1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include <linux/unicode.h>
44 #include "swap.h"
45
46 static struct vfsmount *shm_mnt __ro_after_init;
47
48 #ifdef CONFIG_SHMEM
49 /*
50 * This virtual memory filesystem is heavily based on the ramfs. It
51 * extends ramfs by the ability to use swap and honor resource limits
52 * which makes it a completely usable filesystem.
53 */
54
55 #include <linux/xattr.h>
56 #include <linux/exportfs.h>
57 #include <linux/posix_acl.h>
58 #include <linux/posix_acl_xattr.h>
59 #include <linux/mman.h>
60 #include <linux/string.h>
61 #include <linux/slab.h>
62 #include <linux/backing-dev.h>
63 #include <linux/writeback.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82 #include <linux/quotaops.h>
83 #include <linux/rcupdate_wait.h>
84
85 #include <linux/uaccess.h>
86
87 #include "internal.h"
88
89 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
90 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
91
92 /* Pretend that each entry is of this size in directory's i_size */
93 #define BOGO_DIRENT_SIZE 20
94
95 /* Pretend that one inode + its dentry occupy this much memory */
96 #define BOGO_INODE_SIZE 1024
97
98 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
99 #define SHORT_SYMLINK_LEN 128
100
101 /*
102 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
103 * inode->i_private (with i_rwsem making sure that it has only one user at
104 * a time): we would prefer not to enlarge the shmem inode just for that.
105 */
106 struct shmem_falloc {
107 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
108 pgoff_t start; /* start of range currently being fallocated */
109 pgoff_t next; /* the next page offset to be fallocated */
110 pgoff_t nr_falloced; /* how many new pages have been fallocated */
111 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
112 };
113
114 struct shmem_options {
115 unsigned long long blocks;
116 unsigned long long inodes;
117 struct mempolicy *mpol;
118 kuid_t uid;
119 kgid_t gid;
120 umode_t mode;
121 bool full_inums;
122 int huge;
123 int seen;
124 bool noswap;
125 unsigned short quota_types;
126 struct shmem_quota_limits qlimits;
127 #if IS_ENABLED(CONFIG_UNICODE)
128 struct unicode_map *encoding;
129 bool strict_encoding;
130 #endif
131 #define SHMEM_SEEN_BLOCKS 1
132 #define SHMEM_SEEN_INODES 2
133 #define SHMEM_SEEN_HUGE 4
134 #define SHMEM_SEEN_INUMS 8
135 #define SHMEM_SEEN_NOSWAP 16
136 #define SHMEM_SEEN_QUOTA 32
137 };
138
139 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
140 static unsigned long huge_shmem_orders_always __read_mostly;
141 static unsigned long huge_shmem_orders_madvise __read_mostly;
142 static unsigned long huge_shmem_orders_inherit __read_mostly;
143 static unsigned long huge_shmem_orders_within_size __read_mostly;
144 static bool shmem_orders_configured __initdata;
145 #endif
146
147 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)148 static unsigned long shmem_default_max_blocks(void)
149 {
150 return totalram_pages() / 2;
151 }
152
shmem_default_max_inodes(void)153 static unsigned long shmem_default_max_inodes(void)
154 {
155 unsigned long nr_pages = totalram_pages();
156
157 return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
158 ULONG_MAX / BOGO_INODE_SIZE);
159 }
160 #endif
161
162 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
163 struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
164 struct vm_area_struct *vma, vm_fault_t *fault_type);
165
SHMEM_SB(struct super_block * sb)166 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
167 {
168 return sb->s_fs_info;
169 }
170
171 /*
172 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
173 * for shared memory and for shared anonymous (/dev/zero) mappings
174 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
175 * consistent with the pre-accounting of private mappings ...
176 */
shmem_acct_size(unsigned long flags,loff_t size)177 static inline int shmem_acct_size(unsigned long flags, loff_t size)
178 {
179 return (flags & VM_NORESERVE) ?
180 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
181 }
182
shmem_unacct_size(unsigned long flags,loff_t size)183 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
184 {
185 if (!(flags & VM_NORESERVE))
186 vm_unacct_memory(VM_ACCT(size));
187 }
188
shmem_reacct_size(unsigned long flags,loff_t oldsize,loff_t newsize)189 static inline int shmem_reacct_size(unsigned long flags,
190 loff_t oldsize, loff_t newsize)
191 {
192 if (!(flags & VM_NORESERVE)) {
193 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
194 return security_vm_enough_memory_mm(current->mm,
195 VM_ACCT(newsize) - VM_ACCT(oldsize));
196 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
197 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
198 }
199 return 0;
200 }
201
202 /*
203 * ... whereas tmpfs objects are accounted incrementally as
204 * pages are allocated, in order to allow large sparse files.
205 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
206 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
207 */
shmem_acct_blocks(unsigned long flags,long pages)208 static inline int shmem_acct_blocks(unsigned long flags, long pages)
209 {
210 if (!(flags & VM_NORESERVE))
211 return 0;
212
213 return security_vm_enough_memory_mm(current->mm,
214 pages * VM_ACCT(PAGE_SIZE));
215 }
216
shmem_unacct_blocks(unsigned long flags,long pages)217 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
218 {
219 if (flags & VM_NORESERVE)
220 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
221 }
222
shmem_inode_acct_blocks(struct inode * inode,long pages)223 static int shmem_inode_acct_blocks(struct inode *inode, long pages)
224 {
225 struct shmem_inode_info *info = SHMEM_I(inode);
226 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
227 int err = -ENOSPC;
228
229 if (shmem_acct_blocks(info->flags, pages))
230 return err;
231
232 might_sleep(); /* when quotas */
233 if (sbinfo->max_blocks) {
234 if (!percpu_counter_limited_add(&sbinfo->used_blocks,
235 sbinfo->max_blocks, pages))
236 goto unacct;
237
238 err = dquot_alloc_block_nodirty(inode, pages);
239 if (err) {
240 percpu_counter_sub(&sbinfo->used_blocks, pages);
241 goto unacct;
242 }
243 } else {
244 err = dquot_alloc_block_nodirty(inode, pages);
245 if (err)
246 goto unacct;
247 }
248
249 return 0;
250
251 unacct:
252 shmem_unacct_blocks(info->flags, pages);
253 return err;
254 }
255
shmem_inode_unacct_blocks(struct inode * inode,long pages)256 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
257 {
258 struct shmem_inode_info *info = SHMEM_I(inode);
259 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
260
261 might_sleep(); /* when quotas */
262 dquot_free_block_nodirty(inode, pages);
263
264 if (sbinfo->max_blocks)
265 percpu_counter_sub(&sbinfo->used_blocks, pages);
266 shmem_unacct_blocks(info->flags, pages);
267 }
268
269 static const struct super_operations shmem_ops;
270 static const struct address_space_operations shmem_aops;
271 static const struct file_operations shmem_file_operations;
272 static const struct inode_operations shmem_inode_operations;
273 static const struct inode_operations shmem_dir_inode_operations;
274 static const struct inode_operations shmem_special_inode_operations;
275 static const struct vm_operations_struct shmem_vm_ops;
276 static const struct vm_operations_struct shmem_anon_vm_ops;
277 static struct file_system_type shmem_fs_type;
278
shmem_mapping(struct address_space * mapping)279 bool shmem_mapping(struct address_space *mapping)
280 {
281 return mapping->a_ops == &shmem_aops;
282 }
283 EXPORT_SYMBOL_GPL(shmem_mapping);
284
vma_is_anon_shmem(struct vm_area_struct * vma)285 bool vma_is_anon_shmem(struct vm_area_struct *vma)
286 {
287 return vma->vm_ops == &shmem_anon_vm_ops;
288 }
289
vma_is_shmem(struct vm_area_struct * vma)290 bool vma_is_shmem(struct vm_area_struct *vma)
291 {
292 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
293 }
294
295 static LIST_HEAD(shmem_swaplist);
296 static DEFINE_MUTEX(shmem_swaplist_mutex);
297
298 #ifdef CONFIG_TMPFS_QUOTA
299
shmem_enable_quotas(struct super_block * sb,unsigned short quota_types)300 static int shmem_enable_quotas(struct super_block *sb,
301 unsigned short quota_types)
302 {
303 int type, err = 0;
304
305 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
306 for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
307 if (!(quota_types & (1 << type)))
308 continue;
309 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
310 DQUOT_USAGE_ENABLED |
311 DQUOT_LIMITS_ENABLED);
312 if (err)
313 goto out_err;
314 }
315 return 0;
316
317 out_err:
318 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
319 type, err);
320 for (type--; type >= 0; type--)
321 dquot_quota_off(sb, type);
322 return err;
323 }
324
shmem_disable_quotas(struct super_block * sb)325 static void shmem_disable_quotas(struct super_block *sb)
326 {
327 int type;
328
329 for (type = 0; type < SHMEM_MAXQUOTAS; type++)
330 dquot_quota_off(sb, type);
331 }
332
shmem_get_dquots(struct inode * inode)333 static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
334 {
335 return SHMEM_I(inode)->i_dquot;
336 }
337 #endif /* CONFIG_TMPFS_QUOTA */
338
339 /*
340 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
341 * produces a novel ino for the newly allocated inode.
342 *
343 * It may also be called when making a hard link to permit the space needed by
344 * each dentry. However, in that case, no new inode number is needed since that
345 * internally draws from another pool of inode numbers (currently global
346 * get_next_ino()). This case is indicated by passing NULL as inop.
347 */
348 #define SHMEM_INO_BATCH 1024
shmem_reserve_inode(struct super_block * sb,ino_t * inop)349 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
350 {
351 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
352 ino_t ino;
353
354 if (!(sb->s_flags & SB_KERNMOUNT)) {
355 raw_spin_lock(&sbinfo->stat_lock);
356 if (sbinfo->max_inodes) {
357 if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
358 raw_spin_unlock(&sbinfo->stat_lock);
359 return -ENOSPC;
360 }
361 sbinfo->free_ispace -= BOGO_INODE_SIZE;
362 }
363 if (inop) {
364 ino = sbinfo->next_ino++;
365 if (unlikely(is_zero_ino(ino)))
366 ino = sbinfo->next_ino++;
367 if (unlikely(!sbinfo->full_inums &&
368 ino > UINT_MAX)) {
369 /*
370 * Emulate get_next_ino uint wraparound for
371 * compatibility
372 */
373 if (IS_ENABLED(CONFIG_64BIT))
374 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
375 __func__, MINOR(sb->s_dev));
376 sbinfo->next_ino = 1;
377 ino = sbinfo->next_ino++;
378 }
379 *inop = ino;
380 }
381 raw_spin_unlock(&sbinfo->stat_lock);
382 } else if (inop) {
383 /*
384 * __shmem_file_setup, one of our callers, is lock-free: it
385 * doesn't hold stat_lock in shmem_reserve_inode since
386 * max_inodes is always 0, and is called from potentially
387 * unknown contexts. As such, use a per-cpu batched allocator
388 * which doesn't require the per-sb stat_lock unless we are at
389 * the batch boundary.
390 *
391 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
392 * shmem mounts are not exposed to userspace, so we don't need
393 * to worry about things like glibc compatibility.
394 */
395 ino_t *next_ino;
396
397 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
398 ino = *next_ino;
399 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
400 raw_spin_lock(&sbinfo->stat_lock);
401 ino = sbinfo->next_ino;
402 sbinfo->next_ino += SHMEM_INO_BATCH;
403 raw_spin_unlock(&sbinfo->stat_lock);
404 if (unlikely(is_zero_ino(ino)))
405 ino++;
406 }
407 *inop = ino;
408 *next_ino = ++ino;
409 put_cpu();
410 }
411
412 return 0;
413 }
414
shmem_free_inode(struct super_block * sb,size_t freed_ispace)415 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
416 {
417 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
418 if (sbinfo->max_inodes) {
419 raw_spin_lock(&sbinfo->stat_lock);
420 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
421 raw_spin_unlock(&sbinfo->stat_lock);
422 }
423 }
424
425 /**
426 * shmem_recalc_inode - recalculate the block usage of an inode
427 * @inode: inode to recalc
428 * @alloced: the change in number of pages allocated to inode
429 * @swapped: the change in number of pages swapped from inode
430 *
431 * We have to calculate the free blocks since the mm can drop
432 * undirtied hole pages behind our back.
433 *
434 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
435 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
436 */
shmem_recalc_inode(struct inode * inode,long alloced,long swapped)437 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
438 {
439 struct shmem_inode_info *info = SHMEM_I(inode);
440 long freed;
441
442 spin_lock(&info->lock);
443 info->alloced += alloced;
444 info->swapped += swapped;
445 freed = info->alloced - info->swapped -
446 READ_ONCE(inode->i_mapping->nrpages);
447 /*
448 * Special case: whereas normally shmem_recalc_inode() is called
449 * after i_mapping->nrpages has already been adjusted (up or down),
450 * shmem_writepage() has to raise swapped before nrpages is lowered -
451 * to stop a racing shmem_recalc_inode() from thinking that a page has
452 * been freed. Compensate here, to avoid the need for a followup call.
453 */
454 if (swapped > 0)
455 freed += swapped;
456 if (freed > 0)
457 info->alloced -= freed;
458 spin_unlock(&info->lock);
459
460 /* The quota case may block */
461 if (freed > 0)
462 shmem_inode_unacct_blocks(inode, freed);
463 }
464
shmem_charge(struct inode * inode,long pages)465 bool shmem_charge(struct inode *inode, long pages)
466 {
467 struct address_space *mapping = inode->i_mapping;
468
469 if (shmem_inode_acct_blocks(inode, pages))
470 return false;
471
472 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
473 xa_lock_irq(&mapping->i_pages);
474 mapping->nrpages += pages;
475 xa_unlock_irq(&mapping->i_pages);
476
477 shmem_recalc_inode(inode, pages, 0);
478 return true;
479 }
480
shmem_uncharge(struct inode * inode,long pages)481 void shmem_uncharge(struct inode *inode, long pages)
482 {
483 /* pages argument is currently unused: keep it to help debugging */
484 /* nrpages adjustment done by __filemap_remove_folio() or caller */
485
486 shmem_recalc_inode(inode, 0, 0);
487 }
488
489 /*
490 * Replace item expected in xarray by a new item, while holding xa_lock.
491 */
shmem_replace_entry(struct address_space * mapping,pgoff_t index,void * expected,void * replacement)492 static int shmem_replace_entry(struct address_space *mapping,
493 pgoff_t index, void *expected, void *replacement)
494 {
495 XA_STATE(xas, &mapping->i_pages, index);
496 void *item;
497
498 VM_BUG_ON(!expected);
499 VM_BUG_ON(!replacement);
500 item = xas_load(&xas);
501 if (item != expected)
502 return -ENOENT;
503 xas_store(&xas, replacement);
504 return 0;
505 }
506
507 /*
508 * Sometimes, before we decide whether to proceed or to fail, we must check
509 * that an entry was not already brought back from swap by a racing thread.
510 *
511 * Checking folio is not enough: by the time a swapcache folio is locked, it
512 * might be reused, and again be swapcache, using the same swap as before.
513 */
shmem_confirm_swap(struct address_space * mapping,pgoff_t index,swp_entry_t swap)514 static bool shmem_confirm_swap(struct address_space *mapping,
515 pgoff_t index, swp_entry_t swap)
516 {
517 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
518 }
519
520 /*
521 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
522 *
523 * SHMEM_HUGE_NEVER:
524 * disables huge pages for the mount;
525 * SHMEM_HUGE_ALWAYS:
526 * enables huge pages for the mount;
527 * SHMEM_HUGE_WITHIN_SIZE:
528 * only allocate huge pages if the page will be fully within i_size,
529 * also respect fadvise()/madvise() hints;
530 * SHMEM_HUGE_ADVISE:
531 * only allocate huge pages if requested with fadvise()/madvise();
532 */
533
534 #define SHMEM_HUGE_NEVER 0
535 #define SHMEM_HUGE_ALWAYS 1
536 #define SHMEM_HUGE_WITHIN_SIZE 2
537 #define SHMEM_HUGE_ADVISE 3
538
539 /*
540 * Special values.
541 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
542 *
543 * SHMEM_HUGE_DENY:
544 * disables huge on shm_mnt and all mounts, for emergency use;
545 * SHMEM_HUGE_FORCE:
546 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
547 *
548 */
549 #define SHMEM_HUGE_DENY (-1)
550 #define SHMEM_HUGE_FORCE (-2)
551
552 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
553 /* ifdef here to avoid bloating shmem.o when not necessary */
554
555 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
556
shmem_huge_global_enabled(struct inode * inode,pgoff_t index,loff_t write_end,bool shmem_huge_force,unsigned long vm_flags)557 static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
558 loff_t write_end, bool shmem_huge_force,
559 unsigned long vm_flags)
560 {
561 loff_t i_size;
562
563 if (HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER)
564 return false;
565 if (!S_ISREG(inode->i_mode))
566 return false;
567 if (shmem_huge == SHMEM_HUGE_DENY)
568 return false;
569 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
570 return true;
571
572 switch (SHMEM_SB(inode->i_sb)->huge) {
573 case SHMEM_HUGE_ALWAYS:
574 return true;
575 case SHMEM_HUGE_WITHIN_SIZE:
576 index = round_up(index + 1, HPAGE_PMD_NR);
577 i_size = max(write_end, i_size_read(inode));
578 i_size = round_up(i_size, PAGE_SIZE);
579 if (i_size >> PAGE_SHIFT >= index)
580 return true;
581 fallthrough;
582 case SHMEM_HUGE_ADVISE:
583 if (vm_flags & VM_HUGEPAGE)
584 return true;
585 fallthrough;
586 default:
587 return false;
588 }
589 }
590
shmem_parse_huge(const char * str)591 static int shmem_parse_huge(const char *str)
592 {
593 int huge;
594
595 if (!str)
596 return -EINVAL;
597
598 if (!strcmp(str, "never"))
599 huge = SHMEM_HUGE_NEVER;
600 else if (!strcmp(str, "always"))
601 huge = SHMEM_HUGE_ALWAYS;
602 else if (!strcmp(str, "within_size"))
603 huge = SHMEM_HUGE_WITHIN_SIZE;
604 else if (!strcmp(str, "advise"))
605 huge = SHMEM_HUGE_ADVISE;
606 else if (!strcmp(str, "deny"))
607 huge = SHMEM_HUGE_DENY;
608 else if (!strcmp(str, "force"))
609 huge = SHMEM_HUGE_FORCE;
610 else
611 return -EINVAL;
612
613 if (!has_transparent_hugepage() &&
614 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
615 return -EINVAL;
616
617 /* Do not override huge allocation policy with non-PMD sized mTHP */
618 if (huge == SHMEM_HUGE_FORCE &&
619 huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER))
620 return -EINVAL;
621
622 return huge;
623 }
624
625 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
shmem_format_huge(int huge)626 static const char *shmem_format_huge(int huge)
627 {
628 switch (huge) {
629 case SHMEM_HUGE_NEVER:
630 return "never";
631 case SHMEM_HUGE_ALWAYS:
632 return "always";
633 case SHMEM_HUGE_WITHIN_SIZE:
634 return "within_size";
635 case SHMEM_HUGE_ADVISE:
636 return "advise";
637 case SHMEM_HUGE_DENY:
638 return "deny";
639 case SHMEM_HUGE_FORCE:
640 return "force";
641 default:
642 VM_BUG_ON(1);
643 return "bad_val";
644 }
645 }
646 #endif
647
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_free)648 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
649 struct shrink_control *sc, unsigned long nr_to_free)
650 {
651 LIST_HEAD(list), *pos, *next;
652 struct inode *inode;
653 struct shmem_inode_info *info;
654 struct folio *folio;
655 unsigned long batch = sc ? sc->nr_to_scan : 128;
656 unsigned long split = 0, freed = 0;
657
658 if (list_empty(&sbinfo->shrinklist))
659 return SHRINK_STOP;
660
661 spin_lock(&sbinfo->shrinklist_lock);
662 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
663 info = list_entry(pos, struct shmem_inode_info, shrinklist);
664
665 /* pin the inode */
666 inode = igrab(&info->vfs_inode);
667
668 /* inode is about to be evicted */
669 if (!inode) {
670 list_del_init(&info->shrinklist);
671 goto next;
672 }
673
674 list_move(&info->shrinklist, &list);
675 next:
676 sbinfo->shrinklist_len--;
677 if (!--batch)
678 break;
679 }
680 spin_unlock(&sbinfo->shrinklist_lock);
681
682 list_for_each_safe(pos, next, &list) {
683 pgoff_t next, end;
684 loff_t i_size;
685 int ret;
686
687 info = list_entry(pos, struct shmem_inode_info, shrinklist);
688 inode = &info->vfs_inode;
689
690 if (nr_to_free && freed >= nr_to_free)
691 goto move_back;
692
693 i_size = i_size_read(inode);
694 folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE);
695 if (!folio || xa_is_value(folio))
696 goto drop;
697
698 /* No large folio at the end of the file: nothing to split */
699 if (!folio_test_large(folio)) {
700 folio_put(folio);
701 goto drop;
702 }
703
704 /* Check if there is anything to gain from splitting */
705 next = folio_next_index(folio);
706 end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE));
707 if (end <= folio->index || end >= next) {
708 folio_put(folio);
709 goto drop;
710 }
711
712 /*
713 * Move the inode on the list back to shrinklist if we failed
714 * to lock the page at this time.
715 *
716 * Waiting for the lock may lead to deadlock in the
717 * reclaim path.
718 */
719 if (!folio_trylock(folio)) {
720 folio_put(folio);
721 goto move_back;
722 }
723
724 ret = split_folio(folio);
725 folio_unlock(folio);
726 folio_put(folio);
727
728 /* If split failed move the inode on the list back to shrinklist */
729 if (ret)
730 goto move_back;
731
732 freed += next - end;
733 split++;
734 drop:
735 list_del_init(&info->shrinklist);
736 goto put;
737 move_back:
738 /*
739 * Make sure the inode is either on the global list or deleted
740 * from any local list before iput() since it could be deleted
741 * in another thread once we put the inode (then the local list
742 * is corrupted).
743 */
744 spin_lock(&sbinfo->shrinklist_lock);
745 list_move(&info->shrinklist, &sbinfo->shrinklist);
746 sbinfo->shrinklist_len++;
747 spin_unlock(&sbinfo->shrinklist_lock);
748 put:
749 iput(inode);
750 }
751
752 return split;
753 }
754
shmem_unused_huge_scan(struct super_block * sb,struct shrink_control * sc)755 static long shmem_unused_huge_scan(struct super_block *sb,
756 struct shrink_control *sc)
757 {
758 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
759
760 if (!READ_ONCE(sbinfo->shrinklist_len))
761 return SHRINK_STOP;
762
763 return shmem_unused_huge_shrink(sbinfo, sc, 0);
764 }
765
shmem_unused_huge_count(struct super_block * sb,struct shrink_control * sc)766 static long shmem_unused_huge_count(struct super_block *sb,
767 struct shrink_control *sc)
768 {
769 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
770 return READ_ONCE(sbinfo->shrinklist_len);
771 }
772 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
773
774 #define shmem_huge SHMEM_HUGE_DENY
775
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_free)776 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
777 struct shrink_control *sc, unsigned long nr_to_free)
778 {
779 return 0;
780 }
781
shmem_huge_global_enabled(struct inode * inode,pgoff_t index,loff_t write_end,bool shmem_huge_force,unsigned long vm_flags)782 static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
783 loff_t write_end, bool shmem_huge_force,
784 unsigned long vm_flags)
785 {
786 return false;
787 }
788 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
789
shmem_update_stats(struct folio * folio,int nr_pages)790 static void shmem_update_stats(struct folio *folio, int nr_pages)
791 {
792 if (folio_test_pmd_mappable(folio))
793 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages);
794 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages);
795 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages);
796 }
797
798 /*
799 * Somewhat like filemap_add_folio, but error if expected item has gone.
800 */
shmem_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t index,void * expected,gfp_t gfp)801 static int shmem_add_to_page_cache(struct folio *folio,
802 struct address_space *mapping,
803 pgoff_t index, void *expected, gfp_t gfp)
804 {
805 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
806 long nr = folio_nr_pages(folio);
807
808 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
809 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
810 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
811
812 folio_ref_add(folio, nr);
813 folio->mapping = mapping;
814 folio->index = index;
815
816 gfp &= GFP_RECLAIM_MASK;
817 folio_throttle_swaprate(folio, gfp);
818
819 do {
820 xas_lock_irq(&xas);
821 if (expected != xas_find_conflict(&xas)) {
822 xas_set_err(&xas, -EEXIST);
823 goto unlock;
824 }
825 if (expected && xas_find_conflict(&xas)) {
826 xas_set_err(&xas, -EEXIST);
827 goto unlock;
828 }
829 xas_store(&xas, folio);
830 if (xas_error(&xas))
831 goto unlock;
832 shmem_update_stats(folio, nr);
833 mapping->nrpages += nr;
834 unlock:
835 xas_unlock_irq(&xas);
836 } while (xas_nomem(&xas, gfp));
837
838 if (xas_error(&xas)) {
839 folio->mapping = NULL;
840 folio_ref_sub(folio, nr);
841 return xas_error(&xas);
842 }
843
844 return 0;
845 }
846
847 /*
848 * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
849 */
shmem_delete_from_page_cache(struct folio * folio,void * radswap)850 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
851 {
852 struct address_space *mapping = folio->mapping;
853 long nr = folio_nr_pages(folio);
854 int error;
855
856 xa_lock_irq(&mapping->i_pages);
857 error = shmem_replace_entry(mapping, folio->index, folio, radswap);
858 folio->mapping = NULL;
859 mapping->nrpages -= nr;
860 shmem_update_stats(folio, -nr);
861 xa_unlock_irq(&mapping->i_pages);
862 folio_put_refs(folio, nr);
863 BUG_ON(error);
864 }
865
866 /*
867 * Remove swap entry from page cache, free the swap and its page cache. Returns
868 * the number of pages being freed. 0 means entry not found in XArray (0 pages
869 * being freed).
870 */
shmem_free_swap(struct address_space * mapping,pgoff_t index,void * radswap)871 static long shmem_free_swap(struct address_space *mapping,
872 pgoff_t index, void *radswap)
873 {
874 int order = xa_get_order(&mapping->i_pages, index);
875 void *old;
876
877 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
878 if (old != radswap)
879 return 0;
880 free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order);
881
882 return 1 << order;
883 }
884
885 /*
886 * Determine (in bytes) how many of the shmem object's pages mapped by the
887 * given offsets are swapped out.
888 *
889 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
890 * as long as the inode doesn't go away and racy results are not a problem.
891 */
shmem_partial_swap_usage(struct address_space * mapping,pgoff_t start,pgoff_t end)892 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
893 pgoff_t start, pgoff_t end)
894 {
895 XA_STATE(xas, &mapping->i_pages, start);
896 struct page *page;
897 unsigned long swapped = 0;
898 unsigned long max = end - 1;
899
900 rcu_read_lock();
901 xas_for_each(&xas, page, max) {
902 if (xas_retry(&xas, page))
903 continue;
904 if (xa_is_value(page))
905 swapped += 1 << xas_get_order(&xas);
906 if (xas.xa_index == max)
907 break;
908 if (need_resched()) {
909 xas_pause(&xas);
910 cond_resched_rcu();
911 }
912 }
913 rcu_read_unlock();
914
915 return swapped << PAGE_SHIFT;
916 }
917
918 /*
919 * Determine (in bytes) how many of the shmem object's pages mapped by the
920 * given vma is swapped out.
921 *
922 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
923 * as long as the inode doesn't go away and racy results are not a problem.
924 */
shmem_swap_usage(struct vm_area_struct * vma)925 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
926 {
927 struct inode *inode = file_inode(vma->vm_file);
928 struct shmem_inode_info *info = SHMEM_I(inode);
929 struct address_space *mapping = inode->i_mapping;
930 unsigned long swapped;
931
932 /* Be careful as we don't hold info->lock */
933 swapped = READ_ONCE(info->swapped);
934
935 /*
936 * The easier cases are when the shmem object has nothing in swap, or
937 * the vma maps it whole. Then we can simply use the stats that we
938 * already track.
939 */
940 if (!swapped)
941 return 0;
942
943 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
944 return swapped << PAGE_SHIFT;
945
946 /* Here comes the more involved part */
947 return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
948 vma->vm_pgoff + vma_pages(vma));
949 }
950
951 /*
952 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
953 */
shmem_unlock_mapping(struct address_space * mapping)954 void shmem_unlock_mapping(struct address_space *mapping)
955 {
956 struct folio_batch fbatch;
957 pgoff_t index = 0;
958
959 folio_batch_init(&fbatch);
960 /*
961 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
962 */
963 while (!mapping_unevictable(mapping) &&
964 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
965 check_move_unevictable_folios(&fbatch);
966 folio_batch_release(&fbatch);
967 cond_resched();
968 }
969 }
970
shmem_get_partial_folio(struct inode * inode,pgoff_t index)971 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
972 {
973 struct folio *folio;
974
975 /*
976 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
977 * beyond i_size, and reports fallocated folios as holes.
978 */
979 folio = filemap_get_entry(inode->i_mapping, index);
980 if (!folio)
981 return folio;
982 if (!xa_is_value(folio)) {
983 folio_lock(folio);
984 if (folio->mapping == inode->i_mapping)
985 return folio;
986 /* The folio has been swapped out */
987 folio_unlock(folio);
988 folio_put(folio);
989 }
990 /*
991 * But read a folio back from swap if any of it is within i_size
992 * (although in some cases this is just a waste of time).
993 */
994 folio = NULL;
995 shmem_get_folio(inode, index, 0, &folio, SGP_READ);
996 return folio;
997 }
998
999 /*
1000 * Remove range of pages and swap entries from page cache, and free them.
1001 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
1002 */
shmem_undo_range(struct inode * inode,loff_t lstart,loff_t lend,bool unfalloc)1003 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
1004 bool unfalloc)
1005 {
1006 struct address_space *mapping = inode->i_mapping;
1007 struct shmem_inode_info *info = SHMEM_I(inode);
1008 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
1009 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
1010 struct folio_batch fbatch;
1011 pgoff_t indices[PAGEVEC_SIZE];
1012 struct folio *folio;
1013 bool same_folio;
1014 long nr_swaps_freed = 0;
1015 pgoff_t index;
1016 int i;
1017
1018 if (lend == -1)
1019 end = -1; /* unsigned, so actually very big */
1020
1021 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1022 info->fallocend = start;
1023
1024 folio_batch_init(&fbatch);
1025 index = start;
1026 while (index < end && find_lock_entries(mapping, &index, end - 1,
1027 &fbatch, indices)) {
1028 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1029 folio = fbatch.folios[i];
1030
1031 if (xa_is_value(folio)) {
1032 if (unfalloc)
1033 continue;
1034 nr_swaps_freed += shmem_free_swap(mapping,
1035 indices[i], folio);
1036 continue;
1037 }
1038
1039 if (!unfalloc || !folio_test_uptodate(folio))
1040 truncate_inode_folio(mapping, folio);
1041 folio_unlock(folio);
1042 }
1043 folio_batch_remove_exceptionals(&fbatch);
1044 folio_batch_release(&fbatch);
1045 cond_resched();
1046 }
1047
1048 /*
1049 * When undoing a failed fallocate, we want none of the partial folio
1050 * zeroing and splitting below, but shall want to truncate the whole
1051 * folio when !uptodate indicates that it was added by this fallocate,
1052 * even when [lstart, lend] covers only a part of the folio.
1053 */
1054 if (unfalloc)
1055 goto whole_folios;
1056
1057 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1058 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1059 if (folio) {
1060 same_folio = lend < folio_pos(folio) + folio_size(folio);
1061 folio_mark_dirty(folio);
1062 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1063 start = folio_next_index(folio);
1064 if (same_folio)
1065 end = folio->index;
1066 }
1067 folio_unlock(folio);
1068 folio_put(folio);
1069 folio = NULL;
1070 }
1071
1072 if (!same_folio)
1073 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1074 if (folio) {
1075 folio_mark_dirty(folio);
1076 if (!truncate_inode_partial_folio(folio, lstart, lend))
1077 end = folio->index;
1078 folio_unlock(folio);
1079 folio_put(folio);
1080 }
1081
1082 whole_folios:
1083
1084 index = start;
1085 while (index < end) {
1086 cond_resched();
1087
1088 if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1089 indices)) {
1090 /* If all gone or hole-punch or unfalloc, we're done */
1091 if (index == start || end != -1)
1092 break;
1093 /* But if truncating, restart to make sure all gone */
1094 index = start;
1095 continue;
1096 }
1097 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1098 folio = fbatch.folios[i];
1099
1100 if (xa_is_value(folio)) {
1101 long swaps_freed;
1102
1103 if (unfalloc)
1104 continue;
1105 swaps_freed = shmem_free_swap(mapping, indices[i], folio);
1106 if (!swaps_freed) {
1107 /* Swap was replaced by page: retry */
1108 index = indices[i];
1109 break;
1110 }
1111 nr_swaps_freed += swaps_freed;
1112 continue;
1113 }
1114
1115 folio_lock(folio);
1116
1117 if (!unfalloc || !folio_test_uptodate(folio)) {
1118 if (folio_mapping(folio) != mapping) {
1119 /* Page was replaced by swap: retry */
1120 folio_unlock(folio);
1121 index = indices[i];
1122 break;
1123 }
1124 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1125 folio);
1126
1127 if (!folio_test_large(folio)) {
1128 truncate_inode_folio(mapping, folio);
1129 } else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1130 /*
1131 * If we split a page, reset the loop so
1132 * that we pick up the new sub pages.
1133 * Otherwise the THP was entirely
1134 * dropped or the target range was
1135 * zeroed, so just continue the loop as
1136 * is.
1137 */
1138 if (!folio_test_large(folio)) {
1139 folio_unlock(folio);
1140 index = start;
1141 break;
1142 }
1143 }
1144 }
1145 folio_unlock(folio);
1146 }
1147 folio_batch_remove_exceptionals(&fbatch);
1148 folio_batch_release(&fbatch);
1149 }
1150
1151 shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1152 }
1153
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)1154 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1155 {
1156 shmem_undo_range(inode, lstart, lend, false);
1157 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1158 inode_inc_iversion(inode);
1159 }
1160 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1161
shmem_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1162 static int shmem_getattr(struct mnt_idmap *idmap,
1163 const struct path *path, struct kstat *stat,
1164 u32 request_mask, unsigned int query_flags)
1165 {
1166 struct inode *inode = path->dentry->d_inode;
1167 struct shmem_inode_info *info = SHMEM_I(inode);
1168
1169 if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1170 shmem_recalc_inode(inode, 0, 0);
1171
1172 if (info->fsflags & FS_APPEND_FL)
1173 stat->attributes |= STATX_ATTR_APPEND;
1174 if (info->fsflags & FS_IMMUTABLE_FL)
1175 stat->attributes |= STATX_ATTR_IMMUTABLE;
1176 if (info->fsflags & FS_NODUMP_FL)
1177 stat->attributes |= STATX_ATTR_NODUMP;
1178 stat->attributes_mask |= (STATX_ATTR_APPEND |
1179 STATX_ATTR_IMMUTABLE |
1180 STATX_ATTR_NODUMP);
1181 generic_fillattr(idmap, request_mask, inode, stat);
1182
1183 if (shmem_huge_global_enabled(inode, 0, 0, false, 0))
1184 stat->blksize = HPAGE_PMD_SIZE;
1185
1186 if (request_mask & STATX_BTIME) {
1187 stat->result_mask |= STATX_BTIME;
1188 stat->btime.tv_sec = info->i_crtime.tv_sec;
1189 stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1190 }
1191
1192 return 0;
1193 }
1194
shmem_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1195 static int shmem_setattr(struct mnt_idmap *idmap,
1196 struct dentry *dentry, struct iattr *attr)
1197 {
1198 struct inode *inode = d_inode(dentry);
1199 struct shmem_inode_info *info = SHMEM_I(inode);
1200 int error;
1201 bool update_mtime = false;
1202 bool update_ctime = true;
1203
1204 error = setattr_prepare(idmap, dentry, attr);
1205 if (error)
1206 return error;
1207
1208 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1209 if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1210 return -EPERM;
1211 }
1212 }
1213
1214 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1215 loff_t oldsize = inode->i_size;
1216 loff_t newsize = attr->ia_size;
1217
1218 /* protected by i_rwsem */
1219 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1220 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1221 return -EPERM;
1222
1223 if (newsize != oldsize) {
1224 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1225 oldsize, newsize);
1226 if (error)
1227 return error;
1228 i_size_write(inode, newsize);
1229 update_mtime = true;
1230 } else {
1231 update_ctime = false;
1232 }
1233 if (newsize <= oldsize) {
1234 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1235 if (oldsize > holebegin)
1236 unmap_mapping_range(inode->i_mapping,
1237 holebegin, 0, 1);
1238 if (info->alloced)
1239 shmem_truncate_range(inode,
1240 newsize, (loff_t)-1);
1241 /* unmap again to remove racily COWed private pages */
1242 if (oldsize > holebegin)
1243 unmap_mapping_range(inode->i_mapping,
1244 holebegin, 0, 1);
1245 }
1246 }
1247
1248 if (is_quota_modification(idmap, inode, attr)) {
1249 error = dquot_initialize(inode);
1250 if (error)
1251 return error;
1252 }
1253
1254 /* Transfer quota accounting */
1255 if (i_uid_needs_update(idmap, attr, inode) ||
1256 i_gid_needs_update(idmap, attr, inode)) {
1257 error = dquot_transfer(idmap, inode, attr);
1258 if (error)
1259 return error;
1260 }
1261
1262 setattr_copy(idmap, inode, attr);
1263 if (attr->ia_valid & ATTR_MODE)
1264 error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1265 if (!error && update_ctime) {
1266 inode_set_ctime_current(inode);
1267 if (update_mtime)
1268 inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1269 inode_inc_iversion(inode);
1270 }
1271 return error;
1272 }
1273
shmem_evict_inode(struct inode * inode)1274 static void shmem_evict_inode(struct inode *inode)
1275 {
1276 struct shmem_inode_info *info = SHMEM_I(inode);
1277 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1278 size_t freed = 0;
1279
1280 if (shmem_mapping(inode->i_mapping)) {
1281 shmem_unacct_size(info->flags, inode->i_size);
1282 inode->i_size = 0;
1283 mapping_set_exiting(inode->i_mapping);
1284 shmem_truncate_range(inode, 0, (loff_t)-1);
1285 if (!list_empty(&info->shrinklist)) {
1286 spin_lock(&sbinfo->shrinklist_lock);
1287 if (!list_empty(&info->shrinklist)) {
1288 list_del_init(&info->shrinklist);
1289 sbinfo->shrinklist_len--;
1290 }
1291 spin_unlock(&sbinfo->shrinklist_lock);
1292 }
1293 while (!list_empty(&info->swaplist)) {
1294 /* Wait while shmem_unuse() is scanning this inode... */
1295 wait_var_event(&info->stop_eviction,
1296 !atomic_read(&info->stop_eviction));
1297 mutex_lock(&shmem_swaplist_mutex);
1298 /* ...but beware of the race if we peeked too early */
1299 if (!atomic_read(&info->stop_eviction))
1300 list_del_init(&info->swaplist);
1301 mutex_unlock(&shmem_swaplist_mutex);
1302 }
1303 }
1304
1305 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1306 shmem_free_inode(inode->i_sb, freed);
1307 WARN_ON(inode->i_blocks);
1308 clear_inode(inode);
1309 #ifdef CONFIG_TMPFS_QUOTA
1310 dquot_free_inode(inode);
1311 dquot_drop(inode);
1312 #endif
1313 }
1314
shmem_find_swap_entries(struct address_space * mapping,pgoff_t start,struct folio_batch * fbatch,pgoff_t * indices,unsigned int type)1315 static int shmem_find_swap_entries(struct address_space *mapping,
1316 pgoff_t start, struct folio_batch *fbatch,
1317 pgoff_t *indices, unsigned int type)
1318 {
1319 XA_STATE(xas, &mapping->i_pages, start);
1320 struct folio *folio;
1321 swp_entry_t entry;
1322
1323 rcu_read_lock();
1324 xas_for_each(&xas, folio, ULONG_MAX) {
1325 if (xas_retry(&xas, folio))
1326 continue;
1327
1328 if (!xa_is_value(folio))
1329 continue;
1330
1331 entry = radix_to_swp_entry(folio);
1332 /*
1333 * swapin error entries can be found in the mapping. But they're
1334 * deliberately ignored here as we've done everything we can do.
1335 */
1336 if (swp_type(entry) != type)
1337 continue;
1338
1339 indices[folio_batch_count(fbatch)] = xas.xa_index;
1340 if (!folio_batch_add(fbatch, folio))
1341 break;
1342
1343 if (need_resched()) {
1344 xas_pause(&xas);
1345 cond_resched_rcu();
1346 }
1347 }
1348 rcu_read_unlock();
1349
1350 return xas.xa_index;
1351 }
1352
1353 /*
1354 * Move the swapped pages for an inode to page cache. Returns the count
1355 * of pages swapped in, or the error in case of failure.
1356 */
shmem_unuse_swap_entries(struct inode * inode,struct folio_batch * fbatch,pgoff_t * indices)1357 static int shmem_unuse_swap_entries(struct inode *inode,
1358 struct folio_batch *fbatch, pgoff_t *indices)
1359 {
1360 int i = 0;
1361 int ret = 0;
1362 int error = 0;
1363 struct address_space *mapping = inode->i_mapping;
1364
1365 for (i = 0; i < folio_batch_count(fbatch); i++) {
1366 struct folio *folio = fbatch->folios[i];
1367
1368 if (!xa_is_value(folio))
1369 continue;
1370 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1371 mapping_gfp_mask(mapping), NULL, NULL);
1372 if (error == 0) {
1373 folio_unlock(folio);
1374 folio_put(folio);
1375 ret++;
1376 }
1377 if (error == -ENOMEM)
1378 break;
1379 error = 0;
1380 }
1381 return error ? error : ret;
1382 }
1383
1384 /*
1385 * If swap found in inode, free it and move page from swapcache to filecache.
1386 */
shmem_unuse_inode(struct inode * inode,unsigned int type)1387 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1388 {
1389 struct address_space *mapping = inode->i_mapping;
1390 pgoff_t start = 0;
1391 struct folio_batch fbatch;
1392 pgoff_t indices[PAGEVEC_SIZE];
1393 int ret = 0;
1394
1395 do {
1396 folio_batch_init(&fbatch);
1397 shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1398 if (folio_batch_count(&fbatch) == 0) {
1399 ret = 0;
1400 break;
1401 }
1402
1403 ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1404 if (ret < 0)
1405 break;
1406
1407 start = indices[folio_batch_count(&fbatch) - 1];
1408 } while (true);
1409
1410 return ret;
1411 }
1412
1413 /*
1414 * Read all the shared memory data that resides in the swap
1415 * device 'type' back into memory, so the swap device can be
1416 * unused.
1417 */
shmem_unuse(unsigned int type)1418 int shmem_unuse(unsigned int type)
1419 {
1420 struct shmem_inode_info *info, *next;
1421 int error = 0;
1422
1423 if (list_empty(&shmem_swaplist))
1424 return 0;
1425
1426 mutex_lock(&shmem_swaplist_mutex);
1427 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1428 if (!info->swapped) {
1429 list_del_init(&info->swaplist);
1430 continue;
1431 }
1432 /*
1433 * Drop the swaplist mutex while searching the inode for swap;
1434 * but before doing so, make sure shmem_evict_inode() will not
1435 * remove placeholder inode from swaplist, nor let it be freed
1436 * (igrab() would protect from unlink, but not from unmount).
1437 */
1438 atomic_inc(&info->stop_eviction);
1439 mutex_unlock(&shmem_swaplist_mutex);
1440
1441 error = shmem_unuse_inode(&info->vfs_inode, type);
1442 cond_resched();
1443
1444 mutex_lock(&shmem_swaplist_mutex);
1445 next = list_next_entry(info, swaplist);
1446 if (!info->swapped)
1447 list_del_init(&info->swaplist);
1448 if (atomic_dec_and_test(&info->stop_eviction))
1449 wake_up_var(&info->stop_eviction);
1450 if (error)
1451 break;
1452 }
1453 mutex_unlock(&shmem_swaplist_mutex);
1454
1455 return error;
1456 }
1457
1458 /*
1459 * Move the page from the page cache to the swap cache.
1460 */
shmem_writepage(struct page * page,struct writeback_control * wbc)1461 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1462 {
1463 struct folio *folio = page_folio(page);
1464 struct address_space *mapping = folio->mapping;
1465 struct inode *inode = mapping->host;
1466 struct shmem_inode_info *info = SHMEM_I(inode);
1467 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1468 swp_entry_t swap;
1469 pgoff_t index;
1470 int nr_pages;
1471 bool split = false;
1472
1473 /*
1474 * Our capabilities prevent regular writeback or sync from ever calling
1475 * shmem_writepage; but a stacking filesystem might use ->writepage of
1476 * its underlying filesystem, in which case tmpfs should write out to
1477 * swap only in response to memory pressure, and not for the writeback
1478 * threads or sync.
1479 */
1480 if (WARN_ON_ONCE(!wbc->for_reclaim))
1481 goto redirty;
1482
1483 if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1484 goto redirty;
1485
1486 if (!total_swap_pages)
1487 goto redirty;
1488
1489 /*
1490 * If CONFIG_THP_SWAP is not enabled, the large folio should be
1491 * split when swapping.
1492 *
1493 * And shrinkage of pages beyond i_size does not split swap, so
1494 * swapout of a large folio crossing i_size needs to split too
1495 * (unless fallocate has been used to preallocate beyond EOF).
1496 */
1497 if (folio_test_large(folio)) {
1498 index = shmem_fallocend(inode,
1499 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
1500 if ((index > folio->index && index < folio_next_index(folio)) ||
1501 !IS_ENABLED(CONFIG_THP_SWAP))
1502 split = true;
1503 }
1504
1505 if (split) {
1506 try_split:
1507 /* Ensure the subpages are still dirty */
1508 folio_test_set_dirty(folio);
1509 if (split_huge_page_to_list_to_order(page, wbc->list, 0))
1510 goto redirty;
1511 folio = page_folio(page);
1512 folio_clear_dirty(folio);
1513 }
1514
1515 index = folio->index;
1516 nr_pages = folio_nr_pages(folio);
1517
1518 /*
1519 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1520 * value into swapfile.c, the only way we can correctly account for a
1521 * fallocated folio arriving here is now to initialize it and write it.
1522 *
1523 * That's okay for a folio already fallocated earlier, but if we have
1524 * not yet completed the fallocation, then (a) we want to keep track
1525 * of this folio in case we have to undo it, and (b) it may not be a
1526 * good idea to continue anyway, once we're pushing into swap. So
1527 * reactivate the folio, and let shmem_fallocate() quit when too many.
1528 */
1529 if (!folio_test_uptodate(folio)) {
1530 if (inode->i_private) {
1531 struct shmem_falloc *shmem_falloc;
1532 spin_lock(&inode->i_lock);
1533 shmem_falloc = inode->i_private;
1534 if (shmem_falloc &&
1535 !shmem_falloc->waitq &&
1536 index >= shmem_falloc->start &&
1537 index < shmem_falloc->next)
1538 shmem_falloc->nr_unswapped++;
1539 else
1540 shmem_falloc = NULL;
1541 spin_unlock(&inode->i_lock);
1542 if (shmem_falloc)
1543 goto redirty;
1544 }
1545 folio_zero_range(folio, 0, folio_size(folio));
1546 flush_dcache_folio(folio);
1547 folio_mark_uptodate(folio);
1548 }
1549
1550 swap = folio_alloc_swap(folio);
1551 if (!swap.val) {
1552 if (nr_pages > 1)
1553 goto try_split;
1554
1555 goto redirty;
1556 }
1557
1558 /*
1559 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1560 * if it's not already there. Do it now before the folio is
1561 * moved to swap cache, when its pagelock no longer protects
1562 * the inode from eviction. But don't unlock the mutex until
1563 * we've incremented swapped, because shmem_unuse_inode() will
1564 * prune a !swapped inode from the swaplist under this mutex.
1565 */
1566 mutex_lock(&shmem_swaplist_mutex);
1567 if (list_empty(&info->swaplist))
1568 list_add(&info->swaplist, &shmem_swaplist);
1569
1570 if (add_to_swap_cache(folio, swap,
1571 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1572 NULL) == 0) {
1573 shmem_recalc_inode(inode, 0, nr_pages);
1574 swap_shmem_alloc(swap, nr_pages);
1575 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1576
1577 mutex_unlock(&shmem_swaplist_mutex);
1578 BUG_ON(folio_mapped(folio));
1579 return swap_writepage(&folio->page, wbc);
1580 }
1581
1582 mutex_unlock(&shmem_swaplist_mutex);
1583 put_swap_folio(folio, swap);
1584 redirty:
1585 folio_mark_dirty(folio);
1586 if (wbc->for_reclaim)
1587 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */
1588 folio_unlock(folio);
1589 return 0;
1590 }
1591
1592 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1593 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1594 {
1595 char buffer[64];
1596
1597 if (!mpol || mpol->mode == MPOL_DEFAULT)
1598 return; /* show nothing */
1599
1600 mpol_to_str(buffer, sizeof(buffer), mpol);
1601
1602 seq_printf(seq, ",mpol=%s", buffer);
1603 }
1604
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1605 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1606 {
1607 struct mempolicy *mpol = NULL;
1608 if (sbinfo->mpol) {
1609 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1610 mpol = sbinfo->mpol;
1611 mpol_get(mpol);
1612 raw_spin_unlock(&sbinfo->stat_lock);
1613 }
1614 return mpol;
1615 }
1616 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1617 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1618 {
1619 }
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1620 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1621 {
1622 return NULL;
1623 }
1624 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1625
1626 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1627 pgoff_t index, unsigned int order, pgoff_t *ilx);
1628
shmem_swapin_cluster(swp_entry_t swap,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1629 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1630 struct shmem_inode_info *info, pgoff_t index)
1631 {
1632 struct mempolicy *mpol;
1633 pgoff_t ilx;
1634 struct folio *folio;
1635
1636 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1637 folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
1638 mpol_cond_put(mpol);
1639
1640 return folio;
1641 }
1642
1643 /*
1644 * Make sure huge_gfp is always more limited than limit_gfp.
1645 * Some of the flags set permissions, while others set limitations.
1646 */
limit_gfp_mask(gfp_t huge_gfp,gfp_t limit_gfp)1647 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1648 {
1649 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1650 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1651 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1652 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1653
1654 /* Allow allocations only from the originally specified zones. */
1655 result |= zoneflags;
1656
1657 /*
1658 * Minimize the result gfp by taking the union with the deny flags,
1659 * and the intersection of the allow flags.
1660 */
1661 result |= (limit_gfp & denyflags);
1662 result |= (huge_gfp & limit_gfp) & allowflags;
1663
1664 return result;
1665 }
1666
1667 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
shmem_hpage_pmd_enabled(void)1668 bool shmem_hpage_pmd_enabled(void)
1669 {
1670 if (shmem_huge == SHMEM_HUGE_DENY)
1671 return false;
1672 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always))
1673 return true;
1674 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise))
1675 return true;
1676 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size))
1677 return true;
1678 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) &&
1679 shmem_huge != SHMEM_HUGE_NEVER)
1680 return true;
1681
1682 return false;
1683 }
1684
shmem_allowable_huge_orders(struct inode * inode,struct vm_area_struct * vma,pgoff_t index,loff_t write_end,bool shmem_huge_force)1685 unsigned long shmem_allowable_huge_orders(struct inode *inode,
1686 struct vm_area_struct *vma, pgoff_t index,
1687 loff_t write_end, bool shmem_huge_force)
1688 {
1689 unsigned long mask = READ_ONCE(huge_shmem_orders_always);
1690 unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size);
1691 unsigned long vm_flags = vma ? vma->vm_flags : 0;
1692 bool global_huge;
1693 loff_t i_size;
1694 int order;
1695
1696 if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags)))
1697 return 0;
1698
1699 global_huge = shmem_huge_global_enabled(inode, index, write_end,
1700 shmem_huge_force, vm_flags);
1701 if (!vma || !vma_is_anon_shmem(vma)) {
1702 /*
1703 * For tmpfs, we now only support PMD sized THP if huge page
1704 * is enabled, otherwise fallback to order 0.
1705 */
1706 return global_huge ? BIT(HPAGE_PMD_ORDER) : 0;
1707 }
1708
1709 /*
1710 * Following the 'deny' semantics of the top level, force the huge
1711 * option off from all mounts.
1712 */
1713 if (shmem_huge == SHMEM_HUGE_DENY)
1714 return 0;
1715
1716 /*
1717 * Only allow inherit orders if the top-level value is 'force', which
1718 * means non-PMD sized THP can not override 'huge' mount option now.
1719 */
1720 if (shmem_huge == SHMEM_HUGE_FORCE)
1721 return READ_ONCE(huge_shmem_orders_inherit);
1722
1723 /* Allow mTHP that will be fully within i_size. */
1724 order = highest_order(within_size_orders);
1725 while (within_size_orders) {
1726 index = round_up(index + 1, order);
1727 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1728 if (i_size >> PAGE_SHIFT >= index) {
1729 mask |= within_size_orders;
1730 break;
1731 }
1732
1733 order = next_order(&within_size_orders, order);
1734 }
1735
1736 if (vm_flags & VM_HUGEPAGE)
1737 mask |= READ_ONCE(huge_shmem_orders_madvise);
1738
1739 if (global_huge)
1740 mask |= READ_ONCE(huge_shmem_orders_inherit);
1741
1742 return THP_ORDERS_ALL_FILE_DEFAULT & mask;
1743 }
1744
shmem_suitable_orders(struct inode * inode,struct vm_fault * vmf,struct address_space * mapping,pgoff_t index,unsigned long orders)1745 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1746 struct address_space *mapping, pgoff_t index,
1747 unsigned long orders)
1748 {
1749 struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1750 pgoff_t aligned_index;
1751 unsigned long pages;
1752 int order;
1753
1754 if (vma) {
1755 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
1756 if (!orders)
1757 return 0;
1758 }
1759
1760 /* Find the highest order that can add into the page cache */
1761 order = highest_order(orders);
1762 while (orders) {
1763 pages = 1UL << order;
1764 aligned_index = round_down(index, pages);
1765 /*
1766 * Check for conflict before waiting on a huge allocation.
1767 * Conflict might be that a huge page has just been allocated
1768 * and added to page cache by a racing thread, or that there
1769 * is already at least one small page in the huge extent.
1770 * Be careful to retry when appropriate, but not forever!
1771 * Elsewhere -EEXIST would be the right code, but not here.
1772 */
1773 if (!xa_find(&mapping->i_pages, &aligned_index,
1774 aligned_index + pages - 1, XA_PRESENT))
1775 break;
1776 order = next_order(&orders, order);
1777 }
1778
1779 return orders;
1780 }
1781 #else
shmem_suitable_orders(struct inode * inode,struct vm_fault * vmf,struct address_space * mapping,pgoff_t index,unsigned long orders)1782 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1783 struct address_space *mapping, pgoff_t index,
1784 unsigned long orders)
1785 {
1786 return 0;
1787 }
1788 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1789
shmem_alloc_folio(gfp_t gfp,int order,struct shmem_inode_info * info,pgoff_t index)1790 static struct folio *shmem_alloc_folio(gfp_t gfp, int order,
1791 struct shmem_inode_info *info, pgoff_t index)
1792 {
1793 struct mempolicy *mpol;
1794 pgoff_t ilx;
1795 struct folio *folio;
1796
1797 mpol = shmem_get_pgoff_policy(info, index, order, &ilx);
1798 folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id());
1799 mpol_cond_put(mpol);
1800
1801 return folio;
1802 }
1803
shmem_alloc_and_add_folio(struct vm_fault * vmf,gfp_t gfp,struct inode * inode,pgoff_t index,struct mm_struct * fault_mm,unsigned long orders)1804 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf,
1805 gfp_t gfp, struct inode *inode, pgoff_t index,
1806 struct mm_struct *fault_mm, unsigned long orders)
1807 {
1808 struct address_space *mapping = inode->i_mapping;
1809 struct shmem_inode_info *info = SHMEM_I(inode);
1810 unsigned long suitable_orders = 0;
1811 struct folio *folio = NULL;
1812 long pages;
1813 int error, order;
1814
1815 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1816 orders = 0;
1817
1818 if (orders > 0) {
1819 suitable_orders = shmem_suitable_orders(inode, vmf,
1820 mapping, index, orders);
1821
1822 order = highest_order(suitable_orders);
1823 while (suitable_orders) {
1824 pages = 1UL << order;
1825 index = round_down(index, pages);
1826 folio = shmem_alloc_folio(gfp, order, info, index);
1827 if (folio)
1828 goto allocated;
1829
1830 if (pages == HPAGE_PMD_NR)
1831 count_vm_event(THP_FILE_FALLBACK);
1832 count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK);
1833 order = next_order(&suitable_orders, order);
1834 }
1835 } else {
1836 pages = 1;
1837 folio = shmem_alloc_folio(gfp, 0, info, index);
1838 }
1839 if (!folio)
1840 return ERR_PTR(-ENOMEM);
1841
1842 allocated:
1843 __folio_set_locked(folio);
1844 __folio_set_swapbacked(folio);
1845
1846 gfp &= GFP_RECLAIM_MASK;
1847 error = mem_cgroup_charge(folio, fault_mm, gfp);
1848 if (error) {
1849 if (xa_find(&mapping->i_pages, &index,
1850 index + pages - 1, XA_PRESENT)) {
1851 error = -EEXIST;
1852 } else if (pages > 1) {
1853 if (pages == HPAGE_PMD_NR) {
1854 count_vm_event(THP_FILE_FALLBACK);
1855 count_vm_event(THP_FILE_FALLBACK_CHARGE);
1856 }
1857 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK);
1858 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE);
1859 }
1860 goto unlock;
1861 }
1862
1863 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1864 if (error)
1865 goto unlock;
1866
1867 error = shmem_inode_acct_blocks(inode, pages);
1868 if (error) {
1869 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1870 long freed;
1871 /*
1872 * Try to reclaim some space by splitting a few
1873 * large folios beyond i_size on the filesystem.
1874 */
1875 shmem_unused_huge_shrink(sbinfo, NULL, pages);
1876 /*
1877 * And do a shmem_recalc_inode() to account for freed pages:
1878 * except our folio is there in cache, so not quite balanced.
1879 */
1880 spin_lock(&info->lock);
1881 freed = pages + info->alloced - info->swapped -
1882 READ_ONCE(mapping->nrpages);
1883 if (freed > 0)
1884 info->alloced -= freed;
1885 spin_unlock(&info->lock);
1886 if (freed > 0)
1887 shmem_inode_unacct_blocks(inode, freed);
1888 error = shmem_inode_acct_blocks(inode, pages);
1889 if (error) {
1890 filemap_remove_folio(folio);
1891 goto unlock;
1892 }
1893 }
1894
1895 shmem_recalc_inode(inode, pages, 0);
1896 folio_add_lru(folio);
1897 return folio;
1898
1899 unlock:
1900 folio_unlock(folio);
1901 folio_put(folio);
1902 return ERR_PTR(error);
1903 }
1904
1905 /*
1906 * When a page is moved from swapcache to shmem filecache (either by the
1907 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1908 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1909 * ignorance of the mapping it belongs to. If that mapping has special
1910 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1911 * we may need to copy to a suitable page before moving to filecache.
1912 *
1913 * In a future release, this may well be extended to respect cpuset and
1914 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1915 * but for now it is a simple matter of zone.
1916 */
shmem_should_replace_folio(struct folio * folio,gfp_t gfp)1917 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1918 {
1919 return folio_zonenum(folio) > gfp_zone(gfp);
1920 }
1921
shmem_replace_folio(struct folio ** foliop,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index,struct vm_area_struct * vma)1922 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1923 struct shmem_inode_info *info, pgoff_t index,
1924 struct vm_area_struct *vma)
1925 {
1926 struct folio *new, *old = *foliop;
1927 swp_entry_t entry = old->swap;
1928 struct address_space *swap_mapping = swap_address_space(entry);
1929 pgoff_t swap_index = swap_cache_index(entry);
1930 XA_STATE(xas, &swap_mapping->i_pages, swap_index);
1931 int nr_pages = folio_nr_pages(old);
1932 int error = 0, i;
1933
1934 /*
1935 * We have arrived here because our zones are constrained, so don't
1936 * limit chance of success by further cpuset and node constraints.
1937 */
1938 gfp &= ~GFP_CONSTRAINT_MASK;
1939 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1940 if (nr_pages > 1) {
1941 gfp_t huge_gfp = vma_thp_gfp_mask(vma);
1942
1943 gfp = limit_gfp_mask(huge_gfp, gfp);
1944 }
1945 #endif
1946
1947 new = shmem_alloc_folio(gfp, folio_order(old), info, index);
1948 if (!new)
1949 return -ENOMEM;
1950
1951 folio_ref_add(new, nr_pages);
1952 folio_copy(new, old);
1953 flush_dcache_folio(new);
1954
1955 __folio_set_locked(new);
1956 __folio_set_swapbacked(new);
1957 folio_mark_uptodate(new);
1958 new->swap = entry;
1959 folio_set_swapcache(new);
1960
1961 /* Swap cache still stores N entries instead of a high-order entry */
1962 xa_lock_irq(&swap_mapping->i_pages);
1963 for (i = 0; i < nr_pages; i++) {
1964 void *item = xas_load(&xas);
1965
1966 if (item != old) {
1967 error = -ENOENT;
1968 break;
1969 }
1970
1971 xas_store(&xas, new);
1972 xas_next(&xas);
1973 }
1974 if (!error) {
1975 mem_cgroup_replace_folio(old, new);
1976 shmem_update_stats(new, nr_pages);
1977 shmem_update_stats(old, -nr_pages);
1978 }
1979 xa_unlock_irq(&swap_mapping->i_pages);
1980
1981 if (unlikely(error)) {
1982 /*
1983 * Is this possible? I think not, now that our callers
1984 * check both the swapcache flag and folio->private
1985 * after getting the folio lock; but be defensive.
1986 * Reverse old to newpage for clear and free.
1987 */
1988 old = new;
1989 } else {
1990 folio_add_lru(new);
1991 *foliop = new;
1992 }
1993
1994 folio_clear_swapcache(old);
1995 old->private = NULL;
1996
1997 folio_unlock(old);
1998 /*
1999 * The old folio are removed from swap cache, drop the 'nr_pages'
2000 * reference, as well as one temporary reference getting from swap
2001 * cache.
2002 */
2003 folio_put_refs(old, nr_pages + 1);
2004 return error;
2005 }
2006
shmem_set_folio_swapin_error(struct inode * inode,pgoff_t index,struct folio * folio,swp_entry_t swap)2007 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
2008 struct folio *folio, swp_entry_t swap)
2009 {
2010 struct address_space *mapping = inode->i_mapping;
2011 swp_entry_t swapin_error;
2012 void *old;
2013 int nr_pages;
2014
2015 swapin_error = make_poisoned_swp_entry();
2016 old = xa_cmpxchg_irq(&mapping->i_pages, index,
2017 swp_to_radix_entry(swap),
2018 swp_to_radix_entry(swapin_error), 0);
2019 if (old != swp_to_radix_entry(swap))
2020 return;
2021
2022 nr_pages = folio_nr_pages(folio);
2023 folio_wait_writeback(folio);
2024 delete_from_swap_cache(folio);
2025 /*
2026 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
2027 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
2028 * in shmem_evict_inode().
2029 */
2030 shmem_recalc_inode(inode, -nr_pages, -nr_pages);
2031 swap_free_nr(swap, nr_pages);
2032 }
2033
shmem_split_large_entry(struct inode * inode,pgoff_t index,swp_entry_t swap,gfp_t gfp)2034 static int shmem_split_large_entry(struct inode *inode, pgoff_t index,
2035 swp_entry_t swap, gfp_t gfp)
2036 {
2037 struct address_space *mapping = inode->i_mapping;
2038 XA_STATE_ORDER(xas, &mapping->i_pages, index, 0);
2039 void *alloced_shadow = NULL;
2040 int alloced_order = 0, i;
2041
2042 /* Convert user data gfp flags to xarray node gfp flags */
2043 gfp &= GFP_RECLAIM_MASK;
2044
2045 for (;;) {
2046 int order = -1, split_order = 0;
2047 void *old = NULL;
2048
2049 xas_lock_irq(&xas);
2050 old = xas_load(&xas);
2051 if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) {
2052 xas_set_err(&xas, -EEXIST);
2053 goto unlock;
2054 }
2055
2056 order = xas_get_order(&xas);
2057
2058 /* Swap entry may have changed before we re-acquire the lock */
2059 if (alloced_order &&
2060 (old != alloced_shadow || order != alloced_order)) {
2061 xas_destroy(&xas);
2062 alloced_order = 0;
2063 }
2064
2065 /* Try to split large swap entry in pagecache */
2066 if (order > 0) {
2067 if (!alloced_order) {
2068 split_order = order;
2069 goto unlock;
2070 }
2071 xas_split(&xas, old, order);
2072
2073 /*
2074 * Re-set the swap entry after splitting, and the swap
2075 * offset of the original large entry must be continuous.
2076 */
2077 for (i = 0; i < 1 << order; i++) {
2078 pgoff_t aligned_index = round_down(index, 1 << order);
2079 swp_entry_t tmp;
2080
2081 tmp = swp_entry(swp_type(swap), swp_offset(swap) + i);
2082 __xa_store(&mapping->i_pages, aligned_index + i,
2083 swp_to_radix_entry(tmp), 0);
2084 }
2085 }
2086
2087 unlock:
2088 xas_unlock_irq(&xas);
2089
2090 /* split needed, alloc here and retry. */
2091 if (split_order) {
2092 xas_split_alloc(&xas, old, split_order, gfp);
2093 if (xas_error(&xas))
2094 goto error;
2095 alloced_shadow = old;
2096 alloced_order = split_order;
2097 xas_reset(&xas);
2098 continue;
2099 }
2100
2101 if (!xas_nomem(&xas, gfp))
2102 break;
2103 }
2104
2105 error:
2106 if (xas_error(&xas))
2107 return xas_error(&xas);
2108
2109 return alloced_order;
2110 }
2111
2112 /*
2113 * Swap in the folio pointed to by *foliop.
2114 * Caller has to make sure that *foliop contains a valid swapped folio.
2115 * Returns 0 and the folio in foliop if success. On failure, returns the
2116 * error code and NULL in *foliop.
2117 */
shmem_swapin_folio(struct inode * inode,pgoff_t index,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,vm_fault_t * fault_type)2118 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
2119 struct folio **foliop, enum sgp_type sgp,
2120 gfp_t gfp, struct vm_area_struct *vma,
2121 vm_fault_t *fault_type)
2122 {
2123 struct address_space *mapping = inode->i_mapping;
2124 struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL;
2125 struct shmem_inode_info *info = SHMEM_I(inode);
2126 struct swap_info_struct *si;
2127 struct folio *folio = NULL;
2128 swp_entry_t swap;
2129 int error, nr_pages;
2130
2131 VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
2132 swap = radix_to_swp_entry(*foliop);
2133 *foliop = NULL;
2134
2135 if (is_poisoned_swp_entry(swap))
2136 return -EIO;
2137
2138 si = get_swap_device(swap);
2139 if (!si) {
2140 if (!shmem_confirm_swap(mapping, index, swap))
2141 return -EEXIST;
2142 else
2143 return -EINVAL;
2144 }
2145
2146 /* Look it up and read it in.. */
2147 folio = swap_cache_get_folio(swap, NULL, 0);
2148 if (!folio) {
2149 int split_order;
2150
2151 /* Or update major stats only when swapin succeeds?? */
2152 if (fault_type) {
2153 *fault_type |= VM_FAULT_MAJOR;
2154 count_vm_event(PGMAJFAULT);
2155 count_memcg_event_mm(fault_mm, PGMAJFAULT);
2156 }
2157
2158 /*
2159 * Now swap device can only swap in order 0 folio, then we
2160 * should split the large swap entry stored in the pagecache
2161 * if necessary.
2162 */
2163 split_order = shmem_split_large_entry(inode, index, swap, gfp);
2164 if (split_order < 0) {
2165 error = split_order;
2166 goto failed;
2167 }
2168
2169 /*
2170 * If the large swap entry has already been split, it is
2171 * necessary to recalculate the new swap entry based on
2172 * the old order alignment.
2173 */
2174 if (split_order > 0) {
2175 pgoff_t offset = index - round_down(index, 1 << split_order);
2176
2177 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset);
2178 }
2179
2180 /* Here we actually start the io */
2181 folio = shmem_swapin_cluster(swap, gfp, info, index);
2182 if (!folio) {
2183 error = -ENOMEM;
2184 goto failed;
2185 }
2186 }
2187
2188 /* We have to do this with folio locked to prevent races */
2189 folio_lock(folio);
2190 if (!folio_test_swapcache(folio) ||
2191 folio->swap.val != swap.val ||
2192 !shmem_confirm_swap(mapping, index, swap)) {
2193 error = -EEXIST;
2194 goto unlock;
2195 }
2196 if (!folio_test_uptodate(folio)) {
2197 error = -EIO;
2198 goto failed;
2199 }
2200 folio_wait_writeback(folio);
2201 nr_pages = folio_nr_pages(folio);
2202
2203 /*
2204 * Some architectures may have to restore extra metadata to the
2205 * folio after reading from swap.
2206 */
2207 arch_swap_restore(folio_swap(swap, folio), folio);
2208
2209 if (shmem_should_replace_folio(folio, gfp)) {
2210 error = shmem_replace_folio(&folio, gfp, info, index, vma);
2211 if (error)
2212 goto failed;
2213 }
2214
2215 error = shmem_add_to_page_cache(folio, mapping,
2216 round_down(index, nr_pages),
2217 swp_to_radix_entry(swap), gfp);
2218 if (error)
2219 goto failed;
2220
2221 shmem_recalc_inode(inode, 0, -nr_pages);
2222
2223 if (sgp == SGP_WRITE)
2224 folio_mark_accessed(folio);
2225
2226 delete_from_swap_cache(folio);
2227 folio_mark_dirty(folio);
2228 swap_free_nr(swap, nr_pages);
2229 put_swap_device(si);
2230
2231 *foliop = folio;
2232 return 0;
2233 failed:
2234 if (!shmem_confirm_swap(mapping, index, swap))
2235 error = -EEXIST;
2236 if (error == -EIO)
2237 shmem_set_folio_swapin_error(inode, index, folio, swap);
2238 unlock:
2239 if (folio) {
2240 folio_unlock(folio);
2241 folio_put(folio);
2242 }
2243 put_swap_device(si);
2244
2245 return error;
2246 }
2247
2248 /*
2249 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
2250 *
2251 * If we allocate a new one we do not mark it dirty. That's up to the
2252 * vm. If we swap it in we mark it dirty since we also free the swap
2253 * entry since a page cannot live in both the swap and page cache.
2254 *
2255 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
2256 */
shmem_get_folio_gfp(struct inode * inode,pgoff_t index,loff_t write_end,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_fault * vmf,vm_fault_t * fault_type)2257 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
2258 loff_t write_end, struct folio **foliop, enum sgp_type sgp,
2259 gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type)
2260 {
2261 struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
2262 struct mm_struct *fault_mm;
2263 struct folio *folio;
2264 int error;
2265 bool alloced;
2266 unsigned long orders = 0;
2267
2268 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
2269 return -EINVAL;
2270
2271 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
2272 return -EFBIG;
2273 repeat:
2274 if (sgp <= SGP_CACHE &&
2275 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
2276 return -EINVAL;
2277
2278 alloced = false;
2279 fault_mm = vma ? vma->vm_mm : NULL;
2280
2281 folio = filemap_get_entry(inode->i_mapping, index);
2282 if (folio && vma && userfaultfd_minor(vma)) {
2283 if (!xa_is_value(folio))
2284 folio_put(folio);
2285 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
2286 return 0;
2287 }
2288
2289 if (xa_is_value(folio)) {
2290 error = shmem_swapin_folio(inode, index, &folio,
2291 sgp, gfp, vma, fault_type);
2292 if (error == -EEXIST)
2293 goto repeat;
2294
2295 *foliop = folio;
2296 return error;
2297 }
2298
2299 if (folio) {
2300 folio_lock(folio);
2301
2302 /* Has the folio been truncated or swapped out? */
2303 if (unlikely(folio->mapping != inode->i_mapping)) {
2304 folio_unlock(folio);
2305 folio_put(folio);
2306 goto repeat;
2307 }
2308 if (sgp == SGP_WRITE)
2309 folio_mark_accessed(folio);
2310 if (folio_test_uptodate(folio))
2311 goto out;
2312 /* fallocated folio */
2313 if (sgp != SGP_READ)
2314 goto clear;
2315 folio_unlock(folio);
2316 folio_put(folio);
2317 }
2318
2319 /*
2320 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2321 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2322 */
2323 *foliop = NULL;
2324 if (sgp == SGP_READ)
2325 return 0;
2326 if (sgp == SGP_NOALLOC)
2327 return -ENOENT;
2328
2329 /*
2330 * Fast cache lookup and swap lookup did not find it: allocate.
2331 */
2332
2333 if (vma && userfaultfd_missing(vma)) {
2334 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2335 return 0;
2336 }
2337
2338 /* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */
2339 orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false);
2340 if (orders > 0) {
2341 gfp_t huge_gfp;
2342
2343 huge_gfp = vma_thp_gfp_mask(vma);
2344 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2345 folio = shmem_alloc_and_add_folio(vmf, huge_gfp,
2346 inode, index, fault_mm, orders);
2347 if (!IS_ERR(folio)) {
2348 if (folio_test_pmd_mappable(folio))
2349 count_vm_event(THP_FILE_ALLOC);
2350 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC);
2351 goto alloced;
2352 }
2353 if (PTR_ERR(folio) == -EEXIST)
2354 goto repeat;
2355 }
2356
2357 folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0);
2358 if (IS_ERR(folio)) {
2359 error = PTR_ERR(folio);
2360 if (error == -EEXIST)
2361 goto repeat;
2362 folio = NULL;
2363 goto unlock;
2364 }
2365
2366 alloced:
2367 alloced = true;
2368 if (folio_test_large(folio) &&
2369 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2370 folio_next_index(folio)) {
2371 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2372 struct shmem_inode_info *info = SHMEM_I(inode);
2373 /*
2374 * Part of the large folio is beyond i_size: subject
2375 * to shrink under memory pressure.
2376 */
2377 spin_lock(&sbinfo->shrinklist_lock);
2378 /*
2379 * _careful to defend against unlocked access to
2380 * ->shrink_list in shmem_unused_huge_shrink()
2381 */
2382 if (list_empty_careful(&info->shrinklist)) {
2383 list_add_tail(&info->shrinklist,
2384 &sbinfo->shrinklist);
2385 sbinfo->shrinklist_len++;
2386 }
2387 spin_unlock(&sbinfo->shrinklist_lock);
2388 }
2389
2390 if (sgp == SGP_WRITE)
2391 folio_set_referenced(folio);
2392 /*
2393 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2394 */
2395 if (sgp == SGP_FALLOC)
2396 sgp = SGP_WRITE;
2397 clear:
2398 /*
2399 * Let SGP_WRITE caller clear ends if write does not fill folio;
2400 * but SGP_FALLOC on a folio fallocated earlier must initialize
2401 * it now, lest undo on failure cancel our earlier guarantee.
2402 */
2403 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2404 long i, n = folio_nr_pages(folio);
2405
2406 for (i = 0; i < n; i++)
2407 clear_highpage(folio_page(folio, i));
2408 flush_dcache_folio(folio);
2409 folio_mark_uptodate(folio);
2410 }
2411
2412 /* Perhaps the file has been truncated since we checked */
2413 if (sgp <= SGP_CACHE &&
2414 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2415 error = -EINVAL;
2416 goto unlock;
2417 }
2418 out:
2419 *foliop = folio;
2420 return 0;
2421
2422 /*
2423 * Error recovery.
2424 */
2425 unlock:
2426 if (alloced)
2427 filemap_remove_folio(folio);
2428 shmem_recalc_inode(inode, 0, 0);
2429 if (folio) {
2430 folio_unlock(folio);
2431 folio_put(folio);
2432 }
2433 return error;
2434 }
2435
2436 /**
2437 * shmem_get_folio - find, and lock a shmem folio.
2438 * @inode: inode to search
2439 * @index: the page index.
2440 * @write_end: end of a write, could extend inode size
2441 * @foliop: pointer to the folio if found
2442 * @sgp: SGP_* flags to control behavior
2443 *
2444 * Looks up the page cache entry at @inode & @index. If a folio is
2445 * present, it is returned locked with an increased refcount.
2446 *
2447 * If the caller modifies data in the folio, it must call folio_mark_dirty()
2448 * before unlocking the folio to ensure that the folio is not reclaimed.
2449 * There is no need to reserve space before calling folio_mark_dirty().
2450 *
2451 * When no folio is found, the behavior depends on @sgp:
2452 * - for SGP_READ, *@foliop is %NULL and 0 is returned
2453 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
2454 * - for all other flags a new folio is allocated, inserted into the
2455 * page cache and returned locked in @foliop.
2456 *
2457 * Context: May sleep.
2458 * Return: 0 if successful, else a negative error code.
2459 */
shmem_get_folio(struct inode * inode,pgoff_t index,loff_t write_end,struct folio ** foliop,enum sgp_type sgp)2460 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end,
2461 struct folio **foliop, enum sgp_type sgp)
2462 {
2463 return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp,
2464 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2465 }
2466 EXPORT_SYMBOL_GPL(shmem_get_folio);
2467
2468 /*
2469 * This is like autoremove_wake_function, but it removes the wait queue
2470 * entry unconditionally - even if something else had already woken the
2471 * target.
2472 */
synchronous_wake_function(wait_queue_entry_t * wait,unsigned int mode,int sync,void * key)2473 static int synchronous_wake_function(wait_queue_entry_t *wait,
2474 unsigned int mode, int sync, void *key)
2475 {
2476 int ret = default_wake_function(wait, mode, sync, key);
2477 list_del_init(&wait->entry);
2478 return ret;
2479 }
2480
2481 /*
2482 * Trinity finds that probing a hole which tmpfs is punching can
2483 * prevent the hole-punch from ever completing: which in turn
2484 * locks writers out with its hold on i_rwsem. So refrain from
2485 * faulting pages into the hole while it's being punched. Although
2486 * shmem_undo_range() does remove the additions, it may be unable to
2487 * keep up, as each new page needs its own unmap_mapping_range() call,
2488 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2489 *
2490 * It does not matter if we sometimes reach this check just before the
2491 * hole-punch begins, so that one fault then races with the punch:
2492 * we just need to make racing faults a rare case.
2493 *
2494 * The implementation below would be much simpler if we just used a
2495 * standard mutex or completion: but we cannot take i_rwsem in fault,
2496 * and bloating every shmem inode for this unlikely case would be sad.
2497 */
shmem_falloc_wait(struct vm_fault * vmf,struct inode * inode)2498 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2499 {
2500 struct shmem_falloc *shmem_falloc;
2501 struct file *fpin = NULL;
2502 vm_fault_t ret = 0;
2503
2504 spin_lock(&inode->i_lock);
2505 shmem_falloc = inode->i_private;
2506 if (shmem_falloc &&
2507 shmem_falloc->waitq &&
2508 vmf->pgoff >= shmem_falloc->start &&
2509 vmf->pgoff < shmem_falloc->next) {
2510 wait_queue_head_t *shmem_falloc_waitq;
2511 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2512
2513 ret = VM_FAULT_NOPAGE;
2514 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2515 shmem_falloc_waitq = shmem_falloc->waitq;
2516 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2517 TASK_UNINTERRUPTIBLE);
2518 spin_unlock(&inode->i_lock);
2519 schedule();
2520
2521 /*
2522 * shmem_falloc_waitq points into the shmem_fallocate()
2523 * stack of the hole-punching task: shmem_falloc_waitq
2524 * is usually invalid by the time we reach here, but
2525 * finish_wait() does not dereference it in that case;
2526 * though i_lock needed lest racing with wake_up_all().
2527 */
2528 spin_lock(&inode->i_lock);
2529 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2530 }
2531 spin_unlock(&inode->i_lock);
2532 if (fpin) {
2533 fput(fpin);
2534 ret = VM_FAULT_RETRY;
2535 }
2536 return ret;
2537 }
2538
shmem_fault(struct vm_fault * vmf)2539 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2540 {
2541 struct inode *inode = file_inode(vmf->vma->vm_file);
2542 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2543 struct folio *folio = NULL;
2544 vm_fault_t ret = 0;
2545 int err;
2546
2547 /*
2548 * Trinity finds that probing a hole which tmpfs is punching can
2549 * prevent the hole-punch from ever completing: noted in i_private.
2550 */
2551 if (unlikely(inode->i_private)) {
2552 ret = shmem_falloc_wait(vmf, inode);
2553 if (ret)
2554 return ret;
2555 }
2556
2557 WARN_ON_ONCE(vmf->page != NULL);
2558 err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE,
2559 gfp, vmf, &ret);
2560 if (err)
2561 return vmf_error(err);
2562 if (folio) {
2563 vmf->page = folio_file_page(folio, vmf->pgoff);
2564 ret |= VM_FAULT_LOCKED;
2565 }
2566 return ret;
2567 }
2568
shmem_get_unmapped_area(struct file * file,unsigned long uaddr,unsigned long len,unsigned long pgoff,unsigned long flags)2569 unsigned long shmem_get_unmapped_area(struct file *file,
2570 unsigned long uaddr, unsigned long len,
2571 unsigned long pgoff, unsigned long flags)
2572 {
2573 unsigned long addr;
2574 unsigned long offset;
2575 unsigned long inflated_len;
2576 unsigned long inflated_addr;
2577 unsigned long inflated_offset;
2578 unsigned long hpage_size;
2579
2580 if (len > TASK_SIZE)
2581 return -ENOMEM;
2582
2583 addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff,
2584 flags);
2585
2586 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2587 return addr;
2588 if (IS_ERR_VALUE(addr))
2589 return addr;
2590 if (addr & ~PAGE_MASK)
2591 return addr;
2592 if (addr > TASK_SIZE - len)
2593 return addr;
2594
2595 if (shmem_huge == SHMEM_HUGE_DENY)
2596 return addr;
2597 if (flags & MAP_FIXED)
2598 return addr;
2599 /*
2600 * Our priority is to support MAP_SHARED mapped hugely;
2601 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2602 * But if caller specified an address hint and we allocated area there
2603 * successfully, respect that as before.
2604 */
2605 if (uaddr == addr)
2606 return addr;
2607
2608 hpage_size = HPAGE_PMD_SIZE;
2609 if (shmem_huge != SHMEM_HUGE_FORCE) {
2610 struct super_block *sb;
2611 unsigned long __maybe_unused hpage_orders;
2612 int order = 0;
2613
2614 if (file) {
2615 VM_BUG_ON(file->f_op != &shmem_file_operations);
2616 sb = file_inode(file)->i_sb;
2617 } else {
2618 /*
2619 * Called directly from mm/mmap.c, or drivers/char/mem.c
2620 * for "/dev/zero", to create a shared anonymous object.
2621 */
2622 if (IS_ERR(shm_mnt))
2623 return addr;
2624 sb = shm_mnt->mnt_sb;
2625
2626 /*
2627 * Find the highest mTHP order used for anonymous shmem to
2628 * provide a suitable alignment address.
2629 */
2630 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2631 hpage_orders = READ_ONCE(huge_shmem_orders_always);
2632 hpage_orders |= READ_ONCE(huge_shmem_orders_within_size);
2633 hpage_orders |= READ_ONCE(huge_shmem_orders_madvise);
2634 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
2635 hpage_orders |= READ_ONCE(huge_shmem_orders_inherit);
2636
2637 if (hpage_orders > 0) {
2638 order = highest_order(hpage_orders);
2639 hpage_size = PAGE_SIZE << order;
2640 }
2641 #endif
2642 }
2643 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order)
2644 return addr;
2645 }
2646
2647 if (len < hpage_size)
2648 return addr;
2649
2650 offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1);
2651 if (offset && offset + len < 2 * hpage_size)
2652 return addr;
2653 if ((addr & (hpage_size - 1)) == offset)
2654 return addr;
2655
2656 inflated_len = len + hpage_size - PAGE_SIZE;
2657 if (inflated_len > TASK_SIZE)
2658 return addr;
2659 if (inflated_len < len)
2660 return addr;
2661
2662 inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr,
2663 inflated_len, 0, flags);
2664 if (IS_ERR_VALUE(inflated_addr))
2665 return addr;
2666 if (inflated_addr & ~PAGE_MASK)
2667 return addr;
2668
2669 inflated_offset = inflated_addr & (hpage_size - 1);
2670 inflated_addr += offset - inflated_offset;
2671 if (inflated_offset > offset)
2672 inflated_addr += hpage_size;
2673
2674 if (inflated_addr > TASK_SIZE - len)
2675 return addr;
2676 return inflated_addr;
2677 }
2678
2679 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * mpol)2680 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2681 {
2682 struct inode *inode = file_inode(vma->vm_file);
2683 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2684 }
2685
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr,pgoff_t * ilx)2686 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2687 unsigned long addr, pgoff_t *ilx)
2688 {
2689 struct inode *inode = file_inode(vma->vm_file);
2690 pgoff_t index;
2691
2692 /*
2693 * Bias interleave by inode number to distribute better across nodes;
2694 * but this interface is independent of which page order is used, so
2695 * supplies only that bias, letting caller apply the offset (adjusted
2696 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2697 */
2698 *ilx = inode->i_ino;
2699 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2700 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2701 }
2702
shmem_get_pgoff_policy(struct shmem_inode_info * info,pgoff_t index,unsigned int order,pgoff_t * ilx)2703 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2704 pgoff_t index, unsigned int order, pgoff_t *ilx)
2705 {
2706 struct mempolicy *mpol;
2707
2708 /* Bias interleave by inode number to distribute better across nodes */
2709 *ilx = info->vfs_inode.i_ino + (index >> order);
2710
2711 mpol = mpol_shared_policy_lookup(&info->policy, index);
2712 return mpol ? mpol : get_task_policy(current);
2713 }
2714 #else
shmem_get_pgoff_policy(struct shmem_inode_info * info,pgoff_t index,unsigned int order,pgoff_t * ilx)2715 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2716 pgoff_t index, unsigned int order, pgoff_t *ilx)
2717 {
2718 *ilx = 0;
2719 return NULL;
2720 }
2721 #endif /* CONFIG_NUMA */
2722
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)2723 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2724 {
2725 struct inode *inode = file_inode(file);
2726 struct shmem_inode_info *info = SHMEM_I(inode);
2727 int retval = -ENOMEM;
2728
2729 /*
2730 * What serializes the accesses to info->flags?
2731 * ipc_lock_object() when called from shmctl_do_lock(),
2732 * no serialization needed when called from shm_destroy().
2733 */
2734 if (lock && !(info->flags & VM_LOCKED)) {
2735 if (!user_shm_lock(inode->i_size, ucounts))
2736 goto out_nomem;
2737 info->flags |= VM_LOCKED;
2738 mapping_set_unevictable(file->f_mapping);
2739 }
2740 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2741 user_shm_unlock(inode->i_size, ucounts);
2742 info->flags &= ~VM_LOCKED;
2743 mapping_clear_unevictable(file->f_mapping);
2744 }
2745 retval = 0;
2746
2747 out_nomem:
2748 return retval;
2749 }
2750
shmem_mmap(struct file * file,struct vm_area_struct * vma)2751 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2752 {
2753 struct inode *inode = file_inode(file);
2754 struct shmem_inode_info *info = SHMEM_I(inode);
2755 int ret;
2756
2757 ret = seal_check_write(info->seals, vma);
2758 if (ret)
2759 return ret;
2760
2761 file_accessed(file);
2762 /* This is anonymous shared memory if it is unlinked at the time of mmap */
2763 if (inode->i_nlink)
2764 vma->vm_ops = &shmem_vm_ops;
2765 else
2766 vma->vm_ops = &shmem_anon_vm_ops;
2767 return 0;
2768 }
2769
shmem_file_open(struct inode * inode,struct file * file)2770 static int shmem_file_open(struct inode *inode, struct file *file)
2771 {
2772 file->f_mode |= FMODE_CAN_ODIRECT;
2773 return generic_file_open(inode, file);
2774 }
2775
2776 #ifdef CONFIG_TMPFS_XATTR
2777 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2778
2779 #if IS_ENABLED(CONFIG_UNICODE)
2780 /*
2781 * shmem_inode_casefold_flags - Deal with casefold file attribute flag
2782 *
2783 * The casefold file attribute needs some special checks. I can just be added to
2784 * an empty dir, and can't be removed from a non-empty dir.
2785 */
shmem_inode_casefold_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry,unsigned int * i_flags)2786 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
2787 struct dentry *dentry, unsigned int *i_flags)
2788 {
2789 unsigned int old = inode->i_flags;
2790 struct super_block *sb = inode->i_sb;
2791
2792 if (fsflags & FS_CASEFOLD_FL) {
2793 if (!(old & S_CASEFOLD)) {
2794 if (!sb->s_encoding)
2795 return -EOPNOTSUPP;
2796
2797 if (!S_ISDIR(inode->i_mode))
2798 return -ENOTDIR;
2799
2800 if (dentry && !simple_empty(dentry))
2801 return -ENOTEMPTY;
2802 }
2803
2804 *i_flags = *i_flags | S_CASEFOLD;
2805 } else if (old & S_CASEFOLD) {
2806 if (dentry && !simple_empty(dentry))
2807 return -ENOTEMPTY;
2808 }
2809
2810 return 0;
2811 }
2812 #else
shmem_inode_casefold_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry,unsigned int * i_flags)2813 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
2814 struct dentry *dentry, unsigned int *i_flags)
2815 {
2816 if (fsflags & FS_CASEFOLD_FL)
2817 return -EOPNOTSUPP;
2818
2819 return 0;
2820 }
2821 #endif
2822
2823 /*
2824 * chattr's fsflags are unrelated to extended attributes,
2825 * but tmpfs has chosen to enable them under the same config option.
2826 */
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry)2827 static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
2828 {
2829 unsigned int i_flags = 0;
2830 int ret;
2831
2832 ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags);
2833 if (ret)
2834 return ret;
2835
2836 if (fsflags & FS_NOATIME_FL)
2837 i_flags |= S_NOATIME;
2838 if (fsflags & FS_APPEND_FL)
2839 i_flags |= S_APPEND;
2840 if (fsflags & FS_IMMUTABLE_FL)
2841 i_flags |= S_IMMUTABLE;
2842 /*
2843 * But FS_NODUMP_FL does not require any action in i_flags.
2844 */
2845 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD);
2846
2847 return 0;
2848 }
2849 #else
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry)2850 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
2851 {
2852 }
2853 #define shmem_initxattrs NULL
2854 #endif
2855
shmem_get_offset_ctx(struct inode * inode)2856 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
2857 {
2858 return &SHMEM_I(inode)->dir_offsets;
2859 }
2860
__shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2861 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
2862 struct super_block *sb,
2863 struct inode *dir, umode_t mode,
2864 dev_t dev, unsigned long flags)
2865 {
2866 struct inode *inode;
2867 struct shmem_inode_info *info;
2868 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2869 ino_t ino;
2870 int err;
2871
2872 err = shmem_reserve_inode(sb, &ino);
2873 if (err)
2874 return ERR_PTR(err);
2875
2876 inode = new_inode(sb);
2877 if (!inode) {
2878 shmem_free_inode(sb, 0);
2879 return ERR_PTR(-ENOSPC);
2880 }
2881
2882 inode->i_ino = ino;
2883 inode_init_owner(idmap, inode, dir, mode);
2884 inode->i_blocks = 0;
2885 simple_inode_init_ts(inode);
2886 inode->i_generation = get_random_u32();
2887 info = SHMEM_I(inode);
2888 memset(info, 0, (char *)inode - (char *)info);
2889 spin_lock_init(&info->lock);
2890 atomic_set(&info->stop_eviction, 0);
2891 info->seals = F_SEAL_SEAL;
2892 info->flags = flags & VM_NORESERVE;
2893 info->i_crtime = inode_get_mtime(inode);
2894 info->fsflags = (dir == NULL) ? 0 :
2895 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2896 if (info->fsflags)
2897 shmem_set_inode_flags(inode, info->fsflags, NULL);
2898 INIT_LIST_HEAD(&info->shrinklist);
2899 INIT_LIST_HEAD(&info->swaplist);
2900 simple_xattrs_init(&info->xattrs);
2901 cache_no_acl(inode);
2902 if (sbinfo->noswap)
2903 mapping_set_unevictable(inode->i_mapping);
2904
2905 /* Don't consider 'deny' for emergencies and 'force' for testing */
2906 if (sbinfo->huge)
2907 mapping_set_large_folios(inode->i_mapping);
2908
2909 switch (mode & S_IFMT) {
2910 default:
2911 inode->i_op = &shmem_special_inode_operations;
2912 init_special_inode(inode, mode, dev);
2913 break;
2914 case S_IFREG:
2915 inode->i_mapping->a_ops = &shmem_aops;
2916 inode->i_op = &shmem_inode_operations;
2917 inode->i_fop = &shmem_file_operations;
2918 mpol_shared_policy_init(&info->policy,
2919 shmem_get_sbmpol(sbinfo));
2920 break;
2921 case S_IFDIR:
2922 inc_nlink(inode);
2923 /* Some things misbehave if size == 0 on a directory */
2924 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2925 inode->i_op = &shmem_dir_inode_operations;
2926 inode->i_fop = &simple_offset_dir_operations;
2927 simple_offset_init(shmem_get_offset_ctx(inode));
2928 break;
2929 case S_IFLNK:
2930 /*
2931 * Must not load anything in the rbtree,
2932 * mpol_free_shared_policy will not be called.
2933 */
2934 mpol_shared_policy_init(&info->policy, NULL);
2935 break;
2936 }
2937
2938 lockdep_annotate_inode_mutex_key(inode);
2939 return inode;
2940 }
2941
2942 #ifdef CONFIG_TMPFS_QUOTA
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2943 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2944 struct super_block *sb, struct inode *dir,
2945 umode_t mode, dev_t dev, unsigned long flags)
2946 {
2947 int err;
2948 struct inode *inode;
2949
2950 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2951 if (IS_ERR(inode))
2952 return inode;
2953
2954 err = dquot_initialize(inode);
2955 if (err)
2956 goto errout;
2957
2958 err = dquot_alloc_inode(inode);
2959 if (err) {
2960 dquot_drop(inode);
2961 goto errout;
2962 }
2963 return inode;
2964
2965 errout:
2966 inode->i_flags |= S_NOQUOTA;
2967 iput(inode);
2968 return ERR_PTR(err);
2969 }
2970 #else
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2971 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2972 struct super_block *sb, struct inode *dir,
2973 umode_t mode, dev_t dev, unsigned long flags)
2974 {
2975 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2976 }
2977 #endif /* CONFIG_TMPFS_QUOTA */
2978
2979 #ifdef CONFIG_USERFAULTFD
shmem_mfill_atomic_pte(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)2980 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2981 struct vm_area_struct *dst_vma,
2982 unsigned long dst_addr,
2983 unsigned long src_addr,
2984 uffd_flags_t flags,
2985 struct folio **foliop)
2986 {
2987 struct inode *inode = file_inode(dst_vma->vm_file);
2988 struct shmem_inode_info *info = SHMEM_I(inode);
2989 struct address_space *mapping = inode->i_mapping;
2990 gfp_t gfp = mapping_gfp_mask(mapping);
2991 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2992 void *page_kaddr;
2993 struct folio *folio;
2994 int ret;
2995 pgoff_t max_off;
2996
2997 if (shmem_inode_acct_blocks(inode, 1)) {
2998 /*
2999 * We may have got a page, returned -ENOENT triggering a retry,
3000 * and now we find ourselves with -ENOMEM. Release the page, to
3001 * avoid a BUG_ON in our caller.
3002 */
3003 if (unlikely(*foliop)) {
3004 folio_put(*foliop);
3005 *foliop = NULL;
3006 }
3007 return -ENOMEM;
3008 }
3009
3010 if (!*foliop) {
3011 ret = -ENOMEM;
3012 folio = shmem_alloc_folio(gfp, 0, info, pgoff);
3013 if (!folio)
3014 goto out_unacct_blocks;
3015
3016 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
3017 page_kaddr = kmap_local_folio(folio, 0);
3018 /*
3019 * The read mmap_lock is held here. Despite the
3020 * mmap_lock being read recursive a deadlock is still
3021 * possible if a writer has taken a lock. For example:
3022 *
3023 * process A thread 1 takes read lock on own mmap_lock
3024 * process A thread 2 calls mmap, blocks taking write lock
3025 * process B thread 1 takes page fault, read lock on own mmap lock
3026 * process B thread 2 calls mmap, blocks taking write lock
3027 * process A thread 1 blocks taking read lock on process B
3028 * process B thread 1 blocks taking read lock on process A
3029 *
3030 * Disable page faults to prevent potential deadlock
3031 * and retry the copy outside the mmap_lock.
3032 */
3033 pagefault_disable();
3034 ret = copy_from_user(page_kaddr,
3035 (const void __user *)src_addr,
3036 PAGE_SIZE);
3037 pagefault_enable();
3038 kunmap_local(page_kaddr);
3039
3040 /* fallback to copy_from_user outside mmap_lock */
3041 if (unlikely(ret)) {
3042 *foliop = folio;
3043 ret = -ENOENT;
3044 /* don't free the page */
3045 goto out_unacct_blocks;
3046 }
3047
3048 flush_dcache_folio(folio);
3049 } else { /* ZEROPAGE */
3050 clear_user_highpage(&folio->page, dst_addr);
3051 }
3052 } else {
3053 folio = *foliop;
3054 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
3055 *foliop = NULL;
3056 }
3057
3058 VM_BUG_ON(folio_test_locked(folio));
3059 VM_BUG_ON(folio_test_swapbacked(folio));
3060 __folio_set_locked(folio);
3061 __folio_set_swapbacked(folio);
3062 __folio_mark_uptodate(folio);
3063
3064 ret = -EFAULT;
3065 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3066 if (unlikely(pgoff >= max_off))
3067 goto out_release;
3068
3069 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
3070 if (ret)
3071 goto out_release;
3072 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
3073 if (ret)
3074 goto out_release;
3075
3076 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
3077 &folio->page, true, flags);
3078 if (ret)
3079 goto out_delete_from_cache;
3080
3081 shmem_recalc_inode(inode, 1, 0);
3082 folio_unlock(folio);
3083 return 0;
3084 out_delete_from_cache:
3085 filemap_remove_folio(folio);
3086 out_release:
3087 folio_unlock(folio);
3088 folio_put(folio);
3089 out_unacct_blocks:
3090 shmem_inode_unacct_blocks(inode, 1);
3091 return ret;
3092 }
3093 #endif /* CONFIG_USERFAULTFD */
3094
3095 #ifdef CONFIG_TMPFS
3096 static const struct inode_operations shmem_symlink_inode_operations;
3097 static const struct inode_operations shmem_short_symlink_operations;
3098
3099 static int
shmem_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)3100 shmem_write_begin(struct file *file, struct address_space *mapping,
3101 loff_t pos, unsigned len,
3102 struct folio **foliop, void **fsdata)
3103 {
3104 struct inode *inode = mapping->host;
3105 struct shmem_inode_info *info = SHMEM_I(inode);
3106 pgoff_t index = pos >> PAGE_SHIFT;
3107 struct folio *folio;
3108 int ret = 0;
3109
3110 /* i_rwsem is held by caller */
3111 if (unlikely(info->seals & (F_SEAL_GROW |
3112 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
3113 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
3114 return -EPERM;
3115 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
3116 return -EPERM;
3117 }
3118
3119 ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE);
3120 if (ret)
3121 return ret;
3122
3123 if (folio_test_hwpoison(folio) ||
3124 (folio_test_large(folio) && folio_test_has_hwpoisoned(folio))) {
3125 folio_unlock(folio);
3126 folio_put(folio);
3127 return -EIO;
3128 }
3129
3130 *foliop = folio;
3131 return 0;
3132 }
3133
3134 static int
shmem_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)3135 shmem_write_end(struct file *file, struct address_space *mapping,
3136 loff_t pos, unsigned len, unsigned copied,
3137 struct folio *folio, void *fsdata)
3138 {
3139 struct inode *inode = mapping->host;
3140
3141 if (pos + copied > inode->i_size)
3142 i_size_write(inode, pos + copied);
3143
3144 if (!folio_test_uptodate(folio)) {
3145 if (copied < folio_size(folio)) {
3146 size_t from = offset_in_folio(folio, pos);
3147 folio_zero_segments(folio, 0, from,
3148 from + copied, folio_size(folio));
3149 }
3150 folio_mark_uptodate(folio);
3151 }
3152 folio_mark_dirty(folio);
3153 folio_unlock(folio);
3154 folio_put(folio);
3155
3156 return copied;
3157 }
3158
shmem_file_read_iter(struct kiocb * iocb,struct iov_iter * to)3159 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3160 {
3161 struct file *file = iocb->ki_filp;
3162 struct inode *inode = file_inode(file);
3163 struct address_space *mapping = inode->i_mapping;
3164 pgoff_t index;
3165 unsigned long offset;
3166 int error = 0;
3167 ssize_t retval = 0;
3168
3169 for (;;) {
3170 struct folio *folio = NULL;
3171 struct page *page = NULL;
3172 unsigned long nr, ret;
3173 loff_t end_offset, i_size = i_size_read(inode);
3174 bool fallback_page_copy = false;
3175 size_t fsize;
3176
3177 if (unlikely(iocb->ki_pos >= i_size))
3178 break;
3179
3180 index = iocb->ki_pos >> PAGE_SHIFT;
3181 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3182 if (error) {
3183 if (error == -EINVAL)
3184 error = 0;
3185 break;
3186 }
3187 if (folio) {
3188 folio_unlock(folio);
3189
3190 page = folio_file_page(folio, index);
3191 if (PageHWPoison(page)) {
3192 folio_put(folio);
3193 error = -EIO;
3194 break;
3195 }
3196
3197 if (folio_test_large(folio) &&
3198 folio_test_has_hwpoisoned(folio))
3199 fallback_page_copy = true;
3200 }
3201
3202 /*
3203 * We must evaluate after, since reads (unlike writes)
3204 * are called without i_rwsem protection against truncate
3205 */
3206 i_size = i_size_read(inode);
3207 if (unlikely(iocb->ki_pos >= i_size)) {
3208 if (folio)
3209 folio_put(folio);
3210 break;
3211 }
3212 end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count);
3213 if (folio && likely(!fallback_page_copy))
3214 fsize = folio_size(folio);
3215 else
3216 fsize = PAGE_SIZE;
3217 offset = iocb->ki_pos & (fsize - 1);
3218 nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset);
3219
3220 if (folio) {
3221 /*
3222 * If users can be writing to this page using arbitrary
3223 * virtual addresses, take care about potential aliasing
3224 * before reading the page on the kernel side.
3225 */
3226 if (mapping_writably_mapped(mapping)) {
3227 if (likely(!fallback_page_copy))
3228 flush_dcache_folio(folio);
3229 else
3230 flush_dcache_page(page);
3231 }
3232
3233 /*
3234 * Mark the folio accessed if we read the beginning.
3235 */
3236 if (!offset)
3237 folio_mark_accessed(folio);
3238 /*
3239 * Ok, we have the page, and it's up-to-date, so
3240 * now we can copy it to user space...
3241 */
3242 if (likely(!fallback_page_copy))
3243 ret = copy_folio_to_iter(folio, offset, nr, to);
3244 else
3245 ret = copy_page_to_iter(page, offset, nr, to);
3246 folio_put(folio);
3247 } else if (user_backed_iter(to)) {
3248 /*
3249 * Copy to user tends to be so well optimized, but
3250 * clear_user() not so much, that it is noticeably
3251 * faster to copy the zero page instead of clearing.
3252 */
3253 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
3254 } else {
3255 /*
3256 * But submitting the same page twice in a row to
3257 * splice() - or others? - can result in confusion:
3258 * so don't attempt that optimization on pipes etc.
3259 */
3260 ret = iov_iter_zero(nr, to);
3261 }
3262
3263 retval += ret;
3264 iocb->ki_pos += ret;
3265
3266 if (!iov_iter_count(to))
3267 break;
3268 if (ret < nr) {
3269 error = -EFAULT;
3270 break;
3271 }
3272 cond_resched();
3273 }
3274
3275 file_accessed(file);
3276 return retval ? retval : error;
3277 }
3278
shmem_file_write_iter(struct kiocb * iocb,struct iov_iter * from)3279 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3280 {
3281 struct file *file = iocb->ki_filp;
3282 struct inode *inode = file->f_mapping->host;
3283 ssize_t ret;
3284
3285 inode_lock(inode);
3286 ret = generic_write_checks(iocb, from);
3287 if (ret <= 0)
3288 goto unlock;
3289 ret = file_remove_privs(file);
3290 if (ret)
3291 goto unlock;
3292 ret = file_update_time(file);
3293 if (ret)
3294 goto unlock;
3295 ret = generic_perform_write(iocb, from);
3296 unlock:
3297 inode_unlock(inode);
3298 return ret;
3299 }
3300
zero_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3301 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
3302 struct pipe_buffer *buf)
3303 {
3304 return true;
3305 }
3306
zero_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3307 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
3308 struct pipe_buffer *buf)
3309 {
3310 }
3311
zero_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3312 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
3313 struct pipe_buffer *buf)
3314 {
3315 return false;
3316 }
3317
3318 static const struct pipe_buf_operations zero_pipe_buf_ops = {
3319 .release = zero_pipe_buf_release,
3320 .try_steal = zero_pipe_buf_try_steal,
3321 .get = zero_pipe_buf_get,
3322 };
3323
splice_zeropage_into_pipe(struct pipe_inode_info * pipe,loff_t fpos,size_t size)3324 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
3325 loff_t fpos, size_t size)
3326 {
3327 size_t offset = fpos & ~PAGE_MASK;
3328
3329 size = min_t(size_t, size, PAGE_SIZE - offset);
3330
3331 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
3332 struct pipe_buffer *buf = pipe_head_buf(pipe);
3333
3334 *buf = (struct pipe_buffer) {
3335 .ops = &zero_pipe_buf_ops,
3336 .page = ZERO_PAGE(0),
3337 .offset = offset,
3338 .len = size,
3339 };
3340 pipe->head++;
3341 }
3342
3343 return size;
3344 }
3345
shmem_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)3346 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
3347 struct pipe_inode_info *pipe,
3348 size_t len, unsigned int flags)
3349 {
3350 struct inode *inode = file_inode(in);
3351 struct address_space *mapping = inode->i_mapping;
3352 struct folio *folio = NULL;
3353 size_t total_spliced = 0, used, npages, n, part;
3354 loff_t isize;
3355 int error = 0;
3356
3357 /* Work out how much data we can actually add into the pipe */
3358 used = pipe_occupancy(pipe->head, pipe->tail);
3359 npages = max_t(ssize_t, pipe->max_usage - used, 0);
3360 len = min_t(size_t, len, npages * PAGE_SIZE);
3361
3362 do {
3363 bool fallback_page_splice = false;
3364 struct page *page = NULL;
3365 pgoff_t index;
3366 size_t size;
3367
3368 if (*ppos >= i_size_read(inode))
3369 break;
3370
3371 index = *ppos >> PAGE_SHIFT;
3372 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3373 if (error) {
3374 if (error == -EINVAL)
3375 error = 0;
3376 break;
3377 }
3378 if (folio) {
3379 folio_unlock(folio);
3380
3381 page = folio_file_page(folio, index);
3382 if (PageHWPoison(page)) {
3383 error = -EIO;
3384 break;
3385 }
3386
3387 if (folio_test_large(folio) &&
3388 folio_test_has_hwpoisoned(folio))
3389 fallback_page_splice = true;
3390 }
3391
3392 /*
3393 * i_size must be checked after we know the pages are Uptodate.
3394 *
3395 * Checking i_size after the check allows us to calculate
3396 * the correct value for "nr", which means the zero-filled
3397 * part of the page is not copied back to userspace (unless
3398 * another truncate extends the file - this is desired though).
3399 */
3400 isize = i_size_read(inode);
3401 if (unlikely(*ppos >= isize))
3402 break;
3403 /*
3404 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned
3405 * pages.
3406 */
3407 size = len;
3408 if (unlikely(fallback_page_splice)) {
3409 size_t offset = *ppos & ~PAGE_MASK;
3410
3411 size = umin(size, PAGE_SIZE - offset);
3412 }
3413 part = min_t(loff_t, isize - *ppos, size);
3414
3415 if (folio) {
3416 /*
3417 * If users can be writing to this page using arbitrary
3418 * virtual addresses, take care about potential aliasing
3419 * before reading the page on the kernel side.
3420 */
3421 if (mapping_writably_mapped(mapping)) {
3422 if (likely(!fallback_page_splice))
3423 flush_dcache_folio(folio);
3424 else
3425 flush_dcache_page(page);
3426 }
3427 folio_mark_accessed(folio);
3428 /*
3429 * Ok, we have the page, and it's up-to-date, so we can
3430 * now splice it into the pipe.
3431 */
3432 n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3433 folio_put(folio);
3434 folio = NULL;
3435 } else {
3436 n = splice_zeropage_into_pipe(pipe, *ppos, part);
3437 }
3438
3439 if (!n)
3440 break;
3441 len -= n;
3442 total_spliced += n;
3443 *ppos += n;
3444 in->f_ra.prev_pos = *ppos;
3445 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
3446 break;
3447
3448 cond_resched();
3449 } while (len);
3450
3451 if (folio)
3452 folio_put(folio);
3453
3454 file_accessed(in);
3455 return total_spliced ? total_spliced : error;
3456 }
3457
shmem_file_llseek(struct file * file,loff_t offset,int whence)3458 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3459 {
3460 struct address_space *mapping = file->f_mapping;
3461 struct inode *inode = mapping->host;
3462
3463 if (whence != SEEK_DATA && whence != SEEK_HOLE)
3464 return generic_file_llseek_size(file, offset, whence,
3465 MAX_LFS_FILESIZE, i_size_read(inode));
3466 if (offset < 0)
3467 return -ENXIO;
3468
3469 inode_lock(inode);
3470 /* We're holding i_rwsem so we can access i_size directly */
3471 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3472 if (offset >= 0)
3473 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3474 inode_unlock(inode);
3475 return offset;
3476 }
3477
shmem_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3478 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3479 loff_t len)
3480 {
3481 struct inode *inode = file_inode(file);
3482 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3483 struct shmem_inode_info *info = SHMEM_I(inode);
3484 struct shmem_falloc shmem_falloc;
3485 pgoff_t start, index, end, undo_fallocend;
3486 int error;
3487
3488 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3489 return -EOPNOTSUPP;
3490
3491 inode_lock(inode);
3492
3493 if (mode & FALLOC_FL_PUNCH_HOLE) {
3494 struct address_space *mapping = file->f_mapping;
3495 loff_t unmap_start = round_up(offset, PAGE_SIZE);
3496 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3497 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3498
3499 /* protected by i_rwsem */
3500 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3501 error = -EPERM;
3502 goto out;
3503 }
3504
3505 shmem_falloc.waitq = &shmem_falloc_waitq;
3506 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3507 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3508 spin_lock(&inode->i_lock);
3509 inode->i_private = &shmem_falloc;
3510 spin_unlock(&inode->i_lock);
3511
3512 if ((u64)unmap_end > (u64)unmap_start)
3513 unmap_mapping_range(mapping, unmap_start,
3514 1 + unmap_end - unmap_start, 0);
3515 shmem_truncate_range(inode, offset, offset + len - 1);
3516 /* No need to unmap again: hole-punching leaves COWed pages */
3517
3518 spin_lock(&inode->i_lock);
3519 inode->i_private = NULL;
3520 wake_up_all(&shmem_falloc_waitq);
3521 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3522 spin_unlock(&inode->i_lock);
3523 error = 0;
3524 goto out;
3525 }
3526
3527 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3528 error = inode_newsize_ok(inode, offset + len);
3529 if (error)
3530 goto out;
3531
3532 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3533 error = -EPERM;
3534 goto out;
3535 }
3536
3537 start = offset >> PAGE_SHIFT;
3538 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3539 /* Try to avoid a swapstorm if len is impossible to satisfy */
3540 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3541 error = -ENOSPC;
3542 goto out;
3543 }
3544
3545 shmem_falloc.waitq = NULL;
3546 shmem_falloc.start = start;
3547 shmem_falloc.next = start;
3548 shmem_falloc.nr_falloced = 0;
3549 shmem_falloc.nr_unswapped = 0;
3550 spin_lock(&inode->i_lock);
3551 inode->i_private = &shmem_falloc;
3552 spin_unlock(&inode->i_lock);
3553
3554 /*
3555 * info->fallocend is only relevant when huge pages might be
3556 * involved: to prevent split_huge_page() freeing fallocated
3557 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3558 */
3559 undo_fallocend = info->fallocend;
3560 if (info->fallocend < end)
3561 info->fallocend = end;
3562
3563 for (index = start; index < end; ) {
3564 struct folio *folio;
3565
3566 /*
3567 * Check for fatal signal so that we abort early in OOM
3568 * situations. We don't want to abort in case of non-fatal
3569 * signals as large fallocate can take noticeable time and
3570 * e.g. periodic timers may result in fallocate constantly
3571 * restarting.
3572 */
3573 if (fatal_signal_pending(current))
3574 error = -EINTR;
3575 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3576 error = -ENOMEM;
3577 else
3578 error = shmem_get_folio(inode, index, offset + len,
3579 &folio, SGP_FALLOC);
3580 if (error) {
3581 info->fallocend = undo_fallocend;
3582 /* Remove the !uptodate folios we added */
3583 if (index > start) {
3584 shmem_undo_range(inode,
3585 (loff_t)start << PAGE_SHIFT,
3586 ((loff_t)index << PAGE_SHIFT) - 1, true);
3587 }
3588 goto undone;
3589 }
3590
3591 /*
3592 * Here is a more important optimization than it appears:
3593 * a second SGP_FALLOC on the same large folio will clear it,
3594 * making it uptodate and un-undoable if we fail later.
3595 */
3596 index = folio_next_index(folio);
3597 /* Beware 32-bit wraparound */
3598 if (!index)
3599 index--;
3600
3601 /*
3602 * Inform shmem_writepage() how far we have reached.
3603 * No need for lock or barrier: we have the page lock.
3604 */
3605 if (!folio_test_uptodate(folio))
3606 shmem_falloc.nr_falloced += index - shmem_falloc.next;
3607 shmem_falloc.next = index;
3608
3609 /*
3610 * If !uptodate, leave it that way so that freeable folios
3611 * can be recognized if we need to rollback on error later.
3612 * But mark it dirty so that memory pressure will swap rather
3613 * than free the folios we are allocating (and SGP_CACHE folios
3614 * might still be clean: we now need to mark those dirty too).
3615 */
3616 folio_mark_dirty(folio);
3617 folio_unlock(folio);
3618 folio_put(folio);
3619 cond_resched();
3620 }
3621
3622 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3623 i_size_write(inode, offset + len);
3624 undone:
3625 spin_lock(&inode->i_lock);
3626 inode->i_private = NULL;
3627 spin_unlock(&inode->i_lock);
3628 out:
3629 if (!error)
3630 file_modified(file);
3631 inode_unlock(inode);
3632 return error;
3633 }
3634
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)3635 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3636 {
3637 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3638
3639 buf->f_type = TMPFS_MAGIC;
3640 buf->f_bsize = PAGE_SIZE;
3641 buf->f_namelen = NAME_MAX;
3642 if (sbinfo->max_blocks) {
3643 buf->f_blocks = sbinfo->max_blocks;
3644 buf->f_bavail =
3645 buf->f_bfree = sbinfo->max_blocks -
3646 percpu_counter_sum(&sbinfo->used_blocks);
3647 }
3648 if (sbinfo->max_inodes) {
3649 buf->f_files = sbinfo->max_inodes;
3650 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3651 }
3652 /* else leave those fields 0 like simple_statfs */
3653
3654 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3655
3656 return 0;
3657 }
3658
3659 /*
3660 * File creation. Allocate an inode, and we're done..
3661 */
3662 static int
shmem_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3663 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3664 struct dentry *dentry, umode_t mode, dev_t dev)
3665 {
3666 struct inode *inode;
3667 int error;
3668
3669 if (!generic_ci_validate_strict_name(dir, &dentry->d_name))
3670 return -EINVAL;
3671
3672 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3673 if (IS_ERR(inode))
3674 return PTR_ERR(inode);
3675
3676 error = simple_acl_create(dir, inode);
3677 if (error)
3678 goto out_iput;
3679 error = security_inode_init_security(inode, dir, &dentry->d_name,
3680 shmem_initxattrs, NULL);
3681 if (error && error != -EOPNOTSUPP)
3682 goto out_iput;
3683
3684 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3685 if (error)
3686 goto out_iput;
3687
3688 dir->i_size += BOGO_DIRENT_SIZE;
3689 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3690 inode_inc_iversion(dir);
3691
3692 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3693 d_add(dentry, inode);
3694 else
3695 d_instantiate(dentry, inode);
3696
3697 dget(dentry); /* Extra count - pin the dentry in core */
3698 return error;
3699
3700 out_iput:
3701 iput(inode);
3702 return error;
3703 }
3704
3705 static int
shmem_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)3706 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3707 struct file *file, umode_t mode)
3708 {
3709 struct inode *inode;
3710 int error;
3711
3712 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3713 if (IS_ERR(inode)) {
3714 error = PTR_ERR(inode);
3715 goto err_out;
3716 }
3717 error = security_inode_init_security(inode, dir, NULL,
3718 shmem_initxattrs, NULL);
3719 if (error && error != -EOPNOTSUPP)
3720 goto out_iput;
3721 error = simple_acl_create(dir, inode);
3722 if (error)
3723 goto out_iput;
3724 d_tmpfile(file, inode);
3725
3726 err_out:
3727 return finish_open_simple(file, error);
3728 out_iput:
3729 iput(inode);
3730 return error;
3731 }
3732
shmem_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)3733 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3734 struct dentry *dentry, umode_t mode)
3735 {
3736 int error;
3737
3738 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3739 if (error)
3740 return error;
3741 inc_nlink(dir);
3742 return 0;
3743 }
3744
shmem_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)3745 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3746 struct dentry *dentry, umode_t mode, bool excl)
3747 {
3748 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3749 }
3750
3751 /*
3752 * Link a file..
3753 */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)3754 static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3755 struct dentry *dentry)
3756 {
3757 struct inode *inode = d_inode(old_dentry);
3758 int ret = 0;
3759
3760 /*
3761 * No ordinary (disk based) filesystem counts links as inodes;
3762 * but each new link needs a new dentry, pinning lowmem, and
3763 * tmpfs dentries cannot be pruned until they are unlinked.
3764 * But if an O_TMPFILE file is linked into the tmpfs, the
3765 * first link must skip that, to get the accounting right.
3766 */
3767 if (inode->i_nlink) {
3768 ret = shmem_reserve_inode(inode->i_sb, NULL);
3769 if (ret)
3770 goto out;
3771 }
3772
3773 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3774 if (ret) {
3775 if (inode->i_nlink)
3776 shmem_free_inode(inode->i_sb, 0);
3777 goto out;
3778 }
3779
3780 dir->i_size += BOGO_DIRENT_SIZE;
3781 inode_set_mtime_to_ts(dir,
3782 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3783 inode_inc_iversion(dir);
3784 inc_nlink(inode);
3785 ihold(inode); /* New dentry reference */
3786 dget(dentry); /* Extra pinning count for the created dentry */
3787 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3788 d_add(dentry, inode);
3789 else
3790 d_instantiate(dentry, inode);
3791 out:
3792 return ret;
3793 }
3794
shmem_unlink(struct inode * dir,struct dentry * dentry)3795 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3796 {
3797 struct inode *inode = d_inode(dentry);
3798
3799 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3800 shmem_free_inode(inode->i_sb, 0);
3801
3802 simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3803
3804 dir->i_size -= BOGO_DIRENT_SIZE;
3805 inode_set_mtime_to_ts(dir,
3806 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3807 inode_inc_iversion(dir);
3808 drop_nlink(inode);
3809 dput(dentry); /* Undo the count from "create" - does all the work */
3810
3811 /*
3812 * For now, VFS can't deal with case-insensitive negative dentries, so
3813 * we invalidate them
3814 */
3815 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3816 d_invalidate(dentry);
3817
3818 return 0;
3819 }
3820
shmem_rmdir(struct inode * dir,struct dentry * dentry)3821 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3822 {
3823 if (!simple_offset_empty(dentry))
3824 return -ENOTEMPTY;
3825
3826 drop_nlink(d_inode(dentry));
3827 drop_nlink(dir);
3828 return shmem_unlink(dir, dentry);
3829 }
3830
shmem_whiteout(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry)3831 static int shmem_whiteout(struct mnt_idmap *idmap,
3832 struct inode *old_dir, struct dentry *old_dentry)
3833 {
3834 struct dentry *whiteout;
3835 int error;
3836
3837 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3838 if (!whiteout)
3839 return -ENOMEM;
3840
3841 error = shmem_mknod(idmap, old_dir, whiteout,
3842 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3843 dput(whiteout);
3844 if (error)
3845 return error;
3846
3847 /*
3848 * Cheat and hash the whiteout while the old dentry is still in
3849 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3850 *
3851 * d_lookup() will consistently find one of them at this point,
3852 * not sure which one, but that isn't even important.
3853 */
3854 d_rehash(whiteout);
3855 return 0;
3856 }
3857
3858 /*
3859 * The VFS layer already does all the dentry stuff for rename,
3860 * we just have to decrement the usage count for the target if
3861 * it exists so that the VFS layer correctly free's it when it
3862 * gets overwritten.
3863 */
shmem_rename2(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)3864 static int shmem_rename2(struct mnt_idmap *idmap,
3865 struct inode *old_dir, struct dentry *old_dentry,
3866 struct inode *new_dir, struct dentry *new_dentry,
3867 unsigned int flags)
3868 {
3869 struct inode *inode = d_inode(old_dentry);
3870 int they_are_dirs = S_ISDIR(inode->i_mode);
3871 int error;
3872
3873 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3874 return -EINVAL;
3875
3876 if (flags & RENAME_EXCHANGE)
3877 return simple_offset_rename_exchange(old_dir, old_dentry,
3878 new_dir, new_dentry);
3879
3880 if (!simple_offset_empty(new_dentry))
3881 return -ENOTEMPTY;
3882
3883 if (flags & RENAME_WHITEOUT) {
3884 error = shmem_whiteout(idmap, old_dir, old_dentry);
3885 if (error)
3886 return error;
3887 }
3888
3889 error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry);
3890 if (error)
3891 return error;
3892
3893 if (d_really_is_positive(new_dentry)) {
3894 (void) shmem_unlink(new_dir, new_dentry);
3895 if (they_are_dirs) {
3896 drop_nlink(d_inode(new_dentry));
3897 drop_nlink(old_dir);
3898 }
3899 } else if (they_are_dirs) {
3900 drop_nlink(old_dir);
3901 inc_nlink(new_dir);
3902 }
3903
3904 old_dir->i_size -= BOGO_DIRENT_SIZE;
3905 new_dir->i_size += BOGO_DIRENT_SIZE;
3906 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
3907 inode_inc_iversion(old_dir);
3908 inode_inc_iversion(new_dir);
3909 return 0;
3910 }
3911
shmem_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)3912 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3913 struct dentry *dentry, const char *symname)
3914 {
3915 int error;
3916 int len;
3917 struct inode *inode;
3918 struct folio *folio;
3919
3920 len = strlen(symname) + 1;
3921 if (len > PAGE_SIZE)
3922 return -ENAMETOOLONG;
3923
3924 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3925 VM_NORESERVE);
3926 if (IS_ERR(inode))
3927 return PTR_ERR(inode);
3928
3929 error = security_inode_init_security(inode, dir, &dentry->d_name,
3930 shmem_initxattrs, NULL);
3931 if (error && error != -EOPNOTSUPP)
3932 goto out_iput;
3933
3934 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3935 if (error)
3936 goto out_iput;
3937
3938 inode->i_size = len-1;
3939 if (len <= SHORT_SYMLINK_LEN) {
3940 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3941 if (!inode->i_link) {
3942 error = -ENOMEM;
3943 goto out_remove_offset;
3944 }
3945 inode->i_op = &shmem_short_symlink_operations;
3946 } else {
3947 inode_nohighmem(inode);
3948 inode->i_mapping->a_ops = &shmem_aops;
3949 error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE);
3950 if (error)
3951 goto out_remove_offset;
3952 inode->i_op = &shmem_symlink_inode_operations;
3953 memcpy(folio_address(folio), symname, len);
3954 folio_mark_uptodate(folio);
3955 folio_mark_dirty(folio);
3956 folio_unlock(folio);
3957 folio_put(folio);
3958 }
3959 dir->i_size += BOGO_DIRENT_SIZE;
3960 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3961 inode_inc_iversion(dir);
3962 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3963 d_add(dentry, inode);
3964 else
3965 d_instantiate(dentry, inode);
3966 dget(dentry);
3967 return 0;
3968
3969 out_remove_offset:
3970 simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3971 out_iput:
3972 iput(inode);
3973 return error;
3974 }
3975
shmem_put_link(void * arg)3976 static void shmem_put_link(void *arg)
3977 {
3978 folio_mark_accessed(arg);
3979 folio_put(arg);
3980 }
3981
shmem_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)3982 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
3983 struct delayed_call *done)
3984 {
3985 struct folio *folio = NULL;
3986 int error;
3987
3988 if (!dentry) {
3989 folio = filemap_get_folio(inode->i_mapping, 0);
3990 if (IS_ERR(folio))
3991 return ERR_PTR(-ECHILD);
3992 if (PageHWPoison(folio_page(folio, 0)) ||
3993 !folio_test_uptodate(folio)) {
3994 folio_put(folio);
3995 return ERR_PTR(-ECHILD);
3996 }
3997 } else {
3998 error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ);
3999 if (error)
4000 return ERR_PTR(error);
4001 if (!folio)
4002 return ERR_PTR(-ECHILD);
4003 if (PageHWPoison(folio_page(folio, 0))) {
4004 folio_unlock(folio);
4005 folio_put(folio);
4006 return ERR_PTR(-ECHILD);
4007 }
4008 folio_unlock(folio);
4009 }
4010 set_delayed_call(done, shmem_put_link, folio);
4011 return folio_address(folio);
4012 }
4013
4014 #ifdef CONFIG_TMPFS_XATTR
4015
shmem_fileattr_get(struct dentry * dentry,struct fileattr * fa)4016 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
4017 {
4018 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4019
4020 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
4021
4022 return 0;
4023 }
4024
shmem_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct fileattr * fa)4025 static int shmem_fileattr_set(struct mnt_idmap *idmap,
4026 struct dentry *dentry, struct fileattr *fa)
4027 {
4028 struct inode *inode = d_inode(dentry);
4029 struct shmem_inode_info *info = SHMEM_I(inode);
4030 int ret, flags;
4031
4032 if (fileattr_has_fsx(fa))
4033 return -EOPNOTSUPP;
4034 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
4035 return -EOPNOTSUPP;
4036
4037 flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
4038 (fa->flags & SHMEM_FL_USER_MODIFIABLE);
4039
4040 ret = shmem_set_inode_flags(inode, flags, dentry);
4041
4042 if (ret)
4043 return ret;
4044
4045 info->fsflags = flags;
4046
4047 inode_set_ctime_current(inode);
4048 inode_inc_iversion(inode);
4049 return 0;
4050 }
4051
4052 /*
4053 * Superblocks without xattr inode operations may get some security.* xattr
4054 * support from the LSM "for free". As soon as we have any other xattrs
4055 * like ACLs, we also need to implement the security.* handlers at
4056 * filesystem level, though.
4057 */
4058
4059 /*
4060 * Callback for security_inode_init_security() for acquiring xattrs.
4061 */
shmem_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)4062 static int shmem_initxattrs(struct inode *inode,
4063 const struct xattr *xattr_array, void *fs_info)
4064 {
4065 struct shmem_inode_info *info = SHMEM_I(inode);
4066 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4067 const struct xattr *xattr;
4068 struct simple_xattr *new_xattr;
4069 size_t ispace = 0;
4070 size_t len;
4071
4072 if (sbinfo->max_inodes) {
4073 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4074 ispace += simple_xattr_space(xattr->name,
4075 xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
4076 }
4077 if (ispace) {
4078 raw_spin_lock(&sbinfo->stat_lock);
4079 if (sbinfo->free_ispace < ispace)
4080 ispace = 0;
4081 else
4082 sbinfo->free_ispace -= ispace;
4083 raw_spin_unlock(&sbinfo->stat_lock);
4084 if (!ispace)
4085 return -ENOSPC;
4086 }
4087 }
4088
4089 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4090 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
4091 if (!new_xattr)
4092 break;
4093
4094 len = strlen(xattr->name) + 1;
4095 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
4096 GFP_KERNEL_ACCOUNT);
4097 if (!new_xattr->name) {
4098 kvfree(new_xattr);
4099 break;
4100 }
4101
4102 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
4103 XATTR_SECURITY_PREFIX_LEN);
4104 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
4105 xattr->name, len);
4106
4107 simple_xattr_add(&info->xattrs, new_xattr);
4108 }
4109
4110 if (xattr->name != NULL) {
4111 if (ispace) {
4112 raw_spin_lock(&sbinfo->stat_lock);
4113 sbinfo->free_ispace += ispace;
4114 raw_spin_unlock(&sbinfo->stat_lock);
4115 }
4116 simple_xattrs_free(&info->xattrs, NULL);
4117 return -ENOMEM;
4118 }
4119
4120 return 0;
4121 }
4122
shmem_xattr_handler_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,void * buffer,size_t size)4123 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
4124 struct dentry *unused, struct inode *inode,
4125 const char *name, void *buffer, size_t size)
4126 {
4127 struct shmem_inode_info *info = SHMEM_I(inode);
4128
4129 name = xattr_full_name(handler, name);
4130 return simple_xattr_get(&info->xattrs, name, buffer, size);
4131 }
4132
shmem_xattr_handler_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * unused,struct inode * inode,const char * name,const void * value,size_t size,int flags)4133 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
4134 struct mnt_idmap *idmap,
4135 struct dentry *unused, struct inode *inode,
4136 const char *name, const void *value,
4137 size_t size, int flags)
4138 {
4139 struct shmem_inode_info *info = SHMEM_I(inode);
4140 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4141 struct simple_xattr *old_xattr;
4142 size_t ispace = 0;
4143
4144 name = xattr_full_name(handler, name);
4145 if (value && sbinfo->max_inodes) {
4146 ispace = simple_xattr_space(name, size);
4147 raw_spin_lock(&sbinfo->stat_lock);
4148 if (sbinfo->free_ispace < ispace)
4149 ispace = 0;
4150 else
4151 sbinfo->free_ispace -= ispace;
4152 raw_spin_unlock(&sbinfo->stat_lock);
4153 if (!ispace)
4154 return -ENOSPC;
4155 }
4156
4157 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
4158 if (!IS_ERR(old_xattr)) {
4159 ispace = 0;
4160 if (old_xattr && sbinfo->max_inodes)
4161 ispace = simple_xattr_space(old_xattr->name,
4162 old_xattr->size);
4163 simple_xattr_free(old_xattr);
4164 old_xattr = NULL;
4165 inode_set_ctime_current(inode);
4166 inode_inc_iversion(inode);
4167 }
4168 if (ispace) {
4169 raw_spin_lock(&sbinfo->stat_lock);
4170 sbinfo->free_ispace += ispace;
4171 raw_spin_unlock(&sbinfo->stat_lock);
4172 }
4173 return PTR_ERR(old_xattr);
4174 }
4175
4176 static const struct xattr_handler shmem_security_xattr_handler = {
4177 .prefix = XATTR_SECURITY_PREFIX,
4178 .get = shmem_xattr_handler_get,
4179 .set = shmem_xattr_handler_set,
4180 };
4181
4182 static const struct xattr_handler shmem_trusted_xattr_handler = {
4183 .prefix = XATTR_TRUSTED_PREFIX,
4184 .get = shmem_xattr_handler_get,
4185 .set = shmem_xattr_handler_set,
4186 };
4187
4188 static const struct xattr_handler shmem_user_xattr_handler = {
4189 .prefix = XATTR_USER_PREFIX,
4190 .get = shmem_xattr_handler_get,
4191 .set = shmem_xattr_handler_set,
4192 };
4193
4194 static const struct xattr_handler * const shmem_xattr_handlers[] = {
4195 &shmem_security_xattr_handler,
4196 &shmem_trusted_xattr_handler,
4197 &shmem_user_xattr_handler,
4198 NULL
4199 };
4200
shmem_listxattr(struct dentry * dentry,char * buffer,size_t size)4201 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
4202 {
4203 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4204 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
4205 }
4206 #endif /* CONFIG_TMPFS_XATTR */
4207
4208 static const struct inode_operations shmem_short_symlink_operations = {
4209 .getattr = shmem_getattr,
4210 .setattr = shmem_setattr,
4211 .get_link = simple_get_link,
4212 #ifdef CONFIG_TMPFS_XATTR
4213 .listxattr = shmem_listxattr,
4214 #endif
4215 };
4216
4217 static const struct inode_operations shmem_symlink_inode_operations = {
4218 .getattr = shmem_getattr,
4219 .setattr = shmem_setattr,
4220 .get_link = shmem_get_link,
4221 #ifdef CONFIG_TMPFS_XATTR
4222 .listxattr = shmem_listxattr,
4223 #endif
4224 };
4225
shmem_get_parent(struct dentry * child)4226 static struct dentry *shmem_get_parent(struct dentry *child)
4227 {
4228 return ERR_PTR(-ESTALE);
4229 }
4230
shmem_match(struct inode * ino,void * vfh)4231 static int shmem_match(struct inode *ino, void *vfh)
4232 {
4233 __u32 *fh = vfh;
4234 __u64 inum = fh[2];
4235 inum = (inum << 32) | fh[1];
4236 return ino->i_ino == inum && fh[0] == ino->i_generation;
4237 }
4238
4239 /* Find any alias of inode, but prefer a hashed alias */
shmem_find_alias(struct inode * inode)4240 static struct dentry *shmem_find_alias(struct inode *inode)
4241 {
4242 struct dentry *alias = d_find_alias(inode);
4243
4244 return alias ?: d_find_any_alias(inode);
4245 }
4246
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)4247 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
4248 struct fid *fid, int fh_len, int fh_type)
4249 {
4250 struct inode *inode;
4251 struct dentry *dentry = NULL;
4252 u64 inum;
4253
4254 if (fh_len < 3)
4255 return NULL;
4256
4257 inum = fid->raw[2];
4258 inum = (inum << 32) | fid->raw[1];
4259
4260 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
4261 shmem_match, fid->raw);
4262 if (inode) {
4263 dentry = shmem_find_alias(inode);
4264 iput(inode);
4265 }
4266
4267 return dentry;
4268 }
4269
shmem_encode_fh(struct inode * inode,__u32 * fh,int * len,struct inode * parent)4270 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
4271 struct inode *parent)
4272 {
4273 if (*len < 3) {
4274 *len = 3;
4275 return FILEID_INVALID;
4276 }
4277
4278 if (inode_unhashed(inode)) {
4279 /* Unfortunately insert_inode_hash is not idempotent,
4280 * so as we hash inodes here rather than at creation
4281 * time, we need a lock to ensure we only try
4282 * to do it once
4283 */
4284 static DEFINE_SPINLOCK(lock);
4285 spin_lock(&lock);
4286 if (inode_unhashed(inode))
4287 __insert_inode_hash(inode,
4288 inode->i_ino + inode->i_generation);
4289 spin_unlock(&lock);
4290 }
4291
4292 fh[0] = inode->i_generation;
4293 fh[1] = inode->i_ino;
4294 fh[2] = ((__u64)inode->i_ino) >> 32;
4295
4296 *len = 3;
4297 return 1;
4298 }
4299
4300 static const struct export_operations shmem_export_ops = {
4301 .get_parent = shmem_get_parent,
4302 .encode_fh = shmem_encode_fh,
4303 .fh_to_dentry = shmem_fh_to_dentry,
4304 };
4305
4306 enum shmem_param {
4307 Opt_gid,
4308 Opt_huge,
4309 Opt_mode,
4310 Opt_mpol,
4311 Opt_nr_blocks,
4312 Opt_nr_inodes,
4313 Opt_size,
4314 Opt_uid,
4315 Opt_inode32,
4316 Opt_inode64,
4317 Opt_noswap,
4318 Opt_quota,
4319 Opt_usrquota,
4320 Opt_grpquota,
4321 Opt_usrquota_block_hardlimit,
4322 Opt_usrquota_inode_hardlimit,
4323 Opt_grpquota_block_hardlimit,
4324 Opt_grpquota_inode_hardlimit,
4325 Opt_casefold_version,
4326 Opt_casefold,
4327 Opt_strict_encoding,
4328 };
4329
4330 static const struct constant_table shmem_param_enums_huge[] = {
4331 {"never", SHMEM_HUGE_NEVER },
4332 {"always", SHMEM_HUGE_ALWAYS },
4333 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
4334 {"advise", SHMEM_HUGE_ADVISE },
4335 {}
4336 };
4337
4338 const struct fs_parameter_spec shmem_fs_parameters[] = {
4339 fsparam_gid ("gid", Opt_gid),
4340 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
4341 fsparam_u32oct("mode", Opt_mode),
4342 fsparam_string("mpol", Opt_mpol),
4343 fsparam_string("nr_blocks", Opt_nr_blocks),
4344 fsparam_string("nr_inodes", Opt_nr_inodes),
4345 fsparam_string("size", Opt_size),
4346 fsparam_uid ("uid", Opt_uid),
4347 fsparam_flag ("inode32", Opt_inode32),
4348 fsparam_flag ("inode64", Opt_inode64),
4349 fsparam_flag ("noswap", Opt_noswap),
4350 #ifdef CONFIG_TMPFS_QUOTA
4351 fsparam_flag ("quota", Opt_quota),
4352 fsparam_flag ("usrquota", Opt_usrquota),
4353 fsparam_flag ("grpquota", Opt_grpquota),
4354 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
4355 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
4356 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
4357 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
4358 #endif
4359 fsparam_string("casefold", Opt_casefold_version),
4360 fsparam_flag ("casefold", Opt_casefold),
4361 fsparam_flag ("strict_encoding", Opt_strict_encoding),
4362 {}
4363 };
4364
4365 #if IS_ENABLED(CONFIG_UNICODE)
shmem_parse_opt_casefold(struct fs_context * fc,struct fs_parameter * param,bool latest_version)4366 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4367 bool latest_version)
4368 {
4369 struct shmem_options *ctx = fc->fs_private;
4370 unsigned int version = UTF8_LATEST;
4371 struct unicode_map *encoding;
4372 char *version_str = param->string + 5;
4373
4374 if (!latest_version) {
4375 if (strncmp(param->string, "utf8-", 5))
4376 return invalfc(fc, "Only UTF-8 encodings are supported "
4377 "in the format: utf8-<version number>");
4378
4379 version = utf8_parse_version(version_str);
4380 if (version < 0)
4381 return invalfc(fc, "Invalid UTF-8 version: %s", version_str);
4382 }
4383
4384 encoding = utf8_load(version);
4385
4386 if (IS_ERR(encoding)) {
4387 return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n",
4388 unicode_major(version), unicode_minor(version),
4389 unicode_rev(version));
4390 }
4391
4392 pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n",
4393 unicode_major(version), unicode_minor(version), unicode_rev(version));
4394
4395 ctx->encoding = encoding;
4396
4397 return 0;
4398 }
4399 #else
shmem_parse_opt_casefold(struct fs_context * fc,struct fs_parameter * param,bool latest_version)4400 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4401 bool latest_version)
4402 {
4403 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4404 }
4405 #endif
4406
shmem_parse_one(struct fs_context * fc,struct fs_parameter * param)4407 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
4408 {
4409 struct shmem_options *ctx = fc->fs_private;
4410 struct fs_parse_result result;
4411 unsigned long long size;
4412 char *rest;
4413 int opt;
4414 kuid_t kuid;
4415 kgid_t kgid;
4416
4417 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
4418 if (opt < 0)
4419 return opt;
4420
4421 switch (opt) {
4422 case Opt_size:
4423 size = memparse(param->string, &rest);
4424 if (*rest == '%') {
4425 size <<= PAGE_SHIFT;
4426 size *= totalram_pages();
4427 do_div(size, 100);
4428 rest++;
4429 }
4430 if (*rest)
4431 goto bad_value;
4432 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
4433 ctx->seen |= SHMEM_SEEN_BLOCKS;
4434 break;
4435 case Opt_nr_blocks:
4436 ctx->blocks = memparse(param->string, &rest);
4437 if (*rest || ctx->blocks > LONG_MAX)
4438 goto bad_value;
4439 ctx->seen |= SHMEM_SEEN_BLOCKS;
4440 break;
4441 case Opt_nr_inodes:
4442 ctx->inodes = memparse(param->string, &rest);
4443 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
4444 goto bad_value;
4445 ctx->seen |= SHMEM_SEEN_INODES;
4446 break;
4447 case Opt_mode:
4448 ctx->mode = result.uint_32 & 07777;
4449 break;
4450 case Opt_uid:
4451 kuid = result.uid;
4452
4453 /*
4454 * The requested uid must be representable in the
4455 * filesystem's idmapping.
4456 */
4457 if (!kuid_has_mapping(fc->user_ns, kuid))
4458 goto bad_value;
4459
4460 ctx->uid = kuid;
4461 break;
4462 case Opt_gid:
4463 kgid = result.gid;
4464
4465 /*
4466 * The requested gid must be representable in the
4467 * filesystem's idmapping.
4468 */
4469 if (!kgid_has_mapping(fc->user_ns, kgid))
4470 goto bad_value;
4471
4472 ctx->gid = kgid;
4473 break;
4474 case Opt_huge:
4475 ctx->huge = result.uint_32;
4476 if (ctx->huge != SHMEM_HUGE_NEVER &&
4477 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4478 has_transparent_hugepage()))
4479 goto unsupported_parameter;
4480 ctx->seen |= SHMEM_SEEN_HUGE;
4481 break;
4482 case Opt_mpol:
4483 if (IS_ENABLED(CONFIG_NUMA)) {
4484 mpol_put(ctx->mpol);
4485 ctx->mpol = NULL;
4486 if (mpol_parse_str(param->string, &ctx->mpol))
4487 goto bad_value;
4488 break;
4489 }
4490 goto unsupported_parameter;
4491 case Opt_inode32:
4492 ctx->full_inums = false;
4493 ctx->seen |= SHMEM_SEEN_INUMS;
4494 break;
4495 case Opt_inode64:
4496 if (sizeof(ino_t) < 8) {
4497 return invalfc(fc,
4498 "Cannot use inode64 with <64bit inums in kernel\n");
4499 }
4500 ctx->full_inums = true;
4501 ctx->seen |= SHMEM_SEEN_INUMS;
4502 break;
4503 case Opt_noswap:
4504 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4505 return invalfc(fc,
4506 "Turning off swap in unprivileged tmpfs mounts unsupported");
4507 }
4508 ctx->noswap = true;
4509 ctx->seen |= SHMEM_SEEN_NOSWAP;
4510 break;
4511 case Opt_quota:
4512 if (fc->user_ns != &init_user_ns)
4513 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4514 ctx->seen |= SHMEM_SEEN_QUOTA;
4515 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4516 break;
4517 case Opt_usrquota:
4518 if (fc->user_ns != &init_user_ns)
4519 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4520 ctx->seen |= SHMEM_SEEN_QUOTA;
4521 ctx->quota_types |= QTYPE_MASK_USR;
4522 break;
4523 case Opt_grpquota:
4524 if (fc->user_ns != &init_user_ns)
4525 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4526 ctx->seen |= SHMEM_SEEN_QUOTA;
4527 ctx->quota_types |= QTYPE_MASK_GRP;
4528 break;
4529 case Opt_usrquota_block_hardlimit:
4530 size = memparse(param->string, &rest);
4531 if (*rest || !size)
4532 goto bad_value;
4533 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4534 return invalfc(fc,
4535 "User quota block hardlimit too large.");
4536 ctx->qlimits.usrquota_bhardlimit = size;
4537 break;
4538 case Opt_grpquota_block_hardlimit:
4539 size = memparse(param->string, &rest);
4540 if (*rest || !size)
4541 goto bad_value;
4542 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4543 return invalfc(fc,
4544 "Group quota block hardlimit too large.");
4545 ctx->qlimits.grpquota_bhardlimit = size;
4546 break;
4547 case Opt_usrquota_inode_hardlimit:
4548 size = memparse(param->string, &rest);
4549 if (*rest || !size)
4550 goto bad_value;
4551 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4552 return invalfc(fc,
4553 "User quota inode hardlimit too large.");
4554 ctx->qlimits.usrquota_ihardlimit = size;
4555 break;
4556 case Opt_grpquota_inode_hardlimit:
4557 size = memparse(param->string, &rest);
4558 if (*rest || !size)
4559 goto bad_value;
4560 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4561 return invalfc(fc,
4562 "Group quota inode hardlimit too large.");
4563 ctx->qlimits.grpquota_ihardlimit = size;
4564 break;
4565 case Opt_casefold_version:
4566 return shmem_parse_opt_casefold(fc, param, false);
4567 case Opt_casefold:
4568 return shmem_parse_opt_casefold(fc, param, true);
4569 case Opt_strict_encoding:
4570 #if IS_ENABLED(CONFIG_UNICODE)
4571 ctx->strict_encoding = true;
4572 break;
4573 #else
4574 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4575 #endif
4576 }
4577 return 0;
4578
4579 unsupported_parameter:
4580 return invalfc(fc, "Unsupported parameter '%s'", param->key);
4581 bad_value:
4582 return invalfc(fc, "Bad value for '%s'", param->key);
4583 }
4584
shmem_parse_options(struct fs_context * fc,void * data)4585 static int shmem_parse_options(struct fs_context *fc, void *data)
4586 {
4587 char *options = data;
4588
4589 if (options) {
4590 int err = security_sb_eat_lsm_opts(options, &fc->security);
4591 if (err)
4592 return err;
4593 }
4594
4595 while (options != NULL) {
4596 char *this_char = options;
4597 for (;;) {
4598 /*
4599 * NUL-terminate this option: unfortunately,
4600 * mount options form a comma-separated list,
4601 * but mpol's nodelist may also contain commas.
4602 */
4603 options = strchr(options, ',');
4604 if (options == NULL)
4605 break;
4606 options++;
4607 if (!isdigit(*options)) {
4608 options[-1] = '\0';
4609 break;
4610 }
4611 }
4612 if (*this_char) {
4613 char *value = strchr(this_char, '=');
4614 size_t len = 0;
4615 int err;
4616
4617 if (value) {
4618 *value++ = '\0';
4619 len = strlen(value);
4620 }
4621 err = vfs_parse_fs_string(fc, this_char, value, len);
4622 if (err < 0)
4623 return err;
4624 }
4625 }
4626 return 0;
4627 }
4628
4629 /*
4630 * Reconfigure a shmem filesystem.
4631 */
shmem_reconfigure(struct fs_context * fc)4632 static int shmem_reconfigure(struct fs_context *fc)
4633 {
4634 struct shmem_options *ctx = fc->fs_private;
4635 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4636 unsigned long used_isp;
4637 struct mempolicy *mpol = NULL;
4638 const char *err;
4639
4640 raw_spin_lock(&sbinfo->stat_lock);
4641 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4642
4643 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4644 if (!sbinfo->max_blocks) {
4645 err = "Cannot retroactively limit size";
4646 goto out;
4647 }
4648 if (percpu_counter_compare(&sbinfo->used_blocks,
4649 ctx->blocks) > 0) {
4650 err = "Too small a size for current use";
4651 goto out;
4652 }
4653 }
4654 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4655 if (!sbinfo->max_inodes) {
4656 err = "Cannot retroactively limit inodes";
4657 goto out;
4658 }
4659 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4660 err = "Too few inodes for current use";
4661 goto out;
4662 }
4663 }
4664
4665 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4666 sbinfo->next_ino > UINT_MAX) {
4667 err = "Current inum too high to switch to 32-bit inums";
4668 goto out;
4669 }
4670 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4671 err = "Cannot disable swap on remount";
4672 goto out;
4673 }
4674 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4675 err = "Cannot enable swap on remount if it was disabled on first mount";
4676 goto out;
4677 }
4678
4679 if (ctx->seen & SHMEM_SEEN_QUOTA &&
4680 !sb_any_quota_loaded(fc->root->d_sb)) {
4681 err = "Cannot enable quota on remount";
4682 goto out;
4683 }
4684
4685 #ifdef CONFIG_TMPFS_QUOTA
4686 #define CHANGED_LIMIT(name) \
4687 (ctx->qlimits.name## hardlimit && \
4688 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4689
4690 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4691 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4692 err = "Cannot change global quota limit on remount";
4693 goto out;
4694 }
4695 #endif /* CONFIG_TMPFS_QUOTA */
4696
4697 if (ctx->seen & SHMEM_SEEN_HUGE)
4698 sbinfo->huge = ctx->huge;
4699 if (ctx->seen & SHMEM_SEEN_INUMS)
4700 sbinfo->full_inums = ctx->full_inums;
4701 if (ctx->seen & SHMEM_SEEN_BLOCKS)
4702 sbinfo->max_blocks = ctx->blocks;
4703 if (ctx->seen & SHMEM_SEEN_INODES) {
4704 sbinfo->max_inodes = ctx->inodes;
4705 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4706 }
4707
4708 /*
4709 * Preserve previous mempolicy unless mpol remount option was specified.
4710 */
4711 if (ctx->mpol) {
4712 mpol = sbinfo->mpol;
4713 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
4714 ctx->mpol = NULL;
4715 }
4716
4717 if (ctx->noswap)
4718 sbinfo->noswap = true;
4719
4720 raw_spin_unlock(&sbinfo->stat_lock);
4721 mpol_put(mpol);
4722 return 0;
4723 out:
4724 raw_spin_unlock(&sbinfo->stat_lock);
4725 return invalfc(fc, "%s", err);
4726 }
4727
shmem_show_options(struct seq_file * seq,struct dentry * root)4728 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4729 {
4730 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4731 struct mempolicy *mpol;
4732
4733 if (sbinfo->max_blocks != shmem_default_max_blocks())
4734 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4735 if (sbinfo->max_inodes != shmem_default_max_inodes())
4736 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4737 if (sbinfo->mode != (0777 | S_ISVTX))
4738 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4739 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4740 seq_printf(seq, ",uid=%u",
4741 from_kuid_munged(&init_user_ns, sbinfo->uid));
4742 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4743 seq_printf(seq, ",gid=%u",
4744 from_kgid_munged(&init_user_ns, sbinfo->gid));
4745
4746 /*
4747 * Showing inode{64,32} might be useful even if it's the system default,
4748 * since then people don't have to resort to checking both here and
4749 * /proc/config.gz to confirm 64-bit inums were successfully applied
4750 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4751 *
4752 * We hide it when inode64 isn't the default and we are using 32-bit
4753 * inodes, since that probably just means the feature isn't even under
4754 * consideration.
4755 *
4756 * As such:
4757 *
4758 * +-----------------+-----------------+
4759 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
4760 * +------------------+-----------------+-----------------+
4761 * | full_inums=true | show | show |
4762 * | full_inums=false | show | hide |
4763 * +------------------+-----------------+-----------------+
4764 *
4765 */
4766 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4767 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4768 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4769 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4770 if (sbinfo->huge)
4771 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4772 #endif
4773 mpol = shmem_get_sbmpol(sbinfo);
4774 shmem_show_mpol(seq, mpol);
4775 mpol_put(mpol);
4776 if (sbinfo->noswap)
4777 seq_printf(seq, ",noswap");
4778 #ifdef CONFIG_TMPFS_QUOTA
4779 if (sb_has_quota_active(root->d_sb, USRQUOTA))
4780 seq_printf(seq, ",usrquota");
4781 if (sb_has_quota_active(root->d_sb, GRPQUOTA))
4782 seq_printf(seq, ",grpquota");
4783 if (sbinfo->qlimits.usrquota_bhardlimit)
4784 seq_printf(seq, ",usrquota_block_hardlimit=%lld",
4785 sbinfo->qlimits.usrquota_bhardlimit);
4786 if (sbinfo->qlimits.grpquota_bhardlimit)
4787 seq_printf(seq, ",grpquota_block_hardlimit=%lld",
4788 sbinfo->qlimits.grpquota_bhardlimit);
4789 if (sbinfo->qlimits.usrquota_ihardlimit)
4790 seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
4791 sbinfo->qlimits.usrquota_ihardlimit);
4792 if (sbinfo->qlimits.grpquota_ihardlimit)
4793 seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
4794 sbinfo->qlimits.grpquota_ihardlimit);
4795 #endif
4796 return 0;
4797 }
4798
4799 #endif /* CONFIG_TMPFS */
4800
shmem_put_super(struct super_block * sb)4801 static void shmem_put_super(struct super_block *sb)
4802 {
4803 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4804
4805 #if IS_ENABLED(CONFIG_UNICODE)
4806 if (sb->s_encoding)
4807 utf8_unload(sb->s_encoding);
4808 #endif
4809
4810 #ifdef CONFIG_TMPFS_QUOTA
4811 shmem_disable_quotas(sb);
4812 #endif
4813 free_percpu(sbinfo->ino_batch);
4814 percpu_counter_destroy(&sbinfo->used_blocks);
4815 mpol_put(sbinfo->mpol);
4816 kfree(sbinfo);
4817 sb->s_fs_info = NULL;
4818 }
4819
4820 #if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS)
4821 static const struct dentry_operations shmem_ci_dentry_ops = {
4822 .d_hash = generic_ci_d_hash,
4823 .d_compare = generic_ci_d_compare,
4824 .d_delete = always_delete_dentry,
4825 };
4826 #endif
4827
shmem_fill_super(struct super_block * sb,struct fs_context * fc)4828 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4829 {
4830 struct shmem_options *ctx = fc->fs_private;
4831 struct inode *inode;
4832 struct shmem_sb_info *sbinfo;
4833 int error = -ENOMEM;
4834
4835 /* Round up to L1_CACHE_BYTES to resist false sharing */
4836 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4837 L1_CACHE_BYTES), GFP_KERNEL);
4838 if (!sbinfo)
4839 return error;
4840
4841 sb->s_fs_info = sbinfo;
4842
4843 #ifdef CONFIG_TMPFS
4844 /*
4845 * Per default we only allow half of the physical ram per
4846 * tmpfs instance, limiting inodes to one per page of lowmem;
4847 * but the internal instance is left unlimited.
4848 */
4849 if (!(sb->s_flags & SB_KERNMOUNT)) {
4850 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
4851 ctx->blocks = shmem_default_max_blocks();
4852 if (!(ctx->seen & SHMEM_SEEN_INODES))
4853 ctx->inodes = shmem_default_max_inodes();
4854 if (!(ctx->seen & SHMEM_SEEN_INUMS))
4855 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
4856 sbinfo->noswap = ctx->noswap;
4857 } else {
4858 sb->s_flags |= SB_NOUSER;
4859 }
4860 sb->s_export_op = &shmem_export_ops;
4861 sb->s_flags |= SB_NOSEC | SB_I_VERSION;
4862
4863 #if IS_ENABLED(CONFIG_UNICODE)
4864 if (!ctx->encoding && ctx->strict_encoding) {
4865 pr_err("tmpfs: strict_encoding option without encoding is forbidden\n");
4866 error = -EINVAL;
4867 goto failed;
4868 }
4869
4870 if (ctx->encoding) {
4871 sb->s_encoding = ctx->encoding;
4872 sb->s_d_op = &shmem_ci_dentry_ops;
4873 if (ctx->strict_encoding)
4874 sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL;
4875 }
4876 #endif
4877
4878 #else
4879 sb->s_flags |= SB_NOUSER;
4880 #endif /* CONFIG_TMPFS */
4881 sbinfo->max_blocks = ctx->blocks;
4882 sbinfo->max_inodes = ctx->inodes;
4883 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
4884 if (sb->s_flags & SB_KERNMOUNT) {
4885 sbinfo->ino_batch = alloc_percpu(ino_t);
4886 if (!sbinfo->ino_batch)
4887 goto failed;
4888 }
4889 sbinfo->uid = ctx->uid;
4890 sbinfo->gid = ctx->gid;
4891 sbinfo->full_inums = ctx->full_inums;
4892 sbinfo->mode = ctx->mode;
4893 sbinfo->huge = ctx->huge;
4894 sbinfo->mpol = ctx->mpol;
4895 ctx->mpol = NULL;
4896
4897 raw_spin_lock_init(&sbinfo->stat_lock);
4898 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
4899 goto failed;
4900 spin_lock_init(&sbinfo->shrinklist_lock);
4901 INIT_LIST_HEAD(&sbinfo->shrinklist);
4902
4903 sb->s_maxbytes = MAX_LFS_FILESIZE;
4904 sb->s_blocksize = PAGE_SIZE;
4905 sb->s_blocksize_bits = PAGE_SHIFT;
4906 sb->s_magic = TMPFS_MAGIC;
4907 sb->s_op = &shmem_ops;
4908 sb->s_time_gran = 1;
4909 #ifdef CONFIG_TMPFS_XATTR
4910 sb->s_xattr = shmem_xattr_handlers;
4911 #endif
4912 #ifdef CONFIG_TMPFS_POSIX_ACL
4913 sb->s_flags |= SB_POSIXACL;
4914 #endif
4915 uuid_t uuid;
4916 uuid_gen(&uuid);
4917 super_set_uuid(sb, uuid.b, sizeof(uuid));
4918
4919 #ifdef CONFIG_TMPFS_QUOTA
4920 if (ctx->seen & SHMEM_SEEN_QUOTA) {
4921 sb->dq_op = &shmem_quota_operations;
4922 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4923 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4924
4925 /* Copy the default limits from ctx into sbinfo */
4926 memcpy(&sbinfo->qlimits, &ctx->qlimits,
4927 sizeof(struct shmem_quota_limits));
4928
4929 if (shmem_enable_quotas(sb, ctx->quota_types))
4930 goto failed;
4931 }
4932 #endif /* CONFIG_TMPFS_QUOTA */
4933
4934 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
4935 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
4936 if (IS_ERR(inode)) {
4937 error = PTR_ERR(inode);
4938 goto failed;
4939 }
4940 inode->i_uid = sbinfo->uid;
4941 inode->i_gid = sbinfo->gid;
4942 sb->s_root = d_make_root(inode);
4943 if (!sb->s_root)
4944 goto failed;
4945 return 0;
4946
4947 failed:
4948 shmem_put_super(sb);
4949 return error;
4950 }
4951
shmem_get_tree(struct fs_context * fc)4952 static int shmem_get_tree(struct fs_context *fc)
4953 {
4954 return get_tree_nodev(fc, shmem_fill_super);
4955 }
4956
shmem_free_fc(struct fs_context * fc)4957 static void shmem_free_fc(struct fs_context *fc)
4958 {
4959 struct shmem_options *ctx = fc->fs_private;
4960
4961 if (ctx) {
4962 mpol_put(ctx->mpol);
4963 kfree(ctx);
4964 }
4965 }
4966
4967 static const struct fs_context_operations shmem_fs_context_ops = {
4968 .free = shmem_free_fc,
4969 .get_tree = shmem_get_tree,
4970 #ifdef CONFIG_TMPFS
4971 .parse_monolithic = shmem_parse_options,
4972 .parse_param = shmem_parse_one,
4973 .reconfigure = shmem_reconfigure,
4974 #endif
4975 };
4976
4977 static struct kmem_cache *shmem_inode_cachep __ro_after_init;
4978
shmem_alloc_inode(struct super_block * sb)4979 static struct inode *shmem_alloc_inode(struct super_block *sb)
4980 {
4981 struct shmem_inode_info *info;
4982 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
4983 if (!info)
4984 return NULL;
4985 return &info->vfs_inode;
4986 }
4987
shmem_free_in_core_inode(struct inode * inode)4988 static void shmem_free_in_core_inode(struct inode *inode)
4989 {
4990 if (S_ISLNK(inode->i_mode))
4991 kfree(inode->i_link);
4992 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
4993 }
4994
shmem_destroy_inode(struct inode * inode)4995 static void shmem_destroy_inode(struct inode *inode)
4996 {
4997 if (S_ISREG(inode->i_mode))
4998 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
4999 if (S_ISDIR(inode->i_mode))
5000 simple_offset_destroy(shmem_get_offset_ctx(inode));
5001 }
5002
shmem_init_inode(void * foo)5003 static void shmem_init_inode(void *foo)
5004 {
5005 struct shmem_inode_info *info = foo;
5006 inode_init_once(&info->vfs_inode);
5007 }
5008
shmem_init_inodecache(void)5009 static void __init shmem_init_inodecache(void)
5010 {
5011 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
5012 sizeof(struct shmem_inode_info),
5013 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
5014 }
5015
shmem_destroy_inodecache(void)5016 static void __init shmem_destroy_inodecache(void)
5017 {
5018 kmem_cache_destroy(shmem_inode_cachep);
5019 }
5020
5021 /* Keep the page in page cache instead of truncating it */
shmem_error_remove_folio(struct address_space * mapping,struct folio * folio)5022 static int shmem_error_remove_folio(struct address_space *mapping,
5023 struct folio *folio)
5024 {
5025 return 0;
5026 }
5027
5028 static const struct address_space_operations shmem_aops = {
5029 .writepage = shmem_writepage,
5030 .dirty_folio = noop_dirty_folio,
5031 #ifdef CONFIG_TMPFS
5032 .write_begin = shmem_write_begin,
5033 .write_end = shmem_write_end,
5034 #endif
5035 #ifdef CONFIG_MIGRATION
5036 .migrate_folio = migrate_folio,
5037 #endif
5038 .error_remove_folio = shmem_error_remove_folio,
5039 };
5040
5041 static const struct file_operations shmem_file_operations = {
5042 .mmap = shmem_mmap,
5043 .open = shmem_file_open,
5044 .get_unmapped_area = shmem_get_unmapped_area,
5045 #ifdef CONFIG_TMPFS
5046 .llseek = shmem_file_llseek,
5047 .read_iter = shmem_file_read_iter,
5048 .write_iter = shmem_file_write_iter,
5049 .fsync = noop_fsync,
5050 .splice_read = shmem_file_splice_read,
5051 .splice_write = iter_file_splice_write,
5052 .fallocate = shmem_fallocate,
5053 #endif
5054 };
5055
5056 static const struct inode_operations shmem_inode_operations = {
5057 .getattr = shmem_getattr,
5058 .setattr = shmem_setattr,
5059 #ifdef CONFIG_TMPFS_XATTR
5060 .listxattr = shmem_listxattr,
5061 .set_acl = simple_set_acl,
5062 .fileattr_get = shmem_fileattr_get,
5063 .fileattr_set = shmem_fileattr_set,
5064 #endif
5065 };
5066
5067 static const struct inode_operations shmem_dir_inode_operations = {
5068 #ifdef CONFIG_TMPFS
5069 .getattr = shmem_getattr,
5070 .create = shmem_create,
5071 .lookup = simple_lookup,
5072 .link = shmem_link,
5073 .unlink = shmem_unlink,
5074 .symlink = shmem_symlink,
5075 .mkdir = shmem_mkdir,
5076 .rmdir = shmem_rmdir,
5077 .mknod = shmem_mknod,
5078 .rename = shmem_rename2,
5079 .tmpfile = shmem_tmpfile,
5080 .get_offset_ctx = shmem_get_offset_ctx,
5081 #endif
5082 #ifdef CONFIG_TMPFS_XATTR
5083 .listxattr = shmem_listxattr,
5084 .fileattr_get = shmem_fileattr_get,
5085 .fileattr_set = shmem_fileattr_set,
5086 #endif
5087 #ifdef CONFIG_TMPFS_POSIX_ACL
5088 .setattr = shmem_setattr,
5089 .set_acl = simple_set_acl,
5090 #endif
5091 };
5092
5093 static const struct inode_operations shmem_special_inode_operations = {
5094 .getattr = shmem_getattr,
5095 #ifdef CONFIG_TMPFS_XATTR
5096 .listxattr = shmem_listxattr,
5097 #endif
5098 #ifdef CONFIG_TMPFS_POSIX_ACL
5099 .setattr = shmem_setattr,
5100 .set_acl = simple_set_acl,
5101 #endif
5102 };
5103
5104 static const struct super_operations shmem_ops = {
5105 .alloc_inode = shmem_alloc_inode,
5106 .free_inode = shmem_free_in_core_inode,
5107 .destroy_inode = shmem_destroy_inode,
5108 #ifdef CONFIG_TMPFS
5109 .statfs = shmem_statfs,
5110 .show_options = shmem_show_options,
5111 #endif
5112 #ifdef CONFIG_TMPFS_QUOTA
5113 .get_dquots = shmem_get_dquots,
5114 #endif
5115 .evict_inode = shmem_evict_inode,
5116 .drop_inode = generic_delete_inode,
5117 .put_super = shmem_put_super,
5118 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5119 .nr_cached_objects = shmem_unused_huge_count,
5120 .free_cached_objects = shmem_unused_huge_scan,
5121 #endif
5122 };
5123
5124 static const struct vm_operations_struct shmem_vm_ops = {
5125 .fault = shmem_fault,
5126 .map_pages = filemap_map_pages,
5127 #ifdef CONFIG_NUMA
5128 .set_policy = shmem_set_policy,
5129 .get_policy = shmem_get_policy,
5130 #endif
5131 };
5132
5133 static const struct vm_operations_struct shmem_anon_vm_ops = {
5134 .fault = shmem_fault,
5135 .map_pages = filemap_map_pages,
5136 #ifdef CONFIG_NUMA
5137 .set_policy = shmem_set_policy,
5138 .get_policy = shmem_get_policy,
5139 #endif
5140 };
5141
shmem_init_fs_context(struct fs_context * fc)5142 int shmem_init_fs_context(struct fs_context *fc)
5143 {
5144 struct shmem_options *ctx;
5145
5146 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
5147 if (!ctx)
5148 return -ENOMEM;
5149
5150 ctx->mode = 0777 | S_ISVTX;
5151 ctx->uid = current_fsuid();
5152 ctx->gid = current_fsgid();
5153
5154 #if IS_ENABLED(CONFIG_UNICODE)
5155 ctx->encoding = NULL;
5156 #endif
5157
5158 fc->fs_private = ctx;
5159 fc->ops = &shmem_fs_context_ops;
5160 return 0;
5161 }
5162
5163 static struct file_system_type shmem_fs_type = {
5164 .owner = THIS_MODULE,
5165 .name = "tmpfs",
5166 .init_fs_context = shmem_init_fs_context,
5167 #ifdef CONFIG_TMPFS
5168 .parameters = shmem_fs_parameters,
5169 #endif
5170 .kill_sb = kill_litter_super,
5171 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME,
5172 };
5173
5174 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5175
5176 #define __INIT_KOBJ_ATTR(_name, _mode, _show, _store) \
5177 { \
5178 .attr = { .name = __stringify(_name), .mode = _mode }, \
5179 .show = _show, \
5180 .store = _store, \
5181 }
5182
5183 #define TMPFS_ATTR_W(_name, _store) \
5184 static struct kobj_attribute tmpfs_attr_##_name = \
5185 __INIT_KOBJ_ATTR(_name, 0200, NULL, _store)
5186
5187 #define TMPFS_ATTR_RW(_name, _show, _store) \
5188 static struct kobj_attribute tmpfs_attr_##_name = \
5189 __INIT_KOBJ_ATTR(_name, 0644, _show, _store)
5190
5191 #define TMPFS_ATTR_RO(_name, _show) \
5192 static struct kobj_attribute tmpfs_attr_##_name = \
5193 __INIT_KOBJ_ATTR(_name, 0444, _show, NULL)
5194
5195 #if IS_ENABLED(CONFIG_UNICODE)
casefold_show(struct kobject * kobj,struct kobj_attribute * a,char * buf)5196 static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a,
5197 char *buf)
5198 {
5199 return sysfs_emit(buf, "supported\n");
5200 }
5201 TMPFS_ATTR_RO(casefold, casefold_show);
5202 #endif
5203
5204 static struct attribute *tmpfs_attributes[] = {
5205 #if IS_ENABLED(CONFIG_UNICODE)
5206 &tmpfs_attr_casefold.attr,
5207 #endif
5208 NULL
5209 };
5210
5211 static const struct attribute_group tmpfs_attribute_group = {
5212 .attrs = tmpfs_attributes,
5213 .name = "features"
5214 };
5215
5216 static struct kobject *tmpfs_kobj;
5217
tmpfs_sysfs_init(void)5218 static int __init tmpfs_sysfs_init(void)
5219 {
5220 int ret;
5221
5222 tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj);
5223 if (!tmpfs_kobj)
5224 return -ENOMEM;
5225
5226 ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group);
5227 if (ret)
5228 kobject_put(tmpfs_kobj);
5229
5230 return ret;
5231 }
5232 #endif /* CONFIG_SYSFS && CONFIG_TMPFS */
5233
shmem_init(void)5234 void __init shmem_init(void)
5235 {
5236 int error;
5237
5238 shmem_init_inodecache();
5239
5240 #ifdef CONFIG_TMPFS_QUOTA
5241 register_quota_format(&shmem_quota_format);
5242 #endif
5243
5244 error = register_filesystem(&shmem_fs_type);
5245 if (error) {
5246 pr_err("Could not register tmpfs\n");
5247 goto out2;
5248 }
5249
5250 shm_mnt = kern_mount(&shmem_fs_type);
5251 if (IS_ERR(shm_mnt)) {
5252 error = PTR_ERR(shm_mnt);
5253 pr_err("Could not kern_mount tmpfs\n");
5254 goto out1;
5255 }
5256
5257 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5258 error = tmpfs_sysfs_init();
5259 if (error) {
5260 pr_err("Could not init tmpfs sysfs\n");
5261 goto out1;
5262 }
5263 #endif
5264
5265 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5266 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5267 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5268 else
5269 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
5270
5271 /*
5272 * Default to setting PMD-sized THP to inherit the global setting and
5273 * disable all other multi-size THPs.
5274 */
5275 if (!shmem_orders_configured)
5276 huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER);
5277 #endif
5278 return;
5279
5280 out1:
5281 unregister_filesystem(&shmem_fs_type);
5282 out2:
5283 #ifdef CONFIG_TMPFS_QUOTA
5284 unregister_quota_format(&shmem_quota_format);
5285 #endif
5286 shmem_destroy_inodecache();
5287 shm_mnt = ERR_PTR(error);
5288 }
5289
5290 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5291 static ssize_t shmem_enabled_show(struct kobject *kobj,
5292 struct kobj_attribute *attr, char *buf)
5293 {
5294 static const int values[] = {
5295 SHMEM_HUGE_ALWAYS,
5296 SHMEM_HUGE_WITHIN_SIZE,
5297 SHMEM_HUGE_ADVISE,
5298 SHMEM_HUGE_NEVER,
5299 SHMEM_HUGE_DENY,
5300 SHMEM_HUGE_FORCE,
5301 };
5302 int len = 0;
5303 int i;
5304
5305 for (i = 0; i < ARRAY_SIZE(values); i++) {
5306 len += sysfs_emit_at(buf, len,
5307 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
5308 i ? " " : "", shmem_format_huge(values[i]));
5309 }
5310 len += sysfs_emit_at(buf, len, "\n");
5311
5312 return len;
5313 }
5314
shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)5315 static ssize_t shmem_enabled_store(struct kobject *kobj,
5316 struct kobj_attribute *attr, const char *buf, size_t count)
5317 {
5318 char tmp[16];
5319 int huge, err;
5320
5321 if (count + 1 > sizeof(tmp))
5322 return -EINVAL;
5323 memcpy(tmp, buf, count);
5324 tmp[count] = '\0';
5325 if (count && tmp[count - 1] == '\n')
5326 tmp[count - 1] = '\0';
5327
5328 huge = shmem_parse_huge(tmp);
5329 if (huge == -EINVAL)
5330 return huge;
5331
5332 shmem_huge = huge;
5333 if (shmem_huge > SHMEM_HUGE_DENY)
5334 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5335
5336 err = start_stop_khugepaged();
5337 return err ? err : count;
5338 }
5339
5340 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
5341 static DEFINE_SPINLOCK(huge_shmem_orders_lock);
5342
thpsize_shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5343 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj,
5344 struct kobj_attribute *attr, char *buf)
5345 {
5346 int order = to_thpsize(kobj)->order;
5347 const char *output;
5348
5349 if (test_bit(order, &huge_shmem_orders_always))
5350 output = "[always] inherit within_size advise never";
5351 else if (test_bit(order, &huge_shmem_orders_inherit))
5352 output = "always [inherit] within_size advise never";
5353 else if (test_bit(order, &huge_shmem_orders_within_size))
5354 output = "always inherit [within_size] advise never";
5355 else if (test_bit(order, &huge_shmem_orders_madvise))
5356 output = "always inherit within_size [advise] never";
5357 else
5358 output = "always inherit within_size advise [never]";
5359
5360 return sysfs_emit(buf, "%s\n", output);
5361 }
5362
thpsize_shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)5363 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj,
5364 struct kobj_attribute *attr,
5365 const char *buf, size_t count)
5366 {
5367 int order = to_thpsize(kobj)->order;
5368 ssize_t ret = count;
5369
5370 if (sysfs_streq(buf, "always")) {
5371 spin_lock(&huge_shmem_orders_lock);
5372 clear_bit(order, &huge_shmem_orders_inherit);
5373 clear_bit(order, &huge_shmem_orders_madvise);
5374 clear_bit(order, &huge_shmem_orders_within_size);
5375 set_bit(order, &huge_shmem_orders_always);
5376 spin_unlock(&huge_shmem_orders_lock);
5377 } else if (sysfs_streq(buf, "inherit")) {
5378 /* Do not override huge allocation policy with non-PMD sized mTHP */
5379 if (shmem_huge == SHMEM_HUGE_FORCE &&
5380 order != HPAGE_PMD_ORDER)
5381 return -EINVAL;
5382
5383 spin_lock(&huge_shmem_orders_lock);
5384 clear_bit(order, &huge_shmem_orders_always);
5385 clear_bit(order, &huge_shmem_orders_madvise);
5386 clear_bit(order, &huge_shmem_orders_within_size);
5387 set_bit(order, &huge_shmem_orders_inherit);
5388 spin_unlock(&huge_shmem_orders_lock);
5389 } else if (sysfs_streq(buf, "within_size")) {
5390 spin_lock(&huge_shmem_orders_lock);
5391 clear_bit(order, &huge_shmem_orders_always);
5392 clear_bit(order, &huge_shmem_orders_inherit);
5393 clear_bit(order, &huge_shmem_orders_madvise);
5394 set_bit(order, &huge_shmem_orders_within_size);
5395 spin_unlock(&huge_shmem_orders_lock);
5396 } else if (sysfs_streq(buf, "advise")) {
5397 spin_lock(&huge_shmem_orders_lock);
5398 clear_bit(order, &huge_shmem_orders_always);
5399 clear_bit(order, &huge_shmem_orders_inherit);
5400 clear_bit(order, &huge_shmem_orders_within_size);
5401 set_bit(order, &huge_shmem_orders_madvise);
5402 spin_unlock(&huge_shmem_orders_lock);
5403 } else if (sysfs_streq(buf, "never")) {
5404 spin_lock(&huge_shmem_orders_lock);
5405 clear_bit(order, &huge_shmem_orders_always);
5406 clear_bit(order, &huge_shmem_orders_inherit);
5407 clear_bit(order, &huge_shmem_orders_within_size);
5408 clear_bit(order, &huge_shmem_orders_madvise);
5409 spin_unlock(&huge_shmem_orders_lock);
5410 } else {
5411 ret = -EINVAL;
5412 }
5413
5414 if (ret > 0) {
5415 int err = start_stop_khugepaged();
5416
5417 if (err)
5418 ret = err;
5419 }
5420 return ret;
5421 }
5422
5423 struct kobj_attribute thpsize_shmem_enabled_attr =
5424 __ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store);
5425 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
5426
5427 #if defined(CONFIG_TRANSPARENT_HUGEPAGE)
5428
setup_transparent_hugepage_shmem(char * str)5429 static int __init setup_transparent_hugepage_shmem(char *str)
5430 {
5431 int huge;
5432
5433 huge = shmem_parse_huge(str);
5434 if (huge == -EINVAL) {
5435 pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n");
5436 return huge;
5437 }
5438
5439 shmem_huge = huge;
5440 return 1;
5441 }
5442 __setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem);
5443
5444 static char str_dup[PAGE_SIZE] __initdata;
setup_thp_shmem(char * str)5445 static int __init setup_thp_shmem(char *str)
5446 {
5447 char *token, *range, *policy, *subtoken;
5448 unsigned long always, inherit, madvise, within_size;
5449 char *start_size, *end_size;
5450 int start, end, nr;
5451 char *p;
5452
5453 if (!str || strlen(str) + 1 > PAGE_SIZE)
5454 goto err;
5455 strscpy(str_dup, str);
5456
5457 always = huge_shmem_orders_always;
5458 inherit = huge_shmem_orders_inherit;
5459 madvise = huge_shmem_orders_madvise;
5460 within_size = huge_shmem_orders_within_size;
5461 p = str_dup;
5462 while ((token = strsep(&p, ";")) != NULL) {
5463 range = strsep(&token, ":");
5464 policy = token;
5465
5466 if (!policy)
5467 goto err;
5468
5469 while ((subtoken = strsep(&range, ",")) != NULL) {
5470 if (strchr(subtoken, '-')) {
5471 start_size = strsep(&subtoken, "-");
5472 end_size = subtoken;
5473
5474 start = get_order_from_str(start_size,
5475 THP_ORDERS_ALL_FILE_DEFAULT);
5476 end = get_order_from_str(end_size,
5477 THP_ORDERS_ALL_FILE_DEFAULT);
5478 } else {
5479 start_size = end_size = subtoken;
5480 start = end = get_order_from_str(subtoken,
5481 THP_ORDERS_ALL_FILE_DEFAULT);
5482 }
5483
5484 if (start == -EINVAL) {
5485 pr_err("invalid size %s in thp_shmem boot parameter\n",
5486 start_size);
5487 goto err;
5488 }
5489
5490 if (end == -EINVAL) {
5491 pr_err("invalid size %s in thp_shmem boot parameter\n",
5492 end_size);
5493 goto err;
5494 }
5495
5496 if (start < 0 || end < 0 || start > end)
5497 goto err;
5498
5499 nr = end - start + 1;
5500 if (!strcmp(policy, "always")) {
5501 bitmap_set(&always, start, nr);
5502 bitmap_clear(&inherit, start, nr);
5503 bitmap_clear(&madvise, start, nr);
5504 bitmap_clear(&within_size, start, nr);
5505 } else if (!strcmp(policy, "advise")) {
5506 bitmap_set(&madvise, start, nr);
5507 bitmap_clear(&inherit, start, nr);
5508 bitmap_clear(&always, start, nr);
5509 bitmap_clear(&within_size, start, nr);
5510 } else if (!strcmp(policy, "inherit")) {
5511 bitmap_set(&inherit, start, nr);
5512 bitmap_clear(&madvise, start, nr);
5513 bitmap_clear(&always, start, nr);
5514 bitmap_clear(&within_size, start, nr);
5515 } else if (!strcmp(policy, "within_size")) {
5516 bitmap_set(&within_size, start, nr);
5517 bitmap_clear(&inherit, start, nr);
5518 bitmap_clear(&madvise, start, nr);
5519 bitmap_clear(&always, start, nr);
5520 } else if (!strcmp(policy, "never")) {
5521 bitmap_clear(&inherit, start, nr);
5522 bitmap_clear(&madvise, start, nr);
5523 bitmap_clear(&always, start, nr);
5524 bitmap_clear(&within_size, start, nr);
5525 } else {
5526 pr_err("invalid policy %s in thp_shmem boot parameter\n", policy);
5527 goto err;
5528 }
5529 }
5530 }
5531
5532 huge_shmem_orders_always = always;
5533 huge_shmem_orders_madvise = madvise;
5534 huge_shmem_orders_inherit = inherit;
5535 huge_shmem_orders_within_size = within_size;
5536 shmem_orders_configured = true;
5537 return 1;
5538
5539 err:
5540 pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str);
5541 return 0;
5542 }
5543 __setup("thp_shmem=", setup_thp_shmem);
5544
5545 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5546
5547 #else /* !CONFIG_SHMEM */
5548
5549 /*
5550 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
5551 *
5552 * This is intended for small system where the benefits of the full
5553 * shmem code (swap-backed and resource-limited) are outweighed by
5554 * their complexity. On systems without swap this code should be
5555 * effectively equivalent, but much lighter weight.
5556 */
5557
5558 static struct file_system_type shmem_fs_type = {
5559 .name = "tmpfs",
5560 .init_fs_context = ramfs_init_fs_context,
5561 .parameters = ramfs_fs_parameters,
5562 .kill_sb = ramfs_kill_sb,
5563 .fs_flags = FS_USERNS_MOUNT,
5564 };
5565
shmem_init(void)5566 void __init shmem_init(void)
5567 {
5568 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
5569
5570 shm_mnt = kern_mount(&shmem_fs_type);
5571 BUG_ON(IS_ERR(shm_mnt));
5572 }
5573
shmem_unuse(unsigned int type)5574 int shmem_unuse(unsigned int type)
5575 {
5576 return 0;
5577 }
5578
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)5579 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
5580 {
5581 return 0;
5582 }
5583
shmem_unlock_mapping(struct address_space * mapping)5584 void shmem_unlock_mapping(struct address_space *mapping)
5585 {
5586 }
5587
5588 #ifdef CONFIG_MMU
shmem_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)5589 unsigned long shmem_get_unmapped_area(struct file *file,
5590 unsigned long addr, unsigned long len,
5591 unsigned long pgoff, unsigned long flags)
5592 {
5593 return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags);
5594 }
5595 #endif
5596
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)5597 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
5598 {
5599 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
5600 }
5601 EXPORT_SYMBOL_GPL(shmem_truncate_range);
5602
5603 #define shmem_vm_ops generic_file_vm_ops
5604 #define shmem_anon_vm_ops generic_file_vm_ops
5605 #define shmem_file_operations ramfs_file_operations
5606 #define shmem_acct_size(flags, size) 0
5607 #define shmem_unacct_size(flags, size) do {} while (0)
5608
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)5609 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
5610 struct super_block *sb, struct inode *dir,
5611 umode_t mode, dev_t dev, unsigned long flags)
5612 {
5613 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
5614 return inode ? inode : ERR_PTR(-ENOSPC);
5615 }
5616
5617 #endif /* CONFIG_SHMEM */
5618
5619 /* common code */
5620
__shmem_file_setup(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags,unsigned int i_flags)5621 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
5622 loff_t size, unsigned long flags, unsigned int i_flags)
5623 {
5624 struct inode *inode;
5625 struct file *res;
5626
5627 if (IS_ERR(mnt))
5628 return ERR_CAST(mnt);
5629
5630 if (size < 0 || size > MAX_LFS_FILESIZE)
5631 return ERR_PTR(-EINVAL);
5632
5633 if (shmem_acct_size(flags, size))
5634 return ERR_PTR(-ENOMEM);
5635
5636 if (is_idmapped_mnt(mnt))
5637 return ERR_PTR(-EINVAL);
5638
5639 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
5640 S_IFREG | S_IRWXUGO, 0, flags);
5641 if (IS_ERR(inode)) {
5642 shmem_unacct_size(flags, size);
5643 return ERR_CAST(inode);
5644 }
5645 inode->i_flags |= i_flags;
5646 inode->i_size = size;
5647 clear_nlink(inode); /* It is unlinked */
5648 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
5649 if (!IS_ERR(res))
5650 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
5651 &shmem_file_operations);
5652 if (IS_ERR(res))
5653 iput(inode);
5654 return res;
5655 }
5656
5657 /**
5658 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
5659 * kernel internal. There will be NO LSM permission checks against the
5660 * underlying inode. So users of this interface must do LSM checks at a
5661 * higher layer. The users are the big_key and shm implementations. LSM
5662 * checks are provided at the key or shm level rather than the inode.
5663 * @name: name for dentry (to be seen in /proc/<pid>/maps
5664 * @size: size to be set for the file
5665 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5666 */
shmem_kernel_file_setup(const char * name,loff_t size,unsigned long flags)5667 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
5668 {
5669 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
5670 }
5671 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
5672
5673 /**
5674 * shmem_file_setup - get an unlinked file living in tmpfs
5675 * @name: name for dentry (to be seen in /proc/<pid>/maps
5676 * @size: size to be set for the file
5677 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5678 */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)5679 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
5680 {
5681 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
5682 }
5683 EXPORT_SYMBOL_GPL(shmem_file_setup);
5684
5685 /**
5686 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
5687 * @mnt: the tmpfs mount where the file will be created
5688 * @name: name for dentry (to be seen in /proc/<pid>/maps
5689 * @size: size to be set for the file
5690 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5691 */
shmem_file_setup_with_mnt(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags)5692 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
5693 loff_t size, unsigned long flags)
5694 {
5695 return __shmem_file_setup(mnt, name, size, flags, 0);
5696 }
5697 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
5698
5699 /**
5700 * shmem_zero_setup - setup a shared anonymous mapping
5701 * @vma: the vma to be mmapped is prepared by do_mmap
5702 */
shmem_zero_setup(struct vm_area_struct * vma)5703 int shmem_zero_setup(struct vm_area_struct *vma)
5704 {
5705 struct file *file;
5706 loff_t size = vma->vm_end - vma->vm_start;
5707
5708 /*
5709 * Cloning a new file under mmap_lock leads to a lock ordering conflict
5710 * between XFS directory reading and selinux: since this file is only
5711 * accessible to the user through its mapping, use S_PRIVATE flag to
5712 * bypass file security, in the same way as shmem_kernel_file_setup().
5713 */
5714 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
5715 if (IS_ERR(file))
5716 return PTR_ERR(file);
5717
5718 if (vma->vm_file)
5719 fput(vma->vm_file);
5720 vma->vm_file = file;
5721 vma->vm_ops = &shmem_anon_vm_ops;
5722
5723 return 0;
5724 }
5725
5726 /**
5727 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
5728 * @mapping: the folio's address_space
5729 * @index: the folio index
5730 * @gfp: the page allocator flags to use if allocating
5731 *
5732 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
5733 * with any new page allocations done using the specified allocation flags.
5734 * But read_cache_page_gfp() uses the ->read_folio() method: which does not
5735 * suit tmpfs, since it may have pages in swapcache, and needs to find those
5736 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
5737 *
5738 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
5739 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
5740 */
shmem_read_folio_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)5741 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
5742 pgoff_t index, gfp_t gfp)
5743 {
5744 #ifdef CONFIG_SHMEM
5745 struct inode *inode = mapping->host;
5746 struct folio *folio;
5747 int error;
5748
5749 error = shmem_get_folio_gfp(inode, index, 0, &folio, SGP_CACHE,
5750 gfp, NULL, NULL);
5751 if (error)
5752 return ERR_PTR(error);
5753
5754 folio_unlock(folio);
5755 return folio;
5756 #else
5757 /*
5758 * The tiny !SHMEM case uses ramfs without swap
5759 */
5760 return mapping_read_folio_gfp(mapping, index, gfp);
5761 #endif
5762 }
5763 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
5764
shmem_read_mapping_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)5765 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
5766 pgoff_t index, gfp_t gfp)
5767 {
5768 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
5769 struct page *page;
5770
5771 if (IS_ERR(folio))
5772 return &folio->page;
5773
5774 page = folio_file_page(folio, index);
5775 if (PageHWPoison(page)) {
5776 folio_put(folio);
5777 return ERR_PTR(-EIO);
5778 }
5779
5780 return page;
5781 }
5782 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
5783