return sysfs_emit(buf, "error\n");
3414 if (val & FREQ_STATUS_OVERRUN)
3415 return sysfs_emit(buf, "overrun\n");
3416 if (val & FREQ_STATUS_VALID)
3417 return sysfs_emit(buf, "%lu\n", val & FREQ_STATUS_MASK);
3418 return 0;
3419 }
3420 static EXT_ATTR_RO(freq, frequency, 0);
3421 static EXT_ATTR_RO(freq, frequency, 1);
3422 static EXT_ATTR_RO(freq, frequency, 2);
3423 static EXT_ATTR_RO(freq, frequency, 3);
3424
3425 static ssize_t
ptp_ocp_tty_show(struct device * dev,struct device_attribute * attr,char * buf)3426 ptp_ocp_tty_show(struct device *dev, struct device_attribute *attr, char *buf)
3427 {
3428 struct dev_ext_attribute *ea = to_ext_attr(attr);
3429 struct ptp_ocp *bp = dev_get_drvdata(dev);
3430
3431 /*
3432 * NOTE: This output does not include a trailing newline for backward
3433 * compatibility. Existing userspace software uses this value directly
3434 * as a device path (e.g., "/dev/ttyS4"), and adding a newline would
3435 * break those applications. Do not add a newline to this output.
3436 */
3437 return sysfs_emit(buf, "ttyS%d", bp->port[(uintptr_t)ea->var].line);
3438 }
3439
3440 static umode_t
ptp_ocp_timecard_tty_is_visible(struct kobject * kobj,struct attribute * attr,int n)3441 ptp_ocp_timecard_tty_is_visible(struct kobject *kobj, struct attribute *attr, int n)
3442 {
3443 struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3444 struct ptp_ocp_serial_port *port;
3445 struct device_attribute *dattr;
3446 struct dev_ext_attribute *ea;
3447
3448 if (strncmp(attr->name, "tty", 3))
3449 return attr->mode;
3450
3451 dattr = container_of(attr, struct device_attribute, attr);
3452 ea = container_of(dattr, struct dev_ext_attribute, attr);
3453 port = &bp->port[(uintptr_t)ea->var];
3454 return port->line == -1 ? 0 : 0444;
3455 }
3456
3457 #define EXT_TTY_ATTR_RO(_name, _val) \
3458 struct dev_ext_attribute dev_attr_tty##_name = \
3459 { __ATTR(tty##_name, 0444, ptp_ocp_tty_show, NULL), (void *)_val }
3460
3461 static EXT_TTY_ATTR_RO(GNSS, PORT_GNSS);
3462 static EXT_TTY_ATTR_RO(GNSS2, PORT_GNSS2);
3463 static EXT_TTY_ATTR_RO(MAC, PORT_MAC);
3464 static EXT_TTY_ATTR_RO(NMEA, PORT_NMEA);
3465 static struct attribute *ptp_ocp_timecard_tty_attrs[] = {
3466 &dev_attr_ttyGNSS.attr.attr,
3467 &dev_attr_ttyGNSS2.attr.attr,
3468 &dev_attr_ttyMAC.attr.attr,
3469 &dev_attr_ttyNMEA.attr.attr,
3470 NULL,
3471 };
3472
3473 static const struct attribute_group ptp_ocp_timecard_tty_group = {
3474 .name = "tty",
3475 .attrs = ptp_ocp_timecard_tty_attrs,
3476 .is_visible = ptp_ocp_timecard_tty_is_visible,
3477 };
3478
3479 static ssize_t
serialnum_show(struct device * dev,struct device_attribute * attr,char * buf)3480 serialnum_show(struct device *dev, struct device_attribute *attr, char *buf)
3481 {
3482 struct ptp_ocp *bp = dev_get_drvdata(dev);
3483
3484 if (!bp->has_eeprom_data)
3485 ptp_ocp_read_eeprom(bp);
3486
3487 return sysfs_emit(buf, "%pM\n", bp->serial);
3488 }
3489 static DEVICE_ATTR_RO(serialnum);
3490
3491 static ssize_t
gnss_sync_show(struct device * dev,struct device_attribute * attr,char * buf)3492 gnss_sync_show(struct device *dev, struct device_attribute *attr, char *buf)
3493 {
3494 struct ptp_ocp *bp = dev_get_drvdata(dev);
3495 ssize_t ret;
3496
3497 if (bp->gnss_lost)
3498 ret = sysfs_emit(buf, "LOST @ %ptT\n", &bp->gnss_lost);
3499 else
3500 ret = sysfs_emit(buf, "SYNC\n");
3501
3502 return ret;
3503 }
3504 static DEVICE_ATTR_RO(gnss_sync);
3505
3506 static ssize_t
utc_tai_offset_show(struct device * dev,struct device_attribute * attr,char * buf)3507 utc_tai_offset_show(struct device *dev,
3508 struct device_attribute *attr, char *buf)
3509 {
3510 struct ptp_ocp *bp = dev_get_drvdata(dev);
3511
3512 return sysfs_emit(buf, "%d\n", bp->utc_tai_offset);
3513 }
3514
3515 static ssize_t
utc_tai_offset_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3516 utc_tai_offset_store(struct device *dev,
3517 struct device_attribute *attr,
3518 const char *buf, size_t count)
3519 {
3520 struct ptp_ocp *bp = dev_get_drvdata(dev);
3521 int err;
3522 u32 val;
3523
3524 err = kstrtou32(buf, 0, &val);
3525 if (err)
3526 return err;
3527
3528 ptp_ocp_utc_distribute(bp, val);
3529
3530 return count;
3531 }
3532 static DEVICE_ATTR_RW(utc_tai_offset);
3533
3534 static ssize_t
ts_window_adjust_show(struct device * dev,struct device_attribute * attr,char * buf)3535 ts_window_adjust_show(struct device *dev,
3536 struct device_attribute *attr, char *buf)
3537 {
3538 struct ptp_ocp *bp = dev_get_drvdata(dev);
3539
3540 return sysfs_emit(buf, "%d\n", bp->ts_window_adjust);
3541 }
3542
3543 static ssize_t
ts_window_adjust_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3544 ts_window_adjust_store(struct device *dev,
3545 struct device_attribute *attr,
3546 const char *buf, size_t count)
3547 {
3548 struct ptp_ocp *bp = dev_get_drvdata(dev);
3549 int err;
3550 u32 val;
3551
3552 err = kstrtou32(buf, 0, &val);
3553 if (err)
3554 return err;
3555
3556 bp->ts_window_adjust = val;
3557
3558 return count;
3559 }
3560 static DEVICE_ATTR_RW(ts_window_adjust);
3561
3562 static ssize_t
irig_b_mode_show(struct device * dev,struct device_attribute * attr,char * buf)3563 irig_b_mode_show(struct device *dev, struct device_attribute *attr, char *buf)
3564 {
3565 struct ptp_ocp *bp = dev_get_drvdata(dev);
3566 u32 val;
3567
3568 val = ioread32(&bp->irig_out->ctrl);
3569 val = (val >> 16) & 0x07;
3570 return sysfs_emit(buf, "%d\n", val);
3571 }
3572
3573 static ssize_t
irig_b_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3574 irig_b_mode_store(struct device *dev,
3575 struct device_attribute *attr,
3576 const char *buf, size_t count)
3577 {
3578 struct ptp_ocp *bp = dev_get_drvdata(dev);
3579 unsigned long flags;
3580 int err;
3581 u32 reg;
3582 u8 val;
3583
3584 err = kstrtou8(buf, 0, &val);
3585 if (err)
3586 return err;
3587 if (val > 7)
3588 return -EINVAL;
3589
3590 reg = ((val & 0x7) << 16);
3591
3592 spin_lock_irqsave(&bp->lock, flags);
3593 iowrite32(0, &bp->irig_out->ctrl); /* disable */
3594 iowrite32(reg, &bp->irig_out->ctrl); /* change mode */
3595 iowrite32(reg | IRIG_M_CTRL_ENABLE, &bp->irig_out->ctrl);
3596 spin_unlock_irqrestore(&bp->lock, flags);
3597
3598 return count;
3599 }
3600 static DEVICE_ATTR_RW(irig_b_mode);
3601
3602 static ssize_t
clock_source_show(struct device * dev,struct device_attribute * attr,char * buf)3603 clock_source_show(struct device *dev, struct device_attribute *attr, char *buf)
3604 {
3605 struct ptp_ocp *bp = dev_get_drvdata(dev);
3606 const char *p;
3607 u32 select;
3608
3609 select = ioread32(&bp->reg->select);
3610 p = ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16);
3611
3612 return sysfs_emit(buf, "%s\n", p);
3613 }
3614
3615 static ssize_t
clock_source_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3616 clock_source_store(struct device *dev, struct device_attribute *attr,
3617 const char *buf, size_t count)
3618 {
3619 struct ptp_ocp *bp = dev_get_drvdata(dev);
3620 unsigned long flags;
3621 int val;
3622
3623 val = ptp_ocp_select_val_from_name(ptp_ocp_clock, buf);
3624 if (val < 0)
3625 return val;
3626
3627 spin_lock_irqsave(&bp->lock, flags);
3628 iowrite32(val, &bp->reg->select);
3629 spin_unlock_irqrestore(&bp->lock, flags);
3630
3631 return count;
3632 }
3633 static DEVICE_ATTR_RW(clock_source);
3634
3635 static ssize_t
available_clock_sources_show(struct device * dev,struct device_attribute * attr,char * buf)3636 available_clock_sources_show(struct device *dev,
3637 struct device_attribute *attr, char *buf)
3638 {
3639 return ptp_ocp_select_table_show(ptp_ocp_clock, buf);
3640 }
3641 static DEVICE_ATTR_RO(available_clock_sources);
3642
3643 static ssize_t
clock_status_drift_show(struct device * dev,struct device_attribute * attr,char * buf)3644 clock_status_drift_show(struct device *dev,
3645 struct device_attribute *attr, char *buf)
3646 {
3647 struct ptp_ocp *bp = dev_get_drvdata(dev);
3648 u32 val;
3649 int res;
3650
3651 val = ioread32(&bp->reg->status_drift);
3652 res = (val & ~INT_MAX) ? -1 : 1;
3653 res *= (val & INT_MAX);
3654 return sysfs_emit(buf, "%d\n", res);
3655 }
3656 static DEVICE_ATTR_RO(clock_status_drift);
3657
3658 static ssize_t
clock_status_offset_show(struct device * dev,struct device_attribute * attr,char * buf)3659 clock_status_offset_show(struct device *dev,
3660 struct device_attribute *attr, char *buf)
3661 {
3662 struct ptp_ocp *bp = dev_get_drvdata(dev);
3663 u32 val;
3664 int res;
3665
3666 val = ioread32(&bp->reg->status_offset);
3667 res = (val & ~INT_MAX) ? -1 : 1;
3668 res *= (val & INT_MAX);
3669 return sysfs_emit(buf, "%d\n", res);
3670 }
3671 static DEVICE_ATTR_RO(clock_status_offset);
3672
3673 static ssize_t
tod_correction_show(struct device * dev,struct device_attribute * attr,char * buf)3674 tod_correction_show(struct device *dev,
3675 struct device_attribute *attr, char *buf)
3676 {
3677 struct ptp_ocp *bp = dev_get_drvdata(dev);
3678 u32 val;
3679 int res;
3680
3681 val = ioread32(&bp->tod->adj_sec);
3682 res = (val & ~INT_MAX) ? -1 : 1;
3683 res *= (val & INT_MAX);
3684 return sysfs_emit(buf, "%d\n", res);
3685 }
3686
3687 static ssize_t
tod_correction_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3688 tod_correction_store(struct device *dev, struct device_attribute *attr,
3689 const char *buf, size_t count)
3690 {
3691 struct ptp_ocp *bp = dev_get_drvdata(dev);
3692 unsigned long flags;
3693 int err, res;
3694 u32 val = 0;
3695
3696 err = kstrtos32(buf, 0, &res);
3697 if (err)
3698 return err;
3699 if (res < 0) {
3700 res *= -1;
3701 val |= BIT(31);
3702 }
3703 val |= res;
3704
3705 spin_lock_irqsave(&bp->lock, flags);
3706 iowrite32(val, &bp->tod->adj_sec);
3707 spin_unlock_irqrestore(&bp->lock, flags);
3708
3709 return count;
3710 }
3711 static DEVICE_ATTR_RW(tod_correction);
3712
3713 #define _DEVICE_SIGNAL_GROUP_ATTRS(_nr) \
3714 static struct attribute *fb_timecard_signal##_nr##_attrs[] = { \
3715 &dev_attr_signal##_nr##_signal.attr.attr, \
3716 &dev_attr_signal##_nr##_duty.attr.attr, \
3717 &dev_attr_signal##_nr##_phase.attr.attr, \
3718 &dev_attr_signal##_nr##_period.attr.attr, \
3719 &dev_attr_signal##_nr##_polarity.attr.attr, \
3720 &dev_attr_signal##_nr##_running.attr.attr, \
3721 &dev_attr_signal##_nr##_start.attr.attr, \
3722 NULL, \
3723 }
3724
3725 #define DEVICE_SIGNAL_GROUP(_name, _nr) \
3726 _DEVICE_SIGNAL_GROUP_ATTRS(_nr); \
3727 static const struct attribute_group \
3728 fb_timecard_signal##_nr##_group = { \
3729 .name = #_name, \
3730 .attrs = fb_timecard_signal##_nr##_attrs, \
3731 }
3732
3733 DEVICE_SIGNAL_GROUP(gen1, 0);
3734 DEVICE_SIGNAL_GROUP(gen2, 1);
3735 DEVICE_SIGNAL_GROUP(gen3, 2);
3736 DEVICE_SIGNAL_GROUP(gen4, 3);
3737
3738 #define _DEVICE_FREQ_GROUP_ATTRS(_nr) \
3739 static struct attribute *fb_timecard_freq##_nr##_attrs[] = { \
3740 &dev_attr_freq##_nr##_seconds.attr.attr, \
3741 &dev_attr_freq##_nr##_frequency.attr.attr, \
3742 NULL, \
3743 }
3744
3745 #define DEVICE_FREQ_GROUP(_name, _nr) \
3746 _DEVICE_FREQ_GROUP_ATTRS(_nr); \
3747 static const struct attribute_group \
3748 fb_timecard_freq##_nr##_group = { \
3749 .name = #_name, \
3750 .attrs = fb_timecard_freq##_nr##_attrs, \
3751 }
3752
3753 DEVICE_FREQ_GROUP(freq1, 0);
3754 DEVICE_FREQ_GROUP(freq2, 1);
3755 DEVICE_FREQ_GROUP(freq3, 2);
3756 DEVICE_FREQ_GROUP(freq4, 3);
3757
3758 static ssize_t
disciplining_config_read(struct file * filp,struct kobject * kobj,const struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)3759 disciplining_config_read(struct file *filp, struct kobject *kobj,
3760 const struct bin_attribute *bin_attr, char *buf,
3761 loff_t off, size_t count)
3762 {
3763 struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3764 size_t size = OCP_ART_CONFIG_SIZE;
3765 struct nvmem_device *nvmem;
3766 ssize_t err;
3767
3768 nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3769 if (IS_ERR(nvmem))
3770 return PTR_ERR(nvmem);
3771
3772 if (off > size) {
3773 err = 0;
3774 goto out;
3775 }
3776
3777 if (off + count > size)
3778 count = size - off;
3779
3780 // the configuration is in the very beginning of the EEPROM
3781 err = nvmem_device_read(nvmem, off, count, buf);
3782 if (err != count) {
3783 err = -EFAULT;
3784 goto out;
3785 }
3786
3787 out:
3788 ptp_ocp_nvmem_device_put(&nvmem);
3789
3790 return err;
3791 }
3792
3793 static ssize_t
disciplining_config_write(struct file * filp,struct kobject * kobj,const struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)3794 disciplining_config_write(struct file *filp, struct kobject *kobj,
3795 const struct bin_attribute *bin_attr, char *buf,
3796 loff_t off, size_t count)
3797 {
3798 struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3799 struct nvmem_device *nvmem;
3800 ssize_t err;
3801
3802 /* Allow write of the whole area only */
3803 if (off || count != OCP_ART_CONFIG_SIZE)
3804 return -EFAULT;
3805
3806 nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3807 if (IS_ERR(nvmem))
3808 return PTR_ERR(nvmem);
3809
3810 err = nvmem_device_write(nvmem, 0x00, count, buf);
3811 if (err != count)
3812 err = -EFAULT;
3813
3814 ptp_ocp_nvmem_device_put(&nvmem);
3815
3816 return err;
3817 }
3818 static const BIN_ATTR_RW(disciplining_config, OCP_ART_CONFIG_SIZE);
3819
3820 static ssize_t
temperature_table_read(struct file * filp,struct kobject * kobj,const struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)3821 temperature_table_read(struct file *filp, struct kobject *kobj,
3822 const struct bin_attribute *bin_attr, char *buf,
3823 loff_t off, size_t count)
3824 {
3825 struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3826 size_t size = OCP_ART_TEMP_TABLE_SIZE;
3827 struct nvmem_device *nvmem;
3828 ssize_t err;
3829
3830 nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3831 if (IS_ERR(nvmem))
3832 return PTR_ERR(nvmem);
3833
3834 if (off > size) {
3835 err = 0;
3836 goto out;
3837 }
3838
3839 if (off + count > size)
3840 count = size - off;
3841
3842 // the configuration is in the very beginning of the EEPROM
3843 err = nvmem_device_read(nvmem, 0x90 + off, count, buf);
3844 if (err != count) {
3845 err = -EFAULT;
3846 goto out;
3847 }
3848
3849 out:
3850 ptp_ocp_nvmem_device_put(&nvmem);
3851
3852 return err;
3853 }
3854
3855 static ssize_t
temperature_table_write(struct file * filp,struct kobject * kobj,const struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)3856 temperature_table_write(struct file *filp, struct kobject *kobj,
3857 const struct bin_attribute *bin_attr, char *buf,
3858 loff_t off, size_t count)
3859 {
3860 struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3861 struct nvmem_device *nvmem;
3862 ssize_t err;
3863
3864 /* Allow write of the whole area only */
3865 if (off || count != OCP_ART_TEMP_TABLE_SIZE)
3866 return -EFAULT;
3867
3868 nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3869 if (IS_ERR(nvmem))
3870 return PTR_ERR(nvmem);
3871
3872 err = nvmem_device_write(nvmem, 0x90, count, buf);
3873 if (err != count)
3874 err = -EFAULT;
3875
3876 ptp_ocp_nvmem_device_put(&nvmem);
3877
3878 return err;
3879 }
3880 static const BIN_ATTR_RW(temperature_table, OCP_ART_TEMP_TABLE_SIZE);
3881
3882 static struct attribute *fb_timecard_attrs[] = {
3883 &dev_attr_serialnum.attr,
3884 &dev_attr_gnss_sync.attr,
3885 &dev_attr_clock_source.attr,
3886 &dev_attr_available_clock_sources.attr,
3887 &dev_attr_sma1.attr,
3888 &dev_attr_sma2.attr,
3889 &dev_attr_sma3.attr,
3890 &dev_attr_sma4.attr,
3891 &dev_attr_available_sma_inputs.attr,
3892 &dev_attr_available_sma_outputs.attr,
3893 &dev_attr_clock_status_drift.attr,
3894 &dev_attr_clock_status_offset.attr,
3895 &dev_attr_irig_b_mode.attr,
3896 &dev_attr_utc_tai_offset.attr,
3897 &dev_attr_ts_window_adjust.attr,
3898 &dev_attr_tod_correction.attr,
3899 NULL,
3900 };
3901
3902 static const struct attribute_group fb_timecard_group = {
3903 .attrs = fb_timecard_attrs,
3904 };
3905
3906 static const struct ocp_attr_group fb_timecard_groups[] = {
3907 { .cap = OCP_CAP_BASIC, .group = &fb_timecard_group },
3908 { .cap = OCP_CAP_BASIC, .group = &ptp_ocp_timecard_tty_group },
3909 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal0_group },
3910 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal1_group },
3911 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal2_group },
3912 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal3_group },
3913 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq0_group },
3914 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq1_group },
3915 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq2_group },
3916 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq3_group },
3917 { },
3918 };
3919
3920 static struct attribute *art_timecard_attrs[] = {
3921 &dev_attr_serialnum.attr,
3922 &dev_attr_clock_source.attr,
3923 &dev_attr_available_clock_sources.attr,
3924 &dev_attr_utc_tai_offset.attr,
3925 &dev_attr_ts_window_adjust.attr,
3926 &dev_attr_sma1.attr,
3927 &dev_attr_sma2.attr,
3928 &dev_attr_sma3.attr,
3929 &dev_attr_sma4.attr,
3930 &dev_attr_available_sma_inputs.attr,
3931 &dev_attr_available_sma_outputs.attr,
3932 NULL,
3933 };
3934
3935 static const struct bin_attribute *const bin_art_timecard_attrs[] = {
3936 &bin_attr_disciplining_config,
3937 &bin_attr_temperature_table,
3938 NULL,
3939 };
3940
3941 static const struct attribute_group art_timecard_group = {
3942 .attrs = art_timecard_attrs,
3943 .bin_attrs = bin_art_timecard_attrs,
3944 };
3945
3946 static const struct ocp_attr_group art_timecard_groups[] = {
3947 { .cap = OCP_CAP_BASIC, .group = &art_timecard_group },
3948 { .cap = OCP_CAP_BASIC, .group = &ptp_ocp_timecard_tty_group },
3949 { },
3950 };
3951
3952 static struct attribute *adva_timecard_attrs[] = {
3953 &dev_attr_serialnum.attr,
3954 &dev_attr_gnss_sync.attr,
3955 &dev_attr_clock_source.attr,
3956 &dev_attr_available_clock_sources.attr,
3957 &dev_attr_sma1.attr,
3958 &dev_attr_sma2.attr,
3959 &dev_attr_sma3.attr,
3960 &dev_attr_sma4.attr,
3961 &dev_attr_available_sma_inputs.attr,
3962 &dev_attr_available_sma_outputs.attr,
3963 &dev_attr_clock_status_drift.attr,
3964 &dev_attr_clock_status_offset.attr,
3965 &dev_attr_ts_window_adjust.attr,
3966 &dev_attr_tod_correction.attr,
3967 NULL,
3968 };
3969
3970 static const struct attribute_group adva_timecard_group = {
3971 .attrs = adva_timecard_attrs,
3972 };
3973
3974 static const struct ocp_attr_group adva_timecard_groups[] = {
3975 { .cap = OCP_CAP_BASIC, .group = &adva_timecard_group },
3976 { .cap = OCP_CAP_BASIC, .group = &ptp_ocp_timecard_tty_group },
3977 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal0_group },
3978 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal1_group },
3979 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq0_group },
3980 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq1_group },
3981 { },
3982 };
3983
3984 static void
gpio_input_map(char * buf,struct ptp_ocp * bp,u16 map[][2],u16 bit,const char * def)3985 gpio_input_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit,
3986 const char *def)
3987 {
3988 int i;
3989
3990 for (i = 0; i < 4; i++) {
3991 if (bp->sma[i].mode != SMA_MODE_IN)
3992 continue;
3993 if (map[i][0] & (1 << bit)) {
3994 sprintf(buf, "sma%d", i + 1);
3995 return;
3996 }
3997 }
3998 if (!def)
3999 def = "----";
4000 strcpy(buf, def);
4001 }
4002
4003 static void
gpio_output_map(char * buf,struct ptp_ocp * bp,u16 map[][2],u16 bit)4004 gpio_output_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit)
4005 {
4006 char *ans = buf;
4007 int i;
4008
4009 strcpy(ans, "----");
4010 for (i = 0; i < 4; i++) {
4011 if (bp->sma[i].mode != SMA_MODE_OUT)
4012 continue;
4013 if (map[i][1] & (1 << bit))
4014 ans += sprintf(ans, "sma%d ", i + 1);
4015 }
4016 }
4017
4018 static void
_signal_summary_show(struct seq_file * s,struct ptp_ocp * bp,int nr)4019 _signal_summary_show(struct seq_file *s, struct ptp_ocp *bp, int nr)
4020 {
4021 struct signal_reg __iomem *reg = bp->signal_out[nr]->mem;
4022 struct ptp_ocp_signal *signal = &bp->signal[nr];
4023 char label[16];
4024 bool on;
4025 u32 val;
4026
4027 on = signal->running;
4028 sprintf(label, "GEN%d", nr + 1);
4029 seq_printf(s, "%7s: %s, period:%llu duty:%d%% phase:%llu pol:%d",
4030 label, on ? " ON" : "OFF",
4031 signal->period, signal->duty, signal->phase,
4032 signal->polarity);
4033
4034 val = ioread32(®->enable);
4035 seq_printf(s, " [%x", val);
4036 val = ioread32(®->status);
4037 seq_printf(s, " %x]", val);
4038
4039 seq_printf(s, " start:%llu\n", signal->start);
4040 }
4041
4042 static void
_frequency_summary_show(struct seq_file * s,int nr,struct frequency_reg __iomem * reg)4043 _frequency_summary_show(struct seq_file *s, int nr,
4044 struct frequency_reg __iomem *reg)
4045 {
4046 char label[16];
4047 bool on;
4048 u32 val;
4049
4050 if (!reg)
4051 return;
4052
4053 sprintf(label, "FREQ%d", nr + 1);
4054 val = ioread32(®->ctrl);
4055 on = val & 1;
4056 val = (val >> 8) & 0xff;
4057 seq_printf(s, "%7s: %s, sec:%u",
4058 label,
4059 on ? " ON" : "OFF",
4060 val);
4061
4062 val = ioread32(®->status);
4063 if (val & FREQ_STATUS_ERROR)
4064 seq_printf(s, ", error");
4065 if (val & FREQ_STATUS_OVERRUN)
4066 seq_printf(s, ", overrun");
4067 if (val & FREQ_STATUS_VALID)
4068 seq_printf(s, ", freq %lu Hz", val & FREQ_STATUS_MASK);
4069 seq_printf(s, " reg:%x\n", val);
4070 }
4071
4072 static int
ptp_ocp_summary_show(struct seq_file * s,void * data)4073 ptp_ocp_summary_show(struct seq_file *s, void *data)
4074 {
4075 struct device *dev = s->private;
4076 struct ptp_system_timestamp sts;
4077 struct ts_reg __iomem *ts_reg;
4078 char *buf, *src, *mac_src;
4079 struct timespec64 ts;
4080 struct ptp_ocp *bp;
4081 u16 sma_val[4][2];
4082 u32 ctrl, val;
4083 bool on, map;
4084 int i;
4085
4086 buf = (char *)__get_free_page(GFP_KERNEL);
4087 if (!buf)
4088 return -ENOMEM;
4089
4090 bp = dev_get_drvdata(dev);
4091
4092 seq_printf(s, "%7s: /dev/ptp%d\n", "PTP", ptp_clock_index(bp->ptp));
4093 for (i = 0; i < __PORT_COUNT; i++) {
4094 if (bp->port[i].line != -1)
4095 seq_printf(s, "%7s: /dev/ttyS%d\n", ptp_ocp_tty_port_name(i),
4096 bp->port[i].line);
4097 }
4098
4099 memset(sma_val, 0xff, sizeof(sma_val));
4100 if (bp->sma_map1) {
4101 u32 reg;
4102
4103 reg = ioread32(&bp->sma_map1->gpio1);
4104 sma_val[0][0] = reg & 0xffff;
4105 sma_val[1][0] = reg >> 16;
4106
4107 reg = ioread32(&bp->sma_map1->gpio2);
4108 sma_val[2][1] = reg & 0xffff;
4109 sma_val[3][1] = reg >> 16;
4110
4111 reg = ioread32(&bp->sma_map2->gpio1);
4112 sma_val[2][0] = reg & 0xffff;
4113 sma_val[3][0] = reg >> 16;
4114
4115 reg = ioread32(&bp->sma_map2->gpio2);
4116 sma_val[0][1] = reg & 0xffff;
4117 sma_val[1][1] = reg >> 16;
4118 }
4119
4120 sma1_show(dev, NULL, buf);
4121 seq_printf(s, " sma1: %04x,%04x %s",
4122 sma_val[0][0], sma_val[0][1], buf);
4123
4124 sma2_show(dev, NULL, buf);
4125 seq_printf(s, " sma2: %04x,%04x %s",
4126 sma_val[1][0], sma_val[1][1], buf);
4127
4128 sma3_show(dev, NULL, buf);
4129 seq_printf(s, " sma3: %04x,%04x %s",
4130 sma_val[2][0], sma_val[2][1], buf);
4131
4132 sma4_show(dev, NULL, buf);
4133 seq_printf(s, " sma4: %04x,%04x %s",
4134 sma_val[3][0], sma_val[3][1], buf);
4135
4136 if (bp->ts0) {
4137 ts_reg = bp->ts0->mem;
4138 on = ioread32(&ts_reg->enable);
4139 src = "GNSS1";
4140 seq_printf(s, "%7s: %s, src: %s\n", "TS0",
4141 on ? " ON" : "OFF", src);
4142 }
4143
4144 if (bp->ts1) {
4145 ts_reg = bp->ts1->mem;
4146 on = ioread32(&ts_reg->enable);
4147 gpio_input_map(buf, bp, sma_val, 2, NULL);
4148 seq_printf(s, "%7s: %s, src: %s\n", "TS1",
4149 on ? " ON" : "OFF", buf);
4150 }
4151
4152 if (bp->ts2) {
4153 ts_reg = bp->ts2->mem;
4154 on = ioread32(&ts_reg->enable);
4155 gpio_input_map(buf, bp, sma_val, 3, NULL);
4156 seq_printf(s, "%7s: %s, src: %s\n", "TS2",
4157 on ? " ON" : "OFF", buf);
4158 }
4159
4160 if (bp->ts3) {
4161 ts_reg = bp->ts3->mem;
4162 on = ioread32(&ts_reg->enable);
4163 gpio_input_map(buf, bp, sma_val, 6, NULL);
4164 seq_printf(s, "%7s: %s, src: %s\n", "TS3",
4165 on ? " ON" : "OFF", buf);
4166 }
4167
4168 if (bp->ts4) {
4169 ts_reg = bp->ts4->mem;
4170 on = ioread32(&ts_reg->enable);
4171 gpio_input_map(buf, bp, sma_val, 7, NULL);
4172 seq_printf(s, "%7s: %s, src: %s\n", "TS4",
4173 on ? " ON" : "OFF", buf);
4174 }
4175
4176 if (bp->pps) {
4177 ts_reg = bp->pps->mem;
4178 src = "PHC";
4179 on = ioread32(&ts_reg->enable);
4180 map = !!(bp->pps_req_map & OCP_REQ_TIMESTAMP);
4181 seq_printf(s, "%7s: %s, src: %s\n", "TS5",
4182 on && map ? " ON" : "OFF", src);
4183
4184 map = !!(bp->pps_req_map & OCP_REQ_PPS);
4185 seq_printf(s, "%7s: %s, src: %s\n", "PPS",
4186 on && map ? " ON" : "OFF", src);
4187 }
4188
4189 if (bp->fw_cap & OCP_CAP_SIGNAL)
4190 for (i = 0; i < bp->signals_nr; i++)
4191 _signal_summary_show(s, bp, i);
4192
4193 if (bp->fw_cap & OCP_CAP_FREQ)
4194 for (i = 0; i < bp->freq_in_nr; i++)
4195 _frequency_summary_show(s, i, bp->freq_in[i]);
4196
4197 if (bp->irig_out) {
4198 ctrl = ioread32(&bp->irig_out->ctrl);
4199 on = ctrl & IRIG_M_CTRL_ENABLE;
4200 val = ioread32(&bp->irig_out->status);
4201 gpio_output_map(buf, bp, sma_val, 4);
4202 seq_printf(s, "%7s: %s, error: %d, mode %d, out: %s\n", "IRIG",
4203 on ? " ON" : "OFF", val, (ctrl >> 16), buf);
4204 }
4205
4206 if (bp->irig_in) {
4207 on = ioread32(&bp->irig_in->ctrl) & IRIG_S_CTRL_ENABLE;
4208 val = ioread32(&bp->irig_in->status);
4209 gpio_input_map(buf, bp, sma_val, 4, NULL);
4210 seq_printf(s, "%7s: %s, error: %d, src: %s\n", "IRIG in",
4211 on ? " ON" : "OFF", val, buf);
4212 }
4213
4214 if (bp->dcf_out) {
4215 on = ioread32(&bp->dcf_out->ctrl) & DCF_M_CTRL_ENABLE;
4216 val = ioread32(&bp->dcf_out->status);
4217 gpio_output_map(buf, bp, sma_val, 5);
4218 seq_printf(s, "%7s: %s, error: %d, out: %s\n", "DCF",
4219 on ? " ON" : "OFF", val, buf);
4220 }
4221
4222 if (bp->dcf_in) {
4223 on = ioread32(&bp->dcf_in->ctrl) & DCF_S_CTRL_ENABLE;
4224 val = ioread32(&bp->dcf_in->status);
4225 gpio_input_map(buf, bp, sma_val, 5, NULL);
4226 seq_printf(s, "%7s: %s, error: %d, src: %s\n", "DCF in",
4227 on ? " ON" : "OFF", val, buf);
4228 }
4229
4230 if (bp->nmea_out) {
4231 on = ioread32(&bp->nmea_out->ctrl) & 1;
4232 val = ioread32(&bp->nmea_out->status);
4233 seq_printf(s, "%7s: %s, error: %d\n", "NMEA",
4234 on ? " ON" : "OFF", val);
4235 }
4236
4237 /* compute src for PPS1, used below. */
4238 if (bp->pps_select) {
4239 val = ioread32(&bp->pps_select->gpio1);
4240 src = &buf[80];
4241 mac_src = "GNSS1";
4242 if (val & 0x01) {
4243 gpio_input_map(src, bp, sma_val, 0, NULL);
4244 mac_src = src;
4245 } else if (val & 0x02) {
4246 src = "MAC";
4247 } else if (val & 0x04) {
4248 src = "GNSS1";
4249 } else {
4250 src = "----";
4251 mac_src = src;
4252 }
4253 } else {
4254 src = "?";
4255 mac_src = src;
4256 }
4257 seq_printf(s, "MAC PPS1 src: %s\n", mac_src);
4258
4259 gpio_input_map(buf, bp, sma_val, 1, "GNSS2");
4260 seq_printf(s, "MAC PPS2 src: %s\n", buf);
4261
4262 /* assumes automatic switchover/selection */
4263 val = ioread32(&bp->reg->select);
4264 switch (val >> 16) {
4265 case 0:
4266 sprintf(buf, "----");
4267 break;
4268 case 2:
4269 sprintf(buf, "IRIG");
4270 break;
4271 case 3:
4272 sprintf(buf, "%s via PPS1", src);
4273 break;
4274 case 6:
4275 sprintf(buf, "DCF");
4276 break;
4277 default:
4278 strcpy(buf, "unknown");
4279 break;
4280 }
4281 seq_printf(s, "%7s: %s, state: %s\n", "PHC src", buf,
4282 bp->sync ? "sync" : "unsynced");
4283
4284 if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts)) {
4285 struct timespec64 sys_ts;
4286 s64 pre_ns, post_ns, ns;
4287
4288 pre_ns = timespec64_to_ns(&sts.pre_ts);
4289 post_ns = timespec64_to_ns(&sts.post_ts);
4290 ns = (pre_ns + post_ns) / 2;
4291 ns += (s64)bp->utc_tai_offset * NSEC_PER_SEC;
4292 sys_ts = ns_to_timespec64(ns);
4293
4294 seq_printf(s, "%7s: %ptSp == %ptS TAI\n", "PHC", &ts, &ts);
4295 seq_printf(s, "%7s: %ptSp == %ptS UTC offset %d\n", "SYS",
4296 &sys_ts, &sys_ts, bp->utc_tai_offset);
4297 seq_printf(s, "%7s: PHC:SYS offset: %lld window: %lld\n", "",
4298 timespec64_to_ns(&ts) - ns,
4299 post_ns - pre_ns);
4300 }
4301
4302 free_page((unsigned long)buf);
4303 return 0;
4304 }
4305 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_summary);
4306
4307 static int
ptp_ocp_tod_status_show(struct seq_file * s,void * data)4308 ptp_ocp_tod_status_show(struct seq_file *s, void *data)
4309 {
4310 struct device *dev = s->private;
4311 struct ptp_ocp *bp;
4312 u32 val;
4313 int idx;
4314
4315 bp = dev_get_drvdata(dev);
4316
4317 val = ioread32(&bp->tod->ctrl);
4318 if (!(val & TOD_CTRL_ENABLE)) {
4319 seq_printf(s, "TOD Slave disabled\n");
4320 return 0;
4321 }
4322 seq_printf(s, "TOD Slave enabled, Control Register 0x%08X\n", val);
4323
4324 idx = val & TOD_CTRL_PROTOCOL ? 4 : 0;
4325 idx += (val >> 16) & 3;
4326 seq_printf(s, "Protocol %s\n", ptp_ocp_tod_proto_name(idx));
4327
4328 idx = (val >> TOD_CTRL_GNSS_SHIFT) & TOD_CTRL_GNSS_MASK;
4329 seq_printf(s, "GNSS %s\n", ptp_ocp_tod_gnss_name(idx));
4330
4331 val = ioread32(&bp->tod->version);
4332 seq_printf(s, "TOD Version %d.%d.%d\n",
4333 val >> 24, (val >> 16) & 0xff, val & 0xffff);
4334
4335 val = ioread32(&bp->tod->status);
4336 seq_printf(s, "Status register: 0x%08X\n", val);
4337
4338 val = ioread32(&bp->tod->adj_sec);
4339 idx = (val & ~INT_MAX) ? -1 : 1;
4340 idx *= (val & INT_MAX);
4341 seq_printf(s, "Correction seconds: %d\n", idx);
4342
4343 val = ioread32(&bp->tod->utc_status);
4344 seq_printf(s, "UTC status register: 0x%08X\n", val);
4345 seq_printf(s, "UTC offset: %ld valid:%d\n",
4346 val & TOD_STATUS_UTC_MASK, val & TOD_STATUS_UTC_VALID ? 1 : 0);
4347 seq_printf(s, "Leap second info valid:%d, Leap second announce %d\n",
4348 val & TOD_STATUS_LEAP_VALID ? 1 : 0,
4349 val & TOD_STATUS_LEAP_ANNOUNCE ? 1 : 0);
4350
4351 val = ioread32(&bp->tod->leap);
4352 seq_printf(s, "Time to next leap second (in sec): %d\n", (s32) val);
4353
4354 return 0;
4355 }
4356 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_tod_status);
4357
4358 static struct dentry *ptp_ocp_debugfs_root;
4359
4360 static void
ptp_ocp_debugfs_add_device(struct ptp_ocp * bp)4361 ptp_ocp_debugfs_add_device(struct ptp_ocp *bp)
4362 {
4363 struct dentry *d;
4364
4365 d = debugfs_create_dir(dev_name(&bp->dev), ptp_ocp_debugfs_root);
4366 bp->debug_root = d;
4367 debugfs_create_file("summary", 0444, bp->debug_root,
4368 &bp->dev, &ptp_ocp_summary_fops);
4369 if (bp->tod)
4370 debugfs_create_file("tod_status", 0444, bp->debug_root,
4371 &bp->dev, &ptp_ocp_tod_status_fops);
4372 }
4373
4374 static void
ptp_ocp_debugfs_remove_device(struct ptp_ocp * bp)4375 ptp_ocp_debugfs_remove_device(struct ptp_ocp *bp)
4376 {
4377 debugfs_remove_recursive(bp->debug_root);
4378 }
4379
4380 static void
ptp_ocp_debugfs_init(void)4381 ptp_ocp_debugfs_init(void)
4382 {
4383 ptp_ocp_debugfs_root = debugfs_create_dir("timecard", NULL);
4384 }
4385
4386 static void
ptp_ocp_debugfs_fini(void)4387 ptp_ocp_debugfs_fini(void)
4388 {
4389 debugfs_remove_recursive(ptp_ocp_debugfs_root);
4390 }
4391
4392 static void
ptp_ocp_dev_release(struct device * dev)4393 ptp_ocp_dev_release(struct device *dev)
4394 {
4395 struct ptp_ocp *bp = dev_get_drvdata(dev);
4396
4397 mutex_lock(&ptp_ocp_lock);
4398 idr_remove(&ptp_ocp_idr, bp->id);
4399 mutex_unlock(&ptp_ocp_lock);
4400 }
4401
4402 static int
ptp_ocp_device_init(struct ptp_ocp * bp,struct pci_dev * pdev)4403 ptp_ocp_device_init(struct ptp_ocp *bp, struct pci_dev *pdev)
4404 {
4405 int i, err;
4406
4407 mutex_lock(&ptp_ocp_lock);
4408 err = idr_alloc(&ptp_ocp_idr, bp, 0, 0, GFP_KERNEL);
4409 mutex_unlock(&ptp_ocp_lock);
4410 if (err < 0) {
4411 dev_err(&pdev->dev, "idr_alloc failed: %d\n", err);
4412 return err;
4413 }
4414 bp->id = err;
4415
4416 bp->ptp_info = ptp_ocp_clock_info;
4417 spin_lock_init(&bp->lock);
4418
4419 for (i = 0; i < __PORT_COUNT; i++)
4420 bp->port[i].line = -1;
4421
4422 bp->pdev = pdev;
4423
4424 device_initialize(&bp->dev);
4425 dev_set_name(&bp->dev, "ocp%d", bp->id);
4426 bp->dev.class = &timecard_class;
4427 bp->dev.parent = &pdev->dev;
4428 bp->dev.release = ptp_ocp_dev_release;
4429 dev_set_drvdata(&bp->dev, bp);
4430
4431 err = device_add(&bp->dev);
4432 if (err) {
4433 dev_err(&bp->dev, "device add failed: %d\n", err);
4434 goto out;
4435 }
4436
4437 pci_set_drvdata(pdev, bp);
4438
4439 return 0;
4440
4441 out:
4442 put_device(&bp->dev);
4443 return err;
4444 }
4445
4446 static void
ptp_ocp_symlink(struct ptp_ocp * bp,struct device * child,const char * link)4447 ptp_ocp_symlink(struct ptp_ocp *bp, struct device *child, const char *link)
4448 {
4449 struct device *dev = &bp->dev;
4450
4451 if (sysfs_create_link(&dev->kobj, &child->kobj, link))
4452 dev_err(dev, "%s symlink failed\n", link);
4453 }
4454
4455 static void
ptp_ocp_link_child(struct ptp_ocp * bp,const char * name,const char * link)4456 ptp_ocp_link_child(struct ptp_ocp *bp, const char *name, const char *link)
4457 {
4458 struct device *dev, *child;
4459
4460 dev = &bp->pdev->dev;
4461
4462 child = device_find_child_by_name(dev, name);
4463 if (!child) {
4464 dev_err(dev, "Could not find device %s\n", name);
4465 return;
4466 }
4467
4468 ptp_ocp_symlink(bp, child, link);
4469 put_device(child);
4470 }
4471
4472 static int
ptp_ocp_complete(struct ptp_ocp * bp)4473 ptp_ocp_complete(struct ptp_ocp *bp)
4474 {
4475 struct pps_device *pps;
4476 char buf[32];
4477
4478 sprintf(buf, "ptp%d", ptp_clock_index(bp->ptp));
4479 ptp_ocp_link_child(bp, buf, "ptp");
4480
4481 pps = pps_lookup_dev(bp->ptp);
4482 if (pps)
4483 ptp_ocp_symlink(bp, &pps->dev, "pps");
4484
4485 ptp_ocp_debugfs_add_device(bp);
4486
4487 return 0;
4488 }
4489
4490 static void
ptp_ocp_phc_info(struct ptp_ocp * bp)4491 ptp_ocp_phc_info(struct ptp_ocp *bp)
4492 {
4493 struct timespec64 ts;
4494 u32 version, select;
4495
4496 version = ioread32(&bp->reg->version);
4497 select = ioread32(&bp->reg->select);
4498 dev_info(&bp->pdev->dev, "Version %d.%d.%d, clock %s, device ptp%d\n",
4499 version >> 24, (version >> 16) & 0xff, version & 0xffff,
4500 ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16),
4501 ptp_clock_index(bp->ptp));
4502
4503 if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, NULL))
4504 dev_info(&bp->pdev->dev, "Time: %ptSp, %s\n",
4505 &ts, bp->sync ? "in-sync" : "UNSYNCED");
4506 }
4507
4508 static void
ptp_ocp_serial_info(struct device * dev,const char * name,int port,int baud)4509 ptp_ocp_serial_info(struct device *dev, const char *name, int port, int baud)
4510 {
4511 if (port != -1)
4512 dev_info(dev, "%5s: /dev/ttyS%-2d @ %6d\n", name, port, baud);
4513 }
4514
4515 static void
ptp_ocp_info(struct ptp_ocp * bp)4516 ptp_ocp_info(struct ptp_ocp *bp)
4517 {
4518 static int nmea_baud[] = {
4519 1200, 2400, 4800, 9600, 19200, 38400,
4520 57600, 115200, 230400, 460800, 921600,
4521 1000000, 2000000
4522 };
4523 struct device *dev = &bp->pdev->dev;
4524 u32 reg;
4525 int i;
4526
4527 ptp_ocp_phc_info(bp);
4528
4529 for (i = 0; i < __PORT_COUNT; i++) {
4530 if (i == PORT_NMEA && bp->nmea_out && bp->port[PORT_NMEA].line != -1) {
4531 bp->port[PORT_NMEA].baud = -1;
4532
4533 reg = ioread32(&bp->nmea_out->uart_baud);
4534 if (reg < ARRAY_SIZE(nmea_baud))
4535 bp->port[PORT_NMEA].baud = nmea_baud[reg];
4536 }
4537 ptp_ocp_serial_info(dev, ptp_ocp_tty_port_name(i), bp->port[i].line,
4538 bp->port[i].baud);
4539 }
4540 }
4541
4542 static void
ptp_ocp_detach_sysfs(struct ptp_ocp * bp)4543 ptp_ocp_detach_sysfs(struct ptp_ocp *bp)
4544 {
4545 struct device *dev = &bp->dev;
4546
4547 sysfs_remove_link(&dev->kobj, "ptp");
4548 sysfs_remove_link(&dev->kobj, "pps");
4549 }
4550
4551 static void
ptp_ocp_detach(struct ptp_ocp * bp)4552 ptp_ocp_detach(struct ptp_ocp *bp)
4553 {
4554 int i;
4555
4556 ptp_ocp_debugfs_remove_device(bp);
4557 ptp_ocp_detach_sysfs(bp);
4558 ptp_ocp_attr_group_del(bp);
4559 timer_delete_sync(&bp->watchdog);
4560 ptp_ocp_unregister_ext(bp->ts0);
4561 ptp_ocp_unregister_ext(bp->ts1);
4562 ptp_ocp_unregister_ext(bp->ts2);
4563 ptp_ocp_unregister_ext(bp->ts3);
4564 ptp_ocp_unregister_ext(bp->ts4);
4565 ptp_ocp_unregister_ext(bp->pps);
4566 for (i = 0; i < 4; i++)
4567 ptp_ocp_unregister_ext(bp->signal_out[i]);
4568 for (i = 0; i < __PORT_COUNT; i++)
4569 if (bp->port[i].line != -1)
4570 serial8250_unregister_port(bp->port[i].line);
4571 platform_device_unregister(bp->spi_flash);
4572 platform_device_unregister(bp->i2c_ctrl);
4573 if (bp->i2c_clk)
4574 clk_hw_unregister_fixed_rate(bp->i2c_clk);
4575 if (bp->n_irqs)
4576 pci_free_irq_vectors(bp->pdev);
4577 if (bp->ptp)
4578 ptp_clock_unregister(bp->ptp);
4579 kfree(bp->ptp_info.pin_config);
4580 device_unregister(&bp->dev);
4581 }
4582
4583 static int
ptp_ocp_dpll_lock_status_get(const struct dpll_device * dpll,void * priv,enum dpll_lock_status * status,enum dpll_lock_status_error * status_error,struct netlink_ext_ack * extack)4584 ptp_ocp_dpll_lock_status_get(const struct dpll_device *dpll, void *priv,
4585 enum dpll_lock_status *status,
4586 enum dpll_lock_status_error *status_error,
4587 struct netlink_ext_ack *extack)
4588 {
4589 struct ptp_ocp *bp = priv;
4590
4591 *status = bp->sync ? DPLL_LOCK_STATUS_LOCKED : DPLL_LOCK_STATUS_UNLOCKED;
4592
4593 return 0;
4594 }
4595
ptp_ocp_dpll_state_get(const struct dpll_pin * pin,void * pin_priv,const struct dpll_device * dpll,void * priv,enum dpll_pin_state * state,struct netlink_ext_ack * extack)4596 static int ptp_ocp_dpll_state_get(const struct dpll_pin *pin, void *pin_priv,
4597 const struct dpll_device *dpll, void *priv,
4598 enum dpll_pin_state *state,
4599 struct netlink_ext_ack *extack)
4600 {
4601 struct ptp_ocp *bp = priv;
4602 int idx;
4603
4604 if (bp->pps_select) {
4605 idx = ioread32(&bp->pps_select->gpio1);
4606 *state = (&bp->sma[idx] == pin_priv) ? DPLL_PIN_STATE_CONNECTED :
4607 DPLL_PIN_STATE_SELECTABLE;
4608 return 0;
4609 }
4610 NL_SET_ERR_MSG(extack, "pin selection is not supported on current HW");
4611 return -EINVAL;
4612 }
4613
ptp_ocp_dpll_mode_get(const struct dpll_device * dpll,void * priv,enum dpll_mode * mode,struct netlink_ext_ack * extack)4614 static int ptp_ocp_dpll_mode_get(const struct dpll_device *dpll, void *priv,
4615 enum dpll_mode *mode, struct netlink_ext_ack *extack)
4616 {
4617 *mode = DPLL_MODE_AUTOMATIC;
4618 return 0;
4619 }
4620
ptp_ocp_dpll_direction_get(const struct dpll_pin * pin,void * pin_priv,const struct dpll_device * dpll,void * priv,enum dpll_pin_direction * direction,struct netlink_ext_ack * extack)4621 static int ptp_ocp_dpll_direction_get(const struct dpll_pin *pin,
4622 void *pin_priv,
4623 const struct dpll_device *dpll,
4624 void *priv,
4625 enum dpll_pin_direction *direction,
4626 struct netlink_ext_ack *extack)
4627 {
4628 struct ptp_ocp_sma_connector *sma = pin_priv;
4629
4630 *direction = sma->mode == SMA_MODE_IN ?
4631 DPLL_PIN_DIRECTION_INPUT :
4632 DPLL_PIN_DIRECTION_OUTPUT;
4633 return 0;
4634 }
4635
ptp_ocp_dpll_direction_set(const struct dpll_pin * pin,void * pin_priv,const struct dpll_device * dpll,void * dpll_priv,enum dpll_pin_direction direction,struct netlink_ext_ack * extack)4636 static int ptp_ocp_dpll_direction_set(const struct dpll_pin *pin,
4637 void *pin_priv,
4638 const struct dpll_device *dpll,
4639 void *dpll_priv,
4640 enum dpll_pin_direction direction,
4641 struct netlink_ext_ack *extack)
4642 {
4643 struct ptp_ocp_sma_connector *sma = pin_priv;
4644 struct ptp_ocp *bp = dpll_priv;
4645 enum ptp_ocp_sma_mode mode;
4646 int sma_nr = (sma - bp->sma);
4647
4648 if (sma->fixed_dir)
4649 return -EOPNOTSUPP;
4650 mode = direction == DPLL_PIN_DIRECTION_INPUT ?
4651 SMA_MODE_IN : SMA_MODE_OUT;
4652 return ptp_ocp_sma_store_val(bp, 0, mode, sma_nr + 1);
4653 }
4654
ptp_ocp_dpll_frequency_set(const struct dpll_pin * pin,void * pin_priv,const struct dpll_device * dpll,void * dpll_priv,u64 frequency,struct netlink_ext_ack * extack)4655 static int ptp_ocp_dpll_frequency_set(const struct dpll_pin *pin,
4656 void *pin_priv,
4657 const struct dpll_device *dpll,
4658 void *dpll_priv, u64 frequency,
4659 struct netlink_ext_ack *extack)
4660 {
4661 struct ptp_ocp_sma_connector *sma = pin_priv;
4662 struct ptp_ocp *bp = dpll_priv;
4663 const struct ocp_selector *tbl;
4664 int sma_nr = (sma - bp->sma);
4665 int i;
4666
4667 if (sma->fixed_fcn)
4668 return -EOPNOTSUPP;
4669
4670 tbl = bp->sma_op->tbl[sma->mode];
4671 for (i = 0; tbl[i].name; i++)
4672 if (tbl[i].frequency == frequency)
4673 return ptp_ocp_sma_store_val(bp, i, sma->mode, sma_nr + 1);
4674 return -EINVAL;
4675 }
4676
ptp_ocp_dpll_frequency_get(const struct dpll_pin * pin,void * pin_priv,const struct dpll_device * dpll,void * dpll_priv,u64 * frequency,struct netlink_ext_ack * extack)4677 static int ptp_ocp_dpll_frequency_get(const struct dpll_pin *pin,
4678 void *pin_priv,
4679 const struct dpll_device *dpll,
4680 void *dpll_priv, u64 *frequency,
4681 struct netlink_ext_ack *extack)
4682 {
4683 struct ptp_ocp_sma_connector *sma = pin_priv;
4684 struct ptp_ocp *bp = dpll_priv;
4685 const struct ocp_selector *tbl;
4686 int sma_nr = (sma - bp->sma);
4687 u32 val;
4688 int i;
4689
4690 val = bp->sma_op->get(bp, sma_nr + 1);
4691 tbl = bp->sma_op->tbl[sma->mode];
4692 for (i = 0; tbl[i].name; i++)
4693 if (val == tbl[i].value) {
4694 *frequency = tbl[i].frequency;
4695 return 0;
4696 }
4697
4698 return -EINVAL;
4699 }
4700
4701 static const struct dpll_device_ops dpll_ops = {
4702 .lock_status_get = ptp_ocp_dpll_lock_status_get,
4703 .mode_get = ptp_ocp_dpll_mode_get,
4704 };
4705
4706 static const struct dpll_pin_ops dpll_pins_ops = {
4707 .frequency_get = ptp_ocp_dpll_frequency_get,
4708 .frequency_set = ptp_ocp_dpll_frequency_set,
4709 .direction_get = ptp_ocp_dpll_direction_get,
4710 .direction_set = ptp_ocp_dpll_direction_set,
4711 .state_on_dpll_get = ptp_ocp_dpll_state_get,
4712 };
4713
4714 static void
ptp_ocp_sync_work(struct work_struct * work)4715 ptp_ocp_sync_work(struct work_struct *work)
4716 {
4717 struct ptp_ocp *bp;
4718 bool sync;
4719
4720 bp = container_of(work, struct ptp_ocp, sync_work.work);
4721 sync = !!(ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC);
4722
4723 if (bp->sync != sync)
4724 dpll_device_change_ntf(bp->dpll);
4725
4726 bp->sync = sync;
4727
4728 queue_delayed_work(system_power_efficient_wq, &bp->sync_work, HZ);
4729 }
4730
4731 static int
ptp_ocp_probe(struct pci_dev * pdev,const struct pci_device_id * id)4732 ptp_ocp_probe(struct pci_dev *pdev, const struct pci_device_id *id)
4733 {
4734 struct devlink *devlink;
4735 struct ptp_ocp *bp;
4736 int err, i;
4737 u64 clkid;
4738
4739 devlink = devlink_alloc(&ptp_ocp_devlink_ops, sizeof(*bp), &pdev->dev);
4740 if (!devlink) {
4741 dev_err(&pdev->dev, "devlink_alloc failed\n");
4742 return -ENOMEM;
4743 }
4744
4745 err = pci_enable_device(pdev);
4746 if (err) {
4747 dev_err(&pdev->dev, "pci_enable_device\n");
4748 goto out_free;
4749 }
4750
4751 bp = devlink_priv(devlink);
4752 err = ptp_ocp_device_init(bp, pdev);
4753 if (err)
4754 goto out_disable;
4755
4756 INIT_DELAYED_WORK(&bp->sync_work, ptp_ocp_sync_work);
4757
4758 /* compat mode.
4759 * Older FPGA firmware only returns 2 irq's.
4760 * allow this - if not all of the IRQ's are returned, skip the
4761 * extra devices and just register the clock.
4762 */
4763 err = pci_alloc_irq_vectors(pdev, 1, 17, PCI_IRQ_MSI | PCI_IRQ_MSIX);
4764 if (err < 0) {
4765 dev_err(&pdev->dev, "alloc_irq_vectors err: %d\n", err);
4766 goto out;
4767 }
4768 bp->n_irqs = err;
4769 pci_set_master(pdev);
4770
4771 err = ptp_ocp_register_resources(bp, id->driver_data);
4772 if (err)
4773 goto out;
4774
4775 bp->ptp = ptp_clock_register(&bp->ptp_info, &pdev->dev);
4776 if (IS_ERR(bp->ptp)) {
4777 err = PTR_ERR(bp->ptp);
4778 dev_err(&pdev->dev, "ptp_clock_register: %d\n", err);
4779 bp->ptp = NULL;
4780 goto out;
4781 }
4782
4783 err = ptp_ocp_complete(bp);
4784 if (err)
4785 goto out;
4786
4787 ptp_ocp_info(bp);
4788 devlink_register(devlink);
4789
4790 clkid = pci_get_dsn(pdev);
4791 bp->dpll = dpll_device_get(clkid, 0, THIS_MODULE);
4792 if (IS_ERR(bp->dpll)) {
4793 err = PTR_ERR(bp->dpll);
4794 dev_err(&pdev->dev, "dpll_device_alloc failed\n");
4795 goto out;
4796 }
4797
4798 err = dpll_device_register(bp->dpll, DPLL_TYPE_PPS, &dpll_ops, bp);
4799 if (err)
4800 goto out;
4801
4802 for (i = 0; i < OCP_SMA_NUM; i++) {
4803 bp->sma[i].dpll_pin = dpll_pin_get(clkid, i, THIS_MODULE, &bp->sma[i].dpll_prop);
4804 if (IS_ERR(bp->sma[i].dpll_pin)) {
4805 err = PTR_ERR(bp->sma[i].dpll_pin);
4806 goto out_dpll;
4807 }
4808
4809 err = dpll_pin_register(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops,
4810 &bp->sma[i]);
4811 if (err) {
4812 dpll_pin_put(bp->sma[i].dpll_pin);
4813 goto out_dpll;
4814 }
4815 }
4816 queue_delayed_work(system_power_efficient_wq, &bp->sync_work, HZ);
4817
4818 return 0;
4819 out_dpll:
4820 while (i--) {
4821 dpll_pin_unregister(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops, &bp->sma[i]);
4822 dpll_pin_put(bp->sma[i].dpll_pin);
4823 }
4824 dpll_device_put(bp->dpll);
4825 out:
4826 ptp_ocp_detach(bp);
4827 out_disable:
4828 pci_disable_device(pdev);
4829 out_free:
4830 devlink_free(devlink);
4831 return err;
4832 }
4833
4834 static void
ptp_ocp_remove(struct pci_dev * pdev)4835 ptp_ocp_remove(struct pci_dev *pdev)
4836 {
4837 struct ptp_ocp *bp = pci_get_drvdata(pdev);
4838 struct devlink *devlink = priv_to_devlink(bp);
4839 int i;
4840
4841 cancel_delayed_work_sync(&bp->sync_work);
4842 for (i = 0; i < OCP_SMA_NUM; i++) {
4843 if (bp->sma[i].dpll_pin) {
4844 dpll_pin_unregister(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops, &bp->sma[i]);
4845 dpll_pin_put(bp->sma[i].dpll_pin);
4846 }
4847 }
4848 dpll_device_unregister(bp->dpll, &dpll_ops, bp);
4849 dpll_device_put(bp->dpll);
4850 devlink_unregister(devlink);
4851 ptp_ocp_detach(bp);
4852 pci_disable_device(pdev);
4853
4854 devlink_free(devlink);
4855 }
4856
4857 static struct pci_driver ptp_ocp_driver = {
4858 .name = KBUILD_MODNAME,
4859 .id_table = ptp_ocp_pcidev_id,
4860 .probe = ptp_ocp_probe,
4861 .remove = ptp_ocp_remove,
4862 };
4863
4864 static int
ptp_ocp_i2c_notifier_call(struct notifier_block * nb,unsigned long action,void * data)4865 ptp_ocp_i2c_notifier_call(struct notifier_block *nb,
4866 unsigned long action, void *data)
4867 {
4868 struct device *dev, *child = data;
4869 struct ptp_ocp *bp;
4870 bool add;
4871
4872 switch (action) {
4873 case BUS_NOTIFY_ADD_DEVICE:
4874 case BUS_NOTIFY_DEL_DEVICE:
4875 add = action == BUS_NOTIFY_ADD_DEVICE;
4876 break;
4877 default:
4878 return 0;
4879 }
4880
4881 if (!i2c_verify_adapter(child))
4882 return 0;
4883
4884 dev = child;
4885 while ((dev = dev->parent))
4886 if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
4887 goto found;
4888 return 0;
4889
4890 found:
4891 bp = dev_get_drvdata(dev);
4892 if (add)
4893 ptp_ocp_symlink(bp, child, "i2c");
4894 else
4895 sysfs_remove_link(&bp->dev.kobj, "i2c");
4896
4897 return 0;
4898 }
4899
4900 static struct notifier_block ptp_ocp_i2c_notifier = {
4901 .notifier_call = ptp_ocp_i2c_notifier_call,
4902 };
4903
4904 static int __init
ptp_ocp_init(void)4905 ptp_ocp_init(void)
4906 {
4907 const char *what;
4908 int err;
4909
4910 ptp_ocp_debugfs_init();
4911
4912 what = "timecard class";
4913 err = class_register(&timecard_class);
4914 if (err)
4915 goto out;
4916
4917 what = "i2c notifier";
4918 err = bus_register_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4919 if (err)
4920 goto out_notifier;
4921
4922 what = "ptp_ocp driver";
4923 err = pci_register_driver(&ptp_ocp_driver);
4924 if (err)
4925 goto out_register;
4926
4927 return 0;
4928
4929 out_register:
4930 bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4931 out_notifier:
4932 class_unregister(&timecard_class);
4933 out:
4934 ptp_ocp_debugfs_fini();
4935 pr_err(KBUILD_MODNAME ": failed to register %s: %d\n", what, err);
4936 return err;
4937 }
4938
4939 static void __exit
ptp_ocp_fini(void)4940 ptp_ocp_fini(void)
4941 {
4942 bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4943 pci_unregister_driver(&ptp_ocp_driver);
4944 class_unregister(&timecard_class);
4945 ptp_ocp_debugfs_fini();
4946 }
4947
4948 module_init(ptp_ocp_init);
4949 module_exit(ptp_ocp_fini);
4950
4951 MODULE_DESCRIPTION("OpenCompute TimeCard driver");
4952 MODULE_LICENSE("GPL v2");
4953