xref: /linux/drivers/net/ipa/ipa_main.c (revision 8be4d31cb8aaeea27bde4b7ddb26e28a89062ebf)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2018-2024 Linaro Ltd.
5  */
6 
7 #include <linux/bug.h>
8 #include <linux/firmware.h>
9 #include <linux/io.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/of_reserved_mem.h>
13 #include <linux/platform_device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/types.h>
16 
17 #include <linux/firmware/qcom/qcom_scm.h>
18 #include <linux/soc/qcom/mdt_loader.h>
19 
20 #include "ipa.h"
21 #include "ipa_cmd.h"
22 #include "ipa_data.h"
23 #include "ipa_endpoint.h"
24 #include "ipa_interrupt.h"
25 #include "ipa_mem.h"
26 #include "ipa_modem.h"
27 #include "ipa_power.h"
28 #include "ipa_reg.h"
29 #include "ipa_resource.h"
30 #include "ipa_smp2p.h"
31 #include "ipa_sysfs.h"
32 #include "ipa_table.h"
33 #include "ipa_uc.h"
34 #include "ipa_version.h"
35 
36 /**
37  * DOC: The IP Accelerator
38  *
39  * This driver supports the Qualcomm IP Accelerator (IPA), which is a
40  * networking component found in many Qualcomm SoCs.  The IPA is connected
41  * to the application processor (AP), but is also connected (and partially
42  * controlled by) other "execution environments" (EEs), such as a modem.
43  *
44  * The IPA is the conduit between the AP and the modem that carries network
45  * traffic.  This driver presents a network interface representing the
46  * connection of the modem to external (e.g. LTE) networks.
47  *
48  * The IPA provides protocol checksum calculation, offloading this work
49  * from the AP.  The IPA offers additional functionality, including routing,
50  * filtering, and NAT support, but that more advanced functionality is not
51  * currently supported.  Despite that, some resources--including routing
52  * tables and filter tables--are defined in this driver because they must
53  * be initialized even when the advanced hardware features are not used.
54  *
55  * There are two distinct layers that implement the IPA hardware, and this
56  * is reflected in the organization of the driver.  The generic software
57  * interface (GSI) is an integral component of the IPA, providing a
58  * well-defined communication layer between the AP subsystem and the IPA
59  * core.  The GSI implements a set of "channels" used for communication
60  * between the AP and the IPA.
61  *
62  * The IPA layer uses GSI channels to implement its "endpoints".  And while
63  * a GSI channel carries data between the AP and the IPA, a pair of IPA
64  * endpoints is used to carry traffic between two EEs.  Specifically, the main
65  * modem network interface is implemented by two pairs of endpoints:  a TX
66  * endpoint on the AP coupled with an RX endpoint on the modem; and another
67  * RX endpoint on the AP receiving data from a TX endpoint on the modem.
68  */
69 
70 /* The name of the GSI firmware file relative to /lib/firmware */
71 #define IPA_FW_PATH_DEFAULT	"ipa_fws.mdt"
72 #define IPA_PAS_ID		15
73 
74 /* Shift of 19.2 MHz timestamp to achieve lower resolution timestamps */
75 /* IPA v5.5+ does not specify Qtime timestamp config for DPL */
76 #define DPL_TIMESTAMP_SHIFT	14	/* ~1.172 kHz, ~853 usec per tick */
77 #define TAG_TIMESTAMP_SHIFT	14
78 #define NAT_TIMESTAMP_SHIFT	24	/* ~1.144 Hz, ~874 msec per tick */
79 
80 /* Divider for 19.2 MHz crystal oscillator clock to get common timer clock */
81 #define IPA_XO_CLOCK_DIVIDER	192	/* 1 is subtracted where used */
82 
83 /**
84  * enum ipa_firmware_loader: How GSI firmware gets loaded
85  *
86  * @IPA_LOADER_DEFER:		System not ready; try again later
87  * @IPA_LOADER_SELF:		AP loads GSI firmware
88  * @IPA_LOADER_MODEM:		Modem loads GSI firmware, signals when done
89  * @IPA_LOADER_SKIP:		Neither AP nor modem need to load GSI firmware
90  * @IPA_LOADER_INVALID:	GSI firmware loader specification is invalid
91  */
92 enum ipa_firmware_loader {
93 	IPA_LOADER_DEFER,
94 	IPA_LOADER_SELF,
95 	IPA_LOADER_MODEM,
96 	IPA_LOADER_SKIP,
97 	IPA_LOADER_INVALID,
98 };
99 
100 /**
101  * ipa_setup() - Set up IPA hardware
102  * @ipa:	IPA pointer
103  *
104  * Perform initialization that requires issuing immediate commands on
105  * the command TX endpoint.  If the modem is doing GSI firmware load
106  * and initialization, this function will be called when an SMP2P
107  * interrupt has been signaled by the modem.  Otherwise it will be
108  * called from ipa_probe() after GSI firmware has been successfully
109  * loaded, authenticated, and started by Trust Zone.
110  */
ipa_setup(struct ipa * ipa)111 int ipa_setup(struct ipa *ipa)
112 {
113 	struct ipa_endpoint *exception_endpoint;
114 	struct ipa_endpoint *command_endpoint;
115 	struct device *dev = ipa->dev;
116 	int ret;
117 
118 	ret = gsi_setup(&ipa->gsi);
119 	if (ret)
120 		return ret;
121 
122 	ipa_endpoint_setup(ipa);
123 
124 	/* We need to use the AP command TX endpoint to perform other
125 	 * initialization, so we enable first.
126 	 */
127 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
128 	ret = ipa_endpoint_enable_one(command_endpoint);
129 	if (ret)
130 		goto err_endpoint_teardown;
131 
132 	ret = ipa_mem_setup(ipa);	/* No matching teardown required */
133 	if (ret)
134 		goto err_command_disable;
135 
136 	ret = ipa_table_setup(ipa);	/* No matching teardown required */
137 	if (ret)
138 		goto err_command_disable;
139 
140 	/* Enable the exception handling endpoint, and tell the hardware
141 	 * to use it by default.
142 	 */
143 	exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
144 	ret = ipa_endpoint_enable_one(exception_endpoint);
145 	if (ret)
146 		goto err_command_disable;
147 
148 	ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id);
149 
150 	/* We're all set.  Now prepare for communication with the modem */
151 	ret = ipa_qmi_setup(ipa);
152 	if (ret)
153 		goto err_default_route_clear;
154 
155 	ipa->setup_complete = true;
156 
157 	dev_info(dev, "IPA driver setup completed successfully\n");
158 
159 	return 0;
160 
161 err_default_route_clear:
162 	ipa_endpoint_default_route_clear(ipa);
163 	ipa_endpoint_disable_one(exception_endpoint);
164 err_command_disable:
165 	ipa_endpoint_disable_one(command_endpoint);
166 err_endpoint_teardown:
167 	ipa_endpoint_teardown(ipa);
168 	gsi_teardown(&ipa->gsi);
169 
170 	return ret;
171 }
172 
173 /**
174  * ipa_teardown() - Inverse of ipa_setup()
175  * @ipa:	IPA pointer
176  */
ipa_teardown(struct ipa * ipa)177 static void ipa_teardown(struct ipa *ipa)
178 {
179 	struct ipa_endpoint *exception_endpoint;
180 	struct ipa_endpoint *command_endpoint;
181 
182 	/* We're going to tear everything down, as if setup never completed */
183 	ipa->setup_complete = false;
184 
185 	ipa_qmi_teardown(ipa);
186 	ipa_endpoint_default_route_clear(ipa);
187 	exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
188 	ipa_endpoint_disable_one(exception_endpoint);
189 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
190 	ipa_endpoint_disable_one(command_endpoint);
191 	ipa_endpoint_teardown(ipa);
192 	gsi_teardown(&ipa->gsi);
193 }
194 
195 static void
ipa_hardware_config_bcr(struct ipa * ipa,const struct ipa_data * data)196 ipa_hardware_config_bcr(struct ipa *ipa, const struct ipa_data *data)
197 {
198 	const struct reg *reg;
199 	u32 val;
200 
201 	/* IPA v4.5+ has no backward compatibility register */
202 	if (ipa->version >= IPA_VERSION_4_5)
203 		return;
204 
205 	reg = ipa_reg(ipa, IPA_BCR);
206 	val = data->backward_compat;
207 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
208 }
209 
ipa_hardware_config_tx(struct ipa * ipa)210 static void ipa_hardware_config_tx(struct ipa *ipa)
211 {
212 	enum ipa_version version = ipa->version;
213 	const struct reg *reg;
214 	u32 offset;
215 	u32 val;
216 
217 	if (version <= IPA_VERSION_4_0 || version >= IPA_VERSION_4_5)
218 		return;
219 
220 	/* Disable PA mask to allow HOLB drop */
221 	reg = ipa_reg(ipa, IPA_TX_CFG);
222 	offset = reg_offset(reg);
223 
224 	val = ioread32(ipa->reg_virt + offset);
225 
226 	val &= ~reg_bit(reg, PA_MASK_EN);
227 
228 	iowrite32(val, ipa->reg_virt + offset);
229 }
230 
ipa_hardware_config_clkon(struct ipa * ipa)231 static void ipa_hardware_config_clkon(struct ipa *ipa)
232 {
233 	enum ipa_version version = ipa->version;
234 	const struct reg *reg;
235 	u32 val;
236 
237 	if (version >= IPA_VERSION_4_5)
238 		return;
239 
240 	if (version < IPA_VERSION_4_0 && version != IPA_VERSION_3_1)
241 		return;
242 
243 	/* Implement some hardware workarounds */
244 	reg = ipa_reg(ipa, CLKON_CFG);
245 	if (version == IPA_VERSION_3_1) {
246 		/* Disable MISC clock gating */
247 		val = reg_bit(reg, CLKON_MISC);
248 	} else {	/* IPA v4.0+ */
249 		/* Enable open global clocks in the CLKON configuration */
250 		val = reg_bit(reg, CLKON_GLOBAL);
251 		val |= reg_bit(reg, GLOBAL_2X_CLK);
252 	}
253 
254 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
255 }
256 
257 /* Configure bus access behavior for IPA components */
ipa_hardware_config_comp(struct ipa * ipa)258 static void ipa_hardware_config_comp(struct ipa *ipa)
259 {
260 	const struct reg *reg;
261 	u32 offset;
262 	u32 val;
263 
264 	/* Nothing to configure prior to IPA v4.0 */
265 	if (ipa->version < IPA_VERSION_4_0)
266 		return;
267 
268 	reg = ipa_reg(ipa, COMP_CFG);
269 	offset = reg_offset(reg);
270 
271 	val = ioread32(ipa->reg_virt + offset);
272 
273 	if (ipa->version == IPA_VERSION_4_0) {
274 		val &= ~reg_bit(reg, IPA_QMB_SELECT_CONS_EN);
275 		val &= ~reg_bit(reg, IPA_QMB_SELECT_PROD_EN);
276 		val &= ~reg_bit(reg, IPA_QMB_SELECT_GLOBAL_EN);
277 	} else if (ipa->version < IPA_VERSION_4_5) {
278 		val |= reg_bit(reg, GSI_MULTI_AXI_MASTERS_DIS);
279 	} else {
280 		/* For IPA v4.5+ FULL_FLUSH_WAIT_RS_CLOSURE_EN is 0 */
281 	}
282 
283 	val |= reg_bit(reg, GSI_MULTI_INORDER_RD_DIS);
284 	val |= reg_bit(reg, GSI_MULTI_INORDER_WR_DIS);
285 
286 	iowrite32(val, ipa->reg_virt + offset);
287 }
288 
289 /* Configure DDR and (possibly) PCIe max read/write QSB values */
290 static void
ipa_hardware_config_qsb(struct ipa * ipa,const struct ipa_data * data)291 ipa_hardware_config_qsb(struct ipa *ipa, const struct ipa_data *data)
292 {
293 	const struct ipa_qsb_data *data0;
294 	const struct ipa_qsb_data *data1;
295 	const struct reg *reg;
296 	u32 val;
297 
298 	/* QMB 0 represents DDR; QMB 1 (if present) represents PCIe */
299 	data0 = &data->qsb_data[IPA_QSB_MASTER_DDR];
300 	if (data->qsb_count > 1)
301 		data1 = &data->qsb_data[IPA_QSB_MASTER_PCIE];
302 
303 	/* Max outstanding write accesses for QSB masters */
304 	reg = ipa_reg(ipa, QSB_MAX_WRITES);
305 
306 	val = reg_encode(reg, GEN_QMB_0_MAX_WRITES, data0->max_writes);
307 	if (data->qsb_count > 1)
308 		val |= reg_encode(reg, GEN_QMB_1_MAX_WRITES, data1->max_writes);
309 
310 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
311 
312 	/* Max outstanding read accesses for QSB masters */
313 	reg = ipa_reg(ipa, QSB_MAX_READS);
314 
315 	val = reg_encode(reg, GEN_QMB_0_MAX_READS, data0->max_reads);
316 	if (ipa->version >= IPA_VERSION_4_0)
317 		val |= reg_encode(reg, GEN_QMB_0_MAX_READS_BEATS,
318 				  data0->max_reads_beats);
319 	if (data->qsb_count > 1) {
320 		val = reg_encode(reg, GEN_QMB_1_MAX_READS, data1->max_reads);
321 		if (ipa->version >= IPA_VERSION_4_0)
322 			val |= reg_encode(reg, GEN_QMB_1_MAX_READS_BEATS,
323 					  data1->max_reads_beats);
324 	}
325 
326 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
327 }
328 
329 /* The internal inactivity timer clock is used for the aggregation timer */
330 #define TIMER_FREQUENCY	32000		/* 32 KHz inactivity timer clock */
331 
332 /* Compute the value to use in the COUNTER_CFG register AGGR_GRANULARITY
333  * field to represent the given number of microseconds.  The value is one
334  * less than the number of timer ticks in the requested period.  0 is not
335  * a valid granularity value (so for example @usec must be at least 16 for
336  * a TIMER_FREQUENCY of 32000).
337  */
ipa_aggr_granularity_val(u32 usec)338 static __always_inline u32 ipa_aggr_granularity_val(u32 usec)
339 {
340 	return DIV_ROUND_CLOSEST(usec * TIMER_FREQUENCY, USEC_PER_SEC) - 1;
341 }
342 
343 /* IPA uses unified Qtime starting at IPA v4.5, implementing various
344  * timestamps and timers independent of the IPA core clock rate.  The
345  * Qtimer is based on a 56-bit timestamp incremented at each tick of
346  * a 19.2 MHz SoC crystal oscillator (XO clock).
347  *
348  * For IPA timestamps (tag, NAT, data path logging) a lower resolution
349  * timestamp is achieved by shifting the Qtimer timestamp value right
350  * some number of bits to produce the low-order bits of the coarser
351  * granularity timestamp.
352  *
353  * For timers, a common timer clock is derived from the XO clock using
354  * a divider (we use 192, to produce a 100kHz timer clock).  From
355  * this common clock, three "pulse generators" are used to produce
356  * timer ticks at a configurable frequency.  IPA timers (such as
357  * those used for aggregation or head-of-line block handling) now
358  * define their period based on one of these pulse generators.
359  */
ipa_qtime_config(struct ipa * ipa)360 static void ipa_qtime_config(struct ipa *ipa)
361 {
362 	const struct reg *reg;
363 	u32 offset;
364 	u32 val;
365 
366 	/* Timer clock divider must be disabled when we change the rate */
367 	reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG);
368 	iowrite32(0, ipa->reg_virt + reg_offset(reg));
369 
370 	reg = ipa_reg(ipa, QTIME_TIMESTAMP_CFG);
371 	if (ipa->version < IPA_VERSION_5_5) {
372 		/* Set DPL time stamp resolution to use Qtime (not 1 msec) */
373 		val = reg_encode(reg, DPL_TIMESTAMP_LSB, DPL_TIMESTAMP_SHIFT);
374 		val |= reg_bit(reg, DPL_TIMESTAMP_SEL);
375 	}
376 	/* Configure tag and NAT Qtime timestamp resolution as well */
377 	val = reg_encode(reg, TAG_TIMESTAMP_LSB, TAG_TIMESTAMP_SHIFT);
378 	val = reg_encode(reg, NAT_TIMESTAMP_LSB, NAT_TIMESTAMP_SHIFT);
379 
380 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
381 
382 	/* Set granularity of pulse generators used for other timers */
383 	reg = ipa_reg(ipa, TIMERS_PULSE_GRAN_CFG);
384 	val = reg_encode(reg, PULSE_GRAN_0, IPA_GRAN_100_US);
385 	val |= reg_encode(reg, PULSE_GRAN_1, IPA_GRAN_1_MS);
386 	if (ipa->version >= IPA_VERSION_5_0) {
387 		val |= reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_10_MS);
388 		val |= reg_encode(reg, PULSE_GRAN_3, IPA_GRAN_10_MS);
389 	} else {
390 		val |= reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_1_MS);
391 	}
392 
393 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
394 
395 	/* Actual divider is 1 more than value supplied here */
396 	reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG);
397 	offset = reg_offset(reg);
398 
399 	val = reg_encode(reg, DIV_VALUE, IPA_XO_CLOCK_DIVIDER - 1);
400 
401 	iowrite32(val, ipa->reg_virt + offset);
402 
403 	/* Divider value is set; re-enable the common timer clock divider */
404 	val |= reg_bit(reg, DIV_ENABLE);
405 
406 	iowrite32(val, ipa->reg_virt + offset);
407 }
408 
409 /* Before IPA v4.5 timing is controlled by a counter register */
ipa_hardware_config_counter(struct ipa * ipa)410 static void ipa_hardware_config_counter(struct ipa *ipa)
411 {
412 	u32 granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY);
413 	const struct reg *reg;
414 	u32 val;
415 
416 	reg = ipa_reg(ipa, COUNTER_CFG);
417 	/* If defined, EOT_COAL_GRANULARITY is 0 */
418 	val = reg_encode(reg, AGGR_GRANULARITY, granularity);
419 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
420 }
421 
ipa_hardware_config_timing(struct ipa * ipa)422 static void ipa_hardware_config_timing(struct ipa *ipa)
423 {
424 	if (ipa->version < IPA_VERSION_4_5)
425 		ipa_hardware_config_counter(ipa);
426 	else
427 		ipa_qtime_config(ipa);
428 }
429 
ipa_hardware_config_hashing(struct ipa * ipa)430 static void ipa_hardware_config_hashing(struct ipa *ipa)
431 {
432 	const struct reg *reg;
433 
434 	/* Other than IPA v4.2, all versions enable "hashing".  Starting
435 	 * with IPA v5.0, the filter and router tables are implemented
436 	 * differently, but the default configuration enables this feature
437 	 * (now referred to as "cacheing"), so there's nothing to do here.
438 	 */
439 	if (ipa->version != IPA_VERSION_4_2)
440 		return;
441 
442 	/* IPA v4.2 does not support hashed tables, so disable them */
443 	reg = ipa_reg(ipa, FILT_ROUT_HASH_EN);
444 
445 	/* IPV6_ROUTER_HASH, IPV6_FILTER_HASH, IPV4_ROUTER_HASH,
446 	 * IPV4_FILTER_HASH are all zero.
447 	 */
448 	iowrite32(0, ipa->reg_virt + reg_offset(reg));
449 }
450 
ipa_idle_indication_cfg(struct ipa * ipa,u32 enter_idle_debounce_thresh,bool const_non_idle_enable)451 static void ipa_idle_indication_cfg(struct ipa *ipa,
452 				    u32 enter_idle_debounce_thresh,
453 				    bool const_non_idle_enable)
454 {
455 	const struct reg *reg;
456 	u32 val;
457 
458 	if (ipa->version < IPA_VERSION_3_5_1)
459 		return;
460 
461 	reg = ipa_reg(ipa, IDLE_INDICATION_CFG);
462 	val = reg_encode(reg, ENTER_IDLE_DEBOUNCE_THRESH,
463 			 enter_idle_debounce_thresh);
464 	if (const_non_idle_enable)
465 		val |= reg_bit(reg, CONST_NON_IDLE_ENABLE);
466 
467 	iowrite32(val, ipa->reg_virt + reg_offset(reg));
468 }
469 
470 /**
471  * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA
472  * @ipa:	IPA pointer
473  *
474  * Configures when the IPA signals it is idle to the global clock
475  * controller, which can respond by scaling down the clock to save
476  * power.
477  */
ipa_hardware_dcd_config(struct ipa * ipa)478 static void ipa_hardware_dcd_config(struct ipa *ipa)
479 {
480 	/* Recommended values for IPA 3.5 and later according to IPA HPG */
481 	ipa_idle_indication_cfg(ipa, 256, false);
482 }
483 
ipa_hardware_dcd_deconfig(struct ipa * ipa)484 static void ipa_hardware_dcd_deconfig(struct ipa *ipa)
485 {
486 	/* Power-on reset values */
487 	ipa_idle_indication_cfg(ipa, 0, true);
488 }
489 
490 /**
491  * ipa_hardware_config() - Primitive hardware initialization
492  * @ipa:	IPA pointer
493  * @data:	IPA configuration data
494  */
ipa_hardware_config(struct ipa * ipa,const struct ipa_data * data)495 static void ipa_hardware_config(struct ipa *ipa, const struct ipa_data *data)
496 {
497 	ipa_hardware_config_bcr(ipa, data);
498 	ipa_hardware_config_tx(ipa);
499 	ipa_hardware_config_clkon(ipa);
500 	ipa_hardware_config_comp(ipa);
501 	ipa_hardware_config_qsb(ipa, data);
502 	ipa_hardware_config_timing(ipa);
503 	ipa_hardware_config_hashing(ipa);
504 	ipa_hardware_dcd_config(ipa);
505 }
506 
507 /**
508  * ipa_hardware_deconfig() - Inverse of ipa_hardware_config()
509  * @ipa:	IPA pointer
510  *
511  * This restores the power-on reset values (even if they aren't different)
512  */
ipa_hardware_deconfig(struct ipa * ipa)513 static void ipa_hardware_deconfig(struct ipa *ipa)
514 {
515 	/* Mostly we just leave things as we set them. */
516 	ipa_hardware_dcd_deconfig(ipa);
517 }
518 
519 /**
520  * ipa_config() - Configure IPA hardware
521  * @ipa:	IPA pointer
522  * @data:	IPA configuration data
523  *
524  * Perform initialization requiring IPA power to be enabled.
525  */
ipa_config(struct ipa * ipa,const struct ipa_data * data)526 static int ipa_config(struct ipa *ipa, const struct ipa_data *data)
527 {
528 	int ret;
529 
530 	ipa_hardware_config(ipa, data);
531 
532 	ret = ipa_mem_config(ipa);
533 	if (ret)
534 		goto err_hardware_deconfig;
535 
536 	ret = ipa_interrupt_config(ipa);
537 	if (ret)
538 		goto err_mem_deconfig;
539 
540 	ipa_uc_config(ipa);
541 
542 	ret = ipa_endpoint_config(ipa);
543 	if (ret)
544 		goto err_uc_deconfig;
545 
546 	ipa_table_config(ipa);		/* No deconfig required */
547 
548 	/* Assign resource limitation to each group; no deconfig required */
549 	ret = ipa_resource_config(ipa, data->resource_data);
550 	if (ret)
551 		goto err_endpoint_deconfig;
552 
553 	ret = ipa_modem_config(ipa);
554 	if (ret)
555 		goto err_endpoint_deconfig;
556 
557 	return 0;
558 
559 err_endpoint_deconfig:
560 	ipa_endpoint_deconfig(ipa);
561 err_uc_deconfig:
562 	ipa_uc_deconfig(ipa);
563 	ipa_interrupt_deconfig(ipa);
564 err_mem_deconfig:
565 	ipa_mem_deconfig(ipa);
566 err_hardware_deconfig:
567 	ipa_hardware_deconfig(ipa);
568 
569 	return ret;
570 }
571 
572 /**
573  * ipa_deconfig() - Inverse of ipa_config()
574  * @ipa:	IPA pointer
575  */
ipa_deconfig(struct ipa * ipa)576 static void ipa_deconfig(struct ipa *ipa)
577 {
578 	ipa_modem_deconfig(ipa);
579 	ipa_endpoint_deconfig(ipa);
580 	ipa_uc_deconfig(ipa);
581 	ipa_interrupt_deconfig(ipa);
582 	ipa_mem_deconfig(ipa);
583 	ipa_hardware_deconfig(ipa);
584 }
585 
ipa_firmware_load(struct device * dev)586 static int ipa_firmware_load(struct device *dev)
587 {
588 	const struct firmware *fw;
589 	struct resource res;
590 	phys_addr_t phys;
591 	const char *path;
592 	ssize_t size;
593 	void *virt;
594 	int ret;
595 
596 	ret = of_reserved_mem_region_to_resource(dev->of_node, 0, &res);
597 	if (ret) {
598 		dev_err(dev, "error %d getting \"memory-region\" resource\n",
599 			ret);
600 		return ret;
601 	}
602 
603 	/* Use name from DTB if specified; use default for *any* error */
604 	ret = of_property_read_string(dev->of_node, "firmware-name", &path);
605 	if (ret) {
606 		dev_dbg(dev, "error %d getting \"firmware-name\" resource\n",
607 			ret);
608 		path = IPA_FW_PATH_DEFAULT;
609 	}
610 
611 	ret = request_firmware(&fw, path, dev);
612 	if (ret) {
613 		dev_err(dev, "error %d requesting \"%s\"\n", ret, path);
614 		return ret;
615 	}
616 
617 	phys = res.start;
618 	size = (size_t)resource_size(&res);
619 	virt = memremap(phys, size, MEMREMAP_WC);
620 	if (!virt) {
621 		dev_err(dev, "unable to remap firmware memory\n");
622 		ret = -ENOMEM;
623 		goto out_release_firmware;
624 	}
625 
626 	ret = qcom_mdt_load(dev, fw, path, IPA_PAS_ID, virt, phys, size, NULL);
627 	if (ret)
628 		dev_err(dev, "error %d loading \"%s\"\n", ret, path);
629 	else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID)))
630 		dev_err(dev, "error %d authenticating \"%s\"\n", ret, path);
631 
632 	memunmap(virt);
633 out_release_firmware:
634 	release_firmware(fw);
635 
636 	return ret;
637 }
638 
639 static const struct of_device_id ipa_match[] = {
640 	{
641 		.compatible	= "qcom,msm8998-ipa",
642 		.data		= &ipa_data_v3_1,
643 	},
644 	{
645 		.compatible	= "qcom,sdm845-ipa",
646 		.data		= &ipa_data_v3_5_1,
647 	},
648 	{
649 		.compatible	= "qcom,sc7180-ipa",
650 		.data		= &ipa_data_v4_2,
651 	},
652 	{
653 		.compatible	= "qcom,sdx55-ipa",
654 		.data		= &ipa_data_v4_5,
655 	},
656 	{
657 		.compatible	= "qcom,sm6350-ipa",
658 		.data		= &ipa_data_v4_7,
659 	},
660 	{
661 		.compatible	= "qcom,sm8350-ipa",
662 		.data		= &ipa_data_v4_9,
663 	},
664 	{
665 		.compatible	= "qcom,sc7280-ipa",
666 		.data		= &ipa_data_v4_11,
667 	},
668 	{
669 		.compatible	= "qcom,sdx65-ipa",
670 		.data		= &ipa_data_v5_0,
671 	},
672 	{
673 		.compatible	= "qcom,sm8550-ipa",
674 		.data		= &ipa_data_v5_5,
675 	},
676 	{ },
677 };
678 MODULE_DEVICE_TABLE(of, ipa_match);
679 
680 /* Check things that can be validated at build time.  This just
681  * groups these things BUILD_BUG_ON() calls don't clutter the rest
682  * of the code.
683  * */
ipa_validate_build(void)684 static void ipa_validate_build(void)
685 {
686 	/* At one time we assumed a 64-bit build, allowing some do_div()
687 	 * calls to be replaced by simple division or modulo operations.
688 	 * We currently only perform divide and modulo operations on u32,
689 	 * u16, or size_t objects, and of those only size_t has any chance
690 	 * of being a 64-bit value.  (It should be guaranteed 32 bits wide
691 	 * on a 32-bit build, but there is no harm in verifying that.)
692 	 */
693 	BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT) && sizeof(size_t) != 4);
694 
695 	/* Code assumes the EE ID for the AP is 0 (zeroed structure field) */
696 	BUILD_BUG_ON(GSI_EE_AP != 0);
697 
698 	/* There's no point if we have no channels or event rings */
699 	BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX);
700 	BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX);
701 
702 	/* GSI hardware design limits */
703 	BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32);
704 	BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31);
705 
706 	/* The number of TREs in a transaction is limited by the channel's
707 	 * TLV FIFO size.  A transaction structure uses 8-bit fields
708 	 * to represents the number of TREs it has allocated and used.
709 	 */
710 	BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX);
711 
712 	/* This is used as a divisor */
713 	BUILD_BUG_ON(!IPA_AGGR_GRANULARITY);
714 
715 	/* Aggregation granularity value can't be 0, and must fit */
716 	BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY));
717 }
718 
ipa_firmware_loader(struct device * dev)719 static enum ipa_firmware_loader ipa_firmware_loader(struct device *dev)
720 {
721 	bool modem_init;
722 	const char *str;
723 	int ret;
724 
725 	/* Look up the old and new properties by name */
726 	modem_init = of_property_read_bool(dev->of_node, "modem-init");
727 	ret = of_property_read_string(dev->of_node, "qcom,gsi-loader", &str);
728 
729 	/* If the new property doesn't exist, it's legacy behavior */
730 	if (ret == -EINVAL) {
731 		if (modem_init)
732 			return IPA_LOADER_MODEM;
733 		goto out_self;
734 	}
735 
736 	/* Any other error on the new property means it's poorly defined */
737 	if (ret)
738 		return IPA_LOADER_INVALID;
739 
740 	/* New property value exists; if old one does too, that's invalid */
741 	if (modem_init)
742 		return IPA_LOADER_INVALID;
743 
744 	/* Modem loads GSI firmware for "modem" */
745 	if (!strcmp(str, "modem"))
746 		return IPA_LOADER_MODEM;
747 
748 	/* No GSI firmware load is needed for "skip" */
749 	if (!strcmp(str, "skip"))
750 		return IPA_LOADER_SKIP;
751 
752 	/* Any value other than "self" is an error */
753 	if (strcmp(str, "self"))
754 		return IPA_LOADER_INVALID;
755 out_self:
756 	/* We need Trust Zone to load firmware; make sure it's available */
757 	if (qcom_scm_is_available())
758 		return IPA_LOADER_SELF;
759 
760 	return IPA_LOADER_DEFER;
761 }
762 
763 /**
764  * ipa_probe() - IPA platform driver probe function
765  * @pdev:	Platform device pointer
766  *
767  * Return:	0 if successful, or a negative error code (possibly
768  *		EPROBE_DEFER)
769  *
770  * This is the main entry point for the IPA driver.  Initialization proceeds
771  * in several stages:
772  *   - The "init" stage involves activities that can be initialized without
773  *     access to the IPA hardware.
774  *   - The "config" stage requires IPA power to be active so IPA registers
775  *     can be accessed, but does not require the use of IPA immediate commands.
776  *   - The "setup" stage uses IPA immediate commands, and so requires the GSI
777  *     layer to be initialized.
778  *
779  * A Boolean Device Tree "modem-init" property determines whether GSI
780  * initialization will be performed by the AP (Trust Zone) or the modem.
781  * If the AP does GSI initialization, the setup phase is entered after
782  * this has completed successfully.  Otherwise the modem initializes
783  * the GSI layer and signals it has finished by sending an SMP2P interrupt
784  * to the AP; this triggers the start if IPA setup.
785  */
ipa_probe(struct platform_device * pdev)786 static int ipa_probe(struct platform_device *pdev)
787 {
788 	struct device *dev = &pdev->dev;
789 	struct ipa_interrupt *interrupt;
790 	enum ipa_firmware_loader loader;
791 	const struct ipa_data *data;
792 	struct ipa_power *power;
793 	struct ipa *ipa;
794 	int ret;
795 
796 	ipa_validate_build();
797 
798 	/* Get configuration data early; needed for power initialization */
799 	data = of_device_get_match_data(dev);
800 	if (!data) {
801 		dev_err(dev, "matched hardware not supported\n");
802 		return -ENODEV;
803 	}
804 
805 	if (!data->modem_route_count) {
806 		dev_err(dev, "modem_route_count cannot be zero\n");
807 		return -EINVAL;
808 	}
809 
810 	loader = ipa_firmware_loader(dev);
811 	if (loader == IPA_LOADER_INVALID)
812 		return -EINVAL;
813 	if (loader == IPA_LOADER_DEFER)
814 		return -EPROBE_DEFER;
815 
816 	/* The IPA interrupt might not be ready when we're probed, so this
817 	 * might return -EPROBE_DEFER.
818 	 */
819 	interrupt = ipa_interrupt_init(pdev);
820 	if (IS_ERR(interrupt))
821 		return PTR_ERR(interrupt);
822 
823 	/* The clock and interconnects might not be ready when we're probed,
824 	 * so this might return -EPROBE_DEFER.
825 	 */
826 	power = ipa_power_init(dev, data->power_data);
827 	if (IS_ERR(power)) {
828 		ret = PTR_ERR(power);
829 		goto err_interrupt_exit;
830 	}
831 
832 	/* No more EPROBE_DEFER.  Allocate and initialize the IPA structure */
833 	ipa = kzalloc(sizeof(*ipa), GFP_KERNEL);
834 	if (!ipa) {
835 		ret = -ENOMEM;
836 		goto err_power_exit;
837 	}
838 
839 	ipa->dev = dev;
840 	dev_set_drvdata(dev, ipa);
841 	ipa->interrupt = interrupt;
842 	ipa->power = power;
843 	ipa->version = data->version;
844 	ipa->modem_route_count = data->modem_route_count;
845 	init_completion(&ipa->completion);
846 
847 	ret = ipa_reg_init(ipa, pdev);
848 	if (ret)
849 		goto err_kfree_ipa;
850 
851 	ret = ipa_mem_init(ipa, pdev, data->mem_data);
852 	if (ret)
853 		goto err_reg_exit;
854 
855 	ret = ipa_cmd_init(ipa);
856 	if (ret)
857 		goto err_mem_exit;
858 
859 	ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count,
860 		       data->endpoint_data);
861 	if (ret)
862 		goto err_mem_exit;
863 
864 	/* Result is a non-zero mask of endpoints that support filtering */
865 	ret = ipa_endpoint_init(ipa, data->endpoint_count, data->endpoint_data);
866 	if (ret)
867 		goto err_gsi_exit;
868 
869 	ret = ipa_table_init(ipa);
870 	if (ret)
871 		goto err_endpoint_exit;
872 
873 	ret = ipa_smp2p_init(ipa, pdev, loader == IPA_LOADER_MODEM);
874 	if (ret)
875 		goto err_table_exit;
876 
877 	/* Power needs to be active for config and setup */
878 	ret = pm_runtime_get_sync(dev);
879 	if (WARN_ON(ret < 0))
880 		goto err_power_put;
881 
882 	ret = ipa_config(ipa, data);
883 	if (ret)
884 		goto err_power_put;
885 
886 	dev_info(dev, "IPA driver initialized");
887 
888 	/* If the modem is loading GSI firmware, it will trigger a call to
889 	 * ipa_setup() when it has finished.  In that case we're done here.
890 	 */
891 	if (loader == IPA_LOADER_MODEM)
892 		goto done;
893 
894 	if (loader == IPA_LOADER_SELF) {
895 		/* The AP is loading GSI firmware; do so now */
896 		ret = ipa_firmware_load(dev);
897 		if (ret)
898 			goto err_deconfig;
899 	} /* Otherwise loader == IPA_LOADER_SKIP */
900 
901 	/* GSI firmware is loaded; proceed to setup */
902 	ret = ipa_setup(ipa);
903 	if (ret)
904 		goto err_deconfig;
905 done:
906 	pm_runtime_mark_last_busy(dev);
907 	(void)pm_runtime_put_autosuspend(dev);
908 
909 	return 0;
910 
911 err_deconfig:
912 	ipa_deconfig(ipa);
913 err_power_put:
914 	pm_runtime_put_noidle(dev);
915 	ipa_smp2p_exit(ipa);
916 err_table_exit:
917 	ipa_table_exit(ipa);
918 err_endpoint_exit:
919 	ipa_endpoint_exit(ipa);
920 err_gsi_exit:
921 	gsi_exit(&ipa->gsi);
922 err_mem_exit:
923 	ipa_mem_exit(ipa);
924 err_reg_exit:
925 	ipa_reg_exit(ipa);
926 err_kfree_ipa:
927 	kfree(ipa);
928 err_power_exit:
929 	ipa_power_exit(power);
930 err_interrupt_exit:
931 	ipa_interrupt_exit(interrupt);
932 
933 	return ret;
934 }
935 
ipa_remove(struct platform_device * pdev)936 static void ipa_remove(struct platform_device *pdev)
937 {
938 	struct ipa_interrupt *interrupt;
939 	struct ipa_power *power;
940 	struct device *dev;
941 	struct ipa *ipa;
942 	int ret;
943 
944 	ipa = dev_get_drvdata(&pdev->dev);
945 	dev = ipa->dev;
946 	WARN_ON(dev != &pdev->dev);
947 
948 	power = ipa->power;
949 	interrupt = ipa->interrupt;
950 
951 	/* Prevent the modem from triggering a call to ipa_setup().  This
952 	 * also ensures a modem-initiated setup that's underway completes.
953 	 */
954 	ipa_smp2p_irq_disable_setup(ipa);
955 
956 	ret = pm_runtime_get_sync(dev);
957 	if (WARN_ON(ret < 0))
958 		goto out_power_put;
959 
960 	if (ipa->setup_complete) {
961 		ret = ipa_modem_stop(ipa);
962 		/* If starting or stopping is in progress, try once more */
963 		if (ret == -EBUSY) {
964 			usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
965 			ret = ipa_modem_stop(ipa);
966 		}
967 		if (ret) {
968 			/*
969 			 * Not cleaning up here properly might also yield a
970 			 * crash later on. As the device is still unregistered
971 			 * in this case, this might even yield a crash later on.
972 			 */
973 			dev_err(dev, "Failed to stop modem (%pe), leaking resources\n",
974 				ERR_PTR(ret));
975 			return;
976 		}
977 
978 		ipa_teardown(ipa);
979 	}
980 
981 	ipa_deconfig(ipa);
982 out_power_put:
983 	pm_runtime_put_noidle(dev);
984 	ipa_smp2p_exit(ipa);
985 	ipa_table_exit(ipa);
986 	ipa_endpoint_exit(ipa);
987 	gsi_exit(&ipa->gsi);
988 	ipa_mem_exit(ipa);
989 	ipa_reg_exit(ipa);
990 	kfree(ipa);
991 	ipa_power_exit(power);
992 	ipa_interrupt_exit(interrupt);
993 
994 	dev_info(dev, "IPA driver removed");
995 }
996 
997 static const struct attribute_group *ipa_attribute_groups[] = {
998 	&ipa_attribute_group,
999 	&ipa_feature_attribute_group,
1000 	&ipa_endpoint_id_attribute_group,
1001 	&ipa_modem_attribute_group,
1002 	NULL,
1003 };
1004 
1005 static struct platform_driver ipa_driver = {
1006 	.probe		= ipa_probe,
1007 	.remove		= ipa_remove,
1008 	.shutdown	= ipa_remove,
1009 	.driver	= {
1010 		.name		= "ipa",
1011 		.pm		= &ipa_pm_ops,
1012 		.of_match_table	= ipa_match,
1013 		.dev_groups	= ipa_attribute_groups,
1014 	},
1015 };
1016 
1017 module_platform_driver(ipa_driver);
1018 
1019 MODULE_LICENSE("GPL v2");
1020 MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver");
1021