1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
24 * mm->mmap_lock
25 * mapping->invalidate_lock (in filemap_fault)
26 * folio_lock
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28 * vma_start_write
29 * mapping->i_mmap_rwsem
30 * anon_vma->rwsem
31 * mm->page_table_lock or pte_lock
32 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
34 * mapping->private_lock (in block_dirty_folio)
35 * i_pages lock (widely used)
36 * lruvec->lru_lock (in folio_lruvec_lock_irq)
37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39 * sb_lock (within inode_lock in fs/fs-writeback.c)
40 * i_pages lock (widely used, in set_page_dirty,
41 * in arch-dependent flush_dcache_mmap_lock,
42 * within bdi.wb->list_lock in __sync_single_inode)
43 *
44 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
45 * ->tasklist_lock
46 * pte map lock
47 *
48 * hugetlbfs PageHuge() take locks in this order:
49 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
50 * vma_lock (hugetlb specific lock for pmd_sharing)
51 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
52 * folio_lock
53 */
54
55 #include <linux/mm.h>
56 #include <linux/sched/mm.h>
57 #include <linux/sched/task.h>
58 #include <linux/pagemap.h>
59 #include <linux/swap.h>
60 #include <linux/swapops.h>
61 #include <linux/slab.h>
62 #include <linux/init.h>
63 #include <linux/ksm.h>
64 #include <linux/rmap.h>
65 #include <linux/rcupdate.h>
66 #include <linux/export.h>
67 #include <linux/memcontrol.h>
68 #include <linux/mmu_notifier.h>
69 #include <linux/migrate.h>
70 #include <linux/hugetlb.h>
71 #include <linux/huge_mm.h>
72 #include <linux/backing-dev.h>
73 #include <linux/page_idle.h>
74 #include <linux/memremap.h>
75 #include <linux/userfaultfd_k.h>
76 #include <linux/mm_inline.h>
77 #include <linux/oom.h>
78
79 #include <asm/tlbflush.h>
80
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/tlb.h>
83 #include <trace/events/migrate.h>
84
85 #include "internal.h"
86
87 static struct kmem_cache *anon_vma_cachep;
88 static struct kmem_cache *anon_vma_chain_cachep;
89
anon_vma_alloc(void)90 static inline struct anon_vma *anon_vma_alloc(void)
91 {
92 struct anon_vma *anon_vma;
93
94 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
95 if (anon_vma) {
96 atomic_set(&anon_vma->refcount, 1);
97 anon_vma->num_children = 0;
98 anon_vma->num_active_vmas = 0;
99 anon_vma->parent = anon_vma;
100 /*
101 * Initialise the anon_vma root to point to itself. If called
102 * from fork, the root will be reset to the parents anon_vma.
103 */
104 anon_vma->root = anon_vma;
105 }
106
107 return anon_vma;
108 }
109
anon_vma_free(struct anon_vma * anon_vma)110 static inline void anon_vma_free(struct anon_vma *anon_vma)
111 {
112 VM_BUG_ON(atomic_read(&anon_vma->refcount));
113
114 /*
115 * Synchronize against folio_lock_anon_vma_read() such that
116 * we can safely hold the lock without the anon_vma getting
117 * freed.
118 *
119 * Relies on the full mb implied by the atomic_dec_and_test() from
120 * put_anon_vma() against the acquire barrier implied by
121 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
122 *
123 * folio_lock_anon_vma_read() VS put_anon_vma()
124 * down_read_trylock() atomic_dec_and_test()
125 * LOCK MB
126 * atomic_read() rwsem_is_locked()
127 *
128 * LOCK should suffice since the actual taking of the lock must
129 * happen _before_ what follows.
130 */
131 might_sleep();
132 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
133 anon_vma_lock_write(anon_vma);
134 anon_vma_unlock_write(anon_vma);
135 }
136
137 kmem_cache_free(anon_vma_cachep, anon_vma);
138 }
139
anon_vma_chain_alloc(gfp_t gfp)140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
141 {
142 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
143 }
144
anon_vma_chain_free(struct anon_vma_chain * anon_vma_chain)145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
146 {
147 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
148 }
149
anon_vma_chain_link(struct vm_area_struct * vma,struct anon_vma_chain * avc,struct anon_vma * anon_vma)150 static void anon_vma_chain_link(struct vm_area_struct *vma,
151 struct anon_vma_chain *avc,
152 struct anon_vma *anon_vma)
153 {
154 avc->vma = vma;
155 avc->anon_vma = anon_vma;
156 list_add(&avc->same_vma, &vma->anon_vma_chain);
157 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
158 }
159
160 /**
161 * __anon_vma_prepare - attach an anon_vma to a memory region
162 * @vma: the memory region in question
163 *
164 * This makes sure the memory mapping described by 'vma' has
165 * an 'anon_vma' attached to it, so that we can associate the
166 * anonymous pages mapped into it with that anon_vma.
167 *
168 * The common case will be that we already have one, which
169 * is handled inline by anon_vma_prepare(). But if
170 * not we either need to find an adjacent mapping that we
171 * can re-use the anon_vma from (very common when the only
172 * reason for splitting a vma has been mprotect()), or we
173 * allocate a new one.
174 *
175 * Anon-vma allocations are very subtle, because we may have
176 * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
177 * and that may actually touch the rwsem even in the newly
178 * allocated vma (it depends on RCU to make sure that the
179 * anon_vma isn't actually destroyed).
180 *
181 * As a result, we need to do proper anon_vma locking even
182 * for the new allocation. At the same time, we do not want
183 * to do any locking for the common case of already having
184 * an anon_vma.
185 */
__anon_vma_prepare(struct vm_area_struct * vma)186 int __anon_vma_prepare(struct vm_area_struct *vma)
187 {
188 struct mm_struct *mm = vma->vm_mm;
189 struct anon_vma *anon_vma, *allocated;
190 struct anon_vma_chain *avc;
191
192 mmap_assert_locked(mm);
193 might_sleep();
194
195 avc = anon_vma_chain_alloc(GFP_KERNEL);
196 if (!avc)
197 goto out_enomem;
198
199 anon_vma = find_mergeable_anon_vma(vma);
200 allocated = NULL;
201 if (!anon_vma) {
202 anon_vma = anon_vma_alloc();
203 if (unlikely(!anon_vma))
204 goto out_enomem_free_avc;
205 anon_vma->num_children++; /* self-parent link for new root */
206 allocated = anon_vma;
207 }
208
209 anon_vma_lock_write(anon_vma);
210 /* page_table_lock to protect against threads */
211 spin_lock(&mm->page_table_lock);
212 if (likely(!vma->anon_vma)) {
213 vma->anon_vma = anon_vma;
214 anon_vma_chain_link(vma, avc, anon_vma);
215 anon_vma->num_active_vmas++;
216 allocated = NULL;
217 avc = NULL;
218 }
219 spin_unlock(&mm->page_table_lock);
220 anon_vma_unlock_write(anon_vma);
221
222 if (unlikely(allocated))
223 put_anon_vma(allocated);
224 if (unlikely(avc))
225 anon_vma_chain_free(avc);
226
227 return 0;
228
229 out_enomem_free_avc:
230 anon_vma_chain_free(avc);
231 out_enomem:
232 return -ENOMEM;
233 }
234
235 /*
236 * This is a useful helper function for locking the anon_vma root as
237 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
238 * have the same vma.
239 *
240 * Such anon_vma's should have the same root, so you'd expect to see
241 * just a single mutex_lock for the whole traversal.
242 */
lock_anon_vma_root(struct anon_vma * root,struct anon_vma * anon_vma)243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
244 {
245 struct anon_vma *new_root = anon_vma->root;
246 if (new_root != root) {
247 if (WARN_ON_ONCE(root))
248 up_write(&root->rwsem);
249 root = new_root;
250 down_write(&root->rwsem);
251 }
252 return root;
253 }
254
unlock_anon_vma_root(struct anon_vma * root)255 static inline void unlock_anon_vma_root(struct anon_vma *root)
256 {
257 if (root)
258 up_write(&root->rwsem);
259 }
260
261 /*
262 * Attach the anon_vmas from src to dst.
263 * Returns 0 on success, -ENOMEM on failure.
264 *
265 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
266 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
267 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
268 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
269 * call, we can identify this case by checking (!dst->anon_vma &&
270 * src->anon_vma).
271 *
272 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
273 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
274 * This prevents degradation of anon_vma hierarchy to endless linear chain in
275 * case of constantly forking task. On the other hand, an anon_vma with more
276 * than one child isn't reused even if there was no alive vma, thus rmap
277 * walker has a good chance of avoiding scanning the whole hierarchy when it
278 * searches where page is mapped.
279 */
anon_vma_clone(struct vm_area_struct * dst,struct vm_area_struct * src)280 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
281 {
282 struct anon_vma_chain *avc, *pavc;
283 struct anon_vma *root = NULL;
284
285 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
286 struct anon_vma *anon_vma;
287
288 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
289 if (unlikely(!avc)) {
290 unlock_anon_vma_root(root);
291 root = NULL;
292 avc = anon_vma_chain_alloc(GFP_KERNEL);
293 if (!avc)
294 goto enomem_failure;
295 }
296 anon_vma = pavc->anon_vma;
297 root = lock_anon_vma_root(root, anon_vma);
298 anon_vma_chain_link(dst, avc, anon_vma);
299
300 /*
301 * Reuse existing anon_vma if it has no vma and only one
302 * anon_vma child.
303 *
304 * Root anon_vma is never reused:
305 * it has self-parent reference and at least one child.
306 */
307 if (!dst->anon_vma && src->anon_vma &&
308 anon_vma->num_children < 2 &&
309 anon_vma->num_active_vmas == 0)
310 dst->anon_vma = anon_vma;
311 }
312 if (dst->anon_vma)
313 dst->anon_vma->num_active_vmas++;
314 unlock_anon_vma_root(root);
315 return 0;
316
317 enomem_failure:
318 /*
319 * dst->anon_vma is dropped here otherwise its num_active_vmas can
320 * be incorrectly decremented in unlink_anon_vmas().
321 * We can safely do this because callers of anon_vma_clone() don't care
322 * about dst->anon_vma if anon_vma_clone() failed.
323 */
324 dst->anon_vma = NULL;
325 unlink_anon_vmas(dst);
326 return -ENOMEM;
327 }
328
329 /*
330 * Attach vma to its own anon_vma, as well as to the anon_vmas that
331 * the corresponding VMA in the parent process is attached to.
332 * Returns 0 on success, non-zero on failure.
333 */
anon_vma_fork(struct vm_area_struct * vma,struct vm_area_struct * pvma)334 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
335 {
336 struct anon_vma_chain *avc;
337 struct anon_vma *anon_vma;
338 int error;
339
340 /* Don't bother if the parent process has no anon_vma here. */
341 if (!pvma->anon_vma)
342 return 0;
343
344 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
345 vma->anon_vma = NULL;
346
347 /*
348 * First, attach the new VMA to the parent VMA's anon_vmas,
349 * so rmap can find non-COWed pages in child processes.
350 */
351 error = anon_vma_clone(vma, pvma);
352 if (error)
353 return error;
354
355 /* An existing anon_vma has been reused, all done then. */
356 if (vma->anon_vma)
357 return 0;
358
359 /* Then add our own anon_vma. */
360 anon_vma = anon_vma_alloc();
361 if (!anon_vma)
362 goto out_error;
363 anon_vma->num_active_vmas++;
364 avc = anon_vma_chain_alloc(GFP_KERNEL);
365 if (!avc)
366 goto out_error_free_anon_vma;
367
368 /*
369 * The root anon_vma's rwsem is the lock actually used when we
370 * lock any of the anon_vmas in this anon_vma tree.
371 */
372 anon_vma->root = pvma->anon_vma->root;
373 anon_vma->parent = pvma->anon_vma;
374 /*
375 * With refcounts, an anon_vma can stay around longer than the
376 * process it belongs to. The root anon_vma needs to be pinned until
377 * this anon_vma is freed, because the lock lives in the root.
378 */
379 get_anon_vma(anon_vma->root);
380 /* Mark this anon_vma as the one where our new (COWed) pages go. */
381 vma->anon_vma = anon_vma;
382 anon_vma_lock_write(anon_vma);
383 anon_vma_chain_link(vma, avc, anon_vma);
384 anon_vma->parent->num_children++;
385 anon_vma_unlock_write(anon_vma);
386
387 return 0;
388
389 out_error_free_anon_vma:
390 put_anon_vma(anon_vma);
391 out_error:
392 unlink_anon_vmas(vma);
393 return -ENOMEM;
394 }
395
unlink_anon_vmas(struct vm_area_struct * vma)396 void unlink_anon_vmas(struct vm_area_struct *vma)
397 {
398 struct anon_vma_chain *avc, *next;
399 struct anon_vma *root = NULL;
400
401 /*
402 * Unlink each anon_vma chained to the VMA. This list is ordered
403 * from newest to oldest, ensuring the root anon_vma gets freed last.
404 */
405 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
406 struct anon_vma *anon_vma = avc->anon_vma;
407
408 root = lock_anon_vma_root(root, anon_vma);
409 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
410
411 /*
412 * Leave empty anon_vmas on the list - we'll need
413 * to free them outside the lock.
414 */
415 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
416 anon_vma->parent->num_children--;
417 continue;
418 }
419
420 list_del(&avc->same_vma);
421 anon_vma_chain_free(avc);
422 }
423 if (vma->anon_vma) {
424 vma->anon_vma->num_active_vmas--;
425
426 /*
427 * vma would still be needed after unlink, and anon_vma will be prepared
428 * when handle fault.
429 */
430 vma->anon_vma = NULL;
431 }
432 unlock_anon_vma_root(root);
433
434 /*
435 * Iterate the list once more, it now only contains empty and unlinked
436 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
437 * needing to write-acquire the anon_vma->root->rwsem.
438 */
439 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
440 struct anon_vma *anon_vma = avc->anon_vma;
441
442 VM_WARN_ON(anon_vma->num_children);
443 VM_WARN_ON(anon_vma->num_active_vmas);
444 put_anon_vma(anon_vma);
445
446 list_del(&avc->same_vma);
447 anon_vma_chain_free(avc);
448 }
449 }
450
anon_vma_ctor(void * data)451 static void anon_vma_ctor(void *data)
452 {
453 struct anon_vma *anon_vma = data;
454
455 init_rwsem(&anon_vma->rwsem);
456 atomic_set(&anon_vma->refcount, 0);
457 anon_vma->rb_root = RB_ROOT_CACHED;
458 }
459
anon_vma_init(void)460 void __init anon_vma_init(void)
461 {
462 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
463 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
464 anon_vma_ctor);
465 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
466 SLAB_PANIC|SLAB_ACCOUNT);
467 }
468
469 /*
470 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
471 *
472 * Since there is no serialization what so ever against folio_remove_rmap_*()
473 * the best this function can do is return a refcount increased anon_vma
474 * that might have been relevant to this page.
475 *
476 * The page might have been remapped to a different anon_vma or the anon_vma
477 * returned may already be freed (and even reused).
478 *
479 * In case it was remapped to a different anon_vma, the new anon_vma will be a
480 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
481 * ensure that any anon_vma obtained from the page will still be valid for as
482 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
483 *
484 * All users of this function must be very careful when walking the anon_vma
485 * chain and verify that the page in question is indeed mapped in it
486 * [ something equivalent to page_mapped_in_vma() ].
487 *
488 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
489 * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid
490 * if there is a mapcount, we can dereference the anon_vma after observing
491 * those.
492 *
493 * NOTE: the caller should normally hold folio lock when calling this. If
494 * not, the caller needs to double check the anon_vma didn't change after
495 * taking the anon_vma lock for either read or write (UFFDIO_MOVE can modify it
496 * concurrently without folio lock protection). See folio_lock_anon_vma_read()
497 * which has already covered that, and comment above remap_pages().
498 */
folio_get_anon_vma(const struct folio * folio)499 struct anon_vma *folio_get_anon_vma(const struct folio *folio)
500 {
501 struct anon_vma *anon_vma = NULL;
502 unsigned long anon_mapping;
503
504 rcu_read_lock();
505 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
506 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
507 goto out;
508 if (!folio_mapped(folio))
509 goto out;
510
511 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
512 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
513 anon_vma = NULL;
514 goto out;
515 }
516
517 /*
518 * If this folio is still mapped, then its anon_vma cannot have been
519 * freed. But if it has been unmapped, we have no security against the
520 * anon_vma structure being freed and reused (for another anon_vma:
521 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
522 * above cannot corrupt).
523 */
524 if (!folio_mapped(folio)) {
525 rcu_read_unlock();
526 put_anon_vma(anon_vma);
527 return NULL;
528 }
529 out:
530 rcu_read_unlock();
531
532 return anon_vma;
533 }
534
535 /*
536 * Similar to folio_get_anon_vma() except it locks the anon_vma.
537 *
538 * Its a little more complex as it tries to keep the fast path to a single
539 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
540 * reference like with folio_get_anon_vma() and then block on the mutex
541 * on !rwc->try_lock case.
542 */
folio_lock_anon_vma_read(const struct folio * folio,struct rmap_walk_control * rwc)543 struct anon_vma *folio_lock_anon_vma_read(const struct folio *folio,
544 struct rmap_walk_control *rwc)
545 {
546 struct anon_vma *anon_vma = NULL;
547 struct anon_vma *root_anon_vma;
548 unsigned long anon_mapping;
549
550 retry:
551 rcu_read_lock();
552 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
553 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
554 goto out;
555 if (!folio_mapped(folio))
556 goto out;
557
558 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
559 root_anon_vma = READ_ONCE(anon_vma->root);
560 if (down_read_trylock(&root_anon_vma->rwsem)) {
561 /*
562 * folio_move_anon_rmap() might have changed the anon_vma as we
563 * might not hold the folio lock here.
564 */
565 if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
566 anon_mapping)) {
567 up_read(&root_anon_vma->rwsem);
568 rcu_read_unlock();
569 goto retry;
570 }
571
572 /*
573 * If the folio is still mapped, then this anon_vma is still
574 * its anon_vma, and holding the mutex ensures that it will
575 * not go away, see anon_vma_free().
576 */
577 if (!folio_mapped(folio)) {
578 up_read(&root_anon_vma->rwsem);
579 anon_vma = NULL;
580 }
581 goto out;
582 }
583
584 if (rwc && rwc->try_lock) {
585 anon_vma = NULL;
586 rwc->contended = true;
587 goto out;
588 }
589
590 /* trylock failed, we got to sleep */
591 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
592 anon_vma = NULL;
593 goto out;
594 }
595
596 if (!folio_mapped(folio)) {
597 rcu_read_unlock();
598 put_anon_vma(anon_vma);
599 return NULL;
600 }
601
602 /* we pinned the anon_vma, its safe to sleep */
603 rcu_read_unlock();
604 anon_vma_lock_read(anon_vma);
605
606 /*
607 * folio_move_anon_rmap() might have changed the anon_vma as we might
608 * not hold the folio lock here.
609 */
610 if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
611 anon_mapping)) {
612 anon_vma_unlock_read(anon_vma);
613 put_anon_vma(anon_vma);
614 anon_vma = NULL;
615 goto retry;
616 }
617
618 if (atomic_dec_and_test(&anon_vma->refcount)) {
619 /*
620 * Oops, we held the last refcount, release the lock
621 * and bail -- can't simply use put_anon_vma() because
622 * we'll deadlock on the anon_vma_lock_write() recursion.
623 */
624 anon_vma_unlock_read(anon_vma);
625 __put_anon_vma(anon_vma);
626 anon_vma = NULL;
627 }
628
629 return anon_vma;
630
631 out:
632 rcu_read_unlock();
633 return anon_vma;
634 }
635
636 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
637 /*
638 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
639 * important if a PTE was dirty when it was unmapped that it's flushed
640 * before any IO is initiated on the page to prevent lost writes. Similarly,
641 * it must be flushed before freeing to prevent data leakage.
642 */
try_to_unmap_flush(void)643 void try_to_unmap_flush(void)
644 {
645 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
646
647 if (!tlb_ubc->flush_required)
648 return;
649
650 arch_tlbbatch_flush(&tlb_ubc->arch);
651 tlb_ubc->flush_required = false;
652 tlb_ubc->writable = false;
653 }
654
655 /* Flush iff there are potentially writable TLB entries that can race with IO */
try_to_unmap_flush_dirty(void)656 void try_to_unmap_flush_dirty(void)
657 {
658 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
659
660 if (tlb_ubc->writable)
661 try_to_unmap_flush();
662 }
663
664 /*
665 * Bits 0-14 of mm->tlb_flush_batched record pending generations.
666 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
667 */
668 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16
669 #define TLB_FLUSH_BATCH_PENDING_MASK \
670 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
671 #define TLB_FLUSH_BATCH_PENDING_LARGE \
672 (TLB_FLUSH_BATCH_PENDING_MASK / 2)
673
set_tlb_ubc_flush_pending(struct mm_struct * mm,pte_t pteval,unsigned long start,unsigned long end)674 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
675 unsigned long start, unsigned long end)
676 {
677 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
678 int batch;
679 bool writable = pte_dirty(pteval);
680
681 if (!pte_accessible(mm, pteval))
682 return;
683
684 arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, start, end);
685 tlb_ubc->flush_required = true;
686
687 /*
688 * Ensure compiler does not re-order the setting of tlb_flush_batched
689 * before the PTE is cleared.
690 */
691 barrier();
692 batch = atomic_read(&mm->tlb_flush_batched);
693 retry:
694 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
695 /*
696 * Prevent `pending' from catching up with `flushed' because of
697 * overflow. Reset `pending' and `flushed' to be 1 and 0 if
698 * `pending' becomes large.
699 */
700 if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1))
701 goto retry;
702 } else {
703 atomic_inc(&mm->tlb_flush_batched);
704 }
705
706 /*
707 * If the PTE was dirty then it's best to assume it's writable. The
708 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
709 * before the page is queued for IO.
710 */
711 if (writable)
712 tlb_ubc->writable = true;
713 }
714
715 /*
716 * Returns true if the TLB flush should be deferred to the end of a batch of
717 * unmap operations to reduce IPIs.
718 */
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)719 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
720 {
721 if (!(flags & TTU_BATCH_FLUSH))
722 return false;
723
724 return arch_tlbbatch_should_defer(mm);
725 }
726
727 /*
728 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
729 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
730 * operation such as mprotect or munmap to race between reclaim unmapping
731 * the page and flushing the page. If this race occurs, it potentially allows
732 * access to data via a stale TLB entry. Tracking all mm's that have TLB
733 * batching in flight would be expensive during reclaim so instead track
734 * whether TLB batching occurred in the past and if so then do a flush here
735 * if required. This will cost one additional flush per reclaim cycle paid
736 * by the first operation at risk such as mprotect and mumap.
737 *
738 * This must be called under the PTL so that an access to tlb_flush_batched
739 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
740 * via the PTL.
741 */
flush_tlb_batched_pending(struct mm_struct * mm)742 void flush_tlb_batched_pending(struct mm_struct *mm)
743 {
744 int batch = atomic_read(&mm->tlb_flush_batched);
745 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
746 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
747
748 if (pending != flushed) {
749 arch_flush_tlb_batched_pending(mm);
750 /*
751 * If the new TLB flushing is pending during flushing, leave
752 * mm->tlb_flush_batched as is, to avoid losing flushing.
753 */
754 atomic_cmpxchg(&mm->tlb_flush_batched, batch,
755 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
756 }
757 }
758 #else
set_tlb_ubc_flush_pending(struct mm_struct * mm,pte_t pteval,unsigned long start,unsigned long end)759 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
760 unsigned long start, unsigned long end)
761 {
762 }
763
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)764 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
765 {
766 return false;
767 }
768 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
769
770 /**
771 * page_address_in_vma - The virtual address of a page in this VMA.
772 * @folio: The folio containing the page.
773 * @page: The page within the folio.
774 * @vma: The VMA we need to know the address in.
775 *
776 * Calculates the user virtual address of this page in the specified VMA.
777 * It is the caller's responsibility to check the page is actually
778 * within the VMA. There may not currently be a PTE pointing at this
779 * page, but if a page fault occurs at this address, this is the page
780 * which will be accessed.
781 *
782 * Context: Caller should hold a reference to the folio. Caller should
783 * hold a lock (eg the i_mmap_lock or the mmap_lock) which keeps the
784 * VMA from being altered.
785 *
786 * Return: The virtual address corresponding to this page in the VMA.
787 */
page_address_in_vma(const struct folio * folio,const struct page * page,const struct vm_area_struct * vma)788 unsigned long page_address_in_vma(const struct folio *folio,
789 const struct page *page, const struct vm_area_struct *vma)
790 {
791 if (folio_test_anon(folio)) {
792 struct anon_vma *anon_vma = folio_anon_vma(folio);
793 /*
794 * Note: swapoff's unuse_vma() is more efficient with this
795 * check, and needs it to match anon_vma when KSM is active.
796 */
797 if (!vma->anon_vma || !anon_vma ||
798 vma->anon_vma->root != anon_vma->root)
799 return -EFAULT;
800 } else if (!vma->vm_file) {
801 return -EFAULT;
802 } else if (vma->vm_file->f_mapping != folio->mapping) {
803 return -EFAULT;
804 }
805
806 /* KSM folios don't reach here because of the !anon_vma check */
807 return vma_address(vma, page_pgoff(folio, page), 1);
808 }
809
810 /*
811 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
812 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t*
813 * represents.
814 */
mm_find_pmd(struct mm_struct * mm,unsigned long address)815 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
816 {
817 pgd_t *pgd;
818 p4d_t *p4d;
819 pud_t *pud;
820 pmd_t *pmd = NULL;
821
822 pgd = pgd_offset(mm, address);
823 if (!pgd_present(*pgd))
824 goto out;
825
826 p4d = p4d_offset(pgd, address);
827 if (!p4d_present(*p4d))
828 goto out;
829
830 pud = pud_offset(p4d, address);
831 if (!pud_present(*pud))
832 goto out;
833
834 pmd = pmd_offset(pud, address);
835 out:
836 return pmd;
837 }
838
839 struct folio_referenced_arg {
840 int mapcount;
841 int referenced;
842 unsigned long vm_flags;
843 struct mem_cgroup *memcg;
844 };
845
846 /*
847 * arg: folio_referenced_arg will be passed
848 */
folio_referenced_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)849 static bool folio_referenced_one(struct folio *folio,
850 struct vm_area_struct *vma, unsigned long address, void *arg)
851 {
852 struct folio_referenced_arg *pra = arg;
853 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
854 int referenced = 0;
855 unsigned long start = address, ptes = 0;
856
857 while (page_vma_mapped_walk(&pvmw)) {
858 address = pvmw.address;
859
860 if (vma->vm_flags & VM_LOCKED) {
861 if (!folio_test_large(folio) || !pvmw.pte) {
862 /* Restore the mlock which got missed */
863 mlock_vma_folio(folio, vma);
864 page_vma_mapped_walk_done(&pvmw);
865 pra->vm_flags |= VM_LOCKED;
866 return false; /* To break the loop */
867 }
868 /*
869 * For large folio fully mapped to VMA, will
870 * be handled after the pvmw loop.
871 *
872 * For large folio cross VMA boundaries, it's
873 * expected to be picked by page reclaim. But
874 * should skip reference of pages which are in
875 * the range of VM_LOCKED vma. As page reclaim
876 * should just count the reference of pages out
877 * the range of VM_LOCKED vma.
878 */
879 ptes++;
880 pra->mapcount--;
881 continue;
882 }
883
884 /*
885 * Skip the non-shared swapbacked folio mapped solely by
886 * the exiting or OOM-reaped process. This avoids redundant
887 * swap-out followed by an immediate unmap.
888 */
889 if ((!atomic_read(&vma->vm_mm->mm_users) ||
890 check_stable_address_space(vma->vm_mm)) &&
891 folio_test_anon(folio) && folio_test_swapbacked(folio) &&
892 !folio_maybe_mapped_shared(folio)) {
893 pra->referenced = -1;
894 page_vma_mapped_walk_done(&pvmw);
895 return false;
896 }
897
898 if (lru_gen_enabled() && pvmw.pte) {
899 if (lru_gen_look_around(&pvmw))
900 referenced++;
901 } else if (pvmw.pte) {
902 if (ptep_clear_flush_young_notify(vma, address,
903 pvmw.pte))
904 referenced++;
905 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
906 if (pmdp_clear_flush_young_notify(vma, address,
907 pvmw.pmd))
908 referenced++;
909 } else {
910 /* unexpected pmd-mapped folio? */
911 WARN_ON_ONCE(1);
912 }
913
914 pra->mapcount--;
915 }
916
917 if ((vma->vm_flags & VM_LOCKED) &&
918 folio_test_large(folio) &&
919 folio_within_vma(folio, vma)) {
920 unsigned long s_align, e_align;
921
922 s_align = ALIGN_DOWN(start, PMD_SIZE);
923 e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE);
924
925 /* folio doesn't cross page table boundary and fully mapped */
926 if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) {
927 /* Restore the mlock which got missed */
928 mlock_vma_folio(folio, vma);
929 pra->vm_flags |= VM_LOCKED;
930 return false; /* To break the loop */
931 }
932 }
933
934 if (referenced)
935 folio_clear_idle(folio);
936 if (folio_test_clear_young(folio))
937 referenced++;
938
939 if (referenced) {
940 pra->referenced++;
941 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
942 }
943
944 if (!pra->mapcount)
945 return false; /* To break the loop */
946
947 return true;
948 }
949
invalid_folio_referenced_vma(struct vm_area_struct * vma,void * arg)950 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
951 {
952 struct folio_referenced_arg *pra = arg;
953 struct mem_cgroup *memcg = pra->memcg;
954
955 /*
956 * Ignore references from this mapping if it has no recency. If the
957 * folio has been used in another mapping, we will catch it; if this
958 * other mapping is already gone, the unmap path will have set the
959 * referenced flag or activated the folio in zap_pte_range().
960 */
961 if (!vma_has_recency(vma))
962 return true;
963
964 /*
965 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
966 * of references from different cgroups.
967 */
968 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
969 return true;
970
971 return false;
972 }
973
974 /**
975 * folio_referenced() - Test if the folio was referenced.
976 * @folio: The folio to test.
977 * @is_locked: Caller holds lock on the folio.
978 * @memcg: target memory cgroup
979 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
980 *
981 * Quick test_and_clear_referenced for all mappings of a folio,
982 *
983 * Return: The number of mappings which referenced the folio. Return -1 if
984 * the function bailed out due to rmap lock contention.
985 */
folio_referenced(struct folio * folio,int is_locked,struct mem_cgroup * memcg,unsigned long * vm_flags)986 int folio_referenced(struct folio *folio, int is_locked,
987 struct mem_cgroup *memcg, unsigned long *vm_flags)
988 {
989 bool we_locked = false;
990 struct folio_referenced_arg pra = {
991 .mapcount = folio_mapcount(folio),
992 .memcg = memcg,
993 };
994 struct rmap_walk_control rwc = {
995 .rmap_one = folio_referenced_one,
996 .arg = (void *)&pra,
997 .anon_lock = folio_lock_anon_vma_read,
998 .try_lock = true,
999 .invalid_vma = invalid_folio_referenced_vma,
1000 };
1001
1002 *vm_flags = 0;
1003 if (!pra.mapcount)
1004 return 0;
1005
1006 if (!folio_raw_mapping(folio))
1007 return 0;
1008
1009 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
1010 we_locked = folio_trylock(folio);
1011 if (!we_locked)
1012 return 1;
1013 }
1014
1015 rmap_walk(folio, &rwc);
1016 *vm_flags = pra.vm_flags;
1017
1018 if (we_locked)
1019 folio_unlock(folio);
1020
1021 return rwc.contended ? -1 : pra.referenced;
1022 }
1023
page_vma_mkclean_one(struct page_vma_mapped_walk * pvmw)1024 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
1025 {
1026 int cleaned = 0;
1027 struct vm_area_struct *vma = pvmw->vma;
1028 struct mmu_notifier_range range;
1029 unsigned long address = pvmw->address;
1030
1031 /*
1032 * We have to assume the worse case ie pmd for invalidation. Note that
1033 * the folio can not be freed from this function.
1034 */
1035 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
1036 vma->vm_mm, address, vma_address_end(pvmw));
1037 mmu_notifier_invalidate_range_start(&range);
1038
1039 while (page_vma_mapped_walk(pvmw)) {
1040 int ret = 0;
1041
1042 address = pvmw->address;
1043 if (pvmw->pte) {
1044 pte_t *pte = pvmw->pte;
1045 pte_t entry = ptep_get(pte);
1046
1047 /*
1048 * PFN swap PTEs, such as device-exclusive ones, that
1049 * actually map pages are clean and not writable from a
1050 * CPU perspective. The MMU notifier takes care of any
1051 * device aspects.
1052 */
1053 if (!pte_present(entry))
1054 continue;
1055 if (!pte_dirty(entry) && !pte_write(entry))
1056 continue;
1057
1058 flush_cache_page(vma, address, pte_pfn(entry));
1059 entry = ptep_clear_flush(vma, address, pte);
1060 entry = pte_wrprotect(entry);
1061 entry = pte_mkclean(entry);
1062 set_pte_at(vma->vm_mm, address, pte, entry);
1063 ret = 1;
1064 } else {
1065 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1066 pmd_t *pmd = pvmw->pmd;
1067 pmd_t entry;
1068
1069 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
1070 continue;
1071
1072 flush_cache_range(vma, address,
1073 address + HPAGE_PMD_SIZE);
1074 entry = pmdp_invalidate(vma, address, pmd);
1075 entry = pmd_wrprotect(entry);
1076 entry = pmd_mkclean(entry);
1077 set_pmd_at(vma->vm_mm, address, pmd, entry);
1078 ret = 1;
1079 #else
1080 /* unexpected pmd-mapped folio? */
1081 WARN_ON_ONCE(1);
1082 #endif
1083 }
1084
1085 if (ret)
1086 cleaned++;
1087 }
1088
1089 mmu_notifier_invalidate_range_end(&range);
1090
1091 return cleaned;
1092 }
1093
page_mkclean_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)1094 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1095 unsigned long address, void *arg)
1096 {
1097 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1098 int *cleaned = arg;
1099
1100 *cleaned += page_vma_mkclean_one(&pvmw);
1101
1102 return true;
1103 }
1104
invalid_mkclean_vma(struct vm_area_struct * vma,void * arg)1105 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1106 {
1107 if (vma->vm_flags & VM_SHARED)
1108 return false;
1109
1110 return true;
1111 }
1112
folio_mkclean(struct folio * folio)1113 int folio_mkclean(struct folio *folio)
1114 {
1115 int cleaned = 0;
1116 struct address_space *mapping;
1117 struct rmap_walk_control rwc = {
1118 .arg = (void *)&cleaned,
1119 .rmap_one = page_mkclean_one,
1120 .invalid_vma = invalid_mkclean_vma,
1121 };
1122
1123 BUG_ON(!folio_test_locked(folio));
1124
1125 if (!folio_mapped(folio))
1126 return 0;
1127
1128 mapping = folio_mapping(folio);
1129 if (!mapping)
1130 return 0;
1131
1132 rmap_walk(folio, &rwc);
1133
1134 return cleaned;
1135 }
1136 EXPORT_SYMBOL_GPL(folio_mkclean);
1137
1138 struct wrprotect_file_state {
1139 int cleaned;
1140 pgoff_t pgoff;
1141 unsigned long pfn;
1142 unsigned long nr_pages;
1143 };
1144
mapping_wrprotect_range_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)1145 static bool mapping_wrprotect_range_one(struct folio *folio,
1146 struct vm_area_struct *vma, unsigned long address, void *arg)
1147 {
1148 struct wrprotect_file_state *state = (struct wrprotect_file_state *)arg;
1149 struct page_vma_mapped_walk pvmw = {
1150 .pfn = state->pfn,
1151 .nr_pages = state->nr_pages,
1152 .pgoff = state->pgoff,
1153 .vma = vma,
1154 .address = address,
1155 .flags = PVMW_SYNC,
1156 };
1157
1158 state->cleaned += page_vma_mkclean_one(&pvmw);
1159
1160 return true;
1161 }
1162
1163 static void __rmap_walk_file(struct folio *folio, struct address_space *mapping,
1164 pgoff_t pgoff_start, unsigned long nr_pages,
1165 struct rmap_walk_control *rwc, bool locked);
1166
1167 /**
1168 * mapping_wrprotect_range() - Write-protect all mappings in a specified range.
1169 *
1170 * @mapping: The mapping whose reverse mapping should be traversed.
1171 * @pgoff: The page offset at which @pfn is mapped within @mapping.
1172 * @pfn: The PFN of the page mapped in @mapping at @pgoff.
1173 * @nr_pages: The number of physically contiguous base pages spanned.
1174 *
1175 * Traverses the reverse mapping, finding all VMAs which contain a shared
1176 * mapping of the pages in the specified range in @mapping, and write-protects
1177 * them (that is, updates the page tables to mark the mappings read-only such
1178 * that a write protection fault arises when the mappings are written to).
1179 *
1180 * The @pfn value need not refer to a folio, but rather can reference a kernel
1181 * allocation which is mapped into userland. We therefore do not require that
1182 * the page maps to a folio with a valid mapping or index field, rather the
1183 * caller specifies these in @mapping and @pgoff.
1184 *
1185 * Return: the number of write-protected PTEs, or an error.
1186 */
mapping_wrprotect_range(struct address_space * mapping,pgoff_t pgoff,unsigned long pfn,unsigned long nr_pages)1187 int mapping_wrprotect_range(struct address_space *mapping, pgoff_t pgoff,
1188 unsigned long pfn, unsigned long nr_pages)
1189 {
1190 struct wrprotect_file_state state = {
1191 .cleaned = 0,
1192 .pgoff = pgoff,
1193 .pfn = pfn,
1194 .nr_pages = nr_pages,
1195 };
1196 struct rmap_walk_control rwc = {
1197 .arg = (void *)&state,
1198 .rmap_one = mapping_wrprotect_range_one,
1199 .invalid_vma = invalid_mkclean_vma,
1200 };
1201
1202 if (!mapping)
1203 return 0;
1204
1205 __rmap_walk_file(/* folio = */NULL, mapping, pgoff, nr_pages, &rwc,
1206 /* locked = */false);
1207
1208 return state.cleaned;
1209 }
1210 EXPORT_SYMBOL_GPL(mapping_wrprotect_range);
1211
1212 /**
1213 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1214 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1215 * within the @vma of shared mappings. And since clean PTEs
1216 * should also be readonly, write protects them too.
1217 * @pfn: start pfn.
1218 * @nr_pages: number of physically contiguous pages srarting with @pfn.
1219 * @pgoff: page offset that the @pfn mapped with.
1220 * @vma: vma that @pfn mapped within.
1221 *
1222 * Returns the number of cleaned PTEs (including PMDs).
1223 */
pfn_mkclean_range(unsigned long pfn,unsigned long nr_pages,pgoff_t pgoff,struct vm_area_struct * vma)1224 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1225 struct vm_area_struct *vma)
1226 {
1227 struct page_vma_mapped_walk pvmw = {
1228 .pfn = pfn,
1229 .nr_pages = nr_pages,
1230 .pgoff = pgoff,
1231 .vma = vma,
1232 .flags = PVMW_SYNC,
1233 };
1234
1235 if (invalid_mkclean_vma(vma, NULL))
1236 return 0;
1237
1238 pvmw.address = vma_address(vma, pgoff, nr_pages);
1239 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1240
1241 return page_vma_mkclean_one(&pvmw);
1242 }
1243
__folio_add_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,enum rmap_level level,int * nr_pmdmapped)1244 static __always_inline unsigned int __folio_add_rmap(struct folio *folio,
1245 struct page *page, int nr_pages, struct vm_area_struct *vma,
1246 enum rmap_level level, int *nr_pmdmapped)
1247 {
1248 atomic_t *mapped = &folio->_nr_pages_mapped;
1249 const int orig_nr_pages = nr_pages;
1250 int first = 0, nr = 0;
1251
1252 __folio_rmap_sanity_checks(folio, page, nr_pages, level);
1253
1254 switch (level) {
1255 case RMAP_LEVEL_PTE:
1256 if (!folio_test_large(folio)) {
1257 nr = atomic_inc_and_test(&folio->_mapcount);
1258 break;
1259 }
1260
1261 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) {
1262 nr = folio_add_return_large_mapcount(folio, orig_nr_pages, vma);
1263 if (nr == orig_nr_pages)
1264 /* Was completely unmapped. */
1265 nr = folio_large_nr_pages(folio);
1266 else
1267 nr = 0;
1268 break;
1269 }
1270
1271 do {
1272 first += atomic_inc_and_test(&page->_mapcount);
1273 } while (page++, --nr_pages > 0);
1274
1275 if (first &&
1276 atomic_add_return_relaxed(first, mapped) < ENTIRELY_MAPPED)
1277 nr = first;
1278
1279 folio_add_large_mapcount(folio, orig_nr_pages, vma);
1280 break;
1281 case RMAP_LEVEL_PMD:
1282 case RMAP_LEVEL_PUD:
1283 first = atomic_inc_and_test(&folio->_entire_mapcount);
1284 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) {
1285 if (level == RMAP_LEVEL_PMD && first)
1286 *nr_pmdmapped = folio_large_nr_pages(folio);
1287 nr = folio_inc_return_large_mapcount(folio, vma);
1288 if (nr == 1)
1289 /* Was completely unmapped. */
1290 nr = folio_large_nr_pages(folio);
1291 else
1292 nr = 0;
1293 break;
1294 }
1295
1296 if (first) {
1297 nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped);
1298 if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) {
1299 nr_pages = folio_large_nr_pages(folio);
1300 /*
1301 * We only track PMD mappings of PMD-sized
1302 * folios separately.
1303 */
1304 if (level == RMAP_LEVEL_PMD)
1305 *nr_pmdmapped = nr_pages;
1306 nr = nr_pages - (nr & FOLIO_PAGES_MAPPED);
1307 /* Raced ahead of a remove and another add? */
1308 if (unlikely(nr < 0))
1309 nr = 0;
1310 } else {
1311 /* Raced ahead of a remove of ENTIRELY_MAPPED */
1312 nr = 0;
1313 }
1314 }
1315 folio_inc_large_mapcount(folio, vma);
1316 break;
1317 }
1318 return nr;
1319 }
1320
1321 /**
1322 * folio_move_anon_rmap - move a folio to our anon_vma
1323 * @folio: The folio to move to our anon_vma
1324 * @vma: The vma the folio belongs to
1325 *
1326 * When a folio belongs exclusively to one process after a COW event,
1327 * that folio can be moved into the anon_vma that belongs to just that
1328 * process, so the rmap code will not search the parent or sibling processes.
1329 */
folio_move_anon_rmap(struct folio * folio,struct vm_area_struct * vma)1330 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma)
1331 {
1332 void *anon_vma = vma->anon_vma;
1333
1334 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1335 VM_BUG_ON_VMA(!anon_vma, vma);
1336
1337 anon_vma += PAGE_MAPPING_ANON;
1338 /*
1339 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1340 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1341 * folio_test_anon()) will not see one without the other.
1342 */
1343 WRITE_ONCE(folio->mapping, anon_vma);
1344 }
1345
1346 /**
1347 * __folio_set_anon - set up a new anonymous rmap for a folio
1348 * @folio: The folio to set up the new anonymous rmap for.
1349 * @vma: VM area to add the folio to.
1350 * @address: User virtual address of the mapping
1351 * @exclusive: Whether the folio is exclusive to the process.
1352 */
__folio_set_anon(struct folio * folio,struct vm_area_struct * vma,unsigned long address,bool exclusive)1353 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma,
1354 unsigned long address, bool exclusive)
1355 {
1356 struct anon_vma *anon_vma = vma->anon_vma;
1357
1358 BUG_ON(!anon_vma);
1359
1360 /*
1361 * If the folio isn't exclusive to this vma, we must use the _oldest_
1362 * possible anon_vma for the folio mapping!
1363 */
1364 if (!exclusive)
1365 anon_vma = anon_vma->root;
1366
1367 /*
1368 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1369 * Make sure the compiler doesn't split the stores of anon_vma and
1370 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1371 * could mistake the mapping for a struct address_space and crash.
1372 */
1373 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1374 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1375 folio->index = linear_page_index(vma, address);
1376 }
1377
1378 /**
1379 * __page_check_anon_rmap - sanity check anonymous rmap addition
1380 * @folio: The folio containing @page.
1381 * @page: the page to check the mapping of
1382 * @vma: the vm area in which the mapping is added
1383 * @address: the user virtual address mapped
1384 */
__page_check_anon_rmap(const struct folio * folio,const struct page * page,struct vm_area_struct * vma,unsigned long address)1385 static void __page_check_anon_rmap(const struct folio *folio,
1386 const struct page *page, struct vm_area_struct *vma,
1387 unsigned long address)
1388 {
1389 /*
1390 * The page's anon-rmap details (mapping and index) are guaranteed to
1391 * be set up correctly at this point.
1392 *
1393 * We have exclusion against folio_add_anon_rmap_*() because the caller
1394 * always holds the page locked.
1395 *
1396 * We have exclusion against folio_add_new_anon_rmap because those pages
1397 * are initially only visible via the pagetables, and the pte is locked
1398 * over the call to folio_add_new_anon_rmap.
1399 */
1400 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1401 folio);
1402 VM_BUG_ON_PAGE(page_pgoff(folio, page) != linear_page_index(vma, address),
1403 page);
1404 }
1405
__folio_mod_stat(struct folio * folio,int nr,int nr_pmdmapped)1406 static void __folio_mod_stat(struct folio *folio, int nr, int nr_pmdmapped)
1407 {
1408 int idx;
1409
1410 if (nr) {
1411 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1412 __lruvec_stat_mod_folio(folio, idx, nr);
1413 }
1414 if (nr_pmdmapped) {
1415 if (folio_test_anon(folio)) {
1416 idx = NR_ANON_THPS;
1417 __lruvec_stat_mod_folio(folio, idx, nr_pmdmapped);
1418 } else {
1419 /* NR_*_PMDMAPPED are not maintained per-memcg */
1420 idx = folio_test_swapbacked(folio) ?
1421 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED;
1422 __mod_node_page_state(folio_pgdat(folio), idx,
1423 nr_pmdmapped);
1424 }
1425 }
1426 }
1427
__folio_add_anon_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,unsigned long address,rmap_t flags,enum rmap_level level)1428 static __always_inline void __folio_add_anon_rmap(struct folio *folio,
1429 struct page *page, int nr_pages, struct vm_area_struct *vma,
1430 unsigned long address, rmap_t flags, enum rmap_level level)
1431 {
1432 int i, nr, nr_pmdmapped = 0;
1433
1434 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
1435
1436 nr = __folio_add_rmap(folio, page, nr_pages, vma, level, &nr_pmdmapped);
1437
1438 if (likely(!folio_test_ksm(folio)))
1439 __page_check_anon_rmap(folio, page, vma, address);
1440
1441 __folio_mod_stat(folio, nr, nr_pmdmapped);
1442
1443 if (flags & RMAP_EXCLUSIVE) {
1444 switch (level) {
1445 case RMAP_LEVEL_PTE:
1446 for (i = 0; i < nr_pages; i++)
1447 SetPageAnonExclusive(page + i);
1448 break;
1449 case RMAP_LEVEL_PMD:
1450 SetPageAnonExclusive(page);
1451 break;
1452 case RMAP_LEVEL_PUD:
1453 /*
1454 * Keep the compiler happy, we don't support anonymous
1455 * PUD mappings.
1456 */
1457 WARN_ON_ONCE(1);
1458 break;
1459 }
1460 }
1461
1462 VM_WARN_ON_FOLIO(!folio_test_large(folio) && PageAnonExclusive(page) &&
1463 atomic_read(&folio->_mapcount) > 0, folio);
1464 for (i = 0; i < nr_pages; i++) {
1465 struct page *cur_page = page + i;
1466
1467 VM_WARN_ON_FOLIO(folio_test_large(folio) &&
1468 folio_entire_mapcount(folio) > 1 &&
1469 PageAnonExclusive(cur_page), folio);
1470 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT))
1471 continue;
1472
1473 /*
1474 * While PTE-mapping a THP we have a PMD and a PTE
1475 * mapping.
1476 */
1477 VM_WARN_ON_FOLIO(atomic_read(&cur_page->_mapcount) > 0 &&
1478 PageAnonExclusive(cur_page), folio);
1479 }
1480
1481 /*
1482 * For large folio, only mlock it if it's fully mapped to VMA. It's
1483 * not easy to check whether the large folio is fully mapped to VMA
1484 * here. Only mlock normal 4K folio and leave page reclaim to handle
1485 * large folio.
1486 */
1487 if (!folio_test_large(folio))
1488 mlock_vma_folio(folio, vma);
1489 }
1490
1491 /**
1492 * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio
1493 * @folio: The folio to add the mappings to
1494 * @page: The first page to add
1495 * @nr_pages: The number of pages which will be mapped
1496 * @vma: The vm area in which the mappings are added
1497 * @address: The user virtual address of the first page to map
1498 * @flags: The rmap flags
1499 *
1500 * The page range of folio is defined by [first_page, first_page + nr_pages)
1501 *
1502 * The caller needs to hold the page table lock, and the page must be locked in
1503 * the anon_vma case: to serialize mapping,index checking after setting,
1504 * and to ensure that an anon folio is not being upgraded racily to a KSM folio
1505 * (but KSM folios are never downgraded).
1506 */
folio_add_anon_rmap_ptes(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,unsigned long address,rmap_t flags)1507 void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page,
1508 int nr_pages, struct vm_area_struct *vma, unsigned long address,
1509 rmap_t flags)
1510 {
1511 __folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags,
1512 RMAP_LEVEL_PTE);
1513 }
1514
1515 /**
1516 * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio
1517 * @folio: The folio to add the mapping to
1518 * @page: The first page to add
1519 * @vma: The vm area in which the mapping is added
1520 * @address: The user virtual address of the first page to map
1521 * @flags: The rmap flags
1522 *
1523 * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR)
1524 *
1525 * The caller needs to hold the page table lock, and the page must be locked in
1526 * the anon_vma case: to serialize mapping,index checking after setting.
1527 */
folio_add_anon_rmap_pmd(struct folio * folio,struct page * page,struct vm_area_struct * vma,unsigned long address,rmap_t flags)1528 void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page,
1529 struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1530 {
1531 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1532 __folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags,
1533 RMAP_LEVEL_PMD);
1534 #else
1535 WARN_ON_ONCE(true);
1536 #endif
1537 }
1538
1539 /**
1540 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1541 * @folio: The folio to add the mapping to.
1542 * @vma: the vm area in which the mapping is added
1543 * @address: the user virtual address mapped
1544 * @flags: The rmap flags
1545 *
1546 * Like folio_add_anon_rmap_*() but must only be called on *new* folios.
1547 * This means the inc-and-test can be bypassed.
1548 * The folio doesn't necessarily need to be locked while it's exclusive
1549 * unless two threads map it concurrently. However, the folio must be
1550 * locked if it's shared.
1551 *
1552 * If the folio is pmd-mappable, it is accounted as a THP.
1553 */
folio_add_new_anon_rmap(struct folio * folio,struct vm_area_struct * vma,unsigned long address,rmap_t flags)1554 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1555 unsigned long address, rmap_t flags)
1556 {
1557 const bool exclusive = flags & RMAP_EXCLUSIVE;
1558 int nr = 1, nr_pmdmapped = 0;
1559
1560 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
1561 VM_WARN_ON_FOLIO(!exclusive && !folio_test_locked(folio), folio);
1562
1563 /*
1564 * VM_DROPPABLE mappings don't swap; instead they're just dropped when
1565 * under memory pressure.
1566 */
1567 if (!folio_test_swapbacked(folio) && !(vma->vm_flags & VM_DROPPABLE))
1568 __folio_set_swapbacked(folio);
1569 __folio_set_anon(folio, vma, address, exclusive);
1570
1571 if (likely(!folio_test_large(folio))) {
1572 /* increment count (starts at -1) */
1573 atomic_set(&folio->_mapcount, 0);
1574 if (exclusive)
1575 SetPageAnonExclusive(&folio->page);
1576 } else if (!folio_test_pmd_mappable(folio)) {
1577 int i;
1578
1579 nr = folio_large_nr_pages(folio);
1580 for (i = 0; i < nr; i++) {
1581 struct page *page = folio_page(folio, i);
1582
1583 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
1584 /* increment count (starts at -1) */
1585 atomic_set(&page->_mapcount, 0);
1586 if (exclusive)
1587 SetPageAnonExclusive(page);
1588 }
1589
1590 folio_set_large_mapcount(folio, nr, vma);
1591 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
1592 atomic_set(&folio->_nr_pages_mapped, nr);
1593 } else {
1594 nr = folio_large_nr_pages(folio);
1595 /* increment count (starts at -1) */
1596 atomic_set(&folio->_entire_mapcount, 0);
1597 folio_set_large_mapcount(folio, 1, vma);
1598 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
1599 atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED);
1600 if (exclusive)
1601 SetPageAnonExclusive(&folio->page);
1602 nr_pmdmapped = nr;
1603 }
1604
1605 VM_WARN_ON_ONCE(address < vma->vm_start ||
1606 address + (nr << PAGE_SHIFT) > vma->vm_end);
1607
1608 __folio_mod_stat(folio, nr, nr_pmdmapped);
1609 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1);
1610 }
1611
__folio_add_file_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,enum rmap_level level)1612 static __always_inline void __folio_add_file_rmap(struct folio *folio,
1613 struct page *page, int nr_pages, struct vm_area_struct *vma,
1614 enum rmap_level level)
1615 {
1616 int nr, nr_pmdmapped = 0;
1617
1618 VM_WARN_ON_FOLIO(folio_test_anon(folio), folio);
1619
1620 nr = __folio_add_rmap(folio, page, nr_pages, vma, level, &nr_pmdmapped);
1621 __folio_mod_stat(folio, nr, nr_pmdmapped);
1622
1623 /* See comments in folio_add_anon_rmap_*() */
1624 if (!folio_test_large(folio))
1625 mlock_vma_folio(folio, vma);
1626 }
1627
1628 /**
1629 * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio
1630 * @folio: The folio to add the mappings to
1631 * @page: The first page to add
1632 * @nr_pages: The number of pages that will be mapped using PTEs
1633 * @vma: The vm area in which the mappings are added
1634 *
1635 * The page range of the folio is defined by [page, page + nr_pages)
1636 *
1637 * The caller needs to hold the page table lock.
1638 */
folio_add_file_rmap_ptes(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma)1639 void folio_add_file_rmap_ptes(struct folio *folio, struct page *page,
1640 int nr_pages, struct vm_area_struct *vma)
1641 {
1642 __folio_add_file_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1643 }
1644
1645 /**
1646 * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio
1647 * @folio: The folio to add the mapping to
1648 * @page: The first page to add
1649 * @vma: The vm area in which the mapping is added
1650 *
1651 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1652 *
1653 * The caller needs to hold the page table lock.
1654 */
folio_add_file_rmap_pmd(struct folio * folio,struct page * page,struct vm_area_struct * vma)1655 void folio_add_file_rmap_pmd(struct folio *folio, struct page *page,
1656 struct vm_area_struct *vma)
1657 {
1658 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1659 __folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1660 #else
1661 WARN_ON_ONCE(true);
1662 #endif
1663 }
1664
1665 /**
1666 * folio_add_file_rmap_pud - add a PUD mapping to a page range of a folio
1667 * @folio: The folio to add the mapping to
1668 * @page: The first page to add
1669 * @vma: The vm area in which the mapping is added
1670 *
1671 * The page range of the folio is defined by [page, page + HPAGE_PUD_NR)
1672 *
1673 * The caller needs to hold the page table lock.
1674 */
folio_add_file_rmap_pud(struct folio * folio,struct page * page,struct vm_area_struct * vma)1675 void folio_add_file_rmap_pud(struct folio *folio, struct page *page,
1676 struct vm_area_struct *vma)
1677 {
1678 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1679 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1680 __folio_add_file_rmap(folio, page, HPAGE_PUD_NR, vma, RMAP_LEVEL_PUD);
1681 #else
1682 WARN_ON_ONCE(true);
1683 #endif
1684 }
1685
__folio_remove_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,enum rmap_level level)1686 static __always_inline void __folio_remove_rmap(struct folio *folio,
1687 struct page *page, int nr_pages, struct vm_area_struct *vma,
1688 enum rmap_level level)
1689 {
1690 atomic_t *mapped = &folio->_nr_pages_mapped;
1691 int last = 0, nr = 0, nr_pmdmapped = 0;
1692 bool partially_mapped = false;
1693
1694 __folio_rmap_sanity_checks(folio, page, nr_pages, level);
1695
1696 switch (level) {
1697 case RMAP_LEVEL_PTE:
1698 if (!folio_test_large(folio)) {
1699 nr = atomic_add_negative(-1, &folio->_mapcount);
1700 break;
1701 }
1702
1703 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) {
1704 nr = folio_sub_return_large_mapcount(folio, nr_pages, vma);
1705 if (!nr) {
1706 /* Now completely unmapped. */
1707 nr = folio_nr_pages(folio);
1708 } else {
1709 partially_mapped = nr < folio_large_nr_pages(folio) &&
1710 !folio_entire_mapcount(folio);
1711 nr = 0;
1712 }
1713 break;
1714 }
1715
1716 folio_sub_large_mapcount(folio, nr_pages, vma);
1717 do {
1718 last += atomic_add_negative(-1, &page->_mapcount);
1719 } while (page++, --nr_pages > 0);
1720
1721 if (last &&
1722 atomic_sub_return_relaxed(last, mapped) < ENTIRELY_MAPPED)
1723 nr = last;
1724
1725 partially_mapped = nr && atomic_read(mapped);
1726 break;
1727 case RMAP_LEVEL_PMD:
1728 case RMAP_LEVEL_PUD:
1729 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) {
1730 last = atomic_add_negative(-1, &folio->_entire_mapcount);
1731 if (level == RMAP_LEVEL_PMD && last)
1732 nr_pmdmapped = folio_large_nr_pages(folio);
1733 nr = folio_dec_return_large_mapcount(folio, vma);
1734 if (!nr) {
1735 /* Now completely unmapped. */
1736 nr = folio_large_nr_pages(folio);
1737 } else {
1738 partially_mapped = last &&
1739 nr < folio_large_nr_pages(folio);
1740 nr = 0;
1741 }
1742 break;
1743 }
1744
1745 folio_dec_large_mapcount(folio, vma);
1746 last = atomic_add_negative(-1, &folio->_entire_mapcount);
1747 if (last) {
1748 nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped);
1749 if (likely(nr < ENTIRELY_MAPPED)) {
1750 nr_pages = folio_large_nr_pages(folio);
1751 if (level == RMAP_LEVEL_PMD)
1752 nr_pmdmapped = nr_pages;
1753 nr = nr_pages - (nr & FOLIO_PAGES_MAPPED);
1754 /* Raced ahead of another remove and an add? */
1755 if (unlikely(nr < 0))
1756 nr = 0;
1757 } else {
1758 /* An add of ENTIRELY_MAPPED raced ahead */
1759 nr = 0;
1760 }
1761 }
1762
1763 partially_mapped = nr && nr < nr_pmdmapped;
1764 break;
1765 }
1766
1767 /*
1768 * Queue anon large folio for deferred split if at least one page of
1769 * the folio is unmapped and at least one page is still mapped.
1770 *
1771 * Check partially_mapped first to ensure it is a large folio.
1772 */
1773 if (partially_mapped && folio_test_anon(folio) &&
1774 !folio_test_partially_mapped(folio))
1775 deferred_split_folio(folio, true);
1776
1777 __folio_mod_stat(folio, -nr, -nr_pmdmapped);
1778
1779 /*
1780 * It would be tidy to reset folio_test_anon mapping when fully
1781 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*()
1782 * which increments mapcount after us but sets mapping before us:
1783 * so leave the reset to free_pages_prepare, and remember that
1784 * it's only reliable while mapped.
1785 */
1786
1787 munlock_vma_folio(folio, vma);
1788 }
1789
1790 /**
1791 * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio
1792 * @folio: The folio to remove the mappings from
1793 * @page: The first page to remove
1794 * @nr_pages: The number of pages that will be removed from the mapping
1795 * @vma: The vm area from which the mappings are removed
1796 *
1797 * The page range of the folio is defined by [page, page + nr_pages)
1798 *
1799 * The caller needs to hold the page table lock.
1800 */
folio_remove_rmap_ptes(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma)1801 void folio_remove_rmap_ptes(struct folio *folio, struct page *page,
1802 int nr_pages, struct vm_area_struct *vma)
1803 {
1804 __folio_remove_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1805 }
1806
1807 /**
1808 * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio
1809 * @folio: The folio to remove the mapping from
1810 * @page: The first page to remove
1811 * @vma: The vm area from which the mapping is removed
1812 *
1813 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1814 *
1815 * The caller needs to hold the page table lock.
1816 */
folio_remove_rmap_pmd(struct folio * folio,struct page * page,struct vm_area_struct * vma)1817 void folio_remove_rmap_pmd(struct folio *folio, struct page *page,
1818 struct vm_area_struct *vma)
1819 {
1820 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1821 __folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1822 #else
1823 WARN_ON_ONCE(true);
1824 #endif
1825 }
1826
1827 /**
1828 * folio_remove_rmap_pud - remove a PUD mapping from a page range of a folio
1829 * @folio: The folio to remove the mapping from
1830 * @page: The first page to remove
1831 * @vma: The vm area from which the mapping is removed
1832 *
1833 * The page range of the folio is defined by [page, page + HPAGE_PUD_NR)
1834 *
1835 * The caller needs to hold the page table lock.
1836 */
folio_remove_rmap_pud(struct folio * folio,struct page * page,struct vm_area_struct * vma)1837 void folio_remove_rmap_pud(struct folio *folio, struct page *page,
1838 struct vm_area_struct *vma)
1839 {
1840 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1841 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1842 __folio_remove_rmap(folio, page, HPAGE_PUD_NR, vma, RMAP_LEVEL_PUD);
1843 #else
1844 WARN_ON_ONCE(true);
1845 #endif
1846 }
1847
folio_unmap_pte_batch(struct folio * folio,struct page_vma_mapped_walk * pvmw,enum ttu_flags flags,pte_t pte)1848 static inline unsigned int folio_unmap_pte_batch(struct folio *folio,
1849 struct page_vma_mapped_walk *pvmw,
1850 enum ttu_flags flags, pte_t pte)
1851 {
1852 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
1853 unsigned long end_addr, addr = pvmw->address;
1854 struct vm_area_struct *vma = pvmw->vma;
1855 unsigned int max_nr;
1856
1857 if (flags & TTU_HWPOISON)
1858 return 1;
1859 if (!folio_test_large(folio))
1860 return 1;
1861
1862 /* We may only batch within a single VMA and a single page table. */
1863 end_addr = pmd_addr_end(addr, vma->vm_end);
1864 max_nr = (end_addr - addr) >> PAGE_SHIFT;
1865
1866 /* We only support lazyfree batching for now ... */
1867 if (!folio_test_anon(folio) || folio_test_swapbacked(folio))
1868 return 1;
1869 if (pte_unused(pte))
1870 return 1;
1871
1872 return folio_pte_batch(folio, addr, pvmw->pte, pte, max_nr, fpb_flags,
1873 NULL, NULL, NULL);
1874 }
1875
1876 /*
1877 * @arg: enum ttu_flags will be passed to this argument
1878 */
try_to_unmap_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)1879 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1880 unsigned long address, void *arg)
1881 {
1882 struct mm_struct *mm = vma->vm_mm;
1883 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1884 bool anon_exclusive, ret = true;
1885 pte_t pteval;
1886 struct page *subpage;
1887 struct mmu_notifier_range range;
1888 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1889 unsigned long nr_pages = 1, end_addr;
1890 unsigned long pfn;
1891 unsigned long hsz = 0;
1892
1893 /*
1894 * When racing against e.g. zap_pte_range() on another cpu,
1895 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
1896 * try_to_unmap() may return before page_mapped() has become false,
1897 * if page table locking is skipped: use TTU_SYNC to wait for that.
1898 */
1899 if (flags & TTU_SYNC)
1900 pvmw.flags = PVMW_SYNC;
1901
1902 /*
1903 * For THP, we have to assume the worse case ie pmd for invalidation.
1904 * For hugetlb, it could be much worse if we need to do pud
1905 * invalidation in the case of pmd sharing.
1906 *
1907 * Note that the folio can not be freed in this function as call of
1908 * try_to_unmap() must hold a reference on the folio.
1909 */
1910 range.end = vma_address_end(&pvmw);
1911 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1912 address, range.end);
1913 if (folio_test_hugetlb(folio)) {
1914 /*
1915 * If sharing is possible, start and end will be adjusted
1916 * accordingly.
1917 */
1918 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1919 &range.end);
1920
1921 /* We need the huge page size for set_huge_pte_at() */
1922 hsz = huge_page_size(hstate_vma(vma));
1923 }
1924 mmu_notifier_invalidate_range_start(&range);
1925
1926 while (page_vma_mapped_walk(&pvmw)) {
1927 /*
1928 * If the folio is in an mlock()d vma, we must not swap it out.
1929 */
1930 if (!(flags & TTU_IGNORE_MLOCK) &&
1931 (vma->vm_flags & VM_LOCKED)) {
1932 /* Restore the mlock which got missed */
1933 if (!folio_test_large(folio))
1934 mlock_vma_folio(folio, vma);
1935 goto walk_abort;
1936 }
1937
1938 if (!pvmw.pte) {
1939 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1940 if (unmap_huge_pmd_locked(vma, pvmw.address, pvmw.pmd, folio))
1941 goto walk_done;
1942 /*
1943 * unmap_huge_pmd_locked has either already marked
1944 * the folio as swap-backed or decided to retain it
1945 * due to GUP or speculative references.
1946 */
1947 goto walk_abort;
1948 }
1949
1950 if (flags & TTU_SPLIT_HUGE_PMD) {
1951 /*
1952 * We temporarily have to drop the PTL and
1953 * restart so we can process the PTE-mapped THP.
1954 */
1955 split_huge_pmd_locked(vma, pvmw.address,
1956 pvmw.pmd, false);
1957 flags &= ~TTU_SPLIT_HUGE_PMD;
1958 page_vma_mapped_walk_restart(&pvmw);
1959 continue;
1960 }
1961 }
1962
1963 /* Unexpected PMD-mapped THP? */
1964 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1965
1966 /*
1967 * Handle PFN swap PTEs, such as device-exclusive ones, that
1968 * actually map pages.
1969 */
1970 pteval = ptep_get(pvmw.pte);
1971 if (likely(pte_present(pteval))) {
1972 pfn = pte_pfn(pteval);
1973 } else {
1974 pfn = swp_offset_pfn(pte_to_swp_entry(pteval));
1975 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
1976 }
1977
1978 subpage = folio_page(folio, pfn - folio_pfn(folio));
1979 address = pvmw.address;
1980 anon_exclusive = folio_test_anon(folio) &&
1981 PageAnonExclusive(subpage);
1982
1983 if (folio_test_hugetlb(folio)) {
1984 bool anon = folio_test_anon(folio);
1985
1986 /*
1987 * The try_to_unmap() is only passed a hugetlb page
1988 * in the case where the hugetlb page is poisoned.
1989 */
1990 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1991 /*
1992 * huge_pmd_unshare may unmap an entire PMD page.
1993 * There is no way of knowing exactly which PMDs may
1994 * be cached for this mm, so we must flush them all.
1995 * start/end were already adjusted above to cover this
1996 * range.
1997 */
1998 flush_cache_range(vma, range.start, range.end);
1999
2000 /*
2001 * To call huge_pmd_unshare, i_mmap_rwsem must be
2002 * held in write mode. Caller needs to explicitly
2003 * do this outside rmap routines.
2004 *
2005 * We also must hold hugetlb vma_lock in write mode.
2006 * Lock order dictates acquiring vma_lock BEFORE
2007 * i_mmap_rwsem. We can only try lock here and fail
2008 * if unsuccessful.
2009 */
2010 if (!anon) {
2011 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
2012 if (!hugetlb_vma_trylock_write(vma))
2013 goto walk_abort;
2014 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
2015 hugetlb_vma_unlock_write(vma);
2016 flush_tlb_range(vma,
2017 range.start, range.end);
2018 /*
2019 * The ref count of the PMD page was
2020 * dropped which is part of the way map
2021 * counting is done for shared PMDs.
2022 * Return 'true' here. When there is
2023 * no other sharing, huge_pmd_unshare
2024 * returns false and we will unmap the
2025 * actual page and drop map count
2026 * to zero.
2027 */
2028 goto walk_done;
2029 }
2030 hugetlb_vma_unlock_write(vma);
2031 }
2032 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
2033 if (pte_dirty(pteval))
2034 folio_mark_dirty(folio);
2035 } else if (likely(pte_present(pteval))) {
2036 nr_pages = folio_unmap_pte_batch(folio, &pvmw, flags, pteval);
2037 end_addr = address + nr_pages * PAGE_SIZE;
2038 flush_cache_range(vma, address, end_addr);
2039
2040 /* Nuke the page table entry. */
2041 pteval = get_and_clear_full_ptes(mm, address, pvmw.pte, nr_pages, 0);
2042 /*
2043 * We clear the PTE but do not flush so potentially
2044 * a remote CPU could still be writing to the folio.
2045 * If the entry was previously clean then the
2046 * architecture must guarantee that a clear->dirty
2047 * transition on a cached TLB entry is written through
2048 * and traps if the PTE is unmapped.
2049 */
2050 if (should_defer_flush(mm, flags))
2051 set_tlb_ubc_flush_pending(mm, pteval, address, end_addr);
2052 else
2053 flush_tlb_range(vma, address, end_addr);
2054 if (pte_dirty(pteval))
2055 folio_mark_dirty(folio);
2056 } else {
2057 pte_clear(mm, address, pvmw.pte);
2058 }
2059
2060 /*
2061 * Now the pte is cleared. If this pte was uffd-wp armed,
2062 * we may want to replace a none pte with a marker pte if
2063 * it's file-backed, so we don't lose the tracking info.
2064 */
2065 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
2066
2067 /* Update high watermark before we lower rss */
2068 update_hiwater_rss(mm);
2069
2070 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
2071 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2072 if (folio_test_hugetlb(folio)) {
2073 hugetlb_count_sub(folio_nr_pages(folio), mm);
2074 set_huge_pte_at(mm, address, pvmw.pte, pteval,
2075 hsz);
2076 } else {
2077 dec_mm_counter(mm, mm_counter(folio));
2078 set_pte_at(mm, address, pvmw.pte, pteval);
2079 }
2080 } else if (likely(pte_present(pteval)) && pte_unused(pteval) &&
2081 !userfaultfd_armed(vma)) {
2082 /*
2083 * The guest indicated that the page content is of no
2084 * interest anymore. Simply discard the pte, vmscan
2085 * will take care of the rest.
2086 * A future reference will then fault in a new zero
2087 * page. When userfaultfd is active, we must not drop
2088 * this page though, as its main user (postcopy
2089 * migration) will not expect userfaults on already
2090 * copied pages.
2091 */
2092 dec_mm_counter(mm, mm_counter(folio));
2093 } else if (folio_test_anon(folio)) {
2094 swp_entry_t entry = page_swap_entry(subpage);
2095 pte_t swp_pte;
2096 /*
2097 * Store the swap location in the pte.
2098 * See handle_pte_fault() ...
2099 */
2100 if (unlikely(folio_test_swapbacked(folio) !=
2101 folio_test_swapcache(folio))) {
2102 WARN_ON_ONCE(1);
2103 goto walk_abort;
2104 }
2105
2106 /* MADV_FREE page check */
2107 if (!folio_test_swapbacked(folio)) {
2108 int ref_count, map_count;
2109
2110 /*
2111 * Synchronize with gup_pte_range():
2112 * - clear PTE; barrier; read refcount
2113 * - inc refcount; barrier; read PTE
2114 */
2115 smp_mb();
2116
2117 ref_count = folio_ref_count(folio);
2118 map_count = folio_mapcount(folio);
2119
2120 /*
2121 * Order reads for page refcount and dirty flag
2122 * (see comments in __remove_mapping()).
2123 */
2124 smp_rmb();
2125
2126 if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) {
2127 /*
2128 * redirtied either using the page table or a previously
2129 * obtained GUP reference.
2130 */
2131 set_ptes(mm, address, pvmw.pte, pteval, nr_pages);
2132 folio_set_swapbacked(folio);
2133 goto walk_abort;
2134 } else if (ref_count != 1 + map_count) {
2135 /*
2136 * Additional reference. Could be a GUP reference or any
2137 * speculative reference. GUP users must mark the folio
2138 * dirty if there was a modification. This folio cannot be
2139 * reclaimed right now either way, so act just like nothing
2140 * happened.
2141 * We'll come back here later and detect if the folio was
2142 * dirtied when the additional reference is gone.
2143 */
2144 set_ptes(mm, address, pvmw.pte, pteval, nr_pages);
2145 goto walk_abort;
2146 }
2147 add_mm_counter(mm, MM_ANONPAGES, -nr_pages);
2148 goto discard;
2149 }
2150
2151 if (swap_duplicate(entry) < 0) {
2152 set_pte_at(mm, address, pvmw.pte, pteval);
2153 goto walk_abort;
2154 }
2155
2156 /*
2157 * arch_unmap_one() is expected to be a NOP on
2158 * architectures where we could have PFN swap PTEs,
2159 * so we'll not check/care.
2160 */
2161 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2162 swap_free(entry);
2163 set_pte_at(mm, address, pvmw.pte, pteval);
2164 goto walk_abort;
2165 }
2166
2167 /* See folio_try_share_anon_rmap(): clear PTE first. */
2168 if (anon_exclusive &&
2169 folio_try_share_anon_rmap_pte(folio, subpage)) {
2170 swap_free(entry);
2171 set_pte_at(mm, address, pvmw.pte, pteval);
2172 goto walk_abort;
2173 }
2174 if (list_empty(&mm->mmlist)) {
2175 spin_lock(&mmlist_lock);
2176 if (list_empty(&mm->mmlist))
2177 list_add(&mm->mmlist, &init_mm.mmlist);
2178 spin_unlock(&mmlist_lock);
2179 }
2180 dec_mm_counter(mm, MM_ANONPAGES);
2181 inc_mm_counter(mm, MM_SWAPENTS);
2182 swp_pte = swp_entry_to_pte(entry);
2183 if (anon_exclusive)
2184 swp_pte = pte_swp_mkexclusive(swp_pte);
2185 if (likely(pte_present(pteval))) {
2186 if (pte_soft_dirty(pteval))
2187 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2188 if (pte_uffd_wp(pteval))
2189 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2190 } else {
2191 if (pte_swp_soft_dirty(pteval))
2192 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2193 if (pte_swp_uffd_wp(pteval))
2194 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2195 }
2196 set_pte_at(mm, address, pvmw.pte, swp_pte);
2197 } else {
2198 /*
2199 * This is a locked file-backed folio,
2200 * so it cannot be removed from the page
2201 * cache and replaced by a new folio before
2202 * mmu_notifier_invalidate_range_end, so no
2203 * concurrent thread might update its page table
2204 * to point at a new folio while a device is
2205 * still using this folio.
2206 *
2207 * See Documentation/mm/mmu_notifier.rst
2208 */
2209 dec_mm_counter(mm, mm_counter_file(folio));
2210 }
2211 discard:
2212 if (unlikely(folio_test_hugetlb(folio))) {
2213 hugetlb_remove_rmap(folio);
2214 } else {
2215 folio_remove_rmap_ptes(folio, subpage, nr_pages, vma);
2216 }
2217 if (vma->vm_flags & VM_LOCKED)
2218 mlock_drain_local();
2219 folio_put_refs(folio, nr_pages);
2220
2221 /*
2222 * If we are sure that we batched the entire folio and cleared
2223 * all PTEs, we can just optimize and stop right here.
2224 */
2225 if (nr_pages == folio_nr_pages(folio))
2226 goto walk_done;
2227 continue;
2228 walk_abort:
2229 ret = false;
2230 walk_done:
2231 page_vma_mapped_walk_done(&pvmw);
2232 break;
2233 }
2234
2235 mmu_notifier_invalidate_range_end(&range);
2236
2237 return ret;
2238 }
2239
invalid_migration_vma(struct vm_area_struct * vma,void * arg)2240 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
2241 {
2242 return vma_is_temporary_stack(vma);
2243 }
2244
folio_not_mapped(struct folio * folio)2245 static int folio_not_mapped(struct folio *folio)
2246 {
2247 return !folio_mapped(folio);
2248 }
2249
2250 /**
2251 * try_to_unmap - Try to remove all page table mappings to a folio.
2252 * @folio: The folio to unmap.
2253 * @flags: action and flags
2254 *
2255 * Tries to remove all the page table entries which are mapping this
2256 * folio. It is the caller's responsibility to check if the folio is
2257 * still mapped if needed (use TTU_SYNC to prevent accounting races).
2258 *
2259 * Context: Caller must hold the folio lock.
2260 */
try_to_unmap(struct folio * folio,enum ttu_flags flags)2261 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
2262 {
2263 struct rmap_walk_control rwc = {
2264 .rmap_one = try_to_unmap_one,
2265 .arg = (void *)flags,
2266 .done = folio_not_mapped,
2267 .anon_lock = folio_lock_anon_vma_read,
2268 };
2269
2270 if (flags & TTU_RMAP_LOCKED)
2271 rmap_walk_locked(folio, &rwc);
2272 else
2273 rmap_walk(folio, &rwc);
2274 }
2275
2276 /*
2277 * @arg: enum ttu_flags will be passed to this argument.
2278 *
2279 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
2280 * containing migration entries.
2281 */
try_to_migrate_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)2282 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
2283 unsigned long address, void *arg)
2284 {
2285 struct mm_struct *mm = vma->vm_mm;
2286 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2287 bool anon_exclusive, writable, ret = true;
2288 pte_t pteval;
2289 struct page *subpage;
2290 struct mmu_notifier_range range;
2291 enum ttu_flags flags = (enum ttu_flags)(long)arg;
2292 unsigned long pfn;
2293 unsigned long hsz = 0;
2294
2295 /*
2296 * When racing against e.g. zap_pte_range() on another cpu,
2297 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
2298 * try_to_migrate() may return before page_mapped() has become false,
2299 * if page table locking is skipped: use TTU_SYNC to wait for that.
2300 */
2301 if (flags & TTU_SYNC)
2302 pvmw.flags = PVMW_SYNC;
2303
2304 /*
2305 * For THP, we have to assume the worse case ie pmd for invalidation.
2306 * For hugetlb, it could be much worse if we need to do pud
2307 * invalidation in the case of pmd sharing.
2308 *
2309 * Note that the page can not be free in this function as call of
2310 * try_to_unmap() must hold a reference on the page.
2311 */
2312 range.end = vma_address_end(&pvmw);
2313 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2314 address, range.end);
2315 if (folio_test_hugetlb(folio)) {
2316 /*
2317 * If sharing is possible, start and end will be adjusted
2318 * accordingly.
2319 */
2320 adjust_range_if_pmd_sharing_possible(vma, &range.start,
2321 &range.end);
2322
2323 /* We need the huge page size for set_huge_pte_at() */
2324 hsz = huge_page_size(hstate_vma(vma));
2325 }
2326 mmu_notifier_invalidate_range_start(&range);
2327
2328 while (page_vma_mapped_walk(&pvmw)) {
2329 /* PMD-mapped THP migration entry */
2330 if (!pvmw.pte) {
2331 if (flags & TTU_SPLIT_HUGE_PMD) {
2332 split_huge_pmd_locked(vma, pvmw.address,
2333 pvmw.pmd, true);
2334 ret = false;
2335 page_vma_mapped_walk_done(&pvmw);
2336 break;
2337 }
2338 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2339 subpage = folio_page(folio,
2340 pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
2341 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
2342 !folio_test_pmd_mappable(folio), folio);
2343
2344 if (set_pmd_migration_entry(&pvmw, subpage)) {
2345 ret = false;
2346 page_vma_mapped_walk_done(&pvmw);
2347 break;
2348 }
2349 continue;
2350 #endif
2351 }
2352
2353 /* Unexpected PMD-mapped THP? */
2354 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2355
2356 /*
2357 * Handle PFN swap PTEs, such as device-exclusive ones, that
2358 * actually map pages.
2359 */
2360 pteval = ptep_get(pvmw.pte);
2361 if (likely(pte_present(pteval))) {
2362 pfn = pte_pfn(pteval);
2363 } else {
2364 pfn = swp_offset_pfn(pte_to_swp_entry(pteval));
2365 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
2366 }
2367
2368 subpage = folio_page(folio, pfn - folio_pfn(folio));
2369 address = pvmw.address;
2370 anon_exclusive = folio_test_anon(folio) &&
2371 PageAnonExclusive(subpage);
2372
2373 if (folio_test_hugetlb(folio)) {
2374 bool anon = folio_test_anon(folio);
2375
2376 /*
2377 * huge_pmd_unshare may unmap an entire PMD page.
2378 * There is no way of knowing exactly which PMDs may
2379 * be cached for this mm, so we must flush them all.
2380 * start/end were already adjusted above to cover this
2381 * range.
2382 */
2383 flush_cache_range(vma, range.start, range.end);
2384
2385 /*
2386 * To call huge_pmd_unshare, i_mmap_rwsem must be
2387 * held in write mode. Caller needs to explicitly
2388 * do this outside rmap routines.
2389 *
2390 * We also must hold hugetlb vma_lock in write mode.
2391 * Lock order dictates acquiring vma_lock BEFORE
2392 * i_mmap_rwsem. We can only try lock here and
2393 * fail if unsuccessful.
2394 */
2395 if (!anon) {
2396 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
2397 if (!hugetlb_vma_trylock_write(vma)) {
2398 page_vma_mapped_walk_done(&pvmw);
2399 ret = false;
2400 break;
2401 }
2402 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
2403 hugetlb_vma_unlock_write(vma);
2404 flush_tlb_range(vma,
2405 range.start, range.end);
2406
2407 /*
2408 * The ref count of the PMD page was
2409 * dropped which is part of the way map
2410 * counting is done for shared PMDs.
2411 * Return 'true' here. When there is
2412 * no other sharing, huge_pmd_unshare
2413 * returns false and we will unmap the
2414 * actual page and drop map count
2415 * to zero.
2416 */
2417 page_vma_mapped_walk_done(&pvmw);
2418 break;
2419 }
2420 hugetlb_vma_unlock_write(vma);
2421 }
2422 /* Nuke the hugetlb page table entry */
2423 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
2424 if (pte_dirty(pteval))
2425 folio_mark_dirty(folio);
2426 writable = pte_write(pteval);
2427 } else if (likely(pte_present(pteval))) {
2428 flush_cache_page(vma, address, pfn);
2429 /* Nuke the page table entry. */
2430 if (should_defer_flush(mm, flags)) {
2431 /*
2432 * We clear the PTE but do not flush so potentially
2433 * a remote CPU could still be writing to the folio.
2434 * If the entry was previously clean then the
2435 * architecture must guarantee that a clear->dirty
2436 * transition on a cached TLB entry is written through
2437 * and traps if the PTE is unmapped.
2438 */
2439 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
2440
2441 set_tlb_ubc_flush_pending(mm, pteval, address, address + PAGE_SIZE);
2442 } else {
2443 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2444 }
2445 if (pte_dirty(pteval))
2446 folio_mark_dirty(folio);
2447 writable = pte_write(pteval);
2448 } else {
2449 pte_clear(mm, address, pvmw.pte);
2450 writable = is_writable_device_private_entry(pte_to_swp_entry(pteval));
2451 }
2452
2453 VM_WARN_ON_FOLIO(writable && folio_test_anon(folio) &&
2454 !anon_exclusive, folio);
2455
2456 /* Update high watermark before we lower rss */
2457 update_hiwater_rss(mm);
2458
2459 if (PageHWPoison(subpage)) {
2460 VM_WARN_ON_FOLIO(folio_is_device_private(folio), folio);
2461
2462 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2463 if (folio_test_hugetlb(folio)) {
2464 hugetlb_count_sub(folio_nr_pages(folio), mm);
2465 set_huge_pte_at(mm, address, pvmw.pte, pteval,
2466 hsz);
2467 } else {
2468 dec_mm_counter(mm, mm_counter(folio));
2469 set_pte_at(mm, address, pvmw.pte, pteval);
2470 }
2471 } else if (likely(pte_present(pteval)) && pte_unused(pteval) &&
2472 !userfaultfd_armed(vma)) {
2473 /*
2474 * The guest indicated that the page content is of no
2475 * interest anymore. Simply discard the pte, vmscan
2476 * will take care of the rest.
2477 * A future reference will then fault in a new zero
2478 * page. When userfaultfd is active, we must not drop
2479 * this page though, as its main user (postcopy
2480 * migration) will not expect userfaults on already
2481 * copied pages.
2482 */
2483 dec_mm_counter(mm, mm_counter(folio));
2484 } else {
2485 swp_entry_t entry;
2486 pte_t swp_pte;
2487
2488 /*
2489 * arch_unmap_one() is expected to be a NOP on
2490 * architectures where we could have PFN swap PTEs,
2491 * so we'll not check/care.
2492 */
2493 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2494 if (folio_test_hugetlb(folio))
2495 set_huge_pte_at(mm, address, pvmw.pte,
2496 pteval, hsz);
2497 else
2498 set_pte_at(mm, address, pvmw.pte, pteval);
2499 ret = false;
2500 page_vma_mapped_walk_done(&pvmw);
2501 break;
2502 }
2503
2504 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */
2505 if (folio_test_hugetlb(folio)) {
2506 if (anon_exclusive &&
2507 hugetlb_try_share_anon_rmap(folio)) {
2508 set_huge_pte_at(mm, address, pvmw.pte,
2509 pteval, hsz);
2510 ret = false;
2511 page_vma_mapped_walk_done(&pvmw);
2512 break;
2513 }
2514 } else if (anon_exclusive &&
2515 folio_try_share_anon_rmap_pte(folio, subpage)) {
2516 set_pte_at(mm, address, pvmw.pte, pteval);
2517 ret = false;
2518 page_vma_mapped_walk_done(&pvmw);
2519 break;
2520 }
2521
2522 /*
2523 * Store the pfn of the page in a special migration
2524 * pte. do_swap_page() will wait until the migration
2525 * pte is removed and then restart fault handling.
2526 */
2527 if (writable)
2528 entry = make_writable_migration_entry(
2529 page_to_pfn(subpage));
2530 else if (anon_exclusive)
2531 entry = make_readable_exclusive_migration_entry(
2532 page_to_pfn(subpage));
2533 else
2534 entry = make_readable_migration_entry(
2535 page_to_pfn(subpage));
2536 if (likely(pte_present(pteval))) {
2537 if (pte_young(pteval))
2538 entry = make_migration_entry_young(entry);
2539 if (pte_dirty(pteval))
2540 entry = make_migration_entry_dirty(entry);
2541 swp_pte = swp_entry_to_pte(entry);
2542 if (pte_soft_dirty(pteval))
2543 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2544 if (pte_uffd_wp(pteval))
2545 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2546 } else {
2547 swp_pte = swp_entry_to_pte(entry);
2548 if (pte_swp_soft_dirty(pteval))
2549 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2550 if (pte_swp_uffd_wp(pteval))
2551 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2552 }
2553 if (folio_test_hugetlb(folio))
2554 set_huge_pte_at(mm, address, pvmw.pte, swp_pte,
2555 hsz);
2556 else
2557 set_pte_at(mm, address, pvmw.pte, swp_pte);
2558 trace_set_migration_pte(address, pte_val(swp_pte),
2559 folio_order(folio));
2560 /*
2561 * No need to invalidate here it will synchronize on
2562 * against the special swap migration pte.
2563 */
2564 }
2565
2566 if (unlikely(folio_test_hugetlb(folio)))
2567 hugetlb_remove_rmap(folio);
2568 else
2569 folio_remove_rmap_pte(folio, subpage, vma);
2570 if (vma->vm_flags & VM_LOCKED)
2571 mlock_drain_local();
2572 folio_put(folio);
2573 }
2574
2575 mmu_notifier_invalidate_range_end(&range);
2576
2577 return ret;
2578 }
2579
2580 /**
2581 * try_to_migrate - try to replace all page table mappings with swap entries
2582 * @folio: the folio to replace page table entries for
2583 * @flags: action and flags
2584 *
2585 * Tries to remove all the page table entries which are mapping this folio and
2586 * replace them with special swap entries. Caller must hold the folio lock.
2587 */
try_to_migrate(struct folio * folio,enum ttu_flags flags)2588 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2589 {
2590 struct rmap_walk_control rwc = {
2591 .rmap_one = try_to_migrate_one,
2592 .arg = (void *)flags,
2593 .done = folio_not_mapped,
2594 .anon_lock = folio_lock_anon_vma_read,
2595 };
2596
2597 /*
2598 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2599 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2600 */
2601 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2602 TTU_SYNC | TTU_BATCH_FLUSH)))
2603 return;
2604
2605 if (folio_is_zone_device(folio) &&
2606 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2607 return;
2608
2609 /*
2610 * During exec, a temporary VMA is setup and later moved.
2611 * The VMA is moved under the anon_vma lock but not the
2612 * page tables leading to a race where migration cannot
2613 * find the migration ptes. Rather than increasing the
2614 * locking requirements of exec(), migration skips
2615 * temporary VMAs until after exec() completes.
2616 */
2617 if (!folio_test_ksm(folio) && folio_test_anon(folio))
2618 rwc.invalid_vma = invalid_migration_vma;
2619
2620 if (flags & TTU_RMAP_LOCKED)
2621 rmap_walk_locked(folio, &rwc);
2622 else
2623 rmap_walk(folio, &rwc);
2624 }
2625
2626 #ifdef CONFIG_DEVICE_PRIVATE
2627 /**
2628 * make_device_exclusive() - Mark a page for exclusive use by a device
2629 * @mm: mm_struct of associated target process
2630 * @addr: the virtual address to mark for exclusive device access
2631 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2632 * @foliop: folio pointer will be stored here on success.
2633 *
2634 * This function looks up the page mapped at the given address, grabs a
2635 * folio reference, locks the folio and replaces the PTE with special
2636 * device-exclusive PFN swap entry, preventing access through the process
2637 * page tables. The function will return with the folio locked and referenced.
2638 *
2639 * On fault, the device-exclusive entries are replaced with the original PTE
2640 * under folio lock, after calling MMU notifiers.
2641 *
2642 * Only anonymous non-hugetlb folios are supported and the VMA must have
2643 * write permissions such that we can fault in the anonymous page writable
2644 * in order to mark it exclusive. The caller must hold the mmap_lock in read
2645 * mode.
2646 *
2647 * A driver using this to program access from a device must use a mmu notifier
2648 * critical section to hold a device specific lock during programming. Once
2649 * programming is complete it should drop the folio lock and reference after
2650 * which point CPU access to the page will revoke the exclusive access.
2651 *
2652 * Notes:
2653 * #. This function always operates on individual PTEs mapping individual
2654 * pages. PMD-sized THPs are first remapped to be mapped by PTEs before
2655 * the conversion happens on a single PTE corresponding to @addr.
2656 * #. While concurrent access through the process page tables is prevented,
2657 * concurrent access through other page references (e.g., earlier GUP
2658 * invocation) is not handled and not supported.
2659 * #. device-exclusive entries are considered "clean" and "old" by core-mm.
2660 * Device drivers must update the folio state when informed by MMU
2661 * notifiers.
2662 *
2663 * Returns: pointer to mapped page on success, otherwise a negative error.
2664 */
make_device_exclusive(struct mm_struct * mm,unsigned long addr,void * owner,struct folio ** foliop)2665 struct page *make_device_exclusive(struct mm_struct *mm, unsigned long addr,
2666 void *owner, struct folio **foliop)
2667 {
2668 struct mmu_notifier_range range;
2669 struct folio *folio, *fw_folio;
2670 struct vm_area_struct *vma;
2671 struct folio_walk fw;
2672 struct page *page;
2673 swp_entry_t entry;
2674 pte_t swp_pte;
2675 int ret;
2676
2677 mmap_assert_locked(mm);
2678 addr = PAGE_ALIGN_DOWN(addr);
2679
2680 /*
2681 * Fault in the page writable and try to lock it; note that if the
2682 * address would already be marked for exclusive use by a device,
2683 * the GUP call would undo that first by triggering a fault.
2684 *
2685 * If any other device would already map this page exclusively, the
2686 * fault will trigger a conversion to an ordinary
2687 * (non-device-exclusive) PTE and issue a MMU_NOTIFY_EXCLUSIVE.
2688 */
2689 retry:
2690 page = get_user_page_vma_remote(mm, addr,
2691 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2692 &vma);
2693 if (IS_ERR(page))
2694 return page;
2695 folio = page_folio(page);
2696
2697 if (!folio_test_anon(folio) || folio_test_hugetlb(folio)) {
2698 folio_put(folio);
2699 return ERR_PTR(-EOPNOTSUPP);
2700 }
2701
2702 ret = folio_lock_killable(folio);
2703 if (ret) {
2704 folio_put(folio);
2705 return ERR_PTR(ret);
2706 }
2707
2708 /*
2709 * Inform secondary MMUs that we are going to convert this PTE to
2710 * device-exclusive, such that they unmap it now. Note that the
2711 * caller must filter this event out to prevent livelocks.
2712 */
2713 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2714 mm, addr, addr + PAGE_SIZE, owner);
2715 mmu_notifier_invalidate_range_start(&range);
2716
2717 /*
2718 * Let's do a second walk and make sure we still find the same page
2719 * mapped writable. Note that any page of an anonymous folio can
2720 * only be mapped writable using exactly one PTE ("exclusive"), so
2721 * there cannot be other mappings.
2722 */
2723 fw_folio = folio_walk_start(&fw, vma, addr, 0);
2724 if (fw_folio != folio || fw.page != page ||
2725 fw.level != FW_LEVEL_PTE || !pte_write(fw.pte)) {
2726 if (fw_folio)
2727 folio_walk_end(&fw, vma);
2728 mmu_notifier_invalidate_range_end(&range);
2729 folio_unlock(folio);
2730 folio_put(folio);
2731 goto retry;
2732 }
2733
2734 /* Nuke the page table entry so we get the uptodate dirty bit. */
2735 flush_cache_page(vma, addr, page_to_pfn(page));
2736 fw.pte = ptep_clear_flush(vma, addr, fw.ptep);
2737
2738 /* Set the dirty flag on the folio now the PTE is gone. */
2739 if (pte_dirty(fw.pte))
2740 folio_mark_dirty(folio);
2741
2742 /*
2743 * Store the pfn of the page in a special device-exclusive PFN swap PTE.
2744 * do_swap_page() will trigger the conversion back while holding the
2745 * folio lock.
2746 */
2747 entry = make_device_exclusive_entry(page_to_pfn(page));
2748 swp_pte = swp_entry_to_pte(entry);
2749 if (pte_soft_dirty(fw.pte))
2750 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2751 /* The pte is writable, uffd-wp does not apply. */
2752 set_pte_at(mm, addr, fw.ptep, swp_pte);
2753
2754 folio_walk_end(&fw, vma);
2755 mmu_notifier_invalidate_range_end(&range);
2756 *foliop = folio;
2757 return page;
2758 }
2759 EXPORT_SYMBOL_GPL(make_device_exclusive);
2760 #endif
2761
__put_anon_vma(struct anon_vma * anon_vma)2762 void __put_anon_vma(struct anon_vma *anon_vma)
2763 {
2764 struct anon_vma *root = anon_vma->root;
2765
2766 anon_vma_free(anon_vma);
2767 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2768 anon_vma_free(root);
2769 }
2770
rmap_walk_anon_lock(const struct folio * folio,struct rmap_walk_control * rwc)2771 static struct anon_vma *rmap_walk_anon_lock(const struct folio *folio,
2772 struct rmap_walk_control *rwc)
2773 {
2774 struct anon_vma *anon_vma;
2775
2776 if (rwc->anon_lock)
2777 return rwc->anon_lock(folio, rwc);
2778
2779 /*
2780 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2781 * because that depends on page_mapped(); but not all its usages
2782 * are holding mmap_lock. Users without mmap_lock are required to
2783 * take a reference count to prevent the anon_vma disappearing
2784 */
2785 anon_vma = folio_anon_vma(folio);
2786 if (!anon_vma)
2787 return NULL;
2788
2789 if (anon_vma_trylock_read(anon_vma))
2790 goto out;
2791
2792 if (rwc->try_lock) {
2793 anon_vma = NULL;
2794 rwc->contended = true;
2795 goto out;
2796 }
2797
2798 anon_vma_lock_read(anon_vma);
2799 out:
2800 return anon_vma;
2801 }
2802
2803 /*
2804 * rmap_walk_anon - do something to anonymous page using the object-based
2805 * rmap method
2806 * @folio: the folio to be handled
2807 * @rwc: control variable according to each walk type
2808 * @locked: caller holds relevant rmap lock
2809 *
2810 * Find all the mappings of a folio using the mapping pointer and the vma
2811 * chains contained in the anon_vma struct it points to.
2812 */
rmap_walk_anon(struct folio * folio,struct rmap_walk_control * rwc,bool locked)2813 static void rmap_walk_anon(struct folio *folio,
2814 struct rmap_walk_control *rwc, bool locked)
2815 {
2816 struct anon_vma *anon_vma;
2817 pgoff_t pgoff_start, pgoff_end;
2818 struct anon_vma_chain *avc;
2819
2820 if (locked) {
2821 anon_vma = folio_anon_vma(folio);
2822 /* anon_vma disappear under us? */
2823 VM_BUG_ON_FOLIO(!anon_vma, folio);
2824 } else {
2825 anon_vma = rmap_walk_anon_lock(folio, rwc);
2826 }
2827 if (!anon_vma)
2828 return;
2829
2830 pgoff_start = folio_pgoff(folio);
2831 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2832 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2833 pgoff_start, pgoff_end) {
2834 struct vm_area_struct *vma = avc->vma;
2835 unsigned long address = vma_address(vma, pgoff_start,
2836 folio_nr_pages(folio));
2837
2838 VM_BUG_ON_VMA(address == -EFAULT, vma);
2839 cond_resched();
2840
2841 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2842 continue;
2843
2844 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2845 break;
2846 if (rwc->done && rwc->done(folio))
2847 break;
2848 }
2849
2850 if (!locked)
2851 anon_vma_unlock_read(anon_vma);
2852 }
2853
2854 /**
2855 * __rmap_walk_file() - Traverse the reverse mapping for a file-backed mapping
2856 * of a page mapped within a specified page cache object at a specified offset.
2857 *
2858 * @folio: Either the folio whose mappings to traverse, or if NULL,
2859 * the callbacks specified in @rwc will be configured such
2860 * as to be able to look up mappings correctly.
2861 * @mapping: The page cache object whose mapping VMAs we intend to
2862 * traverse. If @folio is non-NULL, this should be equal to
2863 * folio_mapping(folio).
2864 * @pgoff_start: The offset within @mapping of the page which we are
2865 * looking up. If @folio is non-NULL, this should be equal
2866 * to folio_pgoff(folio).
2867 * @nr_pages: The number of pages mapped by the mapping. If @folio is
2868 * non-NULL, this should be equal to folio_nr_pages(folio).
2869 * @rwc: The reverse mapping walk control object describing how
2870 * the traversal should proceed.
2871 * @locked: Is the @mapping already locked? If not, we acquire the
2872 * lock.
2873 */
__rmap_walk_file(struct folio * folio,struct address_space * mapping,pgoff_t pgoff_start,unsigned long nr_pages,struct rmap_walk_control * rwc,bool locked)2874 static void __rmap_walk_file(struct folio *folio, struct address_space *mapping,
2875 pgoff_t pgoff_start, unsigned long nr_pages,
2876 struct rmap_walk_control *rwc, bool locked)
2877 {
2878 pgoff_t pgoff_end = pgoff_start + nr_pages - 1;
2879 struct vm_area_struct *vma;
2880
2881 VM_WARN_ON_FOLIO(folio && mapping != folio_mapping(folio), folio);
2882 VM_WARN_ON_FOLIO(folio && pgoff_start != folio_pgoff(folio), folio);
2883 VM_WARN_ON_FOLIO(folio && nr_pages != folio_nr_pages(folio), folio);
2884
2885 if (!locked) {
2886 if (i_mmap_trylock_read(mapping))
2887 goto lookup;
2888
2889 if (rwc->try_lock) {
2890 rwc->contended = true;
2891 return;
2892 }
2893
2894 i_mmap_lock_read(mapping);
2895 }
2896 lookup:
2897 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2898 pgoff_start, pgoff_end) {
2899 unsigned long address = vma_address(vma, pgoff_start, nr_pages);
2900
2901 VM_BUG_ON_VMA(address == -EFAULT, vma);
2902 cond_resched();
2903
2904 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2905 continue;
2906
2907 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2908 goto done;
2909 if (rwc->done && rwc->done(folio))
2910 goto done;
2911 }
2912 done:
2913 if (!locked)
2914 i_mmap_unlock_read(mapping);
2915 }
2916
2917 /*
2918 * rmap_walk_file - do something to file page using the object-based rmap method
2919 * @folio: the folio to be handled
2920 * @rwc: control variable according to each walk type
2921 * @locked: caller holds relevant rmap lock
2922 *
2923 * Find all the mappings of a folio using the mapping pointer and the vma chains
2924 * contained in the address_space struct it points to.
2925 */
rmap_walk_file(struct folio * folio,struct rmap_walk_control * rwc,bool locked)2926 static void rmap_walk_file(struct folio *folio,
2927 struct rmap_walk_control *rwc, bool locked)
2928 {
2929 /*
2930 * The folio lock not only makes sure that folio->mapping cannot
2931 * suddenly be NULLified by truncation, it makes sure that the structure
2932 * at mapping cannot be freed and reused yet, so we can safely take
2933 * mapping->i_mmap_rwsem.
2934 */
2935 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2936
2937 if (!folio->mapping)
2938 return;
2939
2940 __rmap_walk_file(folio, folio->mapping, folio->index,
2941 folio_nr_pages(folio), rwc, locked);
2942 }
2943
rmap_walk(struct folio * folio,struct rmap_walk_control * rwc)2944 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2945 {
2946 if (unlikely(folio_test_ksm(folio)))
2947 rmap_walk_ksm(folio, rwc);
2948 else if (folio_test_anon(folio))
2949 rmap_walk_anon(folio, rwc, false);
2950 else
2951 rmap_walk_file(folio, rwc, false);
2952 }
2953
2954 /* Like rmap_walk, but caller holds relevant rmap lock */
rmap_walk_locked(struct folio * folio,struct rmap_walk_control * rwc)2955 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2956 {
2957 /* no ksm support for now */
2958 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2959 if (folio_test_anon(folio))
2960 rmap_walk_anon(folio, rwc, true);
2961 else
2962 rmap_walk_file(folio, rwc, true);
2963 }
2964
2965 #ifdef CONFIG_HUGETLB_PAGE
2966 /*
2967 * The following two functions are for anonymous (private mapped) hugepages.
2968 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2969 * and no lru code, because we handle hugepages differently from common pages.
2970 */
hugetlb_add_anon_rmap(struct folio * folio,struct vm_area_struct * vma,unsigned long address,rmap_t flags)2971 void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
2972 unsigned long address, rmap_t flags)
2973 {
2974 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2975 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2976
2977 atomic_inc(&folio->_entire_mapcount);
2978 atomic_inc(&folio->_large_mapcount);
2979 if (flags & RMAP_EXCLUSIVE)
2980 SetPageAnonExclusive(&folio->page);
2981 VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 &&
2982 PageAnonExclusive(&folio->page), folio);
2983 }
2984
hugetlb_add_new_anon_rmap(struct folio * folio,struct vm_area_struct * vma,unsigned long address)2985 void hugetlb_add_new_anon_rmap(struct folio *folio,
2986 struct vm_area_struct *vma, unsigned long address)
2987 {
2988 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2989
2990 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2991 /* increment count (starts at -1) */
2992 atomic_set(&folio->_entire_mapcount, 0);
2993 atomic_set(&folio->_large_mapcount, 0);
2994 folio_clear_hugetlb_restore_reserve(folio);
2995 __folio_set_anon(folio, vma, address, true);
2996 SetPageAnonExclusive(&folio->page);
2997 }
2998 #endif /* CONFIG_HUGETLB_PAGE */
2999