xref: /linux/drivers/counter/stm32-timer-cnt.c (revision a1ff5a7d78a036d6c2178ee5acd6ba4946243800)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * STM32 Timer Encoder and Counter driver
4  *
5  * Copyright (C) STMicroelectronics 2018
6  *
7  * Author: Benjamin Gaignard <benjamin.gaignard@st.com>
8  *
9  */
10 #include <linux/counter.h>
11 #include <linux/interrupt.h>
12 #include <linux/mfd/stm32-timers.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/platform_device.h>
18 #include <linux/types.h>
19 
20 #define TIM_CCMR_CCXS	(BIT(8) | BIT(0))
21 #define TIM_CCMR_MASK	(TIM_CCMR_CC1S | TIM_CCMR_CC2S | \
22 			 TIM_CCMR_IC1F | TIM_CCMR_IC2F)
23 #define TIM_CCER_MASK	(TIM_CCER_CC1P | TIM_CCER_CC1NP | \
24 			 TIM_CCER_CC2P | TIM_CCER_CC2NP)
25 
26 #define STM32_CH1_SIG		0
27 #define STM32_CH2_SIG		1
28 #define STM32_CLOCK_SIG		2
29 #define STM32_CH3_SIG		3
30 #define STM32_CH4_SIG		4
31 
32 struct stm32_timer_regs {
33 	u32 cr1;
34 	u32 cnt;
35 	u32 smcr;
36 	u32 arr;
37 };
38 
39 struct stm32_timer_cnt {
40 	struct regmap *regmap;
41 	struct clk *clk;
42 	u32 max_arr;
43 	bool enabled;
44 	struct stm32_timer_regs bak;
45 	bool has_encoder;
46 	unsigned int nchannels;
47 	unsigned int nr_irqs;
48 	spinlock_t lock; /* protects nb_ovf */
49 	u64 nb_ovf;
50 };
51 
52 static const enum counter_function stm32_count_functions[] = {
53 	COUNTER_FUNCTION_INCREASE,
54 	COUNTER_FUNCTION_QUADRATURE_X2_A,
55 	COUNTER_FUNCTION_QUADRATURE_X2_B,
56 	COUNTER_FUNCTION_QUADRATURE_X4,
57 };
58 
stm32_count_read(struct counter_device * counter,struct counter_count * count,u64 * val)59 static int stm32_count_read(struct counter_device *counter,
60 			    struct counter_count *count, u64 *val)
61 {
62 	struct stm32_timer_cnt *const priv = counter_priv(counter);
63 	u32 cnt;
64 
65 	regmap_read(priv->regmap, TIM_CNT, &cnt);
66 	*val = cnt;
67 
68 	return 0;
69 }
70 
stm32_count_write(struct counter_device * counter,struct counter_count * count,const u64 val)71 static int stm32_count_write(struct counter_device *counter,
72 			     struct counter_count *count, const u64 val)
73 {
74 	struct stm32_timer_cnt *const priv = counter_priv(counter);
75 	u32 ceiling;
76 
77 	regmap_read(priv->regmap, TIM_ARR, &ceiling);
78 	if (val > ceiling)
79 		return -EINVAL;
80 
81 	return regmap_write(priv->regmap, TIM_CNT, val);
82 }
83 
stm32_count_function_read(struct counter_device * counter,struct counter_count * count,enum counter_function * function)84 static int stm32_count_function_read(struct counter_device *counter,
85 				     struct counter_count *count,
86 				     enum counter_function *function)
87 {
88 	struct stm32_timer_cnt *const priv = counter_priv(counter);
89 	u32 smcr;
90 
91 	regmap_read(priv->regmap, TIM_SMCR, &smcr);
92 
93 	switch (smcr & TIM_SMCR_SMS) {
94 	case TIM_SMCR_SMS_SLAVE_MODE_DISABLED:
95 		*function = COUNTER_FUNCTION_INCREASE;
96 		return 0;
97 	case TIM_SMCR_SMS_ENCODER_MODE_1:
98 		*function = COUNTER_FUNCTION_QUADRATURE_X2_A;
99 		return 0;
100 	case TIM_SMCR_SMS_ENCODER_MODE_2:
101 		*function = COUNTER_FUNCTION_QUADRATURE_X2_B;
102 		return 0;
103 	case TIM_SMCR_SMS_ENCODER_MODE_3:
104 		*function = COUNTER_FUNCTION_QUADRATURE_X4;
105 		return 0;
106 	default:
107 		return -EINVAL;
108 	}
109 }
110 
stm32_count_function_write(struct counter_device * counter,struct counter_count * count,enum counter_function function)111 static int stm32_count_function_write(struct counter_device *counter,
112 				      struct counter_count *count,
113 				      enum counter_function function)
114 {
115 	struct stm32_timer_cnt *const priv = counter_priv(counter);
116 	u32 cr1, sms;
117 
118 	switch (function) {
119 	case COUNTER_FUNCTION_INCREASE:
120 		sms = TIM_SMCR_SMS_SLAVE_MODE_DISABLED;
121 		break;
122 	case COUNTER_FUNCTION_QUADRATURE_X2_A:
123 		if (!priv->has_encoder)
124 			return -EOPNOTSUPP;
125 		sms = TIM_SMCR_SMS_ENCODER_MODE_1;
126 		break;
127 	case COUNTER_FUNCTION_QUADRATURE_X2_B:
128 		if (!priv->has_encoder)
129 			return -EOPNOTSUPP;
130 		sms = TIM_SMCR_SMS_ENCODER_MODE_2;
131 		break;
132 	case COUNTER_FUNCTION_QUADRATURE_X4:
133 		if (!priv->has_encoder)
134 			return -EOPNOTSUPP;
135 		sms = TIM_SMCR_SMS_ENCODER_MODE_3;
136 		break;
137 	default:
138 		return -EINVAL;
139 	}
140 
141 	/* Store enable status */
142 	regmap_read(priv->regmap, TIM_CR1, &cr1);
143 
144 	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
145 
146 	regmap_update_bits(priv->regmap, TIM_SMCR, TIM_SMCR_SMS, sms);
147 
148 	/* Make sure that registers are updated */
149 	regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
150 
151 	/* Restore the enable status */
152 	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, cr1);
153 
154 	return 0;
155 }
156 
stm32_count_direction_read(struct counter_device * counter,struct counter_count * count,enum counter_count_direction * direction)157 static int stm32_count_direction_read(struct counter_device *counter,
158 				      struct counter_count *count,
159 				      enum counter_count_direction *direction)
160 {
161 	struct stm32_timer_cnt *const priv = counter_priv(counter);
162 	u32 cr1;
163 
164 	regmap_read(priv->regmap, TIM_CR1, &cr1);
165 	*direction = (cr1 & TIM_CR1_DIR) ? COUNTER_COUNT_DIRECTION_BACKWARD :
166 		COUNTER_COUNT_DIRECTION_FORWARD;
167 
168 	return 0;
169 }
170 
stm32_count_ceiling_read(struct counter_device * counter,struct counter_count * count,u64 * ceiling)171 static int stm32_count_ceiling_read(struct counter_device *counter,
172 				    struct counter_count *count, u64 *ceiling)
173 {
174 	struct stm32_timer_cnt *const priv = counter_priv(counter);
175 	u32 arr;
176 
177 	regmap_read(priv->regmap, TIM_ARR, &arr);
178 
179 	*ceiling = arr;
180 
181 	return 0;
182 }
183 
stm32_count_ceiling_write(struct counter_device * counter,struct counter_count * count,u64 ceiling)184 static int stm32_count_ceiling_write(struct counter_device *counter,
185 				     struct counter_count *count, u64 ceiling)
186 {
187 	struct stm32_timer_cnt *const priv = counter_priv(counter);
188 
189 	if (ceiling > priv->max_arr)
190 		return -ERANGE;
191 
192 	/* TIMx_ARR register shouldn't be buffered (ARPE=0) */
193 	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, 0);
194 	regmap_write(priv->regmap, TIM_ARR, ceiling);
195 
196 	return 0;
197 }
198 
stm32_count_enable_read(struct counter_device * counter,struct counter_count * count,u8 * enable)199 static int stm32_count_enable_read(struct counter_device *counter,
200 				   struct counter_count *count, u8 *enable)
201 {
202 	struct stm32_timer_cnt *const priv = counter_priv(counter);
203 	u32 cr1;
204 
205 	regmap_read(priv->regmap, TIM_CR1, &cr1);
206 
207 	*enable = cr1 & TIM_CR1_CEN;
208 
209 	return 0;
210 }
211 
stm32_count_enable_write(struct counter_device * counter,struct counter_count * count,u8 enable)212 static int stm32_count_enable_write(struct counter_device *counter,
213 				    struct counter_count *count, u8 enable)
214 {
215 	struct stm32_timer_cnt *const priv = counter_priv(counter);
216 	u32 cr1;
217 
218 	if (enable) {
219 		regmap_read(priv->regmap, TIM_CR1, &cr1);
220 		if (!(cr1 & TIM_CR1_CEN))
221 			clk_enable(priv->clk);
222 
223 		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN,
224 				   TIM_CR1_CEN);
225 	} else {
226 		regmap_read(priv->regmap, TIM_CR1, &cr1);
227 		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
228 		if (cr1 & TIM_CR1_CEN)
229 			clk_disable(priv->clk);
230 	}
231 
232 	/* Keep enabled state to properly handle low power states */
233 	priv->enabled = enable;
234 
235 	return 0;
236 }
237 
stm32_count_prescaler_read(struct counter_device * counter,struct counter_count * count,u64 * prescaler)238 static int stm32_count_prescaler_read(struct counter_device *counter,
239 				      struct counter_count *count, u64 *prescaler)
240 {
241 	struct stm32_timer_cnt *const priv = counter_priv(counter);
242 	u32 psc;
243 
244 	regmap_read(priv->regmap, TIM_PSC, &psc);
245 
246 	*prescaler = psc + 1;
247 
248 	return 0;
249 }
250 
stm32_count_prescaler_write(struct counter_device * counter,struct counter_count * count,u64 prescaler)251 static int stm32_count_prescaler_write(struct counter_device *counter,
252 				       struct counter_count *count, u64 prescaler)
253 {
254 	struct stm32_timer_cnt *const priv = counter_priv(counter);
255 	u32 psc;
256 
257 	if (!prescaler || prescaler > MAX_TIM_PSC + 1)
258 		return -ERANGE;
259 
260 	psc = prescaler - 1;
261 
262 	return regmap_write(priv->regmap, TIM_PSC, psc);
263 }
264 
stm32_count_cap_read(struct counter_device * counter,struct counter_count * count,size_t ch,u64 * cap)265 static int stm32_count_cap_read(struct counter_device *counter,
266 				struct counter_count *count,
267 				size_t ch, u64 *cap)
268 {
269 	struct stm32_timer_cnt *const priv = counter_priv(counter);
270 	u32 ccrx;
271 
272 	if (ch >= priv->nchannels)
273 		return -EOPNOTSUPP;
274 
275 	switch (ch) {
276 	case 0:
277 		regmap_read(priv->regmap, TIM_CCR1, &ccrx);
278 		break;
279 	case 1:
280 		regmap_read(priv->regmap, TIM_CCR2, &ccrx);
281 		break;
282 	case 2:
283 		regmap_read(priv->regmap, TIM_CCR3, &ccrx);
284 		break;
285 	case 3:
286 		regmap_read(priv->regmap, TIM_CCR4, &ccrx);
287 		break;
288 	default:
289 		return -EINVAL;
290 	}
291 
292 	dev_dbg(counter->parent, "CCR%zu: 0x%08x\n", ch + 1, ccrx);
293 
294 	*cap = ccrx;
295 
296 	return 0;
297 }
298 
stm32_count_nb_ovf_read(struct counter_device * counter,struct counter_count * count,u64 * val)299 static int stm32_count_nb_ovf_read(struct counter_device *counter,
300 				   struct counter_count *count, u64 *val)
301 {
302 	struct stm32_timer_cnt *const priv = counter_priv(counter);
303 	unsigned long irqflags;
304 
305 	spin_lock_irqsave(&priv->lock, irqflags);
306 	*val = priv->nb_ovf;
307 	spin_unlock_irqrestore(&priv->lock, irqflags);
308 
309 	return 0;
310 }
311 
stm32_count_nb_ovf_write(struct counter_device * counter,struct counter_count * count,u64 val)312 static int stm32_count_nb_ovf_write(struct counter_device *counter,
313 				    struct counter_count *count, u64 val)
314 {
315 	struct stm32_timer_cnt *const priv = counter_priv(counter);
316 	unsigned long irqflags;
317 
318 	spin_lock_irqsave(&priv->lock, irqflags);
319 	priv->nb_ovf = val;
320 	spin_unlock_irqrestore(&priv->lock, irqflags);
321 
322 	return 0;
323 }
324 
325 static DEFINE_COUNTER_ARRAY_CAPTURE(stm32_count_cap_array, 4);
326 
327 static struct counter_comp stm32_count_ext[] = {
328 	COUNTER_COMP_DIRECTION(stm32_count_direction_read),
329 	COUNTER_COMP_ENABLE(stm32_count_enable_read, stm32_count_enable_write),
330 	COUNTER_COMP_CEILING(stm32_count_ceiling_read,
331 			     stm32_count_ceiling_write),
332 	COUNTER_COMP_COUNT_U64("prescaler", stm32_count_prescaler_read,
333 			       stm32_count_prescaler_write),
334 	COUNTER_COMP_ARRAY_CAPTURE(stm32_count_cap_read, NULL, stm32_count_cap_array),
335 	COUNTER_COMP_COUNT_U64("num_overflows", stm32_count_nb_ovf_read, stm32_count_nb_ovf_write),
336 };
337 
338 static const enum counter_synapse_action stm32_clock_synapse_actions[] = {
339 	COUNTER_SYNAPSE_ACTION_RISING_EDGE,
340 };
341 
342 static const enum counter_synapse_action stm32_synapse_actions[] = {
343 	COUNTER_SYNAPSE_ACTION_NONE,
344 	COUNTER_SYNAPSE_ACTION_BOTH_EDGES
345 };
346 
stm32_action_read(struct counter_device * counter,struct counter_count * count,struct counter_synapse * synapse,enum counter_synapse_action * action)347 static int stm32_action_read(struct counter_device *counter,
348 			     struct counter_count *count,
349 			     struct counter_synapse *synapse,
350 			     enum counter_synapse_action *action)
351 {
352 	enum counter_function function;
353 	int err;
354 
355 	err = stm32_count_function_read(counter, count, &function);
356 	if (err)
357 		return err;
358 
359 	switch (function) {
360 	case COUNTER_FUNCTION_INCREASE:
361 		/* counts on internal clock when CEN=1 */
362 		if (synapse->signal->id == STM32_CLOCK_SIG)
363 			*action = COUNTER_SYNAPSE_ACTION_RISING_EDGE;
364 		else
365 			*action = COUNTER_SYNAPSE_ACTION_NONE;
366 		return 0;
367 	case COUNTER_FUNCTION_QUADRATURE_X2_A:
368 		/* counts up/down on TI1FP1 edge depending on TI2FP2 level */
369 		if (synapse->signal->id == STM32_CH1_SIG)
370 			*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
371 		else
372 			*action = COUNTER_SYNAPSE_ACTION_NONE;
373 		return 0;
374 	case COUNTER_FUNCTION_QUADRATURE_X2_B:
375 		/* counts up/down on TI2FP2 edge depending on TI1FP1 level */
376 		if (synapse->signal->id == STM32_CH2_SIG)
377 			*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
378 		else
379 			*action = COUNTER_SYNAPSE_ACTION_NONE;
380 		return 0;
381 	case COUNTER_FUNCTION_QUADRATURE_X4:
382 		/* counts up/down on both TI1FP1 and TI2FP2 edges */
383 		if (synapse->signal->id == STM32_CH1_SIG || synapse->signal->id == STM32_CH2_SIG)
384 			*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
385 		else
386 			*action = COUNTER_SYNAPSE_ACTION_NONE;
387 		return 0;
388 	default:
389 		return -EINVAL;
390 	}
391 }
392 
393 struct stm32_count_cc_regs {
394 	u32 ccmr_reg;
395 	u32 ccmr_mask;
396 	u32 ccmr_bits;
397 	u32 ccer_bits;
398 };
399 
400 static const struct stm32_count_cc_regs stm32_cc[] = {
401 	{ TIM_CCMR1, TIM_CCMR_CC1S, TIM_CCMR_CC1S_TI1,
402 		TIM_CCER_CC1E | TIM_CCER_CC1P | TIM_CCER_CC1NP },
403 	{ TIM_CCMR1, TIM_CCMR_CC2S, TIM_CCMR_CC2S_TI2,
404 		TIM_CCER_CC2E | TIM_CCER_CC2P | TIM_CCER_CC2NP },
405 	{ TIM_CCMR2, TIM_CCMR_CC3S, TIM_CCMR_CC3S_TI3,
406 		TIM_CCER_CC3E | TIM_CCER_CC3P | TIM_CCER_CC3NP },
407 	{ TIM_CCMR2, TIM_CCMR_CC4S, TIM_CCMR_CC4S_TI4,
408 		TIM_CCER_CC4E | TIM_CCER_CC4P | TIM_CCER_CC4NP },
409 };
410 
stm32_count_capture_configure(struct counter_device * counter,unsigned int ch,bool enable)411 static int stm32_count_capture_configure(struct counter_device *counter, unsigned int ch,
412 					 bool enable)
413 {
414 	struct stm32_timer_cnt *const priv = counter_priv(counter);
415 	const struct stm32_count_cc_regs *cc;
416 	u32 ccmr, ccer;
417 
418 	if (ch >= ARRAY_SIZE(stm32_cc) || ch >= priv->nchannels) {
419 		dev_err(counter->parent, "invalid ch: %d\n", ch);
420 		return -EINVAL;
421 	}
422 
423 	cc = &stm32_cc[ch];
424 
425 	/*
426 	 * configure channel in input capture mode, map channel 1 on TI1, channel2 on TI2...
427 	 * Select both edges / non-inverted to trigger a capture.
428 	 */
429 	if (enable) {
430 		/* first clear possibly latched capture flag upon enabling */
431 		if (!regmap_test_bits(priv->regmap, TIM_CCER, cc->ccer_bits))
432 			regmap_write(priv->regmap, TIM_SR, ~TIM_SR_CC_IF(ch));
433 		regmap_update_bits(priv->regmap, cc->ccmr_reg, cc->ccmr_mask,
434 				   cc->ccmr_bits);
435 		regmap_set_bits(priv->regmap, TIM_CCER, cc->ccer_bits);
436 	} else {
437 		regmap_clear_bits(priv->regmap, TIM_CCER, cc->ccer_bits);
438 		regmap_clear_bits(priv->regmap, cc->ccmr_reg, cc->ccmr_mask);
439 	}
440 
441 	regmap_read(priv->regmap, cc->ccmr_reg, &ccmr);
442 	regmap_read(priv->regmap, TIM_CCER, &ccer);
443 	dev_dbg(counter->parent, "%s(%s) ch%d 0x%08x 0x%08x\n", __func__, enable ? "ena" : "dis",
444 		ch, ccmr, ccer);
445 
446 	return 0;
447 }
448 
stm32_count_events_configure(struct counter_device * counter)449 static int stm32_count_events_configure(struct counter_device *counter)
450 {
451 	struct stm32_timer_cnt *const priv = counter_priv(counter);
452 	struct counter_event_node *event_node;
453 	u32 dier = 0;
454 	int i, ret;
455 
456 	list_for_each_entry(event_node, &counter->events_list, l) {
457 		switch (event_node->event) {
458 		case COUNTER_EVENT_OVERFLOW_UNDERFLOW:
459 			/* first clear possibly latched UIF before enabling */
460 			if (!regmap_test_bits(priv->regmap, TIM_DIER, TIM_DIER_UIE))
461 				regmap_write(priv->regmap, TIM_SR, (u32)~TIM_SR_UIF);
462 			dier |= TIM_DIER_UIE;
463 			break;
464 		case COUNTER_EVENT_CAPTURE:
465 			ret = stm32_count_capture_configure(counter, event_node->channel, true);
466 			if (ret)
467 				return ret;
468 			dier |= TIM_DIER_CCxIE(event_node->channel + 1);
469 			break;
470 		default:
471 			/* should never reach this path */
472 			return -EINVAL;
473 		}
474 	}
475 
476 	/* Enable / disable all events at once, from events_list, so write all DIER bits */
477 	regmap_write(priv->regmap, TIM_DIER, dier);
478 
479 	/* check for disabled capture events */
480 	for (i = 0 ; i < priv->nchannels; i++) {
481 		if (!(dier & TIM_DIER_CCxIE(i + 1))) {
482 			ret = stm32_count_capture_configure(counter, i, false);
483 			if (ret)
484 				return ret;
485 		}
486 	}
487 
488 	return 0;
489 }
490 
stm32_count_watch_validate(struct counter_device * counter,const struct counter_watch * watch)491 static int stm32_count_watch_validate(struct counter_device *counter,
492 				      const struct counter_watch *watch)
493 {
494 	struct stm32_timer_cnt *const priv = counter_priv(counter);
495 
496 	/* Interrupts are optional */
497 	if (!priv->nr_irqs)
498 		return -EOPNOTSUPP;
499 
500 	switch (watch->event) {
501 	case COUNTER_EVENT_CAPTURE:
502 		if (watch->channel >= priv->nchannels) {
503 			dev_err(counter->parent, "Invalid channel %d\n", watch->channel);
504 			return -EINVAL;
505 		}
506 		return 0;
507 	case COUNTER_EVENT_OVERFLOW_UNDERFLOW:
508 		return 0;
509 	default:
510 		return -EINVAL;
511 	}
512 }
513 
514 static const struct counter_ops stm32_timer_cnt_ops = {
515 	.count_read = stm32_count_read,
516 	.count_write = stm32_count_write,
517 	.function_read = stm32_count_function_read,
518 	.function_write = stm32_count_function_write,
519 	.action_read = stm32_action_read,
520 	.events_configure = stm32_count_events_configure,
521 	.watch_validate = stm32_count_watch_validate,
522 };
523 
stm32_count_clk_get_freq(struct counter_device * counter,struct counter_signal * signal,u64 * freq)524 static int stm32_count_clk_get_freq(struct counter_device *counter,
525 				    struct counter_signal *signal, u64 *freq)
526 {
527 	struct stm32_timer_cnt *const priv = counter_priv(counter);
528 
529 	*freq = clk_get_rate(priv->clk);
530 
531 	return 0;
532 }
533 
534 static struct counter_comp stm32_count_clock_ext[] = {
535 	COUNTER_COMP_FREQUENCY(stm32_count_clk_get_freq),
536 };
537 
538 static struct counter_signal stm32_signals[] = {
539 	/*
540 	 * Need to declare all the signals as a static array, and keep the signals order here,
541 	 * even if they're unused or unexisting on some timer instances. It's an abstraction,
542 	 * e.g. high level view of the counter features.
543 	 *
544 	 * Userspace programs may rely on signal0 to be "Channel 1", signal1 to be "Channel 2",
545 	 * and so on. When a signal is unexisting, the COUNTER_SYNAPSE_ACTION_NONE can be used,
546 	 * to indicate that a signal doesn't affect the counter.
547 	 */
548 	{
549 		.id = STM32_CH1_SIG,
550 		.name = "Channel 1"
551 	},
552 	{
553 		.id = STM32_CH2_SIG,
554 		.name = "Channel 2"
555 	},
556 	{
557 		.id = STM32_CLOCK_SIG,
558 		.name = "Clock",
559 		.ext = stm32_count_clock_ext,
560 		.num_ext = ARRAY_SIZE(stm32_count_clock_ext),
561 	},
562 	{
563 		.id = STM32_CH3_SIG,
564 		.name = "Channel 3"
565 	},
566 	{
567 		.id = STM32_CH4_SIG,
568 		.name = "Channel 4"
569 	},
570 };
571 
572 static struct counter_synapse stm32_count_synapses[] = {
573 	{
574 		.actions_list = stm32_synapse_actions,
575 		.num_actions = ARRAY_SIZE(stm32_synapse_actions),
576 		.signal = &stm32_signals[STM32_CH1_SIG]
577 	},
578 	{
579 		.actions_list = stm32_synapse_actions,
580 		.num_actions = ARRAY_SIZE(stm32_synapse_actions),
581 		.signal = &stm32_signals[STM32_CH2_SIG]
582 	},
583 	{
584 		.actions_list = stm32_clock_synapse_actions,
585 		.num_actions = ARRAY_SIZE(stm32_clock_synapse_actions),
586 		.signal = &stm32_signals[STM32_CLOCK_SIG]
587 	},
588 	{
589 		.actions_list = stm32_synapse_actions,
590 		.num_actions = ARRAY_SIZE(stm32_synapse_actions),
591 		.signal = &stm32_signals[STM32_CH3_SIG]
592 	},
593 	{
594 		.actions_list = stm32_synapse_actions,
595 		.num_actions = ARRAY_SIZE(stm32_synapse_actions),
596 		.signal = &stm32_signals[STM32_CH4_SIG]
597 	},
598 };
599 
600 static struct counter_count stm32_counts = {
601 	.id = 0,
602 	.name = "STM32 Timer Counter",
603 	.functions_list = stm32_count_functions,
604 	.num_functions = ARRAY_SIZE(stm32_count_functions),
605 	.synapses = stm32_count_synapses,
606 	.num_synapses = ARRAY_SIZE(stm32_count_synapses),
607 	.ext = stm32_count_ext,
608 	.num_ext = ARRAY_SIZE(stm32_count_ext)
609 };
610 
stm32_timer_cnt_isr(int irq,void * ptr)611 static irqreturn_t stm32_timer_cnt_isr(int irq, void *ptr)
612 {
613 	struct counter_device *counter = ptr;
614 	struct stm32_timer_cnt *const priv = counter_priv(counter);
615 	u32 clr = GENMASK(31, 0); /* SR flags can be cleared by writing 0 (wr 1 has no effect) */
616 	u32 sr, dier;
617 	int i;
618 
619 	regmap_read(priv->regmap, TIM_SR, &sr);
620 	regmap_read(priv->regmap, TIM_DIER, &dier);
621 	/*
622 	 * Some status bits in SR don't match with the enable bits in DIER. Only take care of
623 	 * the possibly enabled bits in DIER (that matches in between SR and DIER).
624 	 */
625 	dier &= (TIM_DIER_UIE | TIM_DIER_CC1IE | TIM_DIER_CC2IE | TIM_DIER_CC3IE | TIM_DIER_CC4IE);
626 	sr &= dier;
627 
628 	if (sr & TIM_SR_UIF) {
629 		spin_lock(&priv->lock);
630 		priv->nb_ovf++;
631 		spin_unlock(&priv->lock);
632 		counter_push_event(counter, COUNTER_EVENT_OVERFLOW_UNDERFLOW, 0);
633 		dev_dbg(counter->parent, "COUNTER_EVENT_OVERFLOW_UNDERFLOW\n");
634 		/* SR flags can be cleared by writing 0, only clear relevant flag */
635 		clr &= ~TIM_SR_UIF;
636 	}
637 
638 	/* Check capture events */
639 	for (i = 0 ; i < priv->nchannels; i++) {
640 		if (sr & TIM_SR_CC_IF(i)) {
641 			counter_push_event(counter, COUNTER_EVENT_CAPTURE, i);
642 			clr &= ~TIM_SR_CC_IF(i);
643 			dev_dbg(counter->parent, "COUNTER_EVENT_CAPTURE, %d\n", i);
644 		}
645 	}
646 
647 	regmap_write(priv->regmap, TIM_SR, clr);
648 
649 	return IRQ_HANDLED;
650 };
651 
stm32_timer_cnt_detect_channels(struct device * dev,struct stm32_timer_cnt * priv)652 static void stm32_timer_cnt_detect_channels(struct device *dev,
653 					    struct stm32_timer_cnt *priv)
654 {
655 	u32 ccer, ccer_backup;
656 
657 	regmap_read(priv->regmap, TIM_CCER, &ccer_backup);
658 	regmap_set_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE);
659 	regmap_read(priv->regmap, TIM_CCER, &ccer);
660 	regmap_write(priv->regmap, TIM_CCER, ccer_backup);
661 	priv->nchannels = hweight32(ccer & TIM_CCER_CCXE);
662 
663 	dev_dbg(dev, "has %d cc channels\n", priv->nchannels);
664 }
665 
666 /* encoder supported on TIM1 TIM2 TIM3 TIM4 TIM5 TIM8 */
667 #define STM32_TIM_ENCODER_SUPPORTED	(BIT(0) | BIT(1) | BIT(2) | BIT(3) | BIT(4) | BIT(7))
668 
669 static const char * const stm32_timer_trigger_compat[] = {
670 	"st,stm32-timer-trigger",
671 	"st,stm32h7-timer-trigger",
672 };
673 
stm32_timer_cnt_probe_encoder(struct device * dev,struct stm32_timer_cnt * priv)674 static int stm32_timer_cnt_probe_encoder(struct device *dev,
675 					 struct stm32_timer_cnt *priv)
676 {
677 	struct device *parent = dev->parent;
678 	struct device_node *tnode = NULL, *pnode = parent->of_node;
679 	int i, ret;
680 	u32 idx;
681 
682 	/*
683 	 * Need to retrieve the trigger node index from DT, to be able
684 	 * to determine if the counter supports encoder mode. It also
685 	 * enforce backward compatibility, and allow to support other
686 	 * counter modes in this driver (when the timer doesn't support
687 	 * encoder).
688 	 */
689 	for (i = 0; i < ARRAY_SIZE(stm32_timer_trigger_compat) && !tnode; i++)
690 		tnode = of_get_compatible_child(pnode, stm32_timer_trigger_compat[i]);
691 	if (!tnode) {
692 		dev_err(dev, "Can't find trigger node\n");
693 		return -ENODATA;
694 	}
695 
696 	ret = of_property_read_u32(tnode, "reg", &idx);
697 	if (ret) {
698 		dev_err(dev, "Can't get index (%d)\n", ret);
699 		return ret;
700 	}
701 
702 	priv->has_encoder = !!(STM32_TIM_ENCODER_SUPPORTED & BIT(idx));
703 
704 	dev_dbg(dev, "encoder support: %s\n", priv->has_encoder ? "yes" : "no");
705 
706 	return 0;
707 }
708 
stm32_timer_cnt_probe(struct platform_device * pdev)709 static int stm32_timer_cnt_probe(struct platform_device *pdev)
710 {
711 	struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
712 	struct device *dev = &pdev->dev;
713 	struct stm32_timer_cnt *priv;
714 	struct counter_device *counter;
715 	int i, ret;
716 
717 	if (IS_ERR_OR_NULL(ddata))
718 		return -EINVAL;
719 
720 	counter = devm_counter_alloc(dev, sizeof(*priv));
721 	if (!counter)
722 		return -ENOMEM;
723 
724 	priv = counter_priv(counter);
725 
726 	priv->regmap = ddata->regmap;
727 	priv->clk = ddata->clk;
728 	priv->max_arr = ddata->max_arr;
729 	priv->nr_irqs = ddata->nr_irqs;
730 
731 	ret = stm32_timer_cnt_probe_encoder(dev, priv);
732 	if (ret)
733 		return ret;
734 
735 	stm32_timer_cnt_detect_channels(dev, priv);
736 
737 	counter->name = dev_name(dev);
738 	counter->parent = dev;
739 	counter->ops = &stm32_timer_cnt_ops;
740 	counter->counts = &stm32_counts;
741 	counter->num_counts = 1;
742 	counter->signals = stm32_signals;
743 	counter->num_signals = ARRAY_SIZE(stm32_signals);
744 
745 	spin_lock_init(&priv->lock);
746 
747 	platform_set_drvdata(pdev, priv);
748 
749 	/* STM32 Timers can have either 1 global, or 4 dedicated interrupts (optional) */
750 	if (priv->nr_irqs == 1) {
751 		/* All events reported through the global interrupt */
752 		ret = devm_request_irq(&pdev->dev, ddata->irq[0], stm32_timer_cnt_isr,
753 				       0, dev_name(dev), counter);
754 		if (ret) {
755 			dev_err(dev, "Failed to request irq %d (err %d)\n",
756 				ddata->irq[0], ret);
757 			return ret;
758 		}
759 	} else {
760 		for (i = 0; i < priv->nr_irqs; i++) {
761 			/*
762 			 * Only take care of update IRQ for overflow events, and cc for
763 			 * capture events.
764 			 */
765 			if (i != STM32_TIMERS_IRQ_UP && i != STM32_TIMERS_IRQ_CC)
766 				continue;
767 
768 			ret = devm_request_irq(&pdev->dev, ddata->irq[i], stm32_timer_cnt_isr,
769 					       0, dev_name(dev), counter);
770 			if (ret) {
771 				dev_err(dev, "Failed to request irq %d (err %d)\n",
772 					ddata->irq[i], ret);
773 				return ret;
774 			}
775 		}
776 	}
777 
778 	/* Reset input selector to its default input */
779 	regmap_write(priv->regmap, TIM_TISEL, 0x0);
780 
781 	/* Register Counter device */
782 	ret = devm_counter_add(dev, counter);
783 	if (ret < 0)
784 		dev_err_probe(dev, ret, "Failed to add counter\n");
785 
786 	return ret;
787 }
788 
stm32_timer_cnt_suspend(struct device * dev)789 static int __maybe_unused stm32_timer_cnt_suspend(struct device *dev)
790 {
791 	struct stm32_timer_cnt *priv = dev_get_drvdata(dev);
792 
793 	/* Only take care of enabled counter: don't disturb other MFD child */
794 	if (priv->enabled) {
795 		/* Backup registers that may get lost in low power mode */
796 		regmap_read(priv->regmap, TIM_SMCR, &priv->bak.smcr);
797 		regmap_read(priv->regmap, TIM_ARR, &priv->bak.arr);
798 		regmap_read(priv->regmap, TIM_CNT, &priv->bak.cnt);
799 		regmap_read(priv->regmap, TIM_CR1, &priv->bak.cr1);
800 
801 		/* Disable the counter */
802 		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
803 		clk_disable(priv->clk);
804 	}
805 
806 	return pinctrl_pm_select_sleep_state(dev);
807 }
808 
stm32_timer_cnt_resume(struct device * dev)809 static int __maybe_unused stm32_timer_cnt_resume(struct device *dev)
810 {
811 	struct stm32_timer_cnt *priv = dev_get_drvdata(dev);
812 	int ret;
813 
814 	ret = pinctrl_pm_select_default_state(dev);
815 	if (ret)
816 		return ret;
817 
818 	if (priv->enabled) {
819 		clk_enable(priv->clk);
820 
821 		/* Restore registers that may have been lost */
822 		regmap_write(priv->regmap, TIM_SMCR, priv->bak.smcr);
823 		regmap_write(priv->regmap, TIM_ARR, priv->bak.arr);
824 		regmap_write(priv->regmap, TIM_CNT, priv->bak.cnt);
825 
826 		/* Also re-enables the counter */
827 		regmap_write(priv->regmap, TIM_CR1, priv->bak.cr1);
828 	}
829 
830 	return 0;
831 }
832 
833 static SIMPLE_DEV_PM_OPS(stm32_timer_cnt_pm_ops, stm32_timer_cnt_suspend,
834 			 stm32_timer_cnt_resume);
835 
836 static const struct of_device_id stm32_timer_cnt_of_match[] = {
837 	{ .compatible = "st,stm32-timer-counter", },
838 	{},
839 };
840 MODULE_DEVICE_TABLE(of, stm32_timer_cnt_of_match);
841 
842 static struct platform_driver stm32_timer_cnt_driver = {
843 	.probe = stm32_timer_cnt_probe,
844 	.driver = {
845 		.name = "stm32-timer-counter",
846 		.of_match_table = stm32_timer_cnt_of_match,
847 		.pm = &stm32_timer_cnt_pm_ops,
848 	},
849 };
850 module_platform_driver(stm32_timer_cnt_driver);
851 
852 MODULE_AUTHOR("Benjamin Gaignard <benjamin.gaignard@st.com>");
853 MODULE_ALIAS("platform:stm32-timer-counter");
854 MODULE_DESCRIPTION("STMicroelectronics STM32 TIMER counter driver");
855 MODULE_LICENSE("GPL v2");
856 MODULE_IMPORT_NS(COUNTER);
857